Araz, Coskun; Zeyneloglu, Pinar; Pirat, Arash; Veziroglu, Nukhet; Camkiran Firat, Aynur; Arslan, Gulnaz
2015-04-01
Hemodynamic monitoring is vital during liver transplant surgeries because distinct hemodynamic changes are expected. The continuous noninvasive arterial pressure (CNAP) monitor is a noninvasive device for continuous arterial pressure measurement by a tonometric method. This study compared continuous noninvasive arterial pressure monitoring with invasive direct arterial pressure monitoring in living-liver donors during transplant. There were 40 patients analyzed while undergoing hepatic lobectomy for liver transplant. Invasive pressure monitoring was established at the radial artery and continuous noninvasive arterial pressure monitoring using a finger sensor was recorded simultaneously from the contralateral arm. Systolic, diastolic, and mean arterial pressures from the 2 methods were compared. Correlation between the 2 methods was calculated. A total of 5433 simultaneous measurements were obtained. For systolic arterial blood pressure, 55% continuous noninvasive arterial pressure measurements were within 10% direct arterial measurement; the correlation was 0.479, continuous noninvasive arterial pressure bias was -0.3 mm Hg, and limits of agreement were 32.0 mm Hg. For diastolic arterial blood pressure, 50% continuous noninvasive arterial pressure measurements were within 10% direct arterial measurement; the correlation was 0.630, continuous noninvasive arterial pressure bias was -0.4 mm Hg, and limits of agreement were 21.1 mm Hg. For mean arterial blood pressure, 60% continuous noninvasive arterial pressure measurements were within 10% direct arterial measurement; the correlation was 0.692, continuous noninvasive arterial pressure bias was +0.4 mm Hg, and limits of agreement were 20.8 mm Hg. The 2 monitoring techniques did not show acceptable agreement. Our results suggest that continuous noninvasive arterial pressure monitoring is not equivalent to invasive arterial pressure monitoring in donors during living-donor liver transplant.
21 CFR 882.1570 - Powered direct-contact temperature measurement device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered direct-contact temperature measurement... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1570 Powered direct-contact temperature measurement device. (a) Identification. A powered direct...
21 CFR 882.1570 - Powered direct-contact temperature measurement device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered direct-contact temperature measurement... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1570 Powered direct-contact temperature measurement device. (a) Identification. A powered direct...
21 CFR 882.1570 - Powered direct-contact temperature measurement device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered direct-contact temperature measurement... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1570 Powered direct-contact temperature measurement device. (a) Identification. A powered direct...
A nondestructive method for continuously monitoring plant growth.
Schwartzkopf, S H
1985-06-01
In the past, plant growth generally has been measured using destructive methods. This paper describes a nondestructive technique for continuously monitoring plant growth. The technique provides a means of directly and accurately measuring plant growth over both short and long time intervals. Application of this technique to the direct measurement of plant growth rates is illustrated using corn (Zea mays L.) as an example.
Asundi, Krishna; Johnson, Peter W; Dennerlein, Jack T
2012-01-01
To determine the number of direct measurements needed to obtain a representative estimate of typing force and wrist kinematics, continuous measures of keyboard reaction force and wrist joint angle were collected at the workstation of 22 office workers while they completed their own work over three days, six hours per day. Typing force and wrist kinematics during keyboard, mouse and idle activities were calculated for each hour of measurement along with variance in measurements between subjects and between day and hour within subjects. Variance in measurements between subjects was significantly greater than variance in measurements between days and hours within subjects. Therefore, we concluded a single, one-hour period of continuous measures is sufficient to identify differences in typing force and wrist kinematics between subjects. Within subjects, day and hour of measurement had a significant effect on some measures and thus should be accounted for when comparing measures within a subject. The dose response relationship between exposure to computer related biomechanical risk factors and musculoskeletal disorders is poorly understood due to the difficulty and cost of direct measures. This study demonstrates a single hour of direct continuous measures is sufficient to identify differences in wrist kinematics and typing force between individuals.
Valeri, Linda; Lin, Xihong; VanderWeele, Tyler J.
2014-01-01
Mediation analysis is a popular approach to examine the extent to which the effect of an exposure on an outcome is through an intermediate variable (mediator) and the extent to which the effect is direct. When the mediator is mis-measured the validity of mediation analysis can be severely undermined. In this paper we first study the bias of classical, non-differential measurement error on a continuous mediator in the estimation of direct and indirect causal effects in generalized linear models when the outcome is either continuous or discrete and exposure-mediator interaction may be present. Our theoretical results as well as a numerical study demonstrate that in the presence of non-linearities the bias of naive estimators for direct and indirect effects that ignore measurement error can take unintuitive directions. We then develop methods to correct for measurement error. Three correction approaches using method of moments, regression calibration and SIMEX are compared. We apply the proposed method to the Massachusetts General Hospital lung cancer study to evaluate the effect of genetic variants mediated through smoking on lung cancer risk. PMID:25220625
Markovian limit for a reduced operation-valued stochastic process
NASA Astrophysics Data System (ADS)
Barchielli, Alberto
1987-04-01
Operation-valued stochastic processes give a formalization of the concept of continuous (in time) measurements in quantum mechanics. In this article, a first stage M of a measuring apparatus coupled to the system S is explicitly introduced, and continuous measurement of some observables of M is considered (one can speak of an indirect continuous measurement on S). When the degrees of freedom of the measuring apparatus M are eliminated and the weak coupling limit is taken, it is shown that an operation-valued stochastic process describing a direct continuous observation of the system S is obtained.
Tissue-Informative Mechanism for Wearable Non-invasive Continuous Blood Pressure Monitoring
NASA Astrophysics Data System (ADS)
Woo, Sung Hun; Choi, Yun Young; Kim, Dae Jung; Bien, Franklin; Kim, Jae Joon
2014-10-01
Accurate continuous direct measurement of the blood pressure is currently available thru direct invasive methods via intravascular needles, and is mostly limited to use during surgical procedures or in the intensive care unit (ICU). Non-invasive methods that are mostly based on auscultation or cuff oscillometric principles do provide relatively accurate measurement of blood pressure. However, they mostly involve physical inconveniences such as pressure or stress on the human body. Here, we introduce a new non-invasive mechanism of tissue-informative measurement, where an experimental phenomenon called subcutaneous tissue pressure equilibrium is revealed and related for application in detection of absolute blood pressure. A prototype was experimentally verified to provide an absolute blood pressure measurement by wearing a watch-type measurement module that does not cause any discomfort. This work is supposed to contribute remarkably to the advancement of continuous non-invasive mobile devices for 24-7 daily-life ambulatory blood-pressure monitoring.
DOT National Transportation Integrated Search
1966-05-01
A system for virtually continuous measurement of both systolic and diatolic blood pressures without recourse to direct arterial puncture has been effected by the modification of already existing standard equipment. This system entails the measurement...
Shan, Mingguang; Tan, Jiubin
2007-12-10
A theoretical model is established using Rayleigh-Sommerfeld diffraction theory to describe the diffraction focusing characteristics of low F-number diffractive optical elements with continuous relief fabricated by laser direct writing, and continuous-relief diffractive optical elements with a design wavelength of 441.6nm and a F-number of F/4 are fabricated and measured to verify the validity of the diffraction focusing model. The measurements made indicate that the spot size is 1.75mum and the diffraction efficiency is 70.7% at the design wavelength, which coincide well with the theoretical results: a spot size of 1.66mum and a diffraction efficiency of 71.2%.
Direct state tomography using continuous variable measuring device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xuanmin, E-mail: zhuxuanmin@xidian.edu.cn; Wei, Qun
Compared with the conventional quantum state tomography (QST), the efficiency of the direct state tomography (DST) using weak value is very low. However, DST is easily manipulated in experiments. We modify the direct state tomography by using coupling-deformed observables. The modified direct state measurement is valid for arbitrarily large measurement strength. The optimal measurement strengths are obtained to attain the highest efficiency. The efficiency of DST is significantly improved in the modified strategy, and the reconstructed state has no inherent bias. The state reconstruction strategy investigated in this paper might be useful in actual experiments.
21 CFR 882.1570 - Powered direct-contact temperature measurement device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered direct-contact temperature measurement device. 882.1570 Section 882.1570 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882...
21 CFR 882.1570 - Powered direct-contact temperature measurement device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered direct-contact temperature measurement device. 882.1570 Section 882.1570 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882...
Local effects of partly-cloudy skies on solar and emitted radiation
NASA Technical Reports Server (NTRS)
Whitney, D. A.; Venable, D. D.
1982-01-01
A computer automated data acquisition system for atmospheric emittance, and global solar, downwelled diffuse solar, and direct solar irradiances is discussed. Hourly-integrated global solar and atmospheric emitted radiances were measured continuously from February 1981 and hourly-integrated diffuse solar and direct solar irradiances were measured continuously from October 1981. One-minute integrated data are available for each of these components from February 1982. The results of the correlation of global insolation with fractional cloud cover for the first year's data set. A February data set, composed of one-minute integrated global insolation and direct solar irradiance, cloud cover fractions, meteorological data from nearby weather stations, and GOES East satellite radiometric data, was collected to test the theoretical model of satellite radiometric data correlation and develop the cloud dependence for the local measurement site.
Cruse, Michael J; Kucharik, Christopher J; Norman, John M
2015-01-01
Plant canopy interception of photosynthetically active radiation (PAR) drives carbon dioxide (CO2), water and energy cycling in the soil-plant-atmosphere system. Quantifying intercepted PAR requires accurate measurements of total incident PAR above canopies and direct beam and diffuse PAR components. While some regional data sets include these data, e.g. from Atmospheric Radiation Measurement (ARM) Program sites, they are not often applicable to local research sites because of the variable nature (spatial and temporal) of environmental variables that influence incoming PAR. Currently available instrumentation that measures diffuse and direct beam radiation separately can be cost prohibitive and require frequent adjustments. Alternatively, generalized empirical relationships that relate atmospheric variables and radiation components can be used but require assumptions that increase the potential for error. Our goal here was to construct and test a cheaper, highly portable instrument alternative that could be used at remote field sites to measure total, diffuse and direct beam PAR for extended time periods without supervision. The apparatus tested here uses a fabricated, solar powered rotating shadowband and other commercially available parts to collect continuous hourly PAR data. Measurements of total incident PAR had nearly a one-to-one relationship with total incident radiation measurements taken at the same research site by an unobstructed point quantum sensor. Additionally, measurements of diffuse PAR compared favorably with modeled estimates from previously published data, but displayed significant differences that were attributed to the important influence of rapidly changing local environmental conditions. The cost of the system is about 50% less than comparable commercially available systems that require periodic, but not continual adjustments. Overall, the data produced using this apparatus indicates that this instrumentation has the potential to support ecological research via a relatively inexpensive method to collect continuous measurements of total, direct beam and diffuse PAR in remote locations.
Cruse, Michael J.; Kucharik, Christopher J.; Norman, John M.
2015-01-01
Plant canopy interception of photosynthetically active radiation (PAR) drives carbon dioxide (CO2), water and energy cycling in the soil-plant-atmosphere system. Quantifying intercepted PAR requires accurate measurements of total incident PAR above canopies and direct beam and diffuse PAR components. While some regional data sets include these data, e.g. from Atmospheric Radiation Measurement (ARM) Program sites, they are not often applicable to local research sites because of the variable nature (spatial and temporal) of environmental variables that influence incoming PAR. Currently available instrumentation that measures diffuse and direct beam radiation separately can be cost prohibitive and require frequent adjustments. Alternatively, generalized empirical relationships that relate atmospheric variables and radiation components can be used but require assumptions that increase the potential for error. Our goal here was to construct and test a cheaper, highly portable instrument alternative that could be used at remote field sites to measure total, diffuse and direct beam PAR for extended time periods without supervision. The apparatus tested here uses a fabricated, solar powered rotating shadowband and other commercially available parts to collect continuous hourly PAR data. Measurements of total incident PAR had nearly a one-to-one relationship with total incident radiation measurements taken at the same research site by an unobstructed point quantum sensor. Additionally, measurements of diffuse PAR compared favorably with modeled estimates from previously published data, but displayed significant differences that were attributed to the important influence of rapidly changing local environmental conditions. The cost of the system is about 50% less than comparable commercially available systems that require periodic, but not continual adjustments. Overall, the data produced using this apparatus indicates that this instrumentation has the potential to support ecological research via a relatively inexpensive method to collect continuous measurements of total, direct beam and diffuse PAR in remote locations. PMID:25668208
Evaluation of Strain Measurement Devices for Inflatable Structures
NASA Technical Reports Server (NTRS)
Litteken, Douglas A.
2017-01-01
Inflatable structures provide a significant volume savings for future NASA deep space missions. The complexity of these structures, however, provides difficulty for engineers in designing, analyzing, and testing. Common strain measurement systems for metallic parts cannot be used directly on fabrics. New technologies must be developed and tested to accuractly measure the strain of inflatable structures. This paper documents the testing of six candidate strain measurement devices for use on fabrics. The resistance devices tested showed significant hysteresis during creep and cyclic testing. The capacitive device, however, showed excellent results and little-to-no hysteresis. Because of this issue, only two out of the six proposed devices will continue in development. The resulting data and lessons learned from this effort provides direction for continued work to produce a structural health monitoring system for inflatable habitats.
Evaluation of Strain Measurement Devices for Inflatable Structures
NASA Technical Reports Server (NTRS)
Litteken, Doug
2017-01-01
Inflatable structures provide a significant volume savings for future NASA deep space missions. The complexity of these structures, however, provides difficulty for engineers in designing, analyzing, and testing. Common strain measurement systems for metallic parts cannot be used directly on fabrics. New technologies must be developed and tested to accurately measure the strain of inflatable structures. This paper documents the testing of six candidate strain measurement devices for use on fabrics. The resistance devices tested showed significant hysteresis during creep and cyclic testing. The capacitive device, however, showed excellent results and little-to-no hysteresis. Because of this issue, only two out of the six proposed devices will continue in development. The resulting data and lessons learned from this effort provides direction for continued work to produce a structural health monitoring system for inflatable habitats.
Direct observation of phase-sensitive Hong-Ou-Mandel interference
NASA Astrophysics Data System (ADS)
Marek, Petr; Zapletal, Petr; Filip, Radim; Hashimoto, Yosuke; Toyama, Takeshi; Yoshikawa, Jun-ichi; Makino, Kenzo; Furusawa, Akira
2017-09-01
The quality of individual photons and their ability to interfere are traditionally tested by measuring the Hong-Ou-Mandel photon bunching effect. However, this phase-insensitive measurement only tests the particle aspect of the quantum interference, leaving out the phase-sensitive aspects relevant for continuous-variable processing. To overcome these limitations we formulate a witness capable of recognizing both the indistinguishability of the single photons and their quality with regard to their continuous-variable utilization. We exploit the conditional nonclassical squeezing and show that it can reveal both the particle and the wave aspects of the quantum interference in a single set of direct measurements. We experimentally test the witness by applying it to a pair of independent single photons retrieved on demand.
CONTINUOUS PERFORMANCE MONITORING TECHNIQUES FOR HAZARDOUS WASTE INCINERATORS
The report describes a study to determine the feasibility of utilizing realtime continuous exhaust measurements of combustion intermediates as a way to monitor incinerator performance. The key issue was to determine if a direct correlation exists between destruction efficiency (D...
NASA Astrophysics Data System (ADS)
Van Camp, M. J.; de Viron, O.; Pajot-Métivier, G.; Cazenave, F.; Watlet, A.; Dassargues, A.; Vanclooster, M.
2015-12-01
The conversion of liquid water into water vapor strongly controls the energy transfer between the Earth and the atmosphere, and plays one of the most important roles in the hydrological cycle. This process, called evapotranspiration (ET), deeply constraints the amount of green water in the total global water balance. However, assessing the ET from terrestrial ecosystems remains a key challenge in hydrology. We show that the liquid water mass losses can be directly inferred from continuous gravity measurements: as water evaporates and transpires from terrestrial ecosystems, the mass distribution varies through the system, changing its gravity field. Using continuous superconducting gravity measurements, we were able to identify a daily changes in gravity at the level of, or smaller than 10-10 g per day. This corresponds to 2.0 mm of water over an area of 50 ha.The strength of this method is its ability to ensure a direct, traceable and continuous monitoring of actual ET for years at the mesoscale (~50 ha) with a precision of a few tenths of mm of water. This paves the way for the development of the method in different land-use, land-cover and geological contexts, using superconducting and coming quantum gravimeters.
Volatility of aerosols in the western European environment. Interim report No. 1 thru 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jennings, S.G.
1987-10-01
The volatility apparatus to be used in the proposed work is being currently assembled at the Atmospheric Sciences Laboratory, White Sands Missile Range, New Mexico. When the volatility apparatus is constructed and tested it will be shipped to University College Galway. It is then planned to carry out field-volatility measurements of the ambient aerosol, primarily for the unmodified maritime air mass and secondly for the partially modified European continental air mass. Continuous measurements for periods up to some weeks spanning all four seasons are planned. In preparation for these measurements, a digital readout facility was acquired for the IM 146more » velocity and direction transmitter to be used for recording wind speed and direction. The measurement system was electronically processed to facilitate continuous recording on a microcomputer.« less
STIFTER, Janet; YAO, Yingwei; LOPEZ, Karen Dunn; KHOKHAR, Ashfaq; WILKIE, Diana J.; KEENAN, Gail M.
2015-01-01
The influence of the staffing variable nurse continuity on patient outcomes has been rarely studied and with inconclusive results. Multiple definitions and an absence of systematic methods for measuring the influence of continuity have resulted in its exclusion from nurse-staffing studies and conceptual models. We present a new conceptual model and an innovative use of health information technology to measure nurse continuity and to demonstrate the potential for bringing the results of big data science back to the bedside. Understanding the power of big data to address critical clinical issues may foster a new direction for nursing administration theory development. PMID:26244480
ERIC Educational Resources Information Center
Nikitenko, Gleb
2009-01-01
The self-directed learning (SDL) in all of its characteristics measured in students and in various learning contexts continues to have a very important role in educational research and requires new explorations. Contemporary research indicates that there is a direct positive relationship between the level of student self-directed learning…
Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing
Sappok, Alexander; Ragaller, Paul; Herman, Andrew; ...
2018-04-03
Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means formore » interrogating the condition of the filter itself. Here, this study investigated the use of RF sensors for the continuous measurement of filter trapping efficiency, which was compared to downstream measurements with an AVL Microsoot Sensor, and a PM sampling probe simulating the geometry and installation configuration of a conventional PM sensor. The study included several particulate filter failure modes, both above and below the OBD threshold. Finally, the results confirmed the use of RF sensors to provide a direct and continuous measure of the particulate filter’s state of health over a range of typical in-use operating conditions, thereby significantly increasing the time window over which filter failures may be detected.« less
Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sappok, Alexander; Ragaller, Paul; Herman, Andrew
Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means formore » interrogating the condition of the filter itself. Here, this study investigated the use of RF sensors for the continuous measurement of filter trapping efficiency, which was compared to downstream measurements with an AVL Microsoot Sensor, and a PM sampling probe simulating the geometry and installation configuration of a conventional PM sensor. The study included several particulate filter failure modes, both above and below the OBD threshold. Finally, the results confirmed the use of RF sensors to provide a direct and continuous measure of the particulate filter’s state of health over a range of typical in-use operating conditions, thereby significantly increasing the time window over which filter failures may be detected.« less
Trevin, S; Kataoka, Y; Kawachi, R; Shuto, H; Kumakura, K; Oishi, R
1998-08-01
1. Nitric oxide (NO) production in C6 glioma cells was directly monitored in real time by electrochemical detection with a NO-specific biosensor. 2. We present here the first direct evidence that noradrenaline elicits long-lasting NO production in C6 cells pretreated with lipopolysaccharide and interferon-gamma, an effect blocked by NG-monomethyl-L-arginine, a NO synthase inhibitor. 3. This direct electrochemical measurement of glia-derived NO should facilitate our understanding of the kinetics of glial signaling in glia-glia and glia-neuron networks in the brain.
Tuned-circuit dual-mode Johnson noise thermometers
NASA Astrophysics Data System (ADS)
Shepard, R. L.; Carroll, R. M.; Falter, D. D.; Blalock, T. V.; Roberts, M. J.
1992-02-01
Dual-mode Johnson noise and direct current (DC) resistance thermometers can be used in control systems where prompt indications of temperature changes and long-term accuracy are needed. Such a thermometer is being developed for the SP-100 space nuclear electric power system that requires temperature measurement at 1400 K in space for 10 years, of which 7 are expected to be at full reactor power. Several direct coupled and transformer coupled, tuned resistance inductance capacitance (RLC) circuits that produce a single, continuous voltage signal were evaluated for noise temperature measurement. The simple direct coupled RLC circuit selected provides a mean squared noise voltage that depends only on the capacitance used and the temperature of the sensor, and it is independent of the value of or changes in the sensor resistance. These circuits provide a noise signal with long term accuracy but require integrating noise signals for a finite length of time. The four wire resistor for the noise temperature sensor allows simultaneous DC resistance measurements to be made that provide a prompt, continuous temperature indication signal. The DC current mode is employed continuously, and a noise voltage measurement is made periodically to correct the temperature indication. The differential noise voltage preamplifier used substantially reduces electromagnetic interference (EMI) in the system. A sensor has been tested that should provide good performance (+/- 1 percent accuracy) and long-term (10 year) reliability in space environments. Accurate noise temperature measurements were made at temperatures above 1300 K, where significant insulator shunting occurs, even though shunting does affect the dc resistance measurements and makes the system more susceptible to EMI.
40 CFR 147.3013 - Information to be considered for Class I wells.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...
40 CFR 147.3013 - Information to be considered for Class I wells.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...
40 CFR 147.3013 - Information to be considered for Class I wells.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...
40 CFR 147.3013 - Information to be considered for Class I wells.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...
15 CFR 200.101 - Measurement research.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Measurement research. 200.101 Section..., PROCEDURES, AND FEES § 200.101 Measurement research. (a) The NIST staff continually reviews the advances in... research and development activities of NIST are primarily funded by direct appropriations, and are aimed at...
15 CFR 200.101 - Measurement research.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Measurement research. 200.101 Section..., PROCEDURES, AND FEES § 200.101 Measurement research. (a) The NIST staff continually reviews the advances in... research and development activities of NIST are primarily funded by direct appropriations, and are aimed at...
15 CFR 200.101 - Measurement research.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Measurement research. 200.101 Section..., PROCEDURES, AND FEES § 200.101 Measurement research. (a) The NIST staff continually reviews the advances in... research and development activities of NIST are primarily funded by direct appropriations, and are aimed at...
15 CFR 200.101 - Measurement research.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Measurement research. 200.101 Section..., PROCEDURES, AND FEES § 200.101 Measurement research. (a) The NIST staff continually reviews the advances in... research and development activities of NIST are primarily funded by direct appropriations, and are aimed at...
15 CFR 200.101 - Measurement research.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Measurement research. 200.101 Section..., PROCEDURES, AND FEES § 200.101 Measurement research. (a) The NIST staff continually reviews the advances in... research and development activities of NIST are primarily funded by direct appropriations, and are aimed at...
The accurate representation of aerosols in climate models requires direct ambient measurement of the size- and composition-dependent particle production fluxes. Here, we present the design, testing, and analysis of data collected through the first instrument capable of measuring ...
USDA-ARS?s Scientific Manuscript database
Evapotranspiration was continuously measured by an array of eddy covariance systems and large weighting lysimeter in a cotton field in Bushland, Texas. The advective divergence from both horizontal and vertical directions were measured through profile measurements above canopy. All storage terms wer...
NASA Technical Reports Server (NTRS)
Goldfine, Neil; Zilberstei, Vladimir; Lawson, Ablode; Kinchen, David; Arbegast, William
2000-01-01
Al 2195-T8 plate specimens containing Friction Stir Welds (FSW), provided by Lockheed Martin, were inspected using directional conductivity measurements with the MWM sensor. Sensitivity to lack-of-penetration (LOP) defect size has been demonstrated. The feature used to determine defect size was the normalized longitudinal component of the MWM conductivity measurements. This directional conductivity component was insensitive to the presence of a discrete crack. This permitted correlation of MWM conductivity measurements with the LOP defect size as changes in conductivity were apparently associated with metallurgical features within the first 0.020 in. of the LOP defect zone. Transverse directional conductivity measurements also provided an indication of the presence of discrete cracks. Continued efforts are focussed on inspection of a larger set of welded panels and further refinement of LOP characterization tools.
Photonic sensing of arterial distension
Ruh, Dominic; Subramanian, Sivaraman; Sherman, Stanislav; Ruhhammer, Johannes; Theodor, Michael; Dirk, Lebrecht; Foerster, Katharina; Heilmann, Claudia; Beyersdorf, Friedhelm; Zappe, Hans; Seifert, Andreas
2016-01-01
Most cardiovascular diseases, such as arteriosclerosis and hypertension, are directly linked to pathological changes in hemodynamics, i.e. the complex coupling of blood pressure, blood flow and arterial distension. To improve the current understanding of cardiovascular diseases and pave the way for novel cardiovascular diagnostics, innovative tools are required that measure pressure, flow, and distension waveforms with yet unattained spatiotemporal resolution. In this context, miniaturized implantable solutions for continuously measuring these parameters over the long-term are of particular interest. We present here an implantable photonic sensor system capable of sensing arterial wall movements of a few hundred microns in vivo with sub-micron resolution, a precision in the micrometer range and a temporal resolution of 10 kHz. The photonic measurement principle is based on transmission photoplethysmography with stretchable optoelectronic sensors applied directly to large systemic arteries. The presented photonic sensor system expands the toolbox of cardiovascular measurement techniques and makes these key vital parameters continuously accessible over the long-term. In the near term, this new approach offers a tool for clinical research, and as a perspective, a continuous long-term monitoring system that enables novel diagnostic methods in arteriosclerosis and hypertension research that follow the trend in quantifying cardiovascular diseases by measuring arterial stiffness and more generally analyzing pulse contours. PMID:27699095
Direct approach for bioprocess optimization in a continuous flat-bed photobioreactor system.
Kwon, Jong-Hee; Rögner, Matthias; Rexroth, Sascha
2012-11-30
Application of photosynthetic micro-organisms, such as cyanobacteria and green algae, for the carbon neutral energy production raises the need for cost-efficient photobiological processes. Optimization of these processes requires permanent control of many independent and mutably dependent parameters, for which a continuous cultivation approach has significant advantages. As central factors like the cell density can be kept constant by turbidostatic control, light intensity and iron content with its strong impact on productivity can be optimized. Both are key parameters due to their strong dependence on photosynthetic activity. Here we introduce an engineered low-cost 5 L flat-plate photobioreactor in combination with a simple and efficient optimization procedure for continuous photo-cultivation of microalgae. Based on direct determination of the growth rate at constant cell densities and the continuous measurement of O₂ evolution, stress conditions and their effect on the photosynthetic productivity can be directly observed. Copyright © 2012 Elsevier B.V. All rights reserved.
Continuous monitors were employed for 18 months in an occupied townhouse to measure ultrafine, fine, and coarse particles; air change rates; wind speed and direction; temperature; and relative humidity (RH). A main objective was to document short-term and long-term variation in...
ERIC Educational Resources Information Center
Reid, William
1999-01-01
Provides a synthesis of the literature pertaining to the principles and practices of performance measurement, auditing, evaluation, and reporting. Discusses how bringing these elements together in a performance management system can be achieved through refinement of strategic direction, reporting on key measures, and periodic, systematic…
Measuring P-V-T Phase Behavior with a Variable Volume View Cell
ERIC Educational Resources Information Center
Hoffmann, Markus M.; Salter, Jason D.
2004-01-01
An experiment using a variable volume cell is presented where students actively control and directly observe the phase equilibrium inside the view cell. Measuring and exploring P-V-T phase behavior through dielectric constant measurements conveys the important concept that solvent behavior can be changed continuously in the sc fluid state.
NASA Astrophysics Data System (ADS)
Tada, Kyosuke; Nozawa, Takuya; Kondoh, Jun
2017-07-01
In recent years, there has been an increasing demand for sensors that continuously measure liquid concentrations and detect abnormalities in liquid environments. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied for the continuous monitoring of liquid concentrations. As the SH-SAW sensor functions using the relative measurement method, it normally needs a reference at each measurement. However, if the sensor is installed in a liquid flow cell, it is difficult to measure a reference liquid. Therefore, it is important to establish an estimation method for liquid concentrations using the SH-SAW sensor without requiring a reference measurement. In this study, the SH-SAW sensor is installed in a direct methanol fuel cell to monitor the methanol concentration. The estimated concentration is compared with a conventional density meter. Moreover, the effect of formic acid is examined. When the fuel temperature is higher than 70 °C, it is necessary to consider the influence of liquid conductivity. Here, an estimation method for these cases is also proposed.
Effects of direction of rotation in continuous and discontinuous 8 hour shift systems
Tucker, P.; Smith, L.; Macdonald, I.; Folkard, S.
2000-01-01
OBJECTIVES—Previous research has produced conflicting evidence on the relative merits of advancing and delaying shift systems. The current study assessed the effects of the direction of shift rotation within 8 hour systems, upon a range of measures including sleep, on shift alertness, physical health, and psychological wellbeing. METHODS—An abridged version of the standard shiftwork index which included retrospective alertness ratings was completed by four groups of industrial shiftworkers on relatively rapidly rotating 8 hour systems (n=611). Two groups worked continuous systems that were either advancing or delaying; the other two groups worked discontinuous systems that were either advancing or delaying. RESULTS—Few effects were found of direction of rotation on chronic measures of health and wellbeing, even when the systems incorporated "quick returns" (a break of only 8 hours when changing from one shift to another). This was despite the use of measures previously shown to be sensitive to the effects of a broad range of features of shift systems. However, advancing continuous systems seemed to be associated with marginally steeper declines in alertness across the shift (F (3,1080)=2.87, p<0.05). They were also associated with shorter sleeps between morning shifts (F (1,404)=4.01, p<0.05), but longer sleeps between afternoons (F (1,424)=4.16, p<0.05). CONCLUSIONS—The absence of negative effects of advancing shifts upon the chronic outcome measures accorded with previous evidence that advancing shifts may not be as harmful as early research indicated. However, this interpretation is tempered by the possibility that difficult shift systems self select those workers most able to cope with their deleterious effects. The presence of quick returns in advancing continuous systems seemed to impact upon some of the acute measures such as duration of sleep, although the associated effects on alertness seemed to be marginal. Keywords: shift rotation; health; alertness PMID:10984340
ERIC Educational Resources Information Center
Stover, Deborah Annette
2013-01-01
This study examined the readiness for self-direct learning of parenting grandmothers. The researcher investigated whether parental self-efficacy beliefs and addiction beliefs were significantly correlated to parenting grandmothers' readiness for self-directed learning as measured by the Oddi Continuing Learning Instrument. Parental…
NASA Astrophysics Data System (ADS)
Bayat, M.; Daneshjoo, F.; Nisticò, N.
2017-01-01
In this study the probable seismic behavior of skewed bridges with continuous decks under earthquake excitations from different directions is investigated. A 45° skewed bridge is studied. A suite of 20 records is used to perform an Incremental Dynamic Analysis (IDA) for fragility curves. Four different earthquake directions have been considered: -45°, 0°, 22.5°, 45°. A sensitivity analysis on different spectral intensity meas ures is presented; efficiency and practicality of different intensity measures have been studied. The fragility curves obtained indicate that the critical direction for skewed bridges is the skew direction as well as the longitudinal direction. The study shows the importance of finding the most critical earthquake in understanding and predicting the behavior of skewed bridges.
General implementation of arbitrary nonlinear quadrature phase gates
NASA Astrophysics Data System (ADS)
Marek, Petr; Filip, Radim; Ogawa, Hisashi; Sakaguchi, Atsushi; Takeda, Shuntaro; Yoshikawa, Jun-ichi; Furusawa, Akira
2018-02-01
We propose general methodology of deterministic single-mode quantum interaction nonlinearly modifying single quadrature variable of a continuous-variable system. The methodology is based on linear coupling of the system to ancillary systems subsequently measured by quadrature detectors. The nonlinear interaction is obtained by using the data from the quadrature detection for dynamical manipulation of the coupling parameters. This measurement-induced methodology enables direct realization of arbitrary nonlinear quadrature interactions without the need to construct them from the lowest-order gates. Such nonlinear interactions are crucial for more practical and efficient manipulation of continuous quadrature variables as well as qubits encoded in continuous-variable systems.
ERIC Educational Resources Information Center
Tahir, Mohd Faizal Mat; Khamis, Nor Kamaliana; Wahid, Zaliha; Ihsan, Ahmad Kamal Ariffin Mohd; Ghani, Jaharah Ab; Sabri, Mohd Anas Mohd; Sajuri, Zainuddin; Abdullah, Shahrum; Sulong, Abu Bakar
2013-01-01
Universiti Kebangsaan Malaysia (UKM) is a research university that continuously undergoes an audit and accreditation process for the management of its courses. The Faculty of Engineering and the Built Environment (FKAB) is subjected to such processes, one of them is the auditing conducted by the Engineering Accreditation Council (EAC), which gives…
Modeling the direction-continuous time-of-arrival in head-related transfer functions
Ziegelwanger, Harald; Majdak, Piotr
2015-01-01
Head-related transfer functions (HRTFs) describe the filtering of the incoming sound by the torso, head, and pinna. As a consequence of the propagation path from the source to the ear, each HRTF contains a direction-dependent, broadband time-of-arrival (TOA). TOAs are usually estimated independently for each direction from HRTFs, a method prone to artifacts and limited by the spatial sampling. In this study, a continuous-direction TOA model combined with an outlier-removal algorithm is proposed. The model is based on a simplified geometric representation of the listener, and his/her arbitrary position within the HRTF measurement. The outlier-removal procedure uses the extreme studentized deviation test to remove implausible TOAs. The model was evaluated for numerically calculated HRTFs of sphere, torso, and pinna under various conditions. The accuracy of estimated parameters was within the resolution given by the sampling rate. Applied to acoustically measured HRTFs of 172 listeners, the estimated parameters were consistent with realistic listener geometry. The outlier removal further improved the goodness-of-fit, particularly for some problematic fits. The comparison with a simpler model that fixed the listener position to the center of the measurement geometry showed a clear advantage of listener position as an additional free model parameter. PMID:24606268
Development of an Instrument for Indirect Assessment of College Business Programs
ERIC Educational Resources Information Center
Hogan, Eileen A.; Lusher, Anna; Mondal, Sunita
2012-01-01
In the spirit of continuous improvement, universities are constantly seeking ways to measure and enhance their effectiveness. Within colleges of business, the importance of assessment has been highlighted recently by AACSB accreditation standards dealing with assurance of learning. While AACSB standards focus primarily on direct measures of…
21 CFR 862.1110 - Bilirubin (total or direct) test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... or serum. Measurements of the levels of bilirubin, an organic compound formed during the normal and...
The Jackson Career Explorer in Relation to the Career Directions Inventory
ERIC Educational Resources Information Center
Schermer, Julie Aitken; MacDougall, Robyn
2011-01-01
The Jackson Career Explorer (JCE) is a short form and continuous version of the Jackson Vocational Interest Survey (JVIS). The 34 scales of the JCE were investigated in relation to the Career Directions Inventory (CDI). Participants (N = 282) aged 14-57 years were volunteers from local high schools and colleges and completed both measures. The…
Reconciling temporal trends in water-use efficiency from tree rings to continents
NASA Astrophysics Data System (ADS)
Poulter, B.; Frank, D. C.; Piao, S.; Ciais, P.; Fisher, J. B.
2016-12-01
The direct effects of rising atmospheric carbon dioxide (CO2) concentrations on leaf to ecosystem scale processes continue to remain elusive and difficult to quantify. Measurements of the so called "CO2 fertilization effect" based on tree rings, flux towers, and satellites, are confounded by temporal and spatial scaling issues, statistical sampling and detrending artefacts, and interactions with climatic and land-use drivers. In contrast, water-use efficiency (WUE), which integrates carbon uptake from photosynthesis (A) with water loss via transpiration (T), can be measured directly from carbon isotopes and indirectly from in situ fluxes or remote sensing models of A and T, and provide a link between observations with physiological theory. Here, we contrast recent studies of reconstructions of WUE from tree rings, with flux tower and remote sensing based observations. Despite agreement that WUE has increased over the past several decades, differences in temporal coverage, the definition of WUE, i.e., intrinsic versus inherent, and in methodology continue to cause divergence in the magnitude of the response, and put measurements at odds with theory. A deeper appreciation of the drivers behind these differences will help direct new field measurement campaigns, experimental manipulations, and space-borne observations such as the new NASA ECOSTRESS mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirokov, M. E.
We analyse two possible definitions of the squashed entanglement in an infinite-dimensional bipartite system: direct translation of the finite-dimensional definition and its universal extension. It is shown that the both definitions produce the same lower semicontinuous entanglement measure possessing all basis properties of the squashed entanglement on the set of states having at least one finite marginal entropy. It is also shown that the second definition gives an adequate lower semicontinuous extension of this measure to all states of the infinite-dimensional bipartite system. A general condition relating continuity of the squashed entanglement to continuity of the quantum mutual information ismore » proved and its corollaries are considered. Continuity bound for the squashed entanglement under the energy constraint on one subsystem is obtained by using the tight continuity bound for quantum conditional mutual information (proved in the Appendix by using Winter’s technique). It is shown that the same continuity bound is valid for the entanglement of formation. As a result the asymptotic continuity of the both entanglement measures under the energy constraint on one subsystem is proved.« less
Monthly Atmospheric 13C/12C Isotopic Ratios for 11 SIO Stations (1977-2008)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keeling, R. F.; Piper, S. C.; Bollenbacher, A. F.
Stable isotopic measurements for atmospheric 13C/12C and 18O/16O at global sampling sites were initiated by Dr. C.D. Keeling and co-workers at Scripps Institution of Oceanography (SIO) in 1977. These isotopic measurements complement the continuing global atmospheric and oceanic CO2 measurements initiated by Keeling in 1957. This work is currently being continued under the direction of R.F. Keeling, who also runs a parallel program at SIO to measure changes in atmospheric O2 and Ar abundances (Scripps O2 Program). A more complete set of 13CO2 data is found online at http://scrippsco2.ucsd.edu/data/atmospheric_co2.html
Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency
NASA Technical Reports Server (NTRS)
Platt, Michael; Jagodnik, John
2011-01-01
A system for turbo machinery blade vibration has been developed that combines time-of-arrival sensors for blade vibration amplitude measurement and radar sensors for vibration frequency and mode identification. The enabling technology for this continuous blade monitoring system is the radar sensor, which provides a continuous time series of blade displacement over a portion of a revolution. This allows the data reduction algorithms to directly calculate the blade vibration frequency and to correctly identify the active modes of vibration. The work in this project represents a significant enhancement in the mode identification and stress calculation accuracy in non-contacting stress measurement system (NSMS) technology when compared to time-of-arrival measurements alone.
Multi-offset GPR methods for hyporheic zone investigations
Brosten, T.R.; Bradford, J.H.; McNamara, J.P.; Gooseff, M.N.; Zarnetske, J.P.; Bowden, W.B.; Johnston, M.E.
2009-01-01
Porosity of stream sediments has a direct effect on hyporheic exchange patterns and rates. Improved estimates of porosity heterogeneity will yield enhanced simulation of hyporheic exchange processes. Ground-penetrating radar (GPR) velocity measurements are strongly controlled by water content thus accurate measures of GPR velocity in saturated sediments provides estimates of porosity beneath stream channels using petrophysical relationships. Imaging the substream system using surface based reflection measurements is particularly challenging due to large velocity gradients that occur at the transition from open water to saturated sediments. The continuous multi-offset method improves the quality of subsurface images through stacking and provides measurements of vertical and lateral velocity distributions. We applied the continuous multi-offset method to stream sites on the North Slope, Alaska and the Sawtooth Mountains near Boise, Idaho, USA. From the continuous multi-offset data, we measure velocity using reflection tomography then estimate water content and porosity using the Topp equation. These values provide detailed measurements for improved stream channel hydraulic and thermal modelling. ?? 2009 European Association of Geoscientists & Engineers.
Quantitative Tomography for Continuous Variable Quantum Systems
NASA Astrophysics Data System (ADS)
Landon-Cardinal, Olivier; Govia, Luke C. G.; Clerk, Aashish A.
2018-03-01
We present a continuous variable tomography scheme that reconstructs the Husimi Q function (Wigner function) by Lagrange interpolation, using measurements of the Q function (Wigner function) at the Padua points, conjectured to be optimal sampling points for two dimensional reconstruction. Our approach drastically reduces the number of measurements required compared to using equidistant points on a regular grid, although reanalysis of such experiments is possible. The reconstruction algorithm produces a reconstructed function with exponentially decreasing error and quasilinear runtime in the number of Padua points. Moreover, using the interpolating polynomial of the Q function, we present a technique to directly estimate the density matrix elements of the continuous variable state, with only a linear propagation of input measurement error. Furthermore, we derive a state-independent analytical bound on this error, such that our estimate of the density matrix is accompanied by a measure of its uncertainty.
Operational quantification of continuous-variable correlations.
Rodó, Carles; Adesso, Gerardo; Sanpera, Anna
2008-03-21
We quantify correlations (quantum and/or classical) between two continuous-variable modes as the maximal number of correlated bits extracted via local quadrature measurements. On Gaussian states, such "bit quadrature correlations" majorize entanglement, reducing to an entanglement monotone for pure states. For non-Gaussian states, such as photonic Bell states, photon-subtracted states, and mixtures of Gaussian states, the bit correlations are shown to be a monotonic function of the negativity. This quantification yields a feasible, operational way to measure non-Gaussian entanglement in current experiments by means of direct homodyne detection, without a complete state tomography.
NASA Astrophysics Data System (ADS)
Lü, Xiaozhou; Xie, Kai; Xue, Dongfeng; Zhang, Feng; Qi, Liang; Tao, Yebo; Li, Teng; Bao, Weimin; Wang, Songlin; Li, Xiaoping; Chen, Renjie
2017-10-01
Micro-capacitance sensors are widely applied in industrial applications for the measurement of mechanical variations. The measurement accuracy of micro-capacitance sensors is highly dependent on the capacitance measurement circuit. To overcome the inability of commonly used methods to directly measure capacitance variation and deal with the conflict between the measurement range and accuracy, this paper presents a capacitance variation measurement method which is able to measure the output capacitance variation (relative value) of the micro-capacitance sensor with a continuously variable measuring range. We present the principles and analyze the non-ideal factors affecting this method. To implement the method, we developed a capacitance variation measurement circuit and carried out experiments to test the circuit. The result shows that the circuit is able to measure a capacitance variation range of 0-700 pF linearly with a maximum relative accuracy of 0.05% and a capacitance range of 0-2 nF (with a baseline capacitance of 1 nF) with a constant resolution of 0.03%. The circuit is proposed as a new method to measure capacitance and is expected to have applications in micro-capacitance sensors for measuring capacitance variation with a continuously variable measuring range.
A Comprehensive Program for Measurements of Military Aircraft Emissions
2009-11-30
gaseous measurement, but the same techniques could not be extended directly to ultrafine particles found in all engine exhausts. The results validated...emission measurement. Furthermore, ultrafine particles (defined as the diameter less than or equal to 100 nm or 0.1 µm) are the dominant...instruments that are capable of real-time or continuous measurement of various properties of ultrafine particles in laboratory and field conditions. Some of
Baseline acoustic levels of the NASA Active Noise Control Fan rig
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Heidelberg, Laurence J.; Elliott, David M.; Nallasamy, M.
1996-01-01
Extensive measurements of the spinning acoustic mode structure in the NASA 48 inch Active Noise Control Fan (ANCF) test rig have been taken. A continuously rotating microphone rake system with a least-squares data reduction technique was employed to measure these modes in the inlet and exhaust. Farfield directivity patterns in an anechoic environment were also measured at matched corrected rotor speeds. Several vane counts and spacings were tested over a range of rotor speeds. The Eversman finite element radiation code was run with the measured in-duct modes as input and the computed farfield results were compared to the experimentally measured directivity pattern. The experimental data show that inlet spinning mode measurements can be made very accurately. Exhaust mode measurements may have wake interference, but the least-squares reduction does a good job of rejecting the non-acoustic pressure. The Eversman radiation code accurately extrapolates the farfield levels and directivity pattern when all in-duct modes are included.
Measurement of soil creep by inclinometer
Robert R. Ziemer
1977-01-01
Abstract - Continued inclinometer measurements at borehole sites installed in 1964 in northern California suggest that previously reported rates of soil creep are excessively high. Upon analysis of 35 access casings located in forested and grassland sites, no consistent direction of soil movement could be detected. In addition, no significant rate of soil creep could...
The Relationship between Children's Gaze Reporting and Theory of Mind
ERIC Educational Resources Information Center
D'Entremont, Barbara; Seamans, Elizabeth; Boudreau, Elyse
2012-01-01
Seventy-nine 3- and 4-year-old children were tested on gaze-reporting ability and Wellman and Liu's (2004) continuous measure of theory of mind (ToM). Children were better able to report where someone was looking when eye and head direction were provided as a cue compared with when only eye direction cues were provided. With the exception of…
Continuous 24-hour measurement of middle ear pressure.
Tideholm, B; Jönsson, S; Carlborg, B; Welinder, R; Grenner, J
1996-07-01
A new method was developed for continuous measurement of the middle ear pressure during a 24-h period. The equipment consisted of a piezo-electric pressure device and a digital memory. To allow continuous pressure recordings during normal every-day activities the equipment was made light and portable. The measurement accuracy of the equipment as well as the base-line and temperature stability were tested and found to meet to our requirements satisfactorily. In 4 volunteers with different middle ear conditions, a small perforation was made through the tympanic membrane. A rubber stopper containing a small polyethylene tube was fitted into the external ear canal. Tubal function tests were made to establish the equipment's ability to monitor fast pressure changes. The tests were well in accordance with other methods of direct pressure measurements. The equipment was carried by the volunteers for 24 h to monitor any slow or rapid dynamic pressure changes in the middle ear. Four continuous 24-h measurements are presented. The method was found to be suitable for valid measurements of dynamic pressure changes in the middle ear during normal every-day activities. It may become a useful instrument in the search for a better understanding of the development of chronic middle ear disease.
ERIC Educational Resources Information Center
Heim, Bradley T.
2009-01-01
This paper proposes a new method for estimating family labor supply in the presence of taxes. This method accounts for continuous hours choices, measurement error, unobserved heterogeneity in tastes for work, the nonlinear form of the tax code, and fixed costs of work in one comprehensive specification. Estimated on data from the 2001 PSID, the…
The surface renewal method for better spatial resolution of evapotranspiration measurements
NASA Astrophysics Data System (ADS)
Suvocarev, K.; Fischer, M.; Massey, J. H.; Reba, M. L.; Runkle, B.
2017-12-01
Evaluating feasible irrigation strategies when water is scarce requires measurements or estimations of evapotranspiration (ET). Direct observations of ET from agricultural fields are preferred, and micrometeorological methods such as eddy covariance (EC) provide a high quality, continuous time series of ET. However, when replicates of the measurements are needed to compare irrigation strategies, the cost of such experiments is often prohibitive and limits experimental scope. An alternative micrometeorological approach to ET, the surface renewal (SR) method, may be reduced to a thermocouple and a propeller anemometer (Castellvi and Snyder, 2009). In this case, net radiation, soil and sensible heat flux (H) are measured and latent heat flux (an energy equivalent for ET) is estimated as the residual of the surface energy-balance equation. In our experiment, thermocouples (Type E Fine-Wire Thermocouple, FW3) were deployed next to the EC system and combined with mean horizontal wind speed measurements to obtain H using SR method for three weeks. After compensating the temperature signal for non-ideal frequency response in the wavelet half-plane and correcting the sonic anemometer for the flow distortion (Horst et al., 2015), the SR H fluxes compared well to those measured by EC (r2 = 0.9, slope = 0.92). This result encouraged us to install thermocouples over 16 rice fields under different irrigation treatments (continuous cascade flood, continuous multiple inlet rice irrigation, alternate wetting and drying, and furrow irrigation). The EC measurements with net radiometer and soil heat flux plates are deployed at three of these fields to provide a direct comparison. The measurement campaign will finish soon and the data will be processed to evaluate the SR approach for ET estimation. The results will be used to show better spatial resolution of ET measurements to support irrigation decisions in agricultural crops.
Estimating direct fatality impacts at wind farms: how far we’ve come, where we have yet to go
Huso, Manuela M.; Schwartz, Susan Savitt
2013-01-01
Measuring the potential impacts of wind farms on wildlife can be difficult and may require development of new statistical tools and models to accurately reflect the measurement process. This presentation reviews the recent history of approaches to estimating wildlife fatality under the unique conditions encountered at wind farms, their unifying themes and their potential shortcomings. Avenues of future research are suggested to continue to address the needs of resource managers and industry in understanding direct impacts of wind turbine-caused wildlife fatality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alhroob, M.; Boyd, G.; Hasib, A.
Precision ultrasonic measurements in binary gas systems provide continuous real-time monitoring of mixture composition and flow. Using custom micro-controller-based electronics, we have developed an ultrasonic instrument, with numerous potential applications, capable of making continuous high-precision sound velocity measurements. The instrument measures sound transit times along two opposite directions aligned parallel to - or obliquely crossing - the gas flow. The difference between the two measured times yields the gas flow rate while their average gives the sound velocity, which can be compared with a sound velocity vs. molar composition look-up table for the binary mixture at a given temperature andmore » pressure. The look-up table may be generated from prior measurements in known mixtures of the two components, from theoretical calculations, or from a combination of the two. We describe the instrument and its performance within numerous applications in the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instrument can be of interest in other areas where continuous in-situ binary gas analysis and flowmetry are required. (authors)« less
Local effects of partly cloudy skies on solar and emitted radiations
NASA Technical Reports Server (NTRS)
Whitney, D. A.; Venable, D. D.
1981-01-01
Solar radiation measurements are made on a routine basis. Global solar, atmospheric emitted, downwelled diffuse solar, and direct solar radiation measurement systems are fully operational with the first two in continuous operation. Fractional cloud cover measurements are made from GOES imagery or from ground based whole sky photographs. Normalized global solar irradiance values for partly cloudy skies were correlated to fractional cloud cover.
A continuous-wave ultrasound system for displacement amplitude and phase measurement.
Finneran, James J; Hastings, Mardi C
2004-06-01
A noninvasive, continuous-wave ultrasonic technique was developed to measure the displacement amplitude and phase of mechanical structures. The measurement system was based on a method developed by Rogers and Hastings ["Noninvasive vibration measurement system and method for measuring amplitude of vibration of tissue in an object being investigated," U.S. Patent No. 4,819,643 (1989)] and expanded to include phase measurement. A low-frequency sound source was used to generate harmonic vibrations in a target of interest. The target was simultaneously insonified by a low-power, continuous-wave ultrasonic source. Reflected ultrasound was phase modulated by the target motion and detected with a separate ultrasonic transducer. The target displacement amplitude was obtained directly from the received ultrasound frequency spectrum by comparing the carrier and sideband amplitudes. Phase information was obtained by demodulating the received signal using a double-balanced mixer and low-pass filter. A theoretical model for the ultrasonic receiver field is also presented. This model coupled existing models for focused piston radiators and for pulse-echo ultrasonic fields. Experimental measurements of the resulting receiver fields compared favorably with theoretical predictions.
A simple laser-based device for simultaneous microbial culture and absorbance measurement
NASA Astrophysics Data System (ADS)
Abrevaya, X. C.; Cortón, E.; Areso, O.; Mauas, P. J. D.
2013-07-01
In this work we present a device specifically designed to study microbial growth with several applications related to environmental microbiology and other areas of research as astrobiology. The Automated Measuring and Cultivation device (AMC-d) enables semi-continuous absorbance measurements directly during cultivation. It can measure simultaneously up to 16 samples. Growth curves using low and fast growing microorganism were plotted, including Escherichia coli and Haloferax volcanii, a halophilic archaeon.
Bi-directional ultrasonic wave coupling to FBGs in continuously bonded optical fiber sensing.
Wee, Junghyun; Hackney, Drew; Bradford, Philip; Peters, Kara
2017-09-01
Fiber Bragg grating (FBG) sensors are typically spot-bonded onto the surface of a structure to detect ultrasonic waves in laboratory demonstrations. However, to protect the rest of the optical fiber from any environmental damage during real applications, bonding the entire length of fiber, called continuous bonding, is commonly done. In this paper, we investigate the impact of continuously bonding FBGs on the measured Lamb wave signal. In theory, the ultrasonic wave signal can bi-directionally transfer between the optical fiber and the plate at any adhered location, which could potentially produce output signal distortion for the continuous bonding case. Therefore, an experiment is performed to investigate the plate-to-fiber and fiber-to-plate signal transfer, from which the signal coupling coefficient of each case is theoretically estimated based on the experimental data. We demonstrate that the two coupling coefficients are comparable, with the plate-to-fiber case approximately 19% larger than the fiber-to-plate case. Finally, the signal waveform and arrival time of the output FBG responses are compared between the continuous and spot bonding cases. The results indicate that the resulting Lamb wave signal output is only that directly detected at the FBG location; however, a slight difference in signal waveform is observed between the two bonding configurations. This paper demonstrates the practicality of using continuously bonded FBGs for ultrasonic wave detection in structural health monitoring (SHM) applications.
Age Differences in Self-Continuity: Converging Evidence and Directions for Future Research
Rutt, Joshua L.
2017-01-01
Abstract Life-span development is inherently linked to the perception of time and associated temporal construals. Such concepts are multi-faceted in nature and have important practical implications in areas such as time management, financial planning, or medical choices. A large body of research has documented age-related limitations in global time horizons, but age differences in other aspects of temporal construal are comparatively poorly understood. The present article draws attention to developmental trajectories of self-continuity, defined as perceived associations of one’s present self with past and future selves. After considering historical roots and contemporary views on self-continuity, we turn to the life-span developmental literature and review several convergent streams of research that provide indirect evidence for age-related increases in self-continuity. We then consider a small body of recent studies which have directly assessed age differences in self-continuity and summarize our current understanding of this phenomenon including associations between explicit and implicit measures, symmetry between past and future self-continuity, and differentiation from other aspects of time perception. We conclude by highlighting open theoretical questions and considering the practical implications of an increased sense of self-continuity with advancing age. PMID:28520940
Multi-Observation Continuous Density Hidden Markov Models for Anomaly Detection in Full Motion Video
2012-06-01
response profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.5 Method for measuring angular movement versus average direction...of movement 49 3.6 Method for calculating Angular Deviation, Θ . . . . . . . . . . . . . . . . . . 50 4.1 HMM produced by K Means Learning for agent H... Angular Deviation. A random variable, the difference in heading (in degrees) from the overall direction of movement over the sequence • S : Speed. A
Criteria pollutant and acid aerosol characterization study, Catano, Puerto Rico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edgerton, E.S.; Harlos, D.P.; Sune, J.M.
1995-07-01
The primary objective of the Catano Criteria Pollutant and Acid Aerosol Characterization Study (CPAACS) was to measure criteria pollutant concentrations and acid aerosol concentrations in and around the Ward of Catano, Puerto Rico, during the summer of 1994. Continuous air sampling for criteria pollutants was performed at three fixed stations and one moobile station that was deployed to four locations. Air samples for acid aerosol analyses and particulate matter measurements were collected at three sites. Semicontinuous sulfate analysis was performed at the primary site. Continuous measurements of wind speed, wind direction, temperature, and relative humidity were also made at eachmore » site. The study was conducted from June 1 through September 30, 1994.« less
NASA Astrophysics Data System (ADS)
Boyd, Donald M.
1989-10-01
Development of a Pulsed Electromagnetic Acoustic Transducer (EMAT) through transmission system for acoustic measurements on steel billets up to 1300 C was completed. Laboratory measurements of acoustic velocity were made, and used to determine the average internal temperature of hot stainless and carbon steel billets. Following the success of the laboratory system development, the laboratory EMAT system was subsequently tested successfully at the Baltimore Specialty Steel Co. on a horizontal continuous caster. Details of the sensor system development and the steel plant demonstration results are presented. Future directions for the high temperature pulsed EMAT internal temperature concept are discussed for potential material processing applications.
Yasumatsu, Naoya; Watanabe, Shinichi
2012-02-01
We propose and develop a method to quickly and precisely determine the polarization direction of coherent terahertz electromagnetic waves generated by femtosecond laser pulses. The measurement system consists of a conventional terahertz time-domain spectroscopy system with the electro-optic (EO) sampling method, but we add a new functionality in the EO crystal which is continuously rotating with the angular frequency ω. We find a simple yet useful formulation of the EO signal as a function of the crystal orientation, which enables a lock-in-like detection of both the electric-field amplitude and the absolute polarization direction of the terahertz waves with respect to the probe laser pulse polarization direction at the same time. The single measurement finishes around two periods of the crystal rotations (∼21 ms), and we experimentally prove that the accuracy of the polarization measurement does not suffer from the long-term amplitude fluctuation of the terahertz pulses. Distribution of the measured polarization directions by repeating the measurements is excellently fitted by a gaussian distribution function with a standard deviation of σ = 0.56°. The developed technique is useful for the fast direct determination of the polarization state of the terahertz electromagnetic waves for polarization imaging applications as well as the precise terahertz Faraday or Kerr rotation spectroscopy.
Continuous real time measurement of pavement quality during construction.
DOT National Transportation Integrated Search
2010-12-01
Intelligent Compaction has been investigated as a means of improving the quality of asphalt pavements during their : construction. The long term performance of an asphalt pavement is directly related to its load bearing capability and : is determined...
LOSS OF BLOOD AT OPERATION—A Method for Continuous Measurement
Borden, Fred W.
1957-01-01
A method for continuous measurement of surgical blood loss has been devised and has been used clinically in some 400 cases. The method combines volumetric measure of the suction loss and gravimetric measure of the sponge loss. The volumetric device automatically deducts the volume of rinse water used and thus measures the amount of blood collected in a metering cylinder. The suction loss scale shows continuously the amount of blood in the metering cylinder. The gravimetric device requires counting sponges into the weighing pan, and turning a dial scale to deduct the initial weight of the sponges. The volume of blood in the sponges is then read directly on the dial scale. Use of the instrument, which is under the supervision of the anesthesiologist, adds about two minutes per hour to the time normally required for counting the sponges; and about three minutes per hour is required for tending the volumetric instrument. In clinical use, knowing constantly the amount of blood loss permits the starting of transfusion before serious deficit develops, and then maintaining the patient's blood volume at a predetermined optimum level. In some 400 cases the continuous measurement of the blood loss served as a reliable guide for carrying out the loss-replacement plan within close limits of accuracy. ImagesFigure 2.p97-a PMID:13446754
A Method for Continuous (239)Pu Determinations in Arctic and Antarctic Ice Cores.
Arienzo, M M; McConnell, J R; Chellman, N; Criscitiello, A S; Curran, M; Fritzsche, D; Kipfstuhl, S; Mulvaney, R; Nolan, M; Opel, T; Sigl, M; Steffensen, J P
2016-07-05
Atmospheric nuclear weapons testing (NWT) resulted in the injection of plutonium (Pu) into the atmosphere and subsequent global deposition. We present a new method for continuous semiquantitative measurement of (239)Pu in ice cores, which was used to develop annual records of fallout from NWT in ten ice cores from Greenland and Antarctica. The (239)Pu was measured directly using an inductively coupled plasma-sector field mass spectrometer, thereby reducing analysis time and increasing depth-resolution with respect to previous methods. To validate this method, we compared our one year averaged results to published (239)Pu records and other records of NWT. The (239)Pu profiles from the Arctic ice cores reflected global trends in NWT and were in agreement with discrete Pu profiles from lower latitude ice cores. The (239)Pu measurements in the Antarctic ice cores tracked low latitude NWT, consistent with previously published discrete records from Antarctica. Advantages of the continuous (239)Pu measurement method are (1) reduced sample preparation and analysis time; (2) no requirement for additional ice samples for NWT fallout determinations; (3) measurements are exactly coregistered with all other chemical, elemental, isotopic, and gas measurements from the continuous analytical system; and (4) the long half-life means the (239)Pu record is stable through time.
Wang, Wei; Liu, Wen-Qing; Zhang, Tian-Shu
2013-08-01
The development of spectroscopic techniques has offered continuous measurement of stable isotopes in the ambient air. The method of measuring environmental stable isotopes based on Fourier transform infrared spectrometry (FTIR) is described. In order to verify the feasibility of the method for continuous measurement of the stable isotopes, an open-path FTIR system was used to measure stable isotopes of CO2 and H2O in ambient air directly in a seven-day field experiment, including 12CO2, 3CO2, H2 16O and HD16 O. Also, the time course of carbon isotopic ratio delta13 C and deuterium isotope composition deltaD was calculated. The measurement precision is about 1.08 per thousand for delta13 C and 1.32 per thousand for deltaD. The measured stable isotopes of CO2 and H2O were analyzed on different time scales by Keeling plot methods, and the deuterium isotopic ratios of evapotranspiration were determined. The results of the field experiment demonstrate the potential of the open-path FTIR system for continuous measurement of stable isotopes in the air.
15 ps quasi-continuously pumped passively mode-locked highly doped Nd:YAG laser in bounce geometry
NASA Astrophysics Data System (ADS)
Jelínek, M., Jr.; Kubeček, V.
2011-09-01
A semiconductor saturable absorber mirror mode-locking of a quasi-continuously pumped laser based on 2.4 at.% Nd:YAG slab in a bounce geometry was demonstrated and investigated. Output mode-locked and Q-switched train containing 15 pulses with total energy of 500 μJ was generated directly from the oscillator. The measured 15 ps pulse duration and excellent temporal stability ±2 ps are the best values for pure passively mode-locked and Q-switched Nd:YAG laser with the pulse pumping. Furthermore, using the cavity dumping technique, single 19 ps pulse with energy of 25 μJ was extracted directly from the oscillator.
End-pumped continuous-wave intracavity yellow Raman laser at 590 nm with SrWO4 Raman crystal
NASA Astrophysics Data System (ADS)
Yang, F. G.; You, Z. Y.; Zhu, Z. J.; Wang, Y.; Li, J. F.; Tu, C. Y.
2010-01-01
We present an end-pumped continuous-wave intra-cavity yellow Raman laser at 590 nm with a 60 mm long pure crystal SrWO4 and an intra-cavity LiB3O5 frequency doubling crystal. The highest output power of yellow laser at 590 nm was 230 mW and the output power and threshold were found to be correlative with the polarized directions of pure single crystal SrWO4 deeply. Along different directions, the minimum and maximum thresholds of yellow Raman laser at 590 nm were measured to be 2.8 W and 14.3 W with respect to 808 nm LD pump power, respectively.
NASA Technical Reports Server (NTRS)
1980-01-01
Van is used by Land Inventory Systems to measure and map property for tax assessment purposes. It is adapted from navigation system of the Lunar Rover wheeled vehicle in which moon-exploring astronauts traveled as much as 20 miles from their Lunar Module base. Astronauts had to know their precise position so that in case of emergency they could take the shortest route back. Computerized navigational system kept a highly accurate record of the directional path providing continuous position report. Distance measuring subsystem was a more accurate counterpart of automobile odometer system counts revolutions of wheels and encoders generate electrical pulses for each fractional revolution and the computer analyzed the pulses to determine the distance traveled in a given direction.
NASA Astrophysics Data System (ADS)
Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.
2006-07-01
We report on measurements of directed flow as a function of pseudorapidity in Au+Au collisions at energies of sNN=19.6, 62.4, 130 and 200 GeV as measured by the PHOBOS detector at the BNL Relativistic Heavy Ion Collider. These results are particularly valuable because of the extensive, continuous pseudorapidity coverage of the PHOBOS detector. There is no significant indication of structure near midrapidity and the data surprisingly exhibit extended longitudinal scaling similar to that seen for elliptic flow and charged particle pseudorapidity density.
Measuring Worker Turnover in Long-Term Care: Lessons from the Better Jobs Better Care Demonstration
ERIC Educational Resources Information Center
Piercy, Kathleen Walsh, Ed.; Barry, Theresa; Kemper, Peter; Brannon, S. Diane
2008-01-01
Purpose: Turnover among direct-care workers (DCWs) continues to be a challenge in long-term care. Both policy makers and provider organizations recognize this issue as a major concern and are designing efforts to reduce turnover among these workers. However, there is currently no standardized method of measuring turnover to define the scope of the…
Real-time, aptamer-based tracking of circulating therapeutic agents in living animals
Ferguson, B. Scott; Hoggarth, David A.; Maliniak, Dan; Ploense, Kyle; White, Ryan J.; Woodward, Nick; Hsieh, Kuangwen; Bonham, Andrew J.; Eisenstein, Michael; Kippin, Tod; Plaxco, Kevin W.; Soh, H. Tom
2014-01-01
A sensor capable of continuously measuring specific molecules in the bloodstream in vivo would give clinicians a valuable window into patients’ health and their response to therapeutics. Such technology would enable truly personalized medicine, wherein therapeutic agents could be tailored with optimal doses for each patient to maximize efficacy and minimize side effects. Unfortunately, continuous, real-time measurement is currently only possible for a handful of targets, such as glucose, lactose, and oxygen, and the few existing platforms for continuous measurement are not generalizable for the monitoring of other analytes, such as small-molecule therapeutics. In response, we have developed a real-time biosensor capable of continuously tracking a wide range of circulating drugs in living subjects. Our microfluidic electrochemical detector for in vivo continuous monitoring (MEDIC) requires no exogenous reagents, operates at room temperature, and can be reconfigured to measure different target molecules by exchanging probes in a modular manner. To demonstrate the system's versatility, we measured therapeutic in vivo concentrations of doxorubicin (a chemotherapeutic) and kanamycin (an antibiotic) in live rats and in human whole blood for several hours with high sensitivity and specificity at sub-minute temporal resolution. Importantly, we show that MEDIC can also obtain pharmacokineticparameters for individual animals in real-time. Accordingly, just as continuous glucose monitoring technology is currently revolutionizing diabetes care, we believe MEDIC could be a powerful enabler for personalized medicine by ensuring delivery of optimal drug doses for individual patients based on direct detection of physiological parameters. PMID:24285484
Continuous control of spin polarization using a magnetic field
NASA Astrophysics Data System (ADS)
Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y.
2016-05-01
The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.
The role of prepartum motivation in the maintenance of postpartum smoking abstinence
Heppner, Whitney L.; Ji, Lingyun; Reitzel, Lorraine R.; Castro, Yessenia; Correa-Fernandez, Virmarie; Vidrine, Jennifer Irvin; Li, Yisheng; Dolan-Mullen, Patricia; Velasquez, Mary M.; Cinciripini, Paul M.; Cofta-Woerpel, Ludmila; Greisinger, Anthony; Wetter, David W.
2011-01-01
Objective Motivation plays an important role in a variety of behaviors, including smoking cessation, and is integral to theory and treatment of smoking. For many women, pregnancy offers a motivational shift that helps them stop smoking and maintain abstinence during pregnancy. However, women's motivation to maintain smoking abstinence postpartum is not well-understood and may play a role in high postpartum relapse rates. The current study utilized multiple measures of prepartum motivation to maintain smoking abstinence to predict postpartum smoking abstinence. Design As part of a randomized clinical trial on postpartum smoking relapse prevention, pregnant women who quit smoking during pregnancy reported their motivation to continue smoking abstinence at a prepartum baseline session. Continued smoking abstinence was assessed at 8 and 26 weeks postpartum. Main Outcome Measure Biochemically verified continuous abstinence from smoking. Results Direct relationships among multiple measures of motivation were significant, and ranged in strength from weak to moderate. All motivation measures individually predicted continuous smoking abstinence, after controlling for treatment group, demographics, and pre-quit tobacco use. When tested simultaneously, a global motivation measure and parenthood motives for quitting remained significant predictors of abstinence. Backward selection modeling procedures resulted in a reduced model of prepartum predictors of postpartum abstinence including global motivation, parenthood motives, and stage of change. Conclusion Global motivation for smoking abstinence and parenthood motives for quitting are particularly important motivational constructs for pregnant women's continued smoking abstinence. PMID:21859215
Principles of disease management in neonatology.
Bowen, F W; Gwiazdowski, S
1998-06-01
This article emphasizes the emerging facets of disease-management practice that impact directly on establishing a measured care system that can produce the information needed to establish a continuous quality improvement program. The areas discussed are risk assessment, clinical management guidelines and carepaths, and the measurement of system output known as clinical outcomes. The remainder of the article details the aspects of risk assessment, guideline function, and outcome assessment, critical in a disease-managed measured care system.
Ultrasound Elastography: The New Frontier in Direct Measurement of Muscle Stiffness
Brandenburg, Joline E.; Eby, Sarah F.; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S.; Chen, Shigao; An, Kai-Nan
2014-01-01
The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. PMID:25064780
NASA Technical Reports Server (NTRS)
Kirschner, S. M.; Samii, M. V.; Broaddus, S. R.; Doll, C. E.
1988-01-01
The Preliminary Orbit Determination System (PODS) provides early orbit determination capability in the Trajectory Computation and Orbital Products System (TCOPS) for a Tracking and Data Relay Satellite System (TDRSS)-tracked spacecraft. PODS computes a set of orbit states from an a priori estimate and six tracking measurements, consisting of any combination of TDRSS range and Doppler tracking measurements. PODS uses the homotopy continuation method to solve a set of nonlinear equations, and it is particularly effective for the case when the a priori estimate is not well known. Since range and Doppler measurements produce multiple states in PODS, a screening technique selects the desired state. PODS is executed in the TCOPS environment and can directly access all operational data sets. At the completion of the preliminary orbit determination, the PODS-generated state, along with additional tracking measurements, can be directly input to the differential correction (DC) process to generate an improved state. To validate the computational and operational capabilities of PODS, tests were performed using simulated TDRSS tracking measurements for the Cosmic Background Explorer (COBE) satellite and using real TDRSS measurements for the Earth Radiation Budget Satellite (ERBS) and the Solar Mesosphere Explorer (SME) spacecraft. The effects of various measurement combinations, varying arc lengths, and levels of degradation of the a priori state vector on the PODS solutions were considered.
Continuous millennial decrease of the Earth's magnetic axial dipole
NASA Astrophysics Data System (ADS)
Poletti, Wilbor; Biggin, Andrew J.; Trindade, Ricardo I. F.; Hartmann, Gelvam A.; Terra-Nova, Filipe
2018-01-01
Since the establishment of direct estimations of the Earth's magnetic field intensity in the first half of the nineteenth century, a continuous decay of the axial dipole component has been observed and variously speculated to be linked to an imminent reversal of the geomagnetic field. Furthermore, indirect estimations from anthropologically made materials and volcanic derivatives suggest that this decrease began significantly earlier than direct measurements have been available. Here, we carefully reassess the available archaeointensity dataset for the last two millennia, and show a good correspondence between direct (observatory/satellite) and indirect (archaeomagnetic) estimates of the axial dipole moment creating, in effect, a proxy to expand our analysis back in time. Our results suggest a continuous linear decay as the most parsimonious long-term description of the axial dipole variation for the last millennium. We thus suggest that a break in the symmetry of axial dipole moment advective sources occurred approximately 1100 years earlier than previously described. In addition, based on the observed dipole secular variation timescale, we speculate that the weakening of the axial dipole may end soon.
NASA Astrophysics Data System (ADS)
An, Yong-li; Tan, Yi-li; Zhang, Hong-bo; Wu, Guo-cheng
2017-12-01
In this paper, a novel double-layered microstrip metamaterial beam scanning leaky wave antenna (LWA) is proposed and investigated to achieve consistent gain and low cross-polarization. Thanks to the continuous phase constant changing from negative to positive values over the passband of the double-layered microstrip metamaterial, the proposed LWA, which consists of 20 identical microstrip metamaterial unit cells, can obtain a continuous beam scanning property from backward to forward directions. The proposed LWA is fabricated and measured. The measured results show that the fabricated antenna obtains a continuous beam scanning angle of 140° over the operating frequency band of 3.80-5.25 GHz (32%), the measured 3 dB gain bandwidth is 30.17% with maximum gain of 11.7 dB. Besides, the measured cross-polarization of the fabricated antenna keeps at a level of at least 30 dB below the co-polarization across the entire radiation region. Moreover, the measured and simulated results are in good agreement with each other, indicating the significance and effectiveness of this method.
WhiteRef: a new tower-based hyperspectral system for continuous reflectance measurements.
Sakowska, Karolina; Gianelle, Damiano; Zaldei, Alessandro; MacArthur, Alasdair; Carotenuto, Federico; Miglietta, Franco; Zampedri, Roberto; Cavagna, Mauro; Vescovo, Loris
2015-01-08
Proximal sensing is fundamental to monitor the spatial and seasonal dynamics of ecosystems and can be considered as a crucial validation tool to upscale in situ observations to the satellite level. Linking hyperspectral remote sensing with carbon fluxes and biophysical parameters is critical to allow the exploitation of spatial and temporal extensive information for validating model simulations at different scales. In this study, we present the WhiteRef, a new hyperspectral system designed as a direct result of the needs identified during the EUROSPEC ES0903 Cost Action, and developed by Fondazione Edmund Mach and the Institute of Biometeorology, CNR, Italy. The system is based on the ASD FieldSpec Pro spectroradiometer and was designed to acquire continuous radiometric measurements at the Eddy Covariance (EC) towers and to fill a gap in the scientific community: in fact, no system for continuous spectral measurements in the Short Wave Infrared was tested before at the EC sites. The paper illustrates the functioning of the WhiteRef and describes its main advantages and disadvantages. The WhiteRef system, being based on a robust and high quality commercially available instrument, has a clear potential for unattended continuous measurements aiming at the validation of satellites' vegetation products.
NASA Astrophysics Data System (ADS)
Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.
2018-06-01
Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.
NASA Astrophysics Data System (ADS)
Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.
2017-12-01
Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.
Efficient continuous-variable state tomography using Padua points
NASA Astrophysics Data System (ADS)
Landon-Cardinal, Olivier; Govia, Luke C. G.; Clerk, Aashish A.
Further development of quantum technologies calls for efficient characterization methods for quantum systems. While recent work has focused on discrete systems of qubits, much remains to be done for continuous-variable systems such as a microwave mode in a cavity. We introduce a novel technique to reconstruct the full Husimi Q or Wigner function from measurements done at the Padua points in phase space, the optimal sampling points for interpolation in 2D. Our technique not only reduces the number of experimental measurements, but remarkably, also allows for the direct estimation of any density matrix element in the Fock basis, including off-diagonal elements. OLC acknowledges financial support from NSERC.
A Register of Underwater Acoustic Facilities. Volume 1. Western Europe
1987-03-01
production is still under the direction of Viggo Kjaer, while Per V. Briiel continues to direct the world-wide sales operation. 2-29 TD 7903-1...which are then made available for general sale and distribution. IKU is currently involved in a survey of areas in the Barents Sea which lie in...17 itun /3h measuring mode. Buoy surveillance: ARGOS system for automatic posi- tioning and data transfer of internal instrument checks
NASA Astrophysics Data System (ADS)
Arellano, Santiago; Galle, Bo; Mulina, Kila; Wallius, Julia; McCormick, Brendan; Salem, Lois; D'aleo, Roberto; Itikarai, Ima; Tirpitz, Lukas; Bobrowski, Nicole; Aiuppa, Alessandro
2017-04-01
Satellite observations reveal that volcanoes from Papua New Guinea contributed with ca. 15{%} of the global emission of volcanic sulfur dioxide (SO2) during the period 2005-2014. Relatively little is known about their carbon dioxide (CO2) outputs and more recent levels and dynamics of degassing activity. During September 2016 we conducted measurements of the CO2/SO2 ratio and the SO2 flux from Tavurvur, Bagana and Ulawun volcanoes using a combination of remote sensing and direct sampling techniques. Tavurvur exhibits low-level passive degassing from a modestly active vent and few other intra-crater fumaroles, which made access possible for direct measurements of the CO2/SO2 ratio with a compact Multi-GAS instrument. A wide-field of view pointing DOAS monitor was deployed for longer term monitoring of the SO2 flux from a distance of about 2 km. Bagana degasses continuously with occasional emissions of ash, and its SO2 flux, plume velocity and height was constrained by simultaneous scanning and dual-beam DOAS measurements. Molar ratios in the plume of Bagana were measured by the compact Multi-GAS aboard a multi-rotor UAV, up to a height of 1.6 km above ground. Ulawun showed continuous passive degassing and measurements with the UAV, up to an altitude of ca. 1.8 km, and mobile-DOAS traverses from a car were used to constrain its gas emission. Here we present an overview of the challenging conditions, measurement strategies and results of this campaign that forms part of the ongoing international effort DECADE aiming to better quantify the global gas emission of carbon- and sulfur containing species from volcanoes.
Laser application to measure vertical sea temperature and turbidity, design phase
NASA Technical Reports Server (NTRS)
Hirschberg, J. G.; Wouters, A. W.; Simon, K. M.; Byrne, J. D.; Deverdun, C. E.
1976-01-01
An experiment to test a new method was designed, using backscattered radiation from a laser beam to measure oceanographic parameters in a fraction of a second. Tyndall, Rayleigh, Brillouin, and Raman scattering all are utilized to evaluate the parameters. A beam from a continuous argon ion laser is used together with an interferometer and interference filters to gather the information. The results are checked by direct measurements. Future shipboard and airborne experiments are described.
Directional Radio-Frequency Identification Tag Reader
NASA Technical Reports Server (NTRS)
Medelius, Pedro J.; Taylor, John D.; Henderson, John J.
2004-01-01
A directional radio-frequency identification (RFID) tag reader has been designed to facilitate finding a specific object among many objects in a crowded room. The device could be an adjunct to an electronic inventory system that tracks RFID-tagged objects as they move through reader-equipped doorways. Whereas commercial RFID-tag readers do not measure directions to tagged objects, the device is equipped with a phased-array antenna and a received signal-strength indicator (RSSI) circuit for measuring direction. At the beginning of operation, it is set to address only the RFID tag of interest. It then continuously transmits a signal to interrogate that tag while varying the radiation pattern of the antenna. It identifies the direction to the tag as the radiation pattern direction of peak strength of the signal returned by the tag. An approximate distance to the tag is calculated from the peak signal strength. The direction and distance can be displayed on a screen. A prototype containing a Yagi antenna was found to be capable of detecting a 915.5-MHz tag at a distance of approximately equal to 15 ft (approximately equal to 4.6 m).
Back, B B; Baker, M D; Ballintijn, M; Barton, D S; Betts, R R; Bickley, A A; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Chai, Z; Decowski, M P; García, E; Gburek, T; George, N; Gulbrandsen, K; Gushue, S; Halliwell, C; Hamblen, J; Hauer, M; Heintzelman, G A; Henderson, C; Hofman, D J; Hollis, R S; Hołyński, R; Holzman, B; Iordanova, A; Johnson, E; Kane, J L; Katzy, J; Khan, N; Kucewicz, W; Kulinich, P; Kuo, C M; Lin, W T; Manly, S; McLeod, D; Mignerey, A C; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L; Sagerer, J; Sarin, P; Sawicki, P; Seals, H; Sedykh, I; Skulski, W; Smith, C E; Stankiewicz, M A; Steinberg, P; Stephans, G S F; Sukhanov, A; Tang, J-L; Tonjes, M B; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Vaurynovich, S S; Verdier, R; Veres, G I; Wenger, E; Wolfs, F L H; Wosiek, B; Woźniak, K; Wuosmaa, A H; Wysłouch, B
2006-07-07
We report on measurements of directed flow as a function of pseudorapidity in Au + Au collisions at energies of square root of SNN = 19.6, 62.4, 130 and 200 GeV as measured by the PHOBOS detector at the BNL Relativistic Heavy Ion Collider. These results are particularly valuable because of the extensive, continuous pseudorapidity coverage of the PHOBOS detector. There is no significant indication of structure near midrapidity and the data surprisingly exhibit extended longitudinal scaling similar to that seen for elliptic flow and charged particle pseudorapidity density.
Capture of visual direction in dynamic vergence is reduced with flashed monocular lines.
Jaschinski, Wolfgang; Jainta, Stephanie; Schürer, Michael
2006-08-01
The visual direction of a continuously presented monocular object is captured by the visual direction of a closely adjacent binocular object, which questions the reliability of nonius lines for measuring vergence. This was shown by Erkelens, C. J., and van Ee, R. (1997a,b) [Capture of the visual direction: An unexpected phenomenon in binocular vision. Vision Research, 37, 1193-1196; Capture of the visual direction of monocular objects by adjacent binocular objects. Vision Research, 37, 1735-1745] stimulating dynamic vergence by a counter phase oscillation of two square random-dot patterns (one to each eye) that contained a smaller central dot-free gap (of variable width) with a vertical monocular line oscillating in phase with the random-dot pattern of the respective eye; subjects adjusted the motion-amplitude of the line until it was perceived as (nearly) stationary. With a continuously presented monocular line, we replicated capture of visual direction provided the dot-free gap was narrow: the adjusted motion-amplitude of the line was similar as the motion-amplitude of the random-dot pattern, although large vergence errors occurred. However, when we flashed the line for 67 ms at the moments of maximal and minimal disparity of the vergence stimulus, we found that the adjusted motion-amplitude of the line was smaller; thus, the capture effect appeared to be reduced with flashed nonius lines. Accordingly, we found that the objectively measured vergence gain was significantly correlated (r=0.8) with the motion-amplitude of the flashed monocular line when the separation between the line and the fusion contour was at least 32 min arc. In conclusion, if one wishes to estimate the dynamic vergence response with psychophysical methods, effects of capture of visual direction can be reduced by using flashed nonius lines.
Astrand, Elaine
2018-06-01
Working memory (WM), crucial for successful behavioral performance in most of our everyday activities, holds a central role in goal-directed behavior. As task demands increase, inducing higher WM load, maintaining successful behavioral performance requires the brain to work at the higher end of its capacity. Because it is depending on both external and internal factors, individual WM load likely varies in a continuous fashion. The feasibility to extract such a continuous measure in time that correlates to behavioral performance during a working memory task remains unsolved. Multivariate pattern decoding was used to test whether a decoder constructed from two discrete levels of WM load can generalize to produce a continuous measure that predicts task performance. Specifically, a linear regression with L2-regularization was chosen with input features from EEG oscillatory activity recorded from healthy participants while performing the n-back task, [Formula: see text]. The feasibility to extract a continuous time-resolved measure that correlates positively to trial-by-trial working memory task performance is demonstrated (r = 0.47, p < 0.05). It is furthermore shown that this measure allows to predict task performance before action (r = 0.49, p < 0.05). We show that the extracted continuous measure enables to study the temporal dynamics of the complex activation pattern of WM encoding during the n-back task. Specifically, temporally precise contributions of different spectral features are observed which extends previous findings of traditional univariate approaches. These results constitute an important contribution towards a wide range of applications in the field of cognitive brain-machine interfaces. Monitoring mental processes related to attention and WM load to reduce the risk of committing errors in high-risk environments could potentially prevent many devastating consequences or using the continuous measure as neurofeedback opens up new possibilities to develop novel rehabilitation techniques for individuals with degraded WM capacity.
NASA Astrophysics Data System (ADS)
Astrand, Elaine
2018-06-01
Objective. Working memory (WM), crucial for successful behavioral performance in most of our everyday activities, holds a central role in goal-directed behavior. As task demands increase, inducing higher WM load, maintaining successful behavioral performance requires the brain to work at the higher end of its capacity. Because it is depending on both external and internal factors, individual WM load likely varies in a continuous fashion. The feasibility to extract such a continuous measure in time that correlates to behavioral performance during a working memory task remains unsolved. Approach. Multivariate pattern decoding was used to test whether a decoder constructed from two discrete levels of WM load can generalize to produce a continuous measure that predicts task performance. Specifically, a linear regression with L2-regularization was chosen with input features from EEG oscillatory activity recorded from healthy participants while performing the n-back task, n\\in [1,2] . Main results. The feasibility to extract a continuous time-resolved measure that correlates positively to trial-by-trial working memory task performance is demonstrated (r = 0.47, p < 0.05). It is furthermore shown that this measure allows to predict task performance before action (r = 0.49, p < 0.05). We show that the extracted continuous measure enables to study the temporal dynamics of the complex activation pattern of WM encoding during the n-back task. Specifically, temporally precise contributions of different spectral features are observed which extends previous findings of traditional univariate approaches. Significance. These results constitute an important contribution towards a wide range of applications in the field of cognitive brain–machine interfaces. Monitoring mental processes related to attention and WM load to reduce the risk of committing errors in high-risk environments could potentially prevent many devastating consequences or using the continuous measure as neurofeedback opens up new possibilities to develop novel rehabilitation techniques for individuals with degraded WM capacity.
Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics.
Boedo, J A; Rudakov, D L
2017-03-01
We present a method to calculate the ion saturation current, I sat , for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat . It is noted that the I sat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e . We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuously biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and its use in reducing arcs.
Estimation of CO2 emissions from waste incinerators: Comparison of three methods.
Lee, Hyeyoung; Yi, Seung-Muk; Holsen, Thomas M; Seo, Yong-Seok; Choi, Eunhwa
2018-03-01
Climate-relevant CO 2 emissions from waste incineration were compared using three methods: making use of CO 2 concentration data, converting O 2 concentration and waste characteristic data, and using a mass balance method following Intergovernmental Panel on Climate Change (IPCC) guidelines. For the first two methods, CO 2 and O 2 concentrations were measured continuously from 24 to 86 days. The O 2 conversion method in comparison to the direct CO 2 measurement method had a 4.8% mean difference in daily CO 2 emissions for four incinerators where analyzed waste composition data were available. However, the IPCC method had a higher difference of 13% relative to the direct CO 2 measurement method. For three incinerators using designed values for waste composition, the O 2 conversion and IPCC methods in comparison to the direct CO 2 measurement method had mean differences of 7.5% and 89%, respectively. Therefore, the use of O 2 concentration data measured for monitoring air pollutant emissions is an effective method for estimating CO 2 emissions resulting from waste incineration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantification and scaling of multipartite entanglement in continuous variable systems.
Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio
2004-11-26
We present a theoretical method to determine the multipartite entanglement between different partitions of multimode, fully or partially symmetric Gaussian states of continuous variable systems. For such states, we determine the exact expression of the logarithmic negativity and show that it coincides with that of equivalent two-mode Gaussian states. Exploiting this reduction, we demonstrate the scaling of the multipartite entanglement with the number of modes and its reliable experimental estimate by direct measurements of the global and local purities.
Measuring Joule heating and strain induced by electrical current with Moire interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Bicheng; Basaran, Cemal
2011-04-01
This study proposes a new method to locate and measure the temperature of the hot spots caused by Joule Heating by measuring the free thermal expansion in-plane strain. It is demonstrated that the hotspot caused by the Joule heating in a thin metal film/plate structure can be measured by Phase shifting Moire interferometry with continuous wavelet transform (PSMI/CWT) at the microscopic scale. A demonstration on a copper film is conducted to verify the theory under different current densities. A correlation between the current density and strain in two orthogonal directions (one in the direction of the current flow) is proposed.more » The method can also be used for the measurement of the Joule heating in the microscopic solid structures in the electronic packaging devices. It is shown that a linear relationship exists between current density squared and normal strains.« less
Electrochemical Impedance Of Inorganic-Zinc-Coated Steel
NASA Technical Reports Server (NTRS)
Macdowell, Louis G.
1992-01-01
Report describes preliminary experiments to evaluate both direct-current and alternating-current electrochemical impedance measurements as candidate techniques for use in accelerated corrosion testing of mild-steel panels coated with inorganic zinc-rich primers and exposed to seaside air. Basic idea behind experiments to compare electrochemical impedance measurements with anticorrosion performances of coating materials to determine whether measurements can be used to predict performances. Part of continuing program to identify anticorrosion coating materials protecting steel panels adequately for as long as 5 years and beyond.
NASA Astrophysics Data System (ADS)
Termopoli, Veronica; Famiglini, Giorgio; Palma, Pierangela; Cappiello, Achille; Vandergrift, Gregory W.; Krogh, Erik T.; Gill, Chris G.
2016-02-01
Polycyclic aromatic hydrocarbons (PAHs) are USEPA regulated priority pollutants. Their low aqueous solubility requires very sensitive analytical methods for their detection, typically involving preconcentration steps. Presented is the first demonstrated `proof of concept' use of condensed phase membrane introduction mass spectrometry (CP-MIMS) coupled with direct liquid electron ionization (DEI) for the direct, on-line measurement of PAHs in aqueous samples. DEI is very well suited for the ionization of PAHs and other nonpolar compounds, and is not significantly influenced by the co-elution of matrix components. Linear calibration data for low ppb levels of aqueous naphthalene, anthracene, and pyrene is demonstrated, with measured detection limits of 4 ppb. Analytical response times (t10%-90% signal rise) ranged from 2.8 min for naphthalene to 4.7 min for pyrene. Both intra- and interday reproducibility has been assessed (<3% and 5% RSD, respectively). Direct measurements of ppb level PAHs spiked in a variety of real, complex environmental sample matrices is examined, including natural waters, sea waters, and a hydrocarbon extraction production waste water sample. For these spiked, complex samples, direct PAH measurement by CP-MIMS-DEI yielded minimal signal suppression from sample matrix effects (81%-104%). We demonstrate the use of this analytical approach to directly monitor real-time changes in aqueous PAH concentrations with potential applications for continuous on-line monitoring strategies and binding/adsorption studies in heterogeneous samples.
Generating a Reduced Gravity Environment on Earth
NASA Technical Reports Server (NTRS)
Dungan, L. K.; Valle, P.; Shy, C.
2015-01-01
The Active Response Gravity Offload System (ARGOS) is designed to simulate reduced gravity environments, such as Lunar, Martian, or microgravity using a vertical lifting hoist and horizontal motion system. Three directions of motion are provided over a 41 ft x 24 ft x 25 ft tall area. ARGOS supplies a continuous offload of a portion of a person's weight during dynamic motions such as walking, running, and jumping. The ARGOS system tracks the person's motion in the horizontal directions to maintain a vertical offload force directly above the person or payload by measuring the deflection of the cable and adjusting accordingly.
Ultrasound elastography: the new frontier in direct measurement of muscle stiffness.
Brandenburg, Joline E; Eby, Sarah F; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S; Chen, Shigao; An, Kai-Nan
2014-11-01
The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Miller, J. N.; Black, C. K.; Bernacchi, C.
2014-12-01
Global demand for renewable energy is accelerating land conversion from common row crops such as maize and soybean to cellulosic biofuel crops such as miscanthus and switchgrass. This land conversion is expected to alter ecohydrology via changes in evapotranspiration (ET). However, the direction in which evapotranspiration will shift, either partitioning more moisture through soil evaporation (E) or through plant transpiration (T) is uncertain. To investigate how land conversion from maize to miscanthus affects ET partitioning we measured the isotopic composition of water vapor via continuous air sampling. We obtained continuous diurnal measurements of δ2H and δ18O for miscanthus and maize on multiple days over the course of the growing season. Water vapor isotopes drawn from two heights were measured at 2 Hz using a cavity ringdown spectrometer and partitioned into components of E and T using a simple mixing equation. A second approach to partitioning was accomplished by subtracting transpiration measurements, obtained through sap flow sensors, from total ET, measured via eddy covariance. Preliminary results reveal that both methods compare favorably and that transpiration dominates variations in ET in miscanthus fields more so than in fields of maize.
Age Differences in Self-Continuity: Converging Evidence and Directions for Future Research.
Löckenhoff, Corinna E; Rutt, Joshua L
2017-06-01
Life-span development is inherently linked to the perception of time and associated temporal construals. Such concepts are multi-faceted in nature and have important practical implications in areas such as time management, financial planning, or medical choices. A large body of research has documented age-related limitations in global time horizons, but age differences in other aspects of temporal construal are comparatively poorly understood. The present article draws attention to developmental trajectories of self-continuity, defined as perceived associations of one's present self with past and future selves. After considering historical roots and contemporary views on self-continuity, we turn to the life-span developmental literature and review several convergent streams of research that provide indirect evidence for age-related increases in self-continuity. We then consider a small body of recent studies which have directly assessed age differences in self-continuity and summarize our current understanding of this phenomenon including associations between explicit and implicit measures, symmetry between past and future self-continuity, and differentiation from other aspects of time perception. We conclude by highlighting open theoretical questions and considering the practical implications of an increased sense of self-continuity with advancing age. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Language Change and Language Planning and Policy. PREL Briefing Paper.
ERIC Educational Resources Information Center
Shigemoto, Joan
While societies and their languages continually change in response to internal and external circumstances, there are proactive measures that can be implemented to either maintain the particular direction in which that language is moving or to reverse it. Parents and educators can effectuate positive change, individually and collectively. Some…
ERIC Educational Resources Information Center
Gleason, Mary Margaret; Fox, Nathan A.; Drury, Stacy; Smyke, Anna; Egger, Helen L.; Nelson, Charles A., III; Gregas, Matthew C.; Zeanah, Charles H.
2011-01-01
Objective: This study examined the validity of criteria for indiscriminately social/disinhibited and emotionally withdrawn/inhibited reactive attachment disorder (RAD). Method: As part of a longitudinal intervention trial of previously institutionalized children, caregiver interviews and direct observational measurements provided continuous and…
NASA Astrophysics Data System (ADS)
Whyte, Refael; Streeter, Lee; Cree, Michael J.; Dorrington, Adrian A.
2015-11-01
Time of flight (ToF) range cameras illuminate the scene with an amplitude-modulated continuous wave light source and measure the returning modulation envelopes: phase and amplitude. The phase change of the modulation envelope encodes the distance travelled. This technology suffers from measurement errors caused by multiple propagation paths from the light source to the receiving pixel. The multiple paths can be represented as the summation of a direct return, which is the return from the shortest path length, and a global return, which includes all other returns. We develop the use of a sinusoidal pattern from which a closed form solution for the direct and global returns can be computed in nine frames with the constraint that the global return is a spatially lower frequency than the illuminated pattern. In a demonstration on a scene constructed to have strong multipath interference, we find the direct return is not significantly different from the ground truth in 33/136 pixels tested; where for the full-field measurement, it is significantly different for every pixel tested. The variance in the estimated direct phase and amplitude increases by a factor of eight compared with the standard time of flight range camera technique.
LED-based UV source for monitoring spectroradiometer properties
NASA Astrophysics Data System (ADS)
Sildoja, Meelis-Mait; Nevas, Saulius; Kouremeti, Natalia; Gröbner, Julian; Pape, Sven; Pendsa, Stefan; Sperfeld, Peter; Kemus, Fabian
2018-06-01
A compact and stable UV monitoring source based on state-of-the-art commercially available ultraviolet light emitting diodes (UV-LEDs) has been developed. It is designed to trace the radiometric stability—both responsivity and wavelength scale—of array spectroradiometers measuring direct solar irradiance in the wavelength range between 300 nm and 400 nm. The spectral irradiance stability of the UV-LED-based light source observed in the laboratory after seasoning (burning-in) the individual LEDs was better than 0.3% over a 12 h period of continuous operation. The integral irradiance measurements of the source over a period of several months, where the UV-LED source was not operated continuously between the measurements, showed stability within 0.3%. In-field measurements of the source with an array spectroradiometer indicated the stability of the source to be within the standard uncertainty of the spectroradiometer calibration, which was within 1% to 2%.
Inferring the direction of implied motion depends on visual awareness
Faivre, Nathan; Koch, Christof
2014-01-01
Visual awareness of an event, object, or scene is, by essence, an integrated experience, whereby different visual features composing an object (e.g., orientation, color, shape) appear as an unified percept and are processed as a whole. Here, we tested in human observers whether perceptual integration of static motion cues depends on awareness by measuring the capacity to infer the direction of motion implied by a static visible or invisible image under continuous flash suppression. Using measures of directional adaptation, we found that visible but not invisible implied motion adaptors biased the perception of real motion probes. In a control experiment, we found that invisible adaptors implying motion primed the perception of subsequent probes when they were identical (i.e., repetition priming), but not when they only shared the same direction (i.e., direction priming). Furthermore, using a model of visual processing, we argue that repetition priming effects are likely to arise as early as in the primary visual cortex. We conclude that although invisible images implying motion undergo some form of nonconscious processing, visual awareness is necessary to make inferences about motion direction. PMID:24706951
P and S Velocity Structure in the Groningen Gas Reservoir From Noise Interferometry
NASA Astrophysics Data System (ADS)
Zhou, Wen; Paulssen, Hanneke
2017-12-01
Noise interferometry has proven to be a powerful tool to image seismic structure. In this study we used data from 10 geophones located in a borehole at ˜3 km depth within the Groningen gas reservoir in the Netherlands. The continuous data cross correlations show that noise predominantly comes in from above. The observed daily and weekly variations further indicate that the noise has an anthropogenic origin. The direct P wave emerges from the stacked vertical component cross correlations with frequencies up to 80 Hz and the direct S wave is retrieved from the horizontal components with frequencies up to 50 Hz. The measured intergeophone travel times were used to retrieve the P and S velocity structure along the borehole, and a good agreement was found with well log data. In addition, from the S wave polarizations, we determined azimuthal anisotropy with a fast direction of N65°W±18° and an estimated magnitude of (4±2)%. The fast polarization direction corresponds to the present direction of maximum horizontal stress measured at nearby boreholes but is also similar to the estimated paleostress direction.
Inferring the direction of implied motion depends on visual awareness.
Faivre, Nathan; Koch, Christof
2014-04-04
Visual awareness of an event, object, or scene is, by essence, an integrated experience, whereby different visual features composing an object (e.g., orientation, color, shape) appear as an unified percept and are processed as a whole. Here, we tested in human observers whether perceptual integration of static motion cues depends on awareness by measuring the capacity to infer the direction of motion implied by a static visible or invisible image under continuous flash suppression. Using measures of directional adaptation, we found that visible but not invisible implied motion adaptors biased the perception of real motion probes. In a control experiment, we found that invisible adaptors implying motion primed the perception of subsequent probes when they were identical (i.e., repetition priming), but not when they only shared the same direction (i.e., direction priming). Furthermore, using a model of visual processing, we argue that repetition priming effects are likely to arise as early as in the primary visual cortex. We conclude that although invisible images implying motion undergo some form of nonconscious processing, visual awareness is necessary to make inferences about motion direction.
Application of Spectroscopic Doppler Velocimetry for Measurement of Streamwise Vorticity
NASA Technical Reports Server (NTRS)
Fagan, Amy; Zaman, Khairul B.; Elam, Kristie A.; Clem, Michelle M.
2013-01-01
A spectroscopic Doppler velocimetry technique has been developed for measuring two transverse components of velocity and hence streamwise vorticity in free jet flows. The nonintrusive optical measurement system uses Mie scattering from a 200 mW green continuous-wave laser interacting with dust and other tracer particulates naturally present in the air flow to measure the velocities. Scattered light is collected in two opposing directions to provide measurements of two orthogonal velocity components. An air-spaced Fabry-Perot interferometer is used for spectral analysis to determine the optical frequency shift between the incident laser light and the Mie scattered light. This frequency shift is directly proportional to the velocity component in the direction of the bisector of the incident and scattered light wave propagation vectors. Data were acquired for jet Mach numbers of 1.73 and 0.99 using a convergent 1.27-cm diameter round nozzle fitted with a single triangular "delta-tab". The velocity components and the streamwise vorticity calculated from the measurements are presented. The results demonstrate the ability of this novel optical system to obtain velocity and vorticity data without any artificial seeding and using a low power laser system.
A direct measurement of g-factors in II-VI and III-V core-shell nanocrystals
NASA Astrophysics Data System (ADS)
Fradkin, L.; Langof, L.; Lifshitz, E.; Gaponik, N.; Rogach, A.; Eychmüller, A.; Weller, H.; Micic, O. I.; Nozik, A. J.
2005-02-01
This study describes a direct measurement of spectroscopic g-factors of photo-generated carriers in InP/ZnS and HgTe/Hg xCd 1-xTe(S) core-shell nanocrystals. The g-factor of trapped electrons and their spin-lattice versus radiative relaxation ratio ( T1/ τ) were measured by the use of continuous-wave and time-resolved optically detected magnetic resonance (ODMR) spectroscopy. The g-factors of excitons and donor-hole pairs were derived by the use of field-induced circular-polarized photoluminescence (CP-PL) spectroscopy. The combined information enabled to determine the g-factors of the individual band-edge electrons and holes. The results suggested an increase of the g-factor of the exciton and conduction electron with a decrease of the nanocrystal size.
Direct current electrical potential measurement of the growth of small cracks
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Slavik, Donald C.; Piascik, Robert S.; Van Stone, Robert H.
1992-01-01
The analytical and experimental aspects of the direct-current electrical potential difference (dcEPD) method for continuous monitoring of the growth kinetics of short (50 to 500 microns) fatigue cracks are reviewed, and successful applications of the deEPD method to study fatigue crack propagation in a variety of metallic alloys exposed to various environments are described. Particular attention is given to the principle of the dcEPD method, the analytical electrical potential calibration relationships, and the experimental procedures and equipment.
Direct Method for Continuous Determination of Iron Oxidation by Autotrophic Bacteria
Steiner, Michael; Lazaroff, Norman
1974-01-01
A method for direct, continuous determination of ferric ions produced in autotrophic iron oxidation, which depends upon the measurement of ferric ion absorbance at 304 nm, is described. The use of initial rates is shown to compensate for such changes in extinction during oxidation, which are due to dependence of the extinction coefficient on the ratio of complexing anions to ferric ions. A graphical method and a computer method are given for determination of absolute ferric ion concentration, at any time interval, in reaction mixtures containing Thiobacillus ferrooxidans and ferrous ions at known levels of SO42+ and hydrogen ion concentrations. Some examples are discussed of the applicability of these methods to study of the rates of ferrous ion oxidation related to sulfate concentration. PMID:4441066
Discrete-to-continuous transition in quantum phase estimation
NASA Astrophysics Data System (ADS)
Rządkowski, Wojciech; Demkowicz-Dobrzański, Rafał
2017-09-01
We analyze the problem of quantum phase estimation in which the set of allowed phases forms a discrete N -element subset of the whole [0 ,2 π ] interval, φn=2 π n /N , n =0 ,⋯,N -1 , and study the discrete-to-continuous transition N →∞ for various cost functions as well as the mutual information. We also analyze the relation between the problems of phase discrimination and estimation by considering a step cost function of a given width σ around the true estimated value. We show that in general a direct application of the theory of covariant measurements for a discrete subgroup of the U(1 ) group leads to suboptimal strategies due to an implicit requirement of estimating only the phases that appear in the prior distribution. We develop the theory of subcovariant measurements to remedy this situation and demonstrate truly optimal estimation strategies when performing a transition from discrete to continuous phase estimation.
Swensen, James S.; Xiao, Yi; Ferguson, Brian S.; Lubin, Arica A.; Lai, Rebecca Y.; Heeger, Alan J.; Plaxco, Kevin W.; Soh, H. Tom.
2009-01-01
The development of a biosensor system capable of continuous, real-time measurement of small-molecule analytes directly in complex, unprocessed aqueous samples has been a significant challenge, and successful implementation has been achieved for only a limited number of targets. Towards a general solution to this problem, we report here the Microfluidic Electrochemical Aptamer-based Sensor (MECAS) chip wherein we integrate target-specific DNA aptamers that fold, and thus generate an electrochemical signal, in response to the analyte with a microfluidic detection system. As a model, we demonstrate the continuous, real-time (~1 minute time resolution) detection of the small molecule drug cocaine at near physiological, low micromolar concentrations directly in undiluted, otherwise unmodified blood serum. We believe our approach of integrating folding-based electrochemical sensors with miniaturized detection systems may lay the ground work for the real-time, point-of-care detection of a wide variety of molecular targets. PMID:19271708
Cabin Atmosphere Monitoring System (CAMS), pre-prototype model development continuation
NASA Technical Reports Server (NTRS)
Bursack, W. W.; Harris, W. A.
1975-01-01
The development of the Cabin Atmosphere Monitoring System (CAMS) is described. Attention was directed toward improving stability and reliability of the design using flight application guidelines. Considerable effort was devoted to the development of a temperature-stable RF/DC generator used for excitation of the quadrupole mass filter. Minor design changes were made in the preprototype model. Specific gas measurement examples are included along with a discussion of the measurement rationale employed.
Acoustic resonance phase locked photoacoustic spectrometer
Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.
2003-08-19
A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell to generate a photoacoustic signal, the acoustic source having a source frequency; continuously measuring detection phase of the photoacoustic signal with respect to source frequency or a harmonic thereof; and employing the measured detection phase to provide magnitude and direction for correcting the source frequency to the resonance frequency.
Aviation Security: After Four Decades, It’s Time for a Fundamental Review
2012-01-01
Because of the nature of the threat, aviation security is the most intrusive form of security, pushing hard on the frontier of civil liberties. And the...passengers have become increasingly hostile to the very measures deployed to protect them, while TSA is under continuous assault in Congress. Aviation ... security is costly, controversial, and contentious; no other security measures directly affect such a large portion of the country s population
Hellman, Yaron; Malik, Adnan S; Lane, Kathleen A; Shen, Changyu; Wang, I-Wen; Wozniak, Thomas C; Hashmi, Zubair A; Munson, Sarah D; Pickrell, Jeanette; Caccamo, Marco A; Gradus-Pizlo, Irmina; Hadi, Azam
2017-05-01
Currently, blood pressure (BP) measurement is obtained noninvasively in patients with continuous flow left ventricular assist device (LVAD) by placing a Doppler probe over the brachial or radial artery with inflation and deflation of a manual BP cuff. We hypothesized that replacing the Doppler probe with a finger-based pulse oximeter can yield BP measurements similar to the Doppler derived mean arterial pressure (MAP). We conducted a prospective study consisting of patients with contemporary continuous flow LVADs. In a small pilot phase I inpatient study, we compared direct arterial line measurements with an automated blood pressure (ABP) cuff, Doppler and pulse oximeter derived MAP. Our main phase II study included LVAD outpatients with a comparison between Doppler, ABP, and pulse oximeter derived MAP. A total of five phase I and 36 phase II patients were recruited during February-June 2014. In phase I, the average MAP measured by pulse oximeter was closer to arterial line MAP rather than Doppler (P = 0.06) or ABP (P < 0.01). In phase II, pulse oximeter MAP (96.6 mm Hg) was significantly closer to Doppler MAP (96.5 mm Hg) when compared to ABP (82.1 mm Hg) (P = 0.0001). Pulse oximeter derived blood pressure measurement may be as reliable as Doppler in patients with continuous flow LVADs. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
A tethering system for direct measurement of cardiovascular function in the caged baboon
NASA Technical Reports Server (NTRS)
Byrd, L. D.
1979-01-01
A device suitable for the continuous measurement of physiological activity in large, conscious monkeys has permitted the direct recording of systemic arterial blood pressure and heart rate in caged baboons. The device comprises a lightweight fiberglass backpack, retained in place on the baboon by a thoracic elastic band and shoulder straps, and a flexible stainless steel tether connecting the pack to an electrocannular slip-ring in the top center of the baboon's cage. A chronically indwelling arterial catheter inserted retrograde into the abdominal aorta via the internal iliac artery and connected to a small pressure transducer on the pack provides direct measurement of blood pressure and heart rate. Body fluids can be sampled or drugs administered via an indwelling catheter in the inferior vena cava. Electrical and fluid connections between the fiberglass pack and recording and infusion equipment located outside the cage pass through the flexible tether and remain protected from the subject. The reliability of the tethering system has been demonstrated in physiological, pharmacological, and behavioral experiments with baboons.
The 1994 to 2008 concentration variations of atmospheric CO2 observed at Jubany Station (Antarctica)
NASA Astrophysics Data System (ADS)
Gallo, Veronica; de Simone, Sara; Ciattaglia, Luigi; Rafanelli, Claudio; Diego, Piero
2010-05-01
Since 1994 the Italian PNRA (National Research Program in Antarctica) and the Argentina DNA (Direction National de Antartico) have been collecting continuous atmospheric carbon dioxide measurements at Jubany. The Antarctic station at Jubany (62° 14'S, 58° 40'W) is located in King George Island, in the South Shetland archipelago, north of the Antarctic Peninsula. The laboratory is situated at an elevation of 15 m.s.l. on the SE slope of Potter Bay. The measurements are taken by using a Siemens U5 analyzer based on NDIR (Non Dispersive InfraRed) absorption method. Details are given on the station environment, meteorological conditions, instrumentation, and data selection strategy. The paper presents the first 14 years (1994-2008) of continuous atmospheric CO2 measurements; the interannual and seasonal variations of CO2 data are described
Pharmacy claims data versus patient self-report to measure contraceptive method continuation.
Triebwasser, Jourdan E; Higgins, Stephanie; Secura, Gina M; Zhao, Qiuhong; Peipert, Jeffrey F
2015-07-01
To compare self-reported 12-month continuation of oral contraceptive pills (OCPs), patch, and ring versus continuation by pharmacy claims data. Women in the Contraceptive CHOICE Project who chose OCPs, the patch, or the ring as their initial method were included. Continuation was assessed by periodic telephone survey and by obtaining prescription claims data. Continuation was defined as no gap of more than 30 days. Kaplan-Meier survival functions were used to estimate continuation rates and cumulative unintended pregnancy rates. Kappa statistic assessed the level of agreement between self-report and claims data. We analyzed 1510 women who initiated use by 3 months and provided information on discontinuation. Of OCP users, 59% continued their method at 12 months by self-report versus 38% by pharmacy claims. Patch and ring users had self-reported/pharmacy continuation of 45%/28% and 57%/37%, respectively. Kappa coefficients and their 95% confidence intervals between the two measurements were 0.46 (0.40, 0.52), 0.54 (0.39, 0.68), and 0.54 (0.47, 0.61) for OCP, patch, and ring, respectively. Among women who self-reported continuation, unintended pregnancy rates were 0.4% in those who continued by pharmacy claims versus 4.9% in those who discontinued according to claims data. Contraceptive continuation rates differ by self-report versus pharmacy claims with women overestimating their continuation by self-report. This article directly compares contraception continuation rates by self-report and by pharmacy claims data. The study suggests that previously reported continuation rates from survey data overestimate specific method use. Copyright © 2015 Elsevier Inc. All rights reserved.
Rethinking traditional methods for measuring intellectual capital.
Corso, John A
2007-01-01
Historically, approaches to measuring intellectual capital have included both conventional accounting-based measures, such as variants of the market-to-book ratio, and more progressive measures, such as the measurement of intangible assets found in approaches such as the Balanced Scorecard and Human Resource Accounting. As greater emphasis is placed on intellectual capital and its various aspects in the continually growing service and knowledge economy, the use of assessment instruments to inventory the alignment, balance, and variety of intellectual capacities and metrics that assess the effectiveness of succession planning may represent new directions in which organizations can head in the measurement of this important construct.
Intensity autocorrelation measurements of frequency combs in the terahertz range
NASA Astrophysics Data System (ADS)
Benea-Chelmus, Ileana-Cristina; Rösch, Markus; Scalari, Giacomo; Beck, Mattias; Faist, Jérôme
2017-09-01
We report on direct measurements of the emission character of quantum cascade laser based frequency combs, using intensity autocorrelation. Our implementation is based on fast electro-optic sampling, with a detection spectral bandwidth matching the emission bandwidth of the comb laser, around 2.5 THz. We find the output of these frequency combs to be continuous even in the locked regime, but accompanied by a strong intensity modulation. Moreover, with our record temporal resolution of only few hundreds of femtoseconds, we can resolve correlated intensity modulation occurring on time scales as short as the gain recovery time, about 4 ps. By direct comparison with pulsed terahertz light originating from a photoconductive emitter, we demonstrate the peculiar emission pattern of these lasers. The measurement technique is self-referenced and ultrafast, and requires no reconstruction. It will be of significant importance in future measurements of ultrashort pulses from quantum cascade lasers.
NASA Technical Reports Server (NTRS)
Strand, L. D.; Schultz, A. L.; Reedy, G. K.
1972-01-01
A microwave Doppler shift system, with increased resolution over earlier microwave techniques, was developed for the purpose of measuring the regression rates of solid propellants during rapid pressure transients. A continuous microwave beam is transmitted to the base of a burning propellant sample cast in a metal waveguide tube. A portion of the wave is reflected from the regressing propellant-flame zone interface. The phase angle difference between the incident and reflected signals and its time differential are continuously measured using a high resolution microwave network analyzer and related instrumentation. The apparent propellant regression rate is directly proportional to this latter differential measurement. Experiments were conducted to verify the (1) spatial and time resolution of the system, (2) effect of propellant surface irregularities and compressibility on the measurements, and (3) accuracy of the system for quasi-steady-state regression rate measurements. The microwave system was also used in two different transient combustion experiments: in a rapid depressurization bomb, and in the high-frequency acoustic pressure environment of a T-burner.
ERIC Educational Resources Information Center
Mok, Ka Ho
2015-01-01
The economy of Singapore has been continuously reforming since its independence. In the late 1980s, the economy of Singapore depended heavily on the vibrant manufacturing sector formed by foreign direct investment and multinational companies. This article critically reviews the policies and reform measures adopted by the Singapore government in…
78 FR 78508 - Quarterly Rail Cost Adjustment Factor
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... Procedures--Productivity Adjustment, 5 I.C.C.2d 434 (1989), aff'd sub nom. Edison Electric Institute v. ICC... quarterly index for a measure of productivity. The provisions of 49 U.S.C. 10708 direct the Surface Transportation Board (Board) to continue to publish both an unadjusted RCAF and a productivity-adjusted RCAF. In...
76 FR 78540 - Corporate Reorganizations; Guidance on the Measurement of Continuity of Interest
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-19
... substance, a substantial part of the value of the proprietary interests in the target corporation be preserved in the reorganization. A proprietary interest in the target corporation is preserved if, in a... exchanged by the acquiring corporation for a direct interest in the target corporation enterprise, or it...
The relationship between continuous measurements of volatile organic compounds sources and particle number was evaluated at a Photochemical Assessment Monitoring Station Network (PAMS) site located near the U.S.-Mexico Border in central El Paso, TX. Sources of volatile organic...
NASA Astrophysics Data System (ADS)
Ciężkowski, Wojciech; Jóźwiak, Jacek; Chormański, Jarosław; Szporak-Wasilewska, Sylwia; Kleniewska, Małgorzata
2017-04-01
This study is focused on developing water stress index for alkaline fen, to evaluate water stress impact on habitat protected within Natura 2000 network: alkaline fens (habitat code:7230). It is calculated based on continuous measurements of air temperature, relative humidity and canopy temperature from meteorological tower and several UAV flights for canopy temperature registration. Measurements were taken during the growing season in 2016 in the Upper Biebrza Basin in north-east Poland. Firstly methodology of the crop water stress index (CWSI) determination was used to obtained non-water stress base line based on continuous measurements (NWSBtower). Parameters of NWSBtower were directly used to calculate spatial variability of CWSI for UAV thermal infrared (TIR) images. Then for each UAV flight day at least 3 acquisition were performed to define NWSBUAV. NWSBUAV was used to calculate canopy waters stress for whole image relative to the less stressed areas. The spatial distribution of developed index was verified using remotely sensed indices of vegetation health. Results showed that in analysed area covered by sedge-moss vegetation NWSB cannot be used directly. The proposed modification of CWSI allows identifying water stress in alkaline fen habitats and was called as Sedge-Moss Water Stress Index (SMWSI). The study shows possibility of usage remotely sensed canopy temperature data to detect areas exposed to the water stress on wetlands. This research has been carried out under the Biostrateg Programme of the Polish National Centre for Research and Development (NCBiR), project No.: DZP/BIOSTRATEG-II/390/2015: The innovative approach supporting monitoring of non-forest Natura 2000 habitats, using remote sensing methods (HabitARS).
The Timer-Logger-Communicator for Continuous, Mobile Measurement of Wheelchair Pressure Reliefs
Grip, Jeffrey C.; Merbitz, Charles T.
1985-01-01
A recently developed device which provides continuous, direct monitoring of the pressure-relief performance of persons confined to wheelchairs is reported. A custom portable computer records the data, which is transferred for analysis to an Apple IIe. The mobile computer can also signal the patient to relieve pressure based on preset criteria and the patient's performance. Teaching lift-offs to prevent ischial pressure sores is the object. Data collected with the device are used clinically and for research. Examples of such data are presented. The benefits of the device are reviewed.
Maamary, Rabih; Cui, Xiaojuan; Fertein, Eric; Augustin, Patrick; Fourmentin, Marc; Dewaele, Dorothée; Cazier, Fabrice; Guinet, Laurence; Chen, Weidong
2016-02-08
A room-temperature continuous-wave (CW) quantum cascade laser (QCL)-based methane (CH4) sensor operating in the mid-infrared near 8 μm was developed for continuous measurement of CH4 concentrations in ambient air. The well-isolated absorption line (7F2,4 ← 8F1,2) of the ν4 fundamental band of CH4 located at 1255.0004 cm(-1) was used for optical measurement of CH4 concentration by direct absorption in a White-type multipass cell with an effective path-length of 175 m. A 1σ (SNR = 1) detection limit of 33.3 ppb in 218 s was achieved with a measurement precision of 1.13%. The developed sensor was deployed in a campaign of measurements of time series CH4 concentration on a site near a suburban traffic road in Dunkirk (France) from 9th to 22nd January 2013. An episode of high CH4 concentration of up to ~3 ppm has been observed and analyzed with the help of meteorological parameters combined with back trajectory calculation using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model of NOAA.
Maamary, Rabih; Cui, Xiaojuan; Fertein, Eric; Augustin, Patrick; Fourmentin, Marc; Dewaele, Dorothée; Cazier, Fabrice; Guinet, Laurence; Chen, Weidong
2016-01-01
A room-temperature continuous-wave (CW) quantum cascade laser (QCL)-based methane (CH4) sensor operating in the mid-infrared near 8 μm was developed for continuous measurement of CH4 concentrations in ambient air. The well-isolated absorption line (7F2,4 ← 8F1,2) of the ν4 fundamental band of CH4 located at 1255.0004 cm−1 was used for optical measurement of CH4 concentration by direct absorption in a White-type multipass cell with an effective path-length of 175 m. A 1σ (SNR = 1) detection limit of 33.3 ppb in 218 s was achieved with a measurement precision of 1.13%. The developed sensor was deployed in a campaign of measurements of time series CH4 concentration on a site near a suburban traffic road in Dunkirk (France) from 9 to 22 January 2013. An episode of high CH4 concentration of up to ~3 ppm has been observed and analyzed with the help of meteorological parameters combined with back trajectory calculation using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model of NOAA. PMID:26867196
Deterministic generation of remote entanglement with active quantum feedback
Martin, Leigh; Motzoi, Felix; Li, Hanhan; ...
2015-12-10
We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less
NASA Astrophysics Data System (ADS)
Jiang, Daijun; Li, Zhiyuan; Liu, Yikan; Yamamoto, Masahiro
2017-05-01
In this paper, we first establish a weak unique continuation property for time-fractional diffusion-advection equations. The proof is mainly based on the Laplace transform and the unique continuation properties for elliptic and parabolic equations. The result is weaker than its parabolic counterpart in the sense that we additionally impose the homogeneous boundary condition. As a direct application, we prove the uniqueness for an inverse problem on determining the spatial component in the source term by interior measurements. Numerically, we reformulate our inverse source problem as an optimization problem, and propose an iterative thresholding algorithm. Finally, several numerical experiments are presented to show the accuracy and efficiency of the algorithm.
Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers
Sugavanam, Srikanth; Fabbri, Simon; Le, Son Thai; Lobach, Ivan; Kablukov, Sergey; Khorev, Serge; Churkin, Dmitry
2016-01-01
Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatio-temporal intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach. PMID:26984634
Miniaturized pulse oximeter sensor for continuous vital parameter monitoring
NASA Astrophysics Data System (ADS)
Fiala, Jens; Reichelt, Stephan; Werber, Armin; Bingger, Philipp; Zappe, Hans; Förster, Katharina; Klemm, Rolf; Heilmann, Claudia; Beyersdorf, Friedhelm
2007-07-01
A miniaturized photoplethysmographic sensor system which utilizes the principle of pulse oximetry is presented. The sensor is designed to be implantable and will permit continuous monitoring of important human vital parameters such as arterial blood oxygen saturation as well as pulse rate and shape over a long-term period in vivo. The system employs light emitting diodes and a photo transistor embedded in a transparent elastic cu. which is directly wrapped around an arterial vessel. This paper highlights the specific challenges in design, instrumentation, and electronics associated with that sensor location. In vitro measurements were performed using an artificial circulation system which allows for regulation of the oxygen saturation and pulsatile pumping of whole blood through a section of a domestic pig's arterial vessel. We discuss our experimental results compared to reference CO-oximeter measurements and determine the empirical calibration curve. These results demonstrate the capabilities of the pulse oximeter implant for measurement of a wide range of oxygen saturation levels and pave the way for a continuous and mobile monitoring of high-risk cardiovascular patients.
Toda, Kei; Koga, Takahiro; Kosuge, Junichi; Kashiwagi, Mieko; Oguchi, Hiroshi; Arimoto, Takemi
2009-08-15
A novel method is proposed to measure NO in breath. Breath NO is a useful diagnostic measure for asthma patients. Due to the low water solubility of NO, existing wet chemical NO measurements are conducted on NO(2) after removal of pre-existing NO(2) and conversion of NO to NO(2). In contrast, this study utilizes direct measurement of NO by wet chemistry. Gaseous NO was collected into an aqueous phase by a honeycomb-patterned microchannel scrubber and reacted with diaminofluorescein-2 (DAF-2). Fluorescence of the product was measured using a miniature detector, comprising a blue light-emitting diode (LED) and a photodiode. The response intensity was found to dramatically increase following addition of NO(2) into the absorbing solution or air sample. By optimizing the conditions, the sensitivity obtained was sufficient to measure parts per billion by volume levels of NO continuously. The system was applied to real analysis of NO in breath, and the effect of coexisting compounds was investigated. The proposed system could successfully measure breath NO.
NASA Astrophysics Data System (ADS)
Beegum S, N.; Ben Romdhane, H.; Ghedira, H.
2013-12-01
Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol microphysics as well as the types of aerosol undergo significant seasonal variations.
Lockheed design of a wind satellite (WINDSAT) experiment
NASA Technical Reports Server (NTRS)
Osmundson, John S.; Martin, Stephen C.
1985-01-01
WINDSAT is a proposed space based global wind measuring system. A Shuttleborne experiment is proposed as a proof of principle demonstration before development of a full operational system. WINDSAT goals are to measure wind speed and direction to + or - 1 m/s and 10 deg accuracy over the entire earth from 0 to 20 km altitude with 1 km altitude resolution. The wind measuring instrument is a coherent lidar incorporating a pulsed CO2 TEA laser transmitter and a continuously scanning 1.25 m diameter optical system. The wind speed is measured by heterodyne detecting the backscattered return laser radiation and measuring this frequency shift.
Bottier, Mathieu; Peña Fernández, Marta; Pelle, Gabriel; Grotberg, James B.
2017-01-01
Mucociliary clearance is one of the major lines of defense of the human respiratory system. The mucus layer coating the airways is constantly moved along and out of the lung by the activity of motile cilia, expelling at the same time particles trapped in it. The efficiency of the cilia motion can experimentally be assessed by measuring the velocity of micro-beads traveling through the fluid surrounding the cilia. Here we present a mathematical model of the fluid flow and of the micro-beads motion. The coordinated movement of the ciliated edge is represented as a continuous envelope imposing a periodic moving velocity boundary condition on the surrounding fluid. Vanishing velocity and vanishing shear stress boundary conditions are applied to the fluid at a finite distance above the ciliated edge. The flow field is expanded in powers of the amplitude of the individual cilium movement. It is found that the continuous component of the horizontal velocity at the ciliated edge generates a 2D fluid velocity field with a parabolic profile in the vertical direction, in agreement with the experimental measurements. Conversely, we show than this model can be used to extract microscopic properties of the cilia motion by extrapolating the micro-bead velocity measurement at the ciliated edge. Finally, we derive from these measurements a scalar index providing a direct assessment of the cilia beating efficiency. This index can easily be measured in patients without any modification of the current clinical procedures. PMID:28708866
Method for curing polymers using variable-frequency microwave heating
Lauf, R.J.; Bible, D.W.; Paulauskas, F.L.
1998-02-24
A method for curing polymers incorporating a variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity is disclosed. By varying the frequency of the microwave signal, non-uniformities within the cavity are minimized, thereby achieving a more uniform cure throughout the workpiece. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. The furnace cavity may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing. 15 figs.
Helmuth, Brian; Choi, Francis; Matzelle, Allison; Torossian, Jessica L.; Morello, Scott L.; Mislan, K.A.S.; Yamane, Lauren; Strickland, Denise; Szathmary, P. Lauren; Gilman, Sarah E.; Tockstein, Alyson; Hilbish, Thomas J.; Burrows, Michael T.; Power, Anne Marie; Gosling, Elizabeth; Mieszkowska, Nova; Harley, Christopher D.G.; Nishizaki, Michael; Carrington, Emily; Menge, Bruce; Petes, Laura; Foley, Melissa M.; Johnson, Angela; Poole, Megan; Noble, Mae M.; Richmond, Erin L.; Robart, Matt; Robinson, Jonathan; Sapp, Jerod; Sones, Jackie; Broitman, Bernardo R.; Denny, Mark W.; Mach, Katharine J.; Miller, Luke P.; O’Donnell, Michael; Ross, Philip; Hofmann, Gretchen E.; Zippay, Mackenzie; Blanchette, Carol; Macfarlan, J.A.; Carpizo-Ituarte, Eugenio; Ruttenberg, Benjamin; Peña Mejía, Carlos E.; McQuaid, Christopher D.; Lathlean, Justin; Monaco, Cristián J.; Nicastro, Katy R.; Zardi, Gerardo
2016-01-01
At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10–30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0–2.5 °C, during daily fluctuations that often exceeded 15°–20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on ‘habitat-level’ measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature. PMID:27727238
NASA Astrophysics Data System (ADS)
Helmuth, Brian; Choi, Francis; Matzelle, Allison; Torossian, Jessica L.; Morello, Scott L.; Mislan, K. A. S.; Yamane, Lauren; Strickland, Denise; Szathmary, P. Lauren; Gilman, Sarah E.; Tockstein, Alyson; Hilbish, Thomas J.; Burrows, Michael T.; Power, Anne Marie; Gosling, Elizabeth; Mieszkowska, Nova; Harley, Christopher D. G.; Nishizaki, Michael; Carrington, Emily; Menge, Bruce; Petes, Laura; Foley, Melissa M.; Johnson, Angela; Poole, Megan; Noble, Mae M.; Richmond, Erin L.; Robart, Matt; Robinson, Jonathan; Sapp, Jerod; Sones, Jackie; Broitman, Bernardo R.; Denny, Mark W.; Mach, Katharine J.; Miller, Luke P.; O'Donnell, Michael; Ross, Philip; Hofmann, Gretchen E.; Zippay, Mackenzie; Blanchette, Carol; Macfarlan, J. A.; Carpizo-Ituarte, Eugenio; Ruttenberg, Benjamin; Peña Mejía, Carlos E.; McQuaid, Christopher D.; Lathlean, Justin; Monaco, Cristián J.; Nicastro, Katy R.; Zardi, Gerardo
2016-10-01
At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10-30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0-2.5 °C, during daily fluctuations that often exceeded 15°-20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on ‘habitat-level’ measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature.
Evaluating and Extending the Ocean Wind Climate Data Record
Ricciardulli, Lucrezia; Rodriguez, Ernesto; Stiles, Bryan W.; Bourassa, Mark A.; Long, David G.; Hoffman, Ross N.; Stoffelen, Ad; Verhoef, Anton; O'Neill, Larry W.; Farrar, J. Tomas; Vandemark, Douglas; Fore, Alexander G.; Hristova-Veleva, Svetla M.; Turk, F. Joseph; Gaston, Robert; Tyler, Douglas
2017-01-01
Satellite microwave sensors, both active scatterometers and passive radiometers, have been systematically measuring near-surface ocean winds for nearly 40 years, establishing an important legacy in studying and monitoring weather and climate variability. As an aid to such activities, the various wind datasets are being intercalibrated and merged into consistent climate data records (CDRs). The ocean wind CDRs (OW-CDRs) are evaluated by comparisons with ocean buoys and intercomparisons among the different satellite sensors and among the different data providers. Extending the OW-CDR into the future requires exploiting all available datasets, such as OSCAT-2 scheduled to launch in July 2016. Three planned methods of calibrating the OSCAT-2 σo measurements include 1) direct Ku-band σo intercalibration to QuikSCAT and RapidScat; 2) multisensor wind speed intercalibration; and 3) calibration to stable rainforest targets. Unfortunately, RapidScat failed in August 2016 and cannot be used to directly calibrate OSCAT-2. A particular future continuity concern is the absence of scheduled new or continuation radiometer missions capable of measuring wind speed. Specialized model assimilations provide 30-year long high temporal/spatial resolution wind vector grids that composite the satellite wind information from OW-CDRs of multiple satellites viewing the Earth at different local times. PMID:28824741
Evaluating and Extending the Ocean Wind Climate Data Record.
Wentz, Frank J; Ricciardulli, Lucrezia; Rodriguez, Ernesto; Stiles, Bryan W; Bourassa, Mark A; Long, David G; Hoffman, Ross N; Stoffelen, Ad; Verhoef, Anton; O'Neill, Larry W; Farrar, J Tomas; Vandemark, Douglas; Fore, Alexander G; Hristova-Veleva, Svetla M; Turk, F Joseph; Gaston, Robert; Tyler, Douglas
2017-05-01
Satellite microwave sensors, both active scatterometers and passive radiometers, have been systematically measuring near-surface ocean winds for nearly 40 years, establishing an important legacy in studying and monitoring weather and climate variability. As an aid to such activities, the various wind datasets are being intercalibrated and merged into consistent climate data records (CDRs). The ocean wind CDRs (OW-CDRs) are evaluated by comparisons with ocean buoys and intercomparisons among the different satellite sensors and among the different data providers. Extending the OW-CDR into the future requires exploiting all available datasets, such as OSCAT-2 scheduled to launch in July 2016. Three planned methods of calibrating the OSCAT-2 σ o measurements include 1) direct Ku-band σ o intercalibration to QuikSCAT and RapidScat; 2) multisensor wind speed intercalibration; and 3) calibration to stable rainforest targets. Unfortunately, RapidScat failed in August 2016 and cannot be used to directly calibrate OSCAT-2. A particular future continuity concern is the absence of scheduled new or continuation radiometer missions capable of measuring wind speed. Specialized model assimilations provide 30-year long high temporal/spatial resolution wind vector grids that composite the satellite wind information from OW-CDRs of multiple satellites viewing the Earth at different local times.
On the Analysis of Wind-Induced Noise in Seismological Recordings
NASA Astrophysics Data System (ADS)
Lott, Friederike F.; Ritter, Joachim R. R.; Al-Qaryouti, Mahmoud; Corsmeier, Ulrich
2017-03-01
Atmospheric processes, ranging from microscale turbulence to severe storms on the synoptic scale, impact the continuous ground motion of the earth and have the potential to induce strong broad-band noise in seismological recordings. We designed a target-oriented experiment to quantify the influence of wind on ground motion velocity in the Dead Sea valley. For the period from March 2014 to February 2015, a seismological array, consisting of 15 three-component short-period and broad-band stations, was operated near Madaba, Jordan, complemented by one meteorological tower providing synchronized, continuous three-component measurements of wind speed. Results reveal a pronounced, predominantly linear increase of the logarithmic power of ground motion velocity with rising mean horizontal wind speed at all recording stations. Measurements in rough, mountainous terrain further identify a strong dependency of wind-induced noise on surface characteristics, such as topography and, therefore, demonstrate the necessity to consider wind direction as well. To assess the noise level of seismological recordings with respect to a dynamically changing wind field, we develop a methodology to account for the dependency of power spectral density of ground motion velocity on wind speed and wind direction for long, statistically significant periods. We further introduce the quantitative measure of the ground motion susceptibility to estimate the vulnerability of seismological recordings to the presence of wind.
NASA Astrophysics Data System (ADS)
Vardag, S. N.; Hammer, S.; Sabasch, M.; Griffith, D. W. T.; Levin, I.
2014-07-01
The continuous in-situ measurement of δ18O in atmospheric CO2 opens a new door to differentiating between CO2 source and sink components with high temporal resolution. Continuous 13C-CO2 measurement systems have been commercially available already for some time, but until now, only few instruments have been able to provide a continuous measurement of the oxygen isotope ratio in CO2. Besides precise 13C/12C observations, the Fourier Transform InfraRed (FTIR) spectrometer also measures the 18O/16O ratio of CO2, but the precision and accuracy of the measurements has not been evaluated yet. Here we present a first analysis of δ18O-CO2 (and δ13C-CO2) measurements with the FTIR in Heidelberg. We find that our spectrometer measures 18O in CO2 with a reproducibility of better than 0.3‰ at a temporal resolution of less than 10 min, as determined from surveillance gas measurements over a period of ten months. An Allan deviation test shows that the δ18O repeatability reaches 0.15‰ for half-hourly means. The compatibility of our spectroscopic measurements was determined by comparing FTIR measurements of calibration gases and ambient air to mass-spectrometric measurements of flask samples, filled with the cylinder gases or episodically collected over a diurnal cycle (event). We found that direct cylinder gas measurements agree to 0.01 ± 0.04‰ (mean and standard deviation) for δ13C-CO2 and 0.01 ± 0.11‰ for δ18O. Two weekly episodes of recent ambient air measurements, one in winter and one in summer, are discussed in view of the question, which potential insights and new challenges combined highly resolved δ18O-CO2 and δ13C-CO2 records may provide in terms of better understanding regional scale continental carbon exchange processes.
Additional studies for the spectrophotometric measurement of iodine in water
NASA Technical Reports Server (NTRS)
1972-01-01
Previous work in iodine spectroscopy is briefly reviewed. Continued studies of the direct spectrophotometric determination of aqueous iodine complexed with potassium iodide show that free iodine is optimally determined at the isosbestic point for these solutions. The effects on iodine determinations of turbidity and chemical substances (in trace amounts) is discussed and illustrated. At the levels tested, iodine measurements are not significantly altered by such substances. A preliminary design for an on-line, automated iodine monitor with eventual capability of operating also as a controller was analyzed and developed in detail with respect single beam colorimeter operating at two wavelengths (using a rotating filter wheel). A flow-through sample cell allows the instrument to operate continuously, except for momentary stop flow when measurements are made. The timed automatic cycling of the system may be interrupted whenever desired, for manual operation. An analog output signal permits controlling an iodine generator.
Notes on a Continuous-Variable Quantum Key Distribution Scheme
NASA Astrophysics Data System (ADS)
Ichikawa, Tsubasa; Hirano, Takuya; Matsubara, Takuto; Ono, Motoharu; Namiki, Ryo
2017-09-01
We develop a physical model to describe the signal transmission for a continuous-variable quantum key distribution scheme and investigate its security against a couple of eavesdropping attacks assuming that the eavesdropper's power is partly restricted owing to today's technological limitations. We consider an eavesdropper performing quantum optical homodyne measurement on the signal obtained by a type of beamsplitting attack. We also consider the case in which the eavesdropper Eve is unable to access a quantum memory and she performs heterodyne measurement on her signal without performing a delayed measurement. Our formulation includes a model in which the receiver's loss and noise are unaccessible by the eavesdropper. This setup enables us to investigate the condition that Eve uses a practical fiber differently from the usual beamsplitting attack where she can deploy a lossless transmission channel. The secret key rates are calculated in both the direct and reverse reconciliation scenarios.
Liu, Rui; Milkie, Daniel E; Kerlin, Aaron; MacLennan, Bryan; Ji, Na
2014-01-27
In traditional zonal wavefront sensing for adaptive optics, after local wavefront gradients are obtained, the entire wavefront can be calculated by assuming that the wavefront is a continuous surface. Such an approach will lead to sub-optimal performance in reconstructing wavefronts which are either discontinuous or undersampled by the zonal wavefront sensor. Here, we report a new method to reconstruct the wavefront by directly measuring local wavefront phases in parallel using multidither coherent optical adaptive technique. This method determines the relative phases of each pupil segment independently, and thus produces an accurate wavefront for even discontinuous wavefronts. We implemented this method in an adaptive optical two-photon fluorescence microscopy and demonstrated its superior performance in correcting large or discontinuous aberrations.
High quality ultrafast transmission electron microscopy using resonant microwave cavities.
Verhoeven, W; van Rens, J F M; Kieft, E R; Mutsaers, P H A; Luiten, O J
2018-05-01
Ultrashort, low-emittance electron pulses can be created at a high repetition rate by using a TM 110 deflection cavity to sweep a continuous beam across an aperture. These pulses can be used for time-resolved electron microscopy with atomic spatial and temporal resolution at relatively large average currents. In order to demonstrate this, a cavity has been inserted in a transmission electron microscope, and picosecond pulses have been created. No significant increase of either emittance or energy spread has been measured for these pulses. At a peak current of 814 ± 2 pA, the root-mean-square transverse normalized emittance of the electron pulses is ɛ n,x =(2.7±0.1)·10 -12 m rad in the direction parallel to the streak of the cavity, and ɛ n,y =(2.5±0.1)·10 -12 m rad in the perpendicular direction for pulses with a pulse length of 1.1-1.3 ps. Under the same conditions, the emittance of the continuous beam is ɛ n,x =ɛ n,y =(2.5±0.1)·10 -12 m rad. Furthermore, for both the pulsed and the continuous beam a full width at half maximum energy spread of 0.95 ± 0.05 eV has been measured. Copyright © 2018 Elsevier B.V. All rights reserved.
Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser
Durfee, Charles G.; Storz, Tristan; Garlick, Jonathan; Hill, Steven; Squier, Jeff A.; Kirchner, Matthew; Taft, Greg; Shea, Kevin; Kapteyn, Henry; Murnane, Margaret; Backus, Sterling
2012-01-01
We describe a Ti:sapphire laser pumped directly with a pair of 1.2W 445nm laser diodes. With over 30mW average power at 800 nm and a measured pulsewidth of 15fs, Kerr-lens-modelocked pulses are available with dramatically decreased pump cost. We propose a simple model to explain the observed highly stable Kerr-lens modelocking in spite of the fact that both the mode-locked and continuous-wave modes are smaller than the pump mode in the crystal. PMID:22714433
Clean focus, dose and CD metrology for CD uniformity improvement
NASA Astrophysics Data System (ADS)
Lee, Honggoo; Han, Sangjun; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, DongYoung; Oh, Eungryong; Choi, Ahlin; Kim, Nakyoon; Robinson, John C.; Mengel, Markus; Pablo, Rovira; Yoo, Sungchul; Getin, Raphael; Choi, Dongsub; Jeon, Sanghuck
2018-03-01
Lithography process control solutions require more exacting capabilities as the semiconductor industry goes forward to the 1x nm node DRAM device manufacturing. In order to continue scaling down the device feature sizes, critical dimension (CD) uniformity requires continuous improvement to meet the required CD error budget. In this study we investigate using optical measurement technology to improve over CD-SEM methods in focus, dose, and CD. One of the key challenges is measuring scanner focus of device patterns. There are focus measurement methods based on specially designed marks on scribe-line, however, one issue of this approach is that it will report focus of scribe line which is potentially different from that of the real device pattern. In addition, scribe-line marks require additional design and troubleshooting steps that add complexity. In this study, we investigated focus measurement directly on the device pattern. Dose control is typically based on using the linear correlation behavior between dose and CD. The noise of CD measurement, based on CD-SEM for example, will not only impact the accuracy, but also will make it difficult to monitor dose signature on product wafers. In this study we will report the direct dose metrology result using an optical metrology system which especially enhances the DUV spectral coverage to improve the signal to noise ratio. CD-SEM is often used to measure CD after the lithography step. This measurement approach has the advantage of easy recipe setup as well as the flexibility to measure critical feature dimensions, however, we observe that CD-SEM metrology has limitations. In this study, we demonstrate within-field CD uniformity improvement through the extraction of clean scanner slit and scan CD behavior by using optical metrology.
Continuous Wave Ring-Down Spectroscopy for Velocity Distribution Measurements in Plasma
NASA Astrophysics Data System (ADS)
McCarren, Dustin W.
Cavity Ring-Down Spectroscopy CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique. When combined with a continuous wavelength (CW) diode laser that has a sufficiently narrow line width, the Doppler broadened absorption line, i.e., the velocity distribution functions (VDFs) of the absorbing species, can be measured. Measurements of VDFs can be made using established techniques such as laser induced fluorescence (LIF). However, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density and that the excitation scheme fluoresces at an easily detectable wavelength. This usually limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. Also, as a direct absorption technique, CW-CRDS measurements only need to be concerned with the species' absorption wavelength and provide an absolute measure of the line integrated initial state density. Presented in this work are measurements of argon ion and neutral VDFs in a helicon plasma using CW-CRDS and LIF.
Bodicoat, Danielle H; Mundet, Xavier; Gray, Laura J; Cos, Xavier; Davies, Melanie J; Khunti, Kamlesh; Cano, Juan-Franciso
2014-12-01
Continuous quality improvement programmes often target several aspects of care, some of which may be more effective meaning that resources could be focussed on these. The objective was to identify the effective and ineffective aspects of a successful continuous quality improvement programme for individuals with type 2 diabetes in primary care. Data were from a series of cross-sectional studies (GEDAPS) in primary care, Catalonia, Spain, in 55 centres (2239 participants) in 1993, and 92 centres (5819 participants) in 2002. A structural equation modelling approach was used. The intervention was associated with improved microvascular outcomes through microalbuminuria and funduscopy screening, which had a direct effect on microvascular outcomes, and through attending 2-4 nurse visits and having ≥1 blood pressure measurement, which acted through reducing systolic blood pressure. The intervention was associated with improved macrovascular outcomes through blood pressure measurement and attending 2-4 nurse visits (through systolic blood pressure) and having ≥3 education topics, ≥1 HbA1c measurement and adequate medication (through HbA1c). Cholesterol measurement, weight measurement and foot examination did not contribute towards the effectiveness of the intervention. The pathways through which a continuous quality improvement programme appeared to act to reduce microvascular and macrovascular complications were driven by reductions in systolic blood pressure and HbA1c, which were attained through changes in nurse and education visits, measurement and medication. This suggests that these factors are potential areas on which future quality improvement programmes should focus. © 2014 John Wiley & Sons, Ltd.
Geostatistical mapping of effluent-affected sediment distribution on the Palos Verdes shelf
Murray, C.J.; Lee, H.J.; Hampton, M.A.
2002-01-01
Geostatistical techniques were used to study the spatial continuity of the thickness of effluent-affected sediment in the offshore Palos Verdes Margin area. The thickness data were measured directly from cores and indirectly from high-frequency subbottom profiles collected over the Palos Verdes Margin. Strong spatial continuity of the sediment thickness data was identified, with a maximum range of correlation in excess of 1.4 km. The spatial correlation showed a marked anisotropy, and was more than twice as continuous in the alongshore direction as in the cross-shelf direction. Sequential indicator simulation employing models fit to the thickness data variograms was used to map the distribution of the sediment, and to quantify the uncertainty in those estimates. A strong correlation between sediment thickness data and measurements of the mass of the contaminant p,p???-DDE per unit area was identified. A calibration based on the bivariate distribution of the thickness and p,p???-DDE data was applied using Markov-Bayes indicator simulation to extend the geostatistical study and map the contamination levels in the sediment. Integrating the map grids produced by the geostatistical study of the two variables indicated that 7.8 million m3 of effluent-affected sediment exist in the map area, containing approximately 61-72 Mg (metric tons) of p,p???-DDE. Most of the contaminated sediment (about 85% of the sediment and 89% of the p,p???-DDE) occurs in water depths < 100 m. The geostatistical study also indicated that the samples available for mapping are well distributed and the uncertainty of the estimates of the thickness and contamination level of the sediments is lowest in areas where the contaminated sediment is most prevalent. ?? 2002 Elsevier Science Ltd. All rights reserved.
Deedwania, Prakash; Acharya, Tushar; Kotak, Kamal; Fonarow, Gregg C; Cannon, Christopher P; Laskey, Warren K; Peacock, W Frank; Pan, Wenqin; Bhatt, Deepak L
2017-05-01
To evaluate and compare baseline characteristics, outcomes and compliance with guideline based therapy at discharge among diabetic and non-diabetic patients admitted with acute coronary syndromes (ACS). Study population consisted of 151,270 patients admitted with ACS from 2002 through 2008 at 411 sites participating in the American Heart Association's Get with the Guidelines (GWTG) program. Demographic variables, physical exam findings, laboratory data, left ventricular ejection fraction, length of stay, in-hospital mortality and discharge medications were compared between diabetic and non-diabetic patients. Temporal trends in compliance with guidelines directed therapy were evaluated. Of 151,270 patients, 48,938 (32%) had diabetes. Overall, diabetic patients were significantly older and more likely non-white. They had significantly more hypertension, atherosclerotic disease, CKD, and LV dysfunction and were more likely to present as NSTEMI. They had longer hospital stay and higher hospital mortality than non-diabetic patients. Diabetic patients were less likely to get LDL checks (65% vs 70%) and less frequently prescribed statins (85% vs 89%), RAAS blockers for LV dysfunction (80% vs 84%) and dual-antiplatelet therapy (69% vs 74%). Diabetic patients were less likely to achieve BP goals before discharge (75% vs 82%). Fewer diabetic patients met first medical contact to PCI time for STEMI (44% vs 52%). Temporal trends, however, showed continued progressive improvement in most performance measures from 2002 to 2008 (all P<.001). These data from a large cohort of ACS patients demonstrate gaps in compliance with guidelines directed therapy in diabetic patients but also indicate significant and continued improvement in most performance measures over time. Concerted efforts are needed to continue this positive trend. Copyright © 2017. Published by Elsevier Inc.
Merging weather data with materials response data during outdoor exposure
R. Sam Williams; Anand Sanadi; Corey Halpin; Christopher White
2002-01-01
As part of an outdoor exposure protocol for a study of sealants, a full weather station was installed at the Forest Products Laboratory field test site near Madison, Wisconsin. Tem-perature, relative humidity, rainfall, ultraviolet (UV) radiation at 18 different wavelengths, and wind speed and direction are continuously measured. Using a specially designed apparatus,...
Walking the Talk: Continuous Improvement of a Quality Management Field Exercise
ERIC Educational Resources Information Center
Coy, Steven; Adams, Jeffery
2012-01-01
This article provides results from a three semester case study of the pedagogical efficacy of an innovative quality management field exercise. A series of direct and indirect measures were used to assess the extent to which the field exercise met a set of learning objectives. The results indicate that the assessment framework is useful in…
J. R. Cleverly; C. N. Dahm; J. R. Thibault; D. McDonnell; J. E. Allred Coonrod
2006-01-01
As water shortages persist throughout the Western U.S., a great deal of money and effort is directed toward decreasing riparian water loss, thereby enabling continued water use by irrigators, industry, and municipalities. This study focuses upon long-term measurement of evapotranspiration (ET) by native and non-native riparian species along the Middle Rio Grande (MRG)...
NASA Astrophysics Data System (ADS)
Croft, H.; Anderson, K.
2012-04-01
Soils can experience rapid structural degradation in response to land cover changes, resulting in reduced soil productivity, increased erodibility and a loss of soil organic matter (SOM). The breakdown of soil aggregates through slaking and raindrop impact is linked to organic matter turnover, with subsequently eroded material often displaying proportionally more SOM. A reduction in aggregate stability is reflected in a decline in soil surface roughness (SSR), indicating that a soil structural change can be used to highlight soil vulnerability to SOM loss through mineralisation or erosion. Accurate, spatially-continuous measurements of SSR are therefore needed at a variety of spatial and temporal scales to understand the spatial nature of SOM erosion and deposition. Remotely-sensed data can provide a cost-effective means of monitoring changes in soil surface condition over broad spatial extents. Previous work has demonstrated the ability of directional reflectance factors to monitor soil crusting within a controlled laboratory experiment, due to changes in the levels of self-shadowing effects by soil aggregates. However, further research is needed to test this approach in situ, where other soil variables may affect measured reflectance factors and to investigate the use of directional reflectance factors for monitoring soil erosion processes. This experiment assesses the potential of using directional reflectance factors to monitor changes in SSR, aggregate stability and soil organic carbon (SOC) content for two agricultural conditions. Five soil plots representing tilled and seedbed soils were subjected to different durations of natural rainfall, producing a range of different levels of SSR. Directional reflectance factors were measured concomitantly with sampling for soil structural and biochemical tests at each soil plot. Soil samples were taken to measure aggregate stability (wet sieving), SOC (loss on ignition) and soil moisture (gravimetric method). SSM values varied from 8.70 to 20.05% and SOC from 1.33 to 1.05%, across all soil plots. Each plot was characterised using a close-range laser scanning device with a 2 mm sampling interval. The point laser data were geostatistically analysed to provide a spatially-distributed measure of SSR, giving sill variance values from 3.15 to 22.99. Reflectance factors from the soil states were measured using a ground-based hyperspectral spectroradiometer (400-2500 nm) attached to an A-frame device. This method allowed measurement at a range of viewing zenith angles from extreme forwardscatter (-60°) to extreme backscatter (+60°) at a 10° sampling resolution in the solar principal plane. Reflectance measurements were compared to geostatistically-derived indicators of SSR from the laser profile data. Forward-scattered reflectance factors exhibited a very strong relationship to SSR (R2 = 0.84 at -60°; p< 0.05), demonstrating the operational potential of directional reflectance for providing SSR measurements, despite conflicting variation in SSM. SSM also presented an interesting directional signal (R2 = 0.99 at +20°; p< 0.01). Furthermore, the results showed an important link between SRR decline as measured using directional reflectance, with a decline in aggregate stability and SOC content. These findings provide an empirical and theoretical basis for the future retrieval of spatially-continuous assessments of soil surface structure and carbon turnover within a landscape context.
Kang, Lu; Galvin, Alison L.; Brown, Thomas D.; Jin, Zhongmin; Fisher, John
2008-01-01
A computational model has been developed to quantify the degree of cross-shear of a polyethylene pin articulating against a metallic plate, based on the direct simulation of a multidirectional pin-on-plate wear machine. The principal molecular orientation (PMO) was determined for each polymer site. The frictional work in the direction perpendicular to the PMO was assumed to produce the greatest orientation softening (Wang et al., 1997). The cross-shear ratio (CS) was defined as the frictional work perpendicular to the PMO direction, divided by the total frictional work. Cross-shear on the pin contact surface was location-specific, and of continuously changing magnitude because the direction of frictional force continuously changed due to pin rotation. The polymer pin motion was varied from a purely linear track (CS=0) up to a maximum rotation of ±55° (CS=0.254). The relationship between wear factors (K) measured experimentally and theoretically predicted CS was defined using logarithmic functions for both conventional and highly cross-linked UHMWPE. Cross-shear increased the apparent wear factor for both polyethylenes by more than 5-fold compared to unidirectional wear. PMID:17936763
Gardner, Alan T.; Karam, Hanan N.; Mulligan, Ann E.; Harvey, Charles F.; Hammar, Terence R.; Hemond, Harold F.
2009-01-01
An instrument has been built to carry out continuous in-situ measurement of small differences in water pressure, conductivity and temperature, in natural surface water and groundwater systems. A low-cost data telemetry system provides data on shore in real time if desired. The immediate purpose of measurements by this device is to continuously infer fluxes of water across the sediment-water interface in a complex estuarine system; however, direct application to assessment of sediment-water fluxes in rivers, lakes, and other systems is also possible. Key objectives of the design include both low cost, and accuracy of the order of ±0.5 mm H2O in measured head difference between the instrument's two pressure ports. These objectives have been met, although a revision to the design of one component was found to be necessary. Deployments of up to nine months, and wireless range in excess of 300 m have been demonstrated. PMID:22389608
Onboard Processing of Electromagnetic Measurements for the Luna - Glob Mission
NASA Astrophysics Data System (ADS)
Hruska, F.; Kolmasova, I.; Santolik, O.; Skalski, A.; Pronenko, V.; Belyayev, S.; Lan, R.; Uhlir, L.
2013-12-01
The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.
NASA Astrophysics Data System (ADS)
Kolmasova, Ivana; Santolik, Ondrej; Belyayev, Serhiy; Uhlir, Ludek; Skalsky, Alexander; Pronenko, Vira; Lan, Radek
The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.
Method and apparatus for testing a forward-moving strand
Ducommun, Joel; Vulliens, Philippe
1980-01-01
In a method for testing a continuously forward-moving strand a light beam which passes along a plane that extends approximately perpendicularly to the longitudinal axis of the strand is introduced into the strand. The brightness value is measured on a place of the strand exterior which is distal from the light incidence place by means of at least one photoelectronic element disposed directly on the strand exterior and the measured result is evaluated in a gating circuit which is electrically connected to the photoelectronic element.
Nucleation of insulin crystals in a wide continuous supersaturation gradient.
Penkova, Anita; Dimitrov, Ivaylo; Nanev, Christo
2004-11-01
Modifying the classical double pulse technique, by using a supersaturation gradient along an insulin solution contained in a glass capillary tube, we found conditions appropriate for the direct measurement of nucleation parameters. The nucleation time lag has been measured. Data for the number of crystal nuclei versus the nucleation time were obtained for this hormone. Insulin was chosen as a model protein because of the availability of solubility data in the literature. A comparison with the results for hen-egg-white lysozyme, HEWL was performed.
High frequency monitoring of the coastal marine environment using the MAREL buoy.
Blain, S; Guillou, J; Tréguer, P; Woerther, P; Delauney, L; Follenfant, E; Gontier, O; Hamon, M; Leilde, B; Masson, A; Tartu, C; Vuillemin, R
2004-06-01
The MAREL Iroise data buoy provides physico-chemical measurements acquired in surface marine water in continuous and autonomous mode. The water is pumped 1.5 m from below the surface through a sampling pipe and flows through the measuring cell located in the floating structure. Technological innovations implemented inside the measuring cell atop the buoy allow a continuous cleaning of the sensor, while injection of chloride ions into the circuit prevents biological fouling. Specific sensors for temperature, salinity, oxygen and fluorescence investigated in this paper have been evaluated to guarantee measurement precision over a 3 month period. A bi-directional link under Internet TCP-IP protocols is used for data, alarms and remote-control transmissions with the land-based data centre. Herein, we present a 29 month record for 4 parameters measured using a MAREL buoy moored in a coastal environment (Iroise Sea, Brest, France). The accuracy of the data provided by the buoy is assessed by comparison with measurements of sea water weekly sampled at the same site as part of SOMLIT (Service d'Observation du Milieu LIToral), the French network for monitoring of the coastal environment. Some particular events (impact of intensive fresh water discharges, dynamics of a fast phytoplankton bloom) are also presented, demonstrating the worth of monitoring a highly variable environment with a high frequency continuous reliable system.
Transesophageal color Doppler evaluation of obstructive lesions using the new "Quasar" technology.
Fan, P; Nanda, N C; Gatewood, R P; Cape, E G; Yoganathan, A P
1995-01-01
Due to the unavoidable problem of aliasing, color flow signals from high blood flow velocities cannot be measured directly by conventional color Doppler. A new technology termed Quantitative Un-Aliased Speed Algorithm Recognition (Quasar) has been developed to overcome this limitation. Employing this technology, we used transesophageal color Doppler echocardiography to investigate whether the velocities detected by the Quasar would correlate with those obtained by continuous-wave Doppler both in vitro and in vivo. In the in vitro study, a 5.0 MHz transesophageal transducer of a Kontron Sigma 44 color Doppler flow system was used. Fourteen different peak velocities calculated and recorded by color Doppler-guided continuous-wave Doppler were randomly selected. In the clinical study, intraoperative transesophageal echocardiography was performed using the same transducer 18 adults (13 aortic valve stenosis, 2 aortic and 2 mitral stenosis, 2 hypertrophic obstructive cardiomyopathy and 1 mitral valve stenosis). Following each continuous-wave Doppler measurement, the Quasar was activated, and a small Quasar marker was placed in the brightest area of the color flow jet to obtain the maximum mean velocity readout. The maximum mean velocities measured by Quasar closely correlated with maximum peak velocities obtained by color flow guided continuous-wave Doppler in both in vitro (0.53 to 1.65 m/s, r = 0.99) and in vivo studies (1.50 to 6.01 m/s, r = 0.97). We conclude that the new Quasar technology can accurately measure high blood flow velocities during transesophageal color Doppler echocardiography. This technique has the potential of obviating the need for continuous-wave Doppler.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-25
... Benefits (FEHB) Enrollment for Spouse Equity/Temporary Continuation of Coverage (TCC) Enrollees/Direct Pay.../Temporary Continuation of Coverage (TCC) Enrollees/ Direct Pay Annuitants. As required by the Paperwork... Equity/Temporary Continuation of Coverage (TCC) Enrollees/Direct Pay Annuitants is used by former spouses...
2012-01-01
Background Magnetic resonance imaging (MRI) is an important tool for cardiac research, and it is frequently used for resting cardiac assessments. However, research into non-pharmacological stress cardiac evaluation is limited. Methods We aimed to design a portable and relatively inexpensive MRI cycle ergometer capable of continuously measuring pedalling workload while patients exercise to maintain target heart rates. Results We constructed and tested an MRI-compatible cycle ergometer for a 1.5 T MRI scanner. Resting and sub-maximal exercise images (at 110 beats per minute) were successfully obtained in 8 healthy adults. Conclusions The MRI-compatible cycle ergometer constructed by our research group enabled cardiac assessments at fixed heart rates, while continuously recording power output by directly measuring pedal force and crank rotation. PMID:22423637
On the attempts to measure water (and other volatiles) directly at the surface of a comet
Sheridan, S.; Morgan, G. H.; Barber, S. J.; Morse, A. D.
2017-01-01
The Ptolemy instrument on the Philae lander (of the Rosetta space mission) was able to make measurements of the major volatiles, water, carbon monoxide and carbon dioxide, directly at the surface of comet 67P/Churyumov–Gerasimenko. We give some background to the mission and highlight those instruments that have already given insights into the notion of water in comets, and which will continue to do so as more results are either acquired or more fully interpreted. On the basis of our results, we show how comets may in fact be heterogeneous over their surface, and how surface measurements can be used in a quest to comprehend the daily cycles of processes that affect the evolution of comets. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’. PMID:28416724
On the attempts to measure water (and other volatiles) directly at the surface of a comet
NASA Astrophysics Data System (ADS)
Wright, I. P.; Sheridan, S.; Morgan, G. H.; Barber, S. J.; Morse, A. D.
2017-04-01
The Ptolemy instrument on the Philae lander (of the Rosetta space mission) was able to make measurements of the major volatiles, water, carbon monoxide and carbon dioxide, directly at the surface of comet 67P/Churyumov-Gerasimenko. We give some background to the mission and highlight those instruments that have already given insights into the notion of water in comets, and which will continue to do so as more results are either acquired or more fully interpreted. On the basis of our results, we show how comets may in fact be heterogeneous over their surface, and how surface measurements can be used in a quest to comprehend the daily cycles of processes that affect the evolution of comets. This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.
Support Vector Machines for Differential Prediction
Kuusisto, Finn; Santos Costa, Vitor; Nassif, Houssam; Burnside, Elizabeth; Page, David; Shavlik, Jude
2015-01-01
Machine learning is continually being applied to a growing set of fields, including the social sciences, business, and medicine. Some fields present problems that are not easily addressed using standard machine learning approaches and, in particular, there is growing interest in differential prediction. In this type of task we are interested in producing a classifier that specifically characterizes a subgroup of interest by maximizing the difference in predictive performance for some outcome between subgroups in a population. We discuss adapting maximum margin classifiers for differential prediction. We first introduce multiple approaches that do not affect the key properties of maximum margin classifiers, but which also do not directly attempt to optimize a standard measure of differential prediction. We next propose a model that directly optimizes a standard measure in this field, the uplift measure. We evaluate our models on real data from two medical applications and show excellent results. PMID:26158123
Support Vector Machines for Differential Prediction.
Kuusisto, Finn; Santos Costa, Vitor; Nassif, Houssam; Burnside, Elizabeth; Page, David; Shavlik, Jude
Machine learning is continually being applied to a growing set of fields, including the social sciences, business, and medicine. Some fields present problems that are not easily addressed using standard machine learning approaches and, in particular, there is growing interest in differential prediction . In this type of task we are interested in producing a classifier that specifically characterizes a subgroup of interest by maximizing the difference in predictive performance for some outcome between subgroups in a population. We discuss adapting maximum margin classifiers for differential prediction. We first introduce multiple approaches that do not affect the key properties of maximum margin classifiers, but which also do not directly attempt to optimize a standard measure of differential prediction. We next propose a model that directly optimizes a standard measure in this field, the uplift measure. We evaluate our models on real data from two medical applications and show excellent results.
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Hwang, In Heon; Stock, Larry V.
1989-01-01
This semiannual progress report covers the period from September 1, 1988 to February 28, 1989 under NASA grant NAG-1-441 entitled, Direct Solar-Pumped Iodine Laser Amplifier. During this period, the research effort was concentrated on the solar pumped master oscillator power amplifier (MOPA) system using n-C3F7I. In the experimental work, the amplification measurement was conducted to identify the optimum conditions for amplification of the center's Vortek solar simulator pumped iodine laser amplifier. A modeling effort was also pursued to explain the experimental results in the theoretical work. The amplification measurement of the solar simulator pumped iodine laser amplifier is the first amplification experiment on the continuously pumped amplifier. The small signal amplification of 5 was achieved for the triple pass geometry of the 15 cm long solar simulator pumped amplifier at the n-C3F7I pressure of 20 torr, at the flow velocity of 6 m/sec and at the pumping intensity of 1500 solar constants. The XeCl laser pumped iodine laser oscillator, which was developed in the previous research, was employed as the master oscillator for the amplification measurement. In the theoretical work, the rate equations of the amplifier was established and the small signal amplification was calculated for the solar simulator pumped iodine laser amplifier. The amplification calculated from the kinetic equations with the previously measured rate coefficients reveals very large disagreement with experimental measurement. Moreover, the optimum condition predicted by the kinetic equation is quite discrepant with that measured by experiment. This fact indicates the necessity of study in the measurement of rate coefficients of the continuously pumped iodine laser system.
Measurements of Attractive Forces between Proteins and End-Grafted Poly(Ethylene Glycol) Chains
NASA Astrophysics Data System (ADS)
Sheth, S. R.; Leckband, D.
1997-08-01
The surface force apparatus was used to measure directly the molecular forces between streptavidin and lipid bilayers displaying grafted Mr 2,000 poly(ethylene glycol) (PEG). These measurements provide direct evidence for the formation of relatively strong attractive forces between PEG and protein. At low compressive loads, the forces were repulsive, but they became attractive when the proteins were pressed into the polymer layer at higher loads. The adhesion was sufficiently robust that separation of the streptavidin and PEG uprooted anchored polymer from the supporting membrane. These interactions altered the properties of the grafted chains. After the onset of the attraction, the polymer continued to bind protein for several hours. The changes were not due to protein denaturation. These data demonstrate directly that the biological activity of PEG is not due solely to properties of simple polymers such as the excluded volume. It is also coupled to the competitive interactions between solvent and other materials such as proteins for the chain segments and to the ability of this material to adopt higher order intrachain structures.
Zero-gravity growth of a sodium chloride-lithium fluoride eutectic mixture
NASA Technical Reports Server (NTRS)
Yue, A. S.; Yeh, C. W.; Yue, B. K.
1982-01-01
Continuous and discontinuous lithium fluoride fibers embedded in a sodium chloride matrix were produced in space and on Earth, respectively. The production of continuous fibers in a eutectic mixture was attributed to the absence of convective current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and Earth-grown ingots were made with a light microscope and a spectrometer. It was found that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of lithium fluoride fibers along the growth direction.
Tracking and Characterization of Aircraft Wakes Using Acoustic and Lidar Measurements
NASA Technical Reports Server (NTRS)
Booth, Earl R., Jr.; Humphreys, William M., Jr.
2005-01-01
Data from the 2003 Denver International Airport Wake Acoustics Test are further examined to discern spectral content of aircraft wake signatures, and to compare three dimensional wake tracking from acoustic data to wake tracking data obtained through use of continuous wave and pulsed lidar. Wake tracking data derived from acoustic array data agree well with both continuous wave and pulsed lidar in the horizontal plane, but less well with pulsed lidar in the vertical direction. Results from this study show that the spectral distribution of acoustic energy in a wake signature varies greatly with aircraft type.
New continuous recording procedure of holographic information on transient phenomena
NASA Astrophysics Data System (ADS)
Nagayama, Kunihito; Nishihara, H. Keith; Murakami, Terutoshi
1992-09-01
A new method for continuous recording of holographic information, 'streak holography,' is proposed. This kind of record can be useful for velocity and acceleration measurement as well as for observing a moving object whose trajectory cannot be predicted in advance. A very high speed camera system has been designed and constructed for streak holography. A ring-shaped 100-mm-diam film has been cut out from the high-resolution sheet film and mounted on a thin duralmin disk, which has been driven to rotate directly by an air-turbine spindle. Attainable streak velocity is 0.3 mm/microsecond(s) . A direct film drive mechanism makes it possible to use a relay lens system of extremely small f number. The feasibility of the camera system has been demonstrated by observing several transient events, such as the forced oscillation of a wire and the free fall of small glass particles, using an argon-ion laser as a light source.
Experiment K-317: Bone resorption in rats during spaceflight
NASA Technical Reports Server (NTRS)
Cann, C. E.; Adachi, R. R.
1981-01-01
Direct measurement of bone resorption in flight and synchronous control rats is described. Continuous tracer administration techniques were used, with replacement of dietary calcium with isotopically enriched Ca40 and measurement by neutron activation analysis of the Ca48 released by the skeleton. There is no large change in bone resorption in rats. Based on the time course of changes, the measured 20-25% decrease in resorption is probably secondary to a decrease in total body calcium turnover. The excretion of sodium, potassium and zinc all increase during flight, sodium and potassium to a level 4-5 times control values.
A simple, analytical, axisymmetric microburst model for downdraft estimation
NASA Technical Reports Server (NTRS)
Vicroy, Dan D.
1991-01-01
A simple analytical microburst model was developed for use in estimating vertical winds from horizontal wind measurements. It is an axisymmetric, steady state model that uses shaping functions to satisfy the mass continuity equation and simulate boundary layer effects. The model is defined through four model variables: the radius and altitude of the maximum horizontal wind, a shaping function variable, and a scale factor. The model closely agrees with a high fidelity analytical model and measured data, particularily in the radial direction and at lower altitudes. At higher altitudes, the model tends to overestimate the wind magnitude relative to the measured data.
Method for curing polymers using variable-frequency microwave heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lauf, R.J.; Bible, D.W.; Paulauskas, F.L.
1998-02-24
A method for curing polymers incorporating a variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity is disclosed. By varying the frequency of the microwave signal, non-uniformities within the cavity are minimized, thereby achieving a more uniform cure throughout the workpiece. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Themore » furnace cavity may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing. 15 figs.« less
Method for curing polymers using variable-frequency microwave heating
Lauf, Robert J.; Bible, Don W.; Paulauskas, Felix L.
1998-01-01
A method for curing polymers (11) incorporating a variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34). By varying the frequency of the microwave signal, non-uniformities within the cavity (34) are minimized, thereby achieving a more uniform cure throughout the workpiece (36). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. The furnace cavity (34) may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing.
Shear and elongational rheology of photo-oxidative degraded HDPE and LLDPE
NASA Astrophysics Data System (ADS)
Wagner, Manfred Hermann; Zheng, Wang; Wang, Peng; Talamante, Sebastián Ramos; Narimissa, Esmaeil
2017-05-01
The effect of photo-oxidative degradation of high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) was investigated by linear and non-linear rheological measurements. The linear-viscoelastic rheological measurements were performed at different temperatures, while the elongational viscosity was measured at 170°C and at different strain rates. The rheological data are indicative of structural changes caused by photo-oxidative degradation including formation of long-chain branches (LCB), cross-linking, and chain scission, and they revealed a cyclic and continuing competition between chain scission and LCB/gel formation. These findings are supported by additional FTIR measurements and direct measurements of the gel content of the degraded samples.
Integrated Global Observation Strategy - Ozone and Atmospheric Chemistry Project
NASA Technical Reports Server (NTRS)
Hilsenrath, Ernest; Readings, C. J.; Kaye, J.; Mohnen, V.; Einaudi, Franco (Technical Monitor)
2000-01-01
The "Long Term Continuity of Stratospheric Ozone Measurements and Atmospheric Chemistry" project was one of six established by the Committee on Earth Observing Satellites (CEOS) in response to the Integrated Global Observing Strategy (IGOS) initiative. IGOS links satellite and ground based systems for global environmental observations. The strategy of this project is to develop a consensus of user requirements including the scientific (SPARC, IGAC, WCRP) and the applications community (WMO, UNEP) and to develop a long-term international plan for ozone and atmospheric chemistry measurements. The major components of the observing system include operational and research (meeting certain criteria) satellite platforms planned by the space faring nations which are integrated with a well supported and sustained ground, aircraft, and balloon measurements program for directed observations as well satellite validation. Highly integrated and continuous measurements of ozone, validation, and reanalysis efforts are essential to meet the international scientific and applications goals. In order to understand ozone trends, climate change, and air quality, it is essential to conduct long term measurements of certain other atmospheric species. These species include key source, radical, and reservoir constituents.
NASA Astrophysics Data System (ADS)
Simmonds, Boris; Wang, Chun-Wei; Kapoor, Rakesh
2010-02-01
This document reports a novel method of measuring association rate constant (ka) for antibody-antigen interaction using evanescent wave-based combination tapered fiber-optic biosensor (CTFOB) dip-probes. The method was demonstrated by measuring association rate constant for bovine serum albumin (BSA) and anti-BSA antibody interaction. "Direct method" was used for detection; goat anti-BSA "capture" antibodies were immobilized on the probe surfaces while the antigen (BSA) was directly labeled with Alexa 488 dye. The probes were subsequently submerged in 3nM Labeled BSA in egg albumin (1 mg/ml). The fluorescence signal recorded was proportional to BSA anti-BSA conjugates and continuous signal was acquired suing a fiber optic spectrometer (Ocean Optics, Inc.). A 476 nm diode laser was use as an excitation source. Association constant was estimated from a plot of signal as a function of time. Measured association rate constant ka for the binding of BSA with anti-BSA at room temperature is (8.33 +/- 0.01) x 104 M-1s-1.
Efficient gas exchange between a boreal river and the atmosphere
NASA Astrophysics Data System (ADS)
Huotari, Jussi; Haapanala, Sami; Pumpanen, Jukka; Vesala, Timo; Ojala, Anne
2013-11-01
largest uncertainties in accurately resolving the role of rivers and streams in carbon cycling stem from difficulties in determining gas exchange between water and the atmosphere. So far, estimates for river-atmosphere gas exchange have lacked direct ecosystem-scale flux measurements not disturbing gas exchange across the air-water interface. We conducted the first direct riverine gas exchange measurements with eddy covariance in tandem with continuous surface water CO2 measurements in a large boreal river for 30 days. Our measured gas transfer velocity was, on average, 20.8 cm h-1, which is clearly higher than the model estimates based on river channel morphology and water velocity, whereas our floating chambers gave comparable values at 17.3 cm h-1. These results demonstrate that present estimates for riverine CO2 emissions are very likely too low. This result is also relevant to any other gases emitted, as their diffusive exchange rates are similarly proportional to gas transfer velocity.
Chakraborty Thakur, Saikat; McCarren, Dustin; Carr, Jerry; Scime, Earl E
2012-02-01
We report continuous wave cavity ring down spectroscopy (CW-CRDS) measurements of ion velocity distribution functions (VDFs) in low pressure argon helicon plasma (magnetic field strength of 600 G, T(e) ≈ 4 eV and n ≈ 5 × 10(11) cm(-3)). Laser induced fluorescence (LIF) is routinely used to measure VDFs of argon ions, argon neutrals, helium neutrals, and xenon ions in helicon sources. Here, we describe a CW-CRDS diagnostic based on a narrow line width, tunable diode laser as an alternative technique to measure VDFs in similar regimes but where LIF is inapplicable. Being an ultra-sensitive, cavity enhanced absorption spectroscopic technique; CW-CRDS can also provide a direct quantitative measurement of the absolute metastable state density. The proof of principle CW-CRDS measurements presented here are of the Doppler broadened absorption spectrum of Ar II at 668.6138 nm. Extrapolating from these initial measurements, it is expected that this diagnostic is suitable for neutrals and ions in plasmas ranging in density from 1 × 10(9) cm(-3) to 1 × 10(13) cm(-3) and target species temperatures less than 20 eV.
NASA Astrophysics Data System (ADS)
Chakraborty Thakur, Saikat; McCarren, Dustin; Carr, Jerry; Scime, Earl E.
2012-02-01
We report continuous wave cavity ring down spectroscopy (CW-CRDS) measurements of ion velocity distribution functions (VDFs) in low pressure argon helicon plasma (magnetic field strength of 600 G, Te ≈ 4 eV and n ≈ 5 × 1011 cm-3). Laser induced fluorescence (LIF) is routinely used to measure VDFs of argon ions, argon neutrals, helium neutrals, and xenon ions in helicon sources. Here, we describe a CW-CRDS diagnostic based on a narrow line width, tunable diode laser as an alternative technique to measure VDFs in similar regimes but where LIF is inapplicable. Being an ultra-sensitive, cavity enhanced absorption spectroscopic technique; CW-CRDS can also provide a direct quantitative measurement of the absolute metastable state density. The proof of principle CW-CRDS measurements presented here are of the Doppler broadened absorption spectrum of Ar II at 668.6138 nm. Extrapolating from these initial measurements, it is expected that this diagnostic is suitable for neutrals and ions in plasmas ranging in density from 1 × 109 cm-3 to 1 × 1013 cm-3 and target species temperatures less than 20 eV.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-01
.... Launched in the fourth quarter of 2012, the registry now houses over 50 actions by 30 different... considered use of measures in over 17 different federal Medicare benefit programs and the Electronic Health... Strategy NPP members called for the creation of the NQS and in 2012 continued to shape its direction by...
ERIC Educational Resources Information Center
ExpandED Schools, 2014
2014-01-01
This guide is a list of tools that can be used in continued implementation of strong programming powered by Social and Emotional Learning (SEL) competencies. This curated resource pulls from across the landscape of policy, research and practice, with a description of each tool gathered directly from its website.
Sustainability-Related Publications Calendar Years 2015- 2016
The Center for the Advancement of Sustainability Innovations (CASI) was established by the U.S. Army Engineer Research and Development Center (ERDC...and around the globe. CASI teams strive to measure sustainability innovations against the Triple Bottom Line of mission, environment, and community...CASI focuses on cost savings, innovation , collaborative solutions, and continuous learning which directly link sustainability to Army policy and guidance
Random numbers from vacuum fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yicheng; Kurtsiefer, Christian, E-mail: christian.kurtsiefer@gmail.com; Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543
2016-07-25
We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.
SERT 2 1979 extended flight thruster system performance
NASA Technical Reports Server (NTRS)
Kerslake, W. R.; Ignaczak, L. R.
1979-01-01
Steady state tests of the thruster 2 system on the SERT 2 spacecraft are presented. A direct thrust measurement was obtained for the ion thruster during operations to increase the spacecraft spin rate to maintain spacecraft attitude stability. The continued restart tests of thruster 1 and a report on the general status of all spacecraft systems including the main solar array are presented.
NASA Technical Reports Server (NTRS)
Wesoky, Howard L.; Prather, Michael J.
1991-01-01
Studies have indicated that, with sufficient technology development, future high-speed civil transport aircraft could be economically competitive with long-haul subsonic aircraft. However, uncertainty about atmospheric pollution, along with community noise and sonic boom, continues to be a major concern which is being addressed in the planned six-year High-Speed Research Program begun in 1990. Building on NASA's research in atmospheric science and emissions reduction, current analytical predictions indicate that an operating range may exist at altitudes below 20 km (i.e., corresponding to a cruise Mach number of approximately 2.4) where the goal level of 5 gm equivalent NO2 emissions/kg fuel will deplete less than one percent of column ozone. Because it will not be possible to directly measure the impact of an aircraft fleet on the atmosphere, the only means of assessment will be prediction. The process of establishing credibility for the predicted effects will likely be complex and involve continued model development and testing against climatological patterns. In particular, laboratory simulation of heterogeneous chemistry and other effects, and direct measurements of well understood tracers in the troposphere and stratosphere are being used to improve the current models.
Analysis and classification of bedload transport events with variable process characteristics
NASA Astrophysics Data System (ADS)
Kreisler, Andrea; Moser, Markus; Aigner, Johann; Rindler, Rolf; Tritthart, Michael; Habersack, Helmut
2017-08-01
Knowledge about the magnitude of bedload fluxes at given hydraulic conditions in natural streams is essential for improved process understanding, for the application, calibration and validation of bedload transport formulas, and for numerical sediment transport models. Nonetheless, extensive field measurements of bedload transport are challenging and therefore data from such efforts are rare. Bedload transport has been measured comprehensively at the downstream section of the Urslau torrent in Salzburg, Austria, since 2011. We used an integrative monitoring system that combines direct (mobile basket sampler, slot sampler) and indirect measuring devices (geophone plates). Continuous information about the intensity and distribution of bedload transport within the channel cross-section is available in high spatial and temporal resolution. Seven geophone plates at a stream width of 8 m are part of a measurement system that delivers data in 1-min intervals. These geophone data are calibrated using results of direct bedload measurements, providing an opportunity to calculate bedload rates and bedload yields in selected time periods. Continuous data on the bedload transport process over three years enabled assessing several bedload transport events. The investigation of bedload transport rate/discharge relationships reveals order-of-magnitude changes. For individual events, we observed shifts in the data, reflecting different bedload rates at comparable hydraulic conditions. This study reveals that variable sediment supply conditions affect the prevailing bedload transport rates at the Urslau stream. Calculating the bedload transport efficiency enables comparing bedload transport events that exhibit similar process characteristics. Finally, we provide a conceptual model of bedload transport process types as a function of bedload transport efficiency and dimensionless stream power.
NASA Astrophysics Data System (ADS)
Dietrich, Jörg
2016-05-01
In integrated river basin management, measures for reaching the environmental objectives can be evaluated at different scales, and according to multiple criteria of different nature (e.g. ecological, economic, social). Decision makers, including responsible authorities and stakeholders, follow different interests regarding criteria and scales. With a bottom up approach, the multi criteria assessment could produce a different outcome than with a top down approach. The first assigns more power to the local community, which is a common principle of IWRM. On the other hand, the development of an overall catchment strategy could potentially make use of synergetic effects of the measures, which fulfils the cost efficiency requirement at the basin scale but compromises local interests. Within a joint research project for the 5500 km2 Werra river basin in central Germany, measures have been planned to reach environmental objectives of the European Water Framework directive (WFD) regarding ecological continuity and nutrient loads. The main criteria for the evaluation of the measures were costs of implementation, reduction of nutrients, ecological benefit and social acceptance. The multi-criteria evaluation of the catchment strategies showed compensation between positive and negative performance of criteria within the catchment, which in the end reduced the discriminative power of the different strategies. Furthermore, benefit criteria are partially computed for the whole basin only. Both ecological continuity and nutrient load show upstream-downstream effects in opposite direction. The principles of "polluter pays" and "overall cost efficiency" can be followed for the reduction of nutrient losses when financial compensations between upstream and downstream users are made, similar to concepts of emission trading.
Review of modern methods for continuous friction measurement on airfield pavements
NASA Astrophysics Data System (ADS)
Iwanowski, Paweł; Blacha, Krzysztof; Wesołowski, Mariusz
2018-05-01
The safety of traffic, including both road and air traffic on a ground manoeuvre area, depends on many factors. These mainly include the anti-slip properties of a road or airfield pavement on which the traffic takes place. The basic pavement parameter that determines its characteristics in terms of anti-slip properties is the skid resistance, which constitutes the ratio of the wheel downforce and the friction on the contact surface. There are currently many devices for continuous measurement of the skid resistance (Continuous Friction-Measuring Equipment - CFME) around the world. Most of them, in principle, do not vary much from one another. Most of the devices measure the measuring wheel’s downforce on the pavement and the friction on the wheel-pavement contact surface. The skid resistance is the result of this measurement. The devices vary in many aspects, such as the type and size of the used measuring tyre, pavement-wheel slip or tyre pressure. This does not mean that the results obtained from various devices mbe directly compared. On the other hand, each device allows determining the pavement’s anti-slip conditions in terms of the requirements specified for the given type of devices, thereby enabling pavement classification in these terms. The classification allows for comparing the results obtained from various measuring devices. The paper presents an overview of equipment used in Poland and around the world to measure the skid resistance on airfield pavements. The authors draw attention to the requirements for pavements in terms of their roughness, with division into road and airfield pavements.
Investigation into influence factors of wave velocity anisotropy for TCDP borehole
NASA Astrophysics Data System (ADS)
Wu, C. N.; Dong, J. J.; Yang, C. M.; Wu, W. J.
2015-12-01
The direction of fast horizontal shear wave velocity (FSH direction) is used as an indicator of the direction of maximum horizontal principal stress. However, the wave velocity anisotropy will be simultaneously dominated by the stress induced anisotropy and the inherent anisotropy which includes the effects of sedimentary and tectonic structures. In this study, the influence factors of wave velocity anisotropy will be analyzed in borehole-A of Taiwan Chelungpu-Fault Drilling Project (TCDP). The anisotropic compliance tensors of intact sandstones and mudrocks derived from the laboratory wave measurement are combined with the equivalent continuous model to evaluate the compliance tensor of jointed rock mass. Results show the lithology was identified as the most influential factor on the wave velocity anisotropy. Comparing the FSH direction logging data with our results, the wave velocity anisotropy in sandstones is mostly caused by inherent anisotropy of intact sandstones. The spatial variations of wave velocity anisotropy in mudrocks is caused by other relatively higher influence factors than inherent anisotropy of intact mudrocks. In addition, the dip angle of bedding plans is also important for wave velocity anisotropy of mudrocks because the FSH direction logging data seems dominated by the dip direction of bedding planes when the dip angle becomes steeper (at the depth greater than 1785 m). Surprisingly, the wave velocity anisotropy contributed by joints that we determined by equivalent continuous model is not significant. In this study, based on the TCDP borehole data, we conclude that determining the direction of maximum horizontal principal stress from the FSH directions should consider the influence of inherent anisotropy on rock mass.
Method and apparatus for in-situ detection and isolation of aircraft engine faults
NASA Technical Reports Server (NTRS)
Bonanni, Pierino Gianni (Inventor); Brunell, Brent Jerome (Inventor)
2007-01-01
A method for performing a fault estimation based on residuals of detected signals includes determining an operating regime based on a plurality of parameters, extracting predetermined noise standard deviations of the residuals corresponding to the operating regime and scaling the residuals, calculating a magnitude of a measurement vector of the scaled residuals and comparing the magnitude to a decision threshold value, extracting an average, or mean direction and a fault level mapping for each of a plurality of fault types, based on the operating regime, calculating a projection of the measurement vector onto the average direction of each of the plurality of fault types, determining a fault type based on which projection is maximum, and mapping the projection to a continuous-valued fault level using a lookup table.
NASA Astrophysics Data System (ADS)
Cook, T. A.; Chakrabarti, S.; Bifano, T. G.; Lane, B.; Levine, B. M.; Shao, M.
2004-05-01
The study of extrasolar planets is one of the most exciting research endeavors of modern astrophysics. While the list of known planets continues to grow, no direct image of any extrasolar planet has been obtained to date. Ground-breaking radial velocity measurements have identified many potential targets but other measurements are needed to obtain physical parameters of the extrasolar planets. For example, for most extrasolar giant planets we only know their minimum projected mass (M sin i). Even a single image of one extrasolar planet will fully determine its orbital parameters and thus its true mass. A single image would also provide albedo information which would begin to constrain their atmospheric properties. This is the objective of PICTURE, a low-cost space mission specifically designed to obtain the first direct image of extrasolar giant planets.
Sign reversal of transformation entropy change in Co{sub 2}Cr(Ga,Si) shape memory alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiao, E-mail: xu@material.tohoku.ac.jp; Omori, Toshihiro; Kainuma, Ryosuke
2015-11-02
In situ X-ray diffraction (XRD) measurements and compression tests were performed on Co{sub 2}Cr(Ga,Si) shape memory alloys. The reentrant martensitic transformation behavior was directly observed during the in situ XRD measurements. The high-temperature parent phase and low-temperature reentrant parent phase were found to have a continuous temperature dependence of lattice parameter, therefore suggesting that they are the same phase in nature. Moreover, compression tests were performed on a parent-phase single crystal sample; an evolution from normal to inverse temperature dependence of critical stress for martensitic transformation was directly observed. Based on the Clausius-Clapeyron analysis, a sign reversal of entropy changemore » can be expected on the same alloy.« less
The economic burden of musculoskeletal disease in Korea: a cross sectional study.
Oh, In-Hwan; Yoon, Seok-Jun; Seo, Hye-Young; Kim, Eun-Jung; Kim, Young Ae
2011-07-13
Musculoskeletal diseases are becoming increasingly important due to population aging. However, studies on the economic burden of musculoskeletal disease in Korea are scarce. Therefore, we conducted a population-based study to measure the economic burden of musculoskeletal disease in Korea using nationally representative data. This study used a variety of data sources such as national health insurance statistics, the Korea Health Panel study and cause of death reports generated by the Korea National Statistical Office to estimate the economic burden of musculoskeletal disease. The total cost of musculoskeletal disease was estimated as the sum of direct medical care costs, direct non-medical care costs, and indirect costs. Direct medical care costs are composed of the costs paid by the insurer and patients, over the counter drugs costs, and other costs such as medical equipment costs. Direct non-medical costs are composed of transportation and caregiver costs. Indirect costs are the sum of the costs associated with premature death and the costs due to productivity loss. Age, sex, and disease specific costs were estimated. Among the musculoskeletal diseases, the highest costs are associated with other dorsopathies, followed by disc disorder and arthrosis. The direct medical and direct non-medical costs of all musculoskeletal diseases were $4.18 billion and $338 million in 2008, respectively. Among the indirect costs, those due to productivity loss were $2.28 billion and costs due to premature death were $79 million. The proportions of the total costs incurred by male and female patients were 33.8% and 66.2%, respectively, and the cost due to the female adult aged 20-64 years old was highest. The total economic cost of musculoskeletal disease was $6.89 billion, which represents 0.7% of the Korean gross domestic product. The economic burden of musculoskeletal disease in Korea is substantial. As the Korean population continues to age, the economic burden of musculoskeletal disease will continue to increase. Policy measures aimed at controlling the cost of musculoskeletal disease are therefore required.
NASA Astrophysics Data System (ADS)
Alhroob, M.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Boyd, G.; Crespo-Lopez, O.; Degeorge, C.; Deterre, C.; Di Girolamo, B.; Doubek, M.; Favre, G.; Hallewell, G.; Katunin, S.; Lombard, D.; Madsen, A.; McMahon, S.; Nagai, K.; O'Rourke, A.; Pearson, B.; Robinson, D.; Rossi, C.; Rozanov, A.; Stanecka, E.; Strauss, M.; Vacek, V.; Vaglio, R.; Young, J.; Zwalinski, L.
2017-01-01
The development of custom ultrasonic instrumentation was motivated by the need for continuous real-time monitoring of possible leaks and mass flow measurement in the evaporative cooling systems of the ATLAS silicon trackers. The instruments use pairs of ultrasonic transducers transmitting sound bursts and measuring transit times in opposite directions. The gas flow rate is calculated from the difference in transit times, while the sound velocity is deduced from their average. The gas composition is then evaluated by comparison with a molar composition vs. sound velocity database, based on the direct dependence between sound velocity and component molar concentration in a gas mixture at a known temperature and pressure. The instrumentation has been developed in several geometries, with five instruments now integrated and in continuous operation within the ATLAS Detector Control System (DCS) and its finite state machine. One instrument monitors C3F8 coolant leaks into the Pixel detector N2 envelope with a molar resolution better than 2ṡ 10-5, and has indicated a level of 0.14 % when all the cooling loops of the recently re-installed Pixel detector are operational. Another instrument monitors air ingress into the C3F8 condenser of the new C3F8 thermosiphon coolant recirculator, with sub-percent precision. The recent effect of the introduction of a small quantity of N2 volume into the 9.5 m3 total volume of the thermosiphon system was clearly seen with this instrument. Custom microcontroller-based readout has been developed for the instruments, allowing readout into the ATLAS DCS via Modbus TCP/IP on Ethernet. The instrumentation has many potential applications where continuous binary gas composition is required, including in hydrocarbon and anaesthetic gas mixtures.
The Sustainable Development Goal for Urban Sanitation: Africa's Statistical Tragedy Continues?
Buckley, Robert M; Kallergis, Achilles
2018-06-01
Sanitation delivery in the urban areas of sub-Saharan African countries has been a chronic issue, particularly difficult to tackle. Under the Millennium Development Goals, the sanitation target in urban sub-Saharan Africa was missed by a wide margin and witnessed almost no improvement. After 2 years of review, the WHO/UNICEF Joint Monitoring Programme published a new measure of access to sanitation as a baseline for the Sustainable Development Goals. There are a number of improvements in the new measure. However, despite the improvements, the new measure continues to be characterized by an important flaw: it continues to disregard how shared toilet facilities contribute towards the SDG sanitation target. As a result, the new measure does not indicate whether progress is being made in low-income urban areas where a large number of households rely on shared sanitation; nor does it provide a goal that can be achieved in cities of the poorest countries over the measurement period. But, its most egregious failing is that it directs resources towards investments which will often fail cost/benefit tests. In sum, it is not a surprise that a Working Group recommended that the measure should be changed to include some shared facilities. Following the Working Group's recommendation would have avoided the adverse consequences of continued reliance on a key component of the methodology used for monitoring sanitation improvements under the Millennium Development Goals. The paper discusses the limitations of this methodology in the context of urban sub-Saharan Africa, where current sanitation conditions are seriously lacking, and the significant future urban population growth will add more pressure for the delivery of vital sanitation services.
Song, Young Seop; Yang, Kyung Yong; Youn, Kibum; Yoon, Chiyul; Yeom, Jiwoon; Hwang, Hyeoncheol; Lee, Jehee; Kim, Keewon
2016-08-01
To compare optical motion capture system (MoCap), attitude and heading reference system (AHRS) sensor, and Microsoft Kinect for the continuous measurement of cervical range of motion (ROM). Fifteen healthy adult subjects were asked to sit in front of the Kinect camera with optical markers and AHRS sensors attached to the body in a room equipped with optical motion capture camera. Subjects were instructed to independently perform axial rotation followed by flexion/extension and lateral bending. Each movement was repeated 5 times while being measured simultaneously with 3 devices. Using the MoCap system as the gold standard, the validity of AHRS and Kinect for measurement of cervical ROM was assessed by calculating correlation coefficient and Bland-Altman plot with 95% limits of agreement (LoA). MoCap and ARHS showed fair agreement (95% LoA<10°), while MoCap and Kinect showed less favorable agreement (95% LoA>10°) for measuring ROM in all directions. Intraclass correlation coefficient (ICC) values between MoCap and AHRS in -40° to 40° range were excellent for flexion/extension and lateral bending (ICC>0.9). ICC values were also fair for axial rotation (ICC>0.8). ICC values between MoCap and Kinect system in -40° to 40° range were fair for all motions. Our study showed feasibility of using AHRS to measure cervical ROM during continuous motion with an acceptable range of error. AHRS and Kinect system can also be used for continuous monitoring of flexion/extension and lateral bending in ordinary range.
Generalization of information-based concepts in forecast verification
NASA Astrophysics Data System (ADS)
Tödter, J.; Ahrens, B.
2012-04-01
This work deals with information-theoretical methods in probabilistic forecast verification. Recent findings concerning the Ignorance Score are shortly reviewed, then the generalization to continuous forecasts is shown. For ensemble forecasts, the presented measures can be calculated exactly. The Brier Score (BS) and its generalizations to the multi-categorical Ranked Probability Score (RPS) and to the Continuous Ranked Probability Score (CRPS) are the prominent verification measures for probabilistic forecasts. Particularly, their decompositions into measures quantifying the reliability, resolution and uncertainty of the forecasts are attractive. Information theory sets up the natural framework for forecast verification. Recently, it has been shown that the BS is a second-order approximation of the information-based Ignorance Score (IGN), which also contains easily interpretable components and can also be generalized to a ranked version (RIGN). Here, the IGN, its generalizations and decompositions are systematically discussed in analogy to the variants of the BS. Additionally, a Continuous Ranked IGN (CRIGN) is introduced in analogy to the CRPS. The applicability and usefulness of the conceptually appealing CRIGN is illustrated, together with an algorithm to evaluate its components reliability, resolution, and uncertainty for ensemble-generated forecasts. This is also directly applicable to the more traditional CRPS.
NOx Sensor for Direct Injection Emission Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betteridge, William J
2006-02-28
The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness andmore » durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the sensor.« less
Electrophysiological assessment of water stress in fruit-bearing woody plants.
Ríos-Rojas, Liliana; Tapia, Franco; Gurovich, Luis A
2014-06-15
Development and evaluation of a real-time plant water stress sensor, based on the electrophysiological behavior of fruit-bearing woody plants is presented. Continuous electric potentials are measured in tree trunks for different irrigation schedules, inducing variable water stress conditions; results are discussed in relation to soil water content and micro-atmospheric evaporative demand, determined continuously by conventional sensors, correlating this information with tree electric potential measurements. Systematic and differentiable patterns of electric potentials for water-stressed and no-stressed trees in 2 fruit species are presented. Early detection and recovery dynamics of water stress conditions can also be monitored with these electrophysiology sensors, which enable continuous and non-destructive measurements for efficient irrigation scheduling throughout the year. The experiment is developed under controlled conditions, in Faraday cages located at a greenhouse area, both in Persea americana and Prunus domestica plants. Soil moisture evolution is controlled using capacitance sensors and solar radiation, temperature, relative humidity, wind intensity and direction are continuously registered with accurate weather sensors, in a micro-agrometeorological automatic station located at the experimental site. The electrophysiological sensor has two stainless steel electrodes (measuring/reference), inserted on the stem; a high precision Keithley 2701 digital multimeter is used to measure plant electrical signals; an algorithm written in MatLab(®), allows correlating the signal to environmental variables. An electric cyclic behavior is observed (circadian cycle) in the experimental plants. For non-irrigated plants, the electrical signal shows a time positive slope and then, a negative slope after restarting irrigation throughout a rather extended recovery process, before reaching a stable electrical signal with zero slope. Well-watered plants presented a continuous signal with daily maximum and a minimum EP of similar magnitude in time, with zero slope. This plant electrical behavior is proposed for the development of a sensor measuring real-time plant water status. Copyright © 2014 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Dautriat, Jeremie; Gland, Nicolas; Guelard, Jean; Dimanov, Alexandre; Raphanel, Jean L.
2009-07-01
The influence of hydrostatic and uniaxial stress states on the porosity and permeability of sandstones has been investigated. The experimental procedure uses a special triaxial cell which allows permeability measurements in the axial and radial directions. The core sleeve is equipped with two pressure samplers placed distant from the ends. They provide mid-length axial permeability measure as opposed to the overall permeability measure, which is based on the flow imposed through the pistons of the triaxial cell. The core sleeve is also equipped to perform flows in two directions transverse to the axis of the sample. Two independent measures of axial and complementary radial permeability are thus obtained. Both Fontainebleau sandstone specimens with a porosity of about 5.8% to 8% and low permeability ranging from 2.5 mD to 30 mD and Bentheimer sandstone with a porosity of 24% and a high permeability of 3 D have been tested. The initial axial permeability values obtained by each method are in good agreement for the Fontainebleau sandstone. The Bentheimer sandstone samples present an axial mid-length permeability 1.6 times higher than the overall permeability. A similar discrepancy is also observed in the radial direction, also it relates essentially to the shape of flow lines induced by the radial flow. All the tested samples have shown a higher stress dependency of overall and radial permeability than mid-length permeability. The effect of compaction damage at the pistons/sample and radial ports/sample interfaces is discussed. The relevance of directional permeability measurements during continuous uniaxial compression loadings has been shown on the Bentheimer sandstone until the failure of the sample. We can efficiently measure the influence of brittle failure associated to dilatant regime on the permeability: It tends to increase in the failure propagation direction and to decrease strongly in the transverse direction.
Extremal entanglement and mixedness in continuous variable systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio
2004-08-01
We investigate the relationship between mixedness and entanglement for Gaussian states of continuous variable systems. We introduce generalized entropies based on Schatten p norms to quantify the mixedness of a state and derive their explicit expressions in terms of symplectic spectra. We compare the hierarchies of mixedness provided by such measures with the one provided by the purity (defined as tr {rho}{sup 2} for the state {rho}) for generic n-mode states. We then review the analysis proving the existence of both maximally and minimally entangled states at given global and marginal purities, with the entanglement quantified by the logarithmic negativity.more » Based on these results, we extend such an analysis to generalized entropies, introducing and fully characterizing maximally and minimally entangled states for given global and local generalized entropies. We compare the different roles played by the purity and by the generalized p entropies in quantifying the entanglement and the mixedness of continuous variable systems. We introduce the concept of average logarithmic negativity, showing that it allows a reliable quantitative estimate of continuous variable entanglement by direct measurements of global and marginal generalized p entropies.« less
Information Processing from Infancy to 11 Years: Continuities and Prediction of IQ
Rose, Susan A.; Feldman, Judith F.; Jankowski, Jeffery J.; Van Rossem, Ronan
2012-01-01
This study provides the first direct evidence of cognitive continuity for multiple specific information processing abilities from infancy and toddlerhood to pre-adolescence, and provides support for the view that infant abilities and form the basis of later childhood abilities. Data from a large sample of children (N = 131) were obtained at five different time points (7, 12, 24, 36 months, and 11 years) for a large battery of tasks representing four cognitive domains (attention, processing speed, memory, and representational competence). Structural equation models of continuity were assessed for each domain, in which it was assumed that infant abilities → toddler abilities → 11-year abilities. Abilities at each age were represented by latent variables, which minimize task-specific variance and measurement error. The model for each domain fit the data. Moreover, abilities from the three age periods predicted global outcome, with infant, toddler, and contemporaneous 11-year measures, respectively, accounting for 12.3%, 18.5%, and 45.2% of the variance in 11-year IQ. These findings strengthen contentions that specific cognitive abilities that can be identified in infancy show long-term continuity and contribute importantly to later cognitive competence. PMID:23162179
Huard, Edouard; Derelle, Sophie; Jaeck, Julien; Nghiem, Jean; Haïdar, Riad; Primot, Jérôme
2018-03-05
A challenging point in the prediction of the image quality of infrared imaging systems is the evaluation of the detector modulation transfer function (MTF). In this paper, we present a linear method to get a 2D continuous MTF from sparse spectral data. Within the method, an object with a predictable sparse spatial spectrum is imaged by the focal plane array. The sparse data is then treated to return the 2D continuous MTF with the hypothesis that all the pixels have an identical spatial response. The linearity of the treatment is a key point to estimate directly the error bars of the resulting detector MTF. The test bench will be presented along with measurement tests on a 25 μm pitch InGaAs detector.
NASA Astrophysics Data System (ADS)
Klepper, C. C.; Martin, E. H.; Isler, R. C.; Colas, L.; Hillairet, J.; Marandet, Y.; Lotte, Ph.; Colledani, G.; Martin, V.; Hillis, D. L.; Harris, J. H.; Saoutic, B.
2011-10-01
Computational models of the interaction between RF waves and the scrape-off layer plasma near ion cyclotron resonant heating (ICRH) and lower hybrid current drive launch antennas are continuously improving. These models mainly predict the RF electric fields produced in the SOL and, therefore, the best measurement for verification of these models would be a direct measurement of these electric fields. Both types of launch antennas are used on Tore Supra and are designed for high power (up to 4MW/antenna) and long pulse (> > 25s) operation. Direct, non-intrusive measurement of the RF electric fields in the vicinity of these structures is achieved by fitting spectral profiles of deuterium Balmer-alpha and Balmer-beta to a model that includes the dynamic, external-field Stark effect, as well as Zeeman splitting and Doppler broadening mechanisms. The measurements are compared to the mentioned, near-field region, RF antenna models. *Work supported in part by the US DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.
Variability of adjacency effects in sky reflectance measurements.
Groetsch, Philipp M M; Gege, Peter; Simis, Stefan G H; Eleveld, Marieke A; Peters, Steef W M
2017-09-01
Sky reflectance R sky (λ) is used to correct in situ reflectance measurements in the remote detection of water color. We analyzed the directional and spectral variability in R sky (λ) due to adjacency effects against an atmospheric radiance model. The analysis is based on one year of semi-continuous R sky (λ) observations that were recorded in two azimuth directions. Adjacency effects contributed to R sky (λ) dependence on season and viewing angle and predominantly in the near-infrared (NIR). For our test area, adjacency effects spectrally resembled a generic vegetation spectrum. The adjacency effect was weakly dependent on the magnitude of Rayleigh- and aerosol-scattered radiance. The reflectance differed between viewing directions 5.4±6.3% for adjacency effects and 21.0±19.8% for Rayleigh- and aerosol-scattered R sky (λ) in the NIR. Under which conditions in situ water reflectance observations require dedicated correction for adjacency effects is discussed. We provide an open source implementation of our method to aid identification of such conditions.
Recent advances with quiescent power supply current (I(sub DDQ)) testing at Sandia using the HP82000
NASA Astrophysics Data System (ADS)
Righter, A. W.; Leong, D. J.; Cox, L. B.
Last year at the HP82000 Users Group Meeting, Sandia National Laboratories gave a presentation on I(sub DDQ) testing. This year, some advances are presented on this testing including DUT board fixturing, external DC PMU measurement, and automatic IDD-All circuit calibration. Implementation is examined more than theory, with results presented from Sandia tests. After a brief summary I(sub DDQ) theory and testing concepts, how the break (hold state) vector and data formatting present a test vector generation concern for the HP82000 is described. Fixturing of the DUT board for both types of I(sub DDQ) measurement is then discussed, along with how the continuity test and test vector generation must be taken into account. Results of a test including continuity, IDD-All and I(sub DDQ) Value measurements is shown. Next, measurement of low current using an external PMU is discussed, including noise considerations, implementation and some test results showing nA-range measurements. A method is presented for automatic calibration of the IDD-All analog comparator circuit using RM BASIC on the HP82000, with implementation and measurement results. Finally, future directions for research in this area is explored.
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1989-01-01
Laser infrared radar (lidar) undergoing development harmless to human eyes, consists almost entirely of solid-state components, and offers high range resolution. Operates at wavelength of about 2 micrometers. If radiation from such device strikes eye, almost completely absorbed by cornea without causing damage, even if aimed directly at eye. Continuous-wave light from laser oscillator amplified and modulated for transmission from telescope. Small portion of output of oscillator fed to single-mode fiber coupler, where mixed with return pulses. Intended for remote Doppler measurements of winds and differential-absorption measurements of concentrations of gases in atmosphere.
A study of remote sensing as applied to regional and small watersheds. Volume 1: Summary report
NASA Technical Reports Server (NTRS)
Ambaruch, R.
1974-01-01
The accuracy of remotely sensed measurements to provide inputs to hydrologic models of watersheds is studied. A series of sensitivity analyses on continuous simulation models of three watersheds determined: (1)Optimal values and permissible tolerances of inputs to achieve accurate simulation of streamflow from the watersheds; (2) Which model inputs can be quantified from remote sensing, directly, indirectly or by inference; and (3) How accurate remotely sensed measurements (from spacecraft or aircraft) must be to provide a basis for quantifying model inputs within permissible tolerances.
Exploring the observational constraints on the simulation of brown carbon
NASA Astrophysics Data System (ADS)
Wang, X.; Heald, C. L.; Liu, J.; Weber, R. J.; Campuzano-Jost, P.; Jimenez, J. L.; Schwarz, J. P.; Perring, A. E.
2017-12-01
Brown carbon (BrC) is the component of organic aerosols (OA) which strongly absorbs solar radiation in the near-UV range of the spectrum. However the sources, evolution, and optical properties of BrC remain highly uncertain, and therefore constitute a large source of uncertainty in estimating the global direct radiative effect (DRE) of aerosols. Previous modeling studies of BrC optical properties and DRE have been unable to fully evaluate the skill of their simulations, given the lack of direct measurements of organic aerosol absorption. In this study, we develop a global model simulation (GEOS-Chem) of BrC and test it against BrC absorption measurements from two aircraft campaigns in the U.S. (SEAC4RS and DC3). To our knowledge, this is the first study to compare simulated BrC absorption with direct, continuous ambient measurements. We show that the laboratory-based BrC absorption properties from biomass burning overestimate the aircraft measurements of ambient BrC. In addition, applying a photochemical whitening scheme to simulated BrC is better able to represent the observed BrC absorption. These observations are consistent with a mass absorption coefficient (MAC) of freshly emitted biomass burning OA of 0.57m2g-1. Using the RRTMG model integrated with GEOS-Chem, we estimate that the all-sky top-of-atmosphere direct radiative effect (DRE) of OA is -0.350 Wm-2, 10% higher than that without consideration of BrC absorption. Therefore, our best estimate of the absorption DRE of BrC is +0.042 Wm-2. We suggest that the DRE of BrC has been overestimated previously due to the lack of observational constraints from direct measurements as well as neglect of the effects of photochemical whitening.
Miniature high temperature plug-type heat flux gauges
NASA Technical Reports Server (NTRS)
Liebert, Curt H.
1992-01-01
The objective is to describe continuing efforts to develop methods for measuring surface heat flux, gauge active surface temperature, and heat transfer coefficient quantities. The methodology involves inventing a procedure for fabricating improved plug-type heat flux gauges and also for formulating inverse heat conduction models and calculation procedures. These models and procedures are required for making indirect measurements of these quantities from direct temperature measurements at gauge interior locations. Measurements of these quantities were made in a turbine blade thermal cycling tester (TBT) located at MSFC. The TBT partially simulates the turbopump turbine environment in the Space Shuttle Main Engine. After the TBT test, experiments were performed in an arc lamp to analyze gauge quality.
21 CFR 172.5 - General provisions for direct food additives.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true General provisions for direct food additives. 172.5... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION General Provisions § 172.5 General provisions for direct food additives. (a...
21 CFR 172.5 - General provisions for direct food additives.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false General provisions for direct food additives. 172... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION General Provisions § 172.5 General provisions for direct food additives. (a...
21 CFR 172.5 - General provisions for direct food additives.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false General provisions for direct food additives. 172... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION General Provisions § 172.5 General provisions for direct food additives. (a...
21 CFR 172.5 - General provisions for direct food additives.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false General provisions for direct food additives. 172... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION General Provisions § 172.5 General provisions for direct food additives. (a...
Thompson, L.M.; Van Manen, F.T.; King, T.L.
2005-01-01
Highways are one of the leading causes of wildlife habitat fragmentation and may particularly affect wide-ranging species, such as American black bears (Ursus americanus). We initiated a research project in 2000 to determine potential effects of a 4-lane highway on black bear ecology in Washington County, North Carolina. The research design included a treatment area (highway construction) and a control area and a pre- and post-construction phase. We used data from the pre-construction phase to determine whether we could detect scale dependency or directionality among allele occurrence patterns using geostatistics. Detection of such patterns could provide a powerful tool to measure the effects of landscape fragmentation on gene flow. We sampled DNA from roots of black bear hair at 70 hair-sampling sites on each study area for 7 weeks during fall of 2000. We used microsatellite analysis based on 10 loci to determine unique multi-locus genotypes. We examined all alleles sampled at ???25 sites on each study area and mapped their presence or absence at each hair-sample site. We calculated semivariograms, which measure the strength of statistical correlation as a function of distance, and adjusted them for anisotropy to determine the maximum direction of spatial continuity. We then calculated the mean direction of spatial continuity for all examined alleles. The mean direction of allele frequency variation was 118.3?? (SE = 8.5) on the treatment area and 172.3?? (SE = 6.0) on the control area. Rayleigh's tests showed that these directions differed from random distributions (P = 0.028 and P < 0.001, respectively), indicating consistent directional patterns for the alleles we examined in each area. Despite the small spatial scale of our study (approximately 11,000 ha for each study area), we observed distinct and consistent patterns of allele occurrence, suggesting different directions of gene flow between the study areas. These directions seemed to coincide with the primary orientation of the best habitat areas. Furthermore, the patterns we observed suggest directions of potential source populations beyond the 2 study areas. Indeed, nearby areas classified as core black bear habitat exist in the directions indicated by our analysis. Geostatistical analysis of allele occurrence patterns may provide a useful technique to identify potential barriers to gene flow among bear populations.
Estimating direction in brain-behavior interactions: Proactive and reactive brain states in driving.
Garcia, Javier O; Brooks, Justin; Kerick, Scott; Johnson, Tony; Mullen, Tim R; Vettel, Jean M
2017-04-15
Conventional neuroimaging analyses have ascribed function to particular brain regions, exploiting the power of the subtraction technique in fMRI and event-related potential analyses in EEG. Moving beyond this convention, many researchers have begun exploring network-based neurodynamics and coordination between brain regions as a function of behavioral parameters or environmental statistics; however, most approaches average evoked activity across the experimental session to study task-dependent networks. Here, we examined on-going oscillatory activity as measured with EEG and use a methodology to estimate directionality in brain-behavior interactions. After source reconstruction, activity within specific frequency bands (delta: 2-3Hz; theta: 4-7Hz; alpha: 8-12Hz; beta: 13-25Hz) in a priori regions of interest was linked to continuous behavioral measurements, and we used a predictive filtering scheme to estimate the asymmetry between brain-to-behavior and behavior-to-brain prediction using a variant of Granger causality. We applied this approach to a simulated driving task and examined directed relationships between brain activity and continuous driving performance (steering behavior or vehicle heading error). Our results indicated that two neuro-behavioral states may be explored with this methodology: a Proactive brain state that actively plans the response to the sensory information and is characterized by delta-beta activity, and a Reactive brain state that processes incoming information and reacts to environmental statistics primarily within the alpha band. Published by Elsevier Inc.
R. Sam Williams; Steven Lacher; Corey Halpin; Christopher White
2005-01-01
To develop service life prediction methods for the study of sealants, a fully instrumented weather station was installed at an outdoor test site near Madison, WI. Temperature, relative humidiy, rainfall, ultraviolet (UV) radiation at 18 wavelengths, and wind speed and direction are being continuously measured and stored. The weather data can be integrated over time to...
Multi-site field studies were conducted to evaluate the performance of sampling methods for measuring the coarse fraction of PM10 (PM10 2.5) in ambient air. The field studies involved the use of both time-integrated filter-based and direct continuous methods. Despite operationa...
Adaptive optics self-calibration using differential OTF (dOTF)
NASA Astrophysics Data System (ADS)
Rodack, Alexander T.; Knight, Justin M.; Codona, Johanan L.; Miller, Kelsey L.; Guyon, Olivier
2015-09-01
We demonstrate self-calibration of an adaptive optical system using differential OTF [Codona, JL; Opt. Eng. 0001; 52(9):097105-097105. doi:10.1117/1.OE.52.9.097105]. We use a deformable mirror (DM) along with science camera focal plane images to implement a closed-loop servo that both flattens the DM and corrects for non-common-path aberrations within the telescope. The pupil field modification required for dOTF measurement is introduced by displacing actuators near the edge of the illuminated pupil. Simulations were used to develop methods to retrieve the phase from the complex amplitude dOTF measurements for both segmented and continuous sheet MEMS DMs and tests were performed using a Boston Micromachines continuous sheet DM for verification. We compute the actuator correction updates directly from the phase of the dOTF measurements, reading out displacements and/or slopes at segment and actuator positions. Through simulation, we also explore the effectiveness of these techniques for a variety of photons collected in each dOTF exposure pair.
Hung, San-Shan; Chang, Chih-Yuan; Hsu, Cheng-Jui; Chen, Shih-Wei
2012-01-01
A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building's envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments.
The Fitness Effects of Men's Family Investments : A Test of Three Pathways in a Single Population.
Winking, Jeffrey; Koster, Jeremy
2015-09-01
Men's investments in parenting and long-term reproductive relationships are a hallmark feature of human reproduction and life history. The uniqueness of such male involvement among catarrhines has driven an extensive debate surrounding the selective pressures that led to and maintain such capacities in men. Three major pathways have been proposed through which men's involvement might confer fitness benefits: enhancing child well-being, increasing couple fertility, and decreasing likelihood of partner desertion. Previous research has explored the impact of father involvement on these factors individually, but here we present novel research that explores all three pathways within the same population, the Mayangna/Miskito horticulturalists of Nicaragua. Furthermore, we expand the traditional dichotomous measure of father presence/absence by using a continuous measure of overall male investment, as well as two continuous measures of its subcomponents: direct care and wealth. We find that men's investments are associated with children's growth and possibly with wife's marital satisfaction; however, they are not associated with couple fertility.
Autonomous Sensors for Measuring Continuously the Moisture and Salinity of a Porous Medium
Chavanne, Xavier; Frangi, Jean-Pierre
2017-01-01
The article describes a new field sensor to monitor continuously in situ moisture and salinity of a porous medium via measurements of its dielectric permittivity, conductivity and temperature. It intends to overcome difficulties and biases encountered with sensors based on the same sensitivity principle. Permittivity and conductivity are determined simultaneously by a self-balanced bridge, which measures directly the admittance of sensor electrodes in medium. All electric biases are reduced and their residuals taken into account by a physical model of the instrument, calibrated against reference fluids. Geometry electrode is optimized to obtain a well representative sample of the medium. The sensor also permits acquiring a large amount of data at high frequency (six points every hour, and even more) and to access it rapidly, even in real time, owing to autonomy capabilities and wireless communication. Ongoing developments intend to simplify and standardize present sensors. Results of field trials of prototypes in different environments are presented. PMID:28492471
Autonomous Sensors for Measuring Continuously the Moisture and Salinity of a Porous Medium.
Chavanne, Xavier; Frangi, Jean-Pierre
2017-05-11
The article describes a new field sensor to monitor continuously in situ moisture and salinity of a porous medium via measurements of its dielectric permittivity, conductivity and temperature. It intends to overcome difficulties and biases encountered with sensors based on the same sensitivity principle. Permittivity and conductivity are determined simultaneously by a self-balanced bridge, which measures directly the admittance of sensor electrodes in medium. All electric biases are reduced and their residuals taken into account by a physical model of the instrument, calibrated against reference fluids. Geometry electrode is optimized to obtain a well representative sample of the medium. The sensor also permits acquiring a large amount of data at high frequency (six points every hour, and even more) and to access it rapidly, even in real time, owing to autonomy capabilities and wireless communication. Ongoing developments intend to simplify and standardize present sensors. Results of field trials of prototypes in different environments are presented.
Hung, San-Shan; Chang, Chih-Yuan; Hsu, Cheng-Jui; Chen, Shih-Wei
2012-01-01
A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building's envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments. PMID:23012529
NASA Astrophysics Data System (ADS)
Li, Weiyao; Huang, Guanhua; Xiong, Yunwu
2016-04-01
The complexity of the spatial structure of porous media, randomness of groundwater recharge and discharge (rainfall, runoff, etc.) has led to groundwater movement complexity, physical and chemical interaction between groundwater and porous media cause solute transport in the medium more complicated. An appropriate method to describe the complexity of features is essential when study on solute transport and conversion in porous media. Information entropy could measure uncertainty and disorder, therefore we attempted to investigate complexity, explore the contact between the information entropy and complexity of solute transport in heterogeneous porous media using information entropy theory. Based on Markov theory, two-dimensional stochastic field of hydraulic conductivity (K) was generated by transition probability. Flow and solute transport model were established under four conditions (instantaneous point source, continuous point source, instantaneous line source and continuous line source). The spatial and temporal complexity of solute transport process was characterized and evaluated using spatial moment and information entropy. Results indicated that the entropy increased as the increase of complexity of solute transport process. For the point source, the one-dimensional entropy of solute concentration increased at first and then decreased along X and Y directions. As time increased, entropy peak value basically unchanged, peak position migrated along the flow direction (X direction) and approximately coincided with the centroid position. With the increase of time, spatial variability and complexity of solute concentration increase, which result in the increases of the second-order spatial moment and the two-dimensional entropy. Information entropy of line source was higher than point source. Solute entropy obtained from continuous input was higher than instantaneous input. Due to the increase of average length of lithoface, media continuity increased, flow and solute transport complexity weakened, and the corresponding information entropy also decreased. Longitudinal macro dispersivity declined slightly at early time then rose. Solute spatial and temporal distribution had significant impacts on the information entropy. Information entropy could reflect the change of solute distribution. Information entropy appears a tool to characterize the spatial and temporal complexity of solute migration and provides a reference for future research.
Measurement of greenhouse gases in UAE by using Unmanned Aerial Vehicle (UAV)
NASA Astrophysics Data System (ADS)
Abou-Elnour, Ali; Odeh, Mohamed; Abdelrhman, Mohammed; Balkis, Ahmed; Amira, Abdelraouf
2017-04-01
In the present work, a reliable and low cost system has been designed and implemented to measure greenhouse gases (GHG) in United Arab Emirates (UAE) by using unmanned aerial vehicle (UAV). A set of accurate gas, temperature, pressure, humidity sensors are integrated together with a wireless communication system on a microcontroller based platform to continuously measure the required data. The system instantaneously sends the measured data to a center monitoring unit via the wireless communication system. In addition, the proposed system has the features that all measurements are recorded directly in a storage device to allow effective monitoring in regions with weak or no wireless coverage. The obtained data will be used in all further sophisticated calculations for environmental research and monitoring purposes.
Oxidation kinetics of a continuous carbon phase in a nonreactive matrix
NASA Technical Reports Server (NTRS)
Eckel, Andrew J.; Cawley, James D.; Parthasarathy, Triplicane A.
1995-01-01
Analytical solutions of and experimental results on the oxidation kinetics of carbon in a pore are presented. Reaction rate, reaction sequence, oxidant partial pressure, total system pressure, pore/crack dimensions, and temperature are analyzed with respect to the influence of each on an overall linear-parabolic rate relationship. Direct measurement of carbon recession is performed using two microcomposite model systems oxidized in the temperature range of 700 to 1200 C, and for times to 35 h. Experimental results are evaluated using the derived analytical solutions. Implications on the oxidation resistance of continuous-fiber-reinforced ceramic-matrix composites containing a carbon constituent are discussed.
NASA Technical Reports Server (NTRS)
Andrews, Arlyn E.; Burris, John F.; Abshire, James B.; Krainak, Michael A.; Riris, Haris; Sun, Xiao-Li; Collatz, G. James
2002-01-01
Ground-based LIDAR observations can potentially provide continuous profiles of CO2 through the planetary boundary layer and into the free troposphere. We will present initial atmospheric measurements from a prototype system that is based on components developed by the telecommunications industry. Preliminary measurements and instrument performance calculations indicate that an optimized differential absorption LIDAR (DIAL) system will be capable of providing continuous hourly averaged profiles with 250m vertical resolution and better than 1 ppm precision at 1 km. Precision increases (decreases) at lower (higher) altitudes and is directly proportional to altitude resolution and acquisition time. Thus, precision can be improved if temporal or vertical resolution is sacrificed. Our approach measures absorption by CO2 of pulsed laser light at 1.6 microns backscattered from atmospheric aerosols. Aerosol concentrations in the planetary boundary layer are relatively high and are expected to provide adequate signal returns for the desired resolution. The long-term goal of the project is to develop a rugged, autonomous system using only commercially available components that can be replicated inexpensively for deployment in a monitoring network.
Lisha, Nadra E.; Grana, Rachel; Sun, Ping; Rohrbach, Louise; Spruijt-Metz, Donna; Reifman, Alan; Sussman, Steve
2013-01-01
It is now presumed that youth do not move directly from adolescence to adulthood, but rather pass through a transitional period, “emerging adulthood.” The Revised Inventory of the Dimensions of Emerging Adulthood (IDEA-R) is a self-report instrument developed to examine the attributes of this period. “At-risk” youth appear to enter emerging adulthood developmental tasks at a slightly earlier age than general population youth. In the present study, a 21-item version of the IDEA was administered to a sample of 1676 “at-risk” continuation (alternative) high school students in Southern California. Principal component factor analysis with orthogonal rotation revealed three factors the authors labeled “Identity Exploration,” “Experimentation/Possibilities,” and “Independence.” Overall, the measure demonstrated high internal consistency. Construct validity analyses indicated that the measure was correlated with demographics, risk behaviors, and psychological measures. The authors conclude that the IDEA-R is a useful instrument for measuring emerging adulthood in at-risk populations. PMID:22786874
Lisha, Nadra E; Grana, Rachel; Sun, Ping; Rohrbach, Louise; Spruijt-Metz, Donna; Reifman, Alan; Sussman, Steve
2014-06-01
It is now presumed that youth do not move directly from adolescence to adulthood, but rather pass through a transitional period, "emerging adulthood." The Revised Inventory of the Dimensions of Emerging Adulthood (IDEA-R) is a self-report instrument developed to examine the attributes of this period. "At-risk" youth appear to enter emerging adulthood developmental tasks at a slightly earlier age than general population youth. In the present study, a 21-item version of the IDEA was administered to a sample of 1676 "at-risk" continuation (alternative) high school students in Southern California. Principal component factor analysis with orthogonal rotation revealed three factors the authors labeled "Identity Exploration," "Experimentation/Possibilities," and "Independence." Overall, the measure demonstrated high internal consistency. Construct validity analyses indicated that the measure was correlated with demographics, risk behaviors, and psychological measures. The authors conclude that the IDEA-R is a useful instrument for measuring emerging adulthood in at-risk populations. © The Author(s) 2012.
Laser Doppler flowmetry for measurement of laminar capillary blood flow in the horse
NASA Astrophysics Data System (ADS)
Adair, Henry S., III
1998-07-01
Current methods for in vivo evaluation of digital hemodynamics in the horse include angiography, scintigraphy, Doppler ultrasound, electromagnetic flow and isolated extracorporeal pump perfused digit preparations. These techniques are either non-quantifiable, do not allow for continuous measurement, require destruction of the horse orare invasive, inducing non- physiologic variables. In vitro techniques have also been reported for the evaluation of the effects of vasoactive agents on the digital vessels. The in vitro techniques are non-physiologic and have evaluated the vasculature proximal to the coronary band. Lastly, many of these techniques require general anesthesia or euthanasia of the animal. Laser Doppler flowmetry is a non-invasive, continuous measure of capillary blood flow. Laser Doppler flowmetry has been used to measure capillary blood flow in many tissues. The principle of this method is to measure the Doppler shift, that is, the frequency change that light undergoes when reflected by moving objects, such as red blood cells. Laser Doppler flowmetry records a continuous measurement of the red cell motion in the outer layer of the tissue under study, with little or no influence on physiologic blood flow. This output value constitutes the flux of red cells and is reported as capillary perfusion units. No direct information concerning oxygen, nutrient or waste metabolite exchange in the surrounding tissue is obtained. The relationship between the flowmeter output signal and the flux of red blood cells is linear. The principles of laser Doppler flowmetry will be discussed and the technique for laminar capillary blood flow measurements will be presented.
Rodriguez, Christina M
2006-05-01
This study examined a model wherein children's attributional style mediates the relationship between parental physical child-abuse risk and children's internalizing problems. Using structural equation modeling, three indices of abuse risk were selected (child abuse potential, physical discipline use, and dysfunctional parenting style) and two indices of children's internalizing problems (depression and anxiety). The sample included 75 parent-child dyads, in which parents reported on their abuse risk and children independently completed measures of depressive and anxious symptomatology and a measure on their attributional style. Findings supported the model that children's attributional style for positive events (but not negative events) partially mediated the relationship between abuse risk and internalizing symptoms, with significant direct and indirect effects of abuse risk on internalizing symptomatology. Future directions to continue evaluating additional mediators and other possible contextual variables are discussed.
Comparative study of gas-analyzing systems designed for continuous monitoring of TPP emissions
NASA Astrophysics Data System (ADS)
Kondrat'eva, O. E.; Roslyakov, P. V.
2017-06-01
Determining the composition of combustion products is important in terms of both control of emissions into the atmosphere from thermal power plants and optimization of fuel combustion processes in electric power plants. For this purpose, the concentration of oxygen, carbon monoxide, nitrogen, and sulfur oxides in flue gases is monitored; in case of solid fuel combustion, fly ash concentration is monitored as well. According to the new nature conservation law in Russia, all large TPPs shall be equipped with continuous emission monitoring and measurement systems (CEMMS) into the atmosphere. In order to ensure the continuous monitoring of pollutant emissions, direct round-the-clock measurements are conducted with the use of either domestically produced or imported gas analyzers and analysis systems, the operation of which is based on various physicochemical methods and which can be generally used when introducing CEMMS. Depending on the type and purposes of measurement, various kinds of instruments having different features may be used. This article represents a comparative study of gas-analysis systems for measuring the content of polluting substances in exhaust gases based on various physical and physicochemical analysis methods. It lists basic characteristics of the methods commonly applied in the area of gas analysis. It is proven that, considering the necessity of the long-term, continuous operation of gas analyzers for monitoring and measurement of pollutant emissions into the atmosphere, as well as the requirements for reliability and independence from aggressive components and temperature of the gas flow, it is preferable to use optical gas analyzers for the aforementioned purposes. In order to reduce the costs of equipment comprising a CEMMS at a TPP and optimize the combustion processes, electrochemical and thermomagnetic gas analyzers may also be used.
Continuous direct compression as manufacturing platform for sustained release tablets.
Van Snick, B; Holman, J; Cunningham, C; Kumar, A; Vercruysse, J; De Beer, T; Remon, J P; Vervaet, C
2017-03-15
This study presents a framework for process and product development on a continuous direct compression manufacturing platform. A challenging sustained release formulation with high content of a poorly flowing low density drug was selected. Two HPMC grades were evaluated as matrix former: standard Methocel CR and directly compressible Methocel DC2. The feeding behavior of each formulation component was investigated by deriving feed factor profiles. The maximum feed factor was used to estimate the drive command and depended strongly upon the density of the material. Furthermore, the shape of the feed factor profile allowed definition of a customized refill regime for each material. Inline NIRs was used to estimate the residence time distribution (RTD) in the mixer and monitor blend uniformity. Tablet content and weight variability were determined as additional measures of mixing performance. For Methocel CR, the best axial mixing (i.e. feeder fluctuation dampening) was achieved when an impeller with high number of radial mixing blades operated at low speed. However, the variability in tablet weight and content uniformity deteriorated under this condition. One can therefore conclude that balancing axial mixing with tablet quality is critical for Methocel CR. However, reformulating with the direct compressible Methocel DC2 as matrix former improved tablet quality vastly. Furthermore, both process and product were significantly more robust to changes in process and design variables. This observation underpins the importance of flowability during continuous blending and die-filling. At the compaction stage, blends with Methocel CR showed better tabletability driven by a higher compressibility as the smaller CR particles have a higher bonding area. However, tablets of similar strength were achieved using Methocel DC2 by targeting equal porosity. Compaction pressure impacted tablet properties and dissolution. Hence controlling thickness during continuous manufacturing of sustained release tablets was crucial to ensure reproducible dissolution. Copyright © 2017 Elsevier B.V. All rights reserved.
Stoffel, T.; Andreas, A.
1981-07-15
The SRRL was established at the Solar Energy Research Institute (now NREL) in 1981 to provide continuous measurements of the solar resources, outdoor calibrations of pyranometers and pyrheliometers, and to characterize commercially available instrumentation. The SRRL is an outdoor laboratory located on South Table Mountain, a mesa providing excellent solar access throughout the year, overlooking Denver. Beginning with the basic measurements of global horizontal irradiance, direct normal irradiance and diffuse horizontal irradiance at 5-minute intervals, the SRRL Baseline Measurement System now produces more than 130 data elements at 1-min intervals that are available from the Measurement & Instrumentation Data Center Web site. Data sources include global horizontal, direct normal, diffuse horizontal (from shadowband and tracking disk), global on tilted surfaces, reflected solar irradiance, ultraviolet, infrared (upwelling and downwelling), photometric and spectral radiometers, sky imagery, and surface meteorological conditions (temperature, relative humidity, barometric pressure, precipitation, snow cover, wind speed and direction at multiple levels). Data quality control and assessment include daily instrument maintenance (M-F) with automated data quality control based on real-time examinations of redundant instrumentation and internal consistency checks using NREL's SERI-QC methodology. Operators are notified of equipment problems by automatic e-mail messages generated by the data acquisition and processing system. Radiometers are recalibrated at least annually with reference instruments traceable to the World Radiometric Reference (WRR).
Multiple-Point Mass Flux Measurement System Using Rayleigh Scattering
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Elam, Kristie A.; Clem, Michelle M.
2009-01-01
A multiple-point Rayleigh scattering diagnostic is being developed to provide mass flux measurements in gas flows. Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous density, temperature, and velocity measurements. Rayleigh scattered light from a focused 18 Watt continuous-wave laser beam is directly imaged through a solid Fabry-Perot etalon onto a CCD detector which permits spectral analysis of the light. The spatial resolution of the measurements is governed by the locations of interference fringes, which can be changed by altering the etalon characteristics. A prototype system has been used to acquire data in a Mach 0.56 flow to demonstrate feasibility of using this system to provide mass flux measurements. Estimates of measurement uncertainty and recommendations for system improvements are presented
Measurement of particle directions in low earth orbit with a Timepix
NASA Astrophysics Data System (ADS)
Gohl, St.; Bergmann, B.; Granja, C.; Owens, A.; Pichotka, M.; Polansky, S.; Pospisil, S.
2016-11-01
In Low Earth Orbit (LEO) in space electronic equipment aboard satellites and space crews are exposed to high ionizing radiation levels. To reduce radiation damage and the exposure of astronauts, to improve shielding and to assess dose levels, it is valuable to know the composition of the radiation fields and particle directions. The presented measurements are carried out with the Space Application of Timepix Radiation Monitor (SATRAM). There, a Timepix detector (300 μm thick silicon sensor, pixel pitch 55 μm, 256 × 256 pixels) is attached to the Proba-V, an earth observing satellite of the European Space Agency (ESA). The Timepix detector's capability was used to determine the directions of energetic charged particles and their corresponding stopping powers. Data are continuously taken at an altitude of 820 km on a sun-synchronous orbit. The particles pitch angles with respect to the sensor layer were measured and converted to an Earth Centred Earth Fixed (ECEF) coordinate system. Deviations from an isotropic field are extracted by normalization of the observed angular distributions by a Geant4 Monte Carlo simulation —taking the systematics of the reconstruction algorithm and the pixelation into account.
Occupational exposure to whole body vibration-train drivers.
Birlik, Gülin
2009-01-01
Whole body vibration exposure of the train drivers working for State Railway Lines is assessed by referring to ISO standard 2631 -1 and EU directive 2002/44/EC. The vibration measurements were done in the cabins of suburban and intercity train drivers. Suburban train driver performs his job usually in standing posture. Whereas intercity train driver works generally in seated (bending forward) posture and exposed to longer periods of continuous vibration, compared to suburban train drivers. The mean accelerations, a, along lateral, y, and vertical, z, directions measured on the driver seat (on the cabin floor) of the intercity (suburban) train were 1.4a (y) = 0.55 (0.28) m/s(2) and a (z) = 0.65 (0.23) m/s(2). Daily exposure action values suggested in EU directive are exceeded in case of intercity train drivers and their exposure falls within the health caution zone of ISO 2631-1. Intercity train drivers are therefore under the risk of having spinal disorders. A health surveillance plan requiring every five years the reassessment of the state of the spinal system of train drivers is suggested. As an early preventive measure, extended work day or more than one shift in a day is advised to be discouraged.
Kang, Ningxuan; Zhao, Cong; Li, Jingshan; Horst, John A.
2018-01-01
Key performance indicators (KPIs) are critical for manufacturing operation management and continuous improvement (CI). In modern manufacturing systems, KPIs are defined as a set of metrics to reflect operation performance, such as efficiency, throughput, availability, from productivity, quality and maintenance perspectives. Through continuous monitoring and measurement of KPIs, meaningful quantification and identification of different aspects of operation activities can be obtained, which enable and direct CI efforts. A set of 34 KPIs has been introduced in ISO 22400. However, the KPIs in a manufacturing system are not independent, and they may have intrinsic mutual relationships. The goal of this paper is to introduce a multi-level structure for identification and analysis of KPIs and their intrinsic relationships in production systems. Specifically, through such a hierarchical structure, we define and layer KPIs into levels of basic KPIs, comprehensive KPIs and their supporting metrics, and use it to investigate the relationships and dependencies between KPIs. Such a study can provide a useful tool for manufacturing engineers and managers to measure and utilize KPIs for CI. PMID:29398722
Kang, Ningxuan; Zhao, Cong; Li, Jingshan; Horst, John A
2016-01-01
Key performance indicators (KPIs) are critical for manufacturing operation management and continuous improvement (CI). In modern manufacturing systems, KPIs are defined as a set of metrics to reflect operation performance, such as efficiency, throughput, availability, from productivity, quality and maintenance perspectives. Through continuous monitoring and measurement of KPIs, meaningful quantification and identification of different aspects of operation activities can be obtained, which enable and direct CI efforts. A set of 34 KPIs has been introduced in ISO 22400. However, the KPIs in a manufacturing system are not independent, and they may have intrinsic mutual relationships. The goal of this paper is to introduce a multi-level structure for identification and analysis of KPIs and their intrinsic relationships in production systems. Specifically, through such a hierarchical structure, we define and layer KPIs into levels of basic KPIs, comprehensive KPIs and their supporting metrics, and use it to investigate the relationships and dependencies between KPIs. Such a study can provide a useful tool for manufacturing engineers and managers to measure and utilize KPIs for CI.
NASA Astrophysics Data System (ADS)
Ha, S. W.; Lee, S. H.; Jeon, W. T.; Joo, Y. J.; Lee, K. K.
2014-12-01
Carbon dioxide (CO2) leakage into the shallow aquifer is one of the main concerns at a CO2 sequestration site. Various hydrogeochemical parameters have been suggested to determine the leakage (i.e., pH, EC, Alkalinity, Ca and δ13C). For the practical point of view, direct and continuous measurement of the dissolved CO2 concentration at the proper location can be the most useful strategy for the CO2 leakage detection in a shallow aquifer. In order to enhance possibility of identifying leaked CO2, monitoring location should be determined with regard to the shallow aquifer heterogeneity. In this study, a series of experiments were conducted to investigate the effects of heterogeneity on the dissolved CO2 concentrations. A 2-D sand tank of homogeneous medium sands including a single heterogeneity layer was designed. Two NDIR CO2 sensors, modified for continuous measuring in aquatic system, were installed above and below the single heterogeneous layer (clay, fine and medium sand lenses). Also, temperature and water contents were measured continuously at a same position. Bromocresol purple which is one of the acid-base indicator was used to visualize CO2 migration. During the gas phase CO2 injection at the bottom of the sand tank, dissolved CO2 in the water is continuously measured. In the results, significant differences of concentrations were observed due to the presence of heterogeneity layer, even the locations were close. These results suggested that monitoring location should be determined considering vertical heterogeneity of shallow aquifer at a CO2 leakage site.
Qiu, Jingjing; Hajibabaei, Hamed; Nellist, Michael R.; ...
2017-08-17
Electrocatalysts improve the efficiency of light-absorbing semiconductor photoanodes driving the oxygen evolution reaction, but the precise function(s) of the electrocatalysts remains unclear. We directly measure, for the first time, the interface carrier transport properties of a prototypical visible-light-absorbing semiconductor, α-Fe 2O 3, in contact with one of the fastest known water oxidation catalysts, Ni 0.8Fe 0.2O x, by directly measuring/controlling the current and/or voltage at the Ni 0.8Fe 0.2O x catalyst layer using a second working electrode. The measurements demonstrate that the majority of photogenerated holes in α-Fe 2O 3 directly transfer to the catalyst film over a wide rangemore » of conditions and that the Ni 0.8Fe 0.2O x is oxidized by photoholes to an operating potential sufficient to drive water oxidation at rates that match the photocurrent generated by the α-Fe 2O 3. The Ni 0.8Fe 0.2O x therefore acts as both a hole-collecting contact and a catalyst for the photoelectrochemical water oxidation process. Separate measurements show that the illuminated junction photovoltage across the α-Fe 2O 3|Ni 0.8Fe 0.2O x interface is significantly decreased by the oxidation of Ni 2+ to Ni 3+ and the associated increase in the Ni 0.8Fe 0.2O x electrical conductivity. Finally, in sum, the results illustrate the underlying operative charge-transfer and photovoltage generation mechanisms of catalyzed photoelectrodes, thus guiding their continued improvement.« less
A new device for continuous monitoring the CO2 dissolved in water
NASA Astrophysics Data System (ADS)
de Gregorio, S.; Camarda, M.; Cappuzzo, S.; Giudice, G.; Gurrieri, S.; Longo, M.
2009-04-01
The measurements of dissolved CO2 in water are common elements of industrial processes and scientific research. In order to perform gas dissolved measurements is required to separate the dissolved gaseous phase from water. We developed a new device able to separate the gases phase directly in situ and well suitable for continuous measuring the CO2 dissolved in water. The device is made by a probe of a polytetrafluorethylene (PTFE) tube connected to an I.R. spectrophotometer (I.R.) and a pump. The PTFE is a polymeric semi-permeable membrane and allows the permeation of gas in the system. Hence, this part of the device is dipped in water in order to equilibrate the probe headspace with the dissolved gases. The partial pressure of the gas i in the headspace at equilibrium (Pi) follows the Henry's law: Pi=Hi•Ci, where Hi is the Henry's constant and Ci is the dissolved concentration of gas i. After the equilibrium is achieved, the partial pressure of CO2 inside the tube is equal to the partial pressure of dissolved CO2. The concentration of CO2 is measured by the I.R. connected to the tube. The gas is moved from the tube headspace to the I.R. by using the pump. In order to test the device and assess the best operating condition, several experimental were performed in laboratory. All the test were executed in a special apparatus where was feasible to create controlled atmospheres. Afterward the device has been placed in a draining tunnel sited in the Mt. Etna Volcano edifice (Italy). The monitored groundwater intercepts the Pernicana Fault, along which degassing phenomena are often observed. The values recorded by the station result in agreement with monthly directly measurements of dissolved CO2 partial pressure.
Lead Slowing-Down Spectrometry for Spent Fuel Assay: FY11 Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Glen A.; Casella, Andrew M.; Haight, R. C.
2011-08-01
Executive Summary Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than themore » approximately 10% typical of today’s confirmatory assay methods. This document is a progress report for FY2011 collaboration activities. Progress made by the collaboration in FY2011 continues to indicate the promise of LSDS techniques applied to used fuel. PNNL developed an empirical model based on calibration of the LSDS to responses generated from well-characterized used fuel. The empirical model demonstrated the potential for the direct and independent assay of the sum of the masses of 239Pu and 241Pu to within approximately 3% over a wide used fuel parameter space. Similar results were obtained using a perturbation approach developed by LANL. Benchmark measurements have been successfully conducted at LANL and at RPI using their respective LSDS instruments. The ISU and UNLV collaborative effort is focused on the fabrication and testing of prototype fission chambers lined with ultra-depleted 238U and 232Th, and uranium deposition on a stainless steel disc using spiked U3O8 from room temperature ionic liquid was successful, with improving thickness obtained. In FY2012, the collaboration plans a broad array of activities. PNNL will focus on optimizing its empirical model and minimizing its reliance on calibration data, as well continuing efforts on developing an analytical model. Additional measurements are planned at LANL and RPI. LANL measurements will include a Pu sample, which is expected to provide more counts at longer slowing-down times to help identify discrepancies between experimental data and MCNPX simulations. RPI measurements will include the assay of an entire fresh fuel assembly for the study of self-shielding effects as well as the ability to detect diversion by detecting a missing fuel pin in the fuel assembly. The development of threshold neutron sensors will continue, and UNLV will calibrate existing ultra-depleted uranium deposits at ISU.« less
Wavefront Compensation Segmented Mirror Sensing and Control
NASA Technical Reports Server (NTRS)
Redding, David C.; Lou, John Z.; Kissil, Andrew; Bradford, Charles M.; Woody, David; Padin, Stephen
2012-01-01
The primary mirror of very large submillimeter-wave telescopes will necessarily be segmented into many separate mirror panels. These panels must be continuously co-phased to keep the telescope wavefront error less than a small fraction of a wavelength, to ten microns RMS (root mean square) or less. This performance must be maintained continuously across the full aperture of the telescope, in all pointing conditions, and in a variable thermal environment. A wavefront compensation segmented mirror sensing and control system, consisting of optical edge sensors, Wavefront Compensation Estimator/Controller Soft ware, and segment position actuators is proposed. Optical edge sensors are placed two per each segment-to-segment edge to continuously measure changes in segment state. Segment position actuators (three per segment) are used to move the panels. A computer control system uses the edge sensor measurements to estimate the state of all of the segments and to predict the wavefront error; segment actuator commands are computed that minimize the wavefront error. Translational or rotational motions of one segment relative to the other cause lateral displacement of the light beam, which is measured by the imaging sensor. For high accuracy, the collimator uses a shaped mask, such as one or more slits, so that the light beam forms a pattern on the sensor that permits sensing accuracy of better than 0.1 micron in two axes: in the z or local surface normal direction, and in the y direction parallel to the mirror surface and perpendicular to the beam direction. Using a co-aligned pair of sensors, with the location of the detector and collimated light source interchanged, four degrees of freedom can be sensed: transverse x and y displacements, as well as two bending angles (pitch and yaw). In this approach, each optical edge sensor head has a collimator and an imager, placing one sensor head on each side of a segment gap, with two parallel light beams crossing the gap. Two sets of optical edge sensors are used per segment-to-segment edge, separated by a finite distance along the segment edge, for four optical heads, each with an imager and a collimator. By orienting the beam direction of one edge sensor pair to be +45 away from the segment edge direction, and the other sensor pair to be oriented -45 away from the segment edge direction, all six degrees of freedom of relative motion between the segments can be measured with some redundancy. The software resides in a computer that receives each of the optical edge sensor signals, as well as telescope pointing commands. It feeds back the edge sensor signals to keep the primary mirror figure within specification. It uses a feed-forward control to compensate for global effects such as decollimation of the primary and secondary mirrors due to gravity sag as the telescope pointing changes to track science objects. Three segment position actuators will be provided per segment to enable controlled motions in the piston, tip, and tilt degrees of freedom. These actuators are driven by the software, providing the optical changes needed to keep the telescope phased.
A guidance and navigation system for continuous low thrust vehicles. M.S. Thesis
NASA Technical Reports Server (NTRS)
Tse, C. J. C.
1973-01-01
A midcourse guidance and navigation system for continuous low thrust vehicles is described. A set of orbit elements, known as the equinoctial elements, are selected as the state variables. The uncertainties are modelled statistically by random vector and stochastic processes. The motion of the vehicle and the measurements are described by nonlinear stochastic differential and difference equations respectively. A minimum time nominal trajectory is defined and the equation of motion and the measurement equation are linearized about this nominal trajectory. An exponential cost criterion is constructed and a linear feedback guidance law is derived to control the thrusting direction of the engine. Using this guidance law, the vehicle will fly in a trajectory neighboring the nominal trajectory. The extended Kalman filter is used for state estimation. Finally a short mission using this system is simulated. The results indicate that this system is very efficient for short missions.
Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, Robert; Knox, Hunter Anne; James, Stephanie
2016-01-01
We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry)more » are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.« less
Overview of the United States Department of Energy's ARM (Atmospheric Radiation Measurement) Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stokes, G.M.; Tichler, J.L.
The Department of Energy (DOE) is initiating a major atmospheric research effort, the Atmospheric Radiation Measurement Program (ARM). The program is a key component of DOE's research strategy to address global climate change and is a direct continuation of DOE's decade-long effort to improve the ability of General Circulation Models (GCMs) to provide reliable simulations of regional, and long-term climate change in response to increasing greenhouse gases. The effort is multi-disciplinary and multi-agency, involving universities, private research organizations and more than a dozen government laboratories. The objective of the ARM Research is to provide an experimental testbed for the studymore » of important atmospheric effects, particularly cloud and radiative processes, and to test parameterizations of these processes for use in atmospheric models. This effort will support the continued and rapid improvement of GCM predictive capability. 2 refs.« less
van de Ven, Hardy A; Brouwer, Sandra; Koolhaas, Wendy; Goudswaard, Anneke; de Looze, Michiel P; Kecklund, Göran; Almansa, Josue; Bültmann, Ute; van der Klink, Jac J L
2016-09-01
In this cross-sectional study associations were examined between eight shift schedule characteristics with shift-specific sleep complaints and need for recovery and generic health and performance measures. It was hypothesized that shift schedule characteristics meeting ergonomic recommendations are associated with better sleep, need for recovery, health and performance. Questionnaire data were collected from 491 shift workers of 18 companies with 9 regular (semi)-continuous shift schedules. The shift schedule characteristics were analyzed separately and combined using multilevel linear regression models. The hypothesis was largely not confirmed. Relatively few associations were found, of which the majority was in the direction as expected. In particular early starts of morning shifts and many consecutive shifts seem to be avoided. The healthy worker effect, limited variation between included schedules and the cross-sectional design might explain the paucity of significant results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Initial Thrust Measurements of Marshall's Ion-ioN Thruster
NASA Technical Reports Server (NTRS)
Schloeder, Natalie R.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane
2015-01-01
Electronegative ion thrusters are a variation of tradition gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. Following the continued development of electronegative ion thruster technology as exhibited by the PEGASES (Plasma Propulsion with Electronegative GASES) thruster, direct thrust measurements are required to push interest in electronegative ion thruster technology forward. For this work, direct thrust measurements of the MINT (Marshall's Ion-ioN Thruster) will be taken on a hanging pendulum thrust stand for propellant mixtures of Sulfur Hexafluoride and Argon at volumetric flow rates of 5-25 sccm at radio frequency power levels of 100-600 watts at a radio frequency of 13.56 MHz. Acceleration grid operation is operated using a square waveform bias of +/-300 volts at a frequency of 25 kHz.
Future Directions in Ultraviolet Spectroscopy
NASA Technical Reports Server (NTRS)
Sonneborn, George (Editor); Moos, Warren; VanSteenberg, Michael
2009-01-01
The 'Future Directions in Ultraviolet Spectroscopy' conference was inspired by the accomplishments of the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission. The FUSE mission was launched in June 1999 and spent over eight years exploring the far-ultraviolet universe, gathering over 64 million seconds of high-resolution spectral data on nearly 3000 astronomical targets. The goal of this conference was not only to celebrate the accomplishments of FUSE, but to look toward the future and understand the major scientific drivers for the ultraviolet capabilities of the next generation fo space observatories. Invited speakers presented discussions based on measurements made by FUSE and other ultraviolet instruments, assessed their connection with measurements made with other techniques and, where appropriate, discussed the implications of low-z measurements for high-z phenomena. In addition to the oral presentations, many participants presented poster papers. The breadth of these presentation made it clear that much good science is still in progress with FUSE data and that these result will continue to have relevance in many scientific areas.
Forquer, Heather A; Christensen, John L; Tan, Andy S L
2014-01-01
While eHealth technologies are promisingly efficient and widespread, theoretical frameworks capable of predicting long-term use, termed continuance, are lacking. Attempts to extend prominent information technology (IT) theories to the area of eHealth have been limited by small sample sizes, cross-sectional designs, self-reported as opposed to actual use measures, and a focus on technology adoption rather than continuance. To address these gaps in the literature, this analysis includes empirical evidence of actual use of an eHealth technology over the course of one year. This large (n = 4,570) longitudinal study focuses on older adults, a population with many health needs and among whom eHealth use may be particularly important. With three measurement points over the course of a year, this study examined the effects of utilitarian and hedonic beliefs on the continued use of an eHealth newsletter using constructs from IT adoption and continuance theories. Additional analyses compared the relative strength of intentions compared to earlier use in predicting later use. Usage intention was strongly predicted by both hedonic beliefs and utilitarian beliefs. In addition, utilitarian beliefs had both direct effects on intention and indirect effects, mediated by hedonic beliefs. While intention predicted subsequent use, earlier use was a significantly stronger predictor of use than intention. These findings make a theoretical contribution to an emerging literature by shedding light on the complex interplay of reasoned action and automaticity in the context of eHealth continuance.
NASA Technical Reports Server (NTRS)
Stewart, R. H.
1982-01-01
Active and passive spaceborne instruments that can observe the sea are discussed. Attention is given to satellite observations of ocean surface temperature and heating, wind speed and direction, ocean currents, wave height, ocean color, and sea ice. Specific measurements now being made from space are described, the accuracy of various instruments is considered, and problems associated with the analysis of satellite data are examined. It is concluded that the satellites and techniques used by different nations should be sufficiently standard that data from one satellite can be directly compared with data from another and that accurate calibration and overlap of satellite data are necessary to confirm the continuity and homogeneity of the data.
Folic Acid Food Fortification—Its History, Effect, Concerns, and Future Directions
Crider, Krista S.; Bailey, Lynn B.; Berry, Robert J.
2011-01-01
Periconceptional intake of folic acid is known to reduce a woman’s risk of having an infant affected by a neural tube birth defect (NTD). National programs to mandate fortification of food with folic acid have reduced the prevalence of NTDs worldwide. Uncertainty surrounding possible unintended consequences has led to concerns about higher folic acid intake and food fortification programs. This uncertainty emphasizes the need to continually monitor fortification programs for accurate measures of their effect and the ability to address concerns as they arise. This review highlights the history, effect, concerns, and future directions of folic acid food fortification programs. PMID:22254102
Hybrid catadioptric system for advanced optical cavity velocimetry
Frayer, Daniel K.
2018-02-06
A probe including reflector is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface by the probe and then reflected back from the surface, is Doppler shifted by the moving surface, collected into probe, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to one or more lens groups and a reflector, such as a parabolic reflector having a mirrored interior surface.
Intranet and Internet metrological workstation with photonic sensors and transmission
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.; Pozniak, Krzysztof T.; Dybko, Artur
1999-05-01
We describe in this paper a part of a telemetric network which consists of a workstation with photonic measurement and communication interfaces, structural fiber optic cabling (10/100BaseFX and CAN-FL), and photonic sensors with fiber optic interfaces. The station is equipped with direct photonic measurement interface and most common measuring standards converter (RS, GPIB) with fiber optic I/O CAN bus, O/E converters, LAN and modem ports. The station was connected to the Intranet (ipx/spx) and Internet (tcp/ip) with separate IP number and DNS, WINS names. Virtual measuring environment system program was written specially for such an Intranet and Internet station. The measurement system program communicated with the user via a Graphical User's Interface (GUI). The user has direct access to all functions of the measuring station system through appropriate layers of GUI: telemetric, transmission, visualization, processing, information, help and steering of the measuring system. We have carried out series of thorough simulation investigations and tests of the station using WWW subsystem of the Internet. We logged into the system through the LAN and via modem. The Internet metrological station works continuously under the address http://nms.ipe.pw.edu.pl/nms. The station and the system hear the short name NMS (from Network Measuring System).
Automated Continuous Commissioning of Commercial Buildings
2011-09-01
matched pair of supply and return chilled water temperature sensors, a pyranometer , and aspirated wet and dry bulb temperature sensors for the weather...temp X Aspirated weather station is required. Outside air wet bulb X Pyranometer X Wind speed & direction X Main power meter X Lighting load power X...Aspirated weather station is required. Outside air wet bulb X Pyranometer X Provides measurements on global horizontal solar radiation, beam radiation and
Earth Resources. A Continuing Bibliography with Indexes
1987-11-01
Airborne microwave Doppler measurements of ocean of Guinea according to ground-based and satellite Coral reef remote sensing applications wave directional...understanding of internal Coral reef remote sensing applications an earth-to-satellite Hadamard transform laser long-path waves in the ocean p 20 A87-32951...classifications of coral reefs , and an are provided and new topographic features that are revealed are autocorrelation technique is being developed to
Nature of Emotion Categories: Comment on Cowen and Keltner.
Barrett, Lisa Feldman; Khan, Zulqarnain; Dy, Jennifer; Brooks, Dana
2017-12-22
Cowen and Keltner (2017) published the latest installment in a longstanding debate about whether measures of emotion organize themselves into categories or array themselves more continuously along affective dimensions. We discuss several notable features of the study and suggest future studies should consider asking questions more directly about physical and psychological variation within emotion categories as well as similarities between categories. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hansen, Richard A; Droege, Marcus
2005-06-01
Numerous studies have focused on the impact of direct-to-consumer (DTC) prescription drug advertising on consumer behavior and health outcomes. These studies have used various approaches to assess exposure to prescription drug advertising and to measure the subsequent effects of such advertisements. The objectives of this article are to (1) discuss measurement challenges involved in DTC advertising research, (2) summarize measurement approaches commonly identified in the literature, and (3) discuss contamination, time to action, and endogeneity as specific problems in measurement design and application. We conducted a review of the professional literature to identify illustrative approaches to advertising measurement. Specifically, our review of the literature focused on measurement of DTC advertising exposure and effect. We used the hierarchy-of-effects model to guide our discussion of processing and communication effects. Other effects were characterized as target audience action, sales, market share, and profit. Overall, existing studies have used a variety of approaches to measure advertising exposure and effect, yet the ability of measures to produce a valid and reliable understanding of the effects of DTC advertising can be improved. Our review provides a framework for conceptualizing DTC measurement, and can be used to identify gaps in the literature not sufficiently addressed by existing measures. Researchers should continue to explore correlations between exposure and effect of DTC advertising, but are obliged to improve and validate measurement in this area.
A map of abstract relational knowledge in the human hippocampal-entorhinal cortex.
Garvert, Mona M; Dolan, Raymond J; Behrens, Timothy Ej
2017-04-27
The hippocampal-entorhinal system encodes a map of space that guides spatial navigation. Goal-directed behaviour outside of spatial navigation similarly requires a representation of abstract forms of relational knowledge. This information relies on the same neural system, but it is not known whether the organisational principles governing continuous maps may extend to the implicit encoding of discrete, non-spatial graphs. Here, we show that the human hippocampal-entorhinal system can represent relationships between objects using a metric that depends on associative strength. We reconstruct a map-like knowledge structure directly from a hippocampal-entorhinal functional magnetic resonance imaging adaptation signal in a situation where relationships are non-spatial rather than spatial, discrete rather than continuous, and unavailable to conscious awareness. Notably, the measure that best predicted a behavioural signature of implicit knowledge and blood oxygen level-dependent adaptation was a weighted sum of future states, akin to the successor representation that has been proposed to account for place and grid-cell firing patterns.
Health resource utilization associated with switching to risperidone long-acting injection.
Young, C L; Taylor, D M
2006-07-01
Studies have shown oral risperidone and conventional depot antipsychotics decrease direct healthcare costs largely by reducing hospitalization. Our aim was to assess the effect on bed stay of risperidone injection prescribed in normal clinical practice. Patients prescribed risperidone long-acting injection (RLAI) were identified and followed-up for 1 year. Resource use data were collected for 3 years before and for 1 year after the initiation of RLAI. The main outcome measure was bed stay before and after the prescription of RLAI. Outcome data were available for 250 subjects. Eighty-one subjects (32.4%) completed 1 year's treatment. Days spent in hospital increased from (mean number/patient) 31 in year -3 to 44 in year -2 to 90 in year -1 to 141 in year +1. Direct healthcare costs increased accordingly. Outcome for RLAI continuers was similar to that of discontinuers. Switching to RLAI was associated with a continuation of the trend for increased bed stay and use of healthcare resources.
NASA Technical Reports Server (NTRS)
Miller, Teresa Y.; Williams, George O.; Snyder, Robert S.
1985-01-01
The resolution of continuous flow electrophoresis systems is generally measured by the spread of the sample bands in the direction of the electrophoretic migration. This paper evaluates the cross section of the sample bands in the plane perpendicular to the flow and shows that the spread in the direction perpendicular to the migration increased significantly with the applied electric field. Concentrated samples of monodisperse latex particles and vinyltoluene T-butylstyrene particles in sample buffers of different electrical conductivities were used to map the shape of the sample bands relative to the zero electric field case. As the electric field was applied, the sample band spread from an initial diameter of only one-third the chamber thickness until it approached the chamber walls where electroosmosis significantly reduced the resolution of separation. It can be shown, however, that it is possible to minimize these distortions by careful sample preparation and experiment design.
Gosselin, Robert C; Adcock, Dorothy M; Bates, Shannon M; Douxfils, Jonathan; Favaloro, Emmanuel J; Gouin-Thibault, Isabelle; Guillermo, Cecilia; Kawai, Yohko; Lindhoff-Last, Edelgard; Kitchen, Steve
2018-03-01
This guidance document was prepared on behalf of the International Council for Standardization in Haematology (ICSH) for providing haemostasis-related guidance documents for clinical laboratories. This inaugural coagulation ICSH document was developed by an ad hoc committee, comprised of international clinical and laboratory direct acting oral anticoagulant (DOAC) experts. The committee developed consensus recommendations for laboratory measurement of DOACs (dabigatran, rivaroxaban, apixaban and edoxaban), which would be germane for laboratories assessing DOAC anticoagulation. This guidance document addresses all phases of laboratory DOAC measurements, including pre-analytical (e.g. preferred time sample collection, preferred sample type, sample stability), analytical (gold standard method, screening and quantifying methods) and post analytical (e.g. reporting units, quality assurance). The committee addressed the use and limitations of screening tests such as prothrombin time, activated partial thromboplastin time as well as viscoelastic measurements of clotting blood and point of care methods. Additionally, the committee provided recommendations for the proper validation or verification of performance of laboratory assays prior to implementation for clinical use, and external quality assurance to provide continuous assessment of testing and reporting method. Schattauer GmbH Stuttgart.
An integrated optical sensor for measuring glucose concentration
NASA Astrophysics Data System (ADS)
Liu, Y.; Hering, P.; Scully, M. O.
1992-01-01
We used an optical sensor combined with a Mach-Zehnder interferometric waveguide and optical fibers to measure slight changes of aqueous sugar concentrations. The merits of this sensor are simplicity, reliability, high sensitivity and continuous monitoring. The technique is based on the fact that the refractive index of sugar solution changes with the concentration of sugar. In the experiment, one arm of the interferometer is clad with glue and is thus isolated from the sugar solution. The other one is exposed to the sugar solution. A single mode fiber is directly glued onto the interferometric waveguide, to guide the light into the interferometer. If the concentration of sugar covering the waveguide changes, the phase of propagating light in the exposed arm will be changed, while the phase in the other arm is fixed. Hence the output intensity from the interferometer is directly related to the concentration of the sugar solution. The result of this experiment yields the relation between the sugar concentration and output signal. From 0% to 1% concentration of sugar solution, there is only a 1.4×10-3 refractive index difference. Two sets of experimental data have been obtained, showing a linear relation between the sugar concentration and the output signal from our sensor. This sensor could be used for continuous monitoring of blood sugar in the human body.
Control of final moisture content of food products baked in continuous tunnel ovens
NASA Astrophysics Data System (ADS)
McFarlane, Ian
2006-02-01
There are well-known difficulties in making measurements of the moisture content of baked goods (such as bread, buns, biscuits, crackers and cake) during baking or at the oven exit; in this paper several sensing methods are discussed, but none of them are able to provide direct measurement with sufficient precision. An alternative is to use indirect inferential methods. Some of these methods involve dynamic modelling, with incorporation of thermal properties and using techniques familiar in computational fluid dynamics (CFD); a method of this class that has been used for the modelling of heat and mass transfer in one direction during baking is summarized, which may be extended to model transport of moisture within the product and also within the surrounding atmosphere. The concept of injecting heat during the baking process proportional to the calculated heat load on the oven has been implemented in a control scheme based on heat balance zone by zone through a continuous baking oven, taking advantage of the high latent heat of evaporation of water. Tests on biscuit production ovens are reported, with results that support a claim that the scheme gives more reproducible water distribution in the final product than conventional closed loop control of zone ambient temperatures, thus enabling water content to be held more closely within tolerance.
NASA Astrophysics Data System (ADS)
Smith, Nathan
2007-02-01
Every 5.5 years, η Carinae experiences a dramatic ``spectroscopic event'' when high-excitation lines in its UV, optical, and IR spectrum disappear, and its hard X-ray and radio continuum flux crash. This periodicity has been attributed to an eccentric binary system with a shell ejection occurring at periastron. In addition, η Car shows long term changes as it is still recovering from its giant 19th century outburst. Both types of variability are directly linked to the current mass-loss rate and dust formation in its wind. Mid-IR images and spectra with T-ReCS provide a direct measure of changes in the current bolometric luminosity and trace dust formation episodes. This will provide a direct measurement of the mass ejected. Near-IR emission lines trace related changes in the post-event wind and ionization changes in the circumstellar environment needed to test specific models for the cause of η Car's variability as it recovers from its recent ``event''. High resolution near-IR spectra with GNIRS will continue the important work of HST/STIS, investigating changes in the direct and reflected spectrum of the stellar wind, and ionization changes in the nebula.
Direction information in multiple object tracking is limited by a graded resource.
Horowitz, Todd S; Cohen, Michael A
2010-10-01
Is multiple object tracking (MOT) limited by a fixed set of structures (slots), a limited but divisible resource, or both? Here, we answer this question by measuring the precision of the direction representation for tracked targets. The signature of a limited resource is a decrease in precision as the square root of the tracking load. The signature of fixed slots is a fixed precision. Hybrid models predict a rapid decrease to asymptotic precision. In two experiments, observers tracked moving disks and reported target motion direction by adjusting a probe arrow. We derived the precision of representation of correctly tracked targets using a mixture distribution analysis. Precision declined with target load according to the square-root law up to six targets. This finding is inconsistent with both pure and hybrid slot models. Instead, directional information in MOT appears to be limited by a continuously divisible resource.
Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.
2013-01-01
Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.
5 CFR 960.108 - Additional rules and directives.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Additional rules and directives. 960.108 Section 960.108 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EXECUTIVE BOARDS § 960.108 Additional rules and directives. The Director may...
5 CFR 960.108 - Additional rules and directives.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Additional rules and directives. 960.108 Section 960.108 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EXECUTIVE BOARDS § 960.108 Additional rules and directives. The Director may...
Luan, Congcong; Shen, Hongyao; Fu, Jianzhong
2018-01-01
Condition monitoring in polymer composites and structures based on continuous carbon fibers show overwhelming advantages over other potentially competitive sensing technologies in long-gauge measurements due to their great electromechanical behavior and excellent reinforcement property. Although carbon fibers have been developed as strain- or stress-sensing agents in composite structures through electrical resistance measurements, the electromechanical behavior under flexural loads in terms of different loading positions still lacks adequate research, which is the most common situation in practical applications. This study establishes the relationship between the fractional change in electrical resistance of carbon fibers and the external loads at different loading positions along the fibers’ longitudinal direction. An approach for real-time monitoring of flexural loads at different loading positions was presented simultaneously based on this relationship. The effectiveness and feasibility of the approach were verified by experiments on carbon fiber-embedded three-dimensional (3D) printed thermoplastic polymer beam. The error in using the provided approach to monitor the external loads at different loading positions was less than 1.28%. The study fully taps the potential of continuous carbon fibers as long-gauge sensory agents and reinforcement in the 3D-printed polymer structures. PMID:29584665
Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uman, M A; Rakov, V A; Elisme, J O
2008-10-01
The University of Florida has surveyed all relevant publications reporting lightning characteristics and presents here an up-to-date version of the direct-strike lightning environment specifications for nuclear weapons published in 1989 by R. J. Fisher and M. A. Uman. Further, we present functional expressions for current vs. time, current derivative vs. time, second current derivative vs. time, charge transfer vs. time, and action integral (specific energy) vs. time for first return strokes, for subsequent return strokes, and for continuing currents; and we give sets of constants for these expressions so that they yield approximately the median and extreme negative lightning parametersmore » presented in this report. Expressions for the median negative lightning waveforms are plotted. Finally, we provide information on direct-strike lightning damage to metals such as stainless steel, which could be used as components of storage containers for nuclear waste materials; and we describe UF's new experimental research program to add to the sparse data base on the properties of positive lightning. Our literature survey, referred to above, is included in four Appendices. The following four sections (II, III, IV, and V) of this final report deal with related aspects of the research: Section II. Recommended Direct-Strike Median and Extreme Parameters; Section III. Time-Domain Waveforms for First Strokes, Subsequent Strokes, and Continuing Currents; Section IV. Damage to Metal Surfaces by Lightning Currents; and Section V. Measurement of the Characteristics of Positive Lightning. Results of the literature search used to derive the material in Section II and Section IV are found in the Appendices: Appendix 1. Return Stroke Current, Appendix 2. Continuing Current, Appendix 3. Positive Lightning, and Appendix 4. Lightning Damage to Metal Surfaces.« less
The Atmospheric Effects of Stratospheric Aircraft: a First Program Report
NASA Technical Reports Server (NTRS)
Prather, Michael J.; Wesoky, Howard L.; Miake-Lye, Richard C.; Douglass, Anne R.; Turco, Richard P.; Wuebbles, Donald J.; Ko, Malcolm K. W.; Schmeltekopf, Arthur L.
1992-01-01
Studies have indicated that, with sufficient technology development, high speed civil transport aircraft could be economically competitive with long haul subsonic aircraft. However, uncertainty about atmospheric pollution, along with community noise and sonic boom, continues to be a major concern; and this is addressed in the planned 6 yr HSRP begun in 1990. Building on NASA's research in atmospheric science and emissions reduction, the AESA studies particularly emphasizing stratospheric ozone effects. Because it will not be possible to directly measure the impact of an HSCT aircraft fleet on the atmosphere, the only means of assessment will be prediction. The process of establishing credibility for the predicted effects will likely be complex and involve continued model development and testing against climatological patterns. Lab simulation of heterogeneous chemistry and other effects will continue to be used to improve the current models.
Influence of resonant transducer variations on long range guided wave monitoring of rail track
NASA Astrophysics Data System (ADS)
Loveday, Philip W.; Long, Craig S.
2016-02-01
The ability of certain guided wave modes to propagate long distances in continuously welded rail track is exploited in permanently installed monitoring systems. Previous work demonstrated that reflections from thermite welds could be measured at distances of the order of 1 km from a transducer array. The availability of numerous thermite welds is useful during the development of a monitoring system as real defects are not available. Measurements of reflections from welds were performed over an eleven month period with two permanently installed transducers. Phased array processing was performed and the true location of a weld is indicated by a strong reflection but there is generally also a smaller, spurious replica reflection, at the same distance but in the incorrect direction. In addition, the relative reflection from different welds appears to change over time. The influence of differences between the two resonant transducers was investigated using a model. It was found that estimating the attenuation in either direction and scaling the reflections in either direction decreased the variability in the reflection measurements. Transducer interaction effects, where the transducer closer to the weld records a greater reflection than the second transducer were observed and can be used to determine the direction of a weld. This feature was used to demonstrate a simple alternative to phased array processing that can be used with resonant transducers.
Ahn, Tae-Jung; Jung, Yongmin; Oh, Kyunghwan; Kim, Dug Young
2005-12-12
We propose a new chromatic dispersion measurement method for the higher-order modes of an optical fiber using optical frequency modulated continuous-wave (FMCW) interferometry. An optical fiber which supports few excited modes was prepared for our experiments. Three different guiding modes of the fiber were identified by using far-field spatial beam profile measurements and confirmed with numerical mode analysis. By using the principle of a conventional FMWC interferometry with a tunable external cavity laser, we have demonstrated that the chromatic dispersion of a few-mode optical fiber can be obtained directly and quantitatively as well as qualitatively. We have also compared our measurement results with those of conventional modulation phase-shift method.
Heliospheric and Local Interstellar Space Weathering Environments of Extreme Kuiper Belt Objects
NASA Astrophysics Data System (ADS)
Cooper, J. F.; Sturner, S. J.
2017-12-01
Since the first direct detection of a Kuiper Belt Object (KBO), (15760) 1992 QB1, in 1992, observational evidence via direct detection has accumulated for thousands (and via inference for hundreds of thousands) of small to large icy bodies that populate the solar system from within the supersonic heliosphere out into the local interstellar medium (LISM). These objects have mainly been discovered when within the heliosphere but the orbits of the more extreme KBOs, fifteen percent of the total known KBO population, take them out into the heliosheath and about half of these continue further out into the LISM. Continuing observations will inevitably increase the known inventory of extreme KBOs, possibly including a few that may be accessible as near-encounter targets for a future interstellar probe mission directed beyond 200 AU into the upstream LISM. Here we review the known population of extreme KBOs and address the properties of the heliospheric and LISM environments that could potentially affect object visibility and surface composition. The twin Voyager spacecraft are our present source of in-situ measurements for the plasma and energetic particle environments, except that there are no plasma data from Voyager 1. Voyager 1 and 2 are now respectively in the LISM and the heliosheath after earlier passing through the outer regions of the supersonic heliosphere upstream of the solar wind termination shock. The Voyager data coverage is complemented by energetic neutral atom (ENA) measurements of the Interstellar Background Explorer (IBEX) and Cassini Orbiter spacecraft that can be used to infer proton flux spectra from models of ENA production in the outer heliosphere. High radiation background in the LISM has precluded sub-MeV energetic ion measurements by Voyager 1, so we use limits from Cummings et al. (ApJ, 2016) for molecular cloud ionization. This would be an important energy region to cover with interstellar probe measurements. These sources of plasma and energetic particle flux measurements are used to estimate values for space weathering parameters including surface energy flux and pressure, dosage vs. depth profiles for chemical processing of mixed ice surfaces, and ion sputtering rates. We further consider other space weathering processes including ultraviolet irradiation and meteoritic impact gardening.
Obtaining Reliable Predictions of Terrestrial Energy Coupling From Real-Time Solar Wind Measurements
NASA Technical Reports Server (NTRS)
Weimer, Daniel R.
2002-01-01
Measurements of the interplanetary magnetic field (IMF) from the ACE (Advanced Composition Explorer), Wind, IMP-8 (Interplanetary Monitoring Platform), and Geotail spacecraft have revealed that the IMF variations are contained in phase planes that are tilted with respect to the propagation direction, resulting in continuously variable changes in propagation times between spacecraft, and therefore, to the Earth. Techniques for using 'minimum variance analysis' have been developed in order to be able to measure the phase front tilt angles, and better predict the actual propagation times from the L1 orbit to the Earth, using only the real-time IMF measurements from one spacecraft. The use of empirical models with the IMF measurements at L1 from ACE (or future satellites) for predicting 'space weather' effects has also been demonstrated.
Vorticity field measurement using digital inline holography
NASA Astrophysics Data System (ADS)
Mallery, Kevin; Hong, Jiarong
2017-11-01
We demonstrate the direct measurement of a 3D vorticity field using digital inline holographic microscopy. Microfiber tracer particles are illuminated with a 532 nm continuous diode laser and imaged using a single CCD camera. The recorded holographic images are processed using a GPU-accelerated inverse problem approach to reconstruct the 3D structure of each microfiber in the imaged volume. The translation and rotation of each microfiber are measured using a time-resolved image sequence - yielding velocity and vorticity point measurements. The accuracy and limitations of this method are investigated using synthetic holograms. Measurements of solid body rotational flow are used to validate the accuracy of the technique under known flow conditions. The technique is further applied to a practical turbulent flow case for investigating its 3D velocity field and vorticity distribution.
NASA Astrophysics Data System (ADS)
Ferrari, Luca; Rovati, Luigi; Fabbri, Paola; Pilati, Francesco
2013-02-01
During extracorporeal circulation (ECC), blood is periodically sampled and analyzed to maintain the blood-gas status of the patient within acceptable limits. This protocol has well-known drawbacks that may be overcome by continuous monitoring. We present the characterization of a new pH sensor for continuous monitoring in ECC. This monitoring device includes a disposable fluorescence-sensing element directly in contact with the blood, whose fluorescence intensity is strictly related to the pH of the blood. In vitro experiments show no significant difference between the blood gas analyzer values and the sensor readings; after proper calibration, it gives a correlation of R>0.9887, and measuring errors were lower than the 3% of the pH range of interest (RoI) with respect to a commercial blood gas analyzer. This performance has been confirmed also by simulating a moderate ipothermia condition, i.e., blood temperature 32°C, frequently used in cardiac surgery. In ex vivo experiments, performed with animal models, the sensor is continuously operated in an extracorporeal undiluted blood stream for a maximum of 11 h. It gives a correlation of R>0.9431, and a measuring error lower than the 3% of the pH RoI with respect to laboratory techniques.
Ferrari, Luca; Rovati, Luigi; Fabbri, Paola; Pilati, Francesco
2013-02-01
During extracorporeal circulation (ECC), blood is periodically sampled and analyzed to maintain the blood-gas status of the patient within acceptable limits. This protocol has well-known drawbacks that may be overcome by continuous monitoring. We present the characterization of a new pH sensor for continuous monitoring in ECC. This monitoring device includes a disposable fluorescence-sensing element directly in contact with the blood, whose fluorescence intensity is strictly related to the pH of the blood. In vitro experiments show no significant difference between the blood gas analyzer values and the sensor readings; after proper calibration, it gives a correlation of R>0.9887, and measuring errors were lower than the 3% of the pH range of interest (RoI) with respect to a commercial blood gas analyzer. This performance has been confirmed also by simulating a moderate ipothermia condition, i.e., blood temperature 32°C, frequently used in cardiac surgery. In ex vivo experiments, performed with animal models, the sensor is continuously operated in an extracorporeal undiluted blood stream for a maximum of 11 h. It gives a correlation of R>0.9431, and a measuring error lower than the 3% of the pH RoI with respect to laboratory techniques.
NASA Astrophysics Data System (ADS)
Bonaccorso, A.; Aloisi, M.; Mattia, A.
During the June 2001 eruption of Mt. Etna the continuous ground deformation mon- itoring have been recorded through tilt (9 stations) and GPS (11 stations) permanent networks. The evolution of the July crisis preceding and leading to the eruption has been monitored through the tilt and GPS continuous measurements, which constrained in time the final intrusion and inferred the position and geometry of the uprising dyke. The tilt signals, which record 48 samples/day, fixed the time action of the intrusion, whose main effects are recorded during 13-15 July in concomitance with the first days of the seismic crisis. In particular, the high precision long-base mercury tiltmeter, in- stalled at Pizzi Deneri observatory in the high north-eastern flank close to the crater area, showed very well the continuous deformation during the dyke emplacement. The deformation pattern, at the entire volcano scale, was well characterised by the daily measurement sessions recorded at the GPS permanent network. The variations recorded at the permanent GPS stations started from July 13 and, in agreement with tilt recordings, were mainly cumulated in the following two days. The GPS measurements showed horizontal displacement vectors much bigger than vertical changes. The defor- mation pattern indicates the response to a tensile mechanisms that appears compatible with an intrusion in the volcano edifice along a ca. N-S direction. In this poster we show the modelling of the marked ground deformation changes recorded in the days before the eruption starting. The first results show that a tensile crack with an opening dislocation of ~3 m. and crossing the entire edifice, south-west to the crater area, can explain the recorded deformation pattern. The location of the modelled tensile source fits the seismogenetic zone characterized by epicenters aligned in a ca. N-S direction with the foci clustered in the last shallow kilometers. The ground deformation pat- tern associated with the final uprising and its modelling suggest a dyke emplacement which appears different, both in terms of velocity and source position, with respect to the sources modelled for the other lateral eruptions in the previous twenty years.
50 CFR 18.87 - Direct testimony.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Direct testimony. 18.87 Section 18.87 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED... PLANTS (CONTINUED) MARINE MAMMALS Notice and Hearing on Section 103 Regulations § 18.87 Direct testimony...
50 CFR 18.87 - Direct testimony.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Direct testimony. 18.87 Section 18.87 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED... PLANTS (CONTINUED) MARINE MAMMALS Notice and Hearing on Section 103 Regulations § 18.87 Direct testimony...
50 CFR 18.87 - Direct testimony.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Direct testimony. 18.87 Section 18.87 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED... PLANTS (CONTINUED) MARINE MAMMALS Notice and Hearing on Section 103 Regulations § 18.87 Direct testimony...
50 CFR 18.87 - Direct testimony.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Direct testimony. 18.87 Section 18.87 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED... PLANTS (CONTINUED) MARINE MAMMALS Notice and Hearing on Section 103 Regulations § 18.87 Direct testimony...
The Future of Satellite-based Lightning Detection
NASA Technical Reports Server (NTRS)
Bocippio, Dennis J.; Christian, Hugh J.; Arnold, James E. (Technical Monitor)
2001-01-01
The future of satellite-based optical lightning detection, beyond the end of the current TRMM mission, is discussed. Opportunities for new low-earth orbit missions are reviewed. The potential for geostationary observations is significant; such observations provide order-of-magnitude gains in sampling and data efficiency over existing satellite convective observations. The feasibility and performance (resolution, sensitivity) of geostationary measurements using current technology is discussed. In addition to direct and continuous hemispheric observation of lighting, geostationary measurements have the potential (through data assimilation) to dramatically improve short and medium range forecasts, offering benefits to prediction of NOx productions and/or vertical transport.
Remote control canard missile with a free-rolling tail brake torque system
NASA Technical Reports Server (NTRS)
Blair, A. B., Jr.
1981-01-01
An experimental wind-tunnel investigation has been conducted at supersonic Mach numbers to determine the static aerodynamic characteristics of a cruciform canard-controlled missile with fixed and free-rolling tail-fin afterbodies. Mechanical coupling effects of the free-rolling tail afterbody were investigated using an electronic/electromagnetic brake system that provides arbitrary tail-fin brake torques with continuous measurements of tail-to-mainframe torque and tail-roll rate. Results are summarized to show the effects of fixed and free-rolling tail-fin afterbodies that include simulated measured bearing friction torques on the longitudinal and lateral-directional aerodynamic characteristics.
Experimental characterization of turbulent inflow noise on a full-scale wind turbine
NASA Astrophysics Data System (ADS)
Buck, Steven; Oerlemans, Stefan; Palo, Scott
2016-12-01
An extensive experimental campaign was conducted on a 108-m diameter 2.3-MW wind turbine in order to assess the effect of inflow turbulence conditions on wind turbine acoustics. Over 50 h of continuous acoustic data was acquired at power-generating wind speeds. Twelve precision microphones were used, arranged in a one rotor radius ring about the turbine tower in order to assess the directivity of the noise emission. Turbine operational and atmospheric conditions were gathered simultaneously with acoustics measurements. The testing and analysis constitute perhaps the most thorough experimental characterization of turbulent inflow noise from a wind turbine to date. Turbulence intensities typically varied between 10 percent and 35 percent, and wind speeds covered most of the operational range of the wind turbine, from cut-on to well above its rated power. A method was developed for using blade-mounted accelerometers for determining the turbulence conditions in the immediate vicinity of the blades, which are the primary turbulence noise generating bodies. The method uses the blades' vibrational energy within a specified frequency range to estimate the overall turbulence conditions by assuming a von Kármán turbulence spectrum. Using this method, a clear positive correlation is shown between turbulence intensity and noise levels. The turbulence noise is dominant at low frequencies and is primarily observed in the upwind and downwind directions. Low frequency noise increases by as much as 6 dB for the range of turbulence conditions measured. Comparisons are made between the measured turbine noise directivity and theory using a simple acoustic model of the turbine as three point-sources. Strong agreement is found between the theoretical leading edge noise directivity model and the measured low frequency noise directivity.
Chattoraj, Sayantan; Sun, Changquan Calvin
2018-04-01
Continuous manufacturing of tablets has many advantages, including batch size flexibility, demand-adaptive scale up or scale down, consistent product quality, small operational foot print, and increased manufacturing efficiency. Simplicity makes direct compression the most suitable process for continuous tablet manufacturing. However, deficiencies in powder flow and compression of active pharmaceutical ingredients (APIs) limit the range of drug loading that can routinely be considered for direct compression. For the widespread adoption of continuous direct compression, effective API engineering strategies to address power flow and compression problems are needed. Appropriate implementation of these strategies would facilitate the design of high-quality robust drug products, as stipulated by the Quality-by-Design framework. Here, several crystal and particle engineering strategies for improving powder flow and compression properties are summarized. The focus is on the underlying materials science, which is the foundation for effective API engineering to enable successful continuous manufacturing by the direct compression process. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Design of a novel system for spectroscopy measurements of the aqueous humor
NASA Astrophysics Data System (ADS)
Miller, Joe; Uttamchandani, Deepak G.
2001-06-01
The authors report on the design of a system which will enable real time measurements of (therapeutic) drug concentrations in the anterior chamber of the eye. Currently the concentration of therapeutic drugs in the anterior chamber is determined by analyzing samples which have been removed from the aqueous humor of laboratory animal eyes. This sampling via paracentesis can be painful and does not provide a continuous measurement. Our system will be far less invasive, removing the need for sampling via paracentesis, and also providing a continuous measurement, enabling a more complete understanding of the kinetics of ophthalmic drugs. A key component in our novel system is a specially constructed contact lens. We report on the design, optimization and manufacture of such a contact lens system capable of directing UV/VIS light in, across and out of the anterior chamber of the eye, thereby enabling absorption spectroscopy measurements of the aqueous humor to be undertaken. Design of the one piece contact lens/mirror system was achieved using the Zemax optical design software package and the lens was fabricated from synthetic fused silica. Results from modeling of the lens and experimental measurements on light propagation across the anterior chamber of animal eyes assisted by the lens will be reported.
Kekäläinen, Tiia; Kokko, Katja; Tammelin, Tuija; Sipilä, Sarianna; Walker, Simon
2018-06-07
The aim of this study was to investigate the effects of a nine-month supervised resistance training intervention on motivational and volitional characteristics related to exercise, and whether the absolute level and/or intervention-induced change in these characteristics predict self-directed continuation of resistance training one year after the intervention. Community-dwelling older adults aged 65-75, who did not fulfill physical activity recommendations, were randomized into resistance training intervention groups: training once- (n=26), twice- (n=27), three-times-a-week (n=28) or non-training control group (n=25). Training groups participated in supervised resistance training for nine months: during months 1-3 all groups trained twice-a-week and then with allocated frequencies during months 4-9. Exercise-related motivation, self-efficacy and planning were measured with questionnaires at baseline, month-3 and month-9. The continuance of resistance training was determined by interviews six and twelve months after the end of the intervention. The intervention improved action and coping planning as well as intrinsic motivation (group×time p<.05). During one-year follow-up, 54% of participants did not continue self-directed regular resistance training, 22% continued regular resistance training once-a-week and 24% twice-a-week. Increases in exercise self-efficacy and intrinsic motivation related to training during the intervention predicted continuation of resistance training twice-a-week. Resistance training improved exercise-related motivational and volitional characteristics in older adults. These improvements were linked to continuing resistance training one year after the supervised intervention. The role of these characteristics should be taken into account when promoting long-term resistance training participation among older adults. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Chang, C.; Melkonian, J.; Riha, S. J.; Gu, L.; Sun, Y.
2017-12-01
Improving the sensitivity of methods for crop monitoring and yield forecasting is crucial as the frequency of extreme weather events increases. Conventional remote monitoring methods rely on greenness-based indices such as NDVI and EVI, which do not directly measure photosynthesis and are not sufficiently sensitive to rapid plant stress response. Solar-induced chlorophyll fluorescence (SIF) is a promising new technology that serves as a direct functional proxy of photosynthesis. We developed the first system utilizing dual QE Pro spectrometers to continuously measure the diurnal and seasonal cycle of SIF, and deployed the system in a corn field in upstate New York in 2017. To complement SIF, canopy-level measurements of carbon and water fluxes were also measured, along with concurrent leaf-level measurements of gas exchange and PAM fluorescence, midday water potential, leaf pigments, phenology, LAI, and soil moisture. We show that SIF is well correlated to GPP during the growing season and show that both are controlled by similar environmental conditions including PAR and water availability. We also describe diurnal changes in photosynthesis and plant water status and demonstrate the sensitivity of SIF to diurnal plant response.
Nano-JASMINE: current status and data output
NASA Astrophysics Data System (ADS)
Kobayashi, Yukiyasu; Yano, Taihei; Gouda, Naoteru; Niwa, Yoshito; Murooka, Jyunpei; Yamada, Yoshiyuki; Sako, Nobutada; Nakasuka, Shin'ichi
2010-07-01
The current status of the Nano-JASMINE project is reported. Nano-JASMINE is a very small-sized (50 cm cubic form) satellite that is expected to carry out astrometric observations of nearby bright stars. The satellite will determine distances of more than 8000 stars by performing annual parallax measurements, which is the only direct method to measure the distance of an astronomical object. The mission is required to continue for more than two years to obtain reliable annual parallax measurements. In addition, Nano-JASMINE will serve as a preliminary to the main JASMINE mission. We expect that Nano-JASMINE will be launched in August 2011 from the Alcantara Space Center in Brazil using the Cyclone-4 rocket.
A potential method for lift evaluation from velocity field data
NASA Astrophysics Data System (ADS)
de Guyon-Crozier, Guillaume; Mulleners, Karen
2017-11-01
Computing forces from velocity field measurements is one of the challenges in experimental aerodynamics. This work focuses on low Reynolds flows, where the dynamics of the leading and trailing edge vortices play a major role in lift production. Recent developments in 2D potential flow theory, using discrete vortex models, have shown good results for unsteady wing motions. A method is presented to calculate lift from experimental velocity field data using a discrete vortex potential flow model. The model continuously adds new point vortices at leading and trailing edges whose circulations are set directly from vorticity measurements. Forces are computed using the unsteady Blasius equation and compared with measured loads.
Optic probe for multiple angle image capture and optional stereo imaging
Malone, Robert M.; Kaufman, Morris I.
2016-11-29
A probe including a multiple lens array is disclosed to measure velocity distribution of a moving surface along many lines of sight. Laser light, directed to the moving surface is reflected back from the surface and is Doppler shifted, collected into the array, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to the multiple lens array. Numerous fibers in a fiber array project numerous rays to establish many measurement points at numerous different locations. One or more lens groups may be replaced with imaging lenses so a stereo image of the moving surface can be recorded. Imaging a portion of the surface during initial travel can determine whether the surface is breaking up.
Photonic Doppler velocimetry lens array probe incorporating stereo imaging
Malone, Robert M.; Kaufman, Morris I.
2015-09-01
A probe including a multiple lens array is disclosed to measure velocity distribution of a moving surface along many lines of sight. Laser light, directed to the moving surface is reflected back from the surface and is Doppler shifted, collected into the array, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to the multiple lens array. Numerous fibers in a fiber array project numerous rays to establish many measurement points at numerous different locations. One or more lens groups may be replaced with imaging lenses so a stereo image of the moving surface can be recorded. Imaging a portion of the surface during initial travel can determine whether the surface is breaking up.
Assessing the writing of deaf college students: reevaluating a direct assessment of writing.
Schley, Sara; Albertini, John
2005-01-01
The NTID Writing Test was developed to assess the writing ability of postsecondary deaf students entering the National Technical Institute for the Deaf and to determine their appropriate placement into developmental writing courses. While previous research (Albertini et al., 1986; Albertini et al., 1996; Bochner, Albertini, Samar, & Metz, 1992) has shown the test to be reliable between multiple test raters and as a valid measure of writing ability for placement into these courses, changes in curriculum and the rater pool necessitated a new look at interrater reliability and concurrent validity. We evaluated the rating scores for 236 samples from students who entered the college during the fall 2001. Using a multiprong approach, we confirmed the interrater reliability and the validity of this direct measure of assessment. The implications of continued use of this and similar tests in light of definitions of validity, local control, and the nature of writing are discussed.
Multipoint photonic doppler velocimetry using optical lens elements
Frogget, Brent Copely; Romero, Vincent Todd
2014-04-29
A probe including a fisheye lens is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface and then reflected back from the surface, is Doppler shifted by the moving surface, collected into fisheye lens, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to an index-matching lens and eventually to a fisheye lens. The fiber array flat polished and coupled to the index-matching lens using index-matching gel. Numerous fibers in a fiber array project numerous rays through the fisheye lens which in turn project many measurement points at numerous different locations to establish surface coverage over a hemispherical shape with very little crosstalk.
High-speed video capillaroscopy method for imaging and evaluation of moving red blood cells
NASA Astrophysics Data System (ADS)
Gurov, Igor; Volkov, Mikhail; Margaryants, Nikita; Pimenov, Aleksei; Potemkin, Andrey
2018-05-01
The video capillaroscopy system with high image recording rate to resolve moving red blood cells with velocity up to 5 mm/s into a capillary is considered. Proposed procedures of the recorded video sequence processing allow evaluating spatial capillary area, capillary diameter and central line with high accuracy and reliability independently on properties of individual capillary. Two-dimensional inter frame procedure is applied to find lateral shift of neighbor images in the blood flow area with moving red blood cells and to measure directly the blood flow velocity along a capillary central line. The developed method opens new opportunities for biomedical diagnostics, particularly, due to long-time continuous monitoring of red blood cells velocity into capillary. Spatio-temporal representation of capillary blood flow is considered. Experimental results of direct measurement of blood flow velocity into separate capillary as well as capillary net are presented and discussed.
QUIESCENCE CORRELATES STRONGLY WITH DIRECTLY MEASURED BLACK HOLE MASS IN CENTRAL GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrazas, Bryan A.; Bell, Eric F.; Henriques, Bruno M. B.
Roughly half of all stars reside in galaxies without significant ongoing star formation. However, galaxy formation models indicate that it is energetically challenging to suppress the cooling of gas and the formation of stars in galaxies that lie at the centers of their dark matter halos. In this Letter, we show that the dependence of quiescence on black hole and stellar mass is a powerful discriminant between differing models for the mechanisms that suppress star formation. Using observations of 91 star-forming and quiescent central galaxies with directly measured black hole masses, we find that quiescent galaxies host more massive blackmore » holes than star-forming galaxies with similar stellar masses. This observational result is in qualitative agreement with models that assume that effective, more-or-less continuous active galactic nucleus feedback suppresses star formation, strongly suggesting the importance of the black hole in producing quiescence in central galaxies.« less
Order parameter fluctuations at a buried quantum critical point
Feng, Yejun; Wang, Jiyang; Jaramillo, R.; van Wezel, Jasper; Haravifard, S.; Srajer, G.; Liu, Y.; Xu, Z.-A.; Littlewood, P. B.; Rosenbaum, T. F.
2012-01-01
Quantum criticality is a central concept in condensed matter physics, but the direct observation of quantum critical fluctuations has remained elusive. Here we present an X-ray diffraction study of the charge density wave (CDW) in 2H-NbSe2 at high pressure and low temperature, where we observe a broad regime of order parameter fluctuations that are controlled by proximity to a quantum critical point. X-rays can track the CDW despite the fact that the quantum critical regime is shrouded inside a superconducting phase; and in contrast to transport probes, allow direct measurement of the critical fluctuations of the charge order. Concurrent measurements of the crystal lattice point to a critical transition that is continuous in nature. Our results confirm the long-standing expectations of enhanced quantum fluctuations in low-dimensional systems, and may help to constrain theories of the quantum critical Fermi surface. PMID:22529348
Feinson, Lawrence S.; Gibs, Jacob; Imbrigiotta, Thomas E.; Garrett, Jessica D.
2016-01-01
The U.S. Geological Survey's New Jersey and Iowa Water Science Centers deployed ultraviolet-visible spectrophotometric sensors at water-quality monitoring sites on the Passaic and Pompton Rivers at Two Bridges, New Jersey, on Toms River at Toms River, New Jersey, and on the North Raccoon River near Jefferson, Iowa to continuously measure in-stream nitrate plus nitrite as nitrogen (NO3 + NO2) concentrations in conjunction with continuous stream flow measurements. Statistical analysis of NO3 + NO2 vs. stream discharge during storm events found statistically significant links between land use types and sampling site with the normalized area and rotational direction of NO3 + NO2-stream discharge (N-Q) hysteresis patterns. Statistically significant relations were also found between the normalized area of a hysteresis pattern and several flow parameters as well as the normalized area adjusted for rotational direction and minimum NO3 + NO2 concentrations. The mean normalized hysteresis area for forested land use was smaller than that of urban and agricultural land uses. The hysteresis rotational direction of the agricultural land use was opposite of that of the urban and undeveloped land uses. An r2 of 0.81 for the relation between the minimum normalized NO3 + NO2 concentration during a storm vs. the normalized NO3 + NO2 concentration at peak flow suggested that dilution was the dominant process controlling NO3 + NO2 concentrations over the course of most storm events.
ERIC Educational Resources Information Center
Dif, M'Hamed
Continuing vocational training (CVT) was officially introduced and codified in France in 1971 to promote individuals' employability, career development, and job flexibility. Self-directed learning was initially considered among the most important instruments for its implementation in addition to employer-directed CVT. Despite increased and…
The MINOS Experiment: Results and Prospects
Evans, J. J.
2013-01-01
Tmore » he MINOS experiment has used the world’s most powerful neutrino beam to make precision neutrino oscillation measurements. By observing the disappearance of muon neutrinos, MINOS has made the world’s most precise measurement of the larger neutrino mass splitting and has measured the neutrino mixing angle θ 23 . Using a dedicated antineutrino beam, MINOS has made the first direct precision measurements of the corresponding antineutrino parameters. A search for ν e and ν - e appearance has enabled a measurement of the mixing angle θ 13 . A measurement of the neutral-current interaction rate has confirmed oscillation between three active neutrino flavours. MINOS will continue as MINOS+ in an upgraded beam with higher energy and intensity, allowing precision tests of the three-flavour neutrino oscillation picture, in particular a very sensitive search for the existence of sterile neutrinos.« less
NASA Astrophysics Data System (ADS)
Meskhidze, N.; Royalty, T. M.; Phillips, B.; Dawson, K. W.; Petters, M. D.; Reed, R.; Weinstein, J.; Hook, D.; Wiener, R.
2017-12-01
The accurate representation of aerosols in climate models requires direct ambient measurement of the size- and composition-dependent particle production fluxes. Here we present the design, testing, and analysis of data collected through the first instrument capable of measuring hygroscopicity-based, size-resolved particle fluxes using a continuous-flow Hygroscopicity-Resolved Relaxed Eddy Accumulation (Hy-Res REA) technique. The different components of the instrument were extensively tested inside the US Environmental Protection Agency's Aerosol Test Facility for sea-salt and ammoniums sulfate particle fluxes. The new REA system design does not require particle accumulation, therefore avoids the diffusional wall losses associated with long residence times of particles inside the air collectors of the traditional REA devices. The Hy-Res REA system used in this study includes a 3-D sonic anemometer, two fast-response solenoid valves, two Condensation Particle Counters (CPCs), a Scanning Mobility Particle Sizer (SMPS), and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA). A linear relationship was found between the sea-salt particle fluxes measured by eddy covariance and REA techniques, with comparable theoretical (0.34) and measured (0.39) proportionality constants. The sea-salt particle detection limit of the Hy-Res REA flux system is estimated to be 6x105 m-2s-1. For the conditions of ammonium sulfate and sea-salt particles of comparable source strength and location, the continuous-flow Hy-Res REA instrument was able to achieve better than 90% accuracy of measuring the sea-salt particle fluxes. In principle, the instrument can be applied to measure fluxes of particles of variable size and distinct hygroscopic properties (i.e., mineral dust, black carbon, etc.).
The economic burden of musculoskeletal disease in Korea: A cross sectional study
2011-01-01
Background Musculoskeletal diseases are becoming increasingly important due to population aging. However, studies on the economic burden of musculoskeletal disease in Korea are scarce. Therefore, we conducted a population-based study to measure the economic burden of musculoskeletal disease in Korea using nationally representative data. Methods This study used a variety of data sources such as national health insurance statistics, the Korea Health Panel study and cause of death reports generated by the Korea National Statistical Office to estimate the economic burden of musculoskeletal disease. The total cost of musculoskeletal disease was estimated as the sum of direct medical care costs, direct non-medical care costs, and indirect costs. Direct medical care costs are composed of the costs paid by the insurer and patients, over the counter drugs costs, and other costs such as medical equipment costs. Direct non-medical costs are composed of transportation and caregiver costs. Indirect costs are the sum of the costs associated with premature death and the costs due to productivity loss. Age, sex, and disease specific costs were estimated. Results Among the musculoskeletal diseases, the highest costs are associated with other dorsopathies, followed by disc disorder and arthrosis. The direct medical and direct non-medical costs of all musculoskeletal diseases were $4.18 billion and $338 million in 2008, respectively. Among the indirect costs, those due to productivity loss were $2.28 billion and costs due to premature death were $79 million. The proportions of the total costs incurred by male and female patients were 33.8% and 66.2%, respectively, and the cost due to the female adult aged 20-64 years old was highest. The total economic cost of musculoskeletal disease was $6.89 billion, which represents 0.7% of the Korean gross domestic product. Conclusions The economic burden of musculoskeletal disease in Korea is substantial. As the Korean population continues to age, the economic burden of musculoskeletal disease will continue to increase. Policy measures aimed at controlling the cost of musculoskeletal disease are therefore required. PMID:21749727
Functions of autobiographical memory in Taiwanese and American emerging adults.
Liao, Hsiao-Wen; Bluck, Susan; Alea, Nicole; Cheng, Ching-Ling
2016-01-01
The study addresses cultural and person-level factors contributing to emerging adult's use of memory to serve adaptive functions. The focus is on three functions: self-continuity, social-bonding and directing-behaviour. Taiwanese (N = 85, 52 women) and American (N = 95, 51 women) emerging adults completed the Thinking about Life Experiences scale, and measures of trait personality, self-concept clarity and future time perspective. Findings show that individuals from both cultures use memory to serve these three functions, but Taiwanese individuals use memory more frequently than Americans to maintain self-continuity. Culture also interacted with person-level factors: in Taiwan, but not America, memory is more frequently used to create self-continuity in individuals high in conscientiousness. Across cultures, having lower self-concept clarity was related to greater use of memory to create self-continuity. Findings are discussed in terms of how memory serves functions in context and specific aspects of the Taiwanese and American cultural context that may predict the functional use of memory in emerging adulthood.
NASA Astrophysics Data System (ADS)
Bhatnagar, Divya; Conkling, Nicole; Rafailovich, Miriam; Dagum, Alexander
2012-02-01
The skin on the face is directly attached to the underlying muscles. Here, we successfully introduce a non-invasive, non-contact technique, Digital Image Speckle Correlation (DISC), to measure the precise magnitude and duration of facial muscle paralysis inflicted by BTX-A. Subjective evaluation by clinicians and patients fail to objectively quantify the direct effect and duration of BTX-A on the facial musculature. By using DISC, we can (a) Directly measure deformation field of the facial skin and determine the locus of facial muscular tension(b)Quantify and monitor muscular paralysis and subsequent re-innervation following injection; (c) Continuously correlate the appearance of wrinkles and muscular tension. Two sequential photographs of slight facial motion (frowning, raising eyebrows) are taken. DISC processes the images to produce a vector map of muscular displacement from which spatially resolved information is obtained regarding facial tension. DISC can track the ability of different muscle groups to contract and can be used to predict the site of injection, quantify muscle paralysis and the rate of recovery following BOTOX injection.
Route Network Construction with Location-Direction-Enabled Photographs
NASA Astrophysics Data System (ADS)
Fujita, Hideyuki; Sagara, Shota; Ohmori, Tadashi; Shintani, Takahiko
2018-05-01
We propose a method for constructing a geometric graph for generating routes that summarize a geographical area and also have visual continuity by using a set of location-direction-enabled photographs. A location- direction-enabled photograph is a photograph that has information about the location (position of the camera at the time of shooting) and the direction (direction of the camera at the time of shooting). Each nodes of the graph corresponds to a location-direction-enabled photograph. The location of each node is the location of the corresponding photograph, and a route on the graph corresponds to a route in the geographic area and a sequence of photographs. The proposed graph is constructed to represent characteristic spots and paths linking the spots, and it is assumed to be a kind of a spatial summarization of the area with the photographs. Therefore, we call the routes on the graph as spatial summary route. Each route on the proposed graph also has a visual continuity, which means that we can understand the spatial relationship among the continuous photographs on the route such as moving forward, backward, turning right, etc. In this study, when the changes in the shooting position and shooting direction satisfied a given threshold, the route was defined to have visual continuity. By presenting the photographs in order along the generated route, information can be presented sequentially, while maintaining visual continuity to a great extent.
2012-09-01
intelligence continues to evolve as attention to cognitive processes and mechanisms, a deeper understanding of related issues, and new theories ...hierarchical models that describe specific abilities arranged according to increasing specificity and developmental complexity [6-8]. Theories have also...persistence) not tapped directly by existing measures of intellectual ability. Wechsler’s theory of intelligence is central to the development of the mostly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ormond, Thomas K.; Scheer, Adam M.; Nimlos, Mark R.
2015-07-16
The thermal decomposition of cyclopentadienone (C5H4-O) has been studied in a flash pyrolysis continuous flow microreactor. Passing dilute samples of o-phenylene sulfite (C6H4O2SO) in He through the microreactor at elevated temperatures yields a relatively clean source of C5H4-O. The pyrolysis of C5H4-O was investigated over the temperature range 1000-2000 K.
Prompt Charge Collection in Gallium Arsenide Diodes Struck by Energetic Heavy Ions.
1986-09-01
Continue on reverse if necessaty and identify by block number) Charge collection was measured as a function of reversebias voltage on GaAs Schottkyarrier...research described above was all directed at SEU in silicon, the semiconductor material from which state-of-the- art electronic switching de- vices are...of the industry dedicated to satellite electronics. There, data processing re- quirements have traditionally pushed the state of the art , both in
2015-01-01
generously offering the use of the printed circuit board (PCB) milling machine at the Royal Military College of Canada (RMC) as well as other lab... military research for over a century. However, continual technological advances in wireless communications along with widespread proliferation of...several decades, motivated initially by military applications. Over the past 10–15 years however, this topic has received widespread interest due in
Research Issues in Training Device Design: The Organization of a Data Base
1983-09-01
field. In many ways the automated system would enable the trainer to become more of a researcher , being in direct and immediate control of continuing...no control group is used and the assumption is that the final measure (on the new training device) is equivalent to the performance proficiency that...December 1978. 47 Evaluation of training: Subcommittee on Non -Atomic Military Research and Development. Technical Panel UTP-2 (Training Technology
Woolley, R.D.
1998-09-08
A method and apparatus are disclosed for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators. 6 figs.
Woolley, Robert D.
1998-01-01
A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.
Field Measurements of Respiratory Del13CO2 and Photodegradation
NASA Astrophysics Data System (ADS)
van Asperen, H.; Sabbatini, S.; Nicolini, G.; Warneke, T.; Papale, D.; Notholt, J.
2014-12-01
Carbon decomposition dynamics have been studied in a variety of ecosystems and its variation can mostly be explained in terms of environmental variables (e.g. temperature and precipitation). However, carbon dynamics in arid, water limited regions have shown to be very different and are still largely unknown. Several studies have indicated the importance of photodegradation, the direct breakdown of organic matter by sunlight, in these arid regions. A FTIR (Fourier Transform Infrared Spectrometer) was set up to continuously measure concentrations of CO2, CH4, N2O, CO as well as del13C in CO2. The FTIR was connected to 2 different flux measurement systems: a Flux Gradient system and 2 flux chambers, providing a continuous data set of gas concentrations and biosphere-atmosphere gas fluxes at different heights and scales. Field measurements showed photodegradation induced carbon fluxes. Also, respiratory del13CO2 was determined by use of Keeling plots, and was determined to vary between -25‰ and -21‰. A clear diurnal pattern in respiratory del13CO2 was found, suggesting either different (dominant) respiratory processes between day and night or the effect of diffusive fractionation.
[Tobacco prevention. The "smoke-free" youth campaign].
Lang, P; Strunk, M
2010-02-01
The sharp increase of adolescent tobacco consumption between 1990 and 2001 and the national health target "reducing tobacco consumption" were two main reasons for the increased prevention measures of the Federal Center for Health Education in promoting non-smoking among young people. This article focuses on the offers and measures of the "smoke-free" youth campaign from the Federal Center for Health Education. To promote non-smoking in adolescence, the Federal Center for Health Education started the "smoke-free" youth campaign in 2002 and has continuously expanded it through the present. The campaign is based on a goal-oriented planning process and is predominantly directed towards adolescents younger than 18 years. To achieve national effects in the target group, concerted measures ranging from mass media (television/cinema spots, advertisement), internet, and face-to-face communication--with a focus on school--were implemented. Simultaneous with the start of the "smoke-free" youth campaign in 2001, there is evidence for continuous reduction of the smoking prevalence of adolescents. The rate of smoking adolescents between 12 and 17 years decreased from 28% in 2001 to 15% in 2008, thus, reaching an all-time low.
Continuous performance task in ADHD: Is reaction time variability a key measure?
Levy, Florence; Pipingas, Andrew; Harris, Elizabeth V; Farrow, Maree; Silberstein, Richard B
2018-01-01
To compare the use of the Continuous Performance Task (CPT) reaction time variability (intraindividual variability or standard deviation of reaction time), as a measure of vigilance in attention-deficit hyperactivity disorder (ADHD), and stimulant medication response, utilizing a simple CPT X-task vs an A-X-task. Comparative analyses of two separate X-task vs A-X-task data sets, and subgroup analyses of performance on and off medication were conducted. The CPT X-task reaction time variability had a direct relationship to ADHD clinician severity ratings, unlike the CPT A-X-task. Variability in X-task performance was reduced by medication compared with the children's unmedicated performance, but this effect did not reach significance. When the coefficient of variation was applied, severity measures and medication response were significant for the X-task, but not for the A-X-task. The CPT-X-task is a useful clinical screening test for ADHD and medication response. In particular, reaction time variability is related to default mode interference. The A-X-task is less useful in this regard.
First experimental feasibility study of VIPIC: a custom-made detector for X-ray speckle measurements
Rumaiz, Abdul K.; Siddons, D. Peter; Deptuch, Grzegorz; Maj, Piotr; Kuczewski, Anthony J.; Carini, Gabriella A.; Narayanan, Suresh; Dufresne, Eric M.; Sandy, Alec; Bradford, Robert; Fluerasu, Andrei; Sutton, Mark
2016-01-01
The Vertically Integrated Photon Imaging Chip (VIPIC) was custom-designed for X-ray photon correlation spectroscopy, an application in which occupancy per pixel is low but high time resolution is needed. VIPIC operates in a sparsified streaming mode in which each detected photon is immediately read out as a time- and position-stamped event. This event stream can be fed directly to an autocorrelation engine or accumulated to form a conventional image. The detector only delivers non-zero data (sparsified readout), greatly reducing the communications overhead typical of conventional frame-oriented detectors such as charge-coupled devices or conventional hybrid pixel detectors. This feature allows continuous acquisition of data with timescales from microseconds to hours. In this work VIPIC has been used to measure X-ray photon correlation spectroscopy data on polystyrene latex nano-colliodal suspensions in glycerol and on colloidal suspensions of silica spheres in water. Relaxation times of the nano-colloids have been measured for different temperatures. These results demonstrate that VIPIC can operate continuously in the microsecond time frame, while at the same time probing longer timescales. PMID:26917126
Project Fog Drops. Part 1: Investigations of warm fog properties
NASA Technical Reports Server (NTRS)
Pilie, R. J.; Eadie, W.; Mack, E. J.; Rogers, C.; Kocmond, W. C.
1972-01-01
A detailed study was made of the micrometeorological and microphysical characteristics of eleven valley fogs occurring near Elmira, New York. Observations were made of temperature, dew point, wind speed and direction, dew deposition, vertical wind velocity, and net radiative flux. In fog, visibility was continuously recorded and periodic measurements were made of liquid water content and drop-size distribution. The observations were initiated in late evening and continued until the time of fog dissipation. The vertical distribution of temperature in the lowest 300 meters and cloud nucleus concentration at several heights were measured from an aircraft before fog nucleus concentrations at several heights were measured from an aircraft before fog formation. A numerical model was developed to investigate the life cycle of radiation fogs. The model predicts the temporal evolution of the vertical distributions of temperature, water vapor, and liquid water as determined by the turbulent transfer of heat and moisture. The model includes the nocturnal cooling of the earth's surface, dew formation, fog drop sedimentation, and the absorption of infrared radiation by fog.
WFPC2 Observations of Astrophysically Important Visual Binaries - Continued
NASA Astrophysics Data System (ADS)
Bond, Howard
1999-07-01
We recently used WFPC2 images of Procyon A and B to measure an extremely accurate separation of the bright F star and its much fainter white-dwarf companion. Combined with ground-based astrometry of the bright star, our observation significantly revises downward the derived masses, and brings Procyon A into excellent agreement with theoretical evolutionary tracks for the first time. We now propose to begin a modest but long-term program of WFPC2 measurements of astrophysically important visual binaries, working in a regime of large magnitude differences and/or faint stars where ground-based speckle interferometry cannot compete. We have selected three systems: Procyon {P=40 yr}, for which continued monitoring will even further refine the very accurate masses; Mu Cas {P=21 yr}, a famous metal-deficient G dwarf for which accurate masses will lead to the star's helium content with cosmological implications; and G 107-70, a close double white dwarf {P=18 yr} that promises to add two accurate masses to the tiny handful of white-dwarf masses that are directly known from dynamical measurements.
Long Open Path Fourier Transform Spectroscopy Measurements of Greenhouse Gases in the Near Infrared
NASA Astrophysics Data System (ADS)
Griffith, D. W. T.
2015-12-01
Atmospheric composition measurements are an important tool to quantify local and regional emissions and sinks of greenhouse gases. Most in situ measurements are made at a point, but how representative are such measurements in an inhomogeneous environment? Open path Fourier Transform Spectroscopy (FTS) measurements potentially offer spatial averaging and continuous measurements of several trace gases (including CO2, CH4, CO and N2O) simultaneously in the same airmass. Spatial averaging over kilometre scales is a better fit to the finest scale atmospheric models becoming available, and helps bridge the gap between models and in situ measurements. In this paper we assess the precision, accuracy and reliability of long open path measurements by Fourier Transform Spectroscopy in the near infrared from a 5-month continuous record of measurements over a 1.5 km pathlength. Direct open-atmosphere measurements of trace gases CO2, CH4, CO and N2O as well as O2 were retrieved from several absorption bands between 4000 and 8000 cm-1 (2.5 - 1.25 micron). At one end of the path an in situ FTIR analyser simultaneously collected well calibrated measurements of the same species for comparison with the open path-integrated measurements. The measurements ran continuously from June - November 2014. We introduce the open path FTS measurement system and present an analysis of the results, including assessment of precision, accuracy relative to co-incident in situ measurements, reliability. Short term precision of the open path measurement of CO2 was better than 1 ppm for 5 minute averages and thus sufficient for studies in urban and other non-background environments. Measurement bias relative to calibrated in situ measurements was stable across the measurement period. The system operated reliably with data losses mainly due to weather events such as rain and fog preventing transmission of the IR beam. In principle the system can be improved to provide longer pathlengths and higher precision, and we present recent progress in improving the original measurements.
[Towards a safety culture in the neonatal unit: Six years experience].
Esqué Ruiz, M T; Moretones Suñol, M G; Rodríguez Miguélez, J M; Parés Tercero, S; Cortés Albuixech, R; Varón Ramírez, E M; Figueras Aloy, J
2015-10-01
A safety culture is the collective effort of an institution to direct its resources toward the goal of safety. An analysis is performed on the six years of experience of the Committee on the Safety of Neonatal Patient. A mailbox was created for the declaration of adverse events, and measures for their correction were devised, such as case studies, continuous education, prevention of nosocomial infections, as well as information on the work done and its assessment. A total of 1287 reports of adverse events were received during the six years, of which 600 (50.8%) occurred in the neonatal ICU, with 15 (1.2%) contributing to death, and 1282 (99.6%) considered preventable. Simple corrective measures (notification, security alerts, etc.) were applied in 559 (43.4%), intermediate measures (protocols, monthly newsletter, etc.) in 692 (53.8%), and more complex measures (causal analysis, scripts, continuous education seminars, prospective studies, etc.) in 66 (5.1%). As regards nosocomial infections, the prevention strategies implemented (hand washing, insertion and maintenance of catheters) directly affected their improvement. Two surveys were conducted to determine the level of satisfaction with the Committee on the Safety of Neonatal Patient. A rating 7.5/10 was obtained in the local survey, while using the Spanish version of the Hospital Survey on Patient Safety Culture the rate was 7.26/10. A path to a culture of safety has been successfully started and carried out. Reporting the adverse events is the key to obtaining information on their nature, etiology and evolution, and to undertake possible prevention strategies. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.
Loren, Bradley P; Wleklinski, Michael; Koswara, Andy; Yammine, Kathryn; Hu, Yanyang; Nagy, Zoltan K; Thompson, David H; Cooks, R Graham
2017-06-01
A highly integrated approach to the development of a process for the continuous synthesis and purification of diphenhydramine is reported. Mass spectrometry (MS) is utilized throughout the system for on-line reaction monitoring, off-line yield quantitation, and as a reaction screening module that exploits reaction acceleration in charged microdroplets for high throughput route screening. This effort has enabled the discovery and optimization of multiple routes to diphenhydramine in glass microreactors using MS as a process analytical tool (PAT). The ability to rapidly screen conditions in charged microdroplets was used to guide optimization of the process in a microfluidic reactor. A quantitative MS method was developed and used to measure the reaction kinetics. Integration of the continuous-flow reactor/on-line MS methodology with a miniaturized crystallization platform for continuous reaction monitoring and controlled crystallization of diphenhydramine was also achieved. Our findings suggest a robust approach for the continuous manufacture of pharmaceutical drug products, exemplified in the particular case of diphenhydramine, and optimized for efficiency and crystal size, and guided by real-time analytics to produce the agent in a form that is readily adapted to continuous synthesis.
Continious production of exfoliated graphite composite compositions and flow field plates
Shi, Jinjun; Zhamu, Aruna; Jang, Bor Z.
2010-07-20
A process of continuously producing a more isotropic, electrically conductive composite composition is provided. The process comprises: (a) continuously supplying a compressible mixture comprising exfoliated graphite worms and a binder or matrix material, wherein the binder or matrix material is in an amount of between 3% and 60% by weight based on the total weight of the mixture; (b) continuously compressing the compressible mixture at a pressure within the range of from about 5 psi or 0.035 MPa to about 50,000 psi or 350 MPa in at least a first direction into a cohered graphite composite compact; and (c) continuously compressing the composite compact in a second direction, different from the first direction, to form the composite composition in a sheet or plate form. The process leads to composite plates with exceptionally high thickness-direction electrical conductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn Edward; Song, Xuehang; Ye, Ming
A new approach is developed to delineate the spatial distribution of discrete facies (geological units that have unique distributions of hydraulic, physical, and/or chemical properties) conditioned not only on direct data (measurements directly related to facies properties, e.g., grain size distribution obtained from borehole samples) but also on indirect data (observations indirectly related to facies distribution, e.g., hydraulic head and tracer concentration). Our method integrates for the first time ensemble data assimilation with traditional transition probability-based geostatistics. The concept of level set is introduced to build shape parameterization that allows transformation between discrete facies indicators and continuous random variables. Themore » spatial structure of different facies is simulated by indicator models using conditioning points selected adaptively during the iterative process of data assimilation. To evaluate the new method, a two-dimensional semi-synthetic example is designed to estimate the spatial distribution and permeability of two distinct facies from transient head data induced by pumping tests. The example demonstrates that our new method adequately captures the spatial pattern of facies distribution by imposing spatial continuity through conditioning points. The new method also reproduces the overall response in hydraulic head field with better accuracy compared to data assimilation with no constraints on spatial continuity on facies.« less
Grace, Lydia; Dewhurst, Stephen A; Anderson, Rachel J
2016-10-01
Autobiographical memory (AM) is believed to serve self, social and directive functions; however, little is known regarding how this triad of functions operates in depression. Using the Thinking About Life Experiences questionnaire [Bluck, S., & Alea, N. (2011). Crafting the TALE: Construction of a measure to assess the functions of autobiographical remembering. Memory, 19, 470-486.; Bluck, S., Alea, N., Habermas, T., & Rubin, D. C. (2005). A TALE of three functions: The self-reported uses of autobiographical memory. Social Cognition, 23, 91-117.], two studies explored the relationship between depressive symptomology and the self-reported frequency and usefulness of AMs for self, social and directive purposes. Study 1 revealed that thinking more frequently but talking less frequently about past life events was significantly associated with higher depression scores. Recalling past events more frequently to maintain self-continuity was also significantly associated with higher depressive symptomology. However, results from Study 2 indicated that higher levels of depression were also significantly associated with less-frequent useful recollections of past life events for self-continuity purposes. Taken together, the findings suggest atypical utilisations of AM to serve self-continuity functions in depression and can be interpreted within the wider context of ruminative thought processes.
Discrete- vs. Continuous-Time Modeling of Unequally Spaced Experience Sampling Method Data.
de Haan-Rietdijk, Silvia; Voelkle, Manuel C; Keijsers, Loes; Hamaker, Ellen L
2017-01-01
The Experience Sampling Method is a common approach in psychological research for collecting intensive longitudinal data with high ecological validity. One characteristic of ESM data is that it is often unequally spaced, because the measurement intervals within a day are deliberately varied, and measurement continues over several days. This poses a problem for discrete-time (DT) modeling approaches, which are based on the assumption that all measurements are equally spaced. Nevertheless, DT approaches such as (vector) autoregressive modeling are often used to analyze ESM data, for instance in the context of affective dynamics research. There are equivalent continuous-time (CT) models, but they are more difficult to implement. In this paper we take a pragmatic approach and evaluate the practical relevance of the violated model assumption in DT AR(1) and VAR(1) models, for the N = 1 case. We use simulated data under an ESM measurement design to investigate the bias in the parameters of interest under four different model implementations, ranging from the true CT model that accounts for all the exact measurement times, to the crudest possible DT model implementation, where even the nighttime is treated as a regular interval. An analysis of empirical affect data illustrates how the differences between DT and CT modeling can play out in practice. We find that the size and the direction of the bias in DT (V)AR models for unequally spaced ESM data depend quite strongly on the true parameter in addition to data characteristics. Our recommendation is to use CT modeling whenever possible, especially now that new software implementations have become available.
Discrete- vs. Continuous-Time Modeling of Unequally Spaced Experience Sampling Method Data
de Haan-Rietdijk, Silvia; Voelkle, Manuel C.; Keijsers, Loes; Hamaker, Ellen L.
2017-01-01
The Experience Sampling Method is a common approach in psychological research for collecting intensive longitudinal data with high ecological validity. One characteristic of ESM data is that it is often unequally spaced, because the measurement intervals within a day are deliberately varied, and measurement continues over several days. This poses a problem for discrete-time (DT) modeling approaches, which are based on the assumption that all measurements are equally spaced. Nevertheless, DT approaches such as (vector) autoregressive modeling are often used to analyze ESM data, for instance in the context of affective dynamics research. There are equivalent continuous-time (CT) models, but they are more difficult to implement. In this paper we take a pragmatic approach and evaluate the practical relevance of the violated model assumption in DT AR(1) and VAR(1) models, for the N = 1 case. We use simulated data under an ESM measurement design to investigate the bias in the parameters of interest under four different model implementations, ranging from the true CT model that accounts for all the exact measurement times, to the crudest possible DT model implementation, where even the nighttime is treated as a regular interval. An analysis of empirical affect data illustrates how the differences between DT and CT modeling can play out in practice. We find that the size and the direction of the bias in DT (V)AR models for unequally spaced ESM data depend quite strongly on the true parameter in addition to data characteristics. Our recommendation is to use CT modeling whenever possible, especially now that new software implementations have become available. PMID:29104554
NASA Technical Reports Server (NTRS)
Kavaya, M. J. (Inventor)
1981-01-01
A Stark effect spectrophone using a pulsed or continuous wave laser having a beam with one or more absorption lines of a constituent of an unknown gas is described. The laser beam is directed through windows of a closed cell while the unknown gas to be modified flows continuously through the cell between electric field plates disposed in the cell on opposite sides of the beam path through the cell. When the beam is pulsed, energy absorbed by the gas increases at each point along the beam path according to the spectral lines of the constituents of the gas for the particular field strengths at those points. The pressure measurement at each point during each pulse of energy yields a plot of absorption as a function of electric field for simultaneous detection of the gas constituents. Provision for signal averaging and modulation is included.
Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths
NASA Astrophysics Data System (ADS)
Han, Yu; Li, Qiang; Zhu, Si; Ng, Kar Wei; Lau, Kei May
2017-11-01
We report continuous-wave lasing from InP/InGaAs nanoridges grown on a patterned (001) Si substrate by aspect ratio trapping. Multi-InGaAs ridge quantum wells inside InP nanoridges are designed as active gain materials for emission in the 1500 nm band. The good crystalline quality and optical property of the InGaAs quantum wells are attested by transmission electron microscopy and microphotoluminescence measurements. After transfer of the InP/InGaAs nanoridges onto a SiO2/Si substrate, amplified Fabry-Perot resonant modes at room temperature and multi-mode lasing behavior in the 1400 nm band under continuous-wave optical pumping at 4.5 K are observed. This result thus marks an important step towards integrating InP/InGaAs nanolasers directly grown on microelectronic standard (001) Si substrates.
Localized stress fluctuations drive shear thickening in dense suspensions
NASA Astrophysics Data System (ADS)
Rathee, Vikram; Blair, Daniel L.; Urbach, Jeffrey S.
2017-08-01
Dense particulate suspensions exhibit a dramatic increase in average viscosity above a critical, material-dependent shear stress. This thickening changes from continuous to discontinuous as the concentration is increased. Using direct measurements of spatially resolved surface stresses in the continuous thickening regime, we report the existence of clearly defined dynamic localized regions of substantially increased stress that appear intermittently at stresses above the critical stress. With increasing applied stress, these regions occupy an increasing fraction of the system, and the increase accounts quantitatively for the observed shear thickening. The regions represent high-viscosity fluid phases, with a size determined by the distance between the shearing surfaces and a viscosity that is nearly independent of shear rate but that increases rapidly with concentration. Thus, we find that continuous shear thickening arises from increasingly frequent localized discontinuous transitions between distinct fluid phases with widely differing viscosities.
Song, Qiang; Liu, Fang; Wen, Guanghui; Cao, Jinde; Yang, Xinsong
2017-04-24
This paper considers the position-based consensus in a network of agents with double-integrator dynamics and directed topology. Two types of distributed observer algorithms are proposed to solve the consensus problem by utilizing continuous and intermittent position measurements, respectively, where each observer does not interact with any other observers. For the case of continuous communication between network agents, some convergence conditions are derived for reaching consensus in the network with a single constant delay or multiple time-varying delays on the basis of the eigenvalue analysis and the descriptor method. When the network agents can only obtain intermittent position data from local neighbors at discrete time instants, the consensus in the network without time delay or with nonuniform delays is investigated by using the Wirtinger's inequality and the delayed-input approach. Numerical examples are given to illustrate the theoretical analysis.
Ortiz, Manuel S; Baeza-Rivera, María José; Salinas-Oñate, Natalia; Flynn, Patricia; Betancourt, Héctor
2016-10-01
The negative impact of perceived discrimination on health outcomes is well established. However, less attention has been directed towards understanding the effect of perceived discrimination on health behaviors relevant for the treatment of diabetes in ethnic minorities. To examine the effects of healthcare mistreatment attributed to discrimination on the continuity of Type 2 Diabetes (DM2) care among mapuche patients in a southern region of Chile. A non-probabilistic sample of 85 mapuche DM2 patients were recruited from public and private health systems. Eligibility criteria included having experienced at least one incident of interpersonal healthcare mistreatment. All participants answered an instrument designed to measure healthcare mistreatment and continuity of diabetes care. Healthcare mistreatment attributed to ethnic discrimination was associated with the discontinuation of diabetes care. Healthcare mistreatment attributed to discrimination negatively impacted the continuity of diabetes care, a fact which may provide a better understanding of health disparities in ethnic minorities.
Fuzzy control strategy for secondary cooling of continuous steel casting
NASA Astrophysics Data System (ADS)
Tirian, G. O.; Gheorghiu, C. A.; Hepuţ, T.; Rob, R.
2017-05-01
The purpose of this paper is to create an original fuzzy solution on the existing structure of the control system of continuous casting that eliminates fissures in the poured material from the secondary cooling of steel. For this purpose a system was conceived with three fuzzy database decision rules, which by analyzing a series of measurements taken from the process produces adjustments in the rate of flow of the cooling water and the speed of casting and determine the degree of risk of the wire. In the specialized literature on the national plan and the world, there is no intelligent correction in the rate of flow of the cooling water and the speed of casting in the secondary cooling of steel. The database of rules was made using information collected directly from the installation process of continuous casting of the Arcelor Mittal Hunedoara.
BIAS: A Regional Management of Underwater Sound in the Baltic Sea.
Sigray, Peter; Andersson, Mathias; Pajala, Jukka; Laanearu, Janek; Klauson, Aleksander; Tegowski, Jaroslaw; Boethling, Maria; Fischer, Jens; Tougaard, Jakob; Wahlberg, Magnus; Nikolopoulos, Anna; Folegot, Thomas; Matuschek, Rainer; Verfuss, Ursula
2016-01-01
Management of the impact of underwater sound is an emerging concern worldwide. Several countries are in the process of implementing regulatory legislations. In Europe, the Marine Strategy Framework Directive was launched in 2008. This framework addresses noise impacts and the recommendation is to deal with it on a regional level. The Baltic Sea is a semienclosed area with nine states bordering the sea. The number of ships is one of the highest in Europe. Furthermore, the number of ships is estimated to double by 2030. Undoubtedly, due to the unbound character of noise, an efficient management of sound in the Baltic Sea must be done on a regional scale. In line with the European Union directive, the Baltic Sea Information on the Acoustic Soundscape (BIAS) project was established to implement Descriptor 11 of the Marine Strategy Framework Directive in the Baltic Sea region. BIAS will develop tools, standards, and methodologies that will allow for cross-border handling of data and results, measure sound in 40 locations for 1 year, establish a seasonal soundscape map by combining measured sound with advanced three-dimensional modeling, and, finally, establish standards for measuring continuous sound. Results from the first phase of BIAS are presented here, with an emphasis on standards and soundscape mapping as well as the challenges related to regional handling.
Waite, Gregory P.; Schutt, D.L.; Smith, Robert B.
2005-01-01
Teleseismic shear wave splitting measured at 56 continuous and temporary seismographs deployed in a 500 km by 600 km area around the Yellowstone hot spot indicates that fast anisotropy in the mantle is parallel to the direction of plate motion under most of the array. The average split time from all stations of 0.9 s is typical of continental stations. There is little evidence for plume-induced radial strain, suggesting that any contribution of gravitationally spreading plume material is undetectably small with respect to the plate motion velocity. Two stations within Yellowstone have splitting measurements indicating the apparent fast anisotropy direction (ϕ) is nearly perpendicular to plate motion. These stations are ∼30 km from stations with ϕ parallel to plate motion. The 70° rotation over 30 km suggests a shallow source of anisotropy; however, split times for these stations are more than 2 s. We suggest melt-filled, stress-oriented cracks in the lithosphere are responsible for the anomalous ϕ orientations within Yellowstone. Stations southeast of Yellowstone have measurements of ϕ oriented NNW to WNW at high angles to the plate motion direction. The Archean lithosphere beneath these stations may have significant anisotropy capable of producing the observed splitting.
Truzzi, Cristina; Lambertucci, Luca; Illuminati, Silvia; Annibaldi, Anna; Scarponi, Giuseppe
2005-01-01
An on-site procedure was set up for direct gravimetric measurement of the mass of aerosol collected using high volume impactors (aerodynamic size cut point of 10 microm, PM10); this knowledge has hitherto been unavailable. Using a computerized microbalance in a clean chemistry laboratory, under controlled temperature (+/-0.5 degrees C) and relative humidity (+/-1%), continuous, long time filter mass measurements (hours) were carried out before and after exposure, after a 48 h minimun equilibration at the laboratory conditions. The effect of the electrostatic charge was exhausted in 30-60 min, after which stable measurements were obtained. Measurements of filters exposed for 7-11 days (1.13 m3 min(-1)) in a coastal site near Terra Nova Bay (December 2000 - February 2001), gave results for aerosol mass in the order of 10-20 mg (SD approximately 2 mg), corresponding to atmospheric concentrations of 0.52-1.27 microg m(-3). Data show a seasonal behaviour in the PM10 content with an increase during December - early January, followed by a net decrease. The above results compare well with estimates obtained from proxy data for the Antarctic Peninsula (0.30 microg m(-3)), the Ronne Ice Shelf (1.49 microg m(-3)), and the South Pole (0.18 microg m(-3), summer 1974-1975, and 0.37 microg m(-3), average summer seasons 1975-1976 and 1977-1978), and from direct gravimetric measurements recently obtained from medium volume samplers at McMurdo station (downwind 3.39 microg m(-3), upwind 4.15 microg m(-3)) and at King George Island (2.5 microg m(-3), summer, particle diameter <20 microm). This finding opens the way to the direct measurement of the chemical composition of the Antarctic aerosol and, in turn, to a better knowledge of the snow/air relationships as required for the reconstruction of the chemical composition of past atmospheres from deep ice core data.
Models for electromagnetic coupling of lightning onto multiconductor cables in underground cavities
NASA Astrophysics Data System (ADS)
Higgins, Matthew Benjamin
This dissertation documents the measurements, analytical modeling, and numerical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy onto multiconductor cables in an underground cavity. Measurements were performed at the Sago coal mine located near Buckhannon, WV. These transfer functions, coupled with mathematical representations of lightning strokes, are then used to predict electric fields within the mine and induced voltages on a cable that was left abandoned in the sealed area of the Sago mine. If voltages reached high enough levels, electrical arcing could have occurred from the abandoned cable. Electrical arcing is known to be an effective ignition source for explosive gas mixtures. Two coupling mechanisms were measured: direct and indirect drive. Direct coupling results from the injection or induction of lightning current onto metallic conductors such as the conveyors, rails, trolley communications cable, and AC power shields that connect from the outside of the mine to locations deep within the mine. Indirect coupling results from electromagnetic field propagation through the earth as a result of a cloud-to-ground lightning stroke or a long, low-altitude horizontal current channel from a cloud-to-ground stroke. Unlike direct coupling, indirect coupling does not require metallic conductors in a continuous path from the surface to areas internal to the mine. Results from the indirect coupling measurements and analysis are of great concern. The field measurements, modeling, and analysis indicate that significant energy can be coupled directly into the sealed area of the mine. Due to the relatively low frequency content of lightning (< 100 kHz), electromagnetic energy can readily propagate through hundreds of feet of earth. Indirect transfer function measurements compare extremely well with analytical and computational models developed for the Sago site which take into account measured soil properties.
Forquer, Heather A.; Christensen, John L.; Tan, Andy S.L.
2014-01-01
While eHealth technologies are promisingly efficient and widespread, theoretical frameworks capable of predicting long-term use, termed continuance, are lacking. Attempts to extend prominent information technology (IT) theories to the area of eHealth have been limited by small sample sizes, cross-sectional designs, self-reported as opposed to actual use measures, and a focus on technology adoption rather than continuance. To address these gaps in the literature, the present analysis includes empirical evidence of actual use of an eHealth technology over the course of one year. This large (n=4,570) longitudinal study focuses on older adults, a population with many health needs, and among whom eHealth use may be particularly important. With three measurement points over the course of a year, this study examined the effects of utilitarian and hedonic beliefs on the continued use of an eHealth newsletter using constructs from IT adoption and continuance theories. Additional analyses compared the relative strength of intentions compared to earlier use in predicting later use. Usage intention was strongly predicted by both hedonic beliefs and utilitarian beliefs. In addition, utilitarian beliefs had both direct effects on intention, as well as indirect effects, mediated by hedonic beliefs. While intention predicted subsequent use, earlier use was a significantly stronger predictor of use than intention. These findings make a theoretical contribution to an emerging literature by shedding light on the complex interplay of reasoned action and automaticity in the context of eHealth continuance. PMID:24446900
Han, Weina; Jiang, Lan; Li, Xiaowei; Liu, Pengjun; Xu, Le; Lu, YongFeng
2013-07-01
Large-area, uniform laser-induced periodic surface structures (LIPSS) are of wide potential industry applications. The continuity and processing precision of LIPSS are mainly determined by the scanning intervals of adjacent scanning lines. Therefore, continuous modulations of LIPSS and scanned line-widths within one laser scanning pass are of great significance. This study proposes that by varying the laser (800 nm, 50 fs, 1 kHz) polarization direction, LIPSS and the scanned line-widths on a silicon (111) surface can be continuously modulated with high precision. It shows that the scanned line-width reaches the maximum when the polarization direction is perpendicular to the scanning direction. As an application example, the experiments show large-area, uniform LIPSS can be fabricated by controlling the scanning intervals based on the one-pass scanned line-widths. The simulation shows that the initially formed LIPSS structures induce directional surface plasmon polaritons (SPP) scattering along the laser polarization direction, which strengthens the subsequently anisotropic LIPSS fabrication. The simulation results are in good agreement with the experiments, which both support the conclusions of continuous modulations of the LIPSS and scanned line-widths.
Methods of measurement for semiconductor materials, process control, and devices
NASA Technical Reports Server (NTRS)
Bullis, W. M. (Editor)
1972-01-01
Activities directed toward the development of methods of measurement for semiconductor materials, process control, and devices are described. Accomplishments include the determination of the reasons for differences in measurements of transistor delay time, identification of an energy level model for gold-doped silicon, and the finding of evidence that it does not appear to be necessary for an ultrasonic bonding tool to grip the wire and move it across the substrate metallization to make the bond. Work is continuing on measurement of resistivity of semiconductor crystals; study of gold-doped silicon; development of the infrared response technique; evaluation of wire bonds and die attachment; measurement of thermal properties of semiconductor devices, delay time, and related carrier transport properties in junction devices, and noise properties of microwave diodes; and characterization of silicon nuclear radiation detectors.
Garlick, R; Bihari, D
1987-01-01
Monitoring clinical signs in unconscious patients provides only late information about cerebral deterioration. Ischaemia and hypoxia are the mechanisms of much of the damage. Cerebral blood flow (CBF) measurements provide direct evidence of ischaemia but are intermittent values for what may be an unstable situation. Continuous recordings of CBF and oxygenation are more likely to reveal harmful tendencies to ischaemia and hypoxia at an early stage than intermittent readings. We report our experience with intermittent and also continuous recording of the jugular venous bulb oxygen saturation (JVO2Sat) obtained by fibreoptic oximetry in a group of 10 head injured and 7 septic patients. Simultaneous measurements of CBF by an isotopic xenon clearance method were also made. The JVO2Sat has been suggested to be a reliable indicator of cerebral oxygenation, a low value being indicative of ischaemia. We discuss whether our findings support this statement. There are also variations in JVO2Sat with mean arterial blood pressure and intracranial pressure. These variations have important implications in the interpretation that can be made of one single value of JVO2Sat.
Inertial instrument system for aerial surveying
Brown, R.H.; Chapman, W.H.; Hanna, W.F.; Mongan, C.E.; Hursh, J.W.
1985-01-01
An inertial guidance system for aerial surveying has been developed under contract to the U.S. Geological Survey. This prototype system, known as the aerial profiling of terrain (APT) system, is designed to determine continuously the positions of points along an aircraft flight path, or the underlying terrain profile, to an accuracy of + or - 0.5 ft (15 cm) vertically and + or - 2 ft (61 cm) horizontally. The system 's objective thus is to accomplish, from a fixed-wing aircraft, what would traditionally be accomplished from ground-based topographic surveys combined with aerial photography and photogrammetry. The two-part strategy for measuring the terrain profile entails: (1) use of an inertial navigator for continuous determination of the three-coordinate position of the aircraft, and (2) use of an eye-safe pulsed laser profiler for continuous measurement of the vertical distance from aircraft to land surface, so that the desired terrain profile can then be directly computed. The APT system, installed in a DeHavilland Twin Otter aircraft, is typically flown at a speed of 115 mph (105 knots) at an altitude of 2,000 ft (610 m) above the terrain. Performance-evaluation flights have shown that the vertical and horizontal accuracy specifications are met. (USGS)
An indirect continuous running multistage field test: the Université de Montréal track test.
Léger, L; Boucher, R
1980-06-01
The object of this study was to report on the validity and reliability of the Université de Montréal Track Test (UM-TT). The UM-TT is a continuous maximal indirect multistage running field test based on the energy cost of running. The first stage is set at a walking speed that requires 5 Mets; thereafter the speed is increased by 1 Met every two minutes. In order to assess the validity of the UM-TT, 25 subjects, 24.4 +/- 2.8 years old (X +/- SD) had their VO2max predicted with the UM-TT and measured directly with a running multistage treadmill test. Averages (+/- SD) were not significantly different (61.5 +/- 10.6 and 61.4 +/- 10.9 ml O2 . kg-1 . min-1, respectively), other statistics being r = 0.96, delta = 0.09 +/- 2.90 ml O2 . kg-1 . min-1 and Syx = 2.81 ml O2 . kg-1 . min-1. Seven males, 20.6 +/- 1.0 years old, had also their VO2max measured directly during the UM-TT. Comparison of predicted and directly measured VO2max yielded similar results: 70.0 +/- 4.5 and 70.7 +/- 6.0 ml O2 . kg-1 . min-1, respectively with r = 0.66, delta = 0.67 +/- 4.53 and Syx = 3.71. Reliability of the UM-TT was assessed by repeating the test twice on 60 subjects (49 males and 11 females; 39 subjects below 30 years old and 21, above; and 30 subjects below and above 15 Mets). Results were as follows: X +/- SD = 54.1 +/- 8.2 and 54.2 +/- 8.5, r = 0.97, delta 0.11 +/- 1.92, and Syx = 1.92. Similar reliability trends were observed for each one of the subgroups of subjects. It is concluded that the UM-TT is valid and reliable to estimate the VO2max of trained and untrained young and middle-age males and females.
Founders' Continuing Roles in Schools Supporting Self-Directed Learning
ERIC Educational Resources Information Center
Nash, Carol
2014-01-01
What should be the continuing role of founders in schools supporting self-directed learning? To answer this, the founders' views of two North American schools for self-directed learners will be compared. One school is exam-focused and private; the other is, test-free and public. The founders of both schools have comparable beliefs regarding the…
The composition of intern work while on call.
Fletcher, Kathlyn E; Visotcky, Alexis M; Slagle, Jason M; Tarima, Sergey; Weinger, Matthew B; Schapira, Marilyn M
2012-11-01
The work of house staff is being increasingly scrutinized as duty hours continue to be restricted. To describe the distribution of work performed by internal medicine interns while on call. Prospective time motion study on general internal medicine wards at a VA hospital affiliated with a tertiary care medical center and internal medicine residency program. Internal medicine interns. Trained observers followed interns during a "call" day. The observers continuously recorded the tasks performed by interns, using customized task analysis software. We measured the amount of time spent on each task. We calculated means and standard deviations for the amount of time spent on six categories of tasks: clinical computer work (e.g., writing orders and notes), non-patient communication, direct patient care (work done at the bedside), downtime, transit and teaching/learning. We also calculated means and standard deviations for time spent on specific tasks within each category. We compared the amount of time spent on the top three categories using analysis of variance. The largest proportion of intern time was spent in clinical computer work (40 %). Thirty percent of time was spent on non-patient communication. Only 12 % of intern time was spent at the bedside. Downtime activities, transit and teaching/learning accounted for 11 %, 5 % and 2 % of intern time, respectively. Our results suggest that during on call periods, relatively small amounts of time are spent on direct patient care and teaching/learning activities. As intern duty hours continue to decrease, attention should be directed towards preserving time with patients and increasing time in education.
NASA Astrophysics Data System (ADS)
Campanelli, Monica; Estellés, Victor; Colwell, Steve; Shanklin, Jonathan; Ningombam, Shantikumar S.
2015-04-01
The Antarctic continent is located far from most anthropogenic emission sources on the planet, it has limited areas of exposed rock and human activities are less developed. Air circulation over Antarctica also seems to prevent the direct transport of air originating from anthropogenic sources of pollution at lower latitudes. Therefore Antarctica is considered an attractive site for studying aerosol properties as unaltered as possible by human activity. Long term monitoring of the optical and physical properties is necessary for observing possible changes in the atmosphere over time and understanding if such changes are due to human activity or natural variation. Columnar aerosol optical and physical properties can be obtained from sun-sky radiometers, very compact instruments measuring spectral direct and diffuse solar irradiance at the visible wavelengths and using fast and efficient inversion algorithms. The British Antarctic Survey has continuously operated two Prede Pom-01 sun-sky radiometers in Antarctica as part of the ESR-European Skynet Radiometers network (www.euroskyrad.net, Campanelli et al, 2012). They are located at Halley and Rothera, and have operated since 2009 and 2008 respectively. In the present study the aerosol optical thickness, single scattering albedo, Ångström exponent, volume size distribution and refractive index were retrieved from cloud-screened measurements of direct and diffuse solar irradiance using the Skyrad 4.2 pack code (Nakajima et al., 1986). The analysis of the daily and yearly averages showed an important increase of the absorbing properties of particles at Halley from 2013 to the beginning of 2014 related to the increasing presence of smaller particles (from 2012) but with a non-significant variation of aerosol optical depth. The same increase of absorption was visible at Rothera only in 2013. Air pressure measurements, wind directions and intensity, and vertical profiles from radio-soundings, together with HYSPLIT model back-trajectories were considered in order to understand the origin of these particles (if locally produced or due to large scale transport ) and to verify if the events in the two sites are related or not. In addition some single days' events, showing both high aerosol optical thickness and absorption, were also studied. References: Campanelli et al, 2012, "Monitoring of Eyjafjallajökull volcanic aerosol by the new European Skynet Radiometers (ESR) network", Atmospheric Environment 48 (2012) 33-45 Nakajima, T., Tonna, G., Rao, R., Boi, P., Kaufman, Y., Holben, B., 1996. Use of sky brightness measurements from ground for remote sensing of particulate polydispersions. Applied Optics 35, 2672- 2686.
A wide field-of-view imaging DOAS instrument for continuous trace gas mapping from aircraft
NASA Astrophysics Data System (ADS)
Schönhardt, A.; Altube, P.; Gerilowski, K.; Krautwurst, S.; Hartmann, J.; Meier, A. C.; Richter, A.; Burrows, J. P.
2014-04-01
For the purpose of trace gas measurements and pollution mapping, the Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP) has been developed, characterised and successfully operated from aircraft. From the observations with the AirMAP instrument nitrogen dioxide (NO2) columns were retrieved. A major benefit of the pushbroom imaging instrument is the spatially continuous, gap-free measurement sequence independent of flight altitude, a valuable characteristic for mapping purposes. This is made possible by the use of a frame-transfer detector. With a wide-angle entrance objective, a broad field-of-view across track of around 48° is achieved, leading to a swath width of about the same size as the flight altitude. The use of fibre coupled light intake optics with sorted light fibres allows flexible positioning within the aircraft and retains the very good imaging capabilities. The measurements yield ground spatial resolutions below 100 m. From a maximum of 35 individual viewing directions (lines of sight, LOS) represented by 35 single fibres, the number of viewing directions is adapted to each situation by averaging according to signal-to-noise or spatial resolution requirements. Exploitation of all the viewing directions yields observations at 30 m spatial resolution, making the instrument a suitable tool for mapping trace gas point sources and small scale variability. For accurate spatial mapping the position and aircraft attitude are taken into account using the Attitude and Heading Reference System of the aircraft. A first demonstration mission using AirMAP was undertaken. In June 2011, AirMAP has been operated on the AWI Polar-5 aircraft in the framework of the AIRMETH2011 campaign. During a flight above a medium sized coal-fired power plant in North-West Germany, AirMAP clearly detects the emission plume downwind from the exhaust stack, with NO2 vertical columns around 2 × 1016 molecules cm-2 in the plume center. The emission estimates are consistent with reports in the pollutant transfer register. Strong spatial gradients and variability in NO2 amounts across and along flight direction are observed, and small-scale enhancements of NO2 above a motorway are detected. The present study reports on the experimental setup and characteristics of AirMAP, and the first measurements at high spatial resolution and wide spatial coverage are presented which meet the requirements for NO2 mapping to observe and account for the intrinsic variability of tropospheric NO2.
Prolonged mechanical noise restores tactile sense in diabetic neuropathic patients.
Cloutier, Rachel; Horr, Samuel; Niemi, James B; D'Andrea, Susan; Lima, Christina; Harry, Jason D; Veves, Aristidis
2009-03-01
Acute application of stochastic resonance (SR), defined as a subsensory level of mechanical noise presented directly to sensory neurons, improves the vibration and tactile perception in diabetic patients with mild to moderate neuropathy. This study examined the effect of 1 hour of continuous SR stimulation on sensory nerve function. Twenty diabetic patients were studied. The effect of stimulation was measured at 2 time points, at the beginning and after 60 minutes of continual SR stimulation. This effect was measured using the vibration perception threshold (VPT) at the big toe under 2 conditions: a null (no SR) condition and active SR, defined as mechanical noise below the subject's own threshold of perception. The measurements under null and active conditions were done randomly and the examiner was blinded regarding the type of condition. Immediately after SR application, the VPT with SR in null condition was similar to baseline (32.2 +/- 13.1, P = nonsignificant) but was significantly lower during active SR (27.4 +/- 11.9) compared with both baseline (P = .018) and off position (P = .045). The 60 minutes VPT with active SR (28.7 +/- 11.1) reached significance comparing the baseline when one outlier was removed from the analysis (P = .031). It may be concluded that SR for a continuous 60-minute period can sustain the VPT improvement in diabetic patients with moderate to severe neuropathy. These results permit the conclusion that there is no short-term adaptation to the stimulation signal. Long-term application of this technique, perhaps in the form of a continually vibrating shoe insert, or insole, may result in sustained improvement of nerve function.
Violante-Carvalho, Nelson
2005-12-01
Synthetic Aperture Radar (SAR) onboard satellites is the only source of directional wave spectra with continuous and global coverage. Millions of SAR Wave Mode (SWM) imagettes have been acquired since the launch in the early 1990's of the first European Remote Sensing Satellite ERS-1 and its successors ERS-2 and ENVISAT, which has opened up many possibilities specially for wave data assimilation purposes. The main aim of data assimilation is to improve the forecasting introducing available observations into the modeling procedures in order to minimize the differences between model estimates and measurements. However there are limitations in the retrieval of the directional spectrum from SAR images due to nonlinearities in the mapping mechanism. The Max-Planck Institut (MPI) scheme, the first proposed and most widely used algorithm to retrieve directional wave spectra from SAR images, is employed to compare significant wave heights retrieved from ERS-1 SAR against buoy measurements and against the WAM wave model. It is shown that for periods shorter than 12 seconds the WAM model performs better than the MPI, despite the fact that the model is used as first guess to the MPI method, that is the retrieval is deteriorating the first guess. For periods longer than 12 seconds, the part of the spectrum that is directly measured by SAR, the performance of the MPI scheme is at least as good as the WAM model.
Infrared Spectroscopic Measurement of Titanium Dioxide Nanoparticle Shallow Trap State Energies
2010-02-10
energy from the immediately preceding pulse burst. Continuous operation of a laser directed onto a target leads to vaporization operation. In this...1988, (92), 5196-5201. 93. Wang, Y.; Herron, N., Quantum Size Effects on the Exciton Energy of Cds Clusters . Physical Review B 1990, 42 (11...Nanoparticles by Pulsed Laser Ablation: Ambient Pressure Dependence of Crystallization. Jpn. J. Appl. Phys. 2003, 42, L 479–L 481. 186. Kawasaki, K.; Despres, J
Luo, Ming; Skorina, Erik H; Tao, Weijia; Chen, Fuchen; Ozel, Selim; Sun, Yinan; Onal, Cagdas D
2017-06-01
Real-world environments are complex, unstructured, and often fragile. Soft robotics offers a solution for robots to safely interact with the environment and human coworkers, but suffers from a host of challenges in sensing and control of continuously deformable bodies. To overcome these challenges, this article considers a modular soft robotic architecture that offers proprioceptive sensing of pressure-operated bending actuation modules. We present integrated custom magnetic curvature sensors embedded in the neutral axis of bidirectional bending actuators. We describe our recent advances in the design and fabrication of these modules to improve the reliability of proprioceptive curvature feedback over our prior work. In particular, we study the effect of dimensional parameters on improving the linearity of curvature measurements. In addition, we present a sliding-mode controller formulation that drives the binary solenoid valve states directly, giving the control system the ability to hold the actuator steady without continuous pressurization and depressurization. In comparison to other methods, this control approach does not rely on pulse width modulation and hence offers superior dynamic performance (i.e., faster response rates). Our experimental results indicate that the proposed soft robotic modules offer a large range of bending angles with monotonic and more linear embedded curvature measurements, and that the direct sliding-mode control system exhibits improved bandwidth and a notable reduction in binary valve actuation operations compared to our earlier iterative sliding-mode controller.
High reduction transaxle for electric vehicle
Kalns, Ilmars
1987-01-01
A drivetrain (12) includes a transaxle assembly (16) for driving ground engaging wheels of a land vehicle powered by an AC motor. The transaxle includes a ratio change section having planetary gear sets (24, 26) and brake assemblies (28, 30). Sun gears (60, 62) of the gear sets are directly and continuously connected to an input drive shaft (38) driven by the motor. A first drive (78a) directly and continuously connects a planetary gear carrier (78) of gear sets (24) with a ring gear (68) of gear set (26). A second drive (80a) directly and continuously connects a planetary gear carrier (80) of gear set (26) with a sun gear (64) of a final speed reduction gear set (34) having a planetary gear carrier directly and continuously connected to a differential (22). Brakes (28, 30) are selectively engageable to respectively ground a ring gear 66 of gear set 24 and ring gear 68 of gear set 26.
NASA Astrophysics Data System (ADS)
Smith, Nathan
2008-02-01
Every 5.5 years, η Carinae experiences a dramatic ``spectroscopic event'' when high-excitation lines in its UV, optical, and IR spectrum disappear, and its hard X-ray and radio continuum flux crash. This periodicity has been attributed to an eccentric binary system with a shell ejection occurring at periastron, and the next periastron event will occur at the very end of 2008. In addition, η Car shows long term changes as it is still recovering from its giant 19th century outburst. Both types of variability are directly linked to the current mass-loss rate and dust formation in its wind. Mid-IR images and spectra with T-ReCS provide a direct measure of changes in the current bolometric luminosity and a direct measure of the massw in dust formation episodes that may occur at periastron in the colliding wind shock. Near-IR emission lines trace related changes in the post-event wind and ionization changes in the circumstellar environment needed to test specific models for the cause of η Car's variability as it recovers from its recent ``event''. High resolution near-IR spectra with Phoenix will continue the important work of HST/STIS, investigating changes in the direct and reflected spectrum of the stellar wind, and ionization changes in the nebula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, C.V.; Lockwood, G.J.; Normann, R.A.
1999-06-01
The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted ofmore » the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.« less
Xu, J.; Stickrath, A. B.; Bhattacharya, P.; Nees, J.; Váró, G.; Hillebrecht, J. R.; Ren, L.; Birge, R. R.
2003-01-01
The photovoltaic signal associated with the primary photochemical event in an oriented bacteriorhodopsin film is measured by directly probing the electric field in the bacteriorhodopsin film using an ultrafast electro-optic sampling technique. The inherent response time is limited only by the laser pulse width of 500 fs, and permits a measurement of the photovoltage with a bandwidth of better than 350 GHz. All previous published studies have been carried out with bandwidths of 50 GHz or lower. We observe a charge buildup with an exponential formation time of 1.68 ± 0.05 ps and an initial decay time of 31.7 ps. Deconvolution with a 500-fs Gaussian excitation pulse reduces the exponential formation time to 1.61 ± 0.04 ps. The photovoltaic signal continues to rise for 4.5 ps after excitation, and the voltage profile corresponds well with the population dynamics of the K state. The origin of the fast photovoltage is assigned to the partial isomerization of the chromophore and the coupled motion of the Arg-82 residue during the primary event. PMID:12885657
Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM
Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I. I.; Chan, C. T.; Chan, H. B.; Tong, Penger
2015-01-01
Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures. PMID:26586455
CALCIUM ABSORPTION IN MAN: BASED ON LARGE VOLUME LIQUID SCINTILLATION COUNTER STUDIES.
LUTWAK, L; SHAPIRO, J R
1964-05-29
A technique has been developed for the in vivo measurement of absorption of calcium in man after oral administration of 1 to 5 microcuries of calcium-47 and continuous counting of the radiation in the subject's arm with a large volume liquid scintillation counter. The maximum value for the arm counting technique is proportional to the absorption of tracer as measured by direct stool analysis. The rate of uptake by the arm is lower in subjects with either the malabsorption syndrome or hypoparathyroidism. The administration of vitamin D increases both the absorption rate and the maximum amount of calcium absorbed.
Time-resolved atomic inner-shell spectroscopy
NASA Astrophysics Data System (ADS)
Drescher, M.; Hentschel, M.; Kienberger, R.; Uiberacker, M.; Yakovlev, V.; Scrinzi, A.; Westerwalbesloh, Th.; Kleineberg, U.; Heinzmann, U.; Krausz, F.
2002-10-01
The characteristic time constants of the relaxation dynamics of core-excited atoms have hitherto been inferred from the linewidths of electronic transitions measured by continuous-wave extreme ultraviolet or X-ray spectroscopy. Here we demonstrate that a laser-based sampling system, consisting of a few-femtosecond visible light pulse and a synchronized sub-femtosecond soft X-ray pulse, allows us to trace these dynamics directly in the time domain with attosecond resolution. We have measured a lifetime of 7.9
Spectroscopy of the hydrogen 1 S -3 S transition with chirped laser pulses
NASA Astrophysics Data System (ADS)
Yost, D. C.; Matveev, A.; Grinin, A.; Peters, E.; Maisenbacher, L.; Beyer, A.; Pohl, R.; Kolachevsky, N.; Khabarova, K.; Hänsch, T. W.; Udem, Th.
2016-04-01
We identify a systematic present in two-photon direct frequency comb spectroscopy (DFCS) which is a result of chirped laser pulses and is a manifestation of the first-order Doppler effect. We carefully analyze this systematic and propose methods for its mitigation within the context of our measurement of the hydrogen 1 S -3 S transition. We also report on our determination of the absolute frequency of this transition, which is comparable to a previous measurement using continuous-wave spectroscopy [O. Arnoult et al., Eur. Phys. J. D 60, 243 (2010), 10.1140/epjd/e2010-00249-6], but was obtained with a different experimental method.
NASA Astrophysics Data System (ADS)
Sima, Wenxia; Guo, Hongda; Yang, Qing; Song, He; Yang, Ming; Yu, Fei
2015-08-01
Transformer oil is widely used in power systems because of its excellent insulation properties. The accurate measurement of electric field and space charge distribution in transformer oil under high voltage impulse has important theoretical and practical significance, but still remains challenging to date because of its low Kerr constant. In this study, the continuous electric field and space charge distribution over time between parallel-plate electrodes in high-voltage pulsed transformer oil based on the Kerr effect is directly measured using a linear array photoelectrical detector. Experimental results demonstrate the applicability and reliability of this method. This study provides a feasible approach to further study the space charge effects and breakdown mechanisms in transformer oil.
Reading Aloud to Children: Benefits and Implications for Acquiring Literacy Before Schooling Begins.
Massaro, Dominic W
2017-01-01
Extensive experience in written language might provide children the opportunity to learn to read in the same manner they learn spoken language. One potential type of written language immersion is reading aloud to children, which is additionally valuable because the vocabulary in picture books is richer and more extensive than that found in child-directed speech. This study continues a comparison between these 2 communication media by evaluating their relative linguistic and cognitive complexity. Although reading grade level has been used only to assess the complexity of written language, it was also applied to both child-directed and adult-directed speech. Five measures of reading grade level gave an average grade level of 4.2 for picture books, 1.9 for child-directed speech, and 3.0 for adult-directed speech. The language in picture books is more challenging than that found in both child-directed and adult-directed speech. It is proposed that this difference between written and spoken language is the formal versus informal genre of their occurrence rather than their text or oral medium. The value of reading books aloud therefore exposes children to a linguistic and cognitive complexity not typically found in speech to children.
van Geldern, Robert; Nowak, Martin E; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A C; Jost, Hans-Jürg
2014-12-16
A newly developed isotope ratio laser spectrometer for CO2 analyses has been tested during a tracer experiment at the Ketzin pilot site (northern Germany) for CO2 storage. For the experiment, 500 tons of CO2 from a natural CO2 reservoir was injected in supercritical state into the reservoir. The carbon stable isotope value (δ(13)C) of injected CO2 was significantly different from background values. In order to observe the breakthrough of the isotope tracer continuously, the new instruments were connected to a stainless steel riser tube that was installed in an observation well. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10 day carbon stable isotope data set with 30 min resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within analytical precision. This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time stable isotope data directly in the field. The laser spectroscopy data revealed for the first time a prior to this experiment unknown, intensive dynamic with fast changing δ(13)C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The short-term variances as observed in this study might have been missed during previous works that applied laboratory-based IRMS analysis. The new technique could contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long-term integrity of the reservoir.
NASA Technical Reports Server (NTRS)
Antiochos, Spiro; Acton, Loren; Canfield, Richard; Davila, Joseph; Davis, John; Dere, Kenneth; Doschek, George; Golub, Leon; Harvey, John; Hathaway, David;
1997-01-01
Solar-B, the next ISAS mission (with major NASA participation), is designed to address the fundamental question of how magnetic fields interact with plasma to produce solar variability. The mission has a number of unique capabilities that will enable it to answer the outstanding questions of solar magnetism. First, by escaping atmospheric seeing, it will deliver continuous observations of the solar surface with unprecedented spatial resolution. Second, Solar-B will deliver the first accurate measurements of all three components of the photospheric magnetic field. Solar-B will measure both the magnetic energy driving the photosphere and simultaneously its effects in the corona. Solar-B offers unique programmatic opportunities to NASA. It will continue an effective collaboration with our most reliable international partner. It will deliver images and data that will have strong public outreach potential. Finally, the science of Solar-B is clearly related to the themes of origins and plasma astrophysics, and contributes directly to the national space weather and global change programs.
Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas.
Léonard, Julian; Morales, Andrea; Zupancic, Philip; Donner, Tobias; Esslinger, Tilman
2017-12-15
Higgs and Goldstone modes are collective excitations of the amplitude and phase of an order parameter that is related to the breaking of a continuous symmetry. We directly studied these modes in a supersolid quantum gas created by coupling a Bose-Einstein condensate to two optical cavities, whose field amplitudes form the real and imaginary parts of a U(1)-symmetric order parameter. Monitoring the cavity fields in real time allowed us to observe the dynamics of the associated Higgs and Goldstone modes and revealed their amplitude and phase nature. We used a spectroscopic method to measure their frequencies, and we gave a tunable mass to the Goldstone mode by exploring the crossover between continuous and discrete symmetry. Our experiments link spectroscopic measurements to the theoretical concept of Higgs and Goldstone modes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Clor, Laura E.; McCleskey, R. Blaine; Huebner, Mark A.; Lowenstern, Jacob B.; Heasler, Henry P.; Mahony, Dan L.; Maloney, Tim; Evans, William C.
2012-01-01
This study aims to quantify relations between solute concentrations (especially chloride) and electrical conductivity for several rivers in Yellowstone National Park (YNP), by using automated samplers and conductivity meters. Norton and Friedman (1985) found that chloride concentrations and electrical conductivity have a good correlation in the Falls, Snake, Madison, and Yellowstone Rivers. However, their results are based on limited sampling and hydrologic conditions and their relation with other solutes was not determined. Once the correlations are established, conductivity measurements can then be used as a proxy for chloride concentrations, thereby enabling continuous heat-flow estimation on a much finer timescale and at lower cost than is currently possible with direct sampling. This publication serves as a repository for all data collected during the course of the study from May 2010 through July 2011, but it does not include correlations between solutes and conductivity or recommendations for quantification of chloride through continuous electrical conductivity measurements. This will be the object of a future document.
Observation of the solar eclipse of 20 March 2015 at the Pruhonice station
NASA Astrophysics Data System (ADS)
Mošna, Zbyšek; Boška, Josef; Knížová, Petra Koucká; Šindelářová, Tereza; Kouba, Daniel; Chum, Jaroslav; Rejfek, Luboš; Potužníková, Kateřina; Arikan, Feza; Toker, Cenk
2018-06-01
Response of the atmosphere to the Solar Eclipse on 20 March 2015 is described for mid-latitude region of Czech Republic. For the first time we show join analysis using Digisonde vertical sounding, manually processed Digisonde drift measurement, and Continuous Doppler Sounding for the solar eclipse study. The critical frequencies foE, foF1 and foF2 show changes with different time offset connected to the solar eclipse. Digisonde drift measurement shows significant vertical plasma drifts in F2 region deviating from daily mean course with amplitudes reaching 15-20 m/s corresponding to the time of solar eclipse. Continuous Doppler Sounding shows propagation of waves in the NE direction with velocities between 70 and 100 m/s with a peak 30 min after first contact. We observed increased and persistent wave activity at heights between 150 and 250 km at time about 20-40 min after beginning of SE with central period 65 min.
Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator
Coluccelli, Nicola; Cassinerio, Marco; Gambetta, Alessio; Laporta, Paolo; Galzerano, Gianluca
2015-01-01
The frequency noise of an optical frequency comb is routinely measured through the hetherodyne beat of one comb tooth against a stable continuous-wave laser. After frequency-to-voltage conversion, the beatnote is sent to a spectrum analyzer to retrive the power spectral density of the frequency noise. Because narrow-linewidth continuous-wave lasers are available only at certain wavelengths, heterodyning the comb tooth can be challenging. We present a new technique for direct characterization of the frequency noise of an optical frequency comb, requiring no supplementary reference lasers and easily applicable in all spectral regions from the terahertz to the ultraviolet. The technique is based on the combination of a low finesse Fabry-Perot resonator and the so-called “fringe-side locking” method, usually adopted to characterize the spectral purity of single-frequency lasers, here generalized to optical frequency combs. The effectiveness of this technique is demonstrated with an Er-fiber comb source across the wavelength range from 1 to 2 μm. PMID:26548900
Flow status of three transboundary rivers in Northern Greece as a tool for hydro-diplomacy
NASA Astrophysics Data System (ADS)
Hatzigiannakis, Eyaggelos; Hatzispiroglou, Ioannis; Arampatzis, Georgios; Ilia, Andreas; Pantelakis, Dimitrios; Filintas, Agathos; Panagopoulos, Andreas
2015-04-01
The aim of this paper is to examine how the river flow monitoring consists a tool for hydro-diplomacy. Management of transboundary catchments and the demand of common water resources, often comprise the cause of conflicts and tension threatening the peaceful coexistence of nations. The Water Framework Directive 2000/60/EU sets a base for water management contributing to common approaches, common goals, common principles as well as providing new definitions and measures for Europe's water resources. In northern Greece the main renewable resources are "imported" (over 25% of its water reserves) and for this reason the implementation of continuous flow measurements throughout the year is necessary, even though difficult to achieve. This paper focuses on the three largest transboundary rivers in Northern Greece. Axios and Strymonas river flow across the region of Central Macedonia in Northern Greece. Axios flows from FYROM to Greece, and Strymonas from Bulgaria to Greece. Nestos river flows from Bulgaria to Greece. The Greek part is in the region of Eastern Macedonia and Thrace in Northern Greece. Significant productive agricultural areas around these rivers are irrigated from them so they are very important for the local society. Measurements of the river flow velocity and the flow depth have been made at bridges. The frequency of the measurements is roughly monthly, because it is expected a significant change in the depth flow and discharge. A series of continuously flow measure-ments were performed during 2013 and 2014 using flowmeters (Valeport and OTT type). The cross-section characteristics, the river flow velocity of segments and the mean water flow velocity and discharge total profile were measured and calculated re-spectively. Measurements are conducted in the framework of the national water resources monitoring network, which is realised in compliance to the Water Framework Directive under the supervision and coordination of the Hellenic Ministry for the Environment and Climate Change. This project is elaborated in the framework of the operational program "Environment and Sustainable Development" which is co-funded by the National Strategic Reference Framework (NSRF) and the Public Investment Program (PIP).
A map of abstract relational knowledge in the human hippocampal–entorhinal cortex
Garvert, Mona M; Dolan, Raymond J; Behrens, Timothy EJ
2017-01-01
The hippocampal–entorhinal system encodes a map of space that guides spatial navigation. Goal-directed behaviour outside of spatial navigation similarly requires a representation of abstract forms of relational knowledge. This information relies on the same neural system, but it is not known whether the organisational principles governing continuous maps may extend to the implicit encoding of discrete, non-spatial graphs. Here, we show that the human hippocampal–entorhinal system can represent relationships between objects using a metric that depends on associative strength. We reconstruct a map-like knowledge structure directly from a hippocampal–entorhinal functional magnetic resonance imaging adaptation signal in a situation where relationships are non-spatial rather than spatial, discrete rather than continuous, and unavailable to conscious awareness. Notably, the measure that best predicted a behavioural signature of implicit knowledge and blood oxygen level-dependent adaptation was a weighted sum of future states, akin to the successor representation that has been proposed to account for place and grid-cell firing patterns. DOI: http://dx.doi.org/10.7554/eLife.17086.001 PMID:28448253
Continuous-time interval model identification of blood glucose dynamics for type 1 diabetes
NASA Astrophysics Data System (ADS)
Kirchsteiger, Harald; Johansson, Rolf; Renard, Eric; del Re, Luigi
2014-07-01
While good physiological models of the glucose metabolism in type 1 diabetic patients are well known, their parameterisation is difficult. The high intra-patient variability observed is a further major obstacle. This holds for data-based models too, so that no good patient-specific models are available. Against this background, this paper proposes the use of interval models to cover the different metabolic conditions. The control-oriented models contain a carbohydrate and insulin sensitivity factor to be used for insulin bolus calculators directly. Available clinical measurements were sampled on an irregular schedule which prompts the use of continuous-time identification, also for the direct estimation of the clinically interpretable factors mentioned above. An identification method is derived and applied to real data from 28 diabetic patients. Model estimation was done on a clinical data-set, whereas validation results shown were done on an out-of-clinic, everyday life data-set. The results show that the interval model approach allows a much more regular estimation of the parameters and avoids physiologically incompatible parameter estimates.
Interarea Oscillation Damping Control Using High Voltage DC Transmission: a Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizondo, Marcelo Anibal; Fan, Rui; Kirkham, Harold
High-voltage, direct current (HVDC) transmission lines are increasingly being installed in power systems around the world, and this trend is expected to continue with advancements in power electronics technology. These advancements are also bringing multi-terminal direct current (MTDC) systems closer to practical application. In addition, the continued deployment of phasor measurement units (PMUs) makes dynamic information about a large power system readily available for highly controllable components, such as HVDC lines. All these trends have increased the appeal of modulating HVDC lines and MTDC systems to provide grid services in addition to bulk power transfers. This paper provides a literaturemore » survey of HVDC and MTDC damping controllers for interarea oscillations in large interconnected power systems. The literature shows a progression from theoretical research to practical applications. Finally, there are already practical implementations of HVDC modulation for lines in point-to-point configuration, although the modulation of MTDC systems is still in the research stage. As a conclusion, this paper identifies and summarizes open questions that remain to be tackled by researchers and engineers.« less
Interarea Oscillation Damping Control Using High Voltage DC Transmission: a Survey
Elizondo, Marcelo Anibal; Fan, Rui; Kirkham, Harold; ...
2018-05-02
High-voltage, direct current (HVDC) transmission lines are increasingly being installed in power systems around the world, and this trend is expected to continue with advancements in power electronics technology. These advancements are also bringing multi-terminal direct current (MTDC) systems closer to practical application. In addition, the continued deployment of phasor measurement units (PMUs) makes dynamic information about a large power system readily available for highly controllable components, such as HVDC lines. All these trends have increased the appeal of modulating HVDC lines and MTDC systems to provide grid services in addition to bulk power transfers. This paper provides a literaturemore » survey of HVDC and MTDC damping controllers for interarea oscillations in large interconnected power systems. The literature shows a progression from theoretical research to practical applications. Finally, there are already practical implementations of HVDC modulation for lines in point-to-point configuration, although the modulation of MTDC systems is still in the research stage. As a conclusion, this paper identifies and summarizes open questions that remain to be tackled by researchers and engineers.« less
Han, Gang Hee; Rodríguez-Manzo, Julio A.; Lee, Chan-Woo; Kybert, Nicholas J.; Lerner, Mitchell B.; Qi, Zhengqing John; Dattoli, Eric N.; Rappe, Andrew M.; Drndic, Marija; Charlie Johnson, A. T.
2013-01-01
Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to microscopy of nano-domains. Here we report templated growth of single crystalline hexagonal boron nitride directly from the oriented edge of hexagonal graphene flakes by atmospheric pressure chemical vapor deposition, and physical property measurements that inform the design of in-plane hybrid electronics. Ribbons of boron nitride monolayer were grown from the edge of a graphene template and inherited its crystallographic orientation. The relative sharpness of the interface was tuned through control of growth conditions. Frequent tearing at the graphene-boron nitride interface was observed, so density functional theory was used to determine that the nitrogen-terminated interface was prone to instability during cool down. The electronic functionality of monolayer heterostructures was demonstrated through fabrication of field effect transistors with boron nitride as an in-plane gate dielectric. PMID:24182310
Han, Gang Hee; Rodríguez-Manzo, Julio A; Lee, Chan-Woo; Kybert, Nicholas J; Lerner, Mitchell B; Qi, Zhengqing John; Dattoli, Eric N; Rappe, Andrew M; Drndic, Marija; Johnson, A T Charlie
2013-11-26
Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to the microscopy of nanodomains. Here we report templated growth of single crystalline hexagonal boron nitride directly from the oriented edge of hexagonal graphene flakes by atmospheric pressure chemical vapor deposition, and physical property measurements that inform the design of in-plane hybrid electronics. Ribbons of boron nitride monolayer were grown from the edge of a graphene template and inherited its crystallographic orientation. The relative sharpness of the interface was tuned through control of growth conditions. Frequent tearing at the graphene-boron nitride interface was observed, so density functional theory was used to determine that the nitrogen-terminated interface was prone to instability during cool down. The electronic functionality of monolayer heterostructures was demonstrated through fabrication of field effect transistors with boron nitride as an in-plane gate dielectric.
Ensemble solute transport in two-dimensional operator-scaling random fields
NASA Astrophysics Data System (ADS)
Monnig, Nathan D.; Benson, David A.; Meerschaert, Mark M.
2008-02-01
Motivated by field measurements of aquifer hydraulic conductivity (K), recent techniques were developed to construct anisotropic fractal random fields in which the scaling, or self-similarity parameter, varies with direction and is defined by a matrix. Ensemble numerical results are analyzed for solute transport through these two-dimensional "operator-scaling" fractional Brownian motion ln(K) fields. Both the longitudinal and transverse Hurst coefficients, as well as the "radius of isotropy" are important to both plume growth rates and the timing and duration of breakthrough. It is possible to create operator-scaling fractional Brownian motion fields that have more "continuity" or stratification in the direction of transport. The effects on a conservative solute plume are continually faster-than-Fickian growth rates, highly non-Gaussian shapes, and a heavier tail early in the breakthrough curve. Contrary to some analytic stochastic theories for monofractal K fields, the plume growth rates never exceed A. Mercado's (1967) purely stratified aquifer growth rate of plume apparent dispersivity proportional to mean distance. Apparent superstratified growth must be the result of other demonstrable factors, such as initial plume size.
Cw hyper-Raman laser and four-wave mixing in atomic sodium
NASA Astrophysics Data System (ADS)
Klug, M.; Kablukov, S. I.; Wellegehausen, B.
2005-01-01
Continuous wave hyper-Raman (HR) generation in a ring cavity on the 6s → 4p transition at 1640 nm in sodium is realized for the first time by two-photon excitation of atomic sodium on the 3s → 6s transition with a continuous wave (cw) dye laser at 590 nm and a single frequency argon ion laser at 514 nm. It is shown, that the direction and efficiency of HR lasing depends on the propagation direction of the pump waves and their frequencies. More than 30% HR gain is measured at 250 mW of pump laser powers for counter-propagating pump waves and a medium length of 90 mm. For much shorter interaction lengths and corresponding focussing of the pump waves a dramatic increase of the gain is predicted. For co-propagating pump waves, in addition, generation of 330 nm radiation on the 4p → 3s transition by a four-wave mixing (FWM) process is observed. Dependencies of HR and parametric four-wave generation have been investigated and will be discussed.
5 CFR 892.303 - Can I pay my premiums directly by check under the premium conversion plan?
Code of Federal Regulations, 2013 CFR
2013-01-01
... MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL FLEXIBLE BENEFITS PLAN: PRE-TAX PAYMENT OF HEALTH BENEFITS PREMIUMS Contributions and Withholdings § 892.303 Can I pay my premiums directly...
5 CFR 892.303 - Can I pay my premiums directly by check under the premium conversion plan?
Code of Federal Regulations, 2014 CFR
2014-01-01
... MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL FLEXIBLE BENEFITS PLAN: PRE-TAX PAYMENT OF HEALTH BENEFITS PREMIUMS Contributions and Withholdings § 892.303 Can I pay my premiums directly...
5 CFR 892.303 - Can I pay my premiums directly by check under the premium conversion plan?
Code of Federal Regulations, 2011 CFR
2011-01-01
... MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL FLEXIBLE BENEFITS PLAN: PRE-TAX PAYMENT OF HEALTH BENEFITS PREMIUMS Contributions and Withholdings § 892.303 Can I pay my premiums directly...
NASA Astrophysics Data System (ADS)
Lotfabadi, Shahin S.; Toronov, Vladislav; Ramadeen, Andrew; Hu, Xudong; Kim, Siwook; Dorian, Paul; Hare, Gregory M. T.
2014-03-01
Near-infrared spectroscopy (NIRS) is a non-invasive tool to measure real-time tissue oxygenation in the brain. In an invasive animal experiment we were able to directly compare non-invasive NIRS measurements on the skull with invasive measurements directly on the brain dura matter. We used a broad-band, continuous-wave hyper-spectral approach to measure tissue oxygenation in the brain of pigs under the conditions of cardiac arrest, cardiopulmonary resuscitation (CPR), and defibrillation. An additional purpose of this research was to find a correlation between mortality due to cardiac arrest and inadequacy of the tissue perfusion during attempts at resuscitation. Using this technique we measured the changes in concentrations of oxy-hemoglobin [HbO2] and deoxy-hemoglobin [HHb] to quantify the tissue oxygenation in the brain. We also extracted cytochrome c oxidase changes Δ[Cyt-Ox] under the same conditions to determine increase or decrease in cerebral oxygen delivery. In this paper we proved that applying CPR, [HbO2] concentration and tissue oxygenation in the brain increase while [HHb] concentration decreases which was not possible using other measurement techniques. We also discovered a similar trend in changes of both [Cyt-Ox] concentration and tissue oxygen saturation (StO2). Both invasive and non-invasive measurements showed similar results.
Near-infrared extension of a visible spectrum airborne Sun photometer
NASA Astrophysics Data System (ADS)
Starace, Marco; von Bismarck, Jonas; Hollstein, André; Ruhtz, Thomas; Preusker, René; Fischer, Jürgen
2013-05-01
The continuously-measuring, multispectral airborne Sun and aureole photometers FUBISS-ASA and FUBISSASA2 were developed at the Institute for Space Sciences of the Freie Universität Berlin in 2002 and 2006 respectively, for the retrieval of aerosol optical and microphysical parameters at wavelengths ranging from 400 to 900 nm. A multispectral near-infrared direct sun radiometer measuring in a spectral range of 1000 to 1700 nm has now been added to FUBISS-ASA2. The main objective of this NIR extension is to enhance the characterization of larger aerosol particles, as Mie scattering theory offers a more accurate approximation for their interaction with electromagnetic radiation, if both the VIS and NIR parts of the spectrum are considered, than it does for the VIS part only. The spectral transmissivity of atmospheric models was computed using the HITRAN2008 database in order to determine local absorption minima suitable for aerosol retrieval. Measurements were first carried out aboard the research vessel FS Polarstern on its transatlantic voyage ANT-XXVI/1. Additional measurements were performed from the Sphinx High Altitude Research Station on the Jungfraujoch and in the nearby Kleine Scheidegg locality during the CLACE2010 measurement campaign. Aerosol optical parameters derived from VIS aureole and direct sun measurements were compared to those of simulated aerosol mixtures in order to estimate the composition of the measured aerosol.
Effect of Direct Glare on Orbicularis Oculi and Trapezius During Computer Reading.
Mork, Randi; Bruenech, Jan Richard; Thorud, Hanne Mari Schiøtz
2016-07-01
Unfavorable visual conditions during computer work may affect development of both eyestrain and musculoskeletal pain in the neck and shoulder area. The aim of the study was to investigate how direct glare affects symptom development, muscle activity, and muscle blood flow in m. orbicularis oculi and m. trapezius during reading on a computer screen. Fifteen healthy young adults with normal binocular vision read text on a computer screen at an optimized computer workplace, 30 minutes with glare exposure and 30 minutes with appropriate lighting. Postural angles were continuously registered. Development of eye symptoms and musculoskeletal pain in the neck and shoulder area were recorded using VAS scales. Muscle activity and muscle blood flow were measured continuously using electromyography and photoplethysmography, respectively. Glare exposure resulted in significantly more pronounced eye pain, increased orbicularis muscle activity, and increased trapezius blood flow compared to reading with appropriate lighting. There were no significant differences in posture between the two light conditions. There were also significant associations between orbicularis oculi activity and both trapezius blood flow and neck pain during both conditions. Results from the current study show that direct glare conditions cause increased eyestrain and orbicularis oculi contraction during reading on a computer screen. This study also indicates that exposure to direct glare affects the trapezius muscle, possibly by an interaction between the visual system, sympathetic nervous system, and head-stabilizing muscles. In addition, there were associations between the use of orbicularis oculi, trapezius blood flow, and development of neck pain independent of the lighting.
Direct simulation for the instability and breakup of laminar liquid jets
NASA Technical Reports Server (NTRS)
Chuech, S. G.; Przekwas, A. J.; Yang, H. Q.; Gross, K. W.
1990-01-01
A direct numerical simulation method is described for predicting the deformation of laminar liquid jets. In the present nonlinear direct simulation, the convective term, which has been discarded in past linear analyses by Rayleigh and others, is included in the hydrodynamic equations. It is shown that only by maintaining full complexity of the nonlinear surface tension term accurate drop formation can be predicted. The continuity and momentum equations in the transient form are integrated on an adaptive grid, conforming the jet and surface wave shape. The equations, which are parabolic in time and elliptic in space, are solved by a TVD scheme with characteristic flux splitting. The results of the present work are discussed and compared with available measurements and other analyses. The comparison shows that among the predictions, the current 1-D direct simulation results agree best with the experimental data. Furthermore, the computer time requirements are much (an order of magnitude) smaller than those of previously reported multidimensional analyses.
Direct simulation for the instability and breakup of laminar liquid jets
NASA Astrophysics Data System (ADS)
Chuech, S. G.; Przekwas, A. J.; Yang, H. Q.; Gross, K. W.
1990-07-01
A direct numerical simulation method is described for predicting the deformation of laminar liquid jets. In the present nonlinear direct simulation, the convective term, which has been discarded in past linear analyses by Rayleigh and others, is included in the hydrodynamic equations. It is shown that only by maintaining full complexity of the nonlinear surface tension term accurate drop formation can be predicted. The continuity and momentum equations in the transient form are integrated on an adaptive grid, conforming the jet and surface wave shape. The equations, which are parabolic in time and elliptic in space, are solved by a TVD scheme with characteristic flux splitting. The results of the present work are discussed and compared with available measurements and other analyses. The comparison shows that among the predictions, the current 1-D direct simulation results agree best with the experimental data. Furthermore, the computer time requirements are much (an order of magnitude) smaller than those of previously reported multidimensional analyses.
Golland, Yulia; Arzouan, Yossi; Levit-Binnun, Nava
2015-01-01
Existing evidence suggests that in social contexts individuals become coupled in their emotions and behaviors. Furthermore, recent biological studies demonstrate that the physiological signals of interacting individuals become coupled as well, exhibiting temporally synchronized response patterns. However, it is yet unknown whether people can shape each other's responses without the direct, face-to-face interaction. Here we investigated whether the convergence of physiological and emotional states can occur among “merely co-present” individuals, without direct interactional exchanges. To this end, we measured continuous autonomic signals and collected emotional responses of participants who watched emotional movies together, seated side-by-side. We found that the autonomic signals of co-present participants were idiosyncratically synchronized and that the degree of this synchronization was correlated with the convergence of their emotional responses. These findings suggest that moment-to-moment emotional transmissions, resulting in shared emotional experiences, can occur in the absence of direct communication and are mediated by autonomic synchronization. PMID:26018597
Campos, Jennifer L.; Siegle, Joshua H.; Mohler, Betty J.; Bülthoff, Heinrich H.; Loomis, Jack M.
2009-01-01
Background The extent to which actual movements and imagined movements maintain a shared internal representation has been a matter of much scientific debate. Of the studies examining such questions, few have directly compared actual full-body movements to imagined movements through space. Here we used a novel continuous pointing method to a) provide a more detailed characterization of self-motion perception during actual walking and b) compare the pattern of responding during actual walking to that which occurs during imagined walking. Methodology/Principal Findings This continuous pointing method requires participants to view a target and continuously point towards it as they walk, or imagine walking past it along a straight, forward trajectory. By measuring changes in the pointing direction of the arm, we were able to determine participants' perceived/imagined location at each moment during the trajectory and, hence, perceived/imagined self-velocity during the entire movement. The specific pattern of pointing behaviour that was revealed during sighted walking was also observed during blind walking. Specifically, a peak in arm azimuth velocity was observed upon target passage and a strong correlation was observed between arm azimuth velocity and pointing elevation. Importantly, this characteristic pattern of pointing was not consistently observed during imagined self-motion. Conclusions/Significance Overall, the spatial updating processes that occur during actual self-motion were not evidenced during imagined movement. Because of the rich description of self-motion perception afforded by continuous pointing, this method is expected to have significant implications for several research areas, including those related to motor imagery and spatial cognition and to applied fields for which mental practice techniques are common (e.g. rehabilitation and athletics). PMID:19907655
NASA Astrophysics Data System (ADS)
Yin, Kai; Yang, Shuai; Dong, Xinran; Chu, Dongkai; Duan, Ji-An; He, Jun
2018-06-01
We report a simple, efficient method to fabricate micro/nanoscale hierarchical structures on one side of polytetrafluoroethylene mesh surfaces, using one-step femtosecond laser direct writing technology. The laser-treated surface exhibits superhydrophobicity in air and superaerophilicity in water, resulting in the mesh possessing the hydrophobic/superhydrophobic asymmetrical property. Bubbles can pass through the mesh from the untreated side to the laser-treated side but cannot pass through the mesh in the opposite direction. The asymmetrical mesh can therefore be designed for the directional transportation and continuous collection of gas bubbles in aqueous environments. Furthermore, the asymmetrical mesh shows excellent stability during corrosion and abrasion tests. These findings may provide an efficient route for fabricating a durable asymmetrical mesh for the directional and continuous transport of gas bubbles.
Research on effect of rough surface on FMCW laser radar range accuracy
NASA Astrophysics Data System (ADS)
Tao, Huirong
2018-03-01
The non-cooperative targets large scale measurement system based on frequency-modulated continuous-wave (FMCW) laser detection and ranging technology has broad application prospects. It is easy to automate measurement without cooperative targets. However, the complexity and diversity of the surface characteristics of the measured surface directly affects the measurement accuracy. First, the theoretical analysis of range accuracy for a FMCW laser radar was studied, the relationship between surface reflectivity and accuracy was obtained. Then, to verify the effect of surface reflectance for ranging accuracy, a standard tool ball and three standard roughness samples were measured within 7 m to 24 m. The uncertainty of each target was obtained. The results show that the measurement accuracy is found to increase as the surface reflectivity gets larger. Good agreements were obtained between theoretical analysis and measurements from rough surfaces. Otherwise, when the laser spot diameter is smaller than the surface correlation length, a multi-point averaged measurement can reduce the measurement uncertainty. The experimental results show that this method is feasible.
NASA Astrophysics Data System (ADS)
Odagiri, Yoshitaka; Hasegawa, Hideyuki; Kanai, Hiroshi
2008-05-01
One possible way to evaluate acupuncture therapy quantitatively is to measure the change in the elastic property of muscle after application of the therapy. Many studies have been conducted to measure mechanical properties of tissues using ultrasound-induced acoustic radiation force. To assess mechanical properties, strain must be generated in an object. However, a single radiation force is not effective because it mainly generates translational motion when the object is much harder than the surrounding medium. In this study, two cyclic radiation forces are simultaneously applied to a muscle phantom from two opposite horizontal directions so that the object is cyclically compressed in the horizontal direction. By the horizontal compression, the object is expanded vertically based on its incompressibility. The resultant vertical displacement is measured using another ultrasound pulse. Two ultrasonic transducers for actuation were both driven by the sum of two continuous sinusoidal signals at two slightly different frequencies [1 MHz and (1 M + 5) Hz]. The displacement of several micrometers in amplitude, which fluctuated at 5 Hz, was measured by the ultrasonic phased tracking method. Increase in thickness inside the object was observed just when acoustic radiation forces increased. Such changes in thickness correspond to vertical expansion due to horizontal compression.
Staging a Reflective Capstone Course to Transition PharmD Graduates to Professional Life
Hobson, Eric H.; Spinelli, Alisa J.
2015-01-01
Objective. To develop and implement a capstone course that would allow students to reflect on their development as a professional, assess and share their achievement of the college’s outcomes, complete a professional portfolio, establish a continuing professional development plan, and prepare to enter the pharmacy profession. Design. Students were required to complete a hybrid course built around 4 online and inclass projects during the final semester of the curriculum. Assessment. Faculty used direct measures of learning, such as reading student portfolios and program outcome reflections, evaluating professional development plans, and directly observing each student in a video presentation. All projects were evaluated using standardized rubrics. Since 2012, all graduating students met the course’s minimum performance requirements. Conclusion. The course provided an opportunity for student-based summative evaluation, direct observation of student skills, and documentation of outcome completion as a means of evaluating readiness to enter the profession. PMID:25741030
A variation of the Davis-Smith method for in-flight determination of spacecraft magnetic fields.
NASA Technical Reports Server (NTRS)
Belcher, J. W.
1973-01-01
A variation of a procedure developed by Davis and Smith (1968) is presented for the in-flight determination of spacecraft magnetic fields. Both methods take statistical advantage of the observation that fluctuations in the interplanetary magnetic field over short periods of time are primarily changes in direction rather than in magnitude. During typical solar wind conditions between 0.8 and 1.0 AU, a statistical analysis of 2-3 days of continuous interplanetary field measurements yields an estimate of a constant spacecraft field with an uncertainty of plus or minus 0.25 gamma in the direction radial to the sun and plus or minus 15 gammas in the directions transverse to the radial. The method is also of use in estimating variable spacecraft fields with gradients of the order of 0.1 gamma/day and less and in other special circumstances.
Pioneers 10 and 11 deep space missions
NASA Technical Reports Server (NTRS)
Dyal, Palmer
1990-01-01
Pioneers 10 and 11 were launched from Earth, 2 March 1972, and 5 April 1973, respectively. The Pioneers were the first spacecraft to explore the asteroid belt and the first to encounter the giant planets, Jupiter and Saturn. The Pioneer 10 spacecraft is now the most distant man-made object in our solar system and is farther from the Sun than all nine planets. It is 47 AU from the Sun and is moving in a direction opposite to that of the Sun's motion through the galaxy. Pioneer 11 is 28 AU from the Sun and is traveling in the direction opposite of Pioneer 10, in the same direction as the Sun moves in the galaxy. These two Pioneer spacecraft provided the first large-scale, in-situ measurements of the gas and dust surrounding a star, the Sun. Since launch, the Pioneers have measured large-scale properties of the heliosphere during more than one complete 11-year solar sunspot cycle, and have measured the properties of the expanding solar atmosphere, the transport of cosmic rays into the heliosphere, and the high-energy trapped radiation belts and magnetic fields associated with the planets Jupiter and Saturn. Accurate Doppler tracking of these spin-stabilized spacecraft was used to search for differential gravitational forces from a possible trans-Neptunian planet and to search for gravitational radiation. Future objectives of the Pioneer 10 and 11 missions are to continue measuring the large-scale properties of the heliosphere and to search for its boundary with interstellar space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koukoulas, Triantafillos, E-mail: triantafillos.koukoulas@npl.co.uk; Piper, Ben
Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though themore » principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fattori, G; Klimpki, G; Safai, S
Purpose: We aim to compare the performance of discrete spot- or continuous line scanning combined with rescanning in mitigating residual organ motion during gated proton therapy treatments. Methods: The Quasar respiratory phantom was used to move a 2D scintillation detector on a linear trajectory with sinusoidal motion pattern (sin{sup 4}), 20 mm peak-to-peak amplitude and 5 sec period. Its motion was monitored using a customized solution based on optical tracking technology. We compared spot and line scanning plans for a monoenergetic 150 MeV circular field, 50.4 mm radius at isocenter. Transverse dose distributions at 13 cm depth in PMMA (15.47more » mm water equivalent) were measured to compare three options for motion mitigation: rescanning (10× factor), gating and their combination. The gating window was centered in the trajectory plateau to simulate end-exhale gated treatment in presence of 2 mm and 4 mm residual motion, parallel or perpendicular to the primary scanning direction. Results: When the target moves perpendicular to the primary scanning direction, large dose deviations are measured (γ3%/3mm=47%) without mitigation techniques. Beam gating combined with rescanning restores target coverage (γ3%/3mm=91%). For parallel target motion, observed dose distortions in the non-compensated irradiation are smaller (γ3%/3mm=77%). Beam gating alone recovers the 100% gamma pass-rate at 3%/3mm. Continuous line scanning reduces delivery time by up to 60% with respect to discrete spot scanning in presence of motion mitigation, and improves homogeneity when rescanning is applied (up to 20%, perpendicular motion, 4 mm residual motion). Conclusion: The direction of motion has a large impact on the target dose coverage. Nevertheless, even in the worst case scenario, gating combined with rescanning could mitigate the impact of motion on dose deposition. Moreover, continuous line rescanning improves the robustness against residual motion in the gating window. This study has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement n.290605 (PSI-FELLOW/COFUND) and ‘Giuliana and Giorgio Stefanini Foundation’.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Matthew M.; Schleicher, David G.; Schwieterman, Edward W.
2012-11-01
We report on photometry and imaging of Comet 10P/Tempel 2 obtained at Lowell Observatory from 1983 through 2011. We measured a nucleus rotation period of 8.950 {+-} 0.002 hr from 16 nights of imaging acquired between 2010 September and 2011 January. This rotation period is longer than the period we previously measured in 1999, which was itself longer than the period measured in 1988, and demonstrates that Tempel 2 is continuing to spin down, presumably due to torques caused by asymmetric outgassing. A nearly linear jet was observed which varied little during a rotation cycle in both R and CNmore » images acquired during the 1999 and 2010 apparitions. We measured the projected direction of this jet throughout the two apparitions and, under the assumption that the source region of the jet was near the comet's pole, determined a rotational pole direction of R.A./decl. = 151 Degree-Sign /+59 Degree-Sign from CN measurements and R.A./decl. = 173 Degree-Sign /+57 Degree-Sign from dust measurements (we estimate a circular uncertainty of 3 Degree-Sign for CN and 4 Degree-Sign for dust). Different combinations of effects likely bias both gas and dust solutions and we elected to average these solutions for a final pole direction of R.A./decl. = 162 Degree-Sign {+-} 11 Degree-Sign /+58 Degree-Sign {+-} 1 Degree-Sign . Photoelectric photometry was acquired on 3 nights in 1983, 2 nights in 1988, 19 nights in 1999/2000, and 10 nights in 2010/2011. The activity exhibited a steep 'turn-on' {approx}3 months prior to perihelion (the exact timing of which varies) and a relatively smooth decline after perihelion. The activity during the 1999 and 2010 apparitions was similar; limited data in 1983 and 1988 (along with IUE data from the literature) were systematically higher and the difference cannot be explained entirely by the smaller perihelion distance. We measured a 'typical' composition, in agreement with previous investigators. Monte Carlo numerical modeling with our pole solution best replicated the observed coma morphology for a source region located near a comet latitude of +80 Degree-Sign and having a radius of {approx}10 Degree-Sign . Our model reproduced the seasonal changes in activity, suggesting that the majority of Tempel 2's activity originates from a small active region located near the pole. We also find that a cosine-squared solar angle function gives the best fit as compared to a standard cosine function.« less
Evolving geometrical heterogeneities of fault trace data
NASA Astrophysics Data System (ADS)
Wechsler, Neta; Ben-Zion, Yehuda; Christofferson, Shari
2010-08-01
We perform a systematic comparative analysis of geometrical fault zone heterogeneities using derived measures from digitized fault maps that are not very sensitive to mapping resolution. We employ the digital GIS map of California faults (version 2.0) and analyse the surface traces of active strike-slip fault zones with evidence of Quaternary and historic movements. Each fault zone is broken into segments that are defined as a continuous length of fault bounded by changes of angle larger than 1°. Measurements of the orientations and lengths of fault zone segments are used to calculate the mean direction and misalignment of each fault zone from the local plate motion direction, and to define several quantities that represent the fault zone disorder. These include circular standard deviation and circular standard error of segments, orientation of long and short segments with respect to the mean direction, and normal separation distances of fault segments. We examine the correlations between various calculated parameters of fault zone disorder and the following three potential controlling variables: cumulative slip, slip rate and fault zone misalignment from the plate motion direction. The analysis indicates that the circular standard deviation and circular standard error of segments decrease overall with increasing cumulative slip and increasing slip rate of the fault zones. The results imply that the circular standard deviation and error, quantifying the range or dispersion in the data, provide effective measures of the fault zone disorder, and that the cumulative slip and slip rate (or more generally slip rate normalized by healing rate) represent the fault zone maturity. The fault zone misalignment from plate motion direction does not seem to play a major role in controlling the fault trace heterogeneities. The frequency-size statistics of fault segment lengths can be fitted well by an exponential function over the entire range of observations.
Diurnal and seasonal variability of outdoor radon concentration in the area of the NRPI Prague.
Jilek, K; Slezákova, M; Thomas, J
2014-07-01
In autumn 2010, an outdoor measuring station for measurement of atmospheric radon, gamma equivalent dose rate in the range of 100 nSv h(-1)-1 Sv h(-1) and proper meteorological parameters such as thermal air gradient, relative air humidity, wind speed and direction and solar radiation intensity was built in the area of the National Radiation Protection Institute vvi. The station was designed to be independent of an electrical network and enables on-line wireless transfer of all data. After introduction of the station, illustrations of its measurement properties and the results of measured diurnal and seasonal variability of atmospheric radon, based on annual continuous measurement using a high-volume scintillation cell at a height of 2.5 m above the ground, are presented. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
How did Archimedes discover the law of buoyancy by experiment?
NASA Astrophysics Data System (ADS)
Kuroki, Hidetaka
2016-03-01
After Archimedes and Vitruvius era, for more than 2000 years, it has been believed that the displaced water measurement of golden crown is impossible, and at his Eureka moment, Archimedes discovered the law of buoyancy (Proposition 7 of his principles) and proved the theft of a goldsmith by weighing the golden crown in water. A previous study showed that a small amount of displaced water was able to be measured with enough accuracy by the introduced method. Archimedes measured the weight of displaced water. He did not find the law of buoyancy but rather specific gravity of things at the moment. After which, Archimedes continued to measure the specific gravity of various solids and fluids. Through these measurements, he reached the discovery of the law of buoyancy directly by experiment. In this paper, the process to the discovery of Archimedes' principle (Proposition 5) is presented.
Carragher, Natacha; Krueger, Robert F; Eaton, Nicholas R; Markon, Kristian E; Keyes, Katherine M; Blanco, Carlos; Saha, Tulshi D; Hasin, Deborah S
2014-08-01
Alcohol use disorders, substance use disorders, and antisocial personality disorder share a common externalizing liability, which may also include attention-deficit hyperactivity disorder (ADHD). However, few studies have compared formal quantitative models of externalizing liability, with the aim of delineating the categorical and/or continuous nature of this liability in the community. This study compares categorical, continuous, and hybrid models of externalizing liability. Data were derived from the 2004-2005 National Epidemiologic Survey on Alcohol and Related Conditions (N = 34,653). Seven disorders were modeled: childhood ADHD and lifetime diagnoses of antisocial personality disorder (ASPD), nicotine dependence, alcohol dependence, marijuana dependence, cocaine dependence, and other substance dependence. The continuous latent trait model provided the best fit to the data. Measurement invariance analyses supported the fit of the model across genders, with females displaying a significantly lower probability of experiencing externalizing disorders. Cocaine dependence, marijuana dependence, other substance dependence, alcohol dependence, ASPD, nicotine dependence, and ADHD provided the greatest information, respectively, about the underlying externalizing continuum. Liability to externalizing disorders is continuous and dimensional in severity. The findings have important implications for the organizational structure of externalizing psychopathology in psychiatric nomenclatures.
Somerson, Jacob; Plaxco, Kevin W
2018-04-15
The ability to measure the concentration of specific small molecules continuously and in real-time in complex sample streams would impact many areas of agriculture, food safety, and food production. Monitoring for mycotoxin taint in real time during food processing, for example, could improve public health. Towards this end, we describe here an inexpensive electrochemical DNA-based sensor that supports real-time monitor of the mycotoxin ochratoxin A in a flowing stream of foodstuffs.
Jernberger, A
1993-12-01
The neuropathic foot is described with relation to cause, presentation, dysfunction and identification. The various mechanisms of neuropathic foot lesions are outlined--overload, diabetic gangrene, continuous pressure, direct injury and cutting and temperature effects. The orthotic treatment of the foot is discussed and in particular the importance of proper shoe provision and patient education and indoctrination emphasised. The use of plaster casts and fenestrations to control pressure distribution is described. Finally results of an intensive treatment programme are presented to identify the effect on outcome, as measured by delay in amputation.
Development of real-time extensometer based on image processing
NASA Astrophysics Data System (ADS)
Adinanta, H.; Puranto, P.; Suryadi
2017-04-01
An extensometer system was developed by using high definition web camera as main sensor to track object position. The developed system applied digital image processing techniques. The image processing was used to measure the change of object position. The position measurement was done in real-time so that the system can directly showed the actual position in both x and y-axis. In this research, the relation between pixel and object position changes had been characterized. The system was tested by moving the target in a range of 20 cm in interval of 1 mm. To verify the long run performance, the stability and linearity of continuous measurements on both x and y-axis, this measurement had been conducted for 83 hours. The results show that this image processing-based extensometer had both good stability and linearity.
Characterization of single particle aerosols by elastic light scattering at multiple wavelengths
NASA Astrophysics Data System (ADS)
Lane, P. A.; Hart, M. B.; Jain, V.; Tucker, J. E.; Eversole, J. D.
2018-03-01
We describe a system to characterize individual aerosol particles using stable and repeatable measurement of elastic light scattering. The method employs a linear electrodynamic quadrupole (LEQ) particle trap. Charged particles, continuously injected by electrospray into this system, are confined to move vertically along the stability line in the center of the LEQ past a point where they are optically interrogated. Light scattered in the near forward direction was measured at three different wavelengths using time-division multiplexed collinear laser beams. We validated our method by comparing measured silica microsphere data for four selected diameters (0.7, 1.0, 1.5 and 2.0 μm) to a model of collected scattered light intensities based upon Lorenz-Mie scattering theory. Scattered light measurements at the different wavelengths are correlated, allowing us to distinguish and classify inhomogeneous particles.
NASA Technical Reports Server (NTRS)
Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.
1999-01-01
A quantum-cascade laser operating at a wavelength of 8.1 micrometers was used for high-sensitivity absorption spectroscopy of methane (CH4). The laser frequency was continuously scanned with current over more than 3 cm-1, and absorption spectra of the CH4 nu 4 P branch were recorded. The measured laser linewidth was 50 MHz. A CH4 concentration of 15.6 parts in 10(6) ( ppm) in 50 Torr of air was measured in a 43-cm path length with +/- 0.5-ppm accuracy when the signal was averaged over 400 scans. The minimum detectable absorption in such direct absorption measurements is estimated to be 1.1 x 10(-4). The content of 13CH4 and CH3D species in a CH4 sample was determined.
Direct measurement of shear properties of microfibers
NASA Astrophysics Data System (ADS)
Behlow, H.; Saini, D.; Oliveira, L.; Durham, L.; Simpson, J.; Serkiz, S. M.; Skove, M. J.; Rao, A. M.
2014-09-01
As novel fibers with enhanced mechanical properties continue to be synthesized and developed, the ability to easily and accurately characterize these materials becomes increasingly important. Here we present a design for an inexpensive tabletop instrument to measure shear modulus (G) and other longitudinal shear properties of a micrometer-sized monofilament fiber sample, such as nonlinearities and hysteresis. This automated system applies twist to the sample and measures the resulting torque using a sensitive optical detector that tracks a torsion reference. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers, for which G is well known. Two industrially important fibers, IM7 carbon fiber and Kevlar® 119, were also characterized with this system and were found to have G = 16.5 ± 2.1 and 2.42 ± 0.32 GPa, respectively.
Direct measurement of shear properties of microfibers.
Behlow, H; Saini, D; Oliveira, L; Durham, L; Simpson, J; Serkiz, S M; Skove, M J; Rao, A M
2014-09-01
As novel fibers with enhanced mechanical properties continue to be synthesized and developed, the ability to easily and accurately characterize these materials becomes increasingly important. Here we present a design for an inexpensive tabletop instrument to measure shear modulus (G) and other longitudinal shear properties of a micrometer-sized monofilament fiber sample, such as nonlinearities and hysteresis. This automated system applies twist to the sample and measures the resulting torque using a sensitive optical detector that tracks a torsion reference. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers, for which G is well known. Two industrially important fibers, IM7 carbon fiber and Kevlar(®) 119, were also characterized with this system and were found to have G = 16.5 ± 2.1 and 2.42 ± 0.32 GPa, respectively.
Panattoni, Laura; Stone, Ashley; Chung, Sukyung; Tai-Seale, Ming
2015-03-01
The growing number of primary care physicians (PCPs) reducing their clinical work hours has raised concerns about meeting the future demand for services and fulfilling the continuity and access mandates for patient-centered care. However, the patient's experience of care with part-time physicians is relatively unknown, and may be mediated by continuity and access to care outcomes. We aimed to examine the relationships between a physicians' clinical full-time equivalent (FTE), continuity of care, access to care, and patient satisfaction with the physician. We used a multi-level structural equation estimation, with continuity and access modeled as mediators, for a cross-section in 2010. The study included family medicine (n = 104) and internal medicine (n = 101) physicians in a multi-specialty group practice, along with their patient satisfaction survey responses (n = 12,688). Physician level FTE, continuity of care received by patients, continuity of care provided by physician, and a Press Ganey patient satisfaction with the physician score, on a 0-100 % scale, were measured. Access to care was measured as days to the third next-available appointment. Physician FTE was directly associated with better continuity of care received (0.172% per FTE, p < 0.001), better continuity of care provided (0.108% per FTE, p < 0.001), and better access to care (-0.033 days per FTE, p < 0.01), but worse patient satisfaction scores (-0.080% per FTE, p = 0.03). The continuity of care provided was a significant mediator (0.016% per FTE, p < 0.01) of the relationship between FTE and patient satisfaction; but overall, reduced clinical work hours were associated with better patient satisfaction (-0.053 % per FTE, p = 0.03). These results suggest that PCPs who choose to work fewer clinical hours may have worse continuity and access, but they may provide a better patient experience. Physician workforce planning should consider these care attributes when considering the role of part-time PCPs in practice redesign efforts and initiatives to meet the demand for primary care services.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Membership. 960.104 Section 960.104 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EXECUTIVE BOARDS § 960.104 Membership. (a) Presidential Directive. The President has directed the heads of...
42 CFR 86.36 - Duration and continuation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES GRANTS FOR EDUCATION PROGRAMS IN OCCUPATIONAL SAFETY AND HEALTH Occupational Safety and Health Direct Traineeships § 86.36 Duration and continuation. Direct traineeship awards...
42 CFR 86.36 - Duration and continuation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES GRANTS FOR EDUCATION PROGRAMS IN OCCUPATIONAL SAFETY AND HEALTH Occupational Safety and Health Direct Traineeships § 86.36 Duration and continuation. Direct traineeship awards...
Shahabpoor, Erfan; Pavic, Aleksandar
2017-09-12
Monitoring natural human gait in real-life environments is essential in many applications, including quantification of disease progression, monitoring the effects of treatment, and monitoring alteration of performance biomarkers in professional sports. Nevertheless, developing reliable and practical techniques and technologies necessary for continuous real-life monitoring of gait is still an open challenge. A systematic review of English-language articles from scientific databases including Scopus, ScienceDirect, Pubmed, IEEE Xplore, EBSCO and MEDLINE were carried out to analyse the 'accuracy' and 'practicality' of the current techniques and technologies for quantitative measurement of the tri-axial walking ground reactions outside the laboratory environment, and to highlight their strengths and shortcomings. In total, 679 relevant abstracts were identified, 54 full-text papers were included in the paper and the quantitative results of 17 papers were used for meta-analysis and comparison. Three classes of methods were reviewed: (1) methods based on measured kinematic data; (2) methods based on measured plantar pressure; and (3) methods based on direct measurement of ground reactions. It was found that all three classes of methods have competitive accuracy levels with methods based on direct measurement of the ground reactions showing highest accuracy while being least practical for long-term real-life measurement. On the other hand, methods that estimate ground reactions using measured body kinematics show highest practicality of the three classes of methods reviewed. Among the most prominent technical and technological challenges are: (1) reducing the size and price of tri-axial load-cells; (2) improving the accuracy of orientation measurement using IMUs; (3) minimizing the number and optimizing the location of required IMUs for kinematic measurement; (4) increasing the durability of pressure insole sensors, and (5) enhancing the robustness and versatility of the ground reactions estimation methods to include pathological gaits and natural variability of gait in real-life physical environment.
Shahabpoor, Erfan; Pavic, Aleksandar
2017-01-01
Monitoring natural human gait in real-life environments is essential in many applications, including quantification of disease progression, monitoring the effects of treatment, and monitoring alteration of performance biomarkers in professional sports. Nevertheless, developing reliable and practical techniques and technologies necessary for continuous real-life monitoring of gait is still an open challenge. A systematic review of English-language articles from scientific databases including Scopus, ScienceDirect, Pubmed, IEEE Xplore, EBSCO and MEDLINE were carried out to analyse the ‘accuracy’ and ‘practicality’ of the current techniques and technologies for quantitative measurement of the tri-axial walking ground reactions outside the laboratory environment, and to highlight their strengths and shortcomings. In total, 679 relevant abstracts were identified, 54 full-text papers were included in the paper and the quantitative results of 17 papers were used for meta-analysis and comparison. Three classes of methods were reviewed: (1) methods based on measured kinematic data; (2) methods based on measured plantar pressure; and (3) methods based on direct measurement of ground reactions. It was found that all three classes of methods have competitive accuracy levels with methods based on direct measurement of the ground reactions showing highest accuracy while being least practical for long-term real-life measurement. On the other hand, methods that estimate ground reactions using measured body kinematics show highest practicality of the three classes of methods reviewed. Among the most prominent technical and technological challenges are: (1) reducing the size and price of tri-axial load-cells; (2) improving the accuracy of orientation measurement using IMUs; (3) minimizing the number and optimizing the location of required IMUs for kinematic measurement; (4) increasing the durability of pressure insole sensors, and (5) enhancing the robustness and versatility of the ground reactions estimation methods to include pathological gaits and natural variability of gait in real-life physical environment. PMID:28895909
Crystal structure and partial Ising-like magnetic ordering of orthorhombic D y 2 Ti O 5
Shamblin, Jacob; Calder, Stuart; Dun, Zhiling; ...
2016-07-12
The structure and magnetic properties of orthorhombic Dy 2TiO 5 have been investigated using x-ray diffraction, neutron diffraction, and alternating current (ac)/direct current (dc) magnetic susceptibility measurements. In this paper, we report a continuous structural distortion below 100 K characterized by negative thermal expansion in the [0 1 0] direction. Neutron diffraction and magnetic susceptibility measurements revealed that two-dimensional (2D) magnetic ordering begins at 3.1 K, which is followed by a three-dimensional magnetic transition at 1.7 K. The magnetic structure has been solved through a representational analysis approach and can be indexed with the propagation vector k = [0 1/2more » 0]. The spin structure corresponds to a coplanar model of interwoven 2D “sheets” extending in the [0 1 0] direction. The local crystal field is different for each Dy 3+ ion (Dy1 and Dy2), one of which possesses strong uniaxial symmetry indicative of Ising-like magnetic ordering. In conclusion, consequently, two succeeding transitions under magnetic field are observed in the ac susceptibility, which are associated with flipping each Dy 3+ spin independently.« less
NASA Astrophysics Data System (ADS)
Liu, Haoliang; McLaughlin, Ryan; Sun, Dali; Valy Vardeny, Z.
2018-04-01
Coupling of spins and phonons in ferromagnets (FM) may persist up to mm length scale, thus generating macroscopic spatially distributed spin accumulation along the direction of an applied thermal gradient to an FM slab. This typical feature of transverse spin Seebeck effect (TSSE) has been demonstrated so far using electrical detection methods in FM films, in particular in a patterned structure, in which FM stripes grown onto a substrate perpendicular to the applied thermal gradient direction are electrically and magnetically isolated. Here we report optically detected TSSE response in isolated FM stripes based on permalloy deposited on SiN substrate, upon the application of a thermal gradient. For these measurements we used the magneto-optic Kerr effect measured by an ultrasensitive Sagnac interferometer microscope that is immune to thermo-electrics artefacts. We found that the optical TSSE coefficient in the NiFe stripes geometry is about one order of magnitude smaller than that in the continuous NiFe film, which is due to the limited phonons path in the FM stripes along the thermal gradient direction. Our results further confirm the existence of TSSE response in conducting FM compounds.
Moerland, Robert J; Weppelman, I Gerward C; Garming, Mathijs W H; Kruit, Pieter; Hoogenboom, Jacob P
2016-10-17
We show cathodoluminescence-based time-resolved electron beam spectroscopy in order to directly probe the spontaneous emission decay rate that is modified by the local density of states in a nanoscale environment. In contrast to dedicated laser-triggered electron-microscopy setups, we use commercial hardware in a standard SEM, which allows us to easily switch from pulsed to continuous operation of the SEM. Electron pulses of 80-90 ps duration are generated by conjugate blanking of a high-brightness electron beam, which allows probing emitters within a large range of decay rates. Moreover, we simultaneously attain a resolution better than λ/10, which ensures details at deep-subwavelength scales can be retrieved. As a proof-of-principle, we employ the pulsed electron beam to spatially measure excited-state lifetime modifications in a phosphor material across the edge of an aluminum half-plane, coated on top of the phosphor. The measured emission dynamics can be directly related to the structure of the sample by recording photon arrival histograms together with the secondary-electron signal. Our results show that time-resolved electron cathodoluminescence spectroscopy is a powerful tool of choice for nanophotonics, within reach of a large audience.
Measurement of Glucose in Blood with a Phenylboronic Acid Optical Sensor
Worsley, Graham J.; Tourniaire, Guilhem A.; Medlock, Kathryn E. S.; Sartain, Felicity K.; Harmer, Hazel E.; Thatcher, Michael; Horgan, Adrian M.; Pritchard, John
2008-01-01
Background Current methods of glucose monitoring rely predominantly on enzymes such as glucose oxidase for detection. Phenylboronic acid receptors have been proposed as alternative glucose binders. A unique property of these molecules is their ability to bind glucose in a fully reversible covalent manner that facilitates direct continuous measurements. We examined (1) the ability of a phenylboronic-based sensor to measure glucose in blood and blood plasma and (2) the effect on measurement accuracy of a range of potential interferents. We also showed that the sensor is able to track glucose fluctuations occurring at rates mimicking those experienced in vivo. Method In vitro static measurements of glucose in blood and blood plasma were conducted using holographic sensors containing acrylamide, N,N′-methylenebisacrylamide, 3-acrylamidophenylboronic acid, and (3-acrylamidopropyl) trimethylammonium chloride. The same sensors were also used for in vitro measurements performed under flow conditions. Results The opacity of the liquid had no affect on the ability of the optical sensor to measure glucose in blood or blood plasma. The presence of common antibiotics, diabetic drugs, pain killers, and endogenous substances did not affect the measurement accuracy, as shown by error grid analysis. Ex vivo flow experiments showed that the sensor is able to track changes accurately in concentration occurring in real time without lag or evidence of hysteresis. Conclusions The ability of phenylboronic acid sensors to measure glucose in whole blood was demonstrated for the first time. Holographic sensors are ideally suited to continuous blood glucose measurements, being physically and chemically robust and potentially calibration free. PMID:19885345
The carbon dioxide production rate assumption biases gastric emptying parameters in healthy adults.
Markey, Oonagh; Shafat, Amir
2013-02-28
An altered gastric emptying (GE) rate has been implicated in the aetiology of obesity. The (13)C-octanoic acid breath test (OBT) is frequently used to measure GE, and the cumulative percentage of (13)C recovered (cPDR) is a common outcome measure. However, true cPDR in breath is dependent on accurate measurement of carbon dioxide production rate (VCO(2)). The current study aimed to quantify differences in the (13)C OBT results obtained using directly measured VCO(2) (VCO(2DM)) compared with (i) predicted from resting VCO(2) (VCO(2PR)) and (ii) predicted from body surface area VCO(2) (VCO(2BSA)). The GE rate of a high-fat test meal was assessed in 27 lean subjects using the OBT. Breath samples were gathered during the fasted state and at regular intervals throughout the 6-h postprandial period for determination of (13)C-isotopic enrichment by continuous-flow isotope-ratio mass spectrometry. The VCO(2) was measured directly from exhaled air samples and the PDR calculated by three methods. The bias and the limits of agreement were calculated using Bland-Altman plots. Compared with the VCO(2DM), the cPDR was underestimated by VCO(2PR) (4.8%; p = 0.0001) and VCO(2BSA) (2.7%; p = 0.02). The GE T(half) was underestimated by VCO(2PR) (13 min; p = 0.0001) and VCO(2BSA) (10 min; p = 0.01), compared with VCO(2DM). The findings highlight the importance of directly measuring VCO(2)production rates throughout the (13)C OBT and could partly explain the conflicting evidence regarding the effect of obesity on GE rates. Copyright © 2013 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulisek, Jonathan A.; Anderson, Kevin K.; Bowyer, Sonya M.
2012-07-19
Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) of next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT continues to support a multi-institutional collaboration to address the feasibility of Lead Slowing Down Spectroscopy (LSDS) as an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10%more » typical of today’s confirmatory assay methods. An LSDS is comprised of a stack of lead (typically 1-6 m3) in which materials to be measured are placed in the lead and a pulse of neutrons is injected. The neutrons in this pulse lose energy due to inelastic and (subsequently) elastic scattering and the average energy of the neutrons decreases as the time increases by a well-defined relationship. In the interrogation energy region (~0.1-1000 eV) the neutrons have little energy spread (~30%) about the average neutron energy. Due to this characteristic, the energy of the (assay) neutrons can then be determined by measuring the time elapsed since the neutron pulse. By measuring the induced fission neutrons emitted from the used fuel, it is possible to determine isotopic-mass content by unfolding the unique structure of isotopic resonances across the interrogation energy region. This paper will present efforts on the development of time-spectral analysis algorithms, fast neutron detector advances, and validation and testing measurements.« less
Effect of Receiver Choosing on Point Positions Determination in Network RTK
NASA Astrophysics Data System (ADS)
Bulbul, Sercan; Inal, Cevat
2016-04-01
Nowadays, the developments in GNSS technique allow to determinate point positioning in real time. Initially, point positioning was determined by RTK (Real Time Kinematic) based on a reference station. But, to avoid systematic errors in this method, distance between the reference points and rover receiver must be shorter than10 km. To overcome this restriction in RTK method, the idea of setting more than one reference point had been suggested and, CORS (Continuously Operations Reference Systems) was put into practice. Today, countries like ABD, Germany, Japan etc. have set CORS network. CORS-TR network which has 146 reference points has also been established in 2009 in Turkey. In CORS-TR network, active CORS approach was adopted. In Turkey, CORS-TR reference stations covering whole country are interconnected and, the positions of these stations and atmospheric corrections are continuously calculated. In this study, in a selected point, RTK measurements based on CORS-TR, were made with different receivers (JAVAD TRIUMPH-1, TOPCON Hiper V, MAGELLAN PRoMark 500, PENTAX SMT888-3G, SATLAB SL-600) and with different correction techniques (VRS, FKP, MAC). In the measurements, epoch interval was taken as 5 seconds and measurement time as 1 hour. According to each receiver and each correction technique, means and differences between maximum and minimum values of measured coordinates, root mean squares in the directions of coordinate axis and 2D and 3D positioning precisions were calculated, the results were evaluated by statistical methods and the obtained graphics were interpreted. After evaluation of the measurements and calculations, for each receiver and each correction technique; the coordinate differences between maximum and minimum values were measured to be less than 8 cm, root mean squares in coordinate axis directions less than ±1.5 cm, 2D point positioning precisions less than ±1.5 cm and 3D point positioning precisions less than ±1.5 cm. In the measurement point, it has been concluded that VRS correction technique is generally better than other corrections techniques.
Hu, Jiangfeng; Wang, Zhao; Lian, Yuehan; Huang, Qinghua
2018-01-29
This study examines the spillover effects of foreign direct investment (FDI) on green technology progress rate (as measured by the green total factor productivity). The analysis utilizes two measures of FDI, labor-based FDI and capital-based FDI, and separately investigates four sets of industry classifications-high/low discharge regulation and high/low emission standard regulation. The results indicate that in the low discharge regulation and low emission standard regulation industry, labor-based FDI has a significant negative spillover effect, and capital-based FDI has a significant positive spillover effect. However, in the high-intensity environmental regulation industry, the negative influence of labor-based FDI is completely restrained, and capital-based FDI continues to play a significant positive green technological spillover effects. These findings have clear policy implications: the government should be gradually reducing the labor-based FDI inflow or increasing stringency of environmental regulation in order to reduce or eliminate the negative spillover effect of the labor-based FDI.
Direct drive: Simulations and results from the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radha, P. B., E-mail: rbah@lle.rochester.edu; Hohenberger, M.; Edgell, D. H.
Direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivity analyses indicatemore » that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.« less
Simulating the bio nanoelectronic interface
NASA Astrophysics Data System (ADS)
Millar, Campbell; Roy, Scott; Brown, Andrew R.; Asenov, Asen
2007-05-01
As the size of conventional nano-CMOS devices continues to shrink, they are beginning to approach the size of biologically relevant macromolecules such as ion channels. This, in concert with the increasing understanding of the behaviour of proteins in vivo, creates the potential for a revolution in the sensing, measurement and interaction with biological systems. In this paper we will demonstrate the theoretical possibility of directly coupling a nanoscale MOSFET with a model ion channel protein. This will potentially allow a much better understanding of the behaviour of biologically relevant molecules, since the measurement of the motion of charged particles can reveal a substantial amount of information about protein structure-function relationships. We can use the MOSFET's innate sensitivity to stray charge to detect the positions of single ions and, thus, better explore the dynamics of ion conduction in channel proteins. In addition, we also demonstrate that the MOSFET can be 'tuned' to sense current flow through channel proteins, thus providing, for the first time, a direct solid state/biological interface at the atomic level.
Hu, Jiangfeng; Wang, Zhao; Lian, Yuehan; Huang, Qinghua
2018-01-01
This study examines the spillover effects of foreign direct investment (FDI) on green technology progress rate (as measured by the green total factor productivity). The analysis utilizes two measures of FDI, labor-based FDI and capital-based FDI, and separately investigates four sets of industry classifications—high/low discharge regulation and high/low emission standard regulation. The results indicate that in the low discharge regulation and low emission standard regulation industry, labor-based FDI has a significant negative spillover effect, and capital-based FDI has a significant positive spillover effect. However, in the high-intensity environmental regulation industry, the negative influence of labor-based FDI is completely restrained, and capital-based FDI continues to play a significant positive green technological spillover effects. These findings have clear policy implications: the government should be gradually reducing the labor-based FDI inflow or increasing stringency of environmental regulation in order to reduce or eliminate the negative spillover effect of the labor-based FDI. PMID:29382112
A Highly Sensitive Two-Dimensional Inclinometer Based on Two Etched Chirped-Fiber-Grating Arrays †
Chang, Hung-Ying; Chang, Yu-Chung; Liu, Wen-Fung
2017-01-01
We present a novel two-dimensional fiber-optic inclinometer with high sensitivity by crisscrossing two etched chirped fiber Bragg gratings (CFBG) arrays. Each array is composed of two symmetrically-arranged CFBGs. By etching away most of the claddings of the CFBGs to expose the evanescent wave, the reflection spectra are highly sensitive to the surrounding index change. When we immerse only part of the CFBG in liquid, the effective index difference induces a superposition peak in the refection spectrum. By interrogating the peak wavelengths of the CFBGs, we can deduce the tilt angle and direction simultaneously. The inclinometer has a resolution of 0.003° in tilt angle measurement and 0.00187 rad in tilt direction measurement. Due to the unique sensing mechanism, the sensor is temperature insensitive. This sensor can be useful in long term continuous monitoring of inclination or in real-time feedback control of tilt angles, especially in harsh environments with violent temperature variation. PMID:29244770
Dynamics of fingertip contact during the onset of tangential slip
Delhaye, Benoit; Lefèvre, Philippe; Thonnard, Jean-Louis
2014-01-01
Through highly precise perceptual and sensorimotor activities, the human tactile system continuously acquires information about the environment. Mechanical interactions between the skin at the point of contact and a touched surface serve as the source of this tactile information. Using a dedicated custom robotic platform, we imaged skin deformation at the contact area between the finger and a flat surface during the onset of tangential sliding movements in four different directions (proximal, distal, radial and ulnar) and with varying normal force and tangential speeds. This simple tactile event evidenced complex mechanics. We observed a reduction of the contact area while increasing the tangential force and proposed to explain this phenomenon by nonlinear stiffening of the skin. The deformation's shape and amplitude were highly dependent on stimulation direction. We conclude that the complex, but highly patterned and reproducible, deformations measured in this study are a potential source of information for the central nervous system and that further mechanical measurement are needed to better understand tactile perceptual and motor performances. PMID:25253033
NASA Astrophysics Data System (ADS)
Chang, Lijun; Flesch, Lucy M.; Wang, Chun-Yung; Ding, Zhifeng
2015-07-01
We present 59 new SKS/SKKS and combine them with 69 previously published data to infer the mantle deformation field in SE Tibet. The dense set of anisotropy measurements in the eastern Himalayan syntaxis (EHS) are oriented along a NE-SW azimuth and rotate clockwise in the surround regions. We use GPS measurements and geologic data to determine a continuous surface deformation field that is then used to predict shear wave spitting directions at each station. Comparison of splitting observations with predictions yields an average misfit of 11.7° illustrating that deformation is vertically coherent, consistent with previous studies. Within the central EHS in areas directly surrounding the Namche-Barwa metamorphic massif, the average misfit of 11 stations increases to 60.8°, and vertical coherence is no longer present. The complexity of the mantle anisotropy and surface observations argues for local alteration of the strain fields here associated with recent rapid exhumation of the Indian crust.
Sullivan, Jessica R.; Thibodeau, Linda M.; Assmann, Peter F.
2013-01-01
Previous studies have indicated that individuals with normal hearing (NH) experience a perceptual advantage for speech recognition in interrupted noise compared to continuous noise. In contrast, adults with hearing impairment (HI) and younger children with NH receive a minimal benefit. The objective of this investigation was to assess whether auditory training in interrupted noise would improve speech recognition in noise for children with HI and perhaps enhance their utilization of glimpsing skills. A partially-repeated measures design was used to evaluate the effectiveness of seven 1-h sessions of auditory training in interrupted and continuous noise. Speech recognition scores in interrupted and continuous noise were obtained from pre-, post-, and 3 months post-training from 24 children with moderate-to-severe hearing loss. Children who participated in auditory training in interrupted noise demonstrated a significantly greater improvement in speech recognition compared to those who trained in continuous noise. Those who trained in interrupted noise demonstrated similar improvements in both noise conditions while those who trained in continuous noise only showed modest improvements in the interrupted noise condition. This study presents direct evidence that auditory training in interrupted noise can be beneficial in improving speech recognition in noise for children with HI. PMID:23297921
NASA Astrophysics Data System (ADS)
Su, Yung-Chao; Wu, Shin-Tza
2017-09-01
We study theoretically the teleportation of a controlled-phase (cz) gate through measurement-based quantum-information processing for continuous-variable systems. We examine the degree of entanglement in the output modes of the teleported cz-gate for two classes of resource states: the canonical cluster states that are constructed via direct implementations of two-mode squeezing operations and the linear-optical version of cluster states which are built from linear-optical networks of beam splitters and phase shifters. In order to reduce the excess noise arising from finite-squeezed resource states, teleportation through resource states with different multirail designs will be considered and the enhancement of entanglement in the teleported cz gates will be analyzed. For multirail cluster with an arbitrary number of rails, we obtain analytical expressions for the entanglement in the output modes and analyze in detail the results for both classes of resource states. At the same time, we also show that for uniformly squeezed clusters the multirail noise reduction can be optimized when the excess noise is allocated uniformly to the rails. To facilitate the analysis, we develop a trick with manipulations of quadrature operators that can reveal rather efficiently the measurement sequence and corrective operations needed for the measurement-based gate teleportation, which will also be explained in detail.
Quodbach, Julian; Kleinebudde, Peter
2014-11-01
The aim of this study is the introduction of a novel apparatus that is capable of continuously measuring the particle size reduction of disintegrating tablets and analysis of the obtained results. The apparatus is constructed such that no particles pass directly through the pumping system. Thereby, the overall energy input into the particle suspension is reduced, and continuous measurement is possible without rapid destruction of the generated particles. The detected particle sizes at the beginning and at the end of the measurement differ greatly, depending on the applied disintegrant. The median particle sizes at the end of the measurement vary between 621.5 and 178.0 μm for different disintegrants. It is demonstrated that the particle size reduction follows an exponential function and that the fit parameters can be used to describe the disintegration behavior. A strong correlation between the median particle size of crospovidone disintegrants and generated particle size of the tablets is observed. This could be due to a more homogeneous distribution of the disintegrant particles in the tablets. Similar trends are observed for sodium starch glycolate and croscarmellose sodium. The new apparatus provides an innovative method to describe disintegrant effectiveness and efficiency. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Atomizing, continuous, water monitoring module
Thompson, C.V.; Wise, M.B.
1997-07-08
A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid. 3 figs.
Atomizing, continuous, water monitoring module
Thompson, Cyril V.; Wise, Marcus B.
1997-01-01
A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid.
Update on IBEX and the outer boundary of the space radiation environment
NASA Astrophysics Data System (ADS)
McComas, D. J.; IBEX Science Team
2012-11-01
The Interstellar Boundary Explorer (IBEX) mission has been remotely observing the global interaction of our heliosphere with the local interstellar medium for over three years. Initially, IBEX generated the first all-sky maps of Energetic Neutral Atoms (ENAs) emanating in from the boundaries of our heliosphere over the energy range from ˜0.1-6 keV. Using these observations, the IBEX team discovered a smoothly varying, globally distributed ENA flux overlaid by a narrow "ribbon" of significantly enhanced ENA emissions. Since the initial publication of these results in a special issue of Science magazine (November 2009), IBEX has completed five more energy-resolved sets of sky maps and discovered small but important time variations in the interaction, separated the ribbon from globally distributed ENA fluxes, measured the energy spectral shape and inferred ion source temperatures, and carried out many other observational and theoretical studies of the outer heliosphere. In a second major area of observations - direct measurements of Interstellar Neutral (ISN) atoms - just published, IBEX observations of ISN He atoms show that the speed and direction (the motion of the heliosphere with respect to the interstellar medium) is slower and from a somewhat different direction than that thought from prior Ulysses observations. These observations also show evidence for a previously unknown and unanticipated secondary population of Helium. In addition, IBEX is providing the first direct quantitative measurements of the ISN H parameters and the first direct measurements of interstellar Ne and the interstellar Neon/Oxygen abundance ratio; this ratio is significantly different than the solar abundance ratio. Finally, IBEX was recently maneuvered into a unique, long-term stable orbit, which has a very low radiation environment and requires no orbit maintenance. Thus, IBEX will likely continue to provide revolutionary observations of the outer heliosphere and local interstellar medium for many years to come.
Satoh, Miho; Watanabe, Ikue; Asakura, Kyoko
2017-01-01
Occupational commitment and job satisfaction are major predictors of the intention to continue nursing. This study's purpose was to verify the mediating effects of job satisfaction and three components of occupational commitment on the relationship between effort-reward imbalance and the intention to continue nursing. A self-report questionnaire was distributed to 3977 nurses by the nursing department of 12 hospitals in the Tohoku and Kanto districts of Japan in 2013. Of these, 1531 (response rate: 38.5%) nurses returned the questionnaire by mail and the complete data that were provided by 1241 nurses (valid response rate: 31.2%) were analyzed. Structural equation modeling showed that the effort-reward ratio had negative effects on job satisfaction and affective and normative occupational commitment. Job satisfaction and affective and normative occupational commitment had positive effects on the intention to continue nursing, whereas the effort-reward ratio had no direct effect on the intention to continue nursing. Continuance occupational commitment was not a mediator, but it positively influenced the intention to continue nursing. The findings suggest that it is important to increase job satisfaction and affective and normative occupational commitment in order to enhance their buffering effects on the relationship between job stress and the intention to continue nursing. Measures to increase continuance occupational commitment also would be an effective method of strengthening the intention to continue nursing. Improvements in these areas should contribute to an increase in nurses' intention to continue nursing and prevent the loss of this precious human resource from the health sector. © 2016 Japan Academy of Nursing Science.
NASA Astrophysics Data System (ADS)
Hulvershorn, Justin; Bloy, Luke; Leigh, John S.; Elliott, Mark A.
2003-09-01
A continuous wave near infrared three-wavelength laser diode spectroscopic (NIRS) system designed for use in magnetic resonance imaging (MRI) scanners is described. This system measures in vivo changes in the concentrations of oxyhemoglobin (HbO) and deoxyhemoglobin (Hb) in humans. An algorithm is implemented to map changes in light intensity to changes in the concentrations of Hb and HbO. The system's signal to noise ratio is 3.4×103 per wavelength on an intralipid phantom with 10 Hz resolution. To demonstrate the system's performance in vivo, data taken on the human forearm during arterial occlusion, as well as data taken on the forehead during extended breath holds, are presented. The results show that the instrument is an extremely sensitive detector of hemodynamic changes in human tissue at high temporal resolution. NIRS directly measures changes in the concentrations of hemoglobin species. For this reason, NIRS will be useful in determining the sources of MRI signal changes in the body due to hemodynamic causes, while the precise anatomic information provided by MRI will aid in localizing NIRS contrast and improving the accuracy of models of light transport through tissue.
Autobiographical memory functions in young Japanese men and women.
Maki, Yoichi; Kawasaki, Yayoi; Demiray, Burcu; Janssen, Steve M J
2015-01-01
The present study examined whether the three major functions of autobiographical memory observed in Western societies (i.e., directing-behaviour, social-bonding and self-continuity) also exist in an East Asian society. Two self-report measures were used to assess the autobiographical memory functions of Japanese men and women. Japanese young adults (N = 451, ages 17-28 years) first completed the original Thinking About Life Experiences (TALE) Questionnaire. They subsequently received three TALE items that represented memory functions and attempted to recall a specific instance of memory recall for each item. Confirmatory factor analyses on the TALE showed that the three functions were replicated in the current sample. However, Japanese participants reported lower levels of all three functions than American participants in a previous study. We also explored whether there was an effect of gender in this Japanese sample. Women reported higher levels of the self-continuity and social-bonding functions than men. Finally, participants recalled more specific instances of memory recall for the TALE items that had received higher ratings on the TALE, suggesting that the findings on the first measure were supported by the second measure. Results are discussed in relation to the functional approach to autobiographical memory in a cross-cultural context.
Depleted uranium exposure and health effects in Gulf War veterans
Squibb, Katherine S; McDiarmid, Melissa A
2006-01-01
Health effects stemming from depleted uranium (DU) exposure in a cohort of Gulf War veterans who were in or on US Army vehicles hit by friendly fire involving DU munitions are being carefully monitored through the Baltimore Veterans Affairs (VA) DU Follow-Up Program initiated in 1993. DU exposure in this cohort has been directly measured using inductively coupled plasma-mass spectrometer (ICP-MS) isotopic analysis for DU in urine specimens. Soldiers with embedded DU fragments continue to excrete elevated concentrations of U in their urine, documenting ongoing systemic exposure to U released from their fragments. Biennial surveillance visits provide a detailed health assessment that includes basic clinical measures and surveillance for early changes in kidney function, an expected target organ for U. Tests also include measurements of genotoxicity and neuroendocrine, neurocognitive and reproductive function. With the exception of the elevated urine U excretion, no clinically significant expected U-related health effects have been identified to date. Subtle changes in renal function and genotoxicity markers in veterans with urine U concentrations greater than 0.1 μg−1 creatinine, however, indicate the need for continued surveillance of these DU-exposed veterans. PMID:16687268
Direct writing of metal nanostructures: lithographic tools for nanoplasmonics research.
Leggett, Graham J
2011-03-22
Continued progress in the fast-growing field of nanoplasmonics will require the development of new methods for the fabrication of metal nanostructures. Optical lithography provides a continually expanding tool box. Two-photon processes, as demonstrated by Shukla et al. (doi: 10.1021/nn103015g), enable the fabrication of gold nanostructures encapsulated in dielectric material in a simple, direct process and offer the prospect of three-dimensional fabrication. At higher resolution, scanning probe techniques enable nanoparticle particle placement by localized oxidation, and near-field sintering of nanoparticulate films enables direct writing of nanowires. Direct laser "printing" of single gold nanoparticles offers a remarkable capability for the controlled fabrication of model structures for fundamental studies, particle-by-particle. Optical methods continue to provide a powerful support for research into metamaterials.
Continuous-Time Classical and Quantum Random Walk on Direct Product of Cayley Graphs
NASA Astrophysics Data System (ADS)
Salimi, S.; Jafarizadeh, M. A.
2009-06-01
In this paper we define direct product of graphs and give a recipe for obtaining probability of observing particle on vertices in the continuous-time classical and quantum random walk. In the recipe, the probability of observing particle on direct product of graph is obtained by multiplication of probability on the corresponding to sub-graphs, where this method is useful to determining probability of walk on complicated graphs. Using this method, we calculate the probability of continuous-time classical and quantum random walks on many of finite direct product Cayley graphs (complete cycle, complete Kn, charter and n-cube). Also, we inquire that the classical state the stationary uniform distribution is reached as t → ∞ but for quantum state is not always satisfied.
Holmboe, Sarah; Andersen, Asger; Jensen, Rebekka V; Kimose, Hans Henrik; Ilkjær, Lars B; Shen, Lei; Clapp, Lucie H; Nielsen-Kudsk, Jens Erik
2017-01-01
Prostacyclins are vasodilatory agents used in the treatment of pulmonary arterial hypertension. The direct effects of prostacyclins on right heart function are still not clarified. The aim of this study was to investigate the possible direct inotropic properties of clinical available prostacyclin mimetics in the normal and the pressure-overloaded human right atrium. Trabeculae from the right atrium were collected during surgery from chronic thromboembolic pulmonary hypertension (CTEPH) patients with pressure-overloaded right hearts, undergoing pulmonary thromboendarterectomy (n = 10) and from patients with normal right hearts operated by valve replacement or coronary bypass surgery (n = 9). The trabeculae were placed in an organ bath, continuously paced at 1 Hz. They were subjected to increasing concentrations of iloprost, treprostinil, epoprostenol, or MRE-269, followed by isoprenaline to elicit a reference inotropic response. The force of contraction was measured continuously. The expression of prostanoid receptors was explored through quantitative polymerase chain reaction (qPCR). Iloprost, treprostinil, epoprostenol, or MRE-269 did not alter force of contraction in any of the trabeculae. Isoprenaline showed a direct inotropic response in both trabeculae from the pressure-overloaded right atrium and from the normal right atrium. Control experiments on ventricular trabeculae from the pig failed to show an inotropic response to the prostacyclin mimetics. qPCR demonstrated varying expression of the different prostanoid receptors in the human atrium. In conclusion, prostacyclin mimetics did not increase the force of contraction of human atrial trabeculae from the normal or the pressure-overloaded right heart. These data suggest that prostacyclin mimetics have no direct inotropic effects in the human right atrium.
Assessment of Techniques for Measuring Tropospheric H Sub x O Sub y
NASA Technical Reports Server (NTRS)
Hoell, J. M. (Editor)
1984-01-01
In its continuing efforts to direct its applications programs towards relevant national needs, NASA is conducting the Tropospheric Chemistry Program, the long-range objective of which is to apply NASA's space technology to assess and predict human impact on the troposphere, particularly on the regional to global scale. One area of required research is instrumentation development, which is aimed at improving the capability to measure important trace gases and aerosols which are key species in the major atmospheric biogeochemical cycles. To focus on specific needs, the Instrumentation Worksphop for H(x)O(y) Tropospheric Species was conducted in August 1982. The workshop discussed current measurement needs and instrument capabilities for H(x)O(y) species, including OH, HO2, and H2O2. The workshop activities and conclusions are documented.
Tiltmeter studies in earthquake prediction
Johnston, M.
1978-01-01
tilt measurements give us a means of monitoring vertical displacements or local uplift of the crust. The simplest type of tiltmeter is a stationary pendulum (fig. 1). As the Earth's surface distorts locally, the pendulum housing is tilted while, of course, the pendulum continues to hang vertically (that is, in the direction of the gravity vector). The tilt angle is the angle through which the pendulum housing is tilted. The pendulum is the inertial reference (the force of gravity remains unchanged at the site), and tilting of the instrument housing represents the moving reference frame. We note in passing that the tiltmeter could also be used to measure the force of gravity by using the pendulum in the same way as Henry Kater did in his celebrated measurement of g in 1817.
NASA Technical Reports Server (NTRS)
Goyne, Christopher P.; McDaniel, James C.
2002-01-01
The Department of Mechanical and Aerospace Engineering at the University of Virginia has conducted an investigation of the mixing and combustion processes in a hydrogen fueled dual-mode scramjet combustor. The experiment essentially consisted of the "direct connect" continuous operation of a Mach 2 rectangular combustor with a single unswept ramp fuel injector. The stagnation enthalpy of the test flow simulated a flight Mach number of 5. Measurements were obtained using conventional wall instrumentation and laser based diagnostics. These diagnostics included, pressure and wall temperature measurements, Fuel Plume Imaging (FPI) and Particle Image Velocimetry (PIV). A schematic of the combustor configuration and a summary of the measurements obtained are presented. The experimental work at UVa was parallel by Computational Fluid Dynamics (CFD) work at NASA Langley. The numerical and experiment results are compared in this document.
Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone.
Xue, Lian; Li, Hai-Bing; Brodsky, Emily E; Xu, Zhi-Qing; Kano, Yasuyuki; Wang, Huan; Mori, James J; Si, Jia-Liang; Pei, Jun-Ling; Zhang, Wei; Yang, Guang; Sun, Zhi-Ming; Huang, Yao
2013-06-28
Permeability controls fluid flow in fault zones and is a proxy for rock damage after an earthquake. We used the tidal response of water level in a deep borehole to track permeability for 18 months in the damage zone of the causative fault of the 2008 moment magnitude 7.9 Wenchuan earthquake. The unusually high measured hydraulic diffusivity of 2.4 × 10(-2) square meters per second implies a major role for water circulation in the fault zone. For most of the observation period, the permeability decreased rapidly as the fault healed. The trend was interrupted by abrupt permeability increases attributable to shaking from remote earthquakes. These direct measurements of the fault zone reveal a process of punctuated recovery as healing and damage interact in the aftermath of a major earthquake.
NASA Astrophysics Data System (ADS)
Nuytten, T.; Bogdanowicz, J.; Witters, L.; Eneman, G.; Hantschel, T.; Schulze, A.; Favia, P.; Bender, H.; De Wolf, I.; Vandervorst, W.
2018-05-01
The continued importance of strain engineering in semiconductor technology demands fast and reliable stress metrology that is non-destructive and process line-compatible. Raman spectroscopy meets these requirements but the diffraction limit prevents its application in current and future technology nodes. We show that nano-focused Raman scattering overcomes these limitations and can be combined with oil-immersion to obtain quantitative anisotropic stress measurements. We demonstrate accurate stress characterization in strained Ge fin field-effect transistor channels without sample preparation or advanced microscopy. The detailed analysis of the enhanced Raman response from a periodic array of 20 nm-wide Ge fins provides direct access to the stress levels inside the nanoscale channel, and the results are validated using nano-beam diffraction measurements.
Linear feedback stabilization of a dispersively monitored qubit
NASA Astrophysics Data System (ADS)
Patti, Taylor Lee; Chantasri, Areeya; García-Pintos, Luis Pedro; Jordan, Andrew N.; Dressel, Justin
2017-08-01
The state of a continuously monitored qubit evolves stochastically, exhibiting competition between coherent Hamiltonian dynamics and diffusive partial collapse dynamics that follow the measurement record. We couple these distinct types of dynamics together by linearly feeding the collected record for dispersive energy measurements directly back into a coherent Rabi drive amplitude. Such feedback turns the competition cooperative and effectively stabilizes the qubit state near a target state. We derive the conditions for obtaining such dispersive state stabilization and verify the stabilization conditions numerically. We include common experimental nonidealities, such as energy decay, environmental dephasing, detector efficiency, and feedback delay, and show that the feedback delay has the most significant negative effect on the feedback protocol. Setting the measurement collapse time scale to be long compared to the feedback delay yields the best stabilization.
Quantum cascade laser based sensor for open path measurement of atmospheric trace gases
NASA Astrophysics Data System (ADS)
Deng, Hao; Sun, Juan; Liu, Ningwu; Ding, Junya; Chao, Zhou; Zhang, Lei; Li, Jingsong
2017-02-01
A sensitive open-path gas sensor employing a continuous-wave (CW) distributed feedback (DFB) quantum cascade laser (QCL) and direct absorption spectroscopy (DAS) was demonstrated for simultaneously measurements of atmospheric CO and N2O. Two interference free absorption lines located at 2190.0175 cm-1 and 2190.3498 cm-1 were selected for CO and N2O concentration measurements, respectively. The Allan variance analysis technique was performed to investigate the long-term performance of the QCL sensor system. The results indicate that a detection limit of 9.92 ppb for CO and 7.7 ppb for N2O with 1-s integration time were achieved, which can be further improved to 1.5 ppb and 1.1 ppb by increasing the average time up to 80 s.
Precision of working memory for speech sounds.
Joseph, Sabine; Iverson, Paul; Manohar, Sanjay; Fox, Zoe; Scott, Sophie K; Husain, Masud
2015-01-01
Memory for speech sounds is a key component of models of verbal working memory (WM). But how good is verbal WM? Most investigations assess this using binary report measures to derive a fixed number of items that can be stored. However, recent findings in visual WM have challenged such "quantized" views by employing measures of recall precision with an analogue response scale. WM for speech sounds might rely on both continuous and categorical storage mechanisms. Using a novel speech matching paradigm, we measured WM recall precision for phonemes. Vowel qualities were sampled from a formant space continuum. A probe vowel had to be adjusted to match the vowel quality of a target on a continuous, analogue response scale. Crucially, this provided an index of the variability of a memory representation around its true value and thus allowed us to estimate how memories were distorted from the original sounds. Memory load affected the quality of speech sound recall in two ways. First, there was a gradual decline in recall precision with increasing number of items, consistent with the view that WM representations of speech sounds become noisier with an increase in the number of items held in memory, just as for vision. Based on multidimensional scaling (MDS), the level of noise appeared to be reflected in distortions of the formant space. Second, as memory load increased, there was evidence of greater clustering of participants' responses around particular vowels. A mixture model captured both continuous and categorical responses, demonstrating a shift from continuous to categorical memory with increasing WM load. This suggests that direct acoustic storage can be used for single items, but when more items must be stored, categorical representations must be used.
Chang, Shun-Chiao; Glymour, M Maria; Rewak, Marissa; Cornelis, Marilyn C; Walter, Stefan; Koenen, Karestan C; Kawachi, Ichiro; Liang, Liming; Tchetgen Tchetgen, Eric J; Kubzansky, Laura D
2014-01-01
Some evidence suggests that genetic polymorphisms in oxytocin pathway genes influence various social behaviors, but findings thus far have been mixed. Many studies have been based in small samples and there is possibility of publication bias. Using data from 2 large U.S. prospective cohorts with over 11,000 individuals, we investigated 88 SNPs in OXTR, AVPR1A, and CD38, in relation to social integration (measured as social connectedness in both binary and continuous forms and being continuously married). After correction for multiple testing only one SNP in CD38 (rs12644506) was significantly associated with social integration and that SNP predicted when using a dichotomized indicator of social connectedness (adjusted p=0.02), but not a continuous measure of social connectedness or the continuously married outcome. A significant gender-heterogeneous effect was identified in one OXTR SNP on dichotomized social connectedness; specifically, rs4686302 T allele was nominally associated with social connectedness in men, whereas the association direction was opposite in women (adjusted gender heterogeneity p=0.02). Furthermore, the rs53576 A allele was significantly associated with social connectedness only in women, and the effect magnitude was stronger in a dominant genetic model (adjusted p=0.003). In summary, our findings suggested that common genetic variants of OXTR, CD38, and AVPR1A are not associated with social integration as measured in this study using the simplified Berkman-Syme Social Network Index, but these findings and other work hint that effects may be modified by gender or other social experiences. Further work considering genetic pathways in relation to social integration may be more fruitful if these additional factors can be more comprehensively evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chang, Shun-Chiao; Glymour, M Maria; Rewak, Marissa; Cornelis, Marilyn; Walter, Stefan; Koenen, Karestan C; Kawachi, Ichiro; Liang, Liming; Tchetgen, Eric Tchetgen; Kubzansky, Laura D.
2013-01-01
Some evidence suggests that genetic polymorphisms in oxytocin pathway genes influence various social behaviors, but findings thus far have been mixed. Many studies have been based in small samples and there is possibility of publication bias. Using data from 2 large U.S. prospective cohorts with over 11,000 individuals, we investigated 88 SNPs in OXTR, AVPR1A, and CD38, in relation to social integration (measured as social connectedness in both binary and continuous forms and being continuously married). After correction for multiple testing only one SNP in CD38 (rs12644506) was significantly associated with social integration and that SNP predicted when using a dichotomized indicator of social connectedness (adjusted p=0.02), but not a continuous measure of social connectedness or the continuously married outcome. A significant gender-heterogeneous effect was identified in one OXTR SNP on dichotomized social connectedness; specifically, rs4686302 T allele was nominally associated with social connectedness in men, whereas the association direction was opposite in women (adjusted gender heterogeneity p=0.02). Furthermore, the rs53576 A allele was significantly associated with social connectedness only in women, and the effect magnitude was stronger in a dominant genetic model (adjusted p=0.003). In summary, our findings suggested that common genetic variants of OXTR, CD38, and AVPR1A are not associated with social integration as measured in this study using the simplified Berkman-Syme Social Network Index, but these findings and other work hint that effects may be modified by gender or other social experiences. Further work considering genetic pathways in relation to social integration may be more fruitful if these additional factors can be more comprehensively evaluated. PMID:24209975
Sawicka, Monika; Bedini, Rossella; Wierzbicki, Piotr M; Pameijer, Cornelis H
2014-01-01
Root resorption is an undesirable but very frequently occurring sequel of orthodontic treatment. The aim of this study was to compare root resorption caused by either continuous (CF) or interrupted (IF) orthodontic force. The study was performed on human subjects on 30 first upper and lower premolars scheduled for extraction for orthodontic reasons. During four weeks before extraction 12 teeth were subjected to either CF or IF. The force was generated by a segmental titanium-molybdenum alloy cantilever spring that was activated in buccal direction. Initially a force of 60 CentiNewton was used in both CF and IF groups, the force in the former, however, was reactivated every week for 4 weeks. There was no reactivation of force in the IF group after initial application. A morphometric analysis of root resorption was performed by microcomputed tomography and the extent of tooth movement was measured on stone casts. Furthermore, a Tartarate-Resistant Acidic Phosphatase activity (TRAP), the marker enzyme of osteoclasts and cementoclasts, was determined by histochemical method. The Mann-Whitney U test was used to compare the difference in measured parameters between treatment and control tooth groups. The number of resorption craters was significantly higher and their average volume almost twice as large in the CF compared to the IF group (p < 0.05). However, the distance of tooth displacement was similar for both groups. Cementoclasts were detected with the TRAP technique on the surface of two teeth only; both were subjected to continuous force. The use of IF leads to less destruction of root structure as opposed to continuous force while the same tooth movement was achieved.
0.4 mJ quasi-continuously pumped picosecond Nd:GdVO4 laser with selectable pulse duration
NASA Astrophysics Data System (ADS)
Kubeček, V.; Jelínek, M.; Čech, M.; Hiršl, P.; Diels, J.-C.
2010-02-01
A quasi-continuously pumped picosecond oscillator-amplifier Nd:GdVO4 laser system based on two identical slabs in a single bounce geometry is reported. Pulse duration is from 160 to 55 ps resulting from the pulse shortening along the extended mode locked train from passively mode locked oscillator, which was measured directly from a single laser shot. The shortest 55 ps long cavity dumped single pulses from the oscillator with the energy of 15±1 μJ and the contrast better than 10-3 were amplified to the energy of 150 μJ with the contrast better than 10-3 after the single-pass amplification and to the energy of 400 μJ after the double-pass amplification.
Morrell, E D; Brown, B P; Qi, R; Drabiak, K; Helft, P R
2008-09-01
Since the passage of the Patient Self-Determination Act, numerous policy mandates and institutional measures have been implemented. It is unknown to what extent those measures have affected end-of-life care, particularly with regard to the do-not-resuscitate (DNR) order. Retrospective cohort study to assess associations of the frequency and timing of DNR orders with advance directive status, patient demographics, physician's specialty and extent of documentation of discussion on end-of-life care. DNR orders were more frequent for patients on a medical service than on a surgical service (77.34% vs 64.20%, p = 0.02) and were made earlier in the hospital stay for medicine than for surgical patients (adjusted mean ratio of time from DNR orders to death versus total length of stay 0.30 for internists vs 0.21 for surgeons, p = 0.04). 22.18% of all patients had some form of an advance directive in their chart, yet this variable had no impact on the frequency or timing of DNR ordering. Documentation of DNR discussion was significantly associated with the frequency of DNR orders and the time from DNR to death (2.1 days with no or minimal discussion vs 2.8 days with extensive discussion, p<0.01). The physician's specialty continues to have a significant impact on the frequency and timing of DNR orders, while advance directive status still has no measurable impact. Additionally, documentation of end-of-life discussions is significantly associated with varying DNR ordering rates and timing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Membership. 960.104 Section 960.104 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EXECUTIVE BOARDS § 960.104 Membership. (a) Presidential Directive. The President has directed the heads of agencies to arrange for the...
Measurements of humpback whale song sound levels received by a calf in association with a singer.
Chen, Jessica; Pack, Adam A; Au, Whitlow W L; Stimpert, Alison K
2016-11-01
Male humpback whales produce loud "songs" on the wintering grounds and some sing while escorting mother-calf pairs, exposing them to near-continuous sounds at close proximity. An Acousonde acoustic and movement recording tag deployed on a calf off Maui, Hawaii captured sounds produced by a singing male escort. Root-mean-square received levels ranged from 126 to 158 dB re 1 μPa. These levels represent rare direct measurements of sound to which a newly born humpback calf may be naturally exposed by a conspecific, and may provide a basis for informed decisions regarding anthropogenic sound levels projected near calves.
Triple-axis common-pivot arm wrist device for manipulative applications
NASA Technical Reports Server (NTRS)
Kersten, L.; Johnston, J. D.
1980-01-01
A concept in manipulator development to overcome the 'weak wrist syndrome', a triple-axis common-pivot arm wrist (TACPAW), is presented. It contains torque motors for actuation, tachometers for measuring rate, and resolvers for position measurements. Furthermore, it provides three degrees of freedom, i.e., pitch, yaw, and roll, in a single manipulator joint. The advantages of this development are increased strength, compactness, and simplification of controls. Designed to be compatible with the protoflight manipulator arm, the joints of TACPAW are back-driveable with + or - 45 deg rotation in pitch, + or - 45 deg in yaw and continuous roll in either direction while delivering 20.5 N-m (15 ft-lb) torque in each of the three movements.
Imaging Systems Provide Maps for U.S. Soldiers
NASA Technical Reports Server (NTRS)
2012-01-01
Spanning nearly four decades, the remarkable Landsat program has continuously provided data about the Earth s surface, including detailed maps of vegetation, land use, forest extent and health, surface water, population distribution, as well as how these features have changed over time. Managed by NASA and the U.S. Geological Survey, Landsat s series of satellites obtain data through passive remote sensing, or the use of sensors to read the energy reflected or emitted from the Earth s surface. After the data from the sensors is processed and analyzed, it can be applied to create information-rich images of the planet. While the Landsat program has launched seven satellites since 1972, only Landsat 5 and 7 are currently operating. The next spacecraft in line to ensure continuity of data for years to come is the Landsat Data Continuity Mission (LDCM). Planned for launch in 2012, LDCM will take measurements of the Earth in visible, nearinfrared, shortwave infrared, and thermal infrared bands. In addition to widespread use for land use planning and monitoring on local to regional scales, support for disaster response and evaluations, as well as water use monitoring, LDCM measurements will directly serve NASA s research in the areas of climate, the carbon cycle, ecosystems, the water cycle, biogeochemistry, and Earth s surface and interior.
Reconfigurable dual-band metamaterial antenna based on liquid crystals
NASA Astrophysics Data System (ADS)
Che, Bang-Jun; Meng, Fan-Yi; Lyu, Yue-Long; Wu, Qun
2018-05-01
In this paper, a novel reconfigurable dual-band metamaterial antenna with a continuous beam that is electrically steered in backward to forward directions is first proposed by employing a liquid crystal (LC)-loaded tunable extended composite right-/left-handed (E-CRLH) transmission line (TL). The frequency-dependent property of the E-CRLH TL is analyzed and a compact unit cell based on the nematic LC is proposed to realize the tunable dual band characteristics. The phase constant of the proposed unit cell can be dynamically continuously tuned from negative to positive values in two operating bands by changing the bias voltage of the loaded LC material. A resulting dual band fixed-frequency beam steering property has been predicted by numerical simulations and experimentally verified. The measured results show that the fabricated reconfigurable antenna features an electrically controlled continuous beam steering from backward ‑16° to forward +13° at 7.2 GHz and backward ‑9° to forward +17° at 9.4 GHz, respectively. This electrically controlled beam steering range turns out to be competitive with the previously reported single band reconfigurable antennas. Besides, the measured and simulated results of the proposed reconfigurable dual-band metamaterial antenna are in good agreement.
A simple technique for continuous measurement of time-variable gas transfer in surface waters
Tobias, Craig R.; Bohlke, John Karl; Harvey, Judson W.; Busenberg, Eurybiades
2009-01-01
Mass balance models of dissolved gases in streams, lakes, and rivers serve as the basis for estimating wholeecosystem rates for various biogeochemical processes. Rates of gas exchange between water and the atmosphere are important and error-prone components of these models. Here we present a simple and efficient modification of the SF6 gas tracer approach that can be used concurrently while collecting other dissolved gas samples for dissolved gas mass balance studies in streams. It consists of continuously metering SF6-saturated water directly into the stream at a low rate of flow. This approach has advantages over pulse injection of aqueous solutions or bubbling large amounts of SF6 into the stream. By adding the SF6 as a saturated solution, we minimize the possibility that other dissolved gas measurements are affected by sparging and/or bubble injecta. Because the SF6 is added continuously we have a record of changing gas transfer velocity (GTV) that is contemporaneous with the sampling of other nonconservative ambient dissolved gases. Over a single diel period, a 30% variation in GTV was observed in a second-order stream (Sugar Creek, Indiana, USA). The changing GTV could be attributed in part to changes in temperature and windspeed that occurred on hourly to diel timescales.
Dunthorn, Jason; Dyer, Robert M; Neerchal, Nagaraj K; McHenry, Jonathan S; Rajkondawar, Parimal G; Steingraber, Gary; Tasch, Uri
2015-11-01
Lameness remains a significant cause of production losses, a growing welfare concern and may be a greater economic burden than clinical mastitis . A growing need for accurate, continuous automated detection systems continues because US prevalence of lameness is 12.5% while individual herds may experience prevalence's of 27.8-50.8%. To that end the first force-plate system restricted to the vertical dimension identified lame cows with 85% specificity and 52% sensitivity. These results lead to the hypothesis that addition of transverse and longitudinal dimensions could improve sensitivity of lameness detection. To address the hypothesis we upgraded the original force plate system to measure ground reaction forces (GRFs) across three directions. GRFs and locomotion scores were generated from randomly selected cows and logistic regression was used to develop a model that characterised relationships of locomotion scores to the GRFs. This preliminary study showed 76 variables across 3 dimensions produced a model with greater than 90% sensitivity, specificity, and area under the receiver operating curve (AUC). The result was a marked improvement on the 52% sensitivity, and 85% specificity previously observed with the 1 dimensional model or the 45% sensitivities reported with visual observations. Validation of model accuracy continues with the goal to finalise accurate automated methods of lameness detection.
NASA Astrophysics Data System (ADS)
Siebicke, Lukas
2017-04-01
The eddy covariance (EC) method is state-of-the-art in directly measuring vegetation-atmosphere exchange of CO2 and H2O at ecosystem scale. However, the EC method is currently limited to a small number of atmospheric tracers by the lack of suitable fast-response analyzers or poor signal-to-noise ratios. High resource and power demands may further restrict the number of spatial sampling points. True eddy accumulation (TEA) is an alternative method for direct and continuous flux observations. Key advantages are the applicability to a wider range of air constituents such as greenhouse gases, isotopes, volatile organic compounds and aerosols using slow-response analyzers. In contrast to relaxed eddy accumulation (REA), true eddy accumulation (Desjardins, 1977) has the advantage of being a direct method which does not require proxies. True Eddy Accumulation has the potential to overcome above mentioned limitations of eddy covariance but has hardly ever been successfully demonstrated in practice in the past. This study presents flux measurements using an innovative approach to true eddy accumulation by directly, continuously and automatically measuring trace gas fluxes using a flow-through system. We merge high-frequency flux contributions from TEA with low-frequency covariances from the same sensors. We show flux measurements of CO2, CH4 and H2O by TEA and EC above an old-growth forest at the ICOS flux tower site "Hainich" (DE-Hai). We compare and evaluate the performance of the two direct turbulent flux measurement methods eddy covariance and true eddy accumulation using side-by-side trace gas flux observations. We further compare performance of seven instrument complexes, i.e. combinations of sonic anemometers and trace gas analyzers. We compare gas analyzers types of open-path, enclosed-path and closed-path design. We further differentiate data from two gas analysis technologies: infrared gas analysis (IRGA) and laser spectrometry (open path and CRDS closed-path laser spectrometers). We present results of CO2 and H2O fluxes from the following six instruments, i.e. combinations of sonic anemometers/gas analyzers (and methods): METEK-uSonic3/Picarro-G2301 (TEA), METEK-uSonic3/LI-7500 (EC), Gill-R3/LI-6262 (EC), Gill-R3/LI-7200 (EC), Gill-HS/LI-7200 (EC), Gill-R3/LGR-FGGA (EC). Further, we present results of much more difficult to measure CH4 fluxes from the following three instruments, i.e. combinations of sonic anemometers/gas analyzers (and methods): METEK-uSonic3/Picarro-G2301 (TEA), Gill-R3/LI-7700 (EC), Gill-R3/LGR-FGGA (EC). We observed that CO2, CH4 and H2O fluxes from the side-by-side measurements by true eddy accumulation and eddy covariance methods correlated well. Secondly, the difference between the TEA and EC methods using the same sonic anemometer but different gas analyzer was often smaller than the mismatch of the various side-by-side eddy covariance measurements using different sonic anemometers and gas analyzers. Signal-to-noise ratios of CH4 fluxes from the true eddy accumulation system system were superior to both eddy covariance sensors (open-path LI-7700 and closed-path CRDS LGR-FGGA sensors). We conclude that our novel implementation of the true eddy accumulation method demonstrated high signal-to-noise ratios, applicability to slow-response gas analyzers, small power consumption and direct proxy-free ecosystem-scale trace gas flux measurements of CO2, CH4 and H2O. The current results suggest that true eddy accumulation would be suitable and should be applied as the method-of-choice for direct flux measurements of a large number of atmospheric constituents beyond CO2 and H2O, including isotopes, aerosols, volatile organic compounds and other trace gases for which eddy covariance might not be a viable alternative. We will further develop true eddy accumulation as a novel approach using multiplexed systems for spatially distributed flux measurements.
Direct Detection of C_2H_2 in Air and Human Breath by Cw-Crds
NASA Astrophysics Data System (ADS)
Schmidt, Florian M.; Vaittinen, Olavi; Metsälä, Markus; Halonen, Lauri
2010-06-01
Continuous wave cavity ring-down spectroscopy (cw-CRDS) is an established cavity-enhanced absorption technique that can provide the necessary sensitivity, selectivity and fast acquisition time for many applications involving the detection of trace species. We present a simple but highly sensitive cw-CRDS spectrometer based on an external cavity diode laser operating in the near-infrared region. This instrument allows us to directly detect acetylene (C_2H_2) mixing ratios in air with a detection limit of 120 parts per trillion by volume (pptv) measuring on a C_2H_2 absorption line at 6565.620 cm-1. Acetylene is a combustion product that is routinely used in environmental monitoring as a marker for anthropogenic emissions. In a recent work, the spectrometer was employed to measure the level of acetylene in indoor and outdoor air in Helsinki. Continuous flow measurements with high time resolution (one minute) revealed strong fluctuations in the acetylene mixing ratio in outdoor air during daytime. Due to its non-invasive nature and fast response time, the analysis of exhaled breath for medical diagnostics is an excellent and straightforward alternative to methods using urine or blood samples. In an ongoing study, the cw-CRDS instrument is used to establish the baseline level of acetylene in the breath of the healthy population. An elevated amount of acetylene in breath could indicate exposure to combustion exhausts or other volatile organic compound (VOC) rich sources. The latest results of this investigation will be presented. F. M. Schmidt, O. Vaittinen, M. Metsälä, P. Kraus and L. Halonen, submitted for publication in Appl. Phys. B.
Organizational interventions in response to duty hour reforms
2014-01-01
Background Changes in resident duty hours in Europe and North America have had a major impact on the internal organizational dynamics of health care organizations. This paper examines, and assesses the impact of, organizational interventions that were a direct response to these duty hour reforms. Methods The academic literature was searched through the SCOPUS database using the search terms “resident duty hours” and “European Working Time Directive,” together with terms related to organizational factors. The search was limited to English-language literature published between January 2003 and January 2012. Studies were included if they reported an organizational intervention and measured an organizational outcome. Results Twenty-five articles were included from the United States (n = 18), the United Kingdom (n = 5), Hong Kong (n = 1), and Australia (n = 1). They all described single-site projects; the majority used post-intervention surveys (n = 15) and audit techniques (n = 4). The studies assessed organizational measures, including relationships among staff, work satisfaction, continuity of care, workflow, compliance, workload, and cost. Interventions included using new technologies to improve handovers and communications, changing staff mixes, and introducing new shift structures, all of which had varying effects on the organizational measures listed previously. Conclusions Little research has assessed the organizational impact of duty hour reforms; however, the literature reviewed demonstrates that many organizations are using new technologies, new personnel, and revised and innovative shift structures to compensate for reduced resident coverage and to decrease the risk of limited continuity of care. Future research in this area should focus on both micro (e.g., use of technology, shift changes, staff mix) and macro (e.g., culture, leadership support) organizational aspects to aid in our understanding of how best to respond to these duty hour reforms. PMID:25558915
Ishman, Stacey L; Benke, James R; Johnson, Kaalan Erik; Zur, Karen B; Jacobs, Ian N; Thorne, Marc C; Brown, David J; Lin, Sandra Y; Bhatti, Nasir; Deutsch, Ellen S
2012-10-01
OBJECTIVES To confirm interrater reliability using blinded evaluation of a skills-assessment instrument to assess the surgical performance of resident and fellow trainees performing pediatric direct laryngoscopy and rigid bronchoscopy in simulated models. DESIGN Prospective, paired, blinded observational validation study. SUBJECTS Paired observers from multiple institutions simultaneously evaluated residents and fellows who were performing surgery in an animal laboratory or using high-fidelity manikins. The evaluators had no previous affiliation with the residents and fellows and did not know their year of training. INTERVENTIONS One- and 2-page versions of an objective structured assessment of technical skills (OSATS) assessment instrument composed of global and a task-specific surgical items were used to evaluate surgical performance. RESULTS Fifty-two evaluations were completed by 17 attending evaluators. The instrument agreement for the 2-page assessment was 71.4% when measured as a binary variable (ie, competent vs not competent) (κ = 0.38; P = .08). Evaluation as a continuous variable revealed a 42.9% percentage agreement (κ = 0.18; P = .14). The intraclass correlation was 0.53, considered substantial/good interrater reliability (69% reliable). For the 1-page instrument, agreement was 77.4% when measured as a binary variable (κ = 0.53, P = .0015). Agreement when evaluated as a continuous measure was 71.0% (κ = 0.54, P < .001). The intraclass correlation was 0.73, considered high interrater reliability (85% reliable). CONCLUSIONS The OSATS assessment instrument is an effective tool for evaluating surgical performance among trainees with acceptable interrater reliability in a simulator setting. Reliability was good for both the 1- and 2-page OSATS checklists, and both serve as excellent tools to provide immediate formative feedback on operational competency.
Campbell, Gossett A; Mutharasan, Raj
2006-04-01
In this paper, we describe a new modality of measuring human serum albumin (HSA) adsorption continuously on CH3-, COOH-, and OH-terminated self-assembled monolayers (SAMs) of C11-alkanethiols and the direct quantification of the adsorbed amount. A gold-coated piezoelectric-excited millimeter-sized cantilever (PEMC) sensor of 6-mm2 sensing area was fabricated, where resonant frequency decreases upon mass increase. The resonant frequency in air of the detection peak was 45.5 +/- 0.01 kHz. SAMs of C11-thiols (in absolute ethanol) with different end groups was prepared on the PEMC sensor and then exposed to buffer solution containing HSA at 10 microg/mL. The resonant frequency decreased exponentially and reached a steady-state value within 30 min. The decrease in resonant frequency indicates that the mass of the sensor increased due to HSA adsorption onto the SAM layer. The frequency change obtained for the HSA adsorption on CH3-, COOH-, and OH-terminated SAM were 520.8 +/- 8.6 (n = 3), 290.4 +/- 6.1 (n = 2), and 210.6 +/- 8.1 Hz (n = 3), respectively. These results confirm prior conclusions that albumin adsorption decreased in the order, CH(3) > COOH > OH. Observed binding rate constants were 0.163 +/- 0.003, 0.248 +/- 0.006, and 0.381 +/- 0.001 min(-1), for methyl, carboxylic, and hydroxyl end groups, respectively. The significance of the results reported here is that both the formation of self-assembled monolayers and adsorption of serum protein onto the formed layer can be measured continuously, and quantification of the adsorbed amount can be determined directly.
Organizational interventions in response to duty hour reforms.
Law, Madelyn P; Orlando, Elaina; Baker, G Ross
2014-01-01
Changes in resident duty hours in Europe and North America have had a major impact on the internal organizational dynamics of health care organizations. This paper examines, and assesses the impact of, organizational interventions that were a direct response to these duty hour reforms. The academic literature was searched through the SCOPUS database using the search terms "resident duty hours" and "European Working Time Directive," together with terms related to organizational factors. The search was limited to English-language literature published between January 2003 and January 2012. Studies were included if they reported an organizational intervention and measured an organizational outcome. Twenty-five articles were included from the United States (n=18), the United Kingdom (n=5), Hong Kong (n=1), and Australia (n=1). They all described single-site projects; the majority used post-intervention surveys (n=15) and audit techniques (n=4). The studies assessed organizational measures, including relationships among staff, work satisfaction, continuity of care, workflow, compliance, workload, and cost. Interventions included using new technologies to improve handovers and communications, changing staff mixes, and introducing new shift structures, all of which had varying effects on the organizational measures listed previously. Little research has assessed the organizational impact of duty hour reforms; however, the literature reviewed demonstrates that many organizations are using new technologies, new personnel, and revised and innovative shift structures to compensate for reduced resident coverage and to decrease the risk of limited continuity of care. Future research in this area should focus on both micro (e.g., use of technology, shift changes, staff mix) and macro (e.g., culture, leadership support) organizational aspects to aid in our understanding of how best to respond to these duty hour reforms.