Sample records for direct conversion si

  1. Method for enhancing growth of SiO.sub.2 in Si by the implantation of germanium

    DOEpatents

    Holland, Orin W.; Fathy, Dariush; White, Clark W.

    1990-04-24

    A method for enhancing the conversion of Si to SiO.sub.2 in a directional fashion wherein steam or wet oxidation of Si is enhanced by the prior implantation of Ge into the Si. The unique advantages of the Ge impurity include the directional enhancement of oxidation and the reduction in thermal budget, while at the same time, Ge is an electrically inactive impurity.

  2. Influence of the anisotropy on the performance of D-band SiC IMPATT diodes

    NASA Astrophysics Data System (ADS)

    Chen, Qing; Yang, Lin'an; Wang, Shulong; Zhang, Yue; Dai, Yang; Hao, Yue

    2015-03-01

    Numerical simulation has been made to predict the RF performance of <0001> direction and <> direction p+/n/n-/n+ (single drift region) 4H silicon carbide (4H-SiC) impact-ionization-avalanche-transit-time (IMPATT) diodes for operation at D-band frequencies. We observed that the output performance of 4H-SiC IMPATT diode is sensitive to the crystal direction of the one-dimensional current flow. The simulation results show that <0001> direction 4H-SiC IMPATT diode provides larger breakdown voltage for its lower electron and hole ionization rates and higher dc-to-rf conversion efficiency (η) for its higher ratio of drift zone voltage drop (VD) to breakdown voltage (VB) compared with those for <> direction 4H-SiC IMPATT diode, which lead to higher-millimeter-wave power output for <0001> direction 4H-SiC IMPATT compared to <> direction. However, the quality factor Q for the <> direction 4H-SiC IMPATT diode is lower than that of <0001> direction, which implies that the <> direction 4H-SiC IMPATT diode exhibits better stability and higher growth rate of microwave oscillation compared with <0001> direction 4H-SiC IMPATT diode.

  3. Effect of the SiO2 Support on the Catalytic Performance of Ag/ZrO2/SiO2 Catalysts for the Single-Bed Production of Butadiene from Ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, Vanessa; Flake, Matthew D.; Lemmon, Teresa

    2018-05-18

    A ternary Ag/ZrO2/SiO2 catalyst system was studied for the single-step conversion of ethanol to butadiene by varying the catalyst composition (Ag, Ir, or Pt metal component, Ag/ZrO2 loading, and choice of SiO2 support) and operating conditions (space velocity and feed gas composition). Exceptional catalytic performance was achieved over a 1%Ag/4%ZrO2/SiO2-SBA-16 catalyst leading to 99% conversion and 71% butadiene selectivity while operating under mild conditions (325ºC, 1 atm, 0.23 hr-1). Several classes of silica (i.e., silica gels, fumed silicas, meoporous silicas) were evaluated as support, and SBA-16 was found to be the most promising. The nature of the SiO2 support wasmore » found to have a strong influence on both conversion and selectivity. Higher SiO2 catalyst surface areas lead to greater conversion due to increased Ag dispersion thus accelerating the initial ethanol dehydrogenation reaction. By independently varying Ag and ZrO2 loading, Ag was found to be the main component affecting ethanol conversion. Butadiene selectivity varied depending on the concentration of ZrO2 and acidic characteristics of the SiO2 support. A direct relationship between butadiene selectivity and concentration of Lewis acid sites was evidenced. Also, adding H2 to the feed had little effect on conversion while improving catalytic stability, however, selectivity to butadiene was decreased. Finally, catalyst regenerability was successfully demonstrated for several cycles.« less

  4. Effect of the SiO 2 support on the catalytic performance of Ag/ZrO 2 /SiO 2 catalysts for the single-bed production of butadiene from ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, Vanessa Lebarbier; Flake, Matthew D.; Lemmon, Teresa L.

    A ternary Ag/ZrO2/SiO2 catalyst system was studied for the single-step conversion of ethanol to butadiene by varying the catalyst composition (Ag, Ir, or Pt metal component, Ag/ZrO2 loading, and choice of SiO2 support) and operating conditions (space velocity and feed gas composition). Exceptional catalytic performance was achieved over a 1%Ag/4%ZrO2/SiO2-SBA-16 catalyst leading to 99% conversion and 71% butadiene selectivity while operating under mild conditions (325ºC, 1 atm, 0.23 hr-1). Several classes of silica (i.e., silica gels, fumed silicas, meoporous silicas) were evaluated as support, and SBA-16 was found to be the most promising. The nature of the SiO2 support wasmore » found to have a strong influence on both conversion and selectivity. Higher SiO2 catalyst surface areas lead to greater conversion due to increased Ag dispersion thus accelerating the initial ethanol dehydrogenation reaction. By independently varying Ag and ZrO2 loading, Ag was found to be the main component affecting ethanol conversion. Butadiene selectivity varied depending on the concentration of ZrO2 and acidic characteristics of the SiO2 support. A direct relationship between butadiene selectivity and concentration of Lewis acid sites was evidenced. Also, adding H2 to the feed had little effect on conversion while improving catalytic stability, however, selectivity to butadiene was decreased. Finally, catalyst regenerability was successfully demonstrated for several cycles.« less

  5. Effect of the SiO 2 support on the catalytic performance of Ag/ZrO 2/SiO 2 catalysts for the single-bed production of butadiene from ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, Vanessa Lebarbier; Flake, Matthew D.; Lemmon, Teresa L.

    A ternary Ag/ZrO 2/SiO 2 catalyst system was studied for single-step conversion of ethanol to butadiene by varying the catalyst composition (Ag, Ir, or Pt metal component, Ag/ZrO 2 loading, and choice of SiO 2 support) and operating conditions (space velocity and feed gas composition). Exceptional catalytic performance was achieved over a 1%Ag/4%ZrO 2/SiO 2-SBA-16 catalyst leading to 99% conversion and 71% butadiene selectivity while operating under mild conditions (325°C, 1 atm, and 0.23 h –1). Several classes of silica—silica gels, fumed silicas, mesoporous silicas)—were evaluated as catalyst supports, and SBA-16 was found to be the most promising choice. Themore » SiO 2 support was found to significantly influence both conversion and selectivity. A higher SiO 2 catalyst surface area facilitates increased Ag dispersion which leads to greater conversion due to the accelerated initial ethanol dehydrogenation reaction step. By independently varying Ag and ZrO 2 loading, Ag was found to be the main component that affects ethanol conversion. ZrO 2 loading and thus Lewis acid sites concentration was found to have little impact on the ethanol conversion. Butadiene selectivity depends on the concentration of Lewis acid site, which in turn differs depending on the choice of SiO 2 support material. We observed a direct relationship between butadiene selectivity and concentration of Lewis acid sites. Butadiene selectivity decreases as the concentration of Lewis acid sites increases, which corresponds to an increase in ethanol dehydration to ethylene and diethyl ether. Additionally, adding H 2 to the feed had little effect on conversion while improving catalytic stability; however, selectivity to butadiene decreased. Lastly, catalyst regenerability was successfully demonstrated for several cycles.« less

  6. Effect of the SiO 2 support on the catalytic performance of Ag/ZrO 2/SiO 2 catalysts for the single-bed production of butadiene from ethanol

    DOE PAGES

    Dagle, Vanessa Lebarbier; Flake, Matthew D.; Lemmon, Teresa L.; ...

    2018-05-19

    A ternary Ag/ZrO 2/SiO 2 catalyst system was studied for single-step conversion of ethanol to butadiene by varying the catalyst composition (Ag, Ir, or Pt metal component, Ag/ZrO 2 loading, and choice of SiO 2 support) and operating conditions (space velocity and feed gas composition). Exceptional catalytic performance was achieved over a 1%Ag/4%ZrO 2/SiO 2-SBA-16 catalyst leading to 99% conversion and 71% butadiene selectivity while operating under mild conditions (325°C, 1 atm, and 0.23 h –1). Several classes of silica—silica gels, fumed silicas, mesoporous silicas)—were evaluated as catalyst supports, and SBA-16 was found to be the most promising choice. Themore » SiO 2 support was found to significantly influence both conversion and selectivity. A higher SiO 2 catalyst surface area facilitates increased Ag dispersion which leads to greater conversion due to the accelerated initial ethanol dehydrogenation reaction step. By independently varying Ag and ZrO 2 loading, Ag was found to be the main component that affects ethanol conversion. ZrO 2 loading and thus Lewis acid sites concentration was found to have little impact on the ethanol conversion. Butadiene selectivity depends on the concentration of Lewis acid site, which in turn differs depending on the choice of SiO 2 support material. We observed a direct relationship between butadiene selectivity and concentration of Lewis acid sites. Butadiene selectivity decreases as the concentration of Lewis acid sites increases, which corresponds to an increase in ethanol dehydration to ethylene and diethyl ether. Additionally, adding H 2 to the feed had little effect on conversion while improving catalytic stability; however, selectivity to butadiene decreased. Lastly, catalyst regenerability was successfully demonstrated for several cycles.« less

  7. Segmented SiGe-PbTe couples

    NASA Technical Reports Server (NTRS)

    Eggers, P. E.; Mueller, J. J.

    1969-01-01

    New design of segmented couples incorporates an intermediate junction contacted by pressure, and eliminates transition members that bond materials differing in thermal expansion. Development of a reproducible and reliable intermediate junction between PbTe and SiGe will be applicable to direct conversion of energy.

  8. Glide of threading edge dislocations after basal plane dislocation conversion during 4H-SiC epitaxial growth

    NASA Astrophysics Data System (ADS)

    Abadier, Mina; Song, Haizheng; Sudarshan, Tangali S.; Picard, Yoosuf N.; Skowronski, Marek

    2015-05-01

    Transmission electron microscopy (TEM) and KOH etching were used to analyze the motion of dislocations after the conversion of basal plane dislocations (BPDs) to threading edge dislocations (TEDs) during 4H-SiC epitaxy. The locations of TED etch pits on the epilayer surface were shifted compared to the original locations of BPD etch pits on the substrate surface. The shift of the TED etch pits was mostly along the BPD line directions towards the up-step direction. For converted screw type BPDs, the conversion points were located below the substrate/epilayer interface. The shift distances in the step-flow direction were proportional to the depths of the BPD-TED conversion points below the substrate/epilayer interface. For converted mixed type BPDs, the conversion points were exactly at the interface. Through TEM analysis, it was concluded that the dislocation shift is caused by a combined effect of H2 etching prior to growth and glide of the threading segments during high temperature epitaxy. The TED glide is only possible for converted pure screw type BPDs and could present a viable means for eliminating BPDs from the epilayer during growth by moving the conversion point below the substrate/epilayer interface.

  9. Construction and characterization of spherical Si solar cells combined with SiC electric power inverter

    NASA Astrophysics Data System (ADS)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2015-02-01

    Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.

  10. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode.

    PubMed

    Davids, Paul S; Jarecki, Robert L; Starbuck, Andrew; Burckel, D Bruce; Kadlec, Emil A; Ribaudo, Troy; Shaner, Eric A; Peters, David W

    2015-12-01

    Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated. Scaling to the infrared or optical part of the spectrum requires ultrafast rectification that can only be obtained by direct tunnelling. Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement. Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region. Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon-phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal-oxide-semiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband blackbody and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mA W(-1) cm(-2) at -0.1 V.

  11. Epitaxial Ge Solar Cells Directly Grown on Si (001) by MOCVD Using Isobutylgermane

    NASA Astrophysics Data System (ADS)

    Kim, Youngjo; Kim, Kangho; Lee, Jaejin; Kim, Chang Zoo; Kang, Ho Kwan; Park, Won-Kyu

    2018-03-01

    Epitaxial Ge layers have been grown on Si (001) substrates by metalorganic chemical vapor deposition (MOCVD) using an isobutylgermane (IBuGe) metalorganic source. Low and high temperature two-step growth and post annealing techniques are employed to overcome the lattice mismatch problem between Ge and Si. It is demonstrated that high quality Ge epitaxial layers can be grown on Si (001) by using IBuGe with surface RMS roughness of 2 nm and an estimated threading dislocation density of 4.9 × 107 cm -2. Furthermore, single-junction Ge solar cells have been directly grown on Si substrates with an in situ MOCVD growth. The epitaxial Ge p- n junction structures are investigated with transmission electron microscopy and electrochemical C- V measurements. As a result, a power conversion efficiency of 1.69% was achieved for the Ge solar cell directly grown on Si substrate under AM1.5G condition.

  12. Applications of novel effects derived from Si ingot growth inside Si melt without contact with crucible wall using noncontact crucible method to high-efficiency solar cells

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuo; Ono, Satoshi; Kaneko, Yuzuru; Murai, Ryota; Shirasawa, Katsuhiko; Fukuda, Tetsuo; Takato, Hidetaka; Jensen, Mallory A.; Youssef, Amanda; Looney, Erin E.; Buonassisi, Tonio; Martel, Benoit; Dubois, Sèbastien; Jouini, Anis

    2017-06-01

    The noncontact crucible (NOC) method was proposed for obtaining Si single bulk crystals with a large diameter and volume using a cast furnace and solar cells with high conversion efficiency and yield. This method has several novel characteristics that originate from its key feature that ingots can be grown inside a Si melt without contact with a crucible wall. Si ingots for solar cells were grown by utilizing the merits resulting from these characteristics. Single ingots with high quality were grown by the NOC method after furnace cleaning, and the minority carrier lifetime was measured to investigate reduction of the number of impurities. A p-type ingot with a convex growth interface in the growth direction was also grown after furnace cleaning. For p-type solar cells prepared using wafers cut from the ingot, the highest and average conversion efficiencies were 19.14% and 19.0%, respectively, which were obtained using the same solar cell structure and process as those employed to obtain a conversion efficiency of 19.1% for a p-type Czochralski (CZ) wafer. Using the cast furnace, solar cells with a conversion efficiency and yield as high as those of CZ solar cells were obtained by the NOC method.

  13. Construction and evaluation of photovoltaic power generation and power storage system using SiC field-effect transistor inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oku, Takeo, E-mail: oku@mat.usp.ac.jp; Matsumoto, Taisuke; Ohishi, Yuya

    A power storage system using spherical silicon (Si) solar cells, maximum power point tracking charge controller, lithium-ion battery and a direct current-alternating current (DC-AC) inverter was constructed. Performance evaluation of the DC-AC inverter was carried out, and the DC-AC conversion efficiencies of the SiC field-effect transistor (FET) inverter was improved compared with those of the ordinary Si-FET based inverter.

  14. Proposal of a neutron transmutation doping facility for n-type spherical silicon solar cell at high-temperature engineering test reactor.

    PubMed

    Ho, Hai Quan; Honda, Yuki; Motoyama, Mizuki; Hamamoto, Shimpei; Ishii, Toshiaki; Ishitsuka, Etsuo

    2018-05-01

    The p-type spherical silicon solar cell is a candidate for future solar energy with low fabrication cost, however, its conversion efficiency is only about 10%. The conversion efficiency of a silicon solar cell can be increased by using n-type silicon semiconductor as a substrate. This study proposed a new method of neutron transmutation doping silicon (NTD-Si) for producing the n-type spherical solar cell, in which the Si-particles are irradiated directly instead of the cylinder Si-ingot as in the conventional NTD-Si. By using a 'screw', an identical resistivity could be achieved for the Si-particles without a complicated procedure as in the NTD with Si-ingot. Also, the reactivity and neutron flux swing could be kept to a minimum because of the continuous irradiation of the Si-particles. A high temperature engineering test reactor (HTTR), which is located in Japan, was used as a reference reactor in this study. Neutronic calculations showed that the HTTR has a capability to produce about 40t/EFPY of 10Ωcm resistivity Si-particles for fabrication of the n-type spherical solar cell. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. MnTiO3-driven low-temperature oxidative coupling of methane over TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst

    PubMed Central

    Wang, Pengwei; Zhao, Guofeng; Wang, Yu; Lu, Yong

    2017-01-01

    Oxidative coupling of methane (OCM) is a promising method for the direct conversion of methane to ethene and ethane (C2 products). Among the catalysts reported previously, Mn2O3-Na2WO4/SiO2 showed the highest conversion and selectivity, but only at 800° to 900°C, which represents a substantial challenge for commercialization. We report a TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst by using Ti-MWW zeolite as TiO2 dopant as well as SiO2 support, enabling OCM with 26% conversion and 76% C2-C3 selectivity at 720°C because of MnTiO3 formation. MnTiO3 triggers the low-temperature Mn2+↔Mn3+ cycle for O2 activation while working synergistically with Na2WO4 to selectively convert methane to C2-C3. We also prepared a practical Mn2O3-TiO2-Na2WO4/SiO2 catalyst in a ball mill. This catalyst can be transformed in situ into MnTiO3-Na2WO4/SiO2, yielding 22% conversion and 62% selectivity at 650°C. Our results will stimulate attempts to understand more fully the chemistry of MnTiO3-governed low-temperature activity, which might lead to commercial exploitation of a low-temperature OCM process. PMID:28630917

  16. Study on Production of Silicon Nanoparticles from Quartz Sand for Hybrid Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Arunmetha, S.; Vinoth, M.; Srither, S. R.; Karthik, A.; Sridharpanday, M.; Suriyaprabha, R.; Manivasakan, P.; Rajendran, V.

    2018-01-01

    Nano silicon (nano Si) particles were directly prepared from natural mineral quartz sand and thereafter used to fabricate the hybrid silicon solar cells. Here, in this preparation technique, two process stages were involved. In the first stage, the alkaline extraction and acid precipitation processes were applied on quartz sand to fetch silica nanoparticles. In the second stage, magnesiothermic and modified magnesiothermic reduction reactions were applied on nano silica particles to prepare nano Si particles. The effect of two distinct reduction methodologies on nano Si particle preparation was compared. The magnesiothermic and modified magnesiothermic reductions in the silica to silicon conversion process were studied with the help of x-ray diffraction (XRD) with intent to study the phase changes during the reduction reaction as well as its crystalline nature in the pure silicon phase. The particles consist of a combination of fine particles with spherical morphology. In addition to this, the optical study indicated an increase in visible light absorption and also increases the performance of the solar cell. The obtained nano Si particles were used as an active layer to fabricate the hybrid solar cells (HSCs). The obtained results confirmed that the power conversion efficiency (PCE) of the magnesiothermically modified nano Si cells (1.06%) is much higher as compared to the nano Si cells that underwent magnesiothermic reduction (1.02%). Thus, this confirms the increased PCE of the investigated nano Si solar cell up to 1.06%. It also revealed that nano Si behaved as an electron acceptor and transport material. The present study provided valuable insights and direction for the preparation of nano Si particles from quartz sand, including the influence of process methods. The prepared nano Si particles can be utilized for HSCs and an array of portable electronic devices.

  17. High photon-to-heat conversion efficiency in the wavelength region of 250–1200 nm based on a thermoelectric Bi2Te3 film structure

    PubMed Central

    Hu, Er-Tao; Yao, Yuan; Zang, Kai-Yan; Liu, Xin-Xing; Jiang, An-Qing; Zheng, Jia-Jin; Yu, Ke-Han; Wei, Wei; Zheng, Yu-Xiang; Zhang, Rong-Jun; Wang, Song-You; Zhao, Hai-Bin; Yoshie, Osamu; Lee, Young-Pak; Wang, Cai-Zhuang; Lynch, David W.; Guo, Jun-Peng; Chen, Liang-Yao

    2017-01-01

    In this work, 4-layered SiO2/Bi2Te3/SiO2/Cu film structures were designed and fabricated and the optical properties investigated in the wavelength region of 250–1200 nm for their promising applications for direct solar-thermal-electric conversion. A typical 4-layered film sample with the structure SiO2 (66.6 nm)/Bi2Te3 (7.0 nm)/SiO2 (67.0 nm)/Cu (>100.0 nm) was deposited on a Si or K9-glass substrate by magnetron sputtering. The experimental results agree well with the simulated ones showing an average optical absorption of 96.5%, except in the shorter wavelength region, 250–500 nm, which demonstrates the superior absorption property of the 4-layered film due to the randomly rough surface of the Cu layer resulting from the higher deposition power. The high reflectance of the film structure in the long wavelength region of 2–20 μm will result in a low thermal emittance, 0.064 at 600 K. The simpler 4-layered structure with the thermoelectric Bi2Te3 used as the absorption layer may provide a straightforward way to obtain solar-thermal-electric conversion more efficiently through future study. PMID:28300178

  18. Direct-Write Fabrication of Cellulose Nano-Structures via Focused Electron Beam Induced Nanosynthesis

    PubMed Central

    Ganner, Thomas; Sattelkow, Jürgen; Rumpf, Bernhard; Eibinger, Manuel; Reishofer, David; Winkler, Robert; Nidetzky, Bernd; Spirk, Stefan; Plank, Harald

    2016-01-01

    In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution. PMID:27585861

  19. Silicon Carbide Nanotube Oxidation at High Temperatures

    NASA Technical Reports Server (NTRS)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  20. Room-temperature giant magneto-mechanical-electric cross-coupling in Si-integrated PbZr0.52Ti0.48O3/Ni50Mn35In15 multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Singh, Kirandeep; Kaur, Davinder

    2017-04-01

    The current study reports the strong magnetoelectric coupling (M-E) in silicon (Si)-integrated ferromagnetic shape memory alloy-based PZT/Ni-Mn-In thin-film multiferroic heterostructure. The strain-mediated nature of converse M-E coupling is reflected from the butterfly-shaped normalized magnetization (M/M s) versus electric field plots. The direct M-E properties of the heterostructure were measured with a frequency of AC magnetic field, bias magnetic field, as well as with temperature. A maximum direct M-E coupling in the bilayered thin-film multiferroic heterostructures occurred at resonance frequencies around the first-order structural transitional temperature of the bottom Ni-Mn-In layer. It was observed that the measuring temperature remarkably affects the direct M-E characteristic of the heterostructure. A large direct ME effect and converse ME effect coefficient α DME  ~  894 mV cm-1.Oe and α CME ~ 2.7  ×  10-5 s m-1, respectively, were achieved in the bilayer at room temperature. The mechanism of direct as well as converse M-E effects in the thin-film multiferroic heterostructures is discussed. The electrically driven angular dependence of normalized magnetization (M/M s) reveals the twofold symmetric magnetic anisotropy of the heterostructure, with the drastic shifting of the magnetic hard axis at E  >  E c (coercivity of PZT).

  1. Three-dimensional imaging for precise structural control of Si quantum dot networks for all-Si solar cells

    NASA Astrophysics Data System (ADS)

    Kourkoutis, Lena F.; Hao, Xiaojing; Huang, Shujuan; Puthen-Veettil, Binesh; Conibeer, Gavin; Green, Martin A.; Perez-Wurfl, Ivan

    2013-07-01

    All-Si tandem solar cells based on Si quantum dots (QDs) are a promising approach to future high-performance, thin film solar cells using abundant, stable and non-toxic materials. An important prerequisite to achieve a high conversion efficiency in such cells is the ability to control the geometry of the Si QD network. This includes the ability to control both, the size and arrangement of Si QDs embedded in a higher bandgap matrix. Using plasmon tomography we show the size, shape and density of Si QDs, that form in Si rich oxide (SRO)/SiO2 multilayers upon annealing, can be controlled by varying the SRO stoichiometry. Smaller, more spherical QDs of higher densities are obtained at lower Si concentrations. In richer SRO layers ellipsoidal QDs tend to form. Using electronic structure calculations within the effective mass approximation we show that ellipsoidal QDs give rise to reduced inter-QD coupling in the layer. Efficient carrier transport via mini-bands is in this case more likely across the multilayers provided the SiO2 spacer layer is thin enough to allow coupling in the vertical direction.All-Si tandem solar cells based on Si quantum dots (QDs) are a promising approach to future high-performance, thin film solar cells using abundant, stable and non-toxic materials. An important prerequisite to achieve a high conversion efficiency in such cells is the ability to control the geometry of the Si QD network. This includes the ability to control both, the size and arrangement of Si QDs embedded in a higher bandgap matrix. Using plasmon tomography we show the size, shape and density of Si QDs, that form in Si rich oxide (SRO)/SiO2 multilayers upon annealing, can be controlled by varying the SRO stoichiometry. Smaller, more spherical QDs of higher densities are obtained at lower Si concentrations. In richer SRO layers ellipsoidal QDs tend to form. Using electronic structure calculations within the effective mass approximation we show that ellipsoidal QDs give rise to reduced inter-QD coupling in the layer. Efficient carrier transport via mini-bands is in this case more likely across the multilayers provided the SiO2 spacer layer is thin enough to allow coupling in the vertical direction. Electronic supplementary information (ESI) available: Electron tomography reconstruction movies. See DOI: 10.1039/c3nr01998e

  2. CO2 to methanol conversion using hydride terminated porous silicon nanoparticles.

    PubMed

    Dasog, M; Kraus, S; Sinelnikov, R; Veinot, J G C; Rieger, B

    2017-03-09

    Porous silicon nanoparticles (Si-NPs) prepared via magnesiothermic reduction were used to convert carbon dioxide (CO 2 ) into methanol. The hydride surface of the silicon nanoparticles acted as a CO 2 reducing reagent without any catalyst at temperatures above 100 °C. The Si nanoparticles were reused up to four times without significant loss in methanol yields. The reduction process was monitored using in situ FT-IR and the materials were characterized using SEM, TEM, NMR, XPS, and powder XRD techniques. The influence of reaction temperature, pressure, and Si-NP concentration on CO 2 reduction were also investigated. Finally, Si particles produced directly from sand were used to convert CO 2 to methanol.

  3. Three-Dimensional Hetero-Integration of Faceted GaN on Si Pillars for Efficient Light Energy Conversion Devices.

    PubMed

    Kim, Dong Rip; Lee, Chi Hwan; Cho, In Sun; Jang, Hanmin; Jeon, Min Soo; Zheng, Xiaolin

    2017-07-25

    An important pathway for cost-effective light energy conversion devices, such as solar cells and light emitting diodes, is to integrate III-V (e.g., GaN) materials on Si substrates. Such integration first necessitates growth of high crystalline III-V materials on Si, which has been the focus of many studies. However, the integration also requires that the final III-V/Si structure has a high light energy conversion efficiency. To accomplish these twin goals, we use single-crystalline microsized Si pillars as a seed layer to first grow faceted Si structures, which are then used for the heteroepitaxial growth of faceted GaN films. These faceted GaN films on Si have high crystallinity, and their threading dislocation density is similar to that of GaN grown on sapphire. In addition, the final faceted GaN/Si structure has great light absorption and extraction characteristics, leading to improved performance for GaN-on-Si light energy conversion devices.

  4. Superficial photoluminescence and PV conversion of nanoscale Si-layered systems at 400 nm

    NASA Astrophysics Data System (ADS)

    Kuznicki, Zbigniew T.; Meyrueis, Patrick; Sarrabayrouse, Gérard; Rousset, Bernard

    2006-04-01

    A surprising photovoltaic (PV) conversion at 400 nm has been observed in nanoscale Si-layered systems (ns-Si-ls) during spectral response measurements. In conventional solar cells the UV and blue PV conversion may be poor because of the surface recombination within a thin superficial layer. In multi-interface novel devices (MIND) containing ns-Si-ls this conversion is always negligible within an even thicker surface dead zone from which practically no free-carriers can be collected. So the measured 400 nm band PV conversion in MIND cells is totally inconsistent with usually observed effects. Another CE paradox concerns its inversely proportional variation versus incident flux intensity, lower the intensity higher the CE, which value can even exceed unity. This new effect is also localized at the superficial nanostratum and originates from postimplantation defects and nanostructures formed during the implantation process. A similar low energy free-carrier generation has been observed recently in MIND cells with buried ns-Si-ls having a relatively very thin superficial stratum because of an excellent electronic passivation. No available publication mentions such an effect despite extensive investigations on the subject of structural and optical properties of Si nanoparticles, Si nanolayers, new Si-based materials such as semiconductor silicides and the luminescence-center doped Si materials. In this work, the carrier collection properties of the superficial Si nanostratum are reported and discussed in detail in relation to incident flux intensity. An additional low energy generation was observed experimentally. The effect could have capital importance for a breakthrough in the PV conversion efficiency in Si solar cells with nanotransformations.

  5. Broadband wavelength conversion in hydrogenated amorphous silicon waveguide with silicon nitride layer

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Li, Yongfang; Wang, Zhaolu; Han, Jing; Huang, Nan; Liu, Hongjun

    2018-01-01

    Broadband wavelength conversion based on degenerate four-wave mixing is theoretically investigated in a hydrogenated amorphous silicon (a-Si:H) waveguide with silicon nitride inter-cladding layer (a-Si:HN). We have found that enhancement of the non-linear effect of a-Si:H waveguide nitride intermediate layer facilitates broadband wavelength conversion. Conversion bandwidth of 490 nm and conversion efficiency of 11.4 dB were achieved in a numerical simulation of a 4 mm-long a-Si:HN waveguide under 1.55 μm continuous wave pumping. This broadband continuous-wave wavelength converter has potential applications in photonic networks, a type of readily manufactured low-cost highly integrated optical circuits.

  6. Facile electrosynthesis of silicon carbide nanowires from silica/carbon precursors in molten salt.

    PubMed

    Zou, Xingli; Ji, Li; Lu, Xionggang; Zhou, Zhongfu

    2017-08-30

    Silicon carbide nanowires (SiC NWs) have attracted intensive attention in recent years due to their outstanding performances in many applications. A large-scale and facile production of SiC NWs is critical to its successful application. Here, we report a simple method for the production of SiC NWs from inexpensive and abundantly available silica/carbon (SiO 2 /C) precursors in molten calcium chloride. The solid-to-solid electroreduction and dissolution-electrodeposition mechanisms can easily lead to the formation of homogenous SiC NWs. This template/catalyst-free approach greatly simplifies the synthesis procedure compared to conventional methods. This general strategy opens a direct electrochemical route for the conversion of SiO 2 /C into SiC NWs, and may also have implications for the electrosynthesis of other micro/nanostructured metal carbides/composites from metal oxides/carbon precursors.

  7. Metric Conversion

    Atmospheric Science Data Center

    2013-03-12

    Metric Weights and Measures The metric system is based on 10s.  For example, 10 millimeters = 1 centimeter, 10 ... Special Publications: NIST Guide to SI Units: Conversion Factors NIST Guide to SI Units: Conversion Factors listed ...

  8. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

    PubMed Central

    Schröder, Tim; Trusheim, Matthew E.; Walsh, Michael; Li, Luozhou; Zheng, Jiabao; Schukraft, Marco; Sipahigil, Alp; Evans, Ruffin E.; Sukachev, Denis D.; Nguyen, Christian T.; Pacheco, Jose L.; Camacho, Ryan M.; Bielejec, Edward S.; Lukin, Mikhail D.; Englund, Dirk

    2017-01-01

    The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ∼32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ∼2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ∼51 GHz and close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ∼1.4 times the natural linewidth. This method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors. PMID:28548097

  9. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

    DOE PAGES

    Schroder, Tim; Trusheim, Matthew E.; Walsh, Michael; ...

    2017-05-26

    The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ~32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ~2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ~51 GHz andmore » close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ~1.4 times the natural linewidth. Furthermore, this method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.« less

  10. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroder, Tim; Trusheim, Matthew E.; Walsh, Michael

    The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ~32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ~2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ~51 GHz andmore » close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ~1.4 times the natural linewidth. Furthermore, this method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.« less

  11. Computer Controlled Microwave Oven System for Rapid Water Content Determination

    DTIC Science & Technology

    1988-11-01

    Codes - .d/or CONTENTS Page PREFACE .................................................................... 1 CONVERSION FACTORS, NON- SI TO SI (METRIC...CONVERSION FACTORS, NON- SI TO SI (METRIC) UNITS OF MEASUREMENT Non- SI units of measurement used in this report can be converted to SI (metric) units as...formula: C = (5/9)(F - 32) . To obtain Kelvin ( K ) readings, use: K = (5/9)(F - 32) + 273.15 3 COMPUTER CONTROLLED MICROWAVE OVEN SYSTEM FOR RAPID WATER

  12. Chart of conversion factors: From English to metric system and metric to English system

    USGS Publications Warehouse

    ,

    1976-01-01

    The conversion factors in the following tables are for conversion of our customary (English) units of measurement to SI*units, and for convenience, reciprocals are shown for converting SI units back to the English system. The first table contains rule-of-thumb figures, useful for "getting the feel" of SI units or mental estimation. The succeeding tables contain factors accurate to 3 or more significant figures. Please refer to known reference volumes for additional accuracy, as well as for factors dealing with other scientific notation involving SI units.

  13. Thermoelectric Properties of the Quasi-Binary MnSi1.73-FeSi2 System

    NASA Astrophysics Data System (ADS)

    Sadia, Yatir; Madar, Naor; Kaler, Ilan; Gelbstein, Yaniv

    2015-06-01

    The higher manganese silicides (HMS) are regarded as very attractive p-type thermoelectric materials for direct conversion of heat to electricity. To compete with other thermodynamic engines (e.g. the Stirling and Rankine cycles), however, the thermoelectric figure of merit of such silicides must be improved. HMS follow a complicated solidification reaction on cooling from the melt, which leads to formation of undesired secondary phases. Furthermore, the electronic carrier concentration of HMS is much higher than the optimum for thermoelectric applications and should be compensated by introduction of doping agents. In this research, the electronic donor action associated with substitution of HMS by FeSi2 was investigated. The effects of excess Si on phase distribution and thermoelectric properties are also discussed in detail.

  14. A new-generation of Bacillus subtilis cell factory for further elevated scyllo-inositol production.

    PubMed

    Tanaka, Kosei; Natsume, Ayane; Ishikawa, Shu; Takenaka, Shinji; Yoshida, Ken-Ichi

    2017-04-21

    A stereoisomer of inositol, scyllo-inositol (SI), has been regarded as a promising therapeutic agent for Alzheimer's disease. However, this compound is relatively rare, whereas another stereoisomer of inositol, myo-inositol (MI) is abundant in nature. Bacillus subtilis 168 has the ability to metabolize inositol stereoisomers, including MI and SI. Previously, we reported a B. subtilis cell factory with modified inositol metabolism that converts MI into SI in the culture medium. The strain was constructed by deleting all genes related to inositol metabolism and overexpressing key enzymes, IolG and IolW. By using this strain, 10 g/l of MI initially included in the medium was completely converted into SI within 48 h of cultivation in a rich medium containing 2% (w/v) Bacto soytone. When the initial concentration of MI was increased to 50 g/l, conversion was limited to 15.1 g/l of SI. Therefore, overexpression systems of IolT and PntAB, the main transporter of MI in B. subtilis and the membrane-integral nicotinamide nucleotide transhydrogenase in Escherichia coli respectively, were additionally introduced into the B. subtilis cell factory, but the conversion efficiency hardly improved. We systematically determined the amount of Bacto soytone necessary for ultimate conversion, which was 4% (w/v). As a result, the conversion of SI reached to 27.6 g/l within 48 h of cultivation. The B. subtilis cell factory was improved to yield a SI production rate of 27.6 g/l/48 h by simultaneous overexpression of IolT and PntAB, and by addition of 4% (w/v) Bacto soytone in the conversion medium. The concentration of SI was increased even in the stationary phase perhaps due to nutrients in the Bacto soytone that contribute to the conversion process. Thus, MI conversion to SI may be further optimized via identification and control of these unknown nutrients.

  15. Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s

    PubMed Central

    Lin, Gong-Ru; Su, Sheng-Pin; Wu, Chung-Lun; Lin, Yung-Hsiang; Huang, Bo-Ji; Wang, Huai-Yung; Tsai, Cheng-Ting; Wu, Chih-I; Chi, Yu-Chieh

    2015-01-01

    Silicon photonic interconnection on chip is the emerging issue for next-generation integrated circuits. With the Si-rich SiNx micro-ring based optical Kerr switch, we demonstrate for the first time the wavelength and format conversion of optical on-off-keying data with a bit-rate of 12 Gbit/s. The field-resonant nonlinear Kerr effect enhances the transient refractive index change when coupling the optical data-stream into the micro-ring through the bus waveguide. This effectively red-shifts the notched dip wavelength to cause the format preserved or inversed conversion of data carried by the on-resonant or off-resonant probe, respectively. The Si quantum dots doped Si-rich SiNx strengthens its nonlinear Kerr coefficient by two-orders of magnitude higher than that of bulk Si or Si3N4. The wavelength-converted and cross-amplitude-modulated probe data-stream at up to 12-Gbit/s through the Si-rich SiNx micro-ring with penalty of −7 dB on transmission has shown very promising applicability to all-optical communication networks. PMID:25923653

  16. Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s.

    PubMed

    Lin, Gong-Ru; Su, Sheng-Pin; Wu, Chung-Lun; Lin, Yung-Hsiang; Huang, Bo-Ji; Wang, Huai-Yung; Tsai, Cheng-Ting; Wu, Chih-I; Chi, Yu-Chieh

    2015-04-29

    Silicon photonic interconnection on chip is the emerging issue for next-generation integrated circuits. With the Si-rich SiNx micro-ring based optical Kerr switch, we demonstrate for the first time the wavelength and format conversion of optical on-off-keying data with a bit-rate of 12 Gbit/s. The field-resonant nonlinear Kerr effect enhances the transient refractive index change when coupling the optical data-stream into the micro-ring through the bus waveguide. This effectively red-shifts the notched dip wavelength to cause the format preserved or inversed conversion of data carried by the on-resonant or off-resonant probe, respectively. The Si quantum dots doped Si-rich SiNx strengthens its nonlinear Kerr coefficient by two-orders of magnitude higher than that of bulk Si or Si3N4. The wavelength-converted and cross-amplitude-modulated probe data-stream at up to 12-Gbit/s through the Si-rich SiNx micro-ring with penalty of -7 dB on transmission has shown very promising applicability to all-optical communication networks.

  17. Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors.

    PubMed

    Xie, Chao; Nie, Biao; Zeng, Longhui; Liang, Feng-Xia; Wang, Ming-Zheng; Luo, Linbao; Feng, Mei; Yu, Yongqiang; Wu, Chun-Yan; Wu, Yucheng; Yu, Shu-Hong

    2014-04-22

    Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core-shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 10(3) at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core-shell heterojunction device could find potential applications in future high-performance optoelectronic devices.

  18. Three-dimensional imaging for precise structural control of Si quantum dot networks for all-Si solar cells.

    PubMed

    Kourkoutis, Lena F; Hao, Xiaojing; Huang, Shujuan; Puthen-Veettil, Binesh; Conibeer, Gavin; Green, Martin A; Perez-Wurfl, Ivan

    2013-08-21

    All-Si tandem solar cells based on Si quantum dots (QDs) are a promising approach to future high-performance, thin film solar cells using abundant, stable and non-toxic materials. An important prerequisite to achieve a high conversion efficiency in such cells is the ability to control the geometry of the Si QD network. This includes the ability to control both, the size and arrangement of Si QDs embedded in a higher bandgap matrix. Using plasmon tomography we show the size, shape and density of Si QDs, that form in Si rich oxide (SRO)/SiO2 multilayers upon annealing, can be controlled by varying the SRO stoichiometry. Smaller, more spherical QDs of higher densities are obtained at lower Si concentrations. In richer SRO layers ellipsoidal QDs tend to form. Using electronic structure calculations within the effective mass approximation we show that ellipsoidal QDs give rise to reduced inter-QD coupling in the layer. Efficient carrier transport via mini-bands is in this case more likely across the multilayers provided the SiO2 spacer layer is thin enough to allow coupling in the vertical direction.

  19. Implications of metric conversion.

    PubMed

    Laros, R K

    1980-11-01

    The international scientific community is rapidly achieving conversion to the metric system, and the Système International (SI system) has been chosen for use by health scientists. Because the United States remains 1 of only 4 countries not now using part or all of the SI system, there is now a systematic effort toward rapid conversion. Although most of the SI system is not controversial, several SI units are highly so. Examples include joules instead of calories, pascals instead of millimeters of mercury, and moles per liter instead of milligrams per 100 milliliters. Obstetrician-gynecologists need to be familiar with the SI units and to voice their feelings about the various controversial units. There are decisions still to be made, and the time for discussion and advice is now.

  20. Challenges to Scaling CIGS Photovoltaics

    NASA Astrophysics Data System (ADS)

    Stanbery, B. J.

    2011-03-01

    The challenges of scaling any photovoltaic technology to terawatts of global capacity are arguably more economic than technological or resource constraints. All commercial thin-film PV technologies are based on direct bandgap semiconductors whose absorption coefficient and bandgap alignment with the solar spectrum enable micron-thick coatings in lieu to hundreds of microns required using indirect-bandgap c-Si. Although thin-film PV reduces semiconductor materials cost, its manufacture is more capital intensive than c-Si production, and proportional to deposition rate. Only when combined with sufficient efficiency and cost of capital does this tradeoff yield lower manufacturing cost. CIGS has the potential to become the first thin film technology to achieve the terawatt benchmark because of its superior conversion efficiency, making it the only commercial thin film technology which demonstrably delivers performance comparable to the dominant incumbent, c-Si. Since module performance leverages total systems cost, this competitive advantage bears directly on CIGS' potential to displace c-Si and attract the requisite capital to finance the tens of gigawatts of annual production capacity needed to manufacture terawatts of PV modules apace with global demand growth.

  1. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes

    PubMed Central

    Liu, Nian; Huo, Kaifu; McDowell, Matthew T.; Zhao, Jie; Cui, Yi

    2013-01-01

    The recovery of useful materials from earth-abundant substances is of strategic importance for industrial processes. Despite the fact that Si is the second most abundant element in the Earth's crust, processes to form Si nanomaterials is usually complex, costly and energy-intensive. Here we show that pure Si nanoparticles (SiNPs) can be derived directly from rice husks (RHs), an abundant agricultural byproduct produced at a rate of 1.2 × 108 tons/year, with a conversion yield as high as 5% by mass. And owing to their small size (10–40 nm) and porous nature, these recovered SiNPs exhibits high performance as Li-ion battery anodes, with high reversible capacity (2,790 mA h g−1, seven times greater than graphite anodes) and long cycle life (86% capacity retention over 300 cycles). Using RHs as the raw material source, overall energy-efficient, green, and large scale synthesis of low-cost and functional Si nanomaterials is possible. PMID:23715238

  2. a-Si:H TFT-silicon hybrid low-energy x-ray detector

    DOE PAGES

    Shin, Kyung -Wook; Karim, Karim S.

    2017-03-15

    Direct conversion crystalline silicon X-ray imagers are used for low-energy X-ray photon (4-20 keV) detection in scientific research applications such as protein crystallography. In this paper, we demonstrate a novel pixel architecture that integrates a crystalline silicon X-ray detector with a thin-film transistor amorphous silicon pixel readout circuit. We describe a simplified two-mask process to fabricate a complete imaging array and present preliminary results that show the fabricated pixel to be sensitive to 5.89-keV photons from a low activity Fe-55 gamma source. Furthermore, this paper presented can expedite the development of high spatial resolution, low cost, direct conversion imagers formore » X-ray diffraction and crystallography applications.« less

  3. p-BaSi2/n-Si heterojunction solar cells on Si(001) with conversion efficiency approaching 10%: comparison with Si(111)

    NASA Astrophysics Data System (ADS)

    Deng, Tianguo; Sato, Takuma; Xu, Zhihao; Takabe, Ryota; Yachi, Suguru; Yamashita, Yudai; Toko, Kaoru; Suemasu, Takashi

    2018-06-01

    B-doped p-BaSi2 epitaxial layers with a hole concentration of 1.1 × 1018 cm‑3 were grown on n-Si(001) using molecular beam epitaxy to fabricate p-BaSi2/n-Si solar cells. The thickness (d) of the p-BaSi2 layer was varied from 20 to 60 nm to investigate its effect on the solar cell performance. The conversion efficiency under an AM1.5 illumination increased with d reaching a maximum of 9.8% at d = 40 nm, which is nearly equal to the highest efficiency (9.9%) for p-BaSi2/n-Si solar cells on Si(111). This study indicated that Si(001) substrates are promising for use in BaSi2 solar cells.

  4. 75 FR 75548 - SI Financial Group, Inc., Willimantic, CT; Approval of Conversion Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ... DEPARTMENT OF THE TREASURY Office of Thrift Supervision [AC-57: OTS Nos. H-4750, H-4082, and 17978] SI Financial Group, Inc., Willimantic, CT; Approval of Conversion Application Notice is hereby given that on November 10, 2010, the Office of Thrift Supervision approved the application of SI Bancorp, MHC...

  5. Direct conversion of hydride- to siloxane-terminated silicon quantum dots

    DOE PAGES

    Anderson, Ryan T.; Zang, Xiaoning; Fernando, Roshan; ...

    2016-10-20

    Here, peripheral surface functionalization of hydride-terminated silicon quantum dots (SiQD) is necessary in order to minimize their oxidation/aggregation and allow for solution processability. Historically thermal hydrosilylation addition of alkenes and alkynes across the Si-H surface to form Si-C bonds has been the primary method to achieve this. Here we demonstrate a mild alternative approach to functionalize hydride-terminated SiQDs using bulky silanols in the presence of free-radical initiators to form stable siloxane (~Si-O-SiR 3) surfaces with hydrogen gas as a byproduct. This offers an alternative to existing methods of forming siloxane surfaces that require corrosive Si-Cl based chemistry with HCl byproducts.more » A 52 nm blue shift in the photoluminescent spectra of siloxane versus alkyl-functionalized SiQDs is observed that we explain using computational theory. Model compound synthesis of silane and silsesquioxane analogues is used to optimize surface chemistry and elucidate reaction mechanisms. Thorough characterization on the extent of siloxane surface coverage is provided using FTIR and XPS. As a result, TEM is used to demonstrate SiQD size and integrity after surface chemistry and product isolation.« less

  6. A Descriptive Analysis of End-of-Life Conversations With Long-Term Glioblastoma Survivors.

    PubMed

    Miranda, Stephen P; Bernacki, Rachelle E; Paladino, Joanna M; Norden, Andrew D; Kavanagh, Jane E; Palmor, Marissa C; Block, Susan D

    2018-05-01

    Early, high-quality serious illness (SI) conversations are critical for patients with glioblastoma (GBM) but are often mistimed or mishandled. To describe the prevalence, timing, and quality of documented SI conversations and evaluate their focus on patient goals/priorities. Thirty-three patients with GBM enrolled in the control group of a randomized controlled trial of a communication intervention and were followed for 2 years or until death. At baseline, all patients answered a validated question about preferences for life-extending versus comfort-focused care and completed a Life Priorities Survey about their goals/priorities. In this secondary analysis, retrospective chart review was performed for 18 patients with GBM who died. Documented SI conversations were systematically identified and evaluated using a codebook reflecting 4 domains: prognosis, goals/priorities, end-of-life planning, and life-sustaining treatments. Patient goals/priorities were compared to documentation. At baseline, 16 of 24 patients preferred life-extending care. In the Life Priorities Survey, goals/priorities most frequently ranked among the top 3 were "Live as long as possible," "Be mentally aware," "Provide support for family," "Be independent," and "Be at peace." Fifteen of 18 patients had at least 1 documented SI conversation (range: 1-4). Median timing of the first documented SI conversation was 84 days before death (range: 29-231; interquartile range: 46-119). Fifteen patients had documentation about end-of-life planning, with "hospice" and "palliative care" most frequently documented. Five of 18 patients had documentation about their goals. Patients with GBM had multiple goals/priorities with potential treatment implications, but documentation showed SI conversations occurred relatively late and infrequently reflected patient goals/priorities.

  7. Silicon nanowires for photovoltaic solar energy conversion.

    PubMed

    Peng, Kui-Qing; Lee, Shuit-Tong

    2011-01-11

    Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

  8. Thermal Atomic Layer Etching of SiO2 by a "Conversion-Etch" Mechanism Using Sequential Reactions of Trimethylaluminum and Hydrogen Fluoride.

    PubMed

    DuMont, Jaime W; Marquardt, Amy E; Cano, Austin M; George, Steven M

    2017-03-22

    The thermal atomic layer etching (ALE) of SiO 2 was performed using sequential reactions of trimethylaluminum (TMA) and hydrogen fluoride (HF) at 300 °C. Ex situ X-ray reflectivity (XRR) measurements revealed that the etch rate during SiO 2 ALE was dependent on reactant pressure. SiO 2 etch rates of 0.027, 0.15, 0.20, and 0.31 Å/cycle were observed at static reactant pressures of 0.1, 0.5, 1.0, and 4.0 Torr, respectively. Ex situ spectroscopic ellipsometry (SE) measurements were in agreement with these etch rates versus reactant pressure. In situ Fourier transform infrared (FTIR) spectroscopy investigations also observed SiO 2 etching that was dependent on the static reactant pressures. The FTIR studies showed that the TMA and HF reactions displayed self-limiting behavior at the various reactant pressures. In addition, the FTIR spectra revealed that an Al 2 O 3 /aluminosilicate intermediate was present after the TMA exposures. The Al 2 O 3 /aluminosilicate intermediate is consistent with a "conversion-etch" mechanism where SiO 2 is converted by TMA to Al 2 O 3 , aluminosilicates, and reduced silicon species following a family of reactions represented by 3SiO 2 + 4Al(CH 3 ) 3 → 2Al 2 O 3 + 3Si(CH 3 ) 4 . Ex situ X-ray photoelectron spectroscopy (XPS) studies confirmed the reduction of silicon species after TMA exposures. Following the conversion reactions, HF can fluorinate the Al 2 O 3 and aluminosilicates to species such as AlF 3 and SiO x F y . Subsequently, TMA can remove the AlF 3 and SiO x F y species by ligand-exchange transmetalation reactions and then convert additional SiO 2 to Al 2 O 3 . The pressure-dependent conversion reaction of SiO 2 to Al 2 O 3 and aluminosilicates by TMA is critical for thermal SiO 2 ALE. The "conversion-etch" mechanism may also provide pathways for additional materials to be etched using thermal ALE.

  9. Application of Ce3+ single-doped complexes as solar spectral downshifters for enhancing photoelectric conversion efficiencies of a-Si-based solar cells

    NASA Astrophysics Data System (ADS)

    Song, Pei; Jiang, Chun

    2013-05-01

    The effect on photoelectric conversion efficiency of an a-Si-based solar cell by applying a solar spectral downshifter of rare earth ion Ce3+ single-doped complexes including yttrium aluminum garnet Y3Al5O12 single crystals, nanostructured ceramics, microstructured ceramics and B2O3-SiO2-Gd2O3-BaO glass is studied. The photoluminescence excitation spectra in the region 360-460 nm convert effectively into photoluminescence emission spectra in the region 450-550 nm where a-Si-based solar cells exhibit a higher spectral response. When these Ce3+ single-doped complexes are placed on the top of an a-Si-based solar cell as precursors for solar spectral downshifting, theoretical relative photoelectric conversion efficiencies of nc-Si:H and a-Si:H solar cells approach 1.09-1.13 and 1.04-1.07, respectively, by means of AMPS-1D numerical modeling, potentially benefiting an a-Si-based solar cell with a photoelectric efficiency improvement.

  10. Evidence of significant down-conversion in a Si-based solar cell using CuInS2/ZnS core shell quantum dots

    NASA Astrophysics Data System (ADS)

    Gardelis, Spiros; Nassiopoulou, Androula G.

    2014-05-01

    We report on the increase of up to 37.5% in conversion efficiency of a Si-based solar cell after deposition of light-emitting Cd-free, CuInS2/ZnS core shell quantum dots on the active area of the cell due to the combined effect of down-conversion and the anti- reflecting property of the dots. We clearly distinguished the effect of down-conversion from anti-reflection and estimated an enhancement of up to 10.5% in the conversion efficiency due to down-conversion.

  11. Large-Scale Fabrication of Silicon Nanowires for Solar Energy Applications.

    PubMed

    Zhang, Bingchang; Jie, Jiansheng; Zhang, Xiujuan; Ou, Xuemei; Zhang, Xiaohong

    2017-10-11

    The development of silicon (Si) materials during past decades has boosted up the prosperity of the modern semiconductor industry. In comparison with the bulk-Si materials, Si nanowires (SiNWs) possess superior structural, optical, and electrical properties and have attracted increasing attention in solar energy applications. To achieve the practical applications of SiNWs, both large-scale synthesis of SiNWs at low cost and rational design of energy conversion devices with high efficiency are the prerequisite. This review focuses on the recent progresses in large-scale production of SiNWs, as well as the construction of high-efficiency SiNW-based solar energy conversion devices, including photovoltaic devices and photo-electrochemical cells. Finally, the outlook and challenges in this emerging field are presented.

  12. Communication: Visualization and spectroscopy of defects induced by dehydrogenation in individual silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Kislitsyn, Dmitry A.; Mills, Jon M.; Kocevski, Vancho; Chiu, Sheng-Kuei; DeBenedetti, William J. I.; Gervasi, Christian F.; Taber, Benjamen N.; Rosenfield, Ariel E.; Eriksson, Olle; Rusz, Ján; Goforth, Andrea M.; Nazin, George V.

    2016-06-01

    We present results of a scanning tunneling spectroscopy (STS) study of the impact of dehydrogenation on the electronic structures of hydrogen-passivated silicon nanocrystals (SiNCs) supported on the Au(111) surface. Gradual dehydrogenation is achieved by injecting high-energy electrons into individual SiNCs, which results, initially, in reduction of the electronic bandgap, and eventually produces midgap electronic states. We use theoretical calculations to show that the STS spectra of midgap states are consistent with the presence of silicon dangling bonds, which are found in different charge states. Our calculations also suggest that the observed initial reduction of the electronic bandgap is attributable to the SiNC surface reconstruction induced by conversion of surface dihydrides to monohydrides due to hydrogen desorption. Our results thus provide the first visualization of the SiNC electronic structure evolution induced by dehydrogenation and provide direct evidence for the existence of diverse dangling bond states on the SiNC surfaces.

  13. Photoluminescence properties of Mn2+/Yb3+ co-doped oxyfluoride glasses for solar cells application

    NASA Astrophysics Data System (ADS)

    Yan, Ying; Chen, Zeng; Jia, Xiyang; Li, Shengjun

    2018-01-01

    Mn2+/Yb3+ co-doped oxyfluoride glasses were facilely synthesized in the SiO2-Al2O3-Na2O-CaF2 system. Partial crystallization processed during the preparation of the glasses, by which small amounts of CaF2 nano-crystals were formed. Under ultraviolet and blue (370-500 nm) light excitation, an efficient down-conversion involving the emission of near-infrared is realized in the Mn2+/Yb3+ co-doped oxyfluoride glasses. The near-infrared emission peaks mainly at 976 nm and secondarily at 1020 nm, which is a comfortable match with the band gap of c-Si. The variation in visible and near-infrared spectra and the decay curves of Mn2+:4T1 → 6A1 emission have been investigated to verify the possible energy transfer from Mn2+ ions to Yb3+ ions. On analyzing the energy transfer processes theoretically and experimentally, we propose that quantum cutting and down-shifting processes may occur simultaneously in the samples. We suggest that the Mn2+-Yb3+ co-doped materials can provide a novel direction to realize UV-Vis to NIR down-conversion for Si solar cells.

  14. Miniband-related 1.4–1.8 μm luminescence of Ge/Si quantum dot superlattices

    PubMed Central

    Cirlin, GE; Tonkikh, AA; Zakharov, ND; Werner, P; Gösele, U; Tomm, JW; Elsaesser, T

    2006-01-01

    The luminescence properties of highly strained, Sb-doped Ge/Si multi-layer heterostructures with incorporated Ge quantum dots (QDs) are studied. Calculations of the electronic band structure and luminescence measurements prove the existence of an electron miniband within the columns of the QDs. Miniband formation results in a conversion of the indirect to a quasi-direct excitons takes place. The optical transitions between electron states within the miniband and hole states within QDs are responsible for an intense luminescence in the 1.4–1.8 µm range, which is maintained up to room temperature. At 300 K, a light emitting diode based on such Ge/Si QD superlattices demonstrates an external quantum efficiency of 0.04% at a wavelength of 1.55 µm.

  15. Si Wire-Array Solar Cells

    NASA Astrophysics Data System (ADS)

    Boettcher, Shannon

    2010-03-01

    Micron-scale Si wire arrays are three-dimensional photovoltaic absorbers that enable orthogonalization of light absorption and carrier collection and hence allow for the utilization of relatively impure Si in efficient solar cell designs. The wire arrays are grown by a vapor-liquid-solid-catalyzed process on a crystalline (111) Si wafer lithographically patterned with an array of metal catalyst particles. Following growth, such arrays can be embedded in polymethyldisiloxane (PDMS) and then peeled from the template growth substrate. The result is an unusual photovoltaic material: a flexible, bendable, wafer-thickness crystalline Si absorber. In this paper I will describe: 1. the growth of high-quality Si wires with controllable doping and the evaluation of their photovoltaic energy-conversion performance using a test electrolyte that forms a rectifying conformal semiconductor-liquid contact 2. the observation of enhanced absorption in wire arrays exceeding the conventional light trapping limits for planar Si cells of equivalent material thickness and 3. single-wire and large-area solid-state Si wire-array solar cell results obtained to date with directions for future cell designs based on optical and device physics. In collaboration with Michael Kelzenberg, Morgan Putnam, Joshua Spurgeon, Daniel Turner-Evans, Emily Warren, Nathan Lewis, and Harry Atwater, California Institute of Technology.

  16. Comparison of effective transverse piezoelectric coefficients e31,f of Pb(Zr,Ti)O3 thin films between direct and converse piezoelectric effects

    NASA Astrophysics Data System (ADS)

    Tsujiura, Yuichi; Kawabe, Saneyuki; Kurokawa, Fumiya; Hida, Hirotaka; Kanno, Isaku

    2015-10-01

    We evaluated the effective transverse piezoelectric coefficients (e31,f) of Pb(Zr,Ti)O3 (PZT) thin films from both the direct and converse piezoelectric effects of unimorph cantilevers. (001) preferentially oriented polycrystalline PZT thin films and (001)/(100) epitaxial PZT thin films were deposited on (111)Pt/Ti/Si and (001)Pt/MgO substrates, respectively, by rf-magnetron sputtering, and their piezoelectric responses owing to intrinsic and extrinsic effects were examined. The direct and converse |e31,f| values of the polycrystalline PZT thin films were calculated as 6.4 and 11.5-15.0 C/m2, respectively, whereas those of the epitaxial PZT thin films were calculated as 3.4 and 4.6-4.8 C/m2, respectively. The large |e31,f| of the converse piezoelectric property of the polycrystalline PZT thin films is attributed to extrinsic piezoelectric effects. Furthermore, the polycrystalline PZT thin films show a clear nonlinear piezoelectric contribution, which is the same as the Rayleigh-like behavior reported in bulk PZT. In contrast, the epitaxial PZT thin films on the MgO substrate show a piezoelectric response owing to the intrinsic and linear extrinsic effects, and no nonlinear contribution was observed.

  17. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  18. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  19. Crystal Lattice Controlled SiGe Thermoelectric Materials with High Figure of Merit

    NASA Technical Reports Server (NTRS)

    Kim, Hyun-Jung; Park, Yeonjoon; King, Glen C.; Lee, Kunik; Choi, Sang H.

    2010-01-01

    Direct energy conversion between thermal and electrical energy, based on thermoelectric (TE) effect, has the potential to recover waste heat and convert it to provide clean electric power. The energy conversion efficiency is related to the thermoelectric figure of merit ZT expressed as ZT=S(exp 2)(sigma)T/Kappa, T is temperature, S is the Seebeck coefficient, sigma is conductance and Kappa is thermal conductivity. For a lower thermal conductivity Kappa and high power factor (S(exp 2)(sigma)), our current strategy is the development of rhombohedrally strained single crystalline SiGe materials that are highly [111]-oriented twinned. The development of a SiGe "twin lattice structure (TLS)" plays a key role in phonon scattering. The TLS increases the electrical conductivity and decreases thermal conductivity due to phonon scattering at stacking faults generated from the 60 X rotated primary twin structure. To develop high performance materials, the substrate temperature, chamber working pressure, and DC sputtering power are controlled for the aligned growth production of SiGe layer and TLS on a c-plane sapphire. Additionally, a new elevated temperature thermoelectric characterization system, that measures the thermal diffusivity and Seebeck effect nondestructively, was developed. The material properties were characterized at various temperatures and optimized process conditions were experimentally determined. The present paper encompasses the technical discussions toward the development of thermoelectric materials and the measurement techniques.

  20. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    PubMed Central

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-01-01

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III–V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation. PMID:27930331

  1. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    DOE PAGES

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; ...

    2016-12-05

    Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PVmore » conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV + scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV + modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.« less

  2. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Mustafa Hussain, Muhammad; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-12-01

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.

  3. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation.

    PubMed

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D; Alivisatos, A Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G; Rogers, John A

    2016-12-20

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV + scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV + modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.

  4. Neither a year nor an annus can be a derived unit in the SI

    USGS Publications Warehouse

    Edwards, Lucy E.

    2011-01-01

    The year is not a unit of the SI. The only SI unit of measurement for time is the second. The word “annus” or “annum” does not appear anywhere in the current SI document. The word “year” is not in the table of “Non-SI units accepted for use with the International System of Units,” nor in the table of “Non-SI units whose values in SI units must be obtained experimentally,” nor even in the table of “Other non-SI units.” The year can be found, however, through the list of “Other non-SI units not recommended for use.” This heading directs the reader to a National Institute of Standards and Technology (NIST) list where three kinds of year (365 days, sidereal, and tropical) are given with conversion to seconds, but are set in type to indicate “in general not to be used in NIST publications.” Table 1 summarizes some of the uses of the year in other publications. For example, in the IUPAC chemistry document, the year is not a constant; in the International Astronomy Union Style Guide, the year (Julian) is a constant.   

  5. Microwave-assisted direct synthesis of butene from high-selectivity methane

    NASA Astrophysics Data System (ADS)

    Lu, Yi-heng; Li, Kang; Lu, Yu-wei

    2017-12-01

    Methane was directly converted to butene liquid fuel by microwave-induced non-oxidative catalytic dehydrogenation under 0.1-0.2 MPa. The results show that, under microwave heating in a two-stage fixed-bed reactor, in which nickel powder and NiOx-MoOy/SiO2 are used as the catalyst, the methane-hydrogen mixture is used as the raw material, with no acetylene detected. The methane conversion is more than 73.2%, and the selectivity of methane to butene is 99.0%. Increasing the hydrogen/methane feed volume ratio increases methane conversion and selectivity. Gas chromatography/electron impact ionization/mass spectrometry chromatographic analysis showed that the liquid fuel produced by methane dehydrogenation oligomerization contained 89.44% of butene, and the rest was acetic acid, ethanol, butenol and butyric acid, and the content was 1.0-3.0 wt%.

  6. Experience with SI units in biochemistry.

    PubMed

    Karnauchow, P N; Suvanto, L

    1976-03-20

    Use of Système International d'Unités (SI) for laboratory measurements was instituted Jan. 1, 1975 at two community hospitals. Beforehand, talks were given, pamphlets, conversion tables, new calibration curves and new master record cards were printed, computer cards were reprogrammed and conversion kits were prepared; the total cost was less than $200. After 6 months 16% of the medical staff had stopped converting SI units into conventional units, 78% were still occasionally converting units and 6% were routinely converting units. Changeover had been difficult for 25%, only a nuisance for 49% and easy for 26%. The patients' lives were not endangered by conversion.

  7. Silsesquioxane-derived ceramic fibres

    NASA Technical Reports Server (NTRS)

    Hurwitz, F. I.; Farmer, S. C.; Terepka, F. M.; Leonhardt, T. A.

    1991-01-01

    Fibers formed from blends of silsesquioxane polymers were characterized to study the pyrolytic conversion of these precursors to ceramics. The morphology of fibers pyrolyzed to 1400 C revealed primarily amorphous glasses whose conversion to beta-SiC is a function of both blend composition and pyrolysis conditions. Formation of beta-SiC crystallites within the glassy phase is favored by higher than stoichiometric C/Si ratios, while carbothermal reduction of Si-O bonds to form SiC with loss of SiO and CO occurs at higher methyl/phenylpropyl silsesquioxane (lower C/Si) ratios. As the carbothermal reduction is assumed to be diffusion controlled, the fibers can serve as model systems to gain understanding of the silsesquioxane pyrolysis behavior, and therefore are useful in the development of polysilsesquioxane-derived ceramic matrices and coatings as well.

  8. Midinfrared wavelength conversion in hydrogenated amorphous silicon waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Wang, Zhaolu; Huang, Nan; Han, Jing; Li, Yongfang; Liu, Hongjun

    2017-10-01

    Midinfrared (MIR) wavelength conversion based on degenerate four-wave mixing is theoretically investigated in hydrogenated amorphous silicon (a-Si:H) waveguides. The broadband phase mismatch is achieved in the normal group-velocity dispersion regime. The conversion bandwidth is extended to 900 nm, and conversion efficiency of up to -14 dB with a pump power of 70 mW in a 2-mm long a-Si:H rib waveguides is obtained. This low-power on-chip wavelength converter will have potential for application in a wide range of MIR nonlinear optic devices.

  9. Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells.

    PubMed

    Tang, Y B; Chen, Z H; Song, H S; Lee, C S; Cong, H T; Cheng, H M; Zhang, W J; Bello, I; Lee, S T

    2008-12-01

    Vertically aligned Mg-doped GaN nanorods have been epitaxially grown on n-type Si substrate to form a heterostructure for fabricating p-n heterojunction photovoltaic cells. The p-type GaN nanorod/n-Si heterojunction cell shows a well-defined rectifying behavior with a rectification ratio larger than 10(4) in dark. The cell has a high short-circuit photocurrent density of 7.6 mAlcm2 and energy conversion efficiency of 2.73% under AM 1.5G illumination at 100 mW/cm2. Moreover, the nanorod array may be used as an antireflection coating for solar cell applications to effectively reduce light loss due to reflection. This study provides an experimental demonstration for integrating one-dimensional nanostructure arrays with the substrate to directly fabricate heterojunction photovoltaic cells.

  10. A review on solar cells from Si-single crystals to porous materials and quantum dots

    PubMed Central

    Badawy, Waheed A.

    2013-01-01

    Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12–16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper–indium–selenide) and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe–TiO2 architecture have been developed. PMID:25750746

  11. A review on solar cells from Si-single crystals to porous materials and quantum dots.

    PubMed

    Badawy, Waheed A

    2015-03-01

    Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12-16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper-indium-selenide) and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe-TiO2 architecture have been developed.

  12. High performance a-Si solar cells and new fabrication methods for a-Si solar cells

    NASA Astrophysics Data System (ADS)

    Nakano, S.; Kuwano, Y.; Ohnishi, M.

    1986-12-01

    The super chamber, a separated UHV reaction-chamber system has been developed. A conversion efficiency of 11.7% was obtained for an a-Si solar cell using a high-quality i-layer deposited by the super chamber, and a p-layer fabricated by a photo-CVD method. As a new material, amorphous superlattice-structure films were fabricated by the photo-CVD method for the first time. Superlattice structure p-layer a-Si solar cells were fabricated, and a conversion efficiency of 10.5% was obtained. For the fabrication of integrated type a-Si solar cell modules, a laser pattering method was investigated. A thermal analysis of the multilayer structure was done. It was confirmed that selective scribing for a-Si, TCO and metal film is possible by controlling the laser power density. Recently developed a-Si solar power generation systems and a-Si solar cell roofing tiles are also described.

  13. Comparative study of SiC- and Si-based photovoltaic inverters

    NASA Astrophysics Data System (ADS)

    Ando, Yuji; Oku, Takeo; Yasuda, Masashi; Shirahata, Yasuhiro; Ushijima, Kazufumi; Murozono, Mikio

    2017-01-01

    This article reports comparative study of 150-300 W class photovoltaic inverters (Si inverter, SiC inverter 1, and SiC inverter 2). In these sub-kW class inverters, the ON-resistance was considered to have little influence on the efficiency. The developed SiC inverters, however, have exhibited an approximately 3% higher direct current (DC)-alternating current (AC) conversion efficiency as compared to the Si inverter. Power loss analysis indicated a reduction in the switching and reverse recovery losses of SiC metal-oxide-semiconductor field-effect transistors used for the DC-AC converter is responsible for this improvement. In the SiC inverter 2, an increase of the switching frequency up to 100 kHz achieved a state-of-the-art combination of the weight (1.25 kg) and the volume (1260 cm3) as a 150-250 W class inverter. Even though the increased switching frequency should cause the increase of the switching losses, the SiC inverter 2 exhibited an efficiency comparable to the SiC inverter 1 with a switching frequency of 20 kHz. The power loss analysis also indicated a decreased loss of the DC-DC converter built with SiC Schottky barrier diodes led to the high efficiency for its increased switching frequency. These results clearly indicated feasibility of SiC devices even for sub-kW photovoltaic inverters, which will be available for the applications where compactness and efficiency are of tremendous importance.

  14. Effect of UV-ozone treatment on poly(dimethylsiloxane) membranes: surface characterization and gas separation performance.

    PubMed

    Fu, Ywu-Jang; Qui, Hsuan-zhi; Liao, Kuo-Sung; Lue, Shingjiang Jessie; Hu, Chien-Chieh; Lee, Kueir-Rarn; Lai, Juin-Yih

    2010-03-16

    A thin SiO(x) selective surface layer was formed on a series of cross-linked poly(dimethylsiloxane) (PDMS) membranes by exposure to ultraviolet light at room temperature in the presence of ozone. The conversion of the cross-linked polysiloxane to SiO(x) was monitored by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray (EDX) microanalysis, contact angle analysis, and atomic force microscopy (AFM). The conversion of the cross-linked polysiloxane to SiO(x) increased with UV-ozone exposure time and cross-linking agent content, and the surface possesses highest conversion. The formation of a SiO(x) layer increased surface roughness, but it decreased water contact angle. Gas permeation measurements on the UV-ozone exposure PDMS membranes documented interesting gas separation properties: the O(2) permeability of the cross-linked PDMS membrane before UV-ozone exposure was 777 barrer, and the O(2)/N(2) selectivity was 1.9; after UV-ozone exposure, the permeability decreased to 127 barrer while the selectivity increased to 5.4. The free volume depth profile of the SiO(x) layer was investigated by novel slow positron beam. The results show that free volume size increased with the depth, yet the degree of siloxane conversion to SiO(x) does not affect the amount of free volume.

  15. Investigation of the hydrochlorination of SiCL4

    NASA Technical Reports Server (NTRS)

    Mui, J. Y. P.

    1982-01-01

    Reaction kinetic measurements on the hydrochlorination of SiCl4 and metallurgical grade (m.g.) silicon metal were made at a wide range of experimental variables. The effect of pressure on the reaction rate was studied at 25 psig, 100 psig, 150 psig and 200 psig, respectively. Results of these experiments show a large pressure effect on the hydrochlorination reaction. As expected, higher pressures produce a higher equilibrium SiHC13 conversion, since the hydrochlorination reaction results in a net volume contraction as product SiHC1 is formed. However, the reaction rate, namely, the rate at which the hydrochlorination reaction reaches its equilibrium SiHC13 conversion, was found to be much faster at low pressures.

  16. Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics.

    PubMed

    Johlin, Eric; Al-Obeidi, Ahmed; Nogay, Gizem; Stuckelberger, Michael; Buonassisi, Tonio; Grossman, Jeffrey C

    2016-06-22

    While low hole mobilities limit the current collection and efficiency of hydrogenated amorphous silicon (a-Si:H) photovoltaic devices, attempts to improve mobility of the material directly have stagnated. Herein, we explore a method of utilizing nanostructuring of a-Si:H devices to allow for improved hole collection in thick absorber layers. This is achieved by etching an array of 150 nm diameter holes into intrinsic a-Si:H and then coating the structured material with p-type a-Si:H and a conformal zinc oxide transparent conducting layer. The inclusion of these nanoholes yields relative power conversion efficiency (PCE) increases of ∼45%, from 7.2 to 10.4% PCE for small area devices. Comparisons of optical properties, time-of-flight mobility measurements, and internal quantum efficiency spectra indicate this efficiency is indeed likely occurring from an improved collection pathway provided by the nanostructuring of the devices. Finally, we estimate that through modest optimizations of the design and fabrication, PCEs of beyond 13% should be obtainable for similar devices.

  17. Thermoelectric-figure-of-merit enhancement of silicon-germanium through nanocomposite concept

    NASA Astrophysics Data System (ADS)

    Wang, Dezhi

    SiGe alloy has been the thermoelectric material element of RTGs (Radioisotope thermoelectric power generators) for more than 20 years because of its good performance at high temperature. It also has a very high potential application in converting exhaust heat into useful electricity, which currently attracts a lot of research interest in the automotive industry where 40% of the energy was rejected as exhaust heat. However, its low conversion efficiency (8%) is a major concern although it is the best in practice. A new concept, namely Si-Ge nanocomposite, was proposed to enhance thermoelectric figure-of-merit. Fast heating pressure sintering was found to be an appropriate synthesizing method and a lab-made direct current-induced hot press system was established. It can reach l200°C within several minutes and many parameters can be controlled. The uniquely designed graphite die assembly can stand l60MPa pressure which is better than the best commercial products (127MPa). Numerous Si-Ge nanocomposite samples were pressed using our DC hot press. Fully dense n-type Si-Ge nanocomposite samples of nanoSi80nanoGe20P were finally obtained. The nanocomposite structure was characterized via XRD, SEM, EDS, and TEM. The proposed nanocomposite structure, dots in a matrix, was observed. Most importantly, the thermoelectric property measurements showed that the Si-Ge nanocomposite of n-type nanoSi80nanoGe20 possessed higher electrical conductivity but lower thermal conductivity, thus a higher ZT than that of n-type nanoSi80microGe20. This result proved that thermoelectric-figure-of-merit enhancement through the nanocomposite concept was the right direction.

  18. Influence of the transition region between p- and n-type polycrystalline silicon passivating contacts on the performance of interdigitated back contact silicon solar cells

    NASA Astrophysics Data System (ADS)

    Reichel, Christian; Müller, Ralph; Feldmann, Frank; Richter, Armin; Hermle, Martin; Glunz, Stefan W.

    2017-11-01

    Passivating contacts based on thin tunneling oxides (SiOx) and n- and p-type semi-crystalline or polycrystalline silicon (poly-Si) enable high passivation quality and low contact resistivity, but the integration of these p+/n emitter and n+/n back surface field junctions into interdigitated back contact silicon solar cells poses a challenge due to high recombination at the transition region from p-type to n-type poly-Si. Here, the transition region was created in different configurations—(a) p+ and n+ poly-Si regions are in direct contact with each other ("pn-junction"), using a local overcompensation (counterdoping) as a self-aligning process, (b) undoped (intrinsic) poly-Si remains between the p+ and n+ poly-Si regions ("pin-junction"), and (c) etched trenches separate the p+ and n+ poly-Si regions ("trench")—in order to investigate the recombination characteristics and the reverse breakdown behavior of these solar cells. Illumination- and injection-dependent quasi-steady state photoluminescence (suns-PL) and open-circuit voltage (suns-Voc) measurements revealed that non-ideal recombination in the space charge regions with high local ideality factors as well as recombination in shunted regions strongly limited the performance of solar cells without a trench. In contrast, solar cells with a trench allowed for open-circuit voltage (Voc) of 720 mV, fill factor of 79.6%, short-circuit current (Jsc) of 41.3 mA/cm2, and a conversion efficiencies (η) of 23.7%, showing that a lowly conducting and highly passivating intermediate layer between the p+ and n+ poly-Si regions is mandatory. Independent of the configuration, no hysteresis was observed upon multiple stresses in reverse direction, indicating a controlled and homogeneously distributed breakdown, but with different breakdown characteristics.

  19. Pictures of Processes: Automated Graph Rewriting for Monoidal Categories and Applications to Quantum Computing

    NASA Astrophysics Data System (ADS)

    Kumar, Bhupendra

    Light assisted or driven fuel generation by carbon dioxide and proton reduction can be achieved by a p-type semiconductor/liquid junction. There are four different types of schemes which are typically used for carbon dioxide and proton reduction for fuel generation applications. In these systems, the semiconductor can serve the dual role of a catalyst and a light absorber. Specific electrocatalysts (heterogeneous and homogeneous) can be driven by p-type semiconductor where it works only as light absorber in order to achieve better selectivity and faster rates of catalysis. The p-type semiconductor/molecular catalyst junction is primarily explored in this dissertation for CO2 and proton photoelectrochemical reduction. A general principle for the operation of p-type semiconductor/molecular junctions is proposed and validated for several molecular catalysts in contact with p-Si photocathode. It is also shown that the light assisted homogeneous and heterogeneous catalysis can coexist. This principle is extended to achieve direct conversion of CO 2 to methanol on Platinum nanoparticles decorated p-Si in aqueous medium through pyridine/pyridinium system for CO2 reduction. An open circuit voltage higher than 600 mV is achieved for p-Si/Re(bipy-tBu)(CO) 3Cl [where bipy-tBu = 4,4'- tert-butyl-2,2'-bipyridine] (Re-catalyst) junction. The photoelectrochemical conversion of CO2 to CO using a p-Si/Re-catalyst junction is obtained at 100 % Faradaic efficiency. The homogeneous catalytic current density for CO2 by p-Si/Re-catalyst junction under illumination scales linearly with illumination intensity (both polychromatic and monochromatic). This indicates that the homogeneous catalysis is light driven for the p-Si/Re-catalyst junction system up to light intensities approaching one sun. The photoelectrochemical reduction of other active members of Re(bipyridyl)(CO)3Cl molecular catalyst family is also observed on illuminated p-Si photocathode. Effects of surface modification and nanowire morphology of the p-Si photocathode on the homogeneous catalytic reduction of CO2 by using p-Si/Re-catalyst junction are also described in this dissertation. For phenyl ethyl modified p-Si photocathode, the rate of homogeneous catalysis for CO2 reduction by Re-catalyst is three times greater than glassy carbon electrode and six times greater than the hexyl modified and the hydrogen terminated p-Si photocathodes. When hexyl modified p-Si nanowires are used as photocathode, the homogeneous catalytic current density increased by a factor of two compared to planar p-Si (both freshly etched and hexyl modified) photocathode. A successful light assisted generation of syngas (H2:CO = 2:1) from CO2 and water is achieved by using p-Si/Re-catalyst. In this system, water is reduced heterogeneously on p-Si surface and CO2 is reduced homogeneously by Re-catalyst. The same principle is extended to the homogeneous proton reduction by using p-Si/[FeFe] complex junction where [FeFe] complex [Fe2(micro-bdt)(CO) 6] (bdt = benzene-1,2-dithiolate)] is a proton reduction molecular catalyst. A short circuit quantum efficiency of 79 % with 100 % Faradaic efficiency and 600 mV open circuit are achieved by using p-Si/[FeFe] complex for proton reduction with 300 mM perchloric acid as a proton source. Cobalt difluororyl-diglyoximate (Co-catalyst) is a proton reduction catalyst with only 200 mV of overpotential for the hydrogen evolution reaction (HRE). The Co-catalyst is photoelectrochemically reduced with a photovoltage of 470 mV on illuminated p-Si photocathode. For p-Si photocathodes, the overpotential for proton reduction is over 1 V. In principle, p-Si/Co-catalyst junction can reduce proton to hydrogen homogeneously at underpotential. In a concluding effort, a wireless monolithic dual face single photoelectrode (multi junction photovoltaic cell which can generate a voltage higher 1.7 V) based photochemical cell is proposed for direct conversion of solar energy into liquid fuel. In this device, the two faces of the multijunction photoelectrode are serve as an anode and a cathode for water oxidation and fuel generation, respectively, and are separated by proton exchange membrane.

  20. An 8.68% efficiency chemically-doped-free graphene-silicon solar cell using silver nanowires network buried contacts.

    PubMed

    Yang, Lifei; Yu, Xuegong; Hu, Weidan; Wu, Xiaolei; Zhao, Yan; Yang, Deren

    2015-02-25

    Graphene-silicon (Gr-Si) heterojunction solar cells have been recognized as one of the most low-cost candidates in photovoltaics due to its simple fabrication process. However, the high sheet resistance of chemical vapor deposited (CVD) Gr films is still the most important limiting factor for the improvement of the power conversion efficiency of Gr-Si solar cells, especially in the case of large device-active area. In this work, we have fabricated a novel transparent conductive film by hybriding a monolayer Gr film with silver nanowires (AgNWs) network soldered by the graphene oxide (GO) flakes. This Gr-AgNWs hybrid film exhibits low sheet resistance and larger direct-current to optical conductivity ratio, quite suitable for solar cell fabrication. An efficiency of 8.68% has been achieved for the Gr-AgNWs-Si solar cell, in which the AgNWs network acts as buried contacts. Meanwhile, the Gr-AgNWs-Si solar cells have much better stability than the chemically doped Gr-Si solar cells. These results show a new route for the fabrication of high efficient and stable Gr-Si solar cells.

  1. Annealing group III-V compound doped silicon-germanium alloy for improved thermo-electric conversion efficiency

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W. (Inventor); Wood, Charles (Inventor); Draper, Susan L. (Inventor)

    1989-01-01

    The thermoelectric conversion efficiency of a GaP doped SiGe alloy is improved about 30 percent by annealing the alloy at a temperature above the melting point of the alloy, preferably stepwise from 1200 C to 1275 C in air to form large grains having a size over 50 microns and to form a GeGaP rich phase and a silicon rich phase containing SiP and SiO2 particles.

  2. The enhanced efficiency of graphene-silicon solar cells by electric field doping.

    PubMed

    Yu, Xuegong; Yang, Lifei; Lv, Qingmin; Xu, Mingsheng; Chen, Hongzheng; Yang, Deren

    2015-04-28

    The graphene-silicon (Gr-Si) Schottky junction solar cell has been recognized as one of the most low-cost candidates in photovoltaics due to its simple fabrication process. However, the low Gr-Si Schottky barrier height largely limits the power conversion efficiency of Gr-Si solar cells. Here, we demonstrate that electric field doping can be used to tune the work function of a Gr film and therefore improve the photovoltaic performance of the Gr-Si solar cell effectively. The electric field doping effects can be achieved either by connecting the Gr-Si solar cell to an external power supply or by polarizing a ferroelectric polymer layer integrated in the Gr-Si solar cell. Exploration of both of the device architecture designs showed that the power conversion efficiency of Gr-Si solar cells is more than twice of the control Gr-Si solar cells. Our study opens a new avenue for improving the performance of Gr-Si solar cells.

  3. Microwave-assisted direct synthesis of butene from high-selectivity methane

    PubMed Central

    Li, Kang; Lu, Yu-wei

    2017-01-01

    Methane was directly converted to butene liquid fuel by microwave-induced non-oxidative catalytic dehydrogenation under 0.1–0.2 MPa. The results show that, under microwave heating in a two-stage fixed-bed reactor, in which nickel powder and NiOx–MoOy/SiO2 are used as the catalyst, the methane–hydrogen mixture is used as the raw material, with no acetylene detected. The methane conversion is more than 73.2%, and the selectivity of methane to butene is 99.0%. Increasing the hydrogen/methane feed volume ratio increases methane conversion and selectivity. Gas chromatography/electron impact ionization/mass spectrometry chromatographic analysis showed that the liquid fuel produced by methane dehydrogenation oligomerization contained 89.44% of butene, and the rest was acetic acid, ethanol, butenol and butyric acid, and the content was 1.0–3.0 wt%. PMID:29308261

  4. Photo-thermal characteristics of water-based Fe3O4@SiO2 nanofluid for solar-thermal applications

    NASA Astrophysics Data System (ADS)

    Khashan, Saud; Dagher, Sawsan; Omari, Salahaddin Al; Tit, Nacir; Elnajjar, Emad; Mathew, Bobby; Hilal-Alnaqbi, Ali

    2017-05-01

    This work proposes and demonstrates the novel idea of using Fe3O4@SiO2 core/shell structure nanoparticles (NPs) to improve the solar thermal conversion efficiency. Magnetite (Fe3O4) NPs are synthesized by controlled co-precipitation method. Fe3O4@SiO2 NPs are prepared based on sol-gel approach, then characterized. Water-based Fe3O4@SiO2 nanofluid is prepared and usedto illustrate the photo-thermal conversion characteristics of a solar collector under solar simulator. The temperature rise characteristics of the nanofluids are investigated at different heights of the solar collector, for duration of 300 min, under a solar intensity of 1000 W m-2. The experimental results show that Fe3O4@SiO2 NPs have a core/shell structure with spherical morphology and size of about 400 nm. Fe3O4@SiO2/H2O nanofluid enhances the photo-thermal conversion efficiency compared with base fluid and Fe3O4/H2O nanofluid, since the silica coating improves both the thermodynamic stability of the nanofluid and the light absorption effectiveness of the NPs. At a concentration of 1 mg/1 ml of Fe3O4@SiO2/H2O, and with the utilization of kerosene into the solar collector, and exposure for radiation for 5 min, the photo-thermal conversion efficiency has shown an enhancement at the bottom of the collector of about 32.9% compared to the base fluid.

  5. Holographic lens spectrum splitting photovoltaic system for increased diffuse collection and annual energy yield

    NASA Astrophysics Data System (ADS)

    Vorndran, Shelby D.; Wu, Yuechen; Ayala, Silvana; Kostuk, Raymond K.

    2015-09-01

    Concentrating and spectrum splitting photovoltaic (PV) modules have a limited acceptance angle and thus suffer from optical loss under off-axis illumination. This loss manifests itself as a substantial reduction in energy yield in locations where a significant portion of insulation is diffuse. In this work, a spectrum splitting PV system is designed to efficiently collect and convert light in a range of illumination conditions. The system uses a holographic lens to concentrate shortwavelength light onto a smaller, more expensive indium gallium phosphide (InGaP) PV cell. The high efficiency PV cell near the axis is surrounded with silicon (Si), a less expensive material that collects a broader portion of the solar spectrum. Under direct illumination, the device achieves increased conversion efficiency from spectrum splitting. Under diffuse illumination, the device collects light with efficiency comparable to a flat-panel Si module. Design of the holographic lens is discussed. Optical efficiency and power output of the module under a range of illumination conditions from direct to diffuse are simulated with non-sequential raytracing software. Using direct and diffuse Typical Metrological Year (TMY3) irradiance measurements, annual energy yield of the module is calculated for several installation sites. Energy yield of the spectrum splitting module is compared to that of a full flat-panel Si reference module.

  6. X-ray microbeam three-dimensional topography for dislocation strain-field analysis of 4H-SiC

    NASA Astrophysics Data System (ADS)

    Tanuma, R.; Mori, D.; Kamata, I.; Tsuchida, H.

    2013-07-01

    This paper describes the strain-field analysis of threading edge dislocations (TEDs) and basal-plane dislocations (BPDs) in 4H-SiC using x-ray microbeam three-dimensional (3D) topography. This 3D topography enables quantitative strain-field analysis, which measures images of effective misorientations (Δω maps) around the dislocations. A deformation-matrix-based simulation algorithm is developed to theoretically evaluate the Δω mapping. Systematic linear calculations can provide simulated Δω maps (Δωsim maps) of dislocations with different Burgers vectors, directions, and reflection vectors for the desired cross-sections. For TEDs and BPDs, Δω maps are compared with Δωsim maps, and their excellent correlation is demonstrated. Two types of asymmetric reflections, high- and low-angle incidence types, are compared. Strain analyses are also conducted to investigate BPD-TED conversion near an epilayer/substrate interface in 4H-SiC.

  7. Conversion of pre-RISC to holo-RISC by Ago2 during assembly of RNAi complexes

    PubMed Central

    Kim, Kevin; Lee, Young Sik; Carthew, Richard W.

    2007-01-01

    In the Drosophila RNA interference (RNAi) pathway, small interfering RNAs (siRNAs) direct Argonaute2 (Ago2), an endonuclease, within the RNA-induced silencing complex (RISC) to cleave complementary mRNA targets. In vitro studies have shown that, for each siRNA duplex, RISC retains only one strand, the guide, and releases the other, the passenger, to form a holo-RISC complex. Here, we have isolated a new Ago2 mutant allele and provide, for the first time, in vivo evidence that endogenous Ago2 slicer activity is important to mount an RNAi response in Drosophila. We demonstrate in vivo that efficient removal of the passenger strand from RISC requires the cleavage activity of Ago2. We have also identified a new intermediate complex in the RISC assembly pathway, pre-RISC, in which Ago2 is stably bound to double-stranded siRNA. PMID:17123955

  8. All-silicon tandem solar cells: Practical limits for energy conversion and possible routes for improvement

    NASA Astrophysics Data System (ADS)

    Jia, Xuguang; Puthen-Veettil, Binesh; Xia, Hongze; Yang, Terry Chien-Jen; Lin, Ziyun; Zhang, Tian; Wu, Lingfeng; Nomoto, Keita; Conibeer, Gavin; Perez-Wurfl, Ivan

    2016-06-01

    Silicon nanocrystals (Si NCs) embedded in a dielectric matrix is regarded as one of the most promising materials for the third generation photovoltaics, owing to their tunable bandgap that allows fabrication of optimized tandem devices. Previous work has demonstrated fabrication of Si NCs based tandem solar cells by sputter-annealing of thin multi-layers of silicon rich oxide and SiO2. However, these device efficiencies were much lower than expected given that their theoretical values are much higher. Thus, it is necessary to understand the practical conversion efficiency limits for these devices. In this article, practical efficiency limits of Si NC based double junction tandem cells determined by fundamental material properties such as minority carrier, mobility, and lifetime are investigated. The practical conversion efficiency limits for these devices are significantly different from the reported efficiency limits which use Shockley-Queisser assumptions. Results show that the practical efficiency limit of a double junction cell (1.6 eV Si NC top cell and a 25% efficient c-Si PERL cell as the bottom cell) is 32%. Based on these results suggestions for improvement to the performance of Si nanocrystal based tandem solar cells in terms of the different parameters that were simulated are presented.

  9. Characterization of silicon carbide and diamond detectors for neutron applications

    NASA Astrophysics Data System (ADS)

    Hodgson, M.; Lohstroh, A.; Sellin, P.; Thomas, D.

    2017-10-01

    The presence of carbon atoms in silicon carbide and diamond makes these materials ideal candidates for direct fast neutron detectors. Furthermore the low atomic number, strong covalent bonds, high displacement energies, wide bandgap and low intrinsic carrier concentrations make these semiconductor detectors potentially suitable for applications where rugged, high-temperature, low-gamma-sensitivity detectors are required, such as active interrogation, electronic personal neutron dosimetry and harsh environment detectors. A thorough direct performance comparison of the detection capabilities of semi-insulating silicon carbide (SiC-SI), single crystal diamond (D-SC), polycrystalline diamond (D-PC) and a self-biased epitaxial silicon carbide (SiC-EP) detector has been conducted and benchmarked against a commercial silicon PIN (Si-PIN) diode, in a wide range of alpha (Am-241), beta (Sr/Y-90), ionizing photon (65 keV to 1332 keV) and neutron radiation fields (including 1.2 MeV to 16.5 MeV mono-energetic neutrons, as well as neutrons from AmBe and Cf-252 sources). All detectors were shown to be able to directly detect and distinguish both the different radiation types and energies by using a simple energy threshold discrimination method. The SiC devices demonstrated the best neutron energy discrimination ratio (E\\max (n=5 MeV)/E\\max (n=1 MeV)  ≈5), whereas a superior neutron/photon cross-sensitivity ratio was observed in the D-PC detector (E\\max (AmBe)/E\\max (Co-60)  ≈16). Further work also demonstrated that the cross-sensitivity ratios can be improved through use of a simple proton-recoil conversion layer. Stability issues were also observed in the D-SC, D-PC and SiC-SI detectors while under irradiation, namely a change of energy peak position and/or count rate with time (often referred to as the polarization effect). This phenomenon within the detectors was non-debilitating over the time period tested (> 5 h) and, as such, stable operation was possible. Furthermore, the D-SC, self-biased SiC-EP and semi-insulating SiC detectors were shown to operate over the temperature range -60 °C to +100 °C.

  10. Embedded Metal Electrode for Organic-Inorganic Hybrid Nanowire Solar Cells.

    PubMed

    Um, Han-Don; Choi, Deokjae; Choi, Ahreum; Seo, Ji Hoon; Seo, Kwanyong

    2017-06-27

    We demonstrate here an embedded metal electrode for highly efficient organic-inorganic hybrid nanowire solar cells. The electrode proposed here is an effective alternative to the conventional bus and finger electrode which leads to a localized short circuit at a direct Si/metal contact and has a poor collection efficiency due to a nonoptimized electrode design. In our design, a Ag/SiO 2 electrode is embedded into a Si substrate while being positioned between Si nanowire arrays underneath poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), facilitating suppressed recombination at the Si/Ag interface and notable improvements in the fabrication reproducibility. With an optimized microgrid electrode, our 1 cm 2 hybrid solar cells exhibit a power conversion efficiency of up to 16.1% with an open-circuit voltage of 607 mV and a short circuit current density of 34.0 mA/cm 2 . This power conversion efficiency is more than twice as high as that of solar cells using a conventional electrode (8.0%). The microgrid electrode significantly minimizes the optical and electrical losses. This reproducibly yields a superior quantum efficiency of 99% at the main solar spectrum wavelength of 600 nm. In particular, our solar cells exhibit a significant increase in the fill factor of 78.3% compared to that of a conventional electrode (61.4%); this is because of the drastic reduction in the metal/contact resistance of the 1 μm-thick Ag electrode. Hence, the use of our embedded microgrid electrode in the construction of an ideal carrier collection path presents an opportunity in the development of highly efficient organic-inorganic hybrid solar cells.

  11. GeAs and SiAs monolayers: Novel 2D semiconductors with suitable band structures

    NASA Astrophysics Data System (ADS)

    Zhou, Liqin; Guo, Yu; Zhao, Jijun

    2018-01-01

    Two dimensional (2D) materials provide a versatile platform for nanoelectronics, optoelectronics and clean energy conversion. Based on first-principles calculations, we propose a novel kind of 2D materials - GeAs and SiAs monolayers and investigate their atomic structure, thermodynamic stability, and electronic properties. The calculations show that monolayer GeAs and SiAs sheets are energetically and dynamically stable. Their small interlayer cohesion energies (0.191 eV/atom for GeAs and 0.178 eV/atom for SiAs) suggest easy exfoliation from the bulk solids that exist in nature. As 2D semiconductors, GeAs and SiAs monolayers possess band gap of 2.06 eV and 2.50 eV from HSE06 calculations, respectively, while their band gap can be further engineered by the number of layers. The relatively small and anisotropic carrier effective masses imply fast electric transport in these 2D semiconductors. In particular, monolayer SiAs is a direct gap semiconductor and a potential photocatalyst for water splitting. These theoretical results shine light on utilization of monolayer or few-layer GeAs and SiAs materials for the next-generation 2D electronics and optoelectronics with high performance and satisfactory stability.

  12. [Automatic tracing of conversion scales from conventional units to the SI system of units].

    PubMed

    Besozzi, M; Bianchi, P; Agrifoglio, L

    1988-01-01

    American medical journals, as the Journal of the American Medical Association (JAMA), and the American Journal of Clinical Pathology (AJCP), the Journal of the American Society of Clinical Pathologists (ASCP), are shifting to selected SI (Système International d'Unités) units for reporting measurements. Further discussion by the AMA, the ASCP and other organizations is required before consensus in the US medical community can be reached as to the extent of and time frame for conversion to SI for reporting clinical laboratory measurements: however this decision will certainly greatly speed up the process of conversion in European countries too. Transition to SI units will require the use of different reference ranges, and there will be a potential for serious misinterpretation of laboratory data unless well-planned educational programs are instituted before the change. A simple program written in Microsoft Basic for automatically tracing on one's personal computer (PC) monitor a dual scale, in the conventional and in the SI system of units, is presented here. The program may be easily implemented and run on every PC operating under MS-DOS, equipped with a CGA or an AT&T6300 graphic card: through the operating system the scales may also be printed on a dot-matrix graphic printer. We believe that this, and other tools of this kind, will be useful in the thorough educational process of those reading the reports, and will be an important factor in the success of conversion to SI reporting.

  13. Low-Temperature Growth of Hydrogenated Amorphous Silicon Carbide Solar Cell by Inductively Coupled Plasma Deposition Toward High Conversion Efficiency in Indoor Lighting.

    PubMed

    Kao, Ming-Hsuan; Shen, Chang-Hong; Yu, Pei-Chen; Huang, Wen-Hsien; Chueh, Yu-Lun; Shieh, Jia-Min

    2017-10-05

    A p-a-SiC:H window layer was used in amorphous Si thin film solar cells to boost the conversion efficiency in an indoor lighting of 500 lx. The p-a-SiC:H window layer/p-a-Si:H buffer layer scheme moderates the abrupt band bending across the p/i interface for the enhancement of V OC , J SC and FF in the solar spectra of short wavelengths. The optimized thickness of i-a-Si:H absorber layer is 400 nm to achieve the conversion efficiency of ~9.58% in an AM1.5 G solar spectrum. However, the optimized thickness of the absorber layer can be changed from 400 to 600 nm in the indoor lighting of 500 lx, exhibiting the maximum output power of 25.56 μW/cm 2 . Furthermore, various durability tests with excellent performance were investigated, which are significantly beneficial to harvest the indoor lights for applications in the self-powered internet of thing (IoT).

  14. Conversion of zirconacyclopentadienes into metalloles: Fagan-Nugent reaction and beyond.

    PubMed

    Yan, Xiaoyu; Xi, Chanjuan

    2015-04-21

    Metalloles are derivatives of cyclopentadiene in which the methylene unit is replaced by a heteroatom, such as S, Se, Te, N, P, As, Sb, Bi, Si, Ge, Sn, B, Al, Ga, and so on. Many metallole derivatives have been widely used as photovoltaic cells, organic light emitting diodes (OLEDs), chemical sensors, electrochromic devices, microelectronic actuators, and organic field effect transistors (OFETs). In the meantime, many of them showed promising biological actives. Due to the similarity to cyclopentadiene, the anionic forms of metalloles were also widely explored in coordination chemistry. As a result, development of a general method for the formation of metalloles from available starting materials is highly desired. In this Account, we outline formation of various p-block element metalloles from zirconacyclopentadienes. The zirconacyclopentadienes can be easily prepared from two molecules of alkynes and a low-valent zirconocene species "Cp2Zr(II)" (Cp = cyclopentadienyl). Fagan and Nugent first reported the formation of main group metalloles from zirconacyclopentadiene, which provided a versatile approach for the construction of metalloles, especially for the formation of metalloles in heavier p-block elements. To further expand the substrate scope, a number of stepwise conversions were developed, which involve 1,4-dimetallo- or dihalo-1,3-butadiene as intermediates from zirconacyclopentadienes. Here, four processes are classified based on direct and indirect conversion of zirconacyclopentadienes into metalloles. Direct reaction of zirconacyclopentadienes with element halides afforded heterocycles of main group elements, which provided a versatile method for the synthesis of metalloles. Nonetheless, the reaction scope was restricted to heavier p-block elements such as S, Se, P, As, Sb, Bi, Ge, Sn, Ga, and In. And these reactions usually suffered low yields and long reaction time. Transmetalation of zirconacyclopentadiene with copper chloride greatly enriched the zirconacyclopentadiene chemistry. The synthesis of stannoles and pyrroles from zirconacyclopentadienes has been developed in the presence of CuCl. The direct reaction of the zirconacyclopentadienes with SiCl4 or R2SiCl2 does not give the desired silacyclopendadiene derivatives, even in the presence of CuCl. It can be circumvented by using dilithiated dienes from diiododienes, which are easily prepared by the iodination of zirconacyclopentadienes using CuCl as an additive. Finally, an umpolung strategy, reaction of electrophilic 1,4-diiodo-1,3-butadiene with nucleophilic amine or sulfide reagents, was successfully used in the formation of pyrroles and thiophenes.

  15. Effects of silicon nanowire morphology on optical properties and hybrid solar cell performance

    NASA Astrophysics Data System (ADS)

    Syu, Hong-Jhang; Shiu, Shu-Chia; Hung, Yung-Jr; Lee, San-Liang; Lin, Ching-Fuh

    2012-10-01

    Silicon nanowire (SiNW) arrays are widespread applied on hybrid photovoltaic devices because SiNW arrays can substitute the pyramid texture and anti-reflection coating due to its strong light trapping. Also, SiNWs can be prepared through a cost-efficient process of metal-assisted chemical etching. However, though longer SiNW arrays have lower reflectance, the top of long SiNWs aggregate together to make junction synthesis difficult for SiNW/organic hybrid solar cell. To control and analyze the effect of SiNW array morphology on hybrid solar cells, here we change the metal deposition condition for metal-assisted chemical etching to obtain different SiNW array morphologies. The experiment was separated to two groups, by depositing metal, say, Ag, before etching (BE) or during etching (DE). For group BE, Ag was deposited on n-type Si (n-Si) wafers by thermal evaporation; then etched by H2O2 and HF. For group DE, n-Si was etched by Ag+ and HF directly. Ag was deposited on n-Si during etching process. Afterwards, residual Ag and SiO2 were removed by HNO3 and buffered HF, successively; then Ti and Ag were evaporated on the bottom of Si to be a cathode. Finally, SiNWs were stuck on the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) that was spincoated on the ITO coated glass to form SiNW/organic heterojunction. The results show that group BE has reflectance lower than that in group DE in solar spectrum. However, group BE has smaller power conversion efficiency (PCE) of 8.65% and short-circuit current density (Jsc) of 24.94 mA/cm2 than group DE of PCE of 9.47% and Jsc of 26.81 mA/cm2.

  16. SI (Metric) handbook

    NASA Technical Reports Server (NTRS)

    Artusa, Elisa A.

    1994-01-01

    This guide provides information for an understanding of SI units, symbols, and prefixes; style and usage in documentation in both the US and in the international business community; conversion techniques; limits, fits, and tolerance data; and drawing and technical writing guidelines. Also provided is information of SI usage for specialized applications like data processing and computer programming, science, engineering, and construction. Related information in the appendixes include legislative documents, historical and biographical data, a list of metric documentation, rules for determining significant digits and rounding, conversion factors, shorthand notation, and a unit index.

  17. Monitoring of hydroxyapatite conversion by luminescence intensity of Eu3+ ions during mineralization of Eu3+-doped β-Ca2SiO4

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Chen, Jie; Li, Yadong; Seo, Hyo Jin

    2014-11-01

    β-Dicalcium silicate (β-Ca2SiO4) doped with Eu3+ was synthesized by sol-gel method. The luminescence intensity of the mineralization products formed during the hydroxyapatite (Ca10(PO4)6(OH)2, HA) conversion of Eu3+-doped β-Ca2SiO4, in 0.25 M K2HPO4 solution, were detected using luminescence spectroscopy. The results indicated that the luminescence intensity of Eu3+ ion gradually depressed with prolonged mineralization time, and it could hardly be detected with the complete transformation from β-Ca2SiO4:Eu3+ to hydroxyapatite. The change of Eu3+ ionic concentrations in the mineralization products and the final solutions after conversion reaction, were further examined using energy-dispersive X-ray and inductively-coupled plasma mass spectrometry, respectively. This suggested that the process of mineralization can be monitored with the luminescence intensity of Eu3+ ions in the mineralization products. The current study will open up a new and simple in vivo avenue for in situ monitoring hydroxyapatite conversion with a fiber luminescence spectrometer.

  18. Velcro-Inspired SiC Fuzzy Fibers for Aerospace Applications.

    PubMed

    Hart, Amelia H C; Koizumi, Ryota; Hamel, John; Owuor, Peter Samora; Ito, Yusuke; Ozden, Sehmus; Bhowmick, Sanjit; Syed Amanulla, Syed Asif; Tsafack, Thierry; Keyshar, Kunttal; Mital, Rahul; Hurst, Janet; Vajtai, Robert; Tiwary, Chandra Sekhar; Ajayan, Pulickel M

    2017-04-19

    The most recent and innovative silicon carbide (SiC) fiber ceramic matrix composites, used for lightweight high-heat engine parts in aerospace applications, are woven, layered, and then surrounded by a SiC ceramic matrix composite (CMC). To further improve both the mechanical properties and thermal and oxidative resistance abilities of this material, SiC nanotubes and nanowires (SiCNT/NWs) are grown on the surface of the SiC fiber via carbon nanotube conversion. This conversion utilizes the shape memory synthesis (SMS) method, starting with carbon nanotube (CNT) growth on the SiC fiber surface, to capitalize on the ease of dense surface morphology optimization and the ability to effectively engineer the CNT-SiC fiber interface to create a secure nanotube-fiber attachment. Then, by converting the CNTs to SiCNT/NWs, the relative morphology, advantageous mechanical properties, and secure connection of the initial CNT-SiC fiber architecture are retained, with the addition of high temperature and oxidation resistance. The resultant SiCNT/NW-SiC fiber can be used inside the SiC ceramic matrix composite for a high-heat turbo engine part with longer fatigue life and higher temperature resistance. The differing sides of the woven SiCNT/NWs act as the "hook and loop" mechanism of Velcro but in much smaller scale.

  19. Metal oxide composite enabled nanotextured Si photoanode for efficient solar driven water oxidation.

    PubMed

    Sun, Ke; Pang, Xiaolu; Shen, Shaohua; Qian, Xueqiang; Cheung, Justin S; Wang, Deli

    2013-05-08

    We present a study of a transition metal oxide composite modified n-Si photoanode for efficient and stable water oxidation. This sputter-coated composite functions as a protective coating to prevent Si from photodecomposition, a Schottky heterojunction, a hole conducting layer for efficient charge separation and transportation, and an electrocatalyst to reduce the reaction overpotential. The formation of mixed-valence oxides composed of Ni and Ru effectively modifies the optical, electrical, and catalytic properties of the coating material, as well as the interfaces with Si. The successful application of this oxide composite on nanotextured Si demonstrates improved conversion efficiency due to enhanced catalytic activity, minimized reflection, and increased surface reaction sites. Although the coated nanotextured Si shows a noticeable degradation from 500 cycles of operation, the oxide composite provides a simple method to enable unstable photoanode materials for solar fuel conversion.

  20. Synergistic effect of acidity and extraframework position in faujasite on renewable p-xylene production

    PubMed Central

    2018-01-01

    p-Xylene is a commodity chemical used for the manufacture of plastic bottles and textiles. For the biomass-based route from 2,5-dimethylfuran (DMF) and ethylene, the properties of the catalyst such as acidity effect, product selectivity and catalyst activity play an important role. To determine the effect of acidity and extraframework position in faujasite zeolite on p-xylene selectivity, type Y (Si/Al = 40 and Si/Al = 2.55) and X (Si/Al = 1.25) zeolites containing the extraframework Lewis acids Na+, K+, Li+, Ag+ and Cu+, and a Brønsted acid-containing zeolite, HY (Si/Al = 40), were prepared and tested for p-xylene production under solvent-free conditions and at low conversions (less than 35%). Here it is reported that NaX zeolite catalyses DMF and ethylene conversion to p-xylene with 91% selectivity at 30% conversion, which is better than the 25% p-xylene selectivity obtained when using HY at similar conversion. ANOVA was used to show that there is a synergistic effect between acidity and extraframework position on the rate of p-xylene production. At 7% DMF conversion, Lewis acids were more selective than the Brønsted acid tested (50 versus 30% p-xylene selectivity). p-Xylene selectivity is optimal when using Lewis acids with moderate acidity and extraframework positions located in the faujasite supercage (sites II and III). PMID:29892435

  1. Conversion of polymers of methyl- and vinylsilane to Si-C ceramics

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Kacik, Terrance A.; Bu, Xin-Ya; Masnovi, John; Heimann, Paula J.; Beyene, Kassahun

    1994-01-01

    Poly(methylsilane) and poly(vinylsilane) were synthesized using a titanocene catalyst, and their pyrolytic conversion to ceramics was followed using a combination of thermal analysis and infrared spectroscopy. The two polymers have distinctly different backbone structures, as determined by Si NMR; methylsilane polymerizes to a polysilane, while vinylsilane polymers have predominately polycarbosilane backbone, with some polysilane structure as well. The pyrolysis path and char yield were dependent primarily on backbone structure, with little influence of polymer molecular weight. The majority of the weight loss on conversion occurs below 650 degrees C, although bond rearrangement continues to 1400 degrees C. Poly(vinylsilane) produced a C-rich Si-C ceramic in which the carbon was dispersed on a sufficiently fine level to show resistance to oxidation on heating in air to 1400 degrees C.

  2. Photoactivated processes in optical fibers: generation and conversion mechanisms of twofold coordinated Si and Ge atoms

    NASA Astrophysics Data System (ADS)

    Giacomazzi, Luigi; Martin-Samos, L.; Boukenter, A.; Ouerdane, Y.; Girard, S.; Alessi, A.; de Gironcoli, S.; Richard, N.

    2017-05-01

    In this work we present an extensive investigation of nanoscale physical phenomena related to oxygen-deficient centers (ODCs) in silica and Ge-doped silica by means of first-principles calculations, including nudged-elastic band, electron paramagnetic resonance parameters calculations, and many-body perturbation theory (GW and Bethe-Salpeter equation) techniques. We show that by neutralizing positively charged oxygen monovacancies we can obtain model structures of twofold Si and Ge defects of which the calculated absorption spectra and singlet-to-triplet transitions are in excellent agreement with the experimental optical absorption and photo-luminescence data. In particular we provide an exhaustive analysis of the main exciton peaks related to the presence of twofold defects including long-range correlation effects. By calculating the reaction pathways and energy barriers necessary for the interconversion, we advance a double precursory origin of the {E}α \\prime and Ge(2) centers as due to the ionization of neutral oxygen monovacancies (Si-Si and Ge-Si dimers) and as due to the ionization of twofold Si and Ge defects. Furthermore two distinct structural conversion mechanisms are found to occur between the neutral oxygen monovacancy and the twofold Si (and Ge) atom configurations. Such conversion mechanisms allow to explain the radiation induced generation of the ODC(II) centers, their photobleaching, and also their generation during the drawing of optical fibers.

  3. On the evaluation of social innovations and social enterprises: Recognizing and integrating two solitudes in the empirical knowledge base.

    PubMed

    Szijarto, Barbara; Milley, Peter; Svensson, Kate; Cousins, J Bradley

    2018-02-01

    Social innovation (SI) is billed as a new way to address complex social problems. Interest in SI has intensified rapidly in the last decade, making it an important area of practice for evaluators, but a difficult one to navigate. Learning from developments in SI and evaluation approaches applied in SI contexts is challenging because of 'fuzzy' concepts and silos of activity and knowledge within SI communities. This study presents findings from a systematic review and integration of 41 empirical studies on evaluation in SI contexts. We identify two isolated conversations: one about 'social enterprises' (SEs) and the other about non-SE 'social innovations'. These conversations diverge in key areas, including engagement with evaluation scholarship, and in the reported purposes, approaches and use of evaluation. We identified striking differences with respect to degree of interest in collaborative approaches and facilitation of evaluation use. The findings speak to trends and debates in our field, for example how evaluation might reconcile divergent information needs in multilevel, cross-sectoral collaborations and respond to fluidity and change in innovative settings. Implications for practitioners and commissioners of evaluation include how evaluation is used in different contexts and the voice of evaluators (and the evaluation profession) in these conversations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ultrathin MoS2-coated Ag@Si nanosphere arrays as an efficient and stable photocathode for solar-driven hydrogen production

    NASA Astrophysics Data System (ADS)

    Zhou, Qingwei; Su, Shaoqiang; Hu, Die; Lin, Lin; Yan, Zhibo; Gao, Xingsen; Zhang, Zhang; Liu, Jun-Ming

    2018-03-01

    Solar-driven photoelectrochemical (PEC) water splitting has attracted a great deal of attention recently. Silicon (Si) is an ideal light absorber for solar energy conversion. However, the poor stability and inefficient surface catalysis of Si photocathodes for the hydrogen evolution reaction (HER) have remained key challenges. Alternatively, MoS2 has been reported to exhibit excellent catalysis performance if sufficient active sites for the HER are available. Here, ultrathin MoS2 nanoflakes are directly synthesized to coat arrays of Ag-core Si-shell nanospheres (Ag@Si NSs) by using chemical vapor deposition. Due to the high surface area ratio and large curvature of these NSs, the as-grown MoS2 nanoflakes can accommodate more active sites. In addition, the high-quality coating of MoS2 nanoflakes on the Ag@Si NSs protects the photocathode from damage during the PEC reaction. An photocurrent density of 33.3 mA cm-2 at a voltage of -0.4 V is obtained versus the reversible hydrogen electrode. The as-prepared nanostructure as a hydrogen photocathode is evidenced to have high stability over 12 h PEC performance. This work opens up opportunities for composite photocathodes with high activity and stability using cheap and stable co-catalysts.

  5. Mechanical characteristics of mesenchymal stem cells under impact of silica-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Ogneva, Irina V.; Buravkov, Sergey V.; Shubenkov, Alexander N.; Buravkova, Ludmila B.

    2014-06-01

    Silica-based nanoparticles (NPs) pose great potential for medical and biological applications; however, their interactions with living cells have not been investigated in full. The objective of this study was to analyze the mechanical characteristics of mesenchymal stem cells when cultured in the presence of silica (Si) and silica-boron (SiB) nanoparticles. Cell stiffness was measured using atomic force microscopy; F-actin structure was evaluated using TRITC-phalloidin by confocal microscopy. The obtained data suggested that the cell stiffness increased within the following line: `Control' - `Si' - `SiB' (either after 1-h cultivation or 24-h incubation). Moreover, the cell stiffness was found to be higher after 1-h cultivation as compared to 24-h cultivation. This result shows that there is a two-phase process of particle diffusion into cells and that the particles interact directly with the membrane and, further, with the submembranous cytoskeleton. Conversely, the intensity of phalloidin fluorescence dropped within the same line: Control - Si - SiB. It could be suggested that the effects of silica-based particles may result in structural reorganization of cortical cytoskeleton with subsequent stiffness increase and concomitant F-actin content decrease (for example, in recruitment of additional actin-binding proteins within membrane and regrouping of actin filaments).

  6. Integrated MoSe2 with n+p-Si photocathodes for solar water splitting with high efficiency and stability

    NASA Astrophysics Data System (ADS)

    Huang, Guanping; Mao, Jie; Fan, Ronglei; Yin, Zhihao; Wu, Xi; Jie, Jiansheng; Kang, Zhenhui; Shen, Mingrong

    2018-01-01

    Many earth-abundant transition metal dichalcogenides (TMDs) have been employed as catalysts for H2 evolution reaction (HER); however, their impactful integration onto photocathodes for photoelectrochemical (PEC) HER is less developed. In this study, we directly sputtered a MoSe2 catalyst onto an n+p-Si photocathode for efficient and stable PEC-HER. An onset potential of 0.4 V vs. RHE, a saturated photocurrent of 29.3 mA/cm2, a fill factor of 0.32, and an energy conversion efficiency of 3.8% were obtained under 100 mA/cm2 Xe lamp illumination. Such superior PEC properties were ascribed to the nearly vertically standing two dimensional MoSe2 rough surface layer and the sharp interface between Si and MoSe2 with small charge transfer resistance. The balance between the reflectivity of the electrode surface and the absorptivity of MoSe2 was also discussed. In addition, the MoSe2 layer can protect the n+p-Si photocathode with a 120 h stability due to its initial growth on Si with high flatness and compactness. This study provides a path to the effective and scalable growth of TMDs onto the Si photocathode aiming for high efficiency and stability.

  7. Ultrathin MoS2-coated Ag@Si nanosphere arrays as an efficient and stable photocathode for solar-driven hydrogen production.

    PubMed

    Zhou, Qingwei; Su, Shaoqiang; Hu, Die; Lin, Lin; Yan, Zhibo; Gao, Xingsen; Zhang, Zhang; Liu, Jun-Ming

    2018-01-30

    Solar-driven photoelectrochemical (PEC) water splitting has attracted a great deal of attention recently. Silicon (Si) is an ideal light absorber for solar energy conversion. However, the poor stability and inefficient surface catalysis of Si photocathodes for the hydrogen evolution reaction (HER) have remained key challenges. Alternatively, MoS 2 has been reported to exhibit excellent catalysis performance if sufficient active sites for the HER are available. Here, ultrathin MoS 2 nanoflakes are directly synthesized to coat arrays of Ag-core Si-shell nanospheres (Ag@Si NSs) by using chemical vapor deposition. Due to the high surface area ratio and large curvature of these NSs, the as-grown MoS 2 nanoflakes can accommodate more active sites. In addition, the high-quality coating of MoS 2 nanoflakes on the Ag@Si NSs protects the photocathode from damage during the PEC reaction. An photocurrent density of 33.3 mA cm -2 at a voltage of -0.4 V is obtained versus the reversible hydrogen electrode. The as-prepared nanostructure as a hydrogen photocathode is evidenced to have high stability over 12 h PEC performance. This work opens up opportunities for composite photocathodes with high activity and stability using cheap and stable co-catalysts.

  8. Mechanical characteristics of mesenchymal stem cells under impact of silica-based nanoparticles.

    PubMed

    Ogneva, Irina V; Buravkov, Sergey V; Shubenkov, Alexander N; Buravkova, Ludmila B

    2014-01-01

    Silica-based nanoparticles (NPs) pose great potential for medical and biological applications; however, their interactions with living cells have not been investigated in full. The objective of this study was to analyze the mechanical characteristics of mesenchymal stem cells when cultured in the presence of silica (Si) and silica-boron (SiB) nanoparticles. Cell stiffness was measured using atomic force microscopy; F-actin structure was evaluated using TRITC-phalloidin by confocal microscopy. The obtained data suggested that the cell stiffness increased within the following line: 'Control' - 'Si' - 'SiB' (either after 1-h cultivation or 24-h incubation). Moreover, the cell stiffness was found to be higher after 1-h cultivation as compared to 24-h cultivation. This result shows that there is a two-phase process of particle diffusion into cells and that the particles interact directly with the membrane and, further, with the submembranous cytoskeleton. Conversely, the intensity of phalloidin fluorescence dropped within the same line: Control - Si - SiB. It could be suggested that the effects of silica-based particles may result in structural reorganization of cortical cytoskeleton with subsequent stiffness increase and concomitant F-actin content decrease (for example, in recruitment of additional actin-binding proteins within membrane and regrouping of actin filaments).

  9. Characteristics of a ceramic-substrate x-ray diode and its application to computed tomography

    NASA Astrophysics Data System (ADS)

    Watanabe, Manabu; Sato, Eiichi; Kodama, Hajime; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira

    2013-09-01

    X-ray photon counting was performed using a silicon X-ray diode (Si-XD) at a tube current of 2.0 mA and tube voltages ranging from 50 to 70 kV. The Si-XD is a high-sensitivity Si photodiode selected for detecting X-ray photons, and Xray photons are directly detected using the Si-XD without a scintillator. Photocurrent from the diode is amplified using charge-sensitive and shaping amplifiers. To investigate the X-ray-electric conversion, we performed the event-pulseheight (EPH) analysis using a multichannel analyzer. Photon-counting computed tomography (PC-CT) is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The exposure time for obtaining a tomogram was 10 min at a scan step of 0.5 mm and a rotation step of 1.0°. In PC-CT at a tube voltage of 70 kV, the image contrast of iodine media fell with increasing lower-level voltage of the event pulse using a comparator.

  10. Facile Reductive Silylation of UO22+ to Uranium(IV) Chloride.

    PubMed

    Kiernicki, John J; Zeller, Matthias; Bart, Suzanne C

    2017-01-19

    General reductive silylation of the UO 2 2+ cation occurs readily in a one-pot, two-step stoichiometric reaction at room temperature to form uranium(IV) siloxides. Addition of two equivalents of an alkylating reagent to UO 2 X 2 (L) 2 (X=Cl, Br, I, OTf; L=triphenylphosphine oxide, 2,2'-bipyridyl) followed by two equivalents of a silyl (pseudo)halide, R 3 Si-X (R=aryl, alkyl, H; X=Cl, Br, I, OTf, SPh), cleanly affords (R 3 SiO) 2 UX 2 (L) 2 in high yields. Support is included for the key step in the process, reduction of U VI to U V . This procedure is applicable to a wide range of commercially available uranyl salts, silyl halides, and alkylating reagents. Under this protocol, one equivalent of SiCl 4 or two equivalents of Me 2 SiCl 2 results in direct conversion of the uranyl to uranium(IV) tetrachloride. Full spectroscopic and structural characterization of the siloxide products is reported. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nitride Conversion: A Novel Approach to c-Si Solar Cell Metallization

    NASA Astrophysics Data System (ADS)

    Hook, David Henry

    Metallization of commercial-grade c-Si solar cells is currently accomplished by screen-printing fine lines of a Ag/PbO-glass paste amalgam (Ag-frit) onto the insulating SiNx antireflective coating (ARC) that lies atop the shallow n-type emitter layer of the cell. Upon annealing, the glass etches SiNx and permits the crystallization of Ag near the electrically-active emitter interface, thus contacting the cell. While entirely functional, the contact interface produced by Ag-frit metallization is non-ideal, and Ag metal itself is expensive; its use adds to overall solar cell costs. The following work explores the use of Ti-containing alloys as metallization media for c-Si solar cells. There is a -176 kJ [mol N]--1 free energy change associated with the conversion of Si3N4 to TiN. By combining Ti with a low-melting point metal, this reaction can take place at temperatures as low as 750°C in the bulk. Combinations of Ti with Cu, Sn, Ag, and Pb ternary and binary systems are investigated. On unmetallized, c-Si textured solar cells it is shown that 900 nm of stoichiometric Ti6Sn 5 is capable of converting the SiNx ARC to TiN and Ti5Si3, both of which are conducting materials with electrically low-barriers to contact with n-type Si. Alongside electron microscopy, specific contact resistivity (rho c) measurements are used to determine the interfacial quality of TiN/Ti5Si3 contacts to n-Si. Circular transmission line model (CTLM) measurements are utilized for the characterization of reacted Ag0.05Cu0.69Ti0.26, Sn0.35 Ag0.27Ti0.38, and Ti6Sn5 contacts. rhoc values as low as 26 muOcm 2 are measured for reacted Ti6Sn5-SiN x on conventional c-Si solar cells. This value is approximately 2-3 orders of magnitude lower than rhoc of contacts produced by traditional Ag-frit metallization. Viable 1x1 cm, Ti6Sn5-metallized solar cells on 5x5 cm substrates were fabricated through a collaboration with the Georgia Institute of Technology (GA Tech). Front-side metallization was performed at NCSU; cells were then shipped to GA Tech for rear-side metallization, Ag-plating to increase the metal thickness, and cell isolation. This collaboration produced a 16.9% efficient, Ti6Sn5-metallized cell compared to a 17.4% efficient Ag frit-metallized control cell that had experienced an identical temperature profile. It was found that the annealing profiles associated with conversion-metallization promote H2 desorption from the SiN x ARC and thus negatively affect cell passivation. Strategies exist for decreasing the heat experienced by conversion-metallized cells, doing so would increase the overall efficiency and improve other relevant metrics. Solar industry analysis indicates that c-Si cells will increase in efficiency by switching to high sheet-resistance p-type emitters; there will be a marked need for a contact mechanism with a near-ideal, low barrier-height interfaces to these next-generation layers. SiN x ARC conversion to TiN/Ti5Si3 represents an economical means of achieving low rhoc contact to both n and p-type Si when compared to metallization by Ag frit.

  12. Catalytic conversion of isophorone to jet-fuel range aromatic hydrocarbons over a MoO(x)/SiO2 catalyst.

    PubMed

    Chen, Fang; Li, Ning; Wang, Wentao; Wang, Aiqin; Cong, Yu; Wang, Xiaodong; Zhang, Tao

    2015-07-28

    For the first time, jet fuel range C8-C9 aromatic hydrocarbons were synthesized in high carbon yield (∼80%) by the catalytic conversion of isophorone over MoO(x)/SiO2 at atmospheric pressure. A possible reaction pathway was proposed according to the control experiments and the intermediates generated during the reaction.

  13. β-FeSi II as a Kankyo (environmentally friendly) semiconductor for solar cells in the space application

    NASA Astrophysics Data System (ADS)

    Makita, Yunosuke; Ootsuka, Teruhisa; Fukuzawa, Yasuhiro; Otogawa, Naotaka; Abe, Hironori; Liu, Zhengxin; Nakayama, Yasuhiko

    2006-04-01

    β-FeSi II defined as a Kankyo (Environmentally Friendly) semiconductor is regarded as one of the 3-rd generation semiconductors after Si and GaAs. Versatile features about β-FeSi II are, i) high optical absorption coefficient (>10 5cm -1), ii) chemical stability at temperatures as high as 937°C, iii) high thermoelectric power (Seebeck coefficient of k ~ 10 -4/K), iv) a direct energy band-gap of 0.85 eV, corresponding to 1.5μm of quartz optical fiber communication, v) lattice constant nearly well-matched to Si substrate, vi) high resistance against the humidity, chemical attacks and oxidization. Using β-FeSi II films, one can fabricate various devices such as Si photosensors, solar cells and thermoelectric generators that can be integrated basically on Si-LSI circuits. β-FeSi II has high resistance against the exposition of cosmic rays and radioactive rays owing to the large electron-empty space existing in the electron cloud pertinent to β-FeSi II. Further, the specific gravity of β-FeSi II (4.93) is placed between Si (2.33) and GaAs ((5.33). These features together with the aforementioned high optical absorption coefficient are ideal for the fabrication of solar cells to be used in the space. To demonstrate fascinating capabilities of β-FeSi II, one has to prepare high quality β-FeSi II films. We in this report summarize the current status of β-FeSi II film preparation technologies. Modified MBE and facing-target sputtering (FTS) methods are principally discussed. High quality β-FeSi II films have been formed on Si substrates by these methods. Preliminary structures of n-β-FeSi II /p-Si and p-β-FeSi II /n-Si solar cells indicated an energy conversion efficiency of 3.7%, implying that β-FeSi II is practically a promising semiconductor for a photovoltaic device.

  14. SiC/Si diode trigger circuit provides automatic range switching for log amplifier

    NASA Technical Reports Server (NTRS)

    1967-01-01

    SiC/Si diode pair provides automatic range change to extend the operating range of a logarithmic amplifier-conversion circuit and assures stability at or near the range switch-over point. the diode provides hysteresis for a trigger circuit that actuates a relay at the desired range extension point.

  15. Synthesis and characterization of barium silicide (BaSi2) nanowire arrays for potential solar applications.

    PubMed

    Pokhrel, Ankit; Samad, Leith; Meng, Fei; Jin, Song

    2015-11-07

    In order to utilize nanostructured materials for potential solar and other energy-harvesting applications, scalable synthetic techniques for these materials must be developed. Herein we use a vapor phase conversion approach to synthesize nanowire (NW) arrays of semiconducting barium silicide (BaSi2) in high yield for the first time for potential solar applications. Dense arrays of silicon NWs obtained by metal-assisted chemical etching were converted to single-crystalline BaSi2 NW arrays by reacting with Ba vapor at about 930 °C. Structural characterization by X-ray diffraction and high-resolution transmission electron microscopy confirm that the converted NWs are single-crystalline BaSi2. The optimal conversion reaction conditions allow the phase-pure synthesis of BaSi2 NWs that maintain the original NW morphology, and tuning the reaction parameters led to a controllable synthesis of BaSi2 films on silicon substrates. The optical bandgap and electrochemical measurements of these BaSi2 NWs reveal a bandgap and carrier concentrations comparable to previously reported values for BaSi2 thin films.

  16. Enhanced conversion efficiency in wide-bandgap GaNP solar cells

    DOE PAGES

    Sukrittanon, Supanee; Liu, Ren; Ro, Yun Goo; ...

    2015-10-12

    In this study, we demonstrate –2.05 eV dilute nitride GaNP solar cells on GaP substrates for potential use as the top junction in dual-junction integrated cells on Si. By adding a small amount of N into indirect-bandgap GaP, GaNP has several extremely important attributes: a direct-bandgap that is also tunable, and easily attained lattice-match with Si. Our best GaNP solar cell ([N] –1.8%, E g –2.05 eV) achieves an efficiency of 7.9%, even in the absence of a window layer. This GaNP solar cell's efficiency is 3× higher than the most efficient GaP solar cell to date and higher thanmore » other solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance are demonstrated.« less

  17. A novel yellow-emitting SrAlSi4N7:Ce3+ phosphor for solid state lighting: Synthesis, electronic structure and photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Ruan, Jian; Xie, Rong-Jun; Funahashi, Shiro; Tanaka, Yoshinori; Takeda, Takashi; Suehiro, Takayuki; Hirosaki, Naoto; Li, Yuan-Qiang

    2013-12-01

    Ce3+-doped and Ce3+/Li+-codoped SrAlSi4N7 phosphors were synthesized by gas pressure sintering of powder mixtures of Sr3N2, AlN, α-Si3N4, CeN and Li3N. The phase purity, electronic crystal structure, photoluminescence properties of SrAlSi4N7:Ce3+(Ce3+/Li+) were investigated in this work. The band structure calculated by the DMol3 code shows that SrAlSi4N7 has a direct band gap of 3.87 eV. The single crystal analysis of Ce3+-doped SrAlSi4N7 indicates a disordered Si/Al distribution and nitrogen vacnacy defects. SrAlSi4N7 was identified as a major phase of the fired powders, and Sr5Al5Si21N35O2 and AlN as minor phases. Both Ce3+ and Ce3+/Li+ doped SrAlSi4N7 phosphors can be efficiently excited by near-UV or blue light and show a broadband yellow emission peaking around 565 nm. A highest external quantum efficiency of 38.3% under the 450 nm excitation was observed for the Ce3+/Li+-doped SrAlSi4N7 (5 mol%). A white light LED lamp with color temperature of 6300 K and color rendering index of Ra=78 was achieved by combining Sr0.97Al1.03Si3.997N\\94\\maccounttest14=t0005_18193 7:Ce3+0.03 with a commercial blue InGaN chip. It indicates that SrAlSi4N7:Ce3+ is a promising yellow emitting down-conversion phosphor for white LEDs.

  18. Laser induced local structural and property modifications in semiconductors for electronic and photonic superstructures - Silicon carbide to graphene conversion

    NASA Astrophysics Data System (ADS)

    Yue, Naili

    Graphene is a single atomic layer two-dimensional (2D) hexagonal crystal of carbon atoms with sp2-bonding. Because of its various special or unique properties, graphene has attracted huge attention and considerable interest in recent years. This PhD research work focuses on the development of a novel approach to fabricating graphene micro- and nano-structures using a 532 nm Nd:YAG laser, a technique based on local conversion of 3C-SiC thin film into graphene. Different from other reported laser-induced graphene on single crystalline 4H- or 6H- SiC, this study focus on 3C-SiC polycrystal film grown using MBE. Because the SiC thin film is grown on silicon wafer, this approach may potentially lead to various new technologies that are compatible with those of Si microelectronics for fabricating graphene-based electronic, optoelectronic, and photonic devices. The growth conditions for depositing 3C-SiC using MBE on Si wafers with three orientations, (100), (110), and (111), were evaluated and explored. The surface morphology and crystalline structure of 3C-SiC epilayer were investigated with SEM, AFM, XRD, μ-Raman, and TEM. The laser modification process to convert 3C-SiC into graphene layers has been developed and optimized by studying the quality dependence of the graphene layers on incident power, irradiation time, and surface morphology of the SiC film. The laser and power density used in this study which focused on thin film SiC was compared with those used in other related research works which focused on bulk SiC. The laser-induced graphene was characterized with μ-Raman, SEM/EDS, TEM, AFM, and, I-V curve tracer. Selective deposition of 3C-SiC thin film on patterned Si substrate with SiO2 as deposition mask has been demonstrated, which may allow the realization of graphene nanostructures (e.g., dots and ribbons) smaller than the diffraction limit spot size of the laser beam, down to the order of 100 nm. The electrical conductance of directly written graphene micro-ribbon (< 1 μm) was measured via overlaying two micro-electrodes using e-beam lithography and e-beam evaporation. The crystalline quality (stacking order, defect or disorder, strain, crystallite size, etc.) of laser-induced graphene was analyzed using Raman spectroscopy through the comparison with pristine natural graphite and CVD-grown monolayer graphene on SiO2/Si and other substrates. The experimental results reveal the feasibility of laser modification techniques as an efficient, inexpensive, and versatile (any shape and location) means in local synthesis of graphene, especially in patterning graphene nanostructures. Different from other laser induced graphene research works, which were concentrated on bulk SiC wafers, this PhD research work focuses on thin film SiC grown on Si (111) for the first time.

  19. Conversion factors: SI metric and U.S. customary units

    USGS Publications Warehouse

    ,

    1977-01-01

    The policy of the U.S. Geological Survey is to foster use of the International System of Units (SI) which was defined by the 11th General Conference of Weights and Measures in 1960. This modernized metric system constitutes an international "language" by means of which communications throughout the world's scientific and economic communities may be improved. This publication is designed to familiarize the reader with the SI units of measurement that correspond to the common units frequently used in programs of the Geological Survey. In the near future, SI units will be used exclusively in most publications of the Survey; the conversion factors provided herein will help readers to obtain a "feel" for each unit and to "think metric."

  20. Nanostructured germanium deposited on heated substrates with enhanced photoelectric properties.

    PubMed

    Stavarache, Ionel; Maraloiu, Valentin Adrian; Prepelita, Petronela; Iordache, Gheorghe

    2016-01-01

    Obtaining high-quality materials, based on nanocrystals, at low temperatures is one of the current challenges for opening new paths in improving and developing functional devices in nanoscale electronics and optoelectronics. Here we report a detailed investigation of the optimization of parameters for the in situ synthesis of thin films with high Ge content (50 %) into SiO 2 . Crystalline Ge nanoparticles were directly formed during co-deposition of SiO 2 and Ge on substrates at 300, 400 and 500 °C. Using this approach, effects related to Ge-Ge spacing are emphasized through a significant improvement of the spatial distribution of the Ge nanoparticles and by avoiding multi-step fabrication processes or Ge loss. The influence of the preparation conditions on structural, electrical and optical properties of the fabricated nanostructures was studied by X-ray diffraction, transmission electron microscopy, electrical measurements in dark or under illumination and response time investigations. Finally, we demonstrate the feasibility of the procedure by the means of an Al/n-Si/Ge:SiO 2 /ITO photodetector test structure. The structures, investigated at room temperature, show superior performance, high photoresponse gain, high responsivity (about 7 AW -1 ), fast response time (0.5 µs at 4 kHz) and great optoelectronic conversion efficiency of 900% in a wide operation bandwidth, from 450 to 1300 nm. The obtained photoresponse gain and the spectral width are attributed mainly to the high Ge content packed into a SiO 2 matrix showing the direct connection between synthesis and optical properties of the tested nanostructures. Our deposition approach put in evidence the great potential of Ge nanoparticles embedded in a SiO 2 matrix for hybrid integration, as they may be employed in structures and devices individually or with other materials, hence the possibility of fabricating various heterojunctions on Si, glass or flexible substrates for future development of Si-based integrated optoelectronics.

  1. Wafer-scale high-throughput ordered arrays of Si and coaxial Si/Si(1-x)Ge(x) wires: fabrication, characterization, and photovoltaic application.

    PubMed

    Pan, Caofeng; Luo, Zhixiang; Xu, Chen; Luo, Jun; Liang, Renrong; Zhu, Guang; Wu, Wenzhuo; Guo, Wenxi; Yan, Xingxu; Xu, Jun; Wang, Zhong Lin; Zhu, Jing

    2011-08-23

    We have developed a method combining lithography and catalytic etching to fabricate large-area (uniform coverage over an entire 5-in. wafer) arrays of vertically aligned single-crystal Si nanowires with high throughput. Coaxial n-Si/p-SiGe wire arrays are also fabricated by further coating single-crystal epitaxial SiGe layers on the Si wires using ultrahigh vacuum chemical vapor deposition (UHVCVD). This method allows precise control over the diameter, length, density, spacing, orientation, shape, pattern and location of the Si and Si/SiGe nanowire arrays, making it possible to fabricate an array of devices based on rationally designed nanowire arrays. A proposed fabrication mechanism of the etching process is presented. Inspired by the excellent antireflection properties of the Si/SiGe wire arrays, we built solar cells based on the arrays of these wires containing radial junctions, an example of which exhibits an open circuit voltage (V(oc)) of 650 mV, a short-circuit current density (J(sc)) of 8.38 mA/cm(2), a fill factor of 0.60, and an energy conversion efficiency (η) of 3.26%. Such a p-n radial structure will have a great potential application for cost-efficient photovoltaic (PV) solar energy conversion. © 2011 American Chemical Society

  2. Modeling Single-Event Transient Propagation in a SiGe BiCMOS Direct-Conversion Receiver

    NASA Astrophysics Data System (ADS)

    Ildefonso, Adrian; Song, Ickhyun; Tzintzarov, George N.; Fleetwood, Zachary E.; Lourenco, Nelson E.; Wachter, Mason T.; Cressler, John D.

    2017-08-01

    The propagation of single-event transient (SET) signals in a silicon-germanium direct-conversion receiver carrying modulated data is explored. A theoretical analysis of transient propagation, verified by simulation, is presented. A new methodology to characterize and quantify the impact of SETs in communication systems carrying modulated data is proposed. The proposed methodology uses a pulsed radiation source to induce distortions in the signal constellation. The error vector magnitude due to SETs can then be calculated to quantify errors. Two different modulation schemes were simulated: QPSK and 16-QAM. The distortions in the constellation diagram agree with the presented circuit theory. Furthermore, the proposed methodology was applied to evaluate the improvements in the SET response due to a known radiation-hardening-by-design (RHBD) technique, where the common-base device of the low-noise amplifier was operated in inverse mode. The proposed methodology can be a valid technique to determine the most sensitive parts of a system carrying modulated data.

  3. Direct growth of graphene-dielectric bi-layer structure on device substrates from Si-based polymer

    NASA Astrophysics Data System (ADS)

    Seo, Hong-Kyu; Kim, Kyunghun; Min, Sung-Yong; Lee, Yeongjun; Eon Park, Chan; Raj, Rishi; Lee, Tae-Woo

    2017-06-01

    To facilitate the utilization of graphene films in conventional semiconducting devices (e.g. transistors and memories) which includes an insulating layer such as gate dielectric, facile synthesis of bi-layers composed of a graphene film and an insulating layer by one-step thermal conversion will be very important. We demonstrate a simple, inexpensive, scalable and patternable process to synthesize graphene-dielectric bi-layer films from solution-processed polydimethylsiloxane (PDMS) under a Ni capping layer. This method fabricates graphene-dielectric bi-layer structure simultaneously directly on substrate by thermal conversion of PDMS without using additional graphene transfer and patterning process or formation of an expensive dielectric layer, which makes the device fabrication process much easier. The graphene-dielectric bi-layer on a conducting substrate was used in bottom-contact pentacene field-effect transistors that showed ohmic contact and small hysteresis. Our new method will provide a way to fabricate flexible electronic devices simply and inexpensively.

  4. Ultrafast laser direct hard-mask writing for high efficiency c-Si texture designs

    NASA Astrophysics Data System (ADS)

    Kumar, Kitty; Lee, Kenneth K. C.; Nogami, Jun; Herman, Peter R.; Kherani, Nazir P.

    2013-03-01

    This study reports a high-resolution hard-mask laser writing technique to facilitate the selective etching of crystalline silicon (c-Si) into an inverted-pyramidal texture with feature size and periodicity on the order of the wavelength which, thus, provides for both anti-reflection and effective light-trapping of infrared and visible light. The process also enables engineered positional placement of the inverted-pyramid thereby providing another parameter for optimal design of an optically efficient pattern. The proposed technique, a non-cleanroom process, is scalable for large area micro-fabrication of high-efficiency thin c-Si photovoltaics. Optical wave simulations suggest the fabricated textured surface with 1.3 μm inverted-pyramids and a single anti-reflective coating increases the relative energy conversion efficiency by 11% compared to the PERL-cell texture with 9 μm inverted pyramids on a 400 μm thick wafer. This efficiency gain is anticipated to improve further for thinner wafers due to enhanced diffractive light trapping effects.

  5. Heterogeneous reduction of carbon dioxide by hydride-terminated silicon nanocrystals

    PubMed Central

    Sun, Wei; Qian, Chenxi; He, Le; Ghuman, Kulbir Kaur; Wong, Annabelle P. Y.; Jia, Jia; Jelle, Abdinoor A.; O'Brien, Paul G.; Reyes, Laura M.; Wood, Thomas E.; Helmy, Amr S.; Mims, Charles A.; Singh, Chandra Veer; Ozin, Geoffrey A.

    2016-01-01

    Silicon constitutes 28% of the earth's mass. Its high abundance, lack of toxicity and low cost coupled with its electrical and optical properties, make silicon unique among the semiconductors for converting sunlight into electricity. In the quest for semiconductors that can make chemicals and fuels from sunlight and carbon dioxide, unfortunately the best performers are invariably made from rare and expensive elements. Here we report the observation that hydride-terminated silicon nanocrystals with average diameter 3.5 nm, denoted ncSi:H, can function as a single component heterogeneous reducing agent for converting gaseous carbon dioxide selectively to carbon monoxide, at a rate of hundreds of μmol h−1 g−1. The large surface area, broadband visible to near infrared light harvesting and reducing power of SiH surface sites of ncSi:H, together play key roles in this conversion. Making use of the reducing power of nanostructured hydrides towards gaseous carbon dioxide is a conceptually distinct and commercially interesting strategy for making fuels directly from sunlight. PMID:27550234

  6. Common conversion factors.

    PubMed

    2001-05-01

    This appendix presents tables of some of the more common conversion factors for units of measure used throughout Current Protocols manuals, as well as prefixes indicating powers of ten for SI units. Another table gives conversions between temperatures on the Celsius (Centigrade) and Fahrenheit scales.

  7. Single Grain Boundary Modeling and Design of Microcrystalline Si Solar Cells.

    PubMed

    Lin, Chu-Hsuan; Hsu, Wen-Tzu; Tai, Cheng-Hung

    2013-01-21

    For photovoltaic applications, microcrystalline silicon has a lot of advantages, such as the ability to absorb the near-infrared part of the solar spectrum. However, there are many dangling bonds at the grain boundary in microcrystalline Si. These dangling bonds would lead to the recombination of photo-generated carriers and decrease the conversion efficiency. Therefore, we included the grain boundary in the numerical study in order to simulate a microcrystalline Si solar cell accurately, designing new three-terminal microcrystalline Si solar cells. The 3-μm-thick three-terminal cell achieved a conversion efficiency of 10.8%, while the efficiency of a typical two-terminal cell is 9.7%. The three-terminal structure increased the J SC but decreased the V OC , and such phenomena are discussed. High-efficiency and low-cost Si-based thin film solar cells can now be designed based on the information provided in this paper.

  8. Single Grain Boundary Modeling and Design of Microcrystalline Si Solar Cells

    PubMed Central

    Lin, Chu-Hsuan; Hsu, Wen-Tzu; Tai, Cheng-Hung

    2013-01-01

    For photovoltaic applications, microcrystalline silicon has a lot of advantages, such as the ability to absorb the near-infrared part of the solar spectrum. However, there are many dangling bonds at the grain boundary in microcrystalline Si. These dangling bonds would lead to the recombination of photo-generated carriers and decrease the conversion efficiency. Therefore, we included the grain boundary in the numerical study in order to simulate a microcrystalline Si solar cell accurately, designing new three-terminal microcrystalline Si solar cells. The 3-μm-thick three-terminal cell achieved a conversion efficiency of 10.8%, while the efficiency of a typical two-terminal cell is 9.7%. The three-terminal structure increased the JSC but decreased the VOC, and such phenomena are discussed. High-efficiency and low-cost Si-based thin film solar cells can now be designed based on the information provided in this paper. PMID:28809309

  9. Kinetic analysis of the combustion synthesis of molybdenum and titanium silicides

    NASA Astrophysics Data System (ADS)

    Wang, Lily L.; Munir, Z. A.

    1995-05-01

    The temperature profiles associated with the passage of self-propagating combustion waves during the synthesis of MoSi2 and Ti5Si3 were determined. From these profiles, kinetic analyses of the combustion synthesis process for these two silicides were made. The synthesis is associated with high heating rates: 1.3 × 104 and 4.9 × 104 K·s-1 for MoSi2 and Ti5Si3, respectively. The width of the combustion zone was determined as 1.3 and 1.8 mm for the silicides of Mo and Ti, respectively. The degree of conversion, η, and its spatial distribution and the conversion rate, ∂η/∂t, were determined. However, because of the inherent characteristics of wave propagation in MoSi2, only in the case of Ti5Si3 could the activation energy be calculated. An average value of 190 kJ µ mol-1 was determined for titanium suicide.

  10. Vacancy-oxygen defects in p-type Si1-xGex

    NASA Astrophysics Data System (ADS)

    Sgourou, E. N.; Londos, C. A.; Chroneos, A.

    2014-10-01

    Oxygen-vacancy defects and, in particular, the VO pairs (known as A-centers) are common defects in silicon (Si) with a deleterious impact upon its properties. Although oxygen-vacancy defects have been extensively studied in Si there is far less information about their properties in p-type doped silicon germanium (Si1-xGex). Here, we use Fourier transform infrared spectroscopy to determine the production and evolution of oxygen-vacancy defects in p-type Si1-xGex. It was determined that the increase of Ge content affects the production and the annealing behavior of the VO defect as well as its conversion to the VO2 defect. In particular, both the VO production and the VO annealing temperature are reduced with the increase of Ge. The conversion ratio [VO2]/[VO] also decreases with the increase of x, although the ratios [VO3]/[VO2] and [VO4]/[VO3] show a tendency to increase for larger Ge contents. The results are discussed in view of recent experimental and theoretical studies in Si and Si1-xGex.

  11. A SiC MOSFET Based Inverter for Wireless Power Transfer Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onar, Omer C; Chinthavali, Madhu Sudhan; Campbell, Steven L

    2014-01-01

    In a wireless power transfer (WPT) system, efficiency of the power conversion stages is crucial so that the WPT technology can compete with the conventional conductive charging systems. Since there are 5 or 6 power conversion stages, each stage needs to be as efficient as possible. SiC inverters are crucial in this case; they can handle high frequency operation and they can operate at relatively higher temperatures resulting in reduces cost and size for the cooling components. This study presents the detailed power module design, development, and fabrication of a SiC inverter. The proposed inverter has been tested at threemore » center frequencies that are considered for the WPT standardization. Performance of the inverter at the same target power transfer level is analyzed along with the other system components. In addition, another SiC inverter has been built in authors laboratory by using the ORNL designed and developed SiC modules. It is shown that the inverter with ORNL packaged SiC modules performs simular to that of the inverter having commercially available SiC modules.« less

  12. Metrication and AIHA.

    PubMed

    Burnett, R D

    1977-05-01

    AIHA supports a planned orderly national program for conversion to the metric system and will cooperate with other technical societies and organizations in implementing this voluntary conversion. The Association will use the International System of Units (SI) as modified by the Secretary of Commerce for use in the United States in all official publications, papers and documents. U.S. customary units can be presented in parentheses following the appropriate SI unit, when it is necessary for clarity.

  13. Soft-template construction of three-dimensionally ordered inverse opal structure from Li2FeSiO4/C composite nanofibers for high-rate lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Donglin; Zhang, Wei; Sun, Ru; Yong, Hong-Tuan-Hua; Chen, Guangqi; Fan, Xiaoyong; Gou, Lei; Mao, Yiyang; Zhao, Kun; Tian, Miao

    2016-06-01

    Exploring a new method to fabricate small-sized nanofibers is essential to achieve superior performances for energy conversion and storage devices. Here, a novel soft-template strategy is developed to synthesize a three-dimensionally ordered macroporous (3DOM) architecture constructed from small-sized nanofibers. The effectiveness of a nanofiber-assembled three-dimensional inverse opal material as an electrode for high-rate lithium-ion batteries is demonstrated. The small-sized Li2FeSiO4/C composite nanofibers with a diameter of 20-30 nm are grown by employing a tri-block copolymer P123 as a structure directing agent. Accordingly, the macro-mesoporous hierarchical 3DOM architecture constructed from Li2FeSiO4/C nanofibers is further templated from P123 for the nanofibers and a polystyrene colloidal crystal array for the 3DOM architecture. We find that the thermal stability of the nanofiber morphology depends on the self-limited growth of Li2FeSiO4 nanocrystals in a crystalline-amorphous hybrid. As a cathode for a lithium-ion battery, the 3D hierarchical macro-mesoporous cathodes exhibit outstanding high-rate and ultralong-life performances with a capacity retention of 84% after 1500 cycles at 5 C in the voltage window of 1.5-4.5 V, which is greatly improved compared with a simple 3DOM Li2FeSiO4/C nanocomposite.Exploring a new method to fabricate small-sized nanofibers is essential to achieve superior performances for energy conversion and storage devices. Here, a novel soft-template strategy is developed to synthesize a three-dimensionally ordered macroporous (3DOM) architecture constructed from small-sized nanofibers. The effectiveness of a nanofiber-assembled three-dimensional inverse opal material as an electrode for high-rate lithium-ion batteries is demonstrated. The small-sized Li2FeSiO4/C composite nanofibers with a diameter of 20-30 nm are grown by employing a tri-block copolymer P123 as a structure directing agent. Accordingly, the macro-mesoporous hierarchical 3DOM architecture constructed from Li2FeSiO4/C nanofibers is further templated from P123 for the nanofibers and a polystyrene colloidal crystal array for the 3DOM architecture. We find that the thermal stability of the nanofiber morphology depends on the self-limited growth of Li2FeSiO4 nanocrystals in a crystalline-amorphous hybrid. As a cathode for a lithium-ion battery, the 3D hierarchical macro-mesoporous cathodes exhibit outstanding high-rate and ultralong-life performances with a capacity retention of 84% after 1500 cycles at 5 C in the voltage window of 1.5-4.5 V, which is greatly improved compared with a simple 3DOM Li2FeSiO4/C nanocomposite. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07783d

  14. Electromagnetic Spectrum Analysis and Its Influence on the Photoelectric Conversion Efficiency of Solar Cells.

    PubMed

    Hu, Kexiang; Ding, Enjie; Wangyang, Peihua; Wang, Qingkang

    2016-06-01

    The electromagnetic spectrum and the photoelectric conversion efficiency of the silicon hexagonal nanoconical hole (SiHNH) arrays based solar cells is systematically analyzed according to Rigorous Coupled Wave Analysis (RCWA) and Modal Transmission Line (MTL) theory. An ultimate efficiency of the optimized SiHNH arrays based solar cell is up to 31.92% in consideration of the absorption spectrum, 4.52% higher than that of silicon hexagonal nanoconical frustum (SiHNF) arrays. The absorption enhancement of the SiHNH arrays is due to its lower reflectance and more supported guided-mode resonances, and the enhanced ultimate efficiency is insensitive to bottom diameter (D(bot)) of nanoconical hole and the incident angle. The result provides an additional guideline for the nanostructure surface texturing fabrication design for photovoltaic applications.

  15. Characteristics of GaAs with inverted thermal conversion

    NASA Technical Reports Server (NTRS)

    Kang, C. H.; Lagowski, J.; Gatos, H. C.

    1987-01-01

    GaAs crystals exhibiting inverted thermal conversion (ITC) of resistivity were investigated in conjunction with standard semiinsulating (SI) GaAs regarding characteristics important in device processing. It was established that dislocation density and Si implant activation are unaffected by transformation to the ITC state. However, in ITC GaAs the controlled increase of the EL2 (native midgap donor) concentration during annealing makes it possible to attain resistivities one order of magnitude greater (e.g., about 10 to the 9th ohm cm of 300 K) than those attained in standard SI GaAs (e.g., 10 to the 7th-10 to the 8th ohm cm).

  16. Effective Passivation and Tunneling Hybrid a-SiOx(In) Layer in ITO/n-Si Heterojunction Photovoltaic Device.

    PubMed

    Gao, Ming; Wan, Yazhou; Li, Yong; Han, Baichao; Song, Wenlei; Xu, Fei; Zhao, Lei; Ma, Zhongquan

    2017-05-24

    In this article, using controllable magnetron sputtering of indium tin oxide (ITO) materials on single crystal silicon at 100 °C, the optoelectronic heterojunction frame of ITO/a-SiO x (In)/n-Si is simply fabricated for the purpose of realizing passivation contact and hole tunneling. It is found that the gradation profile of indium (In) element together with silicon oxide (SiO x /In) within the ultrathin boundary zone between ITO and n-Si occurs and is characterized by X-ray photoelectron spectroscopy with the ion milling technique. The atomistic morphology and physical phase of the interfacial layer has been observed with a high-resolution transmission electron microscope. X-ray diffraction, Hall effect measurement, and optical transmittance with Tauc plot have been applied to the microstructure and property analyses of ITO thin films, respectively. The polycrystalline and amorphous phases have been verified for ITO films and SiO x (In) hybrid layer, respectively. For the quantum transport, both direct and defect-assisted tunneling of photogenerated holes through the a-SiO x (In) layer is confirmed. Besides, there is a gap state correlative to the indium composition and located at E v + 4.60 eV in the ternary hybrid a-SiO x (In) layer that is predicted by density functional theory of first-principles calculation, which acts as an "extended delocalized state" for direct tunneling of the photogenerated holes. The reasonable built-in potential (V bi = 0.66 V) and optimally controlled ternary hybrid a-SiO x (In) layer (about 1.4 nm) result in that the device exhibits excellent PV performance, with an open-circuit voltage of 0.540 V, a short-circuit current density of 30.5 mA/cm 2 , a high fill factor of 74.2%, and a conversion efficiency of 12.2%, under the AM 1.5 illumination. The work function difference between ITO (5.06 eV) and n-Si (4.31 eV) is determined by ultraviolet photoemission spectroscopy and ascribed to the essence of the built-in-field of the PV device. In addition, the strong inversion layer in the surface of the n-Si substrate is tentatively correlated to the a-SiO x (In) interface layer as well.

  17. Ultra-thin MoS2 coated Ag@Si nanosphere arrays as efficient and stable photocathode for solar-driven hydrogen production.

    PubMed

    Zhou, Qingwei; Su, Shaoqiang; Hu, Die; Lin, Lin; Yan, Zhibo; Gao, Xingsen; Zhang, Zhang; Liu, Junming

    2018-01-02

    Solar-driven photoelectrochemical (PEC) water splitting has recently attracted much attention. Silicon (Si) is an ideal light absorber for solar energy conversion. However, the poor stability and inefficient surface catalysis of Si photocathode for hydrogen evolution reaction (HER) have been remained as the key challenges. Alternatively, MoS2 has been reported to exhibit the excellent catalysis performance if sufficient active sites for the HER are available. Here, ultra-thin MoS2 nanoflakes are directly synthesized to coat on the arrays of Ag-core Si-shell nanospheres (Ag@Si NSs) using the chemical vapor deposition (CVD). Due to the high surface area ratio and large curvature of these NSs, the as-grown MoS2 nanoflakes can accommodate more active sites. Meanwhile, the high-quality coating of MoS2 nanoflakes on the Ag@Si NSs protects the photocathode from damage during the PEC reaction. A high efficiency with a photocurrent of 33.3 mA cm-2 at a voltage of -0.4 V vs. the reversible hydrogen electrode is obtained. The as-prepared nanostructure as hydrogen photocathode is evidenced to have high stability over 12 hour PEC performance. This work opens opportunities for composite photocathode with high activity and stability using cheap and stable co-catalysts. © 2017 IOP Publishing Ltd.

  18. Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons

    NASA Astrophysics Data System (ADS)

    Boriskina, Svetlana V.; Chen, Gang

    2014-03-01

    Maximum efficiency of ideal single-junction photovoltaic (PV) cells is limited to 33% (for 1 sun illumination) by intrinsic losses such as band edge thermalization, radiative recombination, and inability to absorb below-bandgap photons. This intrinsic thermodynamic limit, named after Shockley and Queisser (S-Q), can be exceeded by utilizing low-energy photons either via their electronic up-conversion or via the thermophotovoltaic (TPV) conversion process. However, electronic up-conversion systems have extremely low efficiencies, and practical temperature considerations limit the operation of TPV converters to the narrow-gap PV cells. Here we develop a conceptual design of a hybrid TPV platform, which exploits thermal up-conversion of low-energy photons and is compatible with conventional silicon PV cells by using spectral and directional selectivity of the up-converter. The hybrid platform offers sunlight-to-electricity conversion efficiency exceeding that imposed by the S-Q limit on the corresponding PV cells across a broad range of bandgap energies, under low optical concentration (1-300 suns), operating temperatures in the range 900-1700 K, and in simple flat panel designs. We demonstrate maximum conversion efficiency of 73% under illumination by non-concentrated sunlight. A detailed analysis of non-ideal hybrid platforms that allows for up to 15% of absorption/re-emission losses yields limiting efficiency value of 45% for Si PV cells.

  19. Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies

    NASA Astrophysics Data System (ADS)

    Spurgeon, Joshua Michael

    Despite demand for clean energy to reduce our addiction to fossil fuels, the price of these technologies relative to oil and coal has prevented their widespread implementation. Solar energy has enormous potential as a carbon-free resource but is several times the cost of coal-produced electricity, largely because photovoltaics of practical efficiency require high-quality, pure semiconductor materials. To produce current in a planar junction solar cell, an electron or hole generated deep within the material must travel all the way to the junction without recombining. Radial junction, wire array solar cells, however, have the potential to decouple the directions of light absorption and charge-carrier collection so that a semiconductor with a minority-carrier diffusion length shorter than its absorption depth (i.e., a lower quality, potentially cheaper material) can effectively produce current. The axial dimension of the wires is long enough for sufficient optical absorption while the charge-carriers are collected along the shorter radial dimension in a massively parallel array. This thesis explores the wire array solar cell design by developing potentially low-cost fabrication methods and investigating the energy-conversion properties of the arrays in photoelectrochemical cells. The concept was initially investigated with Cd(Se, Te) rod arrays; however, Si was the primary focus of wire array research because its semiconductor properties make low-quality Si an ideal candidate for improvement in a radial geometry. Fabrication routes for Si wire arrays were explored, including the vapor-liquid-solid growth of wires using SiCl4. Uniform, vertically aligned Si wires were demonstrated in a process that permits control of the wire radius, length, and spacing. A technique was developed to transfer these wire arrays into a low-cost, flexible polymer film, and grow multiple subsequent arrays using a single Si(111) substrate. Photoelectrochemical measurements on Si wire array/polymer composite films showed that their energy-conversion properties were comparable to those of an array attached to the growth substrate. High quantum efficiencies were observed relative to the packing density of the wires, particularly with illumination at high angles of incidence. The results indicate that an inexpensive, solid-state Si wire array solar cell is possible, and a plan is presented to develop one.

  20. Direct-write graded index materials realized in protein hydrogels

    DOE PAGES

    Kaehr, Bryan; Scrymgeour, David A.

    2016-09-20

    Here, the ability to create optical materials with arbitrary index distributions would prove transformative for optics design and applications. However, current fabrication techniques for graded index (GRIN) materials rely on diffusion profiles and therefore are unable to realize arbitrary distribution GRIN design. Here, we demonstrate the laser direct writing of graded index structures in protein-based hydrogels using multiphoton lithography. We show index changes spanning a range of 10 –2, which is comparable with laser densified glass and polymer systems. Further, we demonstrate the conversion of these written density variation structures into SiO 2, opening up the possibility of transforming GRINmore » hydrogels to a wide range of material systems.« less

  1. Direct-write graded index materials realized in protein hydrogels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaehr, Bryan; Scrymgeour, David A.

    Here, the ability to create optical materials with arbitrary index distributions would prove transformative for optics design and applications. However, current fabrication techniques for graded index (GRIN) materials rely on diffusion profiles and therefore are unable to realize arbitrary distribution GRIN design. Here, we demonstrate the laser direct writing of graded index structures in protein-based hydrogels using multiphoton lithography. We show index changes spanning a range of 10 –2, which is comparable with laser densified glass and polymer systems. Further, we demonstrate the conversion of these written density variation structures into SiO 2, opening up the possibility of transforming GRINmore » hydrogels to a wide range of material systems.« less

  2. Hybrid solar cells from MDMO-PPV and silicon nanocrystals.

    PubMed

    Liu, Chin-Yi; Kortshagen, Uwe R

    2012-07-07

    Solution-processed bulk heterojunction solar cells from silicon nanocrystals (Si NCs) and poly(3-hexylthiophene) (P3HT) have shown promising power conversion efficiencies. Here we report on an attempt to enhance the performance of Si NC-polymer hybrid solar cells by using poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) as a hole conductor, which is expected to yield a higher open circuit voltage than P3HT due to its lower highest occupied molecular orbital (HOMO). Bulk heterojunction solar cells consisting of 3-5 nm silicon nanocrystals (Si NCs) and poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) have been fabricated. The properties of the hybrid Si NC/MDMO-PPV devices were studied as a function of the Si NC/MDMO-PPV weight ratio. Cells of 58 wt% 3-5 nm Si NCs showed the best overall performance under simulated one-sun AM 1.5 global illumination (100 mW cm(-2)). Compared to composite films of Si NCs and poly(3-hexylthiophene), we indeed observed an improved open circuit voltage but a lower power conversion efficiency from the Si NC/MDMO-PPV devices. The lower efficiency of Si NC/MDMO-PPV is correlated to the lower hole mobility and narrower absorption spectrum of MDMO-PPV compared to P3HT.

  3. Si-strip photon counting detectors for contrast-enhanced spectral mammography

    NASA Astrophysics Data System (ADS)

    Chen, Buxin; Reiser, Ingrid; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasi; Chen, Chin-Tu; Iwanczyk, Jan S.; Barber, William C.

    2015-08-01

    We report on the development of silicon strip detectors for energy-resolved clinical mammography. Typically, X-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a-Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting Si strip detectors. The required performance for mammography in terms of the output count rate, spatial resolution, and dynamic range must be obtained with sufficient field of view for the application, thus requiring the tiling of pixel arrays and particular scanning techniques. Room temperature Si strip detector, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the X-ray energy ranges of the application. We present our methods and results from the optimization of Si-strip detectors for contrast enhanced spectral mammography. We describe the method being developed for quantifying iodine contrast using the energy-resolved detector with fixed thresholds. We demonstrate the feasibility of the method by scanning an iodine phantom with clinically relevant contrast levels.

  4. Metrication of clinical laboratory data in SI units.

    PubMed

    Lehmann, H P

    1976-01-01

    The development and general concepts of the Système International d'Unités (SI units) are discussed. The basic and derived quantities and units of the SI used for clinical laboratory data are reviewed. Ranges of normal values for a number of body fluid constituents are given in the units in current general use and in SI units, with corresponding conversion factors.

  5. Broadband High Efficiency Fractal-Like and Diverse Geometry Silicon Nanowire Arrays for Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    AL-Zoubi, Omar H.

    Solar energy has many advantages over conventional sources of energy. It is abundant, clean and sustainable. One way to convert solar energy directly into electrical energy is by using the photovoltaic solar cells (PVSC). Despite PVSC are becoming economically competitive, they still have high cost and low light to electricity conversion efficiency. Therefore, increasing the efficiency and reducing the cost are key elements for producing economically more competitive PVSC that would have significant impact on energy market and saving environment. A significant percentage of the PVSC cost is due to the materials cost. For that, thin films PVSC have been proposed which offer the benefits of the low amount of material and fabrication costs. Regrettably, thin film PVSC show poor light to electricity conversion efficiency because of many factors especially the high optical losses. To enhance conversion efficiency, numerous techniques have been proposed to reduce the optical losses and to enhance the absorption of light in thin film PVSC. One promising technique is the nanowire (NW) arrays in general and the silicon nanowire (SiNW) arrays in particular. The purpose of this research is to introduce vertically aligned SiNW arrays with enhanced and broadband absorption covering the entire solar spectrum while simultaneously reducing the amount of material used. To this end, we apply new concept for designing SiNW arrays based on employing diversity of physical dimensions, especially radial diversity within certain lattice configurations. In order to study the interaction of light with SiNW arrays and compute their optical properties, electromagnetic numerical modeling is used. A commercial numerical electromagnetic solver software package, high frequency structure simulation (HFSS), is utilized to model the SiNW arrays and to study their optical properties. We studied different geometries factors that affect the optical properties of SiNW arrays. Based on this study, we found that the optical properties of SiNW arrays are strongly affected by the radial diversity, the arrangement of SiNW in a lattice, and the configuration of such lattice. The proper selection of these parameters leads to broaden and enhance the light absorption of the SiNW arrays. Inspired by natural configurations, fractal geometry and diamond lattice structures, we introduced two lattice configurations: fractal-like array (FLA) that is inspired by fractal geometry, and diamond-like array (DLA) that is inspired by diamond crystal lattice structure. Optimization, using parametric analysis, of the introduced arrays parameters for the light absorption level and the amount of used material has been performed. Both of the introduced SiNW arrays show broadband, strong light absorption coupled with reduction of the amount of the used material. DLA in specific showed significantly enhanced absorption covering the entire solar spectrum of interest, where near-unity absorption spectrum could be achieved. We studied the optical properties of complete PVSC devices that are based on SiNW array. Moreover, the performance of PVSC device that is based on SiNW has been investigated by using numerical modeling. SILVACO software package is used for performing the numerical simulation of the PVSC device performance, which can simultaneously handle the different coupled physical mechanisms contributing to the photovoltaic effect. The effect of the geometry of PVSC device that is based on SiNW is investigated, which shows that the geometry of such PVSC has a role in enhancing its electrical properties. The outcome of this study introduces new SiNW array configurations that have enhanced optical properties using a low amount of material that can be utilized for producing higher efficiency thin film PVCS. The overall conclusion of this work is that a weak absorption indirect band gap material, silicon, in the form of properly designed SiNW and SiNC arrays has the potentials to achieve near-unity ideal absorption spectrum using reduced amount of material, which can lead to produce new generation of lower cost and enhanced efficiency thin film PVSC.

  6. Units and symbols in solar energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckman, W.A.; Bugler, J.W.; Cooper, P.L.

    1978-01-01

    The application of S.I. units to some common solar energy quantities is discussed and some conversions to S.I. units are given. Then, a list of preferred names, symbols and units is recommended. (SPH)

  7. On the Nickel Hydroxide Electrode. I. On Nickel (II) Hydroxide Hydrate,

    DTIC Science & Technology

    1980-10-27

    1 - 4.60 A), and the hydrous form is halloysite , AI 2Si2 O5 (OH)4 .2H20 with d001 - 10.25 A (analogous to a-3Ni(OH)2 .2H20 with do01 - 8.07 A). On...heating of halloysite , the entire intermediate layer water is lost at about 1500 C, as for a nickel hydroxide, without the hydroxide layer separation...significantly reducing to meta- halloysite . 13 The conversion of the a form under the influence of alkali goes only in one direction. This monotropic

  8. Iron silicide formation at different layers of (Fe/Si)3 multilayered structures determined by conversion electron Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Badía-Romano, L.; Rubín, J.; Magén, C.; Bürgler, D. E.; Bartolomé, J.

    2014-07-01

    The morphology and the quantitative composition of the Fe-Si interface layer forming at each Fe layer of a (Fe/Si)3 multilayer have been determined by means of conversion electron Mössbauer spectroscopy (CEMS) and high-resolution transmission electron microscopy (HRTEM). For the CEMS measurements, each layer was selected by depositing the Mössbauer active 57Fe isotope with 95% enrichment. Samples with Fe layers of nominal thickness dFe = 2.6 nm and Si spacers of dSi = 1.5 nm were prepared by thermal evaporation onto a GaAs(001) substrate with an intermediate Ag(001) buffer layer. HRTEM images showed that Si layers grow amorphous and the epitaxial growth of the Fe is good only for the first deposited layer. The CEMS spectra show that at all Fe/Si and Si/Fe interfaces a paramagnetic c-Fe1-xSi phase is formed, which contains 16% of the nominal Fe deposited in the Fe layer. The bottom Fe layer, which is in contact with the Ag buffer, also contains α-Fe and an Fe1-xSix alloy that cannot be attributed to a single phase. In contrast, the other two layers only comprise an Fe1-xSix alloy with a Si concentration of ≃0.15, but no α-Fe.

  9. Single-source-precursor synthesis of hafnium-containing ultrahigh-temperature ceramic nanocomposites (UHTC-NCs).

    PubMed

    Yuan, Jia; Hapis, Stefania; Breitzke, Hergen; Xu, Yeping; Fasel, Claudia; Kleebe, Hans-Joachim; Buntkowsky, Gerd; Riedel, Ralf; Ionescu, Emanuel

    2014-10-06

    Amorphous SiHfBCN ceramics were prepared from a commercial polysilazane (HTT 1800, AZ-EM), which was modified upon reactions with Hf(NEt2)4 and BH3·SMe2, and subsequently cross-linked and pyrolyzed. The prepared materials were investigated with respect to their chemical and phase composition, by means of spectroscopy techniques (Fourier transform infrared (FTIR), Raman, magic-angle spinning nuclear magnetic resonance (MAS NMR)), as well as X-ray diffraction (XRD) and transmission electron microscopy (TEM). Annealing experiments of the SiHfBCN samples in an inert gas atmosphere (Ar, N2) at temperatures in the range of 1300-1700 °C showed the conversion of the amorphous materials into nanostructured UHTC-NCs. Depending on the annealing atmosphere, HfC/HfB2/SiC (annealing in argon) and HfN/Si3N4/SiBCN (annealing in nitrogen) nanocomposites were obtained. The results emphasize that the conversion of the single-phase SiHfBCN into UHTC-NCs is thermodynamically controlled, thus allowing for a knowledge-based preparative path toward nanostructured ultrahigh-temperature stable materials with adjusted compositions.

  10. Physical and electrical characteristics of Si/SiC quantum dot superlattice solar cells with passivation layer of aluminum oxide

    NASA Astrophysics Data System (ADS)

    Tsai, Yi-Chia; Li, Yiming; Samukawa, Seiji

    2017-12-01

    In this work, we numerically simulate the silicon (Si)/silicon carbide (SiC) quantum dot superlattice solar cell (SiC-QDSL) with aluminum oxide (Al2O3-QDSL) passivation. By exploiting the passivation layer of Al2O3, the high photocurrent and the conversion efficiency can be achieved without losing the effective bandgap. Based on the two-photon transition mechanism in an AM1.5 and a one sun illumination, the simulated short-circuit current (J sc) of 4.77 mA cm-2 is very close to the experimentally measured 4.75 mA cm-2, which is higher than those of conventional SiC-QDSLs. Moreover, the efficiency fluctuation caused by the structural variation is less sensitive by using the passivation layer. A high conversion efficiency of 17.4% is thus estimated by adopting the QD’s geometry used in the experiment; and, it can be further boosted by applying a hexagonal QD formation with an inter-dot spacing of 0.3 nm.

  11. Physical and electrical characteristics of Si/SiC quantum dot superlattice solar cells with passivation layer of aluminum oxide.

    PubMed

    Tsai, Yi-Chia; Li, Yiming; Samukawa, Seiji

    2017-12-01

    In this work, we numerically simulate the silicon (Si)/silicon carbide (SiC) quantum dot superlattice solar cell (SiC-QDSL) with aluminum oxide (Al 2 O 3 -QDSL) passivation. By exploiting the passivation layer of Al 2 O 3 , the high photocurrent and the conversion efficiency can be achieved without losing the effective bandgap. Based on the two-photon transition mechanism in an AM1.5 and a one sun illumination, the simulated short-circuit current (J sc ) of 4.77 mA cm -2 is very close to the experimentally measured 4.75 mA cm -2 , which is higher than those of conventional SiC-QDSLs. Moreover, the efficiency fluctuation caused by the structural variation is less sensitive by using the passivation layer. A high conversion efficiency of 17.4% is thus estimated by adopting the QD's geometry used in the experiment; and, it can be further boosted by applying a hexagonal QD formation with an inter-dot spacing of 0.3 nm.

  12. Self-Compliant Bipolar Resistive Switching in SiN-Based Resistive Switching Memory

    PubMed Central

    Kim, Sungjun; Chang, Yao-Feng; Kim, Min-Hwi; Kim, Tae-Hyeon; Kim, Yoon; Park, Byung-Gook

    2017-01-01

    Here, we present evidence of self-compliant and self-rectifying bipolar resistive switching behavior in Ni/SiNx/n+ Si and Ni/SiNx/n++ Si resistive-switching random access memory devices. The Ni/SiNx/n++ Si device’s Si bottom electrode had a higher dopant concentration (As ion > 1019 cm−3) than the Ni/SiNx/n+ Si device; both unipolar and bipolar resistive switching behaviors were observed for the higher dopant concentration device owing to a large current overshoot. Conversely, for the device with the lower dopant concentration (As ion < 1018 cm−3), self-rectification and self-compliance were achieved owing to the series resistance of the Si bottom electrode. PMID:28772819

  13. Birth, Death and Transfiguration; The Synthesis of Preceramic Polymers, Their Pyrolysis and Their Conversion to Ceramics (Preprint)

    DTIC Science & Technology

    1989-05-31

    have been able to prepare preceramic polymers whose pyrolysis gives -99% SiC , -99.5% Si 3N 4 , or any mixture of the two by appropriate manipulation of...SYNTHESIS OF PRECERAMIC POLYMERS , THEIR PYROLYSIS AND THEIR CONVERSION TO CERAMICS by Dietmar Seyferth ELCTE D MAY 1 9 989 EEl To be published MAY U...CLASSIFICATION OF THIS PAGE All other editions are obsolete. BIRTH, DEATH AND TRANSFIGURATION: THE SYNTHESIS OF PRECERAMIC POLYMERS , THEIR PYROLYSIS

  14. Si photoanode protected by a metal modified ITO layer with ultrathin NiO(x) for solar water oxidation.

    PubMed

    Sun, Ke; Shen, Shaohua; Cheung, Justin S; Pang, Xiaolu; Park, Namseok; Zhou, Jigang; Hu, Yongfeng; Sun, Zhelin; Noh, Sun Young; Riley, Conor T; Yu, Paul K L; Jin, Sungho; Wang, Deli

    2014-03-14

    We report an ultrathin NiOx catalyzed Si np(+) junction photoanode for a stable and efficient solar driven oxygen evolution reaction (OER) in water. A stable semi-transparent ITO/Au/ITO hole conducting oxide layer, sandwiched between the OER catalyst and the Si photoanode, is used to protect the Si from corrosion in an alkaline working environment, enhance the hole transportation, and provide a pre-activation contact to the NiOx catalyst. The NiOx catalyzed Si photoanode generates a photocurrent of 1.98 mA cm(-2) at the equilibrium water oxidation potential (EOER = 0.415 V vs. NHE in 1 M NaOH solution). A thermodynamic solar-to-oxygen conversion efficiency (SOCE) of 0.07% under 0.51-sun illumination is observed. The successful development of a low cost, highly efficient, and stable photoelectrochemical electrode based on earth abundant elements is essential for the realization of a large-scale practical solar fuel conversion.

  15. Analysis of the gas phase reactivity of chlorosilanes.

    PubMed

    Ravasio, Stefano; Masi, Maurizio; Cavallotti, Carlo

    2013-06-27

    Trichlorosilane is the most used precursor to deposit silicon for photovoltaic applications. Despite of this, its gas phase and surface kinetics have not yet been completely understood. In the present work, it is reported a systematic investigation aimed at determining what is the dominant gas phase chemistry active during the chemical vapor deposition of Si from trichlorosilane. The gas phase mechanism was developed calculating the rate constant of each reaction using conventional transition state theory in the rigid rotor-harmonic oscillator approximation. Torsional vibrations were described using a hindered rotor model. Structures and vibrational frequencies of reactants and transition states were determined at the B3LYP/6-31+G(d,p) level, while potential energy surfaces and activation energies were computed at the CCSD(T) level using aug-cc-pVDZ and aug-cc-pVTZ basis sets extrapolating to the complete basis set limit. As gas phase and surface reactivities are mutually interlinked, simulations were performed using a microkinetic surface mechanism. It was found that the gas phase reactivity follows two different routes. The disilane mechanism, in which the formation of disilanes as reaction intermediates favors the conversion between the most stable monosilane species, and the radical pathway, initiated by the decomposition of Si2HCl5 and followed by a series of fast propagation reactions. Though both mechanisms are active during deposition, the simulations revealed that above a certain temperature and conversion threshold the radical mechanism provides a faster route for the conversion of SiHCl3 into SiCl4, a reaction that favors the overall Si deposition process as it is associated with the consumption of HCl, a fast etchant of Si. Also, this study shows that the formation of disilanes as reactant intermediates promotes significantly the gas phase reactivity, as they contribute both to the initiation of radical chain mechanisms and provide a catalytic route for the conversion between the most stable monosilanes.

  16. Investigating the Structural, Thermal, and Electronic Properties of the Zircon-Type ZrSiO4, ZrGeO4 and HfSiO4 Compounds

    NASA Astrophysics Data System (ADS)

    Chiker, Fafa; Boukabrine, Fatiha; Khachai, H.; Khenata, R.; Mathieu, C.; Bin Omran, S.; Syrotyuk, S. V.; Ahmed, W. K.; Murtaza, G.

    2016-11-01

    In the present study, the structural, thermal, and electronic properties of some important orthosilicate dielectrics, such as the ZrSiO4, ZrGeO4, and HfSiO4 compounds, have been investigated theoretically with the use of first-principle calculations. We attribute the application of the modified Becke-Johnson exchange potential, which is basically an improvement over the local density approximation and the Perdew-Burke-Ernzerhof exchange-correlation functional, for a better description of the band gaps of the compounds. This resulted in a good agreement with our estimated values in comparison with the reported experimental data, specifically for the ZrSiO4, and HfSiO4 compounds. Conversely, for the ZrGeO4 compound, the calculated electronic band structure shows a direct band gap at the Γ point with the value of 5.79 eV. Furthermore, our evaluated thermal properties that are calculated by using the quasi-harmonic Debye model indicated that the volume variation with temperature is higher in the ZrGeO4 compound as compared to both the ZrSiO4 and HfSiO4 compounds, which is ascribed to the difference between the electron shells of the Si and Ge atoms. Therefore, these results also indicate that while the entropy ( S) and enthalpy ( U) parameters increase monotonically, the free energy ( G), in contrast, decreases monotonically with increasing temperature, respectively. Moreover, the pressure and temperature dependencies of the Debye temperature Θ, thermal expansion coefficient, and heat capacities C V were also predicted in our study.

  17. Energy-Conversion Properties of Vapor-Liquid-Solid-Grown Silicon Wire-Array Photocathodes

    NASA Astrophysics Data System (ADS)

    Boettcher, Shannon W.; Spurgeon, Joshua M.; Putnam, Morgan C.; Warren, Emily L.; Turner-Evans, Daniel B.; Kelzenberg, Michael D.; Maiolo, James R.; Atwater, Harry A.; Lewis, Nathan S.

    2010-01-01

    Silicon wire arrays, though attractive materials for use in photovoltaics and as photocathodes for hydrogen generation, have to date exhibited poor performance. Using a copper-catalyzed, vapor-liquid-solid-growth process, SiCl4 and BCl3 were used to grow ordered arrays of crystalline p-type silicon (p-Si) microwires on p+-Si(111) substrates. When these wire arrays were used as photocathodes in contact with an aqueous methyl viologen2+/+ electrolyte, energy-conversion efficiencies of up to 3% were observed for monochromatic 808-nanometer light at fluxes comparable to solar illumination, despite an external quantum yield at short circuit of only 0.2. Internal quantum yields were at least 0.7, demonstrating that the measured photocurrents were limited by light absorption in the wire arrays, which filled only 4% of the incident optical plane in our test devices. The inherent performance of these wires thus conceptually allows the development of efficient photovoltaic and photoelectrochemical energy-conversion devices based on a radial junction platform.

  18. Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes.

    PubMed

    Boettcher, Shannon W; Spurgeon, Joshua M; Putnam, Morgan C; Warren, Emily L; Turner-Evans, Daniel B; Kelzenberg, Michael D; Maiolo, James R; Atwater, Harry A; Lewis, Nathan S

    2010-01-08

    Silicon wire arrays, though attractive materials for use in photovoltaics and as photocathodes for hydrogen generation, have to date exhibited poor performance. Using a copper-catalyzed, vapor-liquid-solid-growth process, SiCl4 and BCl3 were used to grow ordered arrays of crystalline p-type silicon (p-Si) microwires on p+-Si(111) substrates. When these wire arrays were used as photocathodes in contact with an aqueous methyl viologen(2+/+) electrolyte, energy-conversion efficiencies of up to 3% were observed for monochromatic 808-nanometer light at fluxes comparable to solar illumination, despite an external quantum yield at short circuit of only 0.2. Internal quantum yields were at least 0.7, demonstrating that the measured photocurrents were limited by light absorption in the wire arrays, which filled only 4% of the incident optical plane in our test devices. The inherent performance of these wires thus conceptually allows the development of efficient photovoltaic and photoelectrochemical energy-conversion devices based on a radial junction platform.

  19. Effect of preparation method and CuO promotion in the conversion of ethanol into 1,3-butadiene over SiO₂-MgO catalysts.

    PubMed

    Angelici, Carlo; Velthoen, Marjolein E Z; Weckhuysen, Bert M; Bruijnincx, Pieter C A

    2014-09-01

    Silica-magnesia (Si/Mg=1:1) catalysts were studied in the one-pot conversion of ethanol to butadiene. The catalyst synthesis method was found to greatly influence morphology and performance, with materials prepared through wet-kneading performing best both in terms of ethanol conversion and butadiene yield. Detailed characterization of the catalysts synthesized through co-precipitation or wet-kneading allowed correlation of activity and selectivity with morphology, textural properties, crystallinity, and acidity/basicity. The higher yields achieved with the wet-kneaded catalysts were attributed to a morphology consisting of SiO2 spheres embedded in a thin layer of MgO. The particle size of the SiO2 catalysts also influenced performance, with catalysts with smaller SiO2 spheres showing higher activity. Temperature-programmed desorption (TPD) measurements showed that best butadiene yields were obtained with SiO2-MgO catalysts characterized by an intermediate amount of acidic and basic sites. A Hammett indicator study showed the catalysts' pK(a) value to be inversely correlated with the amount of dehydration by-products formed. Butadiene yields could be further improved by the addition of 1 wt% of CuO as promoter to give butadiene yields and selectivities as high as 40% and 53%, respectively. The copper promoter boosts the production of the acetaldehyde intermediate changing the rate-determining step of the process. TEM-energy-dispersive X-ray (EDX) analyses showed CuO to be present on both the SiO2 and MgO components. UV/Vis spectra of promoted catalysts in turn pointed at the presence of cluster-like CuO species, which are proposed to be responsible for the increased butadiene production. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Methylhydridopolysilazane and its Pyrolytic Conversion to Si3N4/SiC Ceramics

    DTIC Science & Technology

    1993-04-20

    development of inorganic and organometallic polymers as preceramic materials for the synthesis of silicon carbide ( SiC ) and silicon nitride (Si 3N 4...disproportionation in the pyrolysis of preceramic polymers . The lack of a -50 ppm resonance in the CP-MAS NMR spectra of the MHPS systems is 12...1992); Chem. Abstr. 1992, 116, 220226g. 6. (a) Semen, J.; Loop, J.G., "A Preceramic Polymer Route to Molded SiC Ceramic Parts," Ceram. Eng. Sci. Proc

  1. Basic research challenges in crystalline silicon photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, J.H.

    1995-08-01

    Silicon is abundant, non-toxic and has an ideal band gap for photovoltaic energy conversion. Experimental world record cells of 24 % conversion efficiency with around 300 {mu}m thickness are only 4 % (absolute) efficiency points below the theoretical Auger recombination-limit of around 28 %. Compared with other photovoltaic materials, crystalline silicon has only very few disadvantages. The handicap of weak light absorbance may be mastered by clever optical designs. Single crystalline cells of only 48 {mu}m thickness showed 17.3 % efficiency even without backside reflectors. A technology of solar cells from polycrystalline Si films on foreign substrates arises at themore » horizon. However, the disadvantageous, strong activity of grain boundaries in Si could be an insurmountable hurdle for a cost-effective, terrestrial photovoltaics based on polycrystalline Si on foreign substrates. This talk discusses some basic research challenges related to a Si based photovoltaics.« less

  2. Flat-plate solar array project. Task 1: Silicon material. Investigation of the hydrochlorination of SiC14

    NASA Technical Reports Server (NTRS)

    Mui, J. Y. P.

    1982-01-01

    A two inch diameter stainless steel reactor was designed and built to operate at pressures up to 500 psig for the experimental studies on the hydrochlorination of SiCl4 and metallurgical grade (m.g.) silicon metal to SiHCl3. In order to clearly see the effect of pressure, the experiments were carried out at low reactor pressures of 73 psig and 150 psig, respectively. A large pressure effect on the hydrochlorination reaction was observed between the results of the low pressure experiments and the results of the high pressure experiments. In general, higher pressure produces a higher conversion of SiHCl3, but at a lower reaction rate. The effect of temperature on the reaction rate was studied at 73 psig. Higher reaction temperature gave a higher conversion and a higher reaction rate. Samples of the materials used to construct the hydrochlorination reactor were prepared for corrosion tests.

  3. Landscape cultivation alters δ30Si signature in terrestrial ecosystems.

    NASA Astrophysics Data System (ADS)

    Vandevenne, F. I.; Delvaux, C.; Huyghes, H.; Ronchi, B.; Govers, G.; Barão, A. L.; Clymans, W.; Meire, P.; André, L.; Struyf, E.

    2014-12-01

    Despite increasing recognition of the importance of biological Si cycling in controlling dissolved Si (DSi) in soil and stream water, effects of human cultivation on the Si cycle remain poorly understood. Sensitive tracer techniques to identify and quantify Si in the soil-plant-water system could be highly relevant in addressing these uncertainties. Stable Si isotopes are promising tools to define Si sources and sinks along the ecosystem flow path, as intense fractionation occurs during chemical weathering and uptake of dissolved Si in plants. Yet they remain underexploited in the end product of the soil-plant system: the soil water. Here, stable Si isotope ratios (δ30Si) of dissolved Si in soil water were measured along a land use gradient (continuous forest, continuous pasture, young cropland and continuous cropland) with similar parent material (loess) and homogenous bulk mineralogical and climatological properties (Belgium). Soil water δ30Si signatures are clearly separated along the gradient, with highest average signatures in continuous cropland (+1.61‰), intermediate in pasture (+1.05‰) and young cropland (+0.89 ‰) and lowest in forest soil water (+0.62‰). Our data do not allow distinguishing biological from pedogenic/lithogenic processes, but point to a strong interaction of both. We expect that increasing export of light isotopes in disturbed land uses (i.e. through agricultural harvest), and higher recycling of 28Si and elevated weathering intensity (including clay dissolution) in forest systems will largely determine soil water δ30Si signatures of our systems. Our results imply that soil water δ30Si signature is biased through land management before it reaches rivers and coastal zones, where other fractionation processes take over (e.g. diatom uptake and reverse weathering in floodplains). In particular, a direct role of agriculture systems in lowering export Si fluxes towards rivers and coastal systems has been shown. Stable Si isotopes have a large potential to track human disturbance on the Si cycle, including subtle changes in clay evolution and biogenic sink/source functions as induced by land use conversions.

  4. Landscape cultivation alters δ30Si signature in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Vandevenne, Floor; Delvaux, Claire; Hughes, Harold; Ronchi, Benedicta; Clymans, Wim; Barao, Ana Lucia; Govers, Gerard; Cornelis, Jean Thomas; André, Luc; Struyf, Eric

    2015-04-01

    Despite increasing recognition of the importance of biological Si cycling in controlling dissolved Si (DSi) in soil and stream water, effects of human cultivation on the Si cycle remain poorly understood. Sensitive tracer techniques to identify and quantify Si in the soil-plant-water system could be highly relevant in addressing these uncertainties. Stable Si isotopes are promising tools to define Si sources and sinks along the ecosystem flow path, as intense fractionation occurs during chemical weathering and uptake of dissolved Si in plants. Yet they remain underexploited in the end product of the soil-plant system: the soil water. Here, stable Si isotope ratios (δ30Si) of dissolved Si in soil water were measured along a land use gradient (continuous forest, continuous pasture, young cropland and continuous cropland) with similar parent material (loess) and homogenous bulk mineralogical and climatological (Belgium). Soil water δ30Si signatures are clearly separated along the gradient, with highest average signatures in continuous cropland (+1.61%), intermediate in pasture (+1.05%) and young cropland (+0.89%) and lowest in forest soil water (+0.62%). Our data do not allow distinguishing biological from pedogenic/lithogenic processes, but point to a strong interaction of both. We expect that increasing export of light isotopes in disturbed land uses (i.e. through agricultural harvest), and higher recycling of 28Si and elevated weathering intensity (including clay dissolution) in forest systems will largely determine soil water δ30Si signatures of our systems. Our results imply that soil water δ30Si signature is biased through land management before it reaches rivers and coastal zones, where other fractionation processes take over (e.g. diatom uptake and reverse weathering in floodplains). In particular, a direct role of agriculture systems in lowering export Si fluxes towards rivers and coastal systems has been shown. Stable Si isotopes have a large potential to track human disturbance on the Si cycle, including subtle changes in clay evolution and biogenic sink/source functions as induced by land use conversions.

  5. A nanophotonic solar thermophotovoltaic device.

    PubMed

    Lenert, Andrej; Bierman, David M; Nam, Youngsuk; Chan, Walker R; Celanović, Ivan; Soljačić, Marin; Wang, Evelyn N

    2014-02-01

    The most common approaches to generating power from sunlight are either photovoltaic, in which sunlight directly excites electron-hole pairs in a semiconductor, or solar-thermal, in which sunlight drives a mechanical heat engine. Photovoltaic power generation is intermittent and typically only exploits a portion of the solar spectrum efficiently, whereas the intrinsic irreversibilities of small heat engines make the solar-thermal approach best suited for utility-scale power plants. There is, therefore, an increasing need for hybrid technologies for solar power generation. By converting sunlight into thermal emission tuned to energies directly above the photovoltaic bandgap using a hot absorber-emitter, solar thermophotovoltaics promise to leverage the benefits of both approaches: high efficiency, by harnessing the entire solar spectrum; scalability and compactness, because of their solid-state nature; and dispatchablility, owing to the ability to store energy using thermal or chemical means. However, efficient collection of sunlight in the absorber and spectral control in the emitter are particularly challenging at high operating temperatures. This drawback has limited previous experimental demonstrations of this approach to conversion efficiencies around or below 1% (refs 9, 10, 11). Here, we report on a full solar thermophotovoltaic device, which, thanks to the nanophotonic properties of the absorber-emitter surface, reaches experimental efficiencies of 3.2%. The device integrates a multiwalled carbon nanotube absorber and a one-dimensional Si/SiO2 photonic-crystal emitter on the same substrate, with the absorber-emitter areas optimized to tune the energy balance of the device. Our device is planar and compact and could become a viable option for high-performance solar thermophotovoltaic energy conversion.

  6. High Performance of PEDOT:PSS/n-Si Solar Cells Based on Textured Surface with AgNWs Electrodes

    NASA Astrophysics Data System (ADS)

    Jiang, Xiangyu; Zhang, Pengbo; Zhang, Juan; Wang, Jilei; Li, Gaofei; Fang, Xiaohong; Yang, Liyou; Chen, Xiaoyuan

    2018-02-01

    Hybrid heterojunction solar cells (HHSCs) have gained extensive research and attention due to simple device structure and low-cost technological processes. Here, HHSCs are presented based on a highly transparent conductive polymer poly(3,4ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) directly spin-coated on an n-type crystalline silicon with microscale surface textures, which are prepared by traditional chemical etching. We have studied interface properties between PEDOT:PSS and textured n-Si by varying coating conditions. Final power conversion efficiency (PCE) could arrive at 8.54% by these simple solution-based fabrication processes. The high conversion efficiency is attributed to the fully conformal contact between PEDOT:PSS film and textured silicon. Furthermore, the reflectance of the PEDOT:PSS layer on textured surface is analyzed by changing film thickness. In order to improve the performance of the device, silver nanowires were employed as electrodes because of its better optical transmittance and electrical conductivity. The highest PCE of 11.07% was achieved which displayed a 29.6% enhancement compared with traditional silver electrodes. These findings imply that the combination of PEDOT:PSS film and silver nanowire transparent electrodes pave a promising way for realizing high-efficiency and low-cost solar cells.

  7. High Performance of PEDOT:PSS/n-Si Solar Cells Based on Textured Surface with AgNWs Electrodes.

    PubMed

    Jiang, Xiangyu; Zhang, Pengbo; Zhang, Juan; Wang, Jilei; Li, Gaofei; Fang, Xiaohong; Yang, Liyou; Chen, Xiaoyuan

    2018-02-14

    Hybrid heterojunction solar cells (HHSCs) have gained extensive research and attention due to simple device structure and low-cost technological processes. Here, HHSCs are presented based on a highly transparent conductive polymer poly(3,4ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) directly spin-coated on an n-type crystalline silicon with microscale surface textures, which are prepared by traditional chemical etching. We have studied interface properties between PEDOT:PSS and textured n-Si by varying coating conditions. Final power conversion efficiency (PCE) could arrive at 8.54% by these simple solution-based fabrication processes. The high conversion efficiency is attributed to the fully conformal contact between PEDOT:PSS film and textured silicon. Furthermore, the reflectance of the PEDOT:PSS layer on textured surface is analyzed by changing film thickness. In order to improve the performance of the device, silver nanowires were employed as electrodes because of its better optical transmittance and electrical conductivity. The highest PCE of 11.07% was achieved which displayed a 29.6% enhancement compared with traditional silver electrodes. These findings imply that the combination of PEDOT:PSS film and silver nanowire transparent electrodes pave a promising way for realizing high-efficiency and low-cost solar cells.

  8. Bragg stack-functionalized counter electrode for solid-state dye-sensitized solar cells.

    PubMed

    Park, Jung Tae; Prosser, Jacob H; Kim, Dong Jun; Kim, Jong Hak; Lee, Daeyeon

    2013-05-01

    A highly reflective counter electrode is prepared through the deposition of alternating layers of organized mesoporous TiO(2) (om-TiO(2)) and colloidal SiO(2) (col-SiO(2)) nanoparticles. We present the effects of introducing this counter electrode into dye-sensitized solar cells (DSSCs) for maximizing light harvesting properties. The om-TiO(2) layers with a high refractive index are prepared by using an atomic transfer radical polymerization and a sol-gel process, in which a polyvinyl chloride-g-poly(oxyethylene) methacrylate graft copolymer is used as a structure-directing agent. The col-SiO(2) layers with a low refractive index are prepared by spin-coating commercially available silica nanoparticles. The properties of the Bragg stack (BS)-functionalized counter electrode in DSSCs are analyzed by using a variety of techniques, including spectroscopic ellipsometry, SEM, UV/Vis spectroscopy, incident photon-to-electron conversion efficiency, electrochemical impedance spectroscopy, and intensity modulated photocurrent/voltage spectroscopy measurements, to understand the critical factors contributing to the cell performance. When incorporated into DSSCs that are used in conjunction with a polymerized ionic liquid as the solid electrolyte, the energy conversion efficiency of this solid-state DSSC (ssDSSC) approaches 6.6 %, which is one of the highest of the reported N719 dye-based ssDSSCs. Detailed optical and electrochemical analyses of the device performance show that this assembly yields enhanced light harvesting without the negative effects of charge recombination or electrolyte penetration, which thus, presents new possibilities for effective light management. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Investigation of the {Fe}/{Si} interface and its phase transformations

    NASA Astrophysics Data System (ADS)

    Fanciulli, M.; Degroote, S.; Weyer, G.; Langouche, G.

    1997-04-01

    Thin 57Fe films (3-10 Å) have been grown by molecular beam epitaxy (MBE) on (7 × 7) reconstructed Si(111) and (2 × 1) reconstructed Si(001) surfaces and by e-gun evaporation on an H-terminated Si(111) surface. Conversion electron Mössbauer spectroscopy (CEMS) with high statistical accuracy and resolution allowed a detailed microscopic investigation of the silicide formation mechanism and of the structural phase transformations upon annealing.

  10. Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)

    NASA Astrophysics Data System (ADS)

    Tanaka, Makoto; Taguchi, Mikio; Matsuyama, Takao; Sawada, Toru; Tsuda, Shinya; Nakano, Shoichi; Hanafusa, Hiroshi; Kuwano, Yukinori

    1992-11-01

    A new type of a-Si/c-Si heterojunction solar cell, called the HIT (Heterojunction with Intrinsic Thin-layer) solar cell, has been developed based on ACJ (Artificially Constructed Junction) technology. A conversion efficiency of more than 18% has been achieved, which is the highest ever value for solar cells in which the junction was fabricated at a low temperature (<200°C).

  11. Permafrost Thaw and Vegetation Cover Change May Alter Silicon Exports to Arctic Coastal Receiving Waters

    NASA Astrophysics Data System (ADS)

    Spencer, R.; Carey, J.; Tang, J.

    2016-12-01

    Silicon (Si) availability in Arctic coastal waters is a critical factor dictating phytoplankton species composition, as diatoms require as much Si as nitrogen (N) on a molar basis to survive. Riverine exports are the main source of Si to Arctic coastal waters annually and thus, the timing and magnitude of river Si fluxes have direct implications for marine ecology and global carbon dynamics. Although geochemical factors exert large controls on Si exports to marine waters, watershed land cover has recently been shown to alter the retention and transport of Si along the land-ocean continuum in lower latitudes, due in large part to the ability of terrestrial vegetation to store large quantities of Si in its tissue. However, it is unclear how shifts in basin land cover and climatic warming will alter Si exports in the Arctic, as increasing shrubiness and northward migration of treeline may increase Si retention on land, but permafrost thaw and elevated weathering rates may stimulate Si exports towards coastal waters. In this study we investigate how permafrost thaw and vegetation cover shifts are altering Arctic riverine Si export using the geochemical signatures of ten rivers draining a 700 km north-south gradient across the Yukon and Arctic North Slope basins in Alaska. Across the 2016 spring freshet, average dissolved Si (DSi) concentrations across sites ranged from 22 to 115 µM, with a significant negative relationship observed between average DSi concentration and latitude (r=-0.95, p<0.05). Conversely, average biogenic Si (BSi) concentrations showed no trends with latitude and were more uniform across the permafrost-vegetation cover gradient, ranging from 8 to 15 µM BSi. Si yields followed a similar pattern as concentrations across the gradient. We use data on basin lithology and land cover, instantaneous discharge, and the concentrations of inorganic nutrients (N, phosphorous), chlorophyll a, total suspended solids (TSS), and Ge (Germanium)/Si ratios, to determine the drivers of these patterns in Si behavior. In turn, our results will be used to create the first predictive framework to assess how future warming will alter fluvial Si exports to Arctic receiving waters.

  12. Structure and up-conversion luminescence in sol-gel derived Er 3+-Yb 3+ co-doped SiO 2:PbF 2 nano-glass-ceramics

    NASA Astrophysics Data System (ADS)

    del-Castillo, J.; Yanes, A. C.; Méndez-Ramos, J.; Tikhomirov, V. K.; Rodríguez, V. D.

    2009-11-01

    Transparent oxyfluoride nano-glass-ceramics 90(SiO 2)10(PbF 2) co-doped with 0.3 Yb 3+ and 0.1 Er 3+ (mol%) have been prepared by thermal treatment of precursor sol-gel glasses. X-ray diffraction and high resolution transmission electron microscopy analysis pointed out a precipitation of cubic β-PbF 2 nanocrystals of certain diameter in nano-glass-ceramics varying from 10 to 20 nm depending on heat treatment conditions. The incorporation of Yb 3+ and Er 3+ dopants in these nanocrystals has been confirmed by signatures of luminescence spectroscopy. Up-conversion luminescence pumped at 980 nm has been detected. Colour tuneability of up-conversion luminescence varying pump power has been analyzed in terms of standard chromaticity diagram. This tuneability opens applications for up-conversion phosphors and three-dimensional optical recording.

  13. Non-strinking siloxane polymers

    DOEpatents

    Loy, Douglas A.; Rahimian, Kamyar

    2001-01-01

    Cross-linked polymers formed by ring-opening polymerization of a precursor monomer of the general formula R[CH.sub.2 CH(Si(CH.sub.3).sub.2).sub.2 O].sub.2, where R is a phenyl group or an alkyl group having at least two carbon atoms. A cross-linked polymer is synthesized by mixing the monomer with a co-monomer of the general formula CH.sub.2 CHR.sup.2 (SiMe.sub.2).sub.2 O in the presence of an anionic base to form a cross-linked polymer of recurring units of the general formula R(Me.sub.2 SiOCH.sub.2 CHSiMe.sub.2).sub.2 [CH.sub.2 CHR.sup.2 (SiMe.sub.2).sub.2 O].sub.n, where R.sup.2 is hydrogen, phenyl, ethyl, propyl or butyl. If the precursor monomer is a liquid, the polymer can be directly synthesized in the presence of an anionic base to a cross-linked polymer containing recurring units of the general formula R(Me.sub.2 SiOCH.sub.2 CHSiMe.sub.2).sub.2. The polymers have approximately less than 1% porosity and are thermally stable at temperatures up to approximately 500.degree. C. The conversion to the cross-linked polymer occurs by ring opening polymerization and results in shrinkage of less than approximately 5% by volume.

  14. Chemical Potential Evaluation of Thermoelectric and Mechanical Properties of Zr2CoZ (Z = Si, Ge) Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Yousuf, Saleem; Gupta, Dinesh C.

    2018-04-01

    The electronic, mechanical and thermoelectric properties of Zr2CoZ (Z = Si, Ge) Heusler alloys are investigated by the full-potential linearized augmented plane wave method. Using the Voigt-Reuss approximation, we calculated the various elastic constants, the shear and Young's moduli, and Poisson's ratio which predict the ductile nature of the alloys. Thermoelectric coefficients viz., Seebeck, electrical conductivity and figure of merit show Zr2CoZ alloys as n-type thermoelectric materials showing a linearly increasing Seebeck coefficient with temperature mainly because of the existence of almost flat conduction bands along L to D directions of a high symmetry Brillouin zone. The efficiency of conversion was measured as the figure of merit by taking into effect the lattice thermal part that achieves an upper-limit of 0.14 at 1200 K which may favour their use for waste heat recovery at higher temperatures.

  15. Technology Evaluation for Paintable Computing and Paintable Displays RF Nixel Seedling

    DTIC Science & Technology

    2006-04-15

    0.32 mm2• 111-V LED’s may be fabricated on Si wafers using SiGe virtual substrates. The MIT Media Lab selected technologies for a 17" diagonal, 640 x...energy conversion, though betavoltaic devices, tends to have a very low efficiency, about 1%. [15] With 1% conversion efficiency on the lOmW released...200 J.!Cilyear of 63Ni, assuming that this was this person’s only exposure to man-made radiation. A prototype betavoltaic cell has been constructed

  16. Kinetics of Valeric Acid Ketonization and Ketenization in Catalytic Pyrolysis on Nanosized SiO2 , γ-Al2 O3 , CeO2 /SiO2 , Al2 O3 /SiO2 and TiO2 /SiO2.

    PubMed

    Kulyk, Kostiantyn; Palianytsia, Borys; Alexander, John D; Azizova, Liana; Borysenko, Mykola; Kartel, Mykola; Larsson, Mats; Kulik, Tetiana

    2017-07-19

    Valeric acid is an important renewable platform chemical that can be produced efficiently from lignocellulosic biomass. Upgrading of valeric acid by catalytic pyrolysis has the potential to produce value added biofuels and chemicals on an industrial scale. Understanding the different mechanisms involved in the thermal transformations of valeric acid on the surface of nanometer-sized oxides is important for the development of efficient heterogeneously catalyzed pyrolytic conversion techniques. In this work, the thermal decomposition of valeric acid on the surface of nanoscale SiO 2 , γ-Al 2 O 3 , CeO 2 /SiO 2 , Al 2 O 3 /SiO 2 and TiO 2 /SiO 2 has been investigated by temperature-programmed desorption mass spectrometry (TPD MS). Fourier transform infrared spectroscopy (FTIR) has also been used to investigate the structure of valeric acid complexes on the oxide surfaces. Two main products of pyrolytic conversion were observed to be formed depending on the nano-catalyst used-dibutylketone and propylketene. Mechanisms of ketene and ketone formation from chemisorbed fragments of valeric acid are proposed and the kinetic parameters of the corresponding reactions were calculated. It was found that the activation energy of ketenization decreases in the order SiO 2 >γ-Al 2 O 3 >TiO 2 /SiO 2 >Al 2 O 3 /SiO 2 , and the activation energy of ketonization decreases in the order γ-Al 2 O 3 >CeO 2 /SiO 2 . Nano-oxide CeO 2 /SiO 2 was found to selectively catalyze the ketonization reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Present Status and Future Prospects of Silicon Thin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Konagai, Makoto

    2011-03-01

    In this report, an overview of the recent status of photovoltaic (PV) power generation is first presented from the viewpoint of reducing CO2 emission. Next, the Japanese roadmap for the research and development (R&D) of PV power generation and the progress in the development of various solar cells are explained. In addition, the present status and future prospects of amorphous silicon (a-Si) thin-film solar cells, which are expected to enter the stage of full-scale practical application in the near future, are described. For a-Si single-junction solar cells, the conversion efficiency of their large-area modules has now reached 6-8%, and their practical application to megawatt solar systems has started. Meanwhile, the focus of R&D has been shifting to a-Si and microcrystalline silicon (µc-Si) tandem solar cells. Thus far, a-Si/µc-Si tandem solar cell modules with conversion efficiency exceeding 13% have been reported. In addition, triple-junction solar cells, whose target year for practical application is 2025 or later, are introduced, as well as innovative thin-film full-spectrum solar cells, whose target year of realization is 2050.

  18. Energy Conversion Properties of ZnSiP2, a Lattice-Matched Material for Silicon-Based Tandem Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Aaron D.; Warren, Emily L.; Gorai, Prashun

    ZnSiP2 demonstrates promising potential as an optically active material on silicon. There has been a longstanding need for wide band gap materials that can be integrated with Si for tandem photovoltaics and other optoelectronic applications. ZnSiP2 is an inexpensive, earth abundant, wide band gap material that is stable and lattice matched with silicon. This conference proceeding summarizes our PV-relevant work on bulk single crystal ZnSiP2, highlighting the key findings and laying the ground work for integration into Si-based tandem devices.

  19. Effect of Steam Activation on Development of Light Weight Biomorphic Porous SiC from Pine Wood Precursor

    NASA Astrophysics Data System (ADS)

    Manocha, Satish M.; Patel, Hemang; Manocha, L. M.

    2013-02-01

    Biomorphic SiC materials with tailor-made microstructure and properties similar to ceramic materials manufactured by conventional method are a new class of materials derived from natural biopolymeric cellulose templates (wood). Porous silicon carbide (SiC) ceramics with wood-like microstructure have been prepared by carbothermal reduction of charcoal/silica composites at 1300-1600 °C in inert Ar atmosphere. The C/SiO2 composites were fabricated by infiltrating silica sol into porous activated biocarbon template. Silica in the charcoal/silica composite, preferentially in the cellular pores, was found to get transformed in forms of fibers and rods due to shrinkage during drying. The changes in the morphology of resulting porous SiC ceramics after heat treatment to 1600 °C, as well as the conversion mechanism of wood to activated carbon and then to porous SiC ceramic have been investigated using scanning electron microscope, x-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry. Activation of carbon prior to silica infiltration has been found to enhance conversion of charcoal to SiC. The pore structure is found to be uniform in these materials than in those made from as-such charcoal/silica composites. This provides a low-cost and eco-friendly route to advanced ceramic materials, with near-net shape potential.

  20. Fabrication of photovoltaic laser energy converterby MBE

    NASA Technical Reports Server (NTRS)

    Lu, Hamilton; Wang, Scott; Chan, W. S.

    1993-01-01

    A laser-energy converter, fabricated by molecular beam epitaxy (MBE), was developed. This converter is a stack of vertical p-n junctions connected in series by low-resistivity, lattice matched CoSi2 layers to achieve a high conversion efficiency. Special high-temperature electron-beam (e-beam) sources were developed especially for the MBE growth of the junctions and CoSi2 layers. Making use of the small (greater than 1.2 percent) lattice mismatch between CoSi2 and Si layers, high-quality and pinhole-free epilayers were achieved, providing a capability of fabricating all the junctions and connecting layers as a single growth process with one pumpdown. Well-defined multiple p-n junctions connected by CoSi2 layers were accomplished by employing a low growth temperature (greater than 700 C) and a low growth rate (less than 0.5 microns/hour). Producing negligible interdiffusion, the low growth temperature and rate also produced negligible pinholes in the CoSi2 layers. For the first time, a stack of three p-n junctions connected by two 10(exp -5) Ohm-cm CoSi2 layers was achieved, meeting the high conversion efficiency requirement. This process can now be optimized for high growth rate to form a practical converter with 10 p-n junctions in the stack.

  1. Temperature effect on betavoltaic microbatteries based on Si and GaAs under 63Ni and 147Pm irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Tang, Xiao-bin; Liu, Yun-Peng; Xu, Zhi-Heng; Liu, Min; Chen, Da

    2015-09-01

    The effect of temperature on the output performance of four different types of betavoltaic microbatteries was investigated experimental and theoretical. Si and GaAs were selected as the energy conversion devices in four types of betavoltaic microbatteries, and 63Ni and 147Pm were used as beta sources. Current density-voltage curves were determined at a temperature range of 213.15-333.15 K. A simplified method was used to calculate the theoretical parameters of the betavoltaic microbatteries considering the energy loss of beta particles for self-absorption of radioactive source, the electron backscatter effect of different types of semiconductor materials, and the absorption of dead layer. Both the experimental and theoretical results show that the short-circuit current density increases slightly and the open-circuit voltage (VOC) decreases evidently with the increase in temperature. Different combinations of energy conversion devices and beta sources cause different effects of temperature on the microbatteries. In the approximately linear range, the VOC sensitivities caused by temperature for 63Ni-Si, 63Ni-GaAs, 147Pm-Si, and 147Pm-GaAs betavoltaic microbatteries were -2.57, -5.30, -2.53, and -4.90 mV/K respectively. Both theoretical and experimental energy conversion efficiency decreased evidently with the increase in temperature.

  2. Effect of emitter layer doping concentration on the performance of a silicon thin film heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Shen, Hong-Lie; Yue, Zhi-Hao; Jiang, Feng; Wu, Tian-Ru; Pan, Yuan-Yuan

    2013-01-01

    A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/ epitaxial c-Si(47 μm)/epitaxial c-Si(3 μm) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot wire chemical vapour deposition. The effect of the doping concentration of the emitter layer Sd (Sd=PH3/(PH3+SiH4+H2)) on the performance of the solar cell is studied by means of current density—voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%.

  3. III-V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration

    NASA Astrophysics Data System (ADS)

    Cariou, Romain; Benick, Jan; Feldmann, Frank; Höhn, Oliver; Hauser, Hubert; Beutel, Paul; Razek, Nasser; Wimplinger, Markus; Bläsi, Benedikt; Lackner, David; Hermle, Martin; Siefer, Gerald; Glunz, Stefan W.; Bett, Andreas W.; Dimroth, Frank

    2018-04-01

    Silicon dominates the photovoltaic industry but the conversion efficiency of silicon single-junction solar cells is intrinsically constrained to 29.4%, and practically limited to around 27%. It is possible to overcome this limit by combining silicon with high-bandgap materials, such as III-V semiconductors, in a multi-junction device. Significant challenges associated with this material combination have hindered the development of highly efficient III-V/Si solar cells. Here, we demonstrate a III-V/Si cell reaching similar performances to standard III-V/Ge triple-junction solar cells. This device is fabricated using wafer bonding to permanently join a GaInP/GaAs top cell with a silicon bottom cell. The key issues of III-V/Si interface recombination and silicon's weak absorption are addressed using poly-silicon/SiOx passivating contacts and a novel rear-side diffraction grating for the silicon bottom cell. With these combined features, we demonstrate a two-terminal GaInP/GaAs//Si solar cell reaching a 1-sun AM1.5G conversion efficiency of 33.3%.

  4. IR studies of the impact of Ge doping on the successive conversion of VOn defects in Czochralski-Si containing carbon

    NASA Astrophysics Data System (ADS)

    Londos, C. A.; Andrianakis, A.; Sgourou, E. N.; Emtsev, V. V.; Ohyama, H.

    2011-02-01

    We report infrared absorption studies of oxygen-related defects in electron-irradiated Ge-doped Czochralski-Si. Our investigation was mainly focused on the reaction channel leading to the formation of VOn (1≤n≤6) defects. The VOn defects form mainly upon annealing, as a result of the successive aggregation of oxygen atoms in the initial VO defect produced by the irradiation: (VO+Oi→VO2+Oi→VO3+Oi→VO4,…). It was found that the ratio of the conversion of VOn to VOn+1 defects is sensitive to the Ge content of the material. In particular, the ratio of the conversion of the VO to the VO2 defects was found to decrease with the increase in Ge concentration of the samples, although the opposite trend was observed for the VO3 to VO4 conversion. However, the VO2 to VO3 conversion changes only slightly with Ge content, being practically unaffected for Ge concentrations up to 2×1020 cm-3. In the case of VO2 formation, the phenomenon was attributed to the elastic strains induced in the lattice due to the Ge presence which affects the balance between the reactions VO+Oi→VO2, VO+SiI→Oi, mainly involved in the decay of the VO and the growth of the VO2 defects. In the case of VO4 formation, the phenomenon was discussed by taking into account the enhancement of the diffusivity of the Oi atoms in the Ge-doped Si, which could lead to an enhancement of the rate of the reaction VO3+Oi→VO4. For the VO3 formation this effect is practically negligible due to the fact that at the temperatures of VO2 to VO3 conversion oxygen diffusivity is quite small. The exhibited behavior in the conversion of the VOn to VOn+1 defects (n=1,2,3) was similar in Ge-doped samples with low carbon content ([Cs]<2×1016 cm-3) and in Ge-doped samples with high carbon content ([Cs]≥1×1017 cm-3). The impact of C as well as its role in the conversion efficiency of VO to VO2 was studied by comparing the spectra in low carbon and high carbon Ge free Si material. Furthermore, a pair of bands at (1037,1051 cm-1) was attributed to the VO5 defect. The origin of another pair of bands (967,1005 cm-1) was discussed and tentatively correlated with a VOnCs structure. The role of Ge and C in the formation of the latter two pairs of bands was discussed.

  5. A state-of-the-art compact SiC photovoltaic inverter with maximum power point tracking function

    NASA Astrophysics Data System (ADS)

    Ando, Yuji; Oku, Takeo; Yasuda, Masashi; Ushijima, Kazufumi; Matsuo, Hiroshi; Murozono, Mikio

    2018-01-01

    We have developed a 150-W SiC-based photovoltaic (PV)-inverter with the maximum power point tracking (MPPT) function. The newly developed inverter achieved a state-of-the-art combination of the weight (0.79 kg) and the volume (790 mm3) as a 150-250 W class PV-inverter. As compared to the original version that we have previously reported, the weight and volume were decreased by 37% and 38%, respectively. This compactness originated from the optimized circuit structure and the increased density of a wiring circuit. Conversion efficiencies of the MPPT charge controller and the direct current (DC)-alternating current (AC) converter reached 96.4% and 87.6%, respectively. These efficiency values are comparable to those for the original version. We have developed a PV power generation system consisting of this inverter, a spherical Si solar cell module, and a 15-V Li-ion laminated battery. The total weight of the system was below 6 kg. The developed system exhibited stable output power characteristics, even when the weather conditions were fluctuated. These compactness, high efficiencies, and excellent stability clearly indicated the feasibility of SiC power devices even for sub-kW class PV power generation systems.

  6. High-efficiency thin-film GaAs solar cells, phase2

    NASA Technical Reports Server (NTRS)

    Yeh, Y. C. M.

    1981-01-01

    Thin GaAs epi-layers with good crystallographic quality were grown using a (100) Si-substrate on which a thin Ge epi-interlayer was grown by CVD from germane. Both antireflection-coated metal oxide semiconductor (AMOS) and n(+)/p homojunction structures were studied. The AMOS cells were fabricated on undoped-GaAs epi-layers deposited on bulk poly-Ge substrates using organo-metallic CVD film-growth, with the best achieved AM1 conversion efficiency being 9.1%. Both p-type and n(+)-type GaAs growth were optimized using 50 ppm dimethyl zinc and 1% hydrogen sulfide, respectively. A direct GaAs deposition method in fabricating ultra-thin top layer, epitaxial n(+)/p shallow homojunction solar cells on (100) GaAs substrates (without anodic thinning) was developed to produce large area (1 sq/cm) cells, with 19.4% AM1 conversion efficiency achieved. Additionally, an AM1 conversion efficiency of 18.4% (17.5% with 5% grid coverage) was achieved for a single crystal GaAs n(+)/p cell grown by OM-CVD on a Ge wafer.

  7. Heat-Electric Power Conversion Without Temperature Difference Using Only n-Type Ba8Au x Si46-x Clathrate with Au Compositional Gradient

    NASA Astrophysics Data System (ADS)

    Osakabe, Yuki; Tatsumi, Shota; Kotsubo, Yuichi; Iwanaga, Junpei; Yamasoto, Keita; Munetoh, Shinji; Furukimi, Osamu; Nakashima, Kunihiko

    2018-02-01

    Thermoelectric power generation is typically based on the Seebeck effect under a temperature gradient. However, the heat flux generated by the temperature difference results in low conversion efficiency. Recently, we developed a heat-electric power conversion mechanism using a material consisting of a wide-bandgap n-type semiconductor, a narrow-bandgap intrinsic semiconductor, and a wide-bandgap p-type semiconductor. In this paper, we propose a heat-electric power conversion mechanism in the absence of a temperature difference using only n-type Ba8Au x Si46-x clathrate. Single-crystal Ba8Au x Si46-x clathrate with a Au compositional gradient was synthesized by Czochralski method. Based on the results of wavelength-dispersive x-ray spectroscopy and Seebeck coefficient measurements, the presence of a Au compositional gradient in the sample was confirmed. It also observed that the electrical properties changed gradually from wide-bandgap n-type to narrow-bandgap n-type. When the sample was heated in the absence of a temperature difference, the voltage generated was approximately 0.28 mV at 500°C. These results suggest that only an n-type semiconductor with a controlled bandgap can generate electric power in the absence of a temperature difference.

  8. Generation and detection of dissipationless spin current in a MgO/Si bilayer

    NASA Astrophysics Data System (ADS)

    Lou, Paul C.; Kumar, Sandeep

    2018-04-01

    Spintronics is an analogue to electronics where the spin of the electron rather than its charge is functionally controlled for devices. The generation and detection of spin current without ferromagnetic or exotic/scarce materials are two of the biggest challenges for spintronics devices. In this study, we report a solution to the two problems of spin current generation and detection in Si. Using non-local measurement, we experimentally demonstrate the generation of helical dissipationless spin current using the spin-Hall effect. Contrary to the theoretical prediction, we observe the spin-Hall effect in both n-doped and p-doped Si. The helical spin current is attributed to the site-inversion asymmetry of the diamond cubic lattice of Si and structure inversion asymmetry in a MgO/Si bilayer. The spin to charge conversion in Si is insignificant due to weak spin-orbit coupling. For the efficient detection of spin current, we report spin to charge conversion at the MgO (1 nm)/Si (2 µm) (p-doped and n-doped) thin film interface due to Rashba spin-orbit coupling. We detected the spin current at a distance of  >100 µm, which is an order of magnitude larger than the longest spin diffusion length measured using spin injection techniques. The existence of spin current in Si is verified from the coercivity reduction in a Co/Pd multilayer due to spin-orbit torque generated by spin current from Si.

  9. Selective oxidation of benzyl alcohols to benzoic acid catalyzed by eco-friendly cobalt thioporphyrazine catalyst supported on silica-coated magnetic nanospheres.

    PubMed

    Li, Huan; Cao, Lan; Yang, Changjun; Zhang, Zhehui; Zhang, Bingguang; Deng, Kejian

    2017-10-01

    A novel magnetically recoverable thioporphyrazine catalyst (CoPz(S-Bu) 8 /SiO 2 @Fe 3 O 4 ) was prepared by immobilization of the cobalt octkis(butylthio) porphyrazine complex (CoPz(S-Bu) 8 ) on silica-coated magnetic nanospheres (SiO 2 @Fe 3 O 4 ). The composite CoPz(S-Bu) 8 /SiO 2 @Fe 3 O 4 appeared to be an active catalyst in the oxidation of benzyl alcohol in aqueous solution using hydrogen peroxide (H 2 O 2 ) as oxidant under Xe-lamp irradiation, with 36.4% conversion of benzyl alcohol, about 99% selectivity for benzoic acid and turnover number (TON) of 61.7 at ambient temperature. The biomimetic catalyst CoPz(S-Bu) 8 was supported on the magnetic carrier SiO 2 @Fe 3 O 4 so as to suspend it in aqueous solution to react with substrates, utilizing its lipophilicity. Meanwhile the CoPz(S-Bu) 8 can use its unique advantages to control the selectivity of photocatalytic oxidation without the substrate being subjected to deep oxidation. The influence of various reaction parameters on the conversion rate of benzyl alcohol and selectivity of benzoic acid was investigated in detail. Moreover, photocatalytic oxidation of substituted benzyl alcohols was obtained with high conversion and excellent selectivity, specifically conversion close to 70%, selectivity close to 100% and TON of 113.6 for para-position electron-donating groups. The selectivity and eco-friendliness of the biomimetic photocatalyst give it great potential for practical applications. Copyright © 2017. Published by Elsevier B.V.

  10. Processing and properties of SiC whisker- and particulate-reinforced reaction bonded Si3N4

    NASA Technical Reports Server (NTRS)

    Lightfoot, A.; Ewart, L.; Haggerty, J.; Cai, Z. Q.; Ritter, J.; Nair, S.

    1991-01-01

    The microstructure and mechanical properties of reaction bonded Si3N4 (RBSN) reinforced with SiC whiskers of particles were investigated using RBSN composites made from colloidally pressed octanol dispersions of high-purity Si powders mixed with either SiC whiskers or alpha-SiC particles. Results of investigations, revealing high conversions of Si to Si3N4, specific surface areas, and constant relative densities and strengths, showed that the uniform microstructure and small flaw size of the matrix were maintained in the composites and that no degradation of the reinforcements was taking place. Neither the monolithic nor the composite materials exhibited R-curve behavior. A modest increase in fracture toughness was observed only in the RBSN containing 33 vol pct SiC(p).

  11. Ethanol Conversion to Hydrocarbons on HZSM-5: Effect of Reaction Conditions and Si/Al Ratio on the Product Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramasamy, Karthikeyan K.; Wang, Yong

    2014-11-17

    The Conversion of ethanol to hydrocarbon over HZSM-5 zeolite with different Si/Al ratios was investigated under various reaction conditions. The catalyst with a higher Si/Al ratio (low acid density) deactivated faster and generated more unsaturated compounds at a similar time-on-stream. Temperature affects the catalytic activity with respect to liquid hydrocarbon generation and the hydrocarbon product composition. At lower temperatures (~300°C), the catalyst deactivated faster with respect to the liquid hydrocarbon formation. Higher temperatures (~400°C) reduced the formation of liquid range hydrocarbons and formed more gaseous fractions. Weight hourly space velocity was also found to affect product selectivity with higher weightmore » hourly space velocity leading to a higher extent of ethylene formation. The experimental results were analyzed in terms of the product composition and the coke content with respect to catalyst time-on-stream and compared with the catalyst lifetime with respect to the variables tested on the conversion of ethanol to hydrocarbon.« less

  12. Improving Si solar cell performance using Mn:ZnSe quantum dot-doped PLMA thin film

    PubMed Central

    2013-01-01

    Poly(lauryl methacrylate) (PLMA) thin film doped with Mn:ZnSe quantum dots (QDs) was spin-deposited on the front surface of Si solar cell for enhancing the solar cell efficiency via photoluminescence (PL) conversion. Significant solar cell efficiency enhancements (approximately 5% to 10%) under all-solar-spectrum (AM0) condition were observed after QD-doped PLMA coatings. Furthermore, the real contribution of the PL conversion was precisely assessed by investigating the photovoltaic responses of the QD-doped PLMA to monochromatic and AM0 light sources as functions of QD concentration, combined with reflectance and external quantum efficiency measurements. At a QD concentration of 1.6 mg/ml for example, among the efficiency enhancement of 5.96%, about 1.04% was due to the PL conversion, and the rest came from antireflection. Our work indicates that for the practical use of PL conversion in solar cell performance improvement, cautions are to be taken, as the achieved efficiency enhancement might not be wholly due to the PL conversion. PMID:23787125

  13. Optical charge state control of spin defects in 4H-SiC

    DOE PAGES

    Wolfowicz, Gary; Anderson, Christopher P.; Yeats, Andrew L.; ...

    2017-11-30

    Defects in silicon carbide (SiC) have emerged as a favorable platform for optically active spin-based quantum technologies. Spin qubits exist in specific charge states of these defects, where the ability to control these states can provide enhanced spin-dependent readout and long-term charge stability. We investigate this charge state control for two major spin qubits in 4H-SiC, the divacancy and silicon vacancy, obtaining bidirectional optical charge conversion between the bright and dark states of these defects. We measure increased photoluminescence from divacancy ensembles by up to three orders of magnitude using near-ultraviolet excitation, depending on the substrate, and without degrading themore » electron spin coherence time. This charge conversion remains stable for hours at cryogenic temperatures, allowing spatial and persistent patterning of the charge state populations. As a result, we develop a comprehensive model of the defects and optical processes involved, offering a strong basis to improve material design and to develop quantum applications in SiC.« less

  14. Optical charge state control of spin defects in 4H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfowicz, Gary; Anderson, Christopher P.; Yeats, Andrew L.

    Defects in silicon carbide (SiC) have emerged as a favorable platform for optically active spin-based quantum technologies. Spin qubits exist in specific charge states of these defects, where the ability to control these states can provide enhanced spin-dependent readout and long-term charge stability. We investigate this charge state control for two major spin qubits in 4H-SiC, the divacancy and silicon vacancy, obtaining bidirectional optical charge conversion between the bright and dark states of these defects. We measure increased photoluminescence from divacancy ensembles by up to three orders of magnitude using near-ultraviolet excitation, depending on the substrate, and without degrading themore » electron spin coherence time. This charge conversion remains stable for hours at cryogenic temperatures, allowing spatial and persistent patterning of the charge state populations. As a result, we develop a comprehensive model of the defects and optical processes involved, offering a strong basis to improve material design and to develop quantum applications in SiC.« less

  15. Effect of SiO 2-ZrO 2 supports prepared by a grafting method on hydrogen production by steam reforming of liquefied natural gas over Ni/SiO 2-ZrO 2 catalysts

    NASA Astrophysics Data System (ADS)

    Seo, Jeong Gil; Youn, Min Hye; Song, In Kyu

    SiO 2-ZrO 2 supports with various zirconium contents are prepared by grafting a zirconium precursor onto the surface of commercial Carbosil silica. Ni(20 wt.%)/SiO 2-ZrO 2 catalysts are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of SiO 2-ZrO 2 supports on the performance of the Ni(20 wt.%)/SiO 2-ZrO 2 catalysts is investigated. SiO 2-ZrO 2 prepared by a grafting method serves as an efficient support for the nickel catalyst in the steam reforming of LNG. Zirconia enhances the resistance of silica to steam significantly and increases the interaction between nickel and the support, and furthermore, prevents the growth of nickel oxide species during the calcination process through the formation of a ZrO 2-SiO 2 composite structure. The crystalline structures and catalytic activities of the Ni(20 wt.%)/SiO 2-ZrO 2 catalysts are strongly influenced by the amount of zirconium grafted. The conversion of LNG and the yield of hydrogen show volcano-shaped curves with respect to zirconium content. Among the catalysts tested, the Ni(20 wt.%)/SiO 2-ZrO 2 (Zr/Si = 0.54) sample shows the best catalytic performance in terms of both LNG conversion and hydrogen yield. The well-developed and pure tetragonal phase of ZrO 2-SiO 2 (Zr/Si = 0.54) appears to play an important role in the adsorption of steam and subsequent spillover of steam from the support to the active nickel. The small particle size of the metallic nickel in the Ni(20 wt.%)/SiO 2-ZrO 2 (Zr/Si = 0.54) catalyst is also responsible for its high performance.

  16. Optimization of Silicon parameters as a betavoltaic battery: Comparison of Si p-n and Ni/Si Schottky barrier

    NASA Astrophysics Data System (ADS)

    Rahmani, Faezeh; Khosravinia, Hossein

    2016-08-01

    Theoretical studies on the optimization of Silicon (Si) parameters as the base of betavoltaic battery have been presented using Monte Carlo simulations and the state equations in semiconductor to obtain maximum power. Si with active area of 1 cm2 has been considered in p-n junction and Schottky barrier structure to collect the radiation induced-charge from 10 mCi cm-2 of Nickle-63 (63Ni) Source. The results show that the betavoltaic conversion efficiency in the Si p-n structure is about 2.7 times higher than that in the Ni/Si Schottky barrier structure.

  17. Ge/Si Ratios Record the Impact of Forest Conversion to Cropland on Soil Chemical Weathering Processes and Solutes Export to Rivers

    NASA Astrophysics Data System (ADS)

    Ameijeiras-Marino, Y.; Opfergelt, S.; Derry, L. A.; Robinet, J.; Delmelle, P.

    2016-12-01

    Soil weathering processes influence solute fluxes to rivers, playing a major role in global biogeochemical cycles. Land use change such as forest conversion to cropland enhances soil erosion, which mobilizes solutes and exposes new mineral surfaces to weathering processes, changing soil weathering degree. However, the impact of forest conversion to cropland on soil weathering degree and solute fluxes exported from soils to rivers remain poorly quantified. This study assesses the soil weathering degree and uses a geochemical tracer of weathering, Ge/Si ratio, to provide new insights on the impact of soil weathering processes under anthropogenic forcing on the transfer of solutes to rivers. A subtropical site was studied in Rio Grande do Sul (Brazil). This area is characterized by mean annual rainfall of 1800 mm, with strong rain events mobilizing high sediment load. A forested catchment is considered as the reference and compared to a catchment cultivated for the past 100 years (similar lithology and climate). Bedrock, soil, soil pore water and stream water (during base flow and rain events) samples were analysed for their chemical and mineralogical compositions and Ge/Si ratios (combined isotope dilution, HR-ICP-MS and hydride generation). Chemical and mineralogical analyses highlight that forest conversion to cropland decreases the soil weathering degree on steep slopes. Ge/Si ratios (μmol/mol) are comparable in bulk soils between the forested (2.33 ± 0.50) and the cultivated catchment (2.61 ± 0.62), but differ in soil pore waters between forest (0.47 ± 0.16) and culture (0.73 ± 0.15) indicating differences on soil weathering processes. The response of Ge/Si ratios in stream waters to a rain event differs between forest and culture, highlighting a larger contribution from soil pore waters to stream waters under culture. Altogether, our data support that land use history has an impact on the present day soil weathering processes and on the solute export to rivers.

  18. Probing photo-carrier collection efficiencies of individual silicon nanowire diodes on a wafer substrate.

    PubMed

    Schmitt, S W; Brönstrup, G; Shalev, G; Srivastava, S K; Bashouti, M Y; Döhler, G H; Christiansen, S H

    2014-07-21

    Vertically aligned silicon nanowire (SiNW) diodes are promising candidates for the integration into various opto-electronic device concepts for e.g. sensing or solar energy conversion. Individual SiNW p-n diodes have intensively been studied, but to date an assessment of their device performance once integrated on a silicon substrate has not been made. We show that using a scanning electron microscope (SEM) equipped with a nano-manipulator and an optical fiber feed-through for tunable (wavelength, power using a tunable laser source) sample illumination, the dark and illuminated current-voltage (I-V) curve of individual SiNW diodes on the substrate wafer can be measured. Surprisingly, the I-V-curve of the serially coupled system composed of SiNW/wafers is accurately described by an equivalent circuit model of a single diode and diode parameters like series and shunting resistivity, diode ideality factor and photocurrent can be retrieved from a fit. We show that the photo-carrier collection efficiency (PCE) of the integrated diode illuminated with variable wavelength and intensity light directly gives insight into the quality of the device design at the nanoscale. We find that the PCE decreases for high light intensities and photocurrent densities, due to the fact that considerable amounts of photo-excited carriers generated within the substrate lead to a decrease in shunting resistivity of the SiNW diode and deteriorate its rectification. The PCE decreases systematically for smaller wavelengths of visible light, showing the possibility of monitoring the effectiveness of the SiNW device surface passivation using the shown measurement technique. The integrated device was pre-characterized using secondary ion mass spectrometry (SIMS), TCAD simulations and electron beam induced current (EBIC) measurements to validate the properties of the characterized material at the single SiNW diode level.

  19. SI units and the clinical practice of infectious diseases: application to the usage of antimicrobial agents.

    PubMed

    Quentzel, H L; Nadelman, R B; Ng, J; Wormser, G P

    1989-01-01

    Over the next few years, le Système international d'Unités or SI units may replace the presently used metric system in reporting laboratory data. The change to SI units will likely result in some confusion among clinicians who are not well versed in the new system. Application of SI units to the clinical practice of infectious diseases is discussed, including changes in drug dosages, serum drug levels, and minimum inhibitory concentrations. A table is presented to facilitate conversion of metric units to SI units and vice versa.

  20. Raman studies of methane-ethane hydrate metastability.

    PubMed

    Ohno, Hiroshi; Strobel, Timothy A; Dec, Steven F; Sloan, E Dendy; Koh, Carolyn A

    2009-03-05

    The interconversion of methane-ethane hydrate from metastable to stable structures was studied using Raman spectroscopy. sI and sII hydrates were synthesized from methane-ethane gas mixtures of 65% or 93% methane in ethane and water, both with and without the kinetic hydrate inhibitor, poly(N-vinylcaprolactam). The observed faster structural conversion rate in the higher methane concentration atmosphere can be explained in terms of the differences in driving force (difference in chemical potential of water in sI and sII hydrates) and kinetics (mass transfer of gas and water rearrangement). The kinetic hydrate inhibitor increased the conversion rate at 65% methane in ethane (sI is thermodynamically stable) but retards the rate at 93% methane in ethane (sII is thermodynamically stable), implying there is a complex interaction between the polymer, water, and hydrate guests at crystal surfaces.

  1. Microcalorimetric, {sup 13}C NMR spectroscopic, and reaction kinetic studies of silica- and L-zeolite-supported platinum catalysts for n-hexane conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S.B.; Ouraipryvan, P.; Nair, H.A.

    Reaction kinetics measurement of n-hexane conversion over 4% Pt/SiO{sub 2} and 1% Pt/SiO{sub 2} and 1% Pt/K(Ba)-L catalysts were made at a pressure of 3 atm and temperatures from 698 to 750 K. The rates of benzene and methylcyclopentane formation decrease with time during reaction over Pt/SiO{sub 2}, while 1% Pt/K(Ba)-L does not deactivate significantly. Microcalorimetric measurements at 353 K show that the heat of carbon monoxide adsorption is the same on freshly reduced Pt/SiO{sub 2} and Pt/K(Ba)-L catalysts; however, carbonaceous species that accumulate on Pt/SiO{sub 2} during n-hexane conversion decrease the total number of adsorption sites and the numbermore » of sites that adsorb carbon monoxide strongly. The 1% Pt/K(Ba)-L catalyst retains the adsorptive properties of the freshly reduced catalyst. Nuclear magnetic resonance studies of {sup 13}CO adsorption show that cluster-sized platinum particles are more resistant to deactivation by self-poisoning reactions than larger platinum particles. The greater catalyst stability and higher steady-state activity of L-zeolite-supported platinum catalysts may be attributed to the ability of L-zeolite to stabilize cluster-sized particles under reaction conditions. Differences in dehydrocyclization activity between catalysts may be related to differences in the number of strong adsorption sites that are present under reaction conditions. 31 refs., 7 figs., 4 tabs.« less

  2. Enhanced photovoltaic property by forming p-i-n structures containing Si quantum dots/SiC multilayers

    PubMed Central

    2014-01-01

    Si quantum dots (Si QDs)/SiC multilayers were fabricated by annealing hydrogenated amorphous Si/SiC multilayers prepared in a plasma-enhanced chemical vapor deposition system. The thickness of amorphous Si layer was designed to be 4 nm, and the thickness of amorphous SiC layer was kept at 2 nm. Transmission electron microscopy observation revealed the formation of Si QDs after 900°C annealing. The optical properties of the Si QDs/SiC multilayers were studied, and the optical band gap deduced from the optical absorption coefficient result is 1.48 eV. Moreover, the p-i-n structure with n-a-Si/i-(Si QDs/SiC multilayers)/p-Si was fabricated, and the carrier transportation mechanism was investigated. The p-i-n structure was used in a solar cell device. The cell had the open circuit voltage of 532 mV and the power conversion efficiency (PCE) of 6.28%. PACS 81.07.Ta; 78.67.Pt; 88.40.jj PMID:25489285

  3. Evaluation of Silica-Supported Metal and Metal Phosphide Nanoparticle Catalysts for the Hydrodeoxygenation of Guaiacol Under Ex Situ Catalytic Fast Pyrolysis Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Michael B.; Baddour, Frederick G.; Habas, Susan E.

    A series of metal and metal phosphide catalysts were investigated for the hydrodeoxygenation of guaiacol under ex situ catalytic fast pyrolysis (CFP) conditions (350 °C, 0.5 MPa, 12 H 2:1 guaiacol, weight hourly space velocity 5 h $-$1). Ligand-capped Ni, Pt, Rh, Ni 2P, and Rh 2P nanoparticles (NPs) were prepared using solution-phase synthesis techniques and dispersed on a silica support. For the metal phosphide NP-catalysts, a synthetic route that relies on the decomposition of a single molecular precursor was employed. The reactivity of the NP-catalysts was compared to a series of reference materials including Ni/SiO 2 and Pt/SiO 2more » prepared using incipient wetness (IW) impregnation and a commercial (com) Pt/SiO 2 catalyst. The NP-Ni/SiO 2 catalyst exhibited the largest reduction in the oxygen mol% of the organic phase and outperformed the IW-Ni/SiO 2 material. Although it was less active for guaiacol conversion than NP-Ni/SiO 2, NP-Rh2P/SiO 2 demonstrated the largest production of completely deoxygenated products and the highest selectivity to anisole, benzene, and cyclohexane, suggesting that it is a promising catalyst for deoxygenation of aryl-OH bonds. Finally, the com-Pt/SiO 2 and IW-Pt/SiO 2 catalyst exhibited the highest normalized rate of guaiacol conversion per m 2 and per gram of active phase, respectively, but did not produce any completely deoxygenated products.« less

  4. Evaluation of Silica-Supported Metal and Metal Phosphide Nanoparticle Catalysts for the Hydrodeoxygenation of Guaiacol Under Ex Situ Catalytic Fast Pyrolysis Conditions

    DOE PAGES

    Griffin, Michael B.; Baddour, Frederick G.; Habas, Susan E.; ...

    2015-09-30

    A series of metal and metal phosphide catalysts were investigated for the hydrodeoxygenation of guaiacol under ex situ catalytic fast pyrolysis (CFP) conditions (350 °C, 0.5 MPa, 12 H 2:1 guaiacol, weight hourly space velocity 5 h $-$1). Ligand-capped Ni, Pt, Rh, Ni 2P, and Rh 2P nanoparticles (NPs) were prepared using solution-phase synthesis techniques and dispersed on a silica support. For the metal phosphide NP-catalysts, a synthetic route that relies on the decomposition of a single molecular precursor was employed. The reactivity of the NP-catalysts was compared to a series of reference materials including Ni/SiO 2 and Pt/SiO 2more » prepared using incipient wetness (IW) impregnation and a commercial (com) Pt/SiO 2 catalyst. The NP-Ni/SiO 2 catalyst exhibited the largest reduction in the oxygen mol% of the organic phase and outperformed the IW-Ni/SiO 2 material. Although it was less active for guaiacol conversion than NP-Ni/SiO 2, NP-Rh2P/SiO 2 demonstrated the largest production of completely deoxygenated products and the highest selectivity to anisole, benzene, and cyclohexane, suggesting that it is a promising catalyst for deoxygenation of aryl-OH bonds. Finally, the com-Pt/SiO 2 and IW-Pt/SiO 2 catalyst exhibited the highest normalized rate of guaiacol conversion per m 2 and per gram of active phase, respectively, but did not produce any completely deoxygenated products.« less

  5. Corrosion and protection of heterogeneous cast Al-Si (356) and Al-Si-Cu-Fe (380) alloys by chromate adn cerium inhibitors

    NASA Astrophysics Data System (ADS)

    Jain, Syadwad

    In this study, the localized corrosion and conversion coating on cast alloys 356 (Al-7.0Si-0.3Mg) and 380 (Al-8.5Si-3.5Cu-1.6Fe) were characterized. The intermetallic phases presence in the permanent mold cast alloy 356 are primary-Si, Al5FeSi, Al8Si6Mg3Fe and Mg2Si. The die cast alloy 380 is rich in Cu and Fe elements. These alloying elements result in formation of the intermetallic phases Al 5FeSi, Al2Cu and Al(FeCuCr) along with primary-Si. The Cu- and Fe-rich IMPS are cathodic with respect to the matrix phase and strongly govern the corrosion behavior of the two cast alloys in an aggressive environment due to formation of local electrochemical cell in their vicinity. Results have shown that corrosion behavior of permanent mould cast alloy 356 is significantly better than the die cast aluminum alloy 380, primarily due to high content of Cu- and Fe-rich phases such as Al2Cu and Al 5FeSi in the latter. The IMPS also alter the protection mechanism of the cast alloys in the presence of inhibitors in an environment. The presence of chromate in the solution results in reduced cathodic activity on all the phases. Chromate provides some anodic inhibition by increasing pitting potentials and altering corrosion potentials for the phases. Results have shown that performance of CCC was much better on 356 than on 380, primarily due to inhomogeneous and incomplete coating deposition on Cu- and Fe- phases present in alloy 380. XPS and Raman were used to characterize coating deposition on intermetallics. Results show evidence of cyanide complex formation on the intermetallic phases. The presence of this complex is speculated to locally suppress CCC formation. Formation and breakdown of cerium conversion coatings on 356 and 380 was also analyzed. Results showed that deposition of cerium hydroxide started with heavy precipitation on intermetallic particles with the coatings growing outwards onto the matrix. Electrochemical analysis of synthesized intermetallics compounds in the presence of soluble cerium cations showed that of anodic and cathodic activity was not as strongly inhibited as was observed for chromate ions. Overall cerium conversion coating showed good performance on Al-Si (356) ally, but poor performance on Fe- and Cu-rich alloy (380).

  6. Silicon Photonics: All-Optical Devices for Linear and Nonlinear Applications

    NASA Astrophysics Data System (ADS)

    Driscoll, Jeffrey B.

    Silicon photonics has grown rapidly since the first Si electro-optic switch was demonstrated in 1987, and the field has never grown more quickly than it has over the past decade, fueled by milestone achievements in semiconductor processing technologies for low loss waveguides, high-speed Si modulators, Si lasers, Si detectors, and an enormous toolbox of passive and active integrated devices. Silicon photonics is now on the verge of major commercialization breakthroughs, and optical communication links remain the force driving integrated and Si photonics towards the first commercial telecom and datacom transceivers; however other potential and future applications are becoming uncovered and refined as researchers reveal the benefits of manipulating photons on the nanoscale. This thesis documents an exploration into the unique guided-wave and nonlinear properties of deeply-scaled high-index-contrast sub-wavelength Si waveguides. It is found that the tight confinement inherent to single-mode channel waveguides on the silicon-on-insulator platform lead to a rich physics, which can be leveraged for new devices extending well beyond simple passive interconnects and electro-optic devices. The following chapters will concentrate, in detail, on a number of unique physical features of Si waveguides and extend these attributes towards new and interesting devices. Linear optical properties and nonlinear optical properties are investigated, both of which are strongly affected by tight optical confinement of the guided waveguide modes. As will be shown, tight optical confinement directly results in strongly vectoral modal components, where the electric and magnetic fields of the guided modes extend into all spatial dimensions, even along the axis of propagation. In fact, the longitudinal electric and magnetic field components can be just as strong as the transverse fields, directly affecting the modal group velocity and energy transport properties since the longitudinal fields are shown to contribute no time-averaged momentum. Furthermore, the vectoral modal components, in conjunction with the tensoral nature of the third-order susceptibility of Si, lead to nonlinear properties which are dependent on waveguide orientation with respect to the Si parent crystal and the construction of the modal electric field components. This consideration is used to maximize effective nonlinearity and realize nonlinear Kerr gratings along specific waveguide trajectories. Tight optical confinement leads to a natural enhancement of the intrinsically large effective nonlinearty of Si waveguides, and in fact, the effective nonlinearty can be made to be almost 106 times greater in Si waveguides than that of standard single-mode fiber. Such a large nonlinearity motivates chip-scale all-optical signal processing techniques. Wavelength conversion by both four-wave-mixing (FWM) and cross-phase-modulation (XPM) will be discussed, including a technique that allows for enhanced broadband discrete FWM over arbitrary spectral spans by modulating both the linear and nonlinear waveguide properties through periodic changes in waveguide geometry. This quasi-phase-matching approach has very real applications towards connecting mature telecom sources detectors and components to other spectral regimes, including the mid-IR. Other signal processing techniques such as all-optical modulation format conversion via XPM will also be discussed. This thesis will conclude by looking at ways to extend the bandwidth capacity of Si waveguide interconnects on chip. As the number of processing cores continues to scale as a means for computational performance gains, on-chip link capacity will become an increasingly important issue. Metallic traces have severe limitations and are envisioned to eventually bow to integrated photonic links. The aggregate bandwidth supported by a single waveguide link will therefore become a crucial consideration as integrated photonics approaches the CPU. One way to increase aggregate bandwidth is to utilize different eigen-modes of a multimode waveguide, and integrated waveguide mode-muxes and demuxes for achieving simultaneous mode-division-multiplexing and wavelength-division-multiplexing will be demonstrated.

  7. Toward a III-V Multijunction Space Cell Technology on Si

    NASA Technical Reports Server (NTRS)

    Ringel, S. A.; Lueck, M. R.; Andre, C. L.; Fitzgerald, E. A.; Wilt, D. M.; Scheiman, D.

    2007-01-01

    High efficiency compound semiconductor solar cells grown on Si substrates are of growing interest in the photovoltaics community for both terrestrial and space applications. As a potential substrate for III-V compound photovoltaics, Si has many advantages over traditional Ge and GaAs substrates that include higher thermal conductivity, lower weight, lower material costs, and the potential to leverage the extensive manufacturing base of the Si industry. Such a technology that would retain high solar conversion efficiency at reduced weight and cost would result in space solar cells that simultaneously possess high specific power (W/kg) and high power density (W/m2). For terrestrial solar cells this would result in high efficiency III-V concentrators with improved thermal conductivity, reduced cost, and via the use of SiGe graded interlayers as active component layers the possibility of integrating low bandgap sub-cells that could provide for extremely high conversion efficiency.1 In addition to photovoltaics, there has been an historical interest in III-V/Si integration to provide optical interconnects in Si electronics, which has become of even greater relevance recently due to impending bottlenecks in CMOS based circuitry. As a result, numerous strategies to integrate GaAs with Si have been explored with the primary issue being the approx.4% lattice mismatch between GaAs and Si. Among these efforts, relaxed, compositionally-graded SiGe buffer layers where the substrate lattice constant is effectively tuned from Si to that of Ge so that a close lattice match to subsequent GaAs overlayers have shown great promise. With this approach, threading dislocation densities (TDDs) of approx.1 x 10(exp 6)/sq cm have been uniformly achieved in relaxed Ge layers on Si,5 leading to GaAs on Si with minority carrier lifetimes greater than 10 ns,6 GaAs single junction solar cells on Si with efficiencies greater than 18%,7 InGaAs CW laser diodes on Si,8 and room temperature GaInP red laser diodes on Si.9 Here we report on the first high performance dual junction GaInP/GaAs solar cells grown on Si using this promising SiGe engineered substrate approach.

  8. Conversion of forest to arable land in Southern Brazil has led to an increase in dissolved silicon flux

    NASA Astrophysics Data System (ADS)

    Robinet, Jérémy; Ameijeiras-Mariño, Yolanda; Vanderborght, Jan; Opfergelt, Sophie; Govers, Gerard

    2017-04-01

    Hydrology plays a major role in controlling biogeochemical fluxes at various scales. Among the various controlling factors of water fluxes at the hillslope or catchment scale, land use change is a direct human effect which has been relatively under-examined despite its potential important impact. The overall objective of this research is therefore to investigate how land use change can affect water fluxes and how these changes may, on their turn, affect biogeochemical fluxes, with a particular focus on silicon (Si) dynamic. We selected two small catchments with contrasting land use (agriculture vs. natural forest) in a subtropical region in the south of Brazil. The conversion of forest to arable land in the agricultural catchment is relatively recent, as deforestation started at the beginning of the 20th century. Stream, pore and groundwater were monitored, sampled and analyzed for major elements concentrations and δ18O. Preliminary results showed that deforestation and agriculture led to an increase in solute export at the catchment outlet, with for example dissolved Si (DSi) concentration and flux two times higher for the agricultural catchment. δ18O and DSi concentration data showed the importance of preferential flow in macropores in the forested catchment, probably because of the high root and low bulk densities. This led to a reduced mobilization of the pore water during rainfall event, contrarily to the agricultural catchment. As a result, there is almost no contribution of this relatively DSi-enriched pool to the river discharge in the forested environment. Those results indicate that the conversion of forest to arable land has had a significant impact on the biogeochemical fluxes, highlighted in this study with observed changes in DSi flux. Those changes could be partially attributed to changes in water fluxes and pathways.

  9. Mechanism for converting Al2O3-containing borate glass to hydroxyapatite in aqueous phosphate solution.

    PubMed

    Zhao, Di; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E; Wang, Deping

    2009-05-01

    The effect of replacing varying amounts (0-2.5 mol.%) of B2O3 with Al2O3 in a borate glass on (1) the conversion of the glass to HA in an aqueous phosphate solution and (2) the compressive strength of the as-formed HA product was investigated. Samples of each glass (10 x 10 x 8 mm) were placed in 0.25 M K2HPO4 solution at 60 degrees C, and the conversion kinetics to HA were determined from the weight loss of the glass and the pH of the solution. The structure and composition of the solid reaction products were characterized using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. While the conversion rate of the glass to HA decreased considerably with increasing Al2O3 content, the microstructure of the HA product became denser and the compressive strength of the HA product increased. The addition of SiO2 to the Al2O3-containing borate glass reversed the deterioration of the conversion rate, and produced a further improvement in the strength of the HA product. The compressive strength of the HA formed from the borate glass with 2.5 mol.% Al2O3 and 5 mol.% SiO2 was 11.1 +/- 0.2 MPa, which is equal to the highest strengths reported for trabecular bone. The results indicated that simultaneous additions of Al2O3 and SiO2 could be used to control the bioactivity of the borate glass and to enhance the mechanical strength of the HA product. Furthermore, the HA product formed from the glass containing both SiO2 and Al2O3 could be applied to bone repair.

  10. Luminescence of Er 3+-doped nanostructured SiO 2-LaF 3 glass-ceramics prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Rodríguez, V. D.; Del Castillo, J.; Yanes, A. C.; Méndez-Ramos, J.; Torres, M.; Peraza, J.

    2007-07-01

    Transparent glass ceramics with composition of 95SiO2-5LaF3 doped with 0.1 mol% of Er3+ were synthesized by thermal treatment of precursor sol-gel glasses. Segregated LaF3 nanocrystals in the glass were confirmed from a structural analysis performed by X-ray diffraction. Blue, green and red efficient up-conversion emissions were observed under 980 nm excitation at room temperature. Under this excitation near infrared down-conversion at 1.55 μm is also observed. These results could be attributed to the precipitation of LaF3 nanocrystals and the incorporation of most Er3+ ions in these nanocrystals. The mechanisms involved in the up-conversion emissions could be ascribed to two and three photon processes.

  11. Technical Approach for In Situ Biological Treatment Research: Bench- Scale Experiments

    DTIC Science & Technology

    1993-08-01

    1 CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT . . 5 PART I: INTRODUCTION...141 REFERENCES ....................... .............................. 142 TABLES 1 -4 APPENDIX A: IN SITU IMPLEMENTATION CASE STUDIES...TREATMENT RESEARCH: BENCH-SCALE EXPERIMENTS PART I: INTRODUCTION Background 1 . Many US Army installations have areas of contamination requiring

  12. Interviewer-Respondent Interactions in Conversational and Standardized Interviewing

    ERIC Educational Resources Information Center

    Mittereder, Felicitas; Durow, Jen; West, Brady T.; Kreuter, Frauke; Conrad, Frederick G.

    2018-01-01

    Standardized interviewing (SI) and conversational interviewing are two approaches to collect survey data that differ in how interviewers address respondent confusion. This article examines interviewer-respondent interactions that occur during these two techniques, focusing on requests for and provisions of clarification. The data derive from an…

  13. Simulation and experimental study of a novel bifacial structure of silicon heterojunction solar cell for high efficiency and low cost

    NASA Astrophysics Data System (ADS)

    Huang, Haibin; Tian, Gangyu; Zhou, Lang; Yuan, Jiren; Fahrner, Wolfgang R.; Zhang, Wenbin; Li, Xingbing; Chen, Wenhao; Liu, Renzhong

    2018-03-01

    A novel structure of Ag grid/SiN x /n+-c-Si/n-c-Si/i-a-Si:H/p+-a-Si:H/TCO/Ag grid was designed to increase the efficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material consumption and production cost. The simulation results show that the new structure obtains higher efficiency compared with the typical bifacial amorphous/crystalline silicon-based solar cell because of an increase in the short-circuit current (J sc), while retaining the advantages of a high open-circuit voltage, low temperature coefficient, and good weak-light performance. Moreover, real cells composed of the novel structure with dimensions of 75 mm ×75 mm were fabricated by a special fabrication recipe based on industrial processes. Without parameter optimization, the cell efficiency reached 21.1% with the J sc of 41.7 mA/cm2. In addition, the novel structure attained 28.55% potential conversion efficiency under an illumination of AM 1.5 G, 100 mW/cm2. We conclude that the configuration of the Ag grid/SiN x /n+-c-Si/n-c-Si/i-a-Si:H/p+-a-Si:H/TCO/Ag grid is a promising structure for high efficiency and low cost. Project supported by the Jiangxi Provincial Key Research and Development Foundation, China (Grant No. 2016BBH80043), the Open Fund of Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, China (Grant No. NJ20160032), and the National Natural Science Foundation of China (Grant Nos. 61741404, 61464007, and 51561022).

  14. Convenient Route to Di- and Triorganosilyl Ethyl Ethers and the Corresponding Di- and Triorganosilanes

    DTIC Science & Technology

    1993-11-22

    example R2 R’SiH. Early reports indicated that formation of R3SiCI or R2SiCI 2 compounds by the addition of organolithium or Grignard reagents to...corresponding Grignard reagents are far less effective for the substiution reactions. 7 3 Table I. Conversion of (CH3 CH20) 4Si to Organosilyl Ethyl Ethers (X...ABSTRACT (Maximum 200 words) Tetraethoxysilane was treated with alkyl- and aryllithium reagents for the preparation of organosilyl ethyl ethers of the

  15. Wide-band polarization controller for Si photonic integrated circuits.

    PubMed

    Velha, P; Sorianello, V; Preite, M V; De Angelis, G; Cassese, T; Bianchi, A; Testa, F; Romagnoli, M

    2016-12-15

    A circuit for the management of any arbitrary polarization state of light is demonstrated on an integrated silicon (Si) photonics platform. This circuit allows us to adapt any polarization into the standard fundamental TE mode of a Si waveguide and, conversely, to control the polarization and set it to any arbitrary polarization state. In addition, the integrated thermal tuning allows kilohertz speed which can be used to perform a polarization scrambler. The circuit was used in a WDM link and successfully used to adapt four channels into a standard Si photonic integrated circuit.

  16. Nanowires from dirty multi-crystalline Si for hydrogen generation

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng; Schweizer, Stefan L.; Sprafke, Alexander; Wehrspohn, Ralf B.

    2013-09-01

    Silicon nanowires are considered as a promising architecture for solar energy conversion systems. By metal assisted chemical etching of multi-crystalline upgraded metallurgical silicon (UMG-Si), large areas of silicon nanowires (SiNWs) with high quality can be produced on the mother substrates. These areas show a low reflectance comparable to black silicon. More interestingly, we find that various metal impurities inside UMG-Si are removed due to the etching through element analysis. A prototype cell was built to test the photoelectrochemical (PEC) properties of UMG-SiNWs for water splitting. The on-set potential for hydrogen evolution was much reduced, and the photocurrent density showed an increment of 35% in comparison with a `dirty' UMG-Si wafer.

  17. Directional Etching of Silicon by Silver Nanostructures

    NASA Astrophysics Data System (ADS)

    Sharma, Pradeep; Wang, Yuh-Lin

    2011-02-01

    We report directional etching of nanostructures (nanochannels and nanotrenches) into the Si(100) substrates in aqueous HF and H2O2 solution by lithographically defined Ag patterns (nanoparticles, nanorods, and nanorings). The Effect of Ag/Si interface oxide on the directional etching has been studied by etching Ag/SiOx/Si samples of known interface oxide thickness. Based on high resolution transmission electron microscopy (HRTEM) imaging and TEM-energy dispersive X-ray (EDX) spectra of the Ag/Si interfaces, we propose that maintenance of the sub-nanometer oxide at the Ag/Si interfaces and Ag-Si interaction are the key factors which regulate the directional etching of Si.

  18. On the interplay between Si(110) epilayer atomic roughness and subsequent 3C-SiC growth direction

    NASA Astrophysics Data System (ADS)

    Khazaka, Rami; Michaud, Jean-François; Vennéguès, Philippe; Nguyen, Luan; Alquier, Daniel; Portail, Marc

    2016-11-01

    In this contribution, we performed the growth of a 3C-SiC/Si/3C-SiC layer stack on a Si(001) substrate by means of chemical vapor deposition. We show that, by tuning the growth conditions, the 3C-SiC epilayer can be grown along either the [111] direction or the [110] direction. The key parameter for the growth of the desired 3C-SiC orientation on the Si(110)/3C-SiC(001)/Si(001) heterostructure is highlighted and is linked to the Si epilayer surface morphology. The epitaxial relation between the layers has been identified using X-ray diffraction and transmission electron microscopy (TEM). We showed that, regardless of the top 3C-SiC epilayer orientation, domains rotated by 90° around the growth direction are present in the epilayer. Furthermore, the difference between the two 3C-SiC orientations was investigated by means of high magnification TEM. The results indicate that the faceted Si(110) epilayer surface morphology results in a (110)-oriented 3C-SiC epilayer, whereas a flat hetero-interface has been observed between 3C-SiC(111) and Si(110). The control of the top 3C-SiC growth direction can be advantageous for the development of new micro-electro-mechanical systems.

  19. Metallocene Catalytic Insertion Polymerization of 1-Silene to Polycarbosilanes

    NASA Astrophysics Data System (ADS)

    Tian, Yuelong; Ge, Min; Zhang, Weigang; Lv, Xiaoxu; Yu, Shouquan

    2015-11-01

    Metallocene of zirconium were used as a catalyst for an insertion polymerization of 1-methylsilene directly into pre-ceramic precursor polyzirconocenecarbosilane (PZCS) during dechlorination of dichlorodimethylesilane by sodium, which exhibits high catalytic effectiveness with the maximum conversion ratio of polycarbosilane up to 91%. The average molecular weights of polymers synthesized are less than 1400, all with very narrow polymolecularities. The mechanism of catalytic polymerization was assumed to be similar to a coordination insertion polymerization of 1-olefins by metallocenes. The obtained PZCS show high ceramic yields with formation of composite ceramics of ZrC-SiC, which are novel polymeric precursors of ultra-high temperature ceramic (UHTC) fiber and composite.

  20. Metallocene Catalytic Insertion Polymerization of 1-Silene to Polycarbosilanes.

    PubMed

    Tian, Yuelong; Ge, Min; Zhang, Weigang; Lv, Xiaoxu; Yu, Shouquan

    2015-11-06

    Metallocene of zirconium were used as a catalyst for an insertion polymerization of 1-methylsilene directly into pre-ceramic precursor polyzirconocenecarbosilane (PZCS) during dechlorination of dichlorodimethylesilane by sodium, which exhibits high catalytic effectiveness with the maximum conversion ratio of polycarbosilane up to 91%. The average molecular weights of polymers synthesized are less than 1400, all with very narrow polymolecularities. The mechanism of catalytic polymerization was assumed to be similar to a coordination insertion polymerization of 1-olefins by metallocenes. The obtained PZCS show high ceramic yields with formation of composite ceramics of ZrC-SiC, which are novel polymeric precursors of ultra-high temperature ceramic (UHTC) fiber and composite.

  1. Rear-Sided Passivation by SiNx:H Dielectric Layer for Improved Si/PEDOT:PSS Hybrid Heterojunction Solar Cells.

    PubMed

    Sun, Yiling; Gao, Pingqi; He, Jian; Zhou, Suqiong; Ying, Zhiqin; Yang, Xi; Xiang, Yong; Ye, Jichun

    2016-12-01

    Silicon/organic hybrid solar cells have recently attracted great attention because they combine the advantages of silicon (Si) and the organic cells. In this study, we added a patterned passivation layer of silicon nitride (SiNx:H) onto the rear surface of the Si substrate in a Si/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) hybrid solar cell, enabling an improvement of 0.6 % in the power conversion efficiency (PCE). The addition of the SiNx:H layer boosted the open circuit voltage (V oc) from 0.523 to 0.557 V, suggesting the well-passivation property of the patterned SiNx:H thin layer that was created by plasma-enhanced chemical vapor deposition and lithography processes. The passivation properties that stemmed from front PSS, rear-SiNx:H, front PSS/rear-SiNx:H, etc. are thoroughly investigated, in consideration of the process-related variations.

  2. High-Performance Silicon-Germanium-Based Thermoelectric Modules for Gas Exhaust Energy Scavenging

    NASA Astrophysics Data System (ADS)

    Romanjek, K.; Vesin, S.; Aixala, L.; Baffie, T.; Bernard-Granger, G.; Dufourcq, J.

    2015-06-01

    Some of the energy used in transportation and industry is lost as heat, often at high-temperatures, during conversion processes. Thermoelectricity enables direct conversion of heat into electricity, and is an alternative to the waste-heat-recovery technology currently used, for example turbines and other types of thermodynamic cycling. The performance of thermoelectric (TE) materials and modules has improved continuously in recent decades. In the high-temperature range ( T hot side > 500°C), silicon-germanium (SiGe) alloys are among the best TE materials reported in the literature. These materials are based on non-toxic elements. The Thermoelectrics Laboratory at CEA (Commissariat à l'Energie Atomique et aux Energies Alternatives) has synthesized n and p-type SiGe pellets, manufactured TE modules, and integrated these into thermoelectric generators (TEG) which were tested on a dedicated bench with hot air as the source of heat. SiGe TE samples of diameter 60 mm were created by spark-plasma sintering. For n-type SiGe doped with phosphorus the peak thermoelectric figure of merit reached ZT = 1.0 at 700°C whereas for p-type SiGe doped with boron the peak was ZT = 0.75 at 700°C. Thus, state-of-the-art conversion efficiency was obtained while also achieving higher production throughput capacity than for competing processes. A standard deviation <4% in the electrical resistance of batches of ten pellets of both types was indicative of high reproducibility. A silver-paste-based brazing technique was used to assemble the TE elements into modules. This assembly technique afforded low and repeatable electrical contact resistance (<3 nΩ m2). A test bench was developed for measuring the performance of TE modules at high temperatures (up to 600°C), and thirty 20 mm × 20 mm TE modules were produced and tested. The results revealed the performance was reproducible, with power output reaching 1.9 ± 0.2 W for a 370 degree temperature difference. When the temperature difference was increased to 500°C, electrical power output increased to >3.6 W. An air-water heat exchanger was developed and 30 TE modules were clamped and connected electrically. The TEG was tested under vacuum on a hot-air test bench. The measured output power was 45 W for an air flow of 16 g/s at 750°C. The hot surface of the TE module reached 550°C under these conditions. Silicon-germanium TE modules can survive such temperatures, in contrast with commercial modules based on bismuth telluride, which are limited to 400°C.

  3. Bulk silicon as photonic dynamic infrared scene projector

    NASA Astrophysics Data System (ADS)

    Malyutenko, V. K.; Bogatyrenko, V. V.; Malyutenko, O. Yu.

    2013-04-01

    A Si-based fast (frame rate >1 kHz), large-scale (scene area 100 cm2), broadband (3-12 μm), dynamic contactless infrared (IR) scene projector is demonstrated. An IR movie appears on a scene because of the conversion of a visible scenario projected at a scene kept at elevated temperature. Light down conversion comes as a result of free carrier generation in a bulk Si scene followed by modulation of its thermal emission output in the spectral band of free carrier absorption. The experimental setup, an IR movie, figures of merit, and the process's advantages in comparison to other projector technologies are discussed.

  4. Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2-ZrO2 catalysts.

    PubMed

    Zhang, Xinghua; Zhang, Qi; Wang, Tiejun; Ma, Longlong; Yu, Yuxiao; Chen, Lungang

    2013-04-01

    Inexpensive non-sulfided Ni-based catalysts were evaluated for hydrodeoxygenation (HDO) using guaiacol as model compound. SiO2-ZrO2 (SZ), a complex oxide synthesized by precipitation method with different ratio of Si/Zr, was impregnated with Ni(NO3)2·6H2O and calcined at 500°C. Conversion rates and product distribution for guaiacol HDO at 200-340°C were determined. Guaiacol conversion reached the maximum at 300°C in the presence of Ni/SZ-3. When HDO reaction was carried out with real lignin-derived phenolic compounds under the optimal conditions determined for guaiacol, the total yield of hydrocarbons was 62.81%. These hydrocarbons were comprised of cyclohexane, alkyl-substituted cyclohexane and alkyl-substituted benzene. They have high octane number, would be the most desirable components for fungible liquid transportation fuel. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Light-induced effects-impacts to module performance measurements and reliability testing: An overview

    NASA Technical Reports Server (NTRS)

    Wronski, C. R.

    1985-01-01

    The stability of solar cells is a key factor in determining the reliability of photovoltaic modules and is of great interest in the case of solar cells having a new technology which has not yet been fully developed. In particular this question arises with hydrogenated amorphous silicon (a-Si) solar cells because a-Si exhibits reversible light induced changes in its electronic properties, commonly referred to as the Staebler-Wronski effect (SWE). Continuous progress is being made in the peak conversion efficiencies of a-Si solar cells and efficiencies in excess of 11% have been achieved. However, stability is still a problem. ARCO Solar reports results on solar cells which, after over a year's exposure to sunlight, under open circuit conditions, still have about 7% conversion efficiency. Other results show a region of fast degradation for about a month, after which the degradation diminishes rapidly.

  6. Planar n-Si/PEDOT:PSS hybrid heterojunction solar cells utilizing functionalized carbon nanoparticles synthesized via simple pyrolysis route

    NASA Astrophysics Data System (ADS)

    Nam, Yoon-Ho; Kim, Dong-Hyung; Shinde, Sambhaji S.; Song, Jae-Won; Park, Min-Joon; Yu, Jin-Young; Lee, Jung-Ho

    2017-11-01

    Herein, we present a facile and simple strategy for in situ synthesis of functionalized carbon nanoparticles (CNPs) via direct pyrolysis of ethylenediaminetetraacetic acid (EDTA) on silicon surface. The CNPs were incorporated in hybrid planar n-Si and poly(3,4-etyhlenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) solar cells to improve device performance. We demonstrate that the CNPs-incorporated devices showed increased electrical conductivity (reduced series resistance) and minority carrier lifetime (better charge carrier collection) than those of the cells without CNPs due to the existence of electrically conductive sp 2-hybridized carbon at the heterojunction interfaces. With an optimal concentration of CNPs, the hybrid solar cells exhibited power conversion efficiency up to 11.95%, with an open-circuit voltage of 614 mV, short-circuit current density of 26.34 mA cm-2, and fill factor of 73.93%. These results indicate that our approach is promising for the development of highly efficient organic-inorganic hybrid solar cells.

  7. In situ generation of highly dispersed metal nanoparticles on two-dimensional layered SiO2 by topotactic structure conversion and their superior catalytic activity

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Jia, Da-Shuang; Zhou, Yue; Hao, Jiang; Liang, Yu; Cui, Zhi-Min; Song, Wei-Guo

    2018-03-01

    Metal nanoparticles such as Ag, Cu and Fe are effective catalysts for many reactions, whereas a facile method to prepare metal nanoparticles with high uniformed dispersion is still desirable. Herein, the topotactic structure conversion of layered silicate, RUB-15, was utilized to support metal nanoparticles. Through simple ion-exchange and following calcination step, metal nanoparticles were generated in situ inside the interlayer space of layered silica, and the topotactic structure conversion process assured nano-sized and highly uniformed dispersion of metal nanoparticles. The obtained Ag/SiO2 composite showed superior catalytic activity for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB), with a rate constant as high as 0.0607 s-1 and 0.0778 s-1. The simple and universal synthesis method as well as high activity of the product composite endow the strategy good application prospect.

  8. Hydroprocessing of rubber seed oil to renewable fuels

    NASA Astrophysics Data System (ADS)

    Tran, Tan Viet; Phung, Minh Tri

    2017-09-01

    Hydroprocessing of rubber seed oil (RSO) with various types of alumina-silica support catalyst was conducted at 400°C and a hydrogen partial pressure of 3.0 MPa in 3 hours. The effects of the alumina-silica and metal doping on alumina-silica on the conversion, and distribution of oil fraction products (initial boiling point (IBP) to 80°C, from 80-200°C, from 200-360°C and higher than 360°C boiling point) were investigated. Compared to the results obtained when using Mo@Al2O3-SiO2, hydroprocessing of RSO resulted in a higher conversion and much higher yield of the light fraction (BP <230°C). Both alumina-silica catalysts led to an improved conversion as well as a higher light fraction yield. Results show that hydroprocessing of RSO with metal doping on alumina-silica support was more efficient than that only Al2O3-SiO2.

  9. n-Type silicon photoelectrochemistry in methanol: Design of a 10.1% efficient semiconductor/liquid junction solar cell

    PubMed Central

    Gronet, Chris M.; Lewis, Nathan S.; Cogan, George; Gibbons, James

    1983-01-01

    n-Type Si electrodes in MeOH solvent with 0.2 M (1-hydroxyethyl)ferrocene, 0.5 mM (1-hydroxyethyl)ferricenium, and 1.0 M LiClO4 exhibit air mass 2 conversion efficiencies of 10.1% for optical energy into electricity. We observe open-circuit voltages of 0.53 V and short-circuit quantum efficiencies for electron flow of nearly unity. The fill factor of the cell does not decline significantly with increases in light intensity, indicating substantial reduction in efficiency losses in MeOH solvent compared to previous nonaqueous n-Si systems. Matte etch texturing of the Si surface decreases surface reflectivity and increases photocurrent by 50% compared to shiny, polished Si samples. The high values of the open-circuit voltage observed are consistent with the presence of a thin oxide layer, as in a Schottky metal-insulator-semiconductor device, which yields decreased surface recombination and increased values of open-circuit voltage and short-circuit current. The n-Si system was shown to provide sustained photocurrent at air mass 2 levels (20 mA/cm2) for charge through the interface of >2,000 C/cm2. The n-Si/MeOH system represents a liquid junction cell that has exceeded the 10% barrier for conversion of optical energy into electricity. PMID:16593280

  10. The influence of passivation and photovoltaic properties of α-Si:H coverage on silicon nanowire array solar cells

    PubMed Central

    2013-01-01

    Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells have been fabricated by growing crystalline silicon (c-Si) nanowires via the metal-assisted chemical etching method and by depositing hydrogenated amorphous silicon (α-Si:H) via the plasma-enhanced chemical vapor deposition (PECVD) method. The influence of deposition parameters on the coverage and, consequently, the passivation and photovoltaic properties of α-Si:H layers on SiNW solar cells have been analyzed. PMID:24059343

  11. Preparation of ITO/SiOx/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Du, H. W.; Yang, J.; Li, Y. H.; Xu, F.; Xu, J.; Ma, Z. Q.

    2015-03-01

    Complete photo-generated minority carrier's quantum tunneling device under AM1.5 illumination is fabricated by depositing tin-doped indium oxide (ITO) on n-type silicon to form a structure of ITO/SiOx/n-Si heterojunction. The work function difference between ITO and n-Si materials essentially acts as the origin of built-in-field. Basing on the measured value of internal potential (Vbi = 0.61 V) and high conversion efficiency (9.27%), we infer that this larger photo-generated holes tunneling occurs when a strong inversion layer at the c-Si surface appears. Also, the mixed electronic states in the ultra-thin intermediate region between ITO and n-Si play a defect-assisted tunneling.

  12. Improving the Comprehensibility of a Simulated Technical Manual.

    DTIC Science & Technology

    1985-06-20

    dilithium-controlled matter- antimatter conversion system. If you place the power switch Si in the A position, the phaser system gets power. If the indicator...ship’s on-board dilithium-controlled matter- antimatter -plasmation dielectric energy accumulator does not have a Normal Operation Indicator on the J-4...standard energon conversion cycle, whereby power generated by the ship’s matter- antimatter conversion system is converted to a 60-gigavolt phase

  13. Terahertz difference frequency generation in quantum cascade lasers on silicon

    NASA Astrophysics Data System (ADS)

    Jung, Seungyong; Kim, Jae Hyun; Jiang, Yifan; Vijayraghavan, Karun; Belkin, Mikhail A.

    2017-02-01

    We demonstrate that an application of a III-V-on-silicon hybrid concept to terahertz (THz) Cherenkov difference frequency generation (DFG) quantum cascade laser (QCL) sources (THz DFG-QCLs) can dramatically improve THz output power and mid-infrared-to-THz conversion efficiency. Completely processed THz DFG-QCLs grown on a 660-μm-thick native InP substrate are transfer-printed onto a 1-mm-thick high-resistive Si substrate using a 100-nm-thick SU-8 as an adhesive layer. Room temperature device performance of the reference InP and hybrid Si THz DFG-QCLs of the same ridge width (22 μm) and cavity length (4.2 mm) have been experimentally compared. The target THz frequency of 3.5 THz is selected for both devices using the dual-period first order surface gratings to select the mid-infrared pump wavelength of 994 cm-1 and 1110 cm-1. At the maximum bias current, the reference InP and hybrid Si devices produced THz power of 50 μW and 270 μW, respectively. The mid-infrared-to-THz conversion efficiency corresponds to 60 μW/W2 and 480 μW/W2, respectively, resulting in 5 times higher THz power and 8 times higher conversion efficiency from the best-performing hybrid devices. A hybrid Si device integrated in a Littrow external-cavity setup showed wavelength tuning from 1.3 THz to 4.3 THz with beam-steering free operation.

  14. SI quantities and units for American Medicine.

    PubMed

    Powsner, E R

    1984-10-05

    The International System of Units (SI) is an extension of the metric system and was approved by the General Conference on Weights and Measures in 1960. The SI, expanded for the health professions, has been adopted by most European countries and is being adopted by Canada. Proponents of the SI for American medicine see intrinsic merit in its coherent units and believe international communication among physicians requires its adoption. Opponents fear that conversion to the SI is little more than "tinkering" and that any changes from the present system are potentially dangerous. Adoption of some of the less controversial portions of the SI has been recommended by the AMA Council on Scientific Affairs; consideration by the House of Delegates is anticipated.

  15. Near infrared emission of TbAG:Ce3+,Yb3+ phosphor for solar cell applications

    NASA Astrophysics Data System (ADS)

    Meshram, N. D.; Yadav, P. J.; Pathak, A. A.; Joshi, C. P.; Moharil, S. V.

    2016-05-01

    Luminescent materials doped with rare earth ions are used for many devices such as optical amplifiers in telecommunication, phosphors for white light emitting diodes (LEDs), displays, and so on. Recently, they also have attracted a great interest for photovoltaic applications to improve solar cell efficiency by modifying solar spectrum. Crystal silicon (c-Si) solar cells most effectively convert photons of energy close to the semiconductor band gap. The mis-match between the incident solar spectrum and the spectral response of solar cells is one of the main reasons to limit the cell efficiency. The efficiency limit of the c-Si has been estimated to be 29% by Shockley and Queisser. However, this limit is estimated to be improved up to 38.4% by modifying the solar spectrum by a quantum cutting (down converting) phosphor which converts one photon of high energy into two photons of lower energy. The phenomenon such as the quantum cutting or the down conversion of rare earth ions have been investigated since Dexter reported the possibility of a luminescent quantum yield greater than unity in 1957. In the past, the quantum cutting from a vacuum ultraviolet photon to visible photons for Pr3+, Gd3+,Gd3+-Eu3+, and Er3+-Tb3+ had been studied. Recently, a new quantum cutting phenomenon from visible photon shorter than 500 nm to two infrared photons for Tb3+-Yb3+, Pr3+-Yb3+, and Tm3+-Yb3+ has been reported. The Yb3+ ion is suitable as an acceptor and emitter because luminescent quantum efficiency of Yb3+ is close to 100% and the energy of the only excited level of Yb3+ (1.2 eV) is roughly in accordance with the band gap of Si (1.1 eV). In addition, the Ce3+-doped Tb3Al5O12 (TbAG), used as a phosphor for white LED, has broad absorption bands in the range of 300-500 nm due to strong ligand field and high luminescent quantum efficiency. Therefore, the Ce3+ ions in the TbAG can be suitable as an excellent sensitizing donor for down conversion materials of Si solar cells. In this paper, Ce3+ -Yb3+-codoped TbAG ceramics were prepared and the energy transfer (ET) including down conversion mechanism in Ce3+ - Yb3+ codoped TbAG ceramics have been evaluated by the photoluminescence (PL), the photoluminescence excitation (PLE), the lifetime and the quantum yield (QY), which was measured directly using an integrating sphere.

  16. Thermoelectric Properties of Silicon Germanium: An Investigation of the Reduction of Lattice Thermal Conductivity and Enhancement of Power Factor

    NASA Astrophysics Data System (ADS)

    Lahwal, Ali Sadek

    Thermoelectric materials are of technological interest owing to their ability of direct thermal-to-electrical energy conversion. In thermoelectricity, thermal gradients can be used to generate an electrical power output. Recent efforts in thermoelectrics are focused on developing higher efficient power generation materials. In this dissertation, the overall goal is to investigate both the n-type and p-type of the state of the art thermoelectric material, silicon germanium (SiGe), for high temperature power generation. Further improvement of thermoelectric performance of Si-Ge alloys hinges upon how to significantly reduce the as yet large lattice thermal conductivity, and optimizing the thermoelectric power factor PF. Our methods, in this thesis, will be into two different approaches as follow: The first approach is manipulating the lattice thermal conductivity of n and p-type SiGe alloys via direct nanoparticle inclusion into the n-type SiGe matrix and, in a different process, using a core shell method for the p-type SiGe. This approach is in line with the process of in-situ nanocomposites. Nanocomposites have become a new paradigm for thermoelectric research in recent years and have resulted in the reduction of thermal conductivity via the nano-inclusion and grain boundary scattering of heat-carrying phonons. To this end, a promising choice of nano-particle to include by direct mixing into a SiGe matrix would be Yttria Stabilized Zirconia ( YSZ). In this work we report the preparation and thermoelectric study of n-type SiGe + YSZ nanocomposites prepared by direct mechanical mixing followed by Spark Plasma Sintering (SPS) processing. Specifically, we experimentally investigated the reduction of lattice thermal conductivity (kappaL) in the temperature range (30--800K) of n-type Si 80Ge20P2 alloys with the incorporation of YSZ nanoparticles (20 ˜ 40 nm diameter) into the Si-Ge matrix. These samples synthesized by SPS were found to have densities > 95% of the theoretical density. At room temperature, we observed approximately a 50% reduction in the lattice thermal conductivity as result of adding 10 volume % YSZ to the Si80Ge 20P2 host matrix. A phenomenological Callaway model was used to corroborate both the temperature dependence and the reduction of kappaL over the measured temperature range (30--800K) of both Si80Ge 20P2 and Si80 Ge20P2 + YSZ samples. The observed kappaL is discussed and interpreted in terms of various phonon scattering mechanisms including alloy disorder, the Umklapp process, and boundary scattering. Specifically, a contribution from the phonon scattering by YSZ nanoparticles was further included to account for the kappaL of Si80Ge20P 2 +YSZ samples. In addition, a core shell treatment was applied onto p-type SiGe. Ball milled Si80Ge 20B1.7 alloys were coated with YSZ with different thicknesses and characterized upon their thermoelectric properties. The results show that YSZ coatings are capable of greatly reducing the thermal conductivity especially the lattice thermal conductivity. These coatings are applied directly onto mechanical alloyed (MA), p-type SiGe. The only concern about the YSZ core shelling is that these coatings turned out to be too thick degrading the electrical conductivity of the material. Our second approach, in a parallel work, is to enhance the thermoelectric power factor as well as the dimensionless figure of merit ZT of: (i) single element spark plasma sintered (SE SPS) SiGe alloys. (ii) ball milled (BM) SiGe , via sodium boron hydrate (NaBH4) alkali-metal-salt treatment. Sodium boron hydrate alkali-metal-salt thermally decomposes (decompose temperature 600 ˜ 700 K) to elemental solid sodium, solid boron, and hydrogen gas, as binary phases, e.g., Na-B or Na-H, or as a ternary phase, Na- B-H. Upon SPS at 1020 K, it is inferred that Na dopes SiGe while forming Na 2B29 phase, leading to a reduction in the electrical resistivity without much degrading the Seebeck coefficient, consequently enhancement of the power factor. Both Hall and Seebeck coefficient showed that all the samples are p-type. Data analysis shows that the reduction of the electrical resistivity can be attributed to the increased carrier concentration. While the reduction of the thermal conductivity, in the ball milled samples, is mainly due to the enhanced phonon scattering at the increased grain boundaries in addition to contribution of scattering by the Na2B29 phases, consequently resulting in a very significant 80% improvement of the ZT figure of merit. (Abstract shortened by UMI.).

  17. Semiconductor Grade, Solar Silicon Purification Project. [photovoltaic solar energy conversion

    NASA Technical Reports Server (NTRS)

    Ingle, W. M.; Rosler, R. S.; Thompson, S. W.; Chaney, R. E.

    1979-01-01

    A low cost by-product, SiF4, is reacted with mg silicon to form SiF2 gas which is polymerized. The (SiF2)x polymer is heated forming volatile SixFy homologues which disproportionate on a silicon particle bed forming silicon and SiF4. The silicon analysis procedure relied heavily on mass spectroscopic and emission spectroscopic analysis. These analyses demonstrated that major purification had occured and some samples were indistinguishable from semiconductor grade silicon (except possibly for phosphorus). However, electrical analysis via crystal growth reveal that the product contains compensated phosphorus and boron.

  18. A detailed study on the working mechanism of a heteropoly acid modified TiO2 photoanode for efficient dye-sensitized solar cells.

    PubMed

    Jiang, Yanxia; Yang, Yulin; Qiang, Liangsheng; Fan, Ruiqing; Li, Liang; Ye, Tengling; Na, Yong; Shi, Yan; Luan, Tianzhu

    2015-03-14

    A novel heteropolyacid (HPA) K6SiW11O39Ni(H2O)·xH2O (SiW11Ni) modified TiO2 has been successfully synthesized and introduced into the photoanode of dye-sensitized solar cells (DSSCs). The performance of the cell with the HPA-modified photoanode (SiW11Ni/TiO2), mixed with P25 powder in the ratio of 2 : 8, is better than the cell with a pristine P25 photoanode. An increase of 31% in the photocurrent and 22% improvement in the conversion efficiency are obtained. The effect of the heteropolyacid was well studied by UV-vis spectroscopy, spectro-electrochemical spectroscopy, dark current, intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy, open-circuit voltage decay and electrochemical impedance spectroscopy. The results show that the interfacial layer modified by SiW11Ni can enhance the injection and transport of electrons, and then retard the recombination of electrons, which results in a longer electron lifetime. What's more, the introduction of SiW11Ni can simultaneously broaden the absorption in the visible region, eventually leading to an efficient increase in energy conversion efficiency.

  19. Graphene oxide as a p-dopant and an anti-reflection coating layer, in graphene/silicon solar cells

    NASA Astrophysics Data System (ADS)

    Yavuz, S.; Kuru, C.; Choi, D.; Kargar, A.; Jin, S.; Bandaru, P. R.

    2016-03-01

    It is shown that coating graphene-silicon (Gr/Si) Schottky junction based solar cells with graphene oxide (GO) improves the power conversion efficiency (PCE) of the cells, while demonstrating unprecedented device stability. The PCE has been shown to be increased to 10.6% (at incident radiation of 100 mW cm-2) for the Gr/Si solar cell with an optimal GO coating thickness compared to 3.6% for a bare/uncoated Gr/Si solar cell. The p-doping of graphene by the GO, which also serves as an antireflection coating (ARC) has been shown to be a main contributing factor to the enhanced PCE. A simple spin coating process has been used to apply GO with thickness commensurate with an anti-refection coating (ARC) and indicates the suitability of the developed methodology for large-scale solar cell assembly.It is shown that coating graphene-silicon (Gr/Si) Schottky junction based solar cells with graphene oxide (GO) improves the power conversion efficiency (PCE) of the cells, while demonstrating unprecedented device stability. The PCE has been shown to be increased to 10.6% (at incident radiation of 100 mW cm-2) for the Gr/Si solar cell with an optimal GO coating thickness compared to 3.6% for a bare/uncoated Gr/Si solar cell. The p-doping of graphene by the GO, which also serves as an antireflection coating (ARC) has been shown to be a main contributing factor to the enhanced PCE. A simple spin coating process has been used to apply GO with thickness commensurate with an anti-refection coating (ARC) and indicates the suitability of the developed methodology for large-scale solar cell assembly. Electronic supplementary information (ESI) available: (i) Experimental methods, (ii) optical images of devices with and without graphene oxide (GO), (iii) comparison of the power conversion efficiency (PCE) due to the GO coating and nitric acid doping, (iv) specular and diffuse reflectance measurements, (v) stability data of pristine graphene/silicon (Gr/Si) solar cells. See DOI: 10.1039/c5nr09143h

  20. Integrated Micro-scale Power Conversion

    DTIC Science & Technology

    2012-08-01

    Micro Power Converters (μPC) Loads: Sources: μ-Power Converter (μPC) Thin-film battery Solar Cell Micro- fuel Cell Vibration Harvester...passive size • Hybrid integration with MEMS passives, particularly inductors Hybrid integration ARL focus Bubble Size = Volume [mm3] Industry Focus...Power converters survey Compiled by Bedair, Bashirullah Switched inductor (SI) Switched capacitor (SC) Resonant Resonat piezo Hybrid - SI / SC

  1. Decouple electronic and phononic transport in nanotwinned structures: a new strategy for enhancing the figure-of-merit of thermoelectrics.

    PubMed

    Zhou, Yanguang; Gong, Xiaojing; Xu, Ben; Hu, Ming

    2017-07-20

    Thermoelectric (TE) materials manifest themselves to enable direct conversion of temperature differences to electric power and vice versa. Though remarkable advances have been achieved in the past decades for various TE systems, the energy conversion efficiency of TE devices, which is characterized by a dimensionless figure-of-merit (ZT = S 2 σT/(κ el + κ ph )), generally remains a poor factor that severely limits TE devices' competitiveness and range of employment. The bottleneck for substantially boosting the ZT coefficient lies in the strong interdependence of the physical parameters involved in electronic (S and σ, and κ el ) and phononic (κ ph ) transport. Herein, we propose a new strategy of incorporating nanotwinned structures to decouple electronic and phononic transport. Combining the new concept of nanotwinned structures with the previously widely used nanocrystalline approach, the power factor of the nanotwin-nanocrystalline Si heterostructures is enhanced by 120% compared to that of bulk crystalline Si, while the lattice thermal conductivity is reduced to a level well below the amorphous limit, yielding a theoretical limit of 0.52 and 0.9 for ZT coefficient at room temperature and 1100 K, respectively. This value is almost two orders of magnitude larger than that for bulk Si and twice that for polycrystalline Si. Even for the experimentally obtained nanotwin-nanocrystalline heterostructures (e.g. grain size of 5 nm), the ZT coefficient can be as high as 0.26 at room temperature and 0.7 at 1100 K, which is the highest ZT value among all Si-based bulk nanostructures found thus far. Such substantial improvement stems from two aspects: (1) the improvement in the power factor is caused due to an increase in the Seebeck coefficient (degeneracy of the band valley) and the enhancement of electrical conductivity (the reduction of the effective band mass) and (2) the significant reduction of the lattice thermal conductivity is mainly caused due to the extremely strong phonon-grain boundary and phonon-twin boundary scattering. Our results suggest that nanotwinned structures are excellent building blocks for enhancing TE performance in diamond-like semiconductors, and our study provides a new strategy for the innovative development of other TE materials.

  2. CO2 Conversion into Esters by Fluoride-Mediated Carboxylation of Organosilanes and Halide Derivatives.

    PubMed

    Frogneux, Xavier; von Wolff, Niklas; Thuéry, Pierre; Lefèvre, Guillaume; Cantat, Thibault

    2016-02-24

    A one-step conversion of CO2 into heteroaromatic esters is presented under metal-free conditions. Using fluoride anions as promoters for the C-Si bond activation, pyridyl, furanyl, and thienyl organosilanes are successfully carboxylated with CO2 in the presence of an electrophile. The mechanism of this unprecedented reaction has been elucidated based on experimental and computational results, which show a unique catalytic influence of CO2 in the C-Si bond activation of pyridylsilanes. The methodology is applied to 18 different esters, and it has enabled the incorporation of CO2 into a polyester material for the first time. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Enhanced Power Conversion Efficiency of Graphene/Silicon Heterojunction Solar Cells Through NiO Induced Doping.

    PubMed

    Kuru, Cihan; Yavuz, Serdar; Kargar, Alireza; Choi, Duyoung; Choi, Chulmin; Rustomji, Cyrus; Jin, Sungho; Bandaru, Prabhakar R

    2016-01-01

    We report a doping strategy, where nickel oxide (NiO) nanoparticle film coating is employed for graphene/Si heterojunction solar cells to improve the power conversion efficiency (PCE). NiO doping has been shown to improve the short circuit current (J(SC)) by 12%, open circuit voltage (V(OC)) by 25% and fill factor (FF) by 145% of the cells, in turn increasing the PCE from 1.37% to 4.91%. Furthermore, NiO doped graphene/Si solar cells don't show any significant performance degradation over 10 days revealing that NiO doping can be a promising approach for practical applications of graphene in solar cells.

  4. Magnetic Phase Transition in Spark-Produced Ternary LaFeSi Nanoalloys.

    PubMed

    Feng, Jicheng; Geutjens, Ruben; Thang, Nguyen V; Li, Junjie; Guo, Xiaoai; Kéri, Albert; Basak, Shibabrata; Galbács, Gábor; Biskos, George; Nirschl, Hermann; Zandbergen, Henny W; Brück, Ekkes; Schmidt-Ott, Andreas

    2018-02-21

    Using the magnetocaloric effect in nanoparticles holds great potential for efficient refrigeration and energy conversion. The most promising candidate materials for tailoring the Curie temperature to room temperature are rare-earth-based magnetic nanoalloys. However, only few high-nuclearity lanthanide/transition-metal nanoalloys have been produced so far. Here we report, for the first time, the observation of magnetic response in spark-produced LaFeSi nanoalloys. The results suggest that these nanoalloys can be used to exploit the magnetocaloric effect near room temperature; such a finding can lead to the creation of unique multicomponent materials for energy conversion, thus helping toward the realization of a sustainable energy economy.

  5. Selective methane chlorination to methyl chloride by zeolite Y-based catalysts

    NASA Astrophysics Data System (ADS)

    Joo, Hyeonho; Kim, Daeho; Lim, Kwang Soo; Choi, Yong Nam; Na, Kyungsu

    2018-03-01

    The CH4 chlorination over Y zeolites was investigated to produce CH3Cl in a high yield. Three different catalytic systems based on Y zeolite were tested for enhancement of CH4 conversion and CH3Cl selectivity: (i) HY zeolites in H+-form having various Si/Al ratios, (ii) Pt/HY zeolites supporting Pt metal nanoparticles, (iii) Pt/NaY zeolites in Na+-form supporting Pt metal nanoparticles. The reaction was carried out using the gas mixture of CH4 and Cl2 with the respective flow rates of 15 and 10 mL min-1 at 300-350 °C using a fixed-bed reactor under a continuous gas flow condition (gas hourly space velocity = 3000 mL g-1 h-1). Above the reaction temperature of 300 °C, the CH4 chlorination is spontaneous even in the absence of catalyst, achieving 23.6% of CH4 conversion with 73.4% of CH3Cl selectivity. Under sufficient supplement of thermal energy, Cl2 molecules can be dissociated to two chlorine radicals, which triggered the C-H bond activation of CH4 molecule and thereby various chlorinated methane products (i.e., CH3Cl, CH2Cl2, CHCl3, CCl4) could be produced. When the catalysts were used under the same reaction condition, enhancement in the CH4 conversion was observed. The Pt-free HY zeolite series with varied Si/Al ratios gave around 27% of CH4 conversion, but there was a slight decrease in CH3Cl selectivity with about 64%. Despite the difference in acidity of HY zeolites having different Si/Al ratios, no prominent effect of the Si/Al ratios on the catalytic performance was observed. This suggests that the catalytic contribution of HY zeolites under the present reaction condition is not strong enough to overcome the spontaneous CH4 chlorination. When the Pt/HY zeolite catalysts were used, the CH4 conversion reached further up to 30% but the CH3Cl selectivity decreased to 60%. Such an enhancement of CH4 conversion could be attributed to the strong catalytic activity of HY and Pt/HY zeolite catalysts. However, both catalysts induced the radical cleavage of Cl2 more favorably, which ultimately decreased the CH3Cl selectivity. Such trade-off relationship between CH4 conversion and CH3Cl selectivity can be slightly broken by using Pt/NaY zeolite catalyst that is known to possess Frustrated Lewis Pairs (FLP) that are very useful for ionic cleavage of H2 to H+ and H-. Similarly, in the present work, Pt/NaY(FLP) catalysts enhanced the CH4 conversion while keeping the CH3Cl selectivity as compared to the Pt/HY zeolite catalysts.

  6. First Principles Study of Electronic Band Structure and Structural Stability of Al2C Monolayer and Nanotubes

    NASA Astrophysics Data System (ADS)

    Pramchu, S.; Jaroenjittichai, A. P.; Laosiritaworn, Y.

    2017-09-01

    We used density functional theory (DFT) based on generalized gradient approximation (GGA) and hybrid functional (HSE06) to investigate band gap and structural stability of Al2C monolayer and nanotubes. From the results, both GGA and HSE06 band gaps of Al2C monolayer agree well with previously reported data. For the Al2C nanotubes, we found that their band gaps are more sensitive to the size and the chirality than that of the widely studied SiC2 nanotubes, indicating the Al2C nanotubes may have higher band gap tuning capabilities (with varying diameter size and chirality) compared with those of SiC2 nanotubes. We have also discovered a desirable direct band gap in the case of (n,0) nanotubes, although Al2C monolayer band gap is indirect. The calculated strain energy reveals that (n,0) nanotubes constructed by wrapping up Al2C monolayer consume less energy than (0,n) nanotubes. Thus, (n,0) nanotubes is easier to synthesize than (0,n) nanotubes. This discovery of direct band gap in (n,0) Al2C nanotubes and their adjustable band gap suggests them as promising sensitizer for enhancing power conversion efficiency of excitonic solar cells.

  7. Microstructure of SiC-Si-Al2O3 composites derived from silicone resin - metal aluminum filler compounds by low temperature reduction process

    NASA Astrophysics Data System (ADS)

    Narisawa, M.; Abe, Y.

    2011-06-01

    Concentrated slurry of a silicone resin with low carbon content, 3 μm aluminum particles and ethanol were prepared. After casting, addition of cross-linking agent and drying, silicone resin-aluminum composite with thick sheet form was obtained. The prepared sheet was heat-treated at 933 or 1073K with various holding times to characterize formed phases during the heat treatments. XRD patterns and FT-IR spectra revealed free Si formation and existence of Si-O-Si bond at 933K. The Si-O-Si bond, however, disappeared and silicon carbide was formed at 1073K. SEM observation indicated formation of cracks bridged with a number of tiny struts at 933K and conversion to wholly porous structure at 1073K.

  8. Preparation of ITO/SiO{sub x}/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, H. W.; Yang, J.; Li, Y. H.

    2015-03-02

    Complete photo-generated minority carrier's quantum tunneling device under AM1.5 illumination is fabricated by depositing tin-doped indium oxide (ITO) on n-type silicon to form a structure of ITO/SiO{sub x}/n-Si heterojunction. The work function difference between ITO and n-Si materials essentially acts as the origin of built-in-field. Basing on the measured value of internal potential (V{sub bi} = 0.61 V) and high conversion efficiency (9.27%), we infer that this larger photo-generated holes tunneling occurs when a strong inversion layer at the c-Si surface appears. Also, the mixed electronic states in the ultra-thin intermediate region between ITO and n-Si play a defect-assisted tunneling.

  9. Investigation of the hydrogenation of SiCl4

    NASA Technical Reports Server (NTRS)

    Mui, J. Y. P.; Seyferth, D.

    1981-01-01

    A laboratory scale pressure reactor was constructed to study the 3 SiCl + 2H2 + Si yields 4 SiHCl3 reaction at pressures up to 500 psig. Reaction kinetic measurements were carried out as a function of reactor pressure, reaction temperature and H2/SiCl4 feed ratio. Based on the reaction kinetic data, the hydroclorination of SiCl4 and m.g. silicon metal is found to be an efficient process to produce SiHCl3 in good conversions and in high yields. Copper is an effective catalyst. Results of the corrosion study show that conventional nickel chromium alloys are suitable material of construction for the hydrochlorination reactor. The hydrochlorination reaction is relatively insensitive to external process parameters such as silicon particle size distribution and the impurities in the m.g. silicon metal.

  10. Low cost sol-gel derived SiC-SiO2 nanocomposite as anti reflection layer for enhanced performance of crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Jannat, Azmira; Lee, Woojin; Akhtar, M. Shaheer; Li, Zhen Yu; Yang, O.-Bong

    2016-04-01

    This paper describes the preparation, characterizations and the antireflection (AR) coating application in crystalline silicon solar cells of sol-gel derived SiC-SiO2 nanocomposite. The prepared SiC-SiO2 nanocomposite was effectively applied as AR layer on p-type Si-wafer via two step processes, where the sol-gel of precursor solution was first coated on p-type Si-wafer using spin coating at 2000 rpm and then subjected to annealing at 450 °C for 1 h. The crystalline, and structural observations revealed the existence of SiC and SiO2 phases, which noticeably confirmed the formation of SiC-SiO2 nanocomposite. The SiC-SiO2 layer on Si solar cells was found to be an excellent AR coating, exhibiting the low reflectance of 7.08% at wavelengths ranging from 400 to 1000 nm. The fabricated crystalline Si solar cell with SiC-SiO2 nanocomposite AR coating showed comparable power conversion efficiency of 16.99% to the conventional SixNx AR coated Si solar cell. New and effective sol-gel derived SiC-SiO2 AR layer would offer a promising technique to produce high performance Si solar cells with low-cost.

  11. Formation of Si and Ge films and micropatterns by wet process using laser direct writing method

    NASA Astrophysics Data System (ADS)

    Watanabe, Akira

    2011-03-01

    The studies toward the formation of Si and Ge films and micropatterns by wet process using laser direct writing method are reported. First is the the formation of Si film by laser scanning irradiation to Si nano- or micro-particle dispersed films. By using organogermanium nanocluster (OrGe) as a dispersion medium of Si particles, a homogeneous Si film was formed by laser scanning irradiation on a Si particle/OrGe composite film. The micro-Raman spectra showed the formation of the polycrystalline Ge and SiGe alloy during the fusion of the Si particles by laser irradiation. The second is the formation of the Si and Ge micropatterns by LLDW (liquid phase laser direct writing) method. Micro-Raman spectra showed the formation of polycrystalline Si and Ge micropatterns by laser irradiation on the interfaces of SiCl4/substrate and GeCl4/substrate, respectively.

  12. Distribution Behavior of B and P during Al-Si Melt Directional Solidification with Open-Ended Crucible

    NASA Astrophysics Data System (ADS)

    Bai, Xiaolong; Ban, Boyuan; Li, Jingwei; Peng, Zhijian; Chen, Jian

    2018-03-01

    Distribution behavior of B and P during directional solidification of Al-20Si, Al-30Si and Al-40Si alloys has been investigated. Macrostructure of the Al-Si alloy ingots and concentration profile of elements B and P reveal that the elements segregate to eutectic Al-Si melt during growth of primary Si flakes, and P gradually segregates to the top of the ingots during directional solidification. An apparent segregation coefficient, ka, is introduced to describe the segregation behavior of B and P between the primary Si and the Al-Si melt and compared with thermodynamic theoretical equilibrium coefficients. The apparent segregation coefficients of B and P decrease with increase of solidification temperature.

  13. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides.

    PubMed

    Wang, Ke-Yao; Foster, Amy C

    2012-04-15

    We demonstrate wavelength conversion through nonlinear parametric processes in hydrogenated amorphous silicon (a-Si:H) with maximum conversion efficiency of -13 dB at telecommunication data rates (10 GHz) using only 15 mW of pump peak power. Conversion bandwidths as large as 150 nm (20 THz) are measured in continuous-wave regime at telecommunication wavelengths. The nonlinear refractive index of the material is determined by four-wave mixing (FWM) to be n(2)=7.43×10(-13) cm(2)/W, approximately an order of magnitude larger than that of single crystal silicon. © 2012 Optical Society of America

  14. Direct-Conversion Molecular Breast Imaging of Invasive Breast Cancer: Imaging Features, Extent of Invasive Disease, and Comparison Between Invasive Ductal and Lobular Histology.

    PubMed

    Conners, Amy Lynn; Jones, Katie N; Hruska, Carrie B; Geske, Jennifer R; Boughey, Judy C; Rhodes, Deborah J

    2015-09-01

    The purposes of this study were to compare the tumor appearance of invasive breast cancer on direct-conversion molecular breast imaging using a standardized lexicon and to determine how often direct-conversion molecular breast imaging identifies all known invasive tumor foci in the breast, and whether this differs for invasive ductal versus lobular histologic profiles. Patients with prior invasive breast cancer and concurrent direct-conversion molecular breast imaging examinations were retrospectively reviewed. Blinded review of direct-conversion molecular breast imaging examinations was performed by one of two radiologists, according to a validated lexicon. Direct-conversion molecular breast imaging findings were matched with lesions described on the pathology report to exclude benign reasons for direct-conversion molecular breast imaging findings and to document direct-conversion molecular breast imaging-occult tumor foci. Associations between direct-conversion molecular breast imaging findings and tumor histologic profiles were examined using chi-square tests. In 286 patients, 390 invasive tumor foci were present in 294 breasts. A corresponding direct-conversion molecular breast imaging finding was present for 341 of 390 (87%) tumor foci described on the pathology report. Invasive ductal carcinoma (IDC) tumor foci were more likely to be a mass (40% IDC vs 15% invasive lobular carcinoma [ILC]; p < 0.001) and to have marked intensity than were ILC foci (63% IDC vs 32% ILC; p < 0.001). Direct-conversion molecular breast imaging correctly revealed all pathology-proven foci of invasive disease in 79.8% of cases and was more likely to do so for IDC than for ILC (86.1% vs 56.7%; p < 0.0001). Overall, direct-conversion molecular breast imaging showed all known invasive foci in 249 of 286 (87%) patients. Direct-conversion molecular breast imaging features of invasive cancer, including lesion type and intensity, differ by histologic subtype. Direct-conversion molecular breast imaging is less likely to show all foci of ILC compared with IDC.

  15. All-optical NRZ wavelength conversion based on a single hybrid III-V/Si SOA and optical filtering.

    PubMed

    Wu, Yingchen; Huang, Qiangsheng; Keyvaninia, Shahram; Katumba, Andrew; Zhang, Jing; Xie, Weiqiang; Morthier, Geert; He, Jian-Jun; Roelkens, Gunther

    2016-09-05

    We demonstrate all-optical wavelength conversion (AOWC) of non-return-to-zero (NRZ) signal based on cross-gain modulation in a single heterogeneously integrated III-V-on-silicon semiconductor optical amplifier (SOA) with an optical bandpass filter. The SOA is 500 μm long and consumes less than 250 mW electrical power. We experimentally demonstrate 12.5 Gb/s and 40 Gb/s AOWC for both wavelength up and down conversion.

  16. CdS/p-Si solar cells made by serigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, F.J.; Ortiz-Conde, A.; Sa-Neto, A.

    1988-04-11

    CdS/p-Si solar cells have been fabricated depositing the CdS layer by serigraphy. Open circuit voltages of 538 mV, short circuit current densities of 32 mA cm/sup -2/, fill factors of 0.52, and conversion efficiencies of 8.1% have been measured under 100 mW cm/sup -2/ (AM1) simulated solar illumination.

  17. Degradable Hollow Mesoporous Silicon/Carbon Nanoparticles for Photoacoustic Imaging-Guided Highly Effective Chemo-Thermal Tumor Therapy in Vitro and in Vivo

    PubMed Central

    Zhang, Jinfeng; Zhang, Jun; Li, Wenyue; Chen, Rui; Zhang, Zhenyu; Zhang, Wenjun; Tang, Yongbing; Chen, Xiaoyuan; Liu, Gang; Lee, Chun-Sing

    2017-01-01

    The development of nanoscaled theranostic agents for cancer combination therapies has received intensive attention in recent years. In this report, a degradable hollow mesoporous PEG-Si/C-DOX NP is designed and fabricated for pH-responsive, photoacoustic imaging-guided highly effective chemo-thermal combination therapy. The intrinsic hollow mesoporous structure endows the as-synthesized nanoparticles (NPs) with a high drug loading capacity (31.1%). Under NIR (808 nm) irradiation, the photothermal conversion efficiency of the Si/C NPs is as high as 40.7%. Preferential accumulation of the PEG-Si/C-DOX NPs around tumor tissue was demonstrated with photoacoustic images. Cellular internalization of the NPs and release of the DOX in nuclei are shown with fluorescent images. With efficient NIR photothermal conversion and high DOX loading capacity, the PEG-Si/C-DOX NPs are demonstrated to have remarkable cancer-cell-killing ability and to achieve complete in vivo tumor elimination via combinational chemo-thermal therapy. Last but not least, the NPs show good biodegradability and biosafety, making them a promising candidate for multifunctional drug delivery and cancer theranostic. PMID:28839460

  18. SI units.

    PubMed

    Lehmann, H P

    1979-01-01

    The development of the International System of Units (Systeme International d'Unites--SE Units), based on seven fundamental quantities--length, mass, time, electric current, thermodynamic temperature, luminous intensity, and amount of substance is described. Units (coherent and noncoherent) for other measurable quantities that are derived from the seven basic quantities are reviewed. The rationale for the use of SE units in medicine, primarily as applied to clinical laboratory data, is discussed, and arguments are presented for the rigid adoption of SI units in medicine and for exceptions. Tables are given for the basic and derived SI units used in medicine and for conversion factors from the quantities and units in current use to those in SI units.

  19. First principles investigation of SiC/AlGaN(0001) band offset

    NASA Astrophysics Data System (ADS)

    Kojima, E.; Endo, K.; Shirakawa, H.; Chokawa, K.; Araidai, M.; Ebihara, Y.; Kanemura, T.; Onda, S.; Shiraishi, K.

    2017-06-01

    We are attempting to develop a new type of vertical MOSFET with SiC/AlGaN heterojunction. Toward the realization of the vertical MOSFET, the control of conduction-band offset is one of the crucial subjects. We investigated the conduction-band offset of 4H-SiC/AlxGa1-xN interface by the first-principles electronic structure calculations. We found that the offset of the interface with 40% Al content becomes almost zero. Therefore, 4H-SiC/Al0.4Ga0.6N interface is one of the most promising candidates for the vertical MOSFET in future power conversion devices.

  20. Evaluation of a Silicon 90Sr Betavoltaic Power Source.

    PubMed

    Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon

    2016-12-01

    Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90 Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90 Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles.

  1. Evaluation of a Silicon 90Sr Betavoltaic Power Source

    PubMed Central

    Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D.; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon

    2016-01-01

    Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles. PMID:27905521

  2. Evaluation of a Silicon 90Sr Betavoltaic Power Source

    NASA Astrophysics Data System (ADS)

    Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D.; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon

    2016-12-01

    Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles.

  3. Converse magnetoelectric coupling in NiFe/Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3} nanocomposite thin films grown on Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Ming; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000; Hu, Jiamian

    2013-11-04

    Multiferroic NiFe (∼30 nm)/Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3}(PMN–PT, ∼220 nm) bilayered thin films were grown on common Pt/Ti/SiO{sub 2}/Si substrates by a combination of off-axis magnetron sputtering and sol-gel spin-coating technique. By using AC-mode magneto-optical Kerr effect technique, the change in the Kerr signal (magnetization) of the NiFe upon applying a low-frequency AC voltage to the PMN–PT film was in situ acquired at zero magnetic field. The obtained Kerr signal versus voltage loop essentially tracks the electromechanical strain curve of the PMN–PT thin film, clearly demonstrating a strain-mediated converse magnetoelectric coupling, i.e., voltage-modulated magnetization, in the NiFe/PMN–PT nanocomposite thin films.

  4. Iridium-catalyzed Arene ortho-Silylation by Formal Hydroxyl-directed C-H Activation

    PubMed Central

    Simmons, Eric M.; Hartwig, John F.

    2010-01-01

    A strategy for the ortho-silylation of aryl ketone, benzaldehyde and benzyl alcohol derivatives has been developed in which a hydroxyl group formally serves as the directing element for Ir-catalyzed arene C-H bond activation. One-pot generation of a (hydrido)silyl ether from the carbonyl compound or alcohol is followed by dehydrogenative cyclization at 80–100 °C in the presence of norbornene as hydrogen acceptor and the combination of 1 mol % [Ir(cod)OMe]2 and 1,10-phenanthroline as catalyst to form benzoxasiloles. The synthetic utility of the benzoxasilole products is demonstrated by conversion to phenol or biaryl derivatives by Tamao-Fleming oxidation or Hiyama cross-coupling. Both of these transformations of the C-H silylation products exploit the Si-O bond in the system and proceed by activation of the silyl moiety with hydroxide, rather than fluoride. PMID:21077625

  5. Hybrid Silicon Nanocrystal/Poly(3-hexylthiophene-2,5-diyl) Solar Cells from a Chlorinated Silicon Precursor

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Gresback, Ryan; Yamada, Riku; Okazaki, Ken; Nozaki, Tomohiro

    2013-11-01

    Freestanding silicon nanocrystals (Si NCs) synthesized by a nonthermal plasma from silicon tetrachloride (SiCl4) were successfully employed in hybrid Si NC/poly(3-hexylthiophene-2,5-diyl) (P3HT) bulk-hetrojunction (BHJ) solar cells. The weight fraction of Si NCs in P3HT greatly influences device performance. As the weight fraction increases up to 50 wt %, short-circuit current dramatically increases, while open-circuit voltage (Voc) and fill factor (FF) do not change significantly. The improvement in device performance is attributed to both increased probability of exciton dissociation in P3HT and an enhancement in the light conversion of wavelengths where P3HT is a poor absorber. These results demonstrate an alternative approach to synthesizing Si NCs from SiCl4 instead of silane (SiH4) for optoelectronic devices.

  6. Design guideline for Si/organic hybrid solar cell with interdigitated back contact structure

    NASA Astrophysics Data System (ADS)

    Bimo Prakoso, Ari; Rusli; Li, Zeyu; Lu, Chenjin; Jiang, Changyun

    2018-03-01

    We study the design of Si/organic hybrid (SOH) solar cells with interdigitated back contact (IBC) structure. SOH solar cells formed between n-Si and poly(3,4-ethylenedioxythiophene): polystyrenesulphonate (PEDOT:PSS) is a promising concept that combines the excellent electronic properties of Si with the solution-based processing advantage of an organic polymer. The IBC cell structure is employed to minimize parasitic absorption losses in the organic polymer, eliminate grid shadowing losses, and allow excellent passivation of the front Si surface in one step over a large area. The influence of Si thickness, doping concentration and contact geometry are simulated in this study to optimize the performance of the SOH-IBC solar cell. We found that a high power conversion efficiency of >20% can be achieved for optimized SOH-IBC cell based on a thin c-Si substrate of 40 μm thickness.

  7. Aqueous-Phase Hydrogenolysis of Glycerol over Re Promoted Ru Catalysts Encapuslated in Porous Silica Nanoparticles

    PubMed Central

    Li, Kuo-Tseng; Yen, Ruey-Hsiang

    2018-01-01

    Activity improvement of Ru-based catalysts is needed for efficient production of valuable chemicals from glycerol hydrogenolysis. In this work, a series of Re promoted Ru catalysts encapuslated in porous silica nanoparticles (denoted as Re-Ru@SiO2) were prepared by coating silica onto the surface of chemically reduced Ru-polyvinylpyrrolidone colloids, and were used to catalyze the conversion of glycerol to diols and alcohols in water. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) were used to characterize these nanoparticles. Effects of Ru/Si atomic ratio, Re addition, glycerol and catalyst concentrations, reaction time, temperature, and hydrogen pressure were investigated. Re addition retarded the reduction of ruthenium oxide, but increased the catalyst reactivity for glycerol hydrogenolysis. Due to its greater Ru content, Re-Ru@ SiO2 showed much better activity (reacted at much lower temperature) and more yields of 1,2-propanediol and overall liquid-phase products than Re-Ru/SiO2 (prepared by conventional impregnation method) reported before. The rate of glycerol disappearance exhibited first-order dependence on glycerol concentration and hydrogen pressure, with an activation energy of 107.8 kJ/mol. The rate constant increased linearly with increasing Ru/Si atomic ratio and catalyst amount. The yield of overall liquid-phase products correlated well with glycerol conversion. PMID:29522432

  8. Instantaneous relationship between solar inertial and local vertical local horizontal attitudes

    NASA Technical Reports Server (NTRS)

    Vickery, S. A.

    1977-01-01

    The instantaneous relationship between the Solar Inertial (SI) and Local Vertical Local Horizontal (LVLH) coordinate systems is derived. A method is presented for computation of the LVLH to SI rotational transformation matrix as a function of an input LVLH attitude and the corresponding look angles to the sun. Logic is provided for conversion between LVLH and SI attitudes expressed in terms of a pitch, yaw, roll Euler sequence. Documentation is included for a program which implements the logic on the Hewlett-Packard 97 programmable calculator.

  9. CFD Extraction Tool for TecPlot From DPLR Solutions

    NASA Technical Reports Server (NTRS)

    Norman, David

    2013-01-01

    This invention is a TecPlot macro of a computer program in the TecPlot programming language that processes data from DPLR solutions in TecPlot format. DPLR (Data-Parallel Line Relaxation) is a NASA computational fluid dynamics (CFD) code, and TecPlot is a commercial CFD post-processing tool. The Tec- Plot data is in SI units (same as DPLR output). The invention converts the SI units into British units. The macro modifies the TecPlot data with unit conversions, and adds some extra calculations. After unit conversions, the macro cuts a slice, and adds vectors on the current plot for output format. The macro can also process surface solutions. Existing solutions use manual conversion and superposition. The conversion is complicated because it must be applied to a range of inter-related scalars and vectors to describe a 2D or 3D flow field. It processes the CFD solution to create superposition/comparison of scalars and vectors. The existing manual solution is cumbersome, open to errors, slow, and cannot be inserted into an automated process. This invention is quick and easy to use, and can be inserted into an automated data-processing algorithm.

  10. Significantly Enhanced Dielectric Performances and High Thermal Conductivity in Poly(vinylidene fluoride)-Based Composites Enabled by SiC@SiO2 Core-Shell Whiskers Alignment.

    PubMed

    He, Dalong; Wang, Yao; Song, Silong; Liu, Song; Deng, Yuan

    2017-12-27

    Design of composites with ordered fillers arrangement results in anisotropic performances with greatly enhanced properties along a specific direction, which is a powerful tool to optimize physical properties of composites. Well-aligned core-shell SiC@SiO 2 whiskers in poly(vinylidene fluoride) (PVDF) matrix has been achieved via a modified spinning approach. Because of the high aspect ratio of SiC whiskers, strong anisotropy and significant enhancement in dielectric constant were observed with permittivity 854 along the parallel direction versus 71 along the perpendicular direction at 20 vol % SiC@SiO 2 loading, while little increase in dielectric loss was found due to the highly insulating SiO 2 shell. The anisotropic dielectric behavior of the composite is perfectly understood macroscopically to have originated from anisotropic intensity of interfacial polarization based on an equivalent circuit model of two parallel RC circuits connected in series. Furthermore, finite element simulations on the three-dimensional distribution of local electric field, polarization, and leakage current density in oriented SiC@SiO 2 /PVDF composites under different applied electrical field directions unambiguously revealed that aligned core-shell SiC@SiO 2 whiskers with a high aspect ratio significantly improved dielectric performances. Importantly, the thermal conductivity of the composite was synchronously enhanced over 7 times as compared to that of PVDF matrix along the parallel direction at 20 vol % SiC@SiO 2 whiskers loading. This study highlights an effective strategy to achieve excellent comprehensive properties for high-k dielectrics.

  11. Heterogeneous Ag-TiO2-SiO2 composite materials as novel catalytic systems for selective epoxidation of cyclohexene by H2O2

    PubMed Central

    Wang, Xin; Xue, Jianyue; Wang, Xinyun; Liu, Xiaoheng

    2017-01-01

    TiO2-SiO2 composites were synthesized using cetyl trimethyl ammonium bromide (CTAB) as the structure directing template. Self-assembly hexadecyltrimethyl- ammonium bromide TiO2-SiO2/(CTAB) were soaked into silver nitrate (AgNO3) aqueous solution. The Ag-TiO2-SiO2(Ag-TS) composite were prepared via a precipitation of AgBr in soaking process and its decomposition at calcination stage. Structural characterization of the materials was carried out by various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption and ultraviolet visible spectroscopy (UV-Vis). Characterization results revealed that Ag particles were incorporated into hierarchical TiO2-SiO2 without significantly affecting the structures of the supports. Further heating-treatment at 723 K was more favorable for enhancing the stability of the Ag-TS composite. The cyclohexene oxide was the major product in the epoxidation using H2O2 as the oxidant over the Ag-TS catalysts. Besides, the optimum catalytic activity and stability of Ag-TS catalysts were obtained under operational conditions of calcined at 723 K for 2 h, reaction time of 120 min, reaction temperature of 353 K, catalyst amount of 80 mg, aqueous H2O2 (30 wt.%) as oxidant and chloroform as solvent. High catalytic activity with conversion rate up to 99.2% of cyclohexene oxide could be obtainable in water-bathing. The catalyst was found to be stable and could be reused three times without significant loss of catalytic activity under the optimized reaction conditions. PMID:28493879

  12. Microstructure and property of directionally solidified Ni-Si hypereutectic alloy

    NASA Astrophysics Data System (ADS)

    Cui, Chunjuan; Tian, Lulu; Zhang, Jun; Yu, Shengnan; Liu, Lin; Fu, Hengzhi

    2016-03-01

    This paper investigates the influence of the solidification rate on the microstructure, solid/liquid interface, and micro-hardness of the directionally solidified Ni-Si hypereutectic alloy. Microstructure of the Ni-Si hypereutectic alloy is refined with the increase of the solidification rate. The Ni-Si hypereutectic composite is mainly composed of α-Ni matrix, Ni-Ni3Si eutectic phase, and metastable Ni31Si12 phase. The solid/liquid interface always keeps planar interface no matter how high the solidification rate is increased. This is proved by the calculation in terms of M-S interface stability criterion. Moreover, the Ni-Si hypereutectic composites present higher micro-hardness as compared with that of the pure Ni3Si compound. This is caused by the formation of the metastable Ni31Si12 phase and NiSi phase during the directional solidification process.

  13. Bacterial nanometric amorphous Fe-based oxide: a potential lithium-ion battery anode material.

    PubMed

    Hashimoto, Hideki; Kobayashi, Genki; Sakuma, Ryo; Fujii, Tatsuo; Hayashi, Naoaki; Suzuki, Tomoko; Kanno, Ryoji; Takano, Mikio; Takada, Jun

    2014-04-23

    Amorphous Fe(3+)-based oxide nanoparticles produced by Leptothrix ochracea, aquatic bacteria living worldwide, show a potential as an Fe(3+)/Fe(0) conversion anode material for lithium-ion batteries. The presence of minor components, Si and P, in the original nanoparticles leads to a specific electrode architecture with Fe-based electrochemical centers embedded in a Si, P-based amorphous matrix.

  14. Growth of cubic silicon carbide on oxide using polysilicon as a seed layer for micro-electro-mechanical machine applications

    NASA Astrophysics Data System (ADS)

    Frewin, C. L.; Locke, C.; Wang, J.; Spagnol, P.; Saddow, S. E.

    2009-08-01

    The growth of highly oriented 3C-SiC directly on an oxide release layer, composed of a 20-nm-thick poly-Si seed layer and a 550-nm-thick thermally deposited oxide on a (1 1 1)Si substrate, was investigated as an alternative to using silicon-on-insulator (SOI) substrates for freestanding SiC films for MEMS applications. The resulting SiC film was characterized by X-ray diffraction (XRD) with the X-ray rocking curve of the (1 1 1) diffraction peak displaying a FWHM of 0.115° (414″), which was better than that for 3C-SiC films grown directly on (1 1 1)Si during the same deposition process. However, the XRD peak amplitude for the 3C-SiC film on the poly-Si seed layer was much less than for the (1 1 1)Si control substrate, due to slight in-plane misorientations in the film. Surprisingly, the film was solely composed of (1 1 1) 3C-SiC grains and possessed no 3C-SiC grains oriented along the <3 1 1> and <1 1 0> directions which were the original directions of the poly-Si seed layer. With this new process, MEMS structures such as cantilevers and membranes can be easily released leaving behind high-quality 3C-SiC structures.

  15. Methane Conversion to Ethylene and Aromatics on PtSn Catalysts

    DOE PAGES

    Gerceker, Duygu; Motagamwala, Ali Hussain; Rivera-Dones, Keishla R.; ...

    2017-02-03

    Pt and PtSn catalysts supported on SiO 2 and H-ZSM-5 were studied for methane conversion under nonoxidative conditions. Addition of Sn to Pt/SiO 2 increased the turnover frequency for production of ethylene by a factor of 3, and pretreatment of the catalyst at 1123 K reduced the extent of coke formation. Pt and PtSn catalysts supported on H-ZSM-5 zeolite were prepared to improve the activity and selectivity to non-coke products. Ethylene formation rates were 20 times faster over a PtSn(1:3)/H-ZSM-5 catalyst with SiO 2:Al 2O 3 = 280 in comparison to those over PtSn(3:1)/SiO 2. H-ZSM-5-supported catalysts were also activemore » for the formation of aromatics, and the rates of benzene and naphthalene formation were increased by using more acidic H-ZSM-5 supports. These catalysts operate through a bifunctional mechanism, in which ethylene is first produced on highly dispersed PtSn nanoparticles and then is subsequently converted to benzene and naphthalene on Brønsted acid sites within the zeolite support. The most active and stable PtSn catalyst forms carbon products at a rate, 2.5 mmol of C/((mol of Pt) s), which is comparable to that of state-of-the-art Mo/H-ZSM-5 catalysts with same metal loading operated under similar conditions (1.8 mmol of C/((mol of Mo) s)). Scanning transmission electron microscopy measurements suggest the presence of smaller Pt nanoparticles on H-ZSM-5-supported catalysts, in comparison to SiO 2-supported catalysts, as a possible source of their high activity. As a result, a microkinetic model of methane conversion on Pt and PtSn surfaces, built using results from density functional theory calculations, predicts higher coupling rates on bimetallic and stepped surfaces, supporting the experimental observations that relate the high catalytic activity to small PtSn particles.« less

  16. Defect engineering of the oxygen-vacancy clusters formation in electron irradiated silicon by isovalent doping: An infrared perspective

    NASA Astrophysics Data System (ADS)

    Londos, C. A.; Sgourou, E. N.; Chroneos, A.

    2012-12-01

    Infrared spectroscopy was used to study the production and evolution of oxygen-vacancy (VOn for n = 1, 2, 3 and VmO for m = 1, 2, 3) clusters, in electron-irradiated Czochralski silicon (Cz-Si) samples, doped with isovalent dopants. It was determined that the production of the VO pair is enhanced in Ge-doped Si but is suppressed in Sn and Pb-doped Si. The phenomenon is discussed in terms of the competition between isovalent dopants and oxygen atoms in capturing vacancies in the course of irradiation. In the case of Ge, only transient GeV pairs form, leading finally to an increase of the VO production. Conversely, for Sn and Pb the corresponding pairs with vacancies are stable, having an opposite impact on the formation of VO pairs. Regarding V2O and V3O clusters, our measurements indicate that Ge doping enhances their formation, although Sn and Pb dopants suppress it. Similar arguments as those for the VO pair could be put forward, based on the effect of isovalent impurities on the availability of vacancies. Additionally, it was found that the conversion ratio of VO to VO2 decreases as the covalent radius of the isovalent dopant increases. These results are discussed in terms of the local strains introduced by the isovalent dopants in the Si lattice. These local strains affect the balance of the intrinsic defects created as a result of irradiation, as well as the balance between the two main reactions (VO + Oi → VO2 and VO + SiI → Oi) participating in the VO annealing, leading finally to a decrease of the VO2 production. The larger the covalent radius of the isovalent dopant (rGe < rSn < rPb), the larger the introduced strains in the lattice and then the less the VO2 formation in accordance with our experimental results. Interestingly, an opposite trend was observed for the conversion ratio of VO2 to VO3. The phenomenon is attributed to the enhanced diffusivity of oxygen impurity as a result of the presence of isovalent dopants, leading to an enhanced formation of the VO3 cluster. The results indicate that isovalent doping of Si is an effective way to control the formation of the deleterious oxygen-vacancy clustering that can affect Si-based devices.

  17. Theoretical limits of the multistacked 1D and 2D microstructured inorganic solar cells

    NASA Astrophysics Data System (ADS)

    Yengel, Emre; Karaagac, Hakan; VJ, Logeeswaran; Islam, M. Saif

    2015-09-01

    Recent studies in monocrystalline semiconductor solar cells are focused on mechanically stacking multiple cells from different materials to increase the power conversion efficiency. Although, the results show promising increase in the device performance, the cost remains as the main drawback. In this study, we calculated the theoretical limits of multistacked 1D and 2D microstructered inorganic monocrstalline solar cells. This system is studied for Si and Ge material pair. The results show promising improvements in the surface reflection due to enhanced light trapping caused by photon-microstructures interactions. The theoretical results are also supported with surface reflection and angular dependent power conversion efficiency measurements of 2D axial microwall solar cells. We address the challenge of cost reduction by proposing to use our recently reported mass-manufacturable fracture-transfer- printing method which enables the use of a monocrystalline substrate wafer for repeated fabrication of devices by consuming only few microns of materials in each layer of devices. We calculated thickness dependent power conversion efficiencies of multistacked Si/Ge microstructured solar cells and found the power conversion efficiency to saturate at 26% with a combined device thickness of 30 μm. Besides having benefits of fabricating low-cost, light weight, flexible, semi-transparent, and highly efficient devices, the proposed fabrication method is applicable for other III-V materials and compounds to further increase the power conversion efficiency above 35% range.

  18. Investigation of the hydrochlorination of SiCl4

    NASA Technical Reports Server (NTRS)

    Mui, J. Y. P.

    1982-01-01

    The hyrochlorination of SiC14 and m.g. silicon metal to produce SiHC13, was investigated. Reaction kinetic measurements were carried out to collect additional rate data at 525 C and 550 C. A theoretical study was carried out to provide a kinetic model and a rate equation for the hydrochlorination reaction. Results of this preliminary study show that the rate of formation of SiHC13 follows a pseudo first order kinetics. The rate constants were measured at three temperatures, 550 C, 500 C and 450 C, respectively. The activation energy was determined from the Arrhenius plot to give a value of 13.2 Kcal/mole. The design of a quartz reactor to measure reaction rates and equilibrium conversion of SiHC13 at reaction temperature up to 650 C was completed.

  19. Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery.

    PubMed

    Liu, Bei; Li, Chunxia; Ma, Ping'an; Chen, Yinyin; Zhang, Yuanxin; Hou, Zhiyao; Huang, Shanshan; Lin, Jun

    2015-02-07

    A low toxic multifunctional nanoplatform, integrating both mutimodal diagnosis methods and antitumor therapy, is highly desirable to assure its antitumor efficiency. In this work, we show a convenient and adjustable synthesis of multifunctional nanoparticles NaYF4:Yb, Er@mSiO2@Fe3O4-PEG (MFNPs) based on different sizes of up-conversion nanoparticles (UCNPs). With strong up-conversion fluorescence offered by UCNPs, superparamagnetism properties attributed to Fe3O4 nanoparticles and porous structure coming from the mesoporous SiO2 shell, the as-obtained MFNPs can be utilized not only as a contrast agent for dual modal up-conversion luminescence (UCL)/magnetic resonance (MR) bio-imaging, but can also achieve an effective magnetically targeted antitumor chemotherapy both in vitro and in vivo. Furthermore, the UCL intensity of UCNPs and the magnetic properties of Fe3O4 in the MFNPs were carefully balanced. Silica coating and further PEG modifying can improve the hydrophilicity and biocompatibility of the as-synthesized MFNPs, which was confirmed by the in vitro/in vivo biocompatibility and in vivo long-time bio-distributions tests. Those results revealed that the UCNPs based magnetically targeted drug carrier system we synthesized has great promise in the future for multimodal bio-imaging and targeted cancer therapy.

  20. Indium tin oxide nanopillar electrodes in polymer/fullerene solar cells.

    PubMed

    Rider, David A; Tucker, Ryan T; Worfolk, Brian J; Krause, Kathleen M; Lalany, Abeed; Brett, Michael J; Buriak, Jillian M; Harris, Kenneth D

    2011-02-25

    Using high surface area nanostructured electrodes in organic photovoltaic (OPV) devices is a route to enhanced power conversion efficiency. In this paper, indium tin oxide (ITO) and hybrid ITO/SiO(2) nanopillars are employed as three-dimensional high surface area transparent electrodes in OPVs. The nanopillar arrays are fabricated via glancing angle deposition (GLAD) and electrochemically modified with nanofibrous PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(p-styrenesulfonate)). The structures are found to have increased surface area as characterized by porosimetry. When applied as anodes in polymer/fullerene OPVs (architecture: commercial ITO/GLAD ITO/PEDOT:PSS/P3HT:PCBM/Al, where P3HT is 2,5-diyl-poly(3-hexylthiophene) and PCBM is [6,6]-phenyl-C(61)-butyric acid methyl ester), the air-processed solar cells incorporating high surface area, PEDOT:PSS-modified ITO nanoelectrode arrays operate with improved performance relative to devices processed identically on unstructured, commercial ITO substrates. The resulting power conversion efficiency is 2.2% which is a third greater than for devices prepared on commercial ITO. To further refine the structure, insulating SiO(2) caps are added above the GLAD ITO nanopillars to produce a hybrid ITO/SiO(2) nanoelectrode. OPV devices based on this system show reduced electrical shorting and series resistance, and as a consequence, a further improved power conversion efficiency of 2.5% is recorded.

  1. Chromium Trioxide Hole-Selective Heterocontacts for Silicon Solar Cells.

    PubMed

    Lin, Wenjie; Wu, Weiliang; Liu, Zongtao; Qiu, Kaifu; Cai, Lun; Yao, Zhirong; Ai, Bin; Liang, Zongcun; Shen, Hui

    2018-04-25

    A high recombination rate and high thermal budget for aluminum (Al) back surface field are found in the industrial p-type silicon solar cells. Direct metallization on lightly doped p-type silicon, however, exhibits a large Schottky barrier for the holes on the silicon surface because of Fermi-level pinning effect. As a result, low-temperature-deposited, dopant-free chromium trioxide (CrO x , x < 3) with high stability and high performance is first applied in a p-type silicon solar cell as a hole-selective contact at the rear surface. By using 4 nm CrO x between the p-type silicon and Ag, we achieve a reduction of the contact resistivity for the contact of Ag directly on p-type silicon. For further improvement, we utilize a CrO x (2 nm)/Ag (30 nm)/CrO x (2 nm) multilayer film on the contact between Ag and p-type crystalline silicon (c-Si) to achieve a lower contact resistance (40 mΩ·cm 2 ). The low-resistivity Ohmic contact is attributed to the high work function of the uniform CrO x film and the depinning of the Fermi level of the SiO x layer at the silicon interface. Implementing the advanced hole-selective contacts with CrO x /Ag/CrO x on the p-type silicon solar cell results in a power conversion efficiency of 20.3%, which is 0.1% higher than that of the cell utilizing 4 nm CrO x . Compared with the commercialized p-type solar cell, the novel CrO x -based hole-selective transport material opens up a new possibility for c-Si solar cells using high-efficiency, low-temperature, and dopant-free deposition techniques.

  2. The investigation of optimal Silicon/Silicon(1-x)Germanium(x) thin-film solar cells with quantitative analysis

    NASA Astrophysics Data System (ADS)

    Ehsan, Md Amimul

    Thin-film solar cells are emerging from the research laboratory to become commercially available devices for low cost electrical power generation applications. Silicon which is a cheap, abundant and non-toxic elemental semiconductor is an attractive candidate for these solar cells. Advanced modeling and simulation of Si thin-film solar cells has been performed to make this technology more cost effective without compromising the performance and efficiency. In this study, we focus on the design and optimization of Si/Si1-xGex heterostructures, and microcrystalline and nanocrystalline Si thin-film solar cells. Layer by layer optimization of these structures was performed by using advanced bandgap engineering followed by numerical analysis for their structural, electrical and optical characterizations. Special care has been introduced for the selection of material layers which can help to improve the light absorption properties of these structures for harvesting the solar spectrum. Various strategies such as the optimization of the doping concentrations, Ge contents in Si1-xGex buffer layer, incorporation of the absorber layers and surface texturing have been in used to improve overall conversion efficiencies of the solar cells. To be more specific, the observed improvement in the conversion efficiency of these solar cells has been calculated by tailoring the thickness of the buffer, absorber, and emitter layers. In brief, an approach relying on the phenomena of improved absorption of the buffer and absorber layer which leads to a corresponding gain in the open circuit voltage and short circuit current is explored. For numerical analysis, a PC1D simulator is employed that uses finite element analysis technique for solving semiconductor transport equations. A comparative study of the Si/Si1-xGex and Ge/Si1-xGex is also performed. We found that due to the higher lattice mismatch of Ge to Si, thin-film solar cells based on Si/Si1-xGex heterostructures performed much better. It has been found that microc-Si and nc-Si pin structures have strong dependence on their grain sizes and crystallinity to enhance the light absorption capability of these solar cells. Our results show that silicon based thin-film solar cells exhibit high level of performance making them very competitive for the next generation of low cost photovoltaic technology.

  3. On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell.

    PubMed

    Petterson, Maureen K; Lemaitre, Maxime G; Shen, Yu; Wadhwa, Pooja; Hou, Jie; Vasilyeva, Svetlana V; Kravchenko, Ivan I; Rinzler, Andrew G

    2015-09-30

    Recent years have seen a resurgence of interest in crystalline silicon Schottky junction solar cells distinguished by the use of low density of electronic states (DOS) nanocarbons (nanotubes, graphene) as the metal contacting the Si. Recently, unprecedented modulation of the power conversion efficiency in a single material system has been demonstrated in such cells by the use of electronic gating. The gate field induced Fermi level shift in the low-DOS carbon serves to enhance the junction built-in potential, while a gate field induced inversion layer at the Si surface, in regions remote from the junction, keeps the photocarriers well separated there, avoiding recombination at surface traps and defects (a key loss mechanism). Here, we extend these results into the third dimension of a vertical Si nanowire array solar cell. A single wall carbon nanotube layer engineered to contact virtually each n-Si nanowire tip extracts the minority carriers, while an ionic liquid electrolytic gate drives the nanowire body into inversion. The enhanced light absorption of the vertical forest cell, at 100 mW/cm(2) AM1.5G illumination, results in a short-circuit current density of 35 mA/cm(2) and associated power conversion efficiency of 15%. These results highlight the use of local fields as opposed to surface passivation as a means of avoiding front surface recombination. A deleterious electrochemical reaction of the silicon due to the electrolyte gating is shown to be caused by oxygen/water entrained in the ionic liquid electrolyte. While encapsulation can avoid the issue, a nonencapsulation-based approach is also implemented.

  4. On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petterson, Maureen K.; Lemaitre, Maxime G.; Shen, Yu

    Recent years have seen a resurgence of interest in crystalline silicon Schottky junction solar cells distinguished by the use of low density of electronic states (DOS) nanocarbons (nanotubes, graphene) as the metal contacting the Si. Recently, unprecedented modulation of the power conversion efficiency in a single material system has been demonstrated in such cells by the use of electronic gating. The gate field induced Fermi level shift in the low-DOS carbon serves to enhance the junction built-in potential, while a gate field induced inversion layer at the Si surface, in regions remote from the junction, keeps the photocarriers well separatedmore » there, avoiding recombination at surface traps and defects (a key loss mechanism). Here, we extend these results into the third dimension of a vertical Si nanowire array solar cell. A single wall carbon nanotube layer engineered to contact virtually each n-Si nanowire tip extracts the minority carriers, while an ionic liquid electrolytic gate drives the nanowire body into inversion. The enhanced light absorption of the vertical forest cell, at 100 mW/cm 2 AM1.5G illumination, results in a short-circuit current density of 35 mA/cm 2 and associated power conversion efficiency of 15%. These results highlight the use of local fields as opposed to surface passivation as a means of avoiding front surface recombination. Finally, a deleterious electrochemical reaction of the silicon due to the electrolyte gating is shown to be caused by oxygen/water entrained in the ionic liquid electrolyte. While encapsulation can avoid the issue, a nonencapsulation-based approach is also implemented.« less

  5. On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell

    DOE PAGES

    Petterson, Maureen K.; Lemaitre, Maxime G.; Shen, Yu; ...

    2015-09-09

    Recent years have seen a resurgence of interest in crystalline silicon Schottky junction solar cells distinguished by the use of low density of electronic states (DOS) nanocarbons (nanotubes, graphene) as the metal contacting the Si. Recently, unprecedented modulation of the power conversion efficiency in a single material system has been demonstrated in such cells by the use of electronic gating. The gate field induced Fermi level shift in the low-DOS carbon serves to enhance the junction built-in potential, while a gate field induced inversion layer at the Si surface, in regions remote from the junction, keeps the photocarriers well separatedmore » there, avoiding recombination at surface traps and defects (a key loss mechanism). Here, we extend these results into the third dimension of a vertical Si nanowire array solar cell. A single wall carbon nanotube layer engineered to contact virtually each n-Si nanowire tip extracts the minority carriers, while an ionic liquid electrolytic gate drives the nanowire body into inversion. The enhanced light absorption of the vertical forest cell, at 100 mW/cm 2 AM1.5G illumination, results in a short-circuit current density of 35 mA/cm 2 and associated power conversion efficiency of 15%. These results highlight the use of local fields as opposed to surface passivation as a means of avoiding front surface recombination. Finally, a deleterious electrochemical reaction of the silicon due to the electrolyte gating is shown to be caused by oxygen/water entrained in the ionic liquid electrolyte. While encapsulation can avoid the issue, a nonencapsulation-based approach is also implemented.« less

  6. Theoretical study of optical properties of anti phase domains in GaP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tea, E., E-mail: etea.contact@gmail.com; FOTON INSA-Rennes; Vidal, J.

    III-V/Si heterostructures are currently investigated for silicon photonics and solar energy conversion. In particular, dilute nitride alloy GaAsPN grown on a GaP/Si platform exhibits lattice match with Si and an optimal band gap configuration for tandem solar cell devices. However, monolithic “coherent” growth of the GaP thin layer on Si suffers from the nucleation of extended structural defects, which can hamper device operation as well as the GaP/Si interface level and through their propagation inside the overall heterostructure. However, the effect of such structural defects on optical and transport properties is actually not well understood in details. In this letter,more » we investigate the anti phase domains defect (also called inversion domains) by means of ab initio calculations giving insights into the alteration of optical and transport properties of GaP due to the defective GaP/Si interface.« less

  7. High-efficient photo-electron transport channel in SiC constructed by depositing cocatalysts selectively on specific surface sites for visible-light H{sub 2} production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Da; Peng, Yuan; Wang, Qi

    2016-04-18

    Control cocatalyst location on a metal-free semiconductor to promote surface charge transfer for decreasing the electron-hole recombination is crucial for enhancing solar energy conversion. Based on the findings that some metals have an affinity for bonding with the specific atoms of polar semiconductors at a heterostructure interface, we herein control Pt deposition selectively on the Si sites of a micro-SiC photocatalyst surface via in-situ photo-depositing. The Pt-Si bond forming on the interface constructs an excellent channel, which is responsible for accelerating photo-electron transfer from SiC to Pt and then reducing water under visible-light. The hydrogen production is enhanced by twomore » orders of magnitude higher than that of bare SiC, and 2.5 times higher than that of random-depositing nano-Pt with the same loading amount.« less

  8. Graphene as a transparent conducting and surface field layer in planar Si solar cells.

    PubMed

    Kumar, Rakesh; Mehta, Bodh R; Bhatnagar, Mehar; S, Ravi; Mahapatra, Silika; Salkalachen, Saji; Jhawar, Pratha

    2014-01-01

    This work presents an experimental and finite difference time domain (FDTD) simulation-based study on the application of graphene as a transparent conducting layer on a planar and untextured crystalline p-n silicon solar cell. A high-quality monolayer graphene with 97% transparency and 350 Ω/□ sheet resistance grown by atmospheric pressure chemical vapor deposition method was transferred onto planar Si cells. An increase in efficiency from 5.38% to 7.85% was observed upon deposition of graphene onto Si cells, which further increases to 8.94% upon SiO2 deposition onto the graphene/Si structure. A large increase in photon conversion efficiency as a result of graphene deposition shows that the electronic interaction and the presence of an electric field at the graphene/Si interface together play an important role in this improvement and additionally lead to a reduction in series resistance due to the conducting nature of graphene.

  9. Highly efficient phosphorescent organic light-emitting diode with a nanometer-thick Ni silicide/polycrystalline p-Si composite anode.

    PubMed

    Li, Y Z; Wang, Z L; Luo, H; Wang, Y Z; Xu, W J; Ran, G Z; Qin, G G; Zhao, W Q; Liu, H

    2010-07-19

    A phosphorescent organic light-emitting diode (PhOLED) with a nanometer-thick (approximately 10 nm) Ni silicide/ polycrystalline p-Si composite anode is reported. The structure of the PhOLED is Al mirror/ glass substrate / Si isolation layer / Ni silicide / polycrystalline p-Si/ V(2)O(5)/ NPB/ CBP: (ppy)(2)Ir(acac)/ Bphen/ Bphen: Cs(2)CO(3)/ Sm/ Au/ BCP. In the composite anode, the Ni-induced polycrystalline p-Si layer injects holes into the V(2)O(5)/ NPB, and the Ni silicide layer reduces the sheet resistance of the composite anode and thus the series resistance of the PhOLED. By adopting various measures for specially optimizing the thickness of the Ni layer, which induces Si crystallization and forms a Ni silicide layer of appropriate thickness, the highest external quantum efficiency and power conversion efficiency have been raised to 26% and 11%, respectively.

  10. Direct observation of bi-alkali antimonide photocathodes growth via in operando x-ray diffraction studies

    DOE PAGES

    Ruiz-Osés, M.; Schubert, S.; Attenkofer, K.; ...

    2014-12-01

    Alkali antimonides have a long history as visible-light-sensitive photocathodes. This study focuses on the process of fabrication of the bi-alkali photocathodes, K 2CsSb. In-situ synchrotron x-ray diffraction and photoresponse measurements were used to monitor phase evolution during sequential photocathode growth mode on Si(100) substrates. The amorphous-to-crystalline transition for the initial antimony layer was observed at a film thickness of 40 Å . The antimony crystalline structure dissolved upon potassium deposition, eventually recrystallizing upon further deposition into K-Sb crystalline modifications. This transition, as well as the conversion of potassium antimonide to K 2CsSb upon cesium deposition, is correlated with changes inmore » the quantum efficiency.« less

  11. Silicon-carbon bond inversions driven by 60-keV electrons in graphene.

    PubMed

    Susi, Toma; Kotakoski, Jani; Kepaptsoglou, Demie; Mangler, Clemens; Lovejoy, Tracy C; Krivanek, Ondrej L; Zan, Recep; Bangert, Ursel; Ayala, Paola; Meyer, Jannik C; Ramasse, Quentin

    2014-09-12

    We demonstrate that 60-keV electron irradiation drives the diffusion of threefold-coordinated Si dopants in graphene by one lattice site at a time. First principles simulations reveal that each step is caused by an electron impact on a C atom next to the dopant. Although the atomic motion happens below our experimental time resolution, stochastic analysis of 38 such lattice jumps reveals a probability for their occurrence in a good agreement with the simulations. Conversions from three- to fourfold coordinated dopant structures and the subsequent reverse process are significantly less likely than the direct bond inversion. Our results thus provide a model of nondestructive and atomically precise structural modification and detection for two-dimensional materials.

  12. Thermal and photo-thermal PROX reaction over Ag/SiO2 catalysts

    NASA Astrophysics Data System (ADS)

    Sabinas-Hernández, S. A.; Romero-Núñez, A.; Díaz, G.

    2018-02-01

    The effect of plasmonic excitation of Ag/SiO2 catalysts was studied in the preferential CO oxidation in presence of H2 (PROX) at low temperature. Catalysts with 5 wt% silver loading were prepared by wet impregnation in aqueous and basic media. TEM analysis indicates the presence of Ag nanoparticles with a broad particle size distribution which can achieve both, good PROX activity at low temperature and plasmonic interaction with visible light. Photo-assisted reaction at 35 °C enhance CO and O2 conversions; however, the greater improvement was found for O2 conversion. The selectivity towards CO2 decrease when reaction took place under photo-thermal conditions. Occurrence of different silver species and particle size changed after reaction as evidenced by DRS-UV-vis and TEM.

  13. High Temperature Performance of a SiC MESFET Based Oscillator

    NASA Technical Reports Server (NTRS)

    Schwartz, Zachary D.; Ponchak, George E.

    2005-01-01

    A hybrid, UHF-Band differential oscillator based on 10 w SiC RF Power Metal Semiconductor Field Effect Transistor (MESFET) has been designed, fabricated and characterized through 475 C. Circuit is fabricated on an alumina substrate with thin film spiral inductors, chip capacitors, chip resistors, and wire bonds for all crossovers and interconnectors. The oscillator delivers 15.7 dBm at 515 MHz into a 50 Ohm load at 125 C with a DC to RF conversion efficiency of 2,8%. After tuning the load impedance, the oscillator delivers 18.8 dBm at 610 MHz at 200 C with a DC to RF conversion efficiency of 5.8%. Finally, by tuning the load and bias conditions, the oscillator delivers 4.9 dBm at 453 MHz at 475 C.

  14. Growing Oxide Nanowires and Nanowire Networks by Solid State Contact Diffusion into Solution-Processed Thin Films.

    PubMed

    Glynn, Colm; McNulty, David; Geaney, Hugh; O'Dwyer, Colm

    2016-11-01

    New techniques to directly grow metal oxide nanowire networks without the need for initial nanoparticle seed deposition or postsynthesis nanowire casting will bridge the gap between bottom-up formation and top-down processing for many electronic, photonic, energy storage, and conversion technologies. Whether etched top-down, or grown from catalyst nanoparticles bottom-up, nanowire growth relies on heterogeneous material seeds. Converting surface oxide films, ubiquitous in the microelectronics industry, to nanowires and nanowire networks by the incorporation of extra species through interdiffusion can provide an alternative deposition method. It is shown that solution-processed thin films of oxides can be converted and recrystallized into nanowires and networks of nanowires by solid-state interdiffusion of ionic species from a mechanically contacted donor substrate. NaVO 3 nanowire networks on smooth Si/SiO 2 and granular fluorine-doped tin oxide surfaces can be formed by low-temperature annealing of a Na diffusion species-containing donor glass to a solution-processed V 2 O 5 thin film, where recrystallization drives nanowire growth according to the crystal habit of the new oxide phase. This technique illustrates a new method for the direct formation of complex metal oxide nanowires on technologically relevant substrates, from smooth semiconductors, to transparent conducting materials and interdigitated device structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Selective hydrogenation of citral over supported Pt catalysts: insight into support effects

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Hu, Weiming; Deng, Baolin; Liang, Xinhua

    2017-04-01

    Highly dispersed platinum (Pt) nanoparticles (NPs) were deposited on various substrates by atomic layer deposition (ALD) in a fluidized bed reactor at 300 °C. The substrates included multi-walled carbon nanotubes (MWCNTs), silica gel (SiO2), commercial γ-Al2O3, and ALD-prepared porous Al2O3 particles (ALD-Al2O3). The results of TEM analysis showed that 1.3 nm Pt NPs were highly dispersed on all different supports. All catalysts were used for the reaction of selective hydrogenation of citral to unsaturated alcohols (UA), geraniol, and nerol. Both the structure and acidity of supports affected the activity and selectivity of Pt catalysts. Pt/SiO2 showed the highest activity due to the strong acidity of SiO2 and the conversion of citral reached 82% after 12 h with a selectivity of 58% of UA. Pt/MWCNTs showed the highest selectivity of UA, which reached 65% with a conversion of 38% due to its unique structure and electronic effect. The cycling experiments indicated that Pt/MWCNTs and Pt/ALD-Al2O3 catalysts were more stable than Pt/SiO2, as a result of the different interactions between the Pt NPs and the supports.

  16. Design and spectrum calculation of 4H-SiC thermal neutron detectors using FLUKA and TCAD

    NASA Astrophysics Data System (ADS)

    Huang, Haili; Tang, Xiaoyan; Guo, Hui; Zhang, Yimen; Zhang, Yimeng; Zhang, Yuming

    2016-10-01

    SiC is a promising material for neutron detection in a harsh environment due to its wide band gap, high displacement threshold energy and high thermal conductivity. To increase the detection efficiency of SiC, a converter such as 6LiF or 10B is introduced. In this paper, pulse-height spectra of a PIN diode with a 6LiF conversion layer exposed to thermal neutrons (0.026 eV) are calculated using TCAD and Monte Carlo simulations. First, the conversion efficiency of a thermal neutron with respect to the thickness of 6LiF was calculated by using a FLUKA code, and a maximal efficiency of approximately 5% was achieved. Next, the energy distributions of both 3H and α induced by the 6LiF reaction according to different ranges of emission angle are analyzed. Subsequently, transient pulses generated by the bombardment of single 3H or α-particles are calculated. Finally, pulse height spectra are obtained with a detector efficiency of 4.53%. Comparisons of the simulated result with the experimental data are also presented, and the calculated spectrum shows an acceptable similarity to the experimental data. This work would be useful for radiation-sensing applications, especially for SiC detector design.

  17. A novel yellow-emitting SrAlSi{sub 4}N{sub 7}:Ce{sup 3+} phosphor for solid state lighting: Synthesis, electronic structure and photoluminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Jian; Laboratory of Glasses and Nanostructured Functional Materials, 122 Luoshi Road, Wuhan, Hubei 430070; Xie, Rong-Jun, E-mail: Xie.Rong-Jun@nims.go.jp

    2013-12-15

    Ce{sup 3+}-doped and Ce{sup 3+}/Li{sup +}-codoped SrAlSi{sub 4}N{sub 7} phosphors were synthesized by gas pressure sintering of powder mixtures of Sr{sub 3}N{sub 2}, AlN, α-Si{sub 3}N{sub 4}, CeN and Li{sub 3}N. The phase purity, electronic crystal structure, photoluminescence properties of SrAlSi{sub 4}N{sub 7}:Ce{sup 3+}(Ce{sup 3+}/Li{sup +}) were investigated in this work. The band structure calculated by the DMol{sup 3} code shows that SrAlSi{sub 4}N{sub 7} has a direct band gap of 3.87 eV. The single crystal analysis of Ce{sup 3+}-doped SrAlSi{sub 4}N{sub 7} indicates a disordered Si/Al distribution and nitrogen vacnacy defects. SrAlSi{sub 4}N{sub 7} was identified as a majormore » phase of the fired powders, and Sr{sub 5}Al{sub 5}Si{sub 21}N{sub 35}O{sub 2} and AlN as minor phases. Both Ce{sup 3+} and Ce{sup 3+}/Li{sup +} doped SrAlSi{sub 4}N{sub 7} phosphors can be efficiently excited by near-UV or blue light and show a broadband yellow emission peaking around 565 nm. A highest external quantum efficiency of 38.3% under the 450 nm excitation was observed for the Ce{sup 3+}/Li{sup +}-doped SrAlSi{sub 4}N{sub 7} (5 mol%). A white light LED lamp with color temperature of 6300 K and color rendering index of Ra=78 was achieved by combining Sr{sub 0.97}Al{sub 1.03}Si{sub 3.997}N/94/maccounttest14=t0005{sub 1}8193 {sub 7}:Ce{sup 3+}{sub 0.03} with a commercial blue InGaN chip. It indicates that SrAlSi{sub 4}N{sub 7}:Ce{sup 3+} is a promising yellow emitting down-conversion phosphor for white LEDs. - Graphical abstract: One-phosphor converted white light-emitting diode (LED) was fabricated by combining a blue LED chip and a yellow-emitting SrAlSi4N7:Ce{sup 3+} phosphor (see inset), which has the color rendering index of 78 and color temperature of 6300 K. - Highlights: • We reported a new yellow nitride phosphor suitable for solid state lighting. • We solved the crystal structure and evidenced a disordered Si/Al distribution. • We fabricated a high color rendering white LEDs by using a single SrAlSi4N7:Ce.« less

  18. Photonic Nanoparticle Doped Architectures for Enhanced Solar to Fuel Photocatalytic Conversion 154060

    DTIC Science & Technology

    2016-12-09

    coverage of the ZIS shell. We are also exploring the use of nanoshells coated with tin oxide (SnO2) rather than silica (SiO2) and coating the GS-NSs with...exploring the use of nanoshells coated with tin oxide (SnO2) rather than silica (SiO2) and coating the GS-NSs with zinc- and antimony-doped SnO2...to the preparation of GS-NS@SiO2 particles, we are also exploring the GS-NS coated with tin oxide (SnO2) and doped SnO2. Nanoshells with other

  19. Monolithic integration of a silica AWG and Ge photodiodes on Si photonic platform for one-chip WDM receiver.

    PubMed

    Nishi, Hidetaka; Tsuchizawa, Tai; Kou, Rai; Shinojima, Hiroyuki; Yamada, Takashi; Kimura, Hideaki; Ishikawa, Yasuhiko; Wada, Kazumi; Yamada, Koji

    2012-04-09

    On the silicon (Si) photonic platform, we monolithically integrated a silica-based arrayed-waveguide grating (AWG) and germanium (Ge) photodiodes (PDs) using low-temperature fabrication technology. We confirmed demultiplexing by the AWG, optical-electrical signal conversion by Ge PDs, and high-speed signal detection at all channels. In addition, we mounted a multichannel transimpedance amplifier/limiting amplifier (TIA/LA) circuit on the fabricated AWG-PD device using flip-chip bonding technology. The results show the promising potential of our Si photonic platform as a photonics-electronics convergence.

  20. Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction.

    PubMed

    Ji, Liang-Wen; Hsiao, Yu-Jen; Tang, I-Tseng; Meen, Teen-Hang; Liu, Chien-Hung; Tsai, Jenn-Kai; Wu, Tien-Chuan; Wu, Yue-Sian

    2013-11-09

    The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%.

  1. Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction

    PubMed Central

    2013-01-01

    The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%. PMID:24206942

  2. Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction

    NASA Astrophysics Data System (ADS)

    Ji, Liang-Wen; Hsiao, Yu-Jen; Tang, I.-Tseng; Meen, Teen-Hang; Liu, Chien-Hung; Tsai, Jenn-Kai; Wu, Tien-Chuan; Wu, Yue-Sian

    2013-11-01

    The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%.

  3. Heterojunction between the delafossite TCO n-copper indium oxide and p-Si for solar cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keerthi, K.; Nair, B. G.; Philip, R. R., E-mail: reenatara@rediffmail.com

    2016-05-23

    Junction formation of n-copper indium oxide (CIO) (extrinsically undoped) with p-Si leading to conversion of photons in the UV-Vis range is being reported for the first time. I-V and temporal photoconductivity data confirm positively the carrier generation in CIO under irradiation while optical absorbance data furnish its band gap to be ~ 3.1 eV. Ultraviolet photoelectron spectroscopy is used to study the electronic band structure of CIO on Si and to construct a schematic diagram of the hetero-junction to explain the observed photovoltaic phenomena.

  4. Controlling the defects and transition layer in SiO2 films grown on 4H-SiC via direct plasma-assisted oxidation

    PubMed Central

    Kim, Dae-Kyoung; Jeong, Kwang-Sik; Kang, Yu-Seon; Kang, Hang-Kyu; Cho, Sang W.; Kim, Sang-Ok; Suh, Dongchan; Kim, Sunjung; Cho, Mann-Ho

    2016-01-01

    The structural stability and electrical performance of SiO2 grown on SiC via direct plasma-assisted oxidation were investigated. To investigate the changes in the electronic structure and electrical characteristics caused by the interfacial reaction between the SiO2 film (thickness ~5 nm) and SiC, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), density functional theory (DFT) calculations, and electrical measurements were performed. The SiO2 films grown via direct plasma-assisted oxidation at room temperature for 300s exhibited significantly decreased concentrations of silicon oxycarbides (SiOxCy) in the transition layer compared to that of conventionally grown (i.e., thermally grown) SiO2 films. Moreover, the plasma-assisted SiO2 films exhibited enhanced electrical characteristics, such as reduced frequency dispersion, hysteresis, and interface trap density (Dit ≈ 1011 cm−2 · eV−1). In particular, stress induced leakage current (SILC) characteristics showed that the generation of defect states can be dramatically suppressed in metal oxide semiconductor (MOS) structures with plasma-assisted oxide layer due to the formation of stable Si-O bonds and the reduced concentrations of SiOxCy species defect states in the transition layer. That is, energetically stable interfacial states of high quality SiO2 on SiC can be obtained by the controlling the formation of SiOxCy through the highly reactive direct plasma-assisted oxidation process. PMID:27721493

  5. Fabrication of 20.19% Efficient Single-Crystalline Silicon Solar Cell with Inverted Pyramid Microstructure.

    PubMed

    Zhang, Chunyang; Chen, Lingzhi; Zhu, Yingjie; Guan, Zisheng

    2018-04-03

    This paper reports inverted pyramid microstructure-based single-crystalline silicon (sc-Si) solar cell with a conversion efficiency up to 20.19% in standard size of 156.75 × 156.75 mm 2 . The inverted pyramid microstructures were fabricated jointly by metal-assisted chemical etching process (MACE) with ultra-low concentration of silver ions and optimized alkaline anisotropic texturing process. And the inverted pyramid sizes were controlled by changing the parameters in both MACE and alkaline anisotropic texturing. Regarding passivation efficiency, the textured sc-Si with normal reflectivity of 9.2% and inverted pyramid size of 1 μm was used to fabricate solar cells. The best batch of solar cells showed a 0.19% higher of conversion efficiency and a 0.22 mA cm -2 improvement in short-circuit current density, and the excellent photoelectric property surpasses that of the same structure solar cell reported before. This technology shows great potential to be an alternative for large-scale production of high efficient sc-Si solar cells in the future.

  6. GaAsP solar cells on GaP/Si with low threading dislocation density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaung, Kevin Nay; Vaisman, Michelle; Lang, Jordan

    2016-07-18

    GaAsP on Si tandem cells represent a promising path towards achieving high efficiency while leveraging the Si solar knowledge base and low-cost infrastructure. However, dislocation densities exceeding 10{sup 8} cm{sup −2} in GaAsP cells on Si have historically hampered the efficiency of such approaches. Here, we report the achievement of low threading dislocation density values of 4.0–4.6 × 10{sup 6} cm{sup −2} in GaAsP solar cells on GaP/Si, comparable with more established metamorphic solar cells on GaAs. Our GaAsP solar cells on GaP/Si exhibit high open-circuit voltage and quantum efficiency, allowing them to significantly surpass the power conversion efficiency of previous devices. The resultsmore » in this work show a realistic path towards dual-junction GaAsP on Si cells with efficiencies exceeding 30%.« less

  7. Direct bonding of gallium nitride to silicon carbide: Physical, and electrical characterization

    NASA Astrophysics Data System (ADS)

    Lee, Jaeseob

    The direct bonding method is applied to the GaN/SiC system, and the processing conditions for successful direct bonding are clarified. Direct bonding of GaN/SiC is achieved at 900°C. The direct bonding of GaN to Si-face SiC is very dependent on the choice of chemical treatments, but the bonding of GaN to C-face SiC is less dependent on surface preparation. If a native oxide is present when the bonded interface is prepared, the current through the interface is decreased, which is attributed to an energy barrier due to the presence of charged interface states. TEM images indicate 10nm spaced dislocations at the interface for the GaN/SiC (Si-face), and ˜6nm for the GaN/SiC (C-face), which form to accommodate the lattice mismatch (3.4%) and twist (1˜2°) and tilt misfit (0.2° for Si-face SiC and 3° for C-face SiC). In some regions (˜30%) an amorphous oxide layer forms at the interface, which is attributed to inadequate surface preparation prior to bonding. The strain of the GaN film with a Ga/C interface was ˜0.1%, tensile strain, and that of GaN with a Ga/Si interface was ˜0.2%, tensile strain. Our analysis indicates that the GaN/SiC thermal misfit dominates the strain of the GaN after bonding. The electrical characteristics of n-p GaN/SiC heterojunctions display diode ideality factors, saturation currents, energy barrier heights, and band offsets of 1.5 +/- 0.1, 10-13 A/cm 2, 0.75 +/- 0.10 eV, and DeltaEC = 0.87 +/- 0.10 eV for the Ga/Si interface and 1.2 +/- 0.1, 10 -16 A/cm2, 0.56 +/- 0.10 eV, and Delta EC = 0.46 +/- 0.10 eV for the Ga/C interface.

  8. Anisotropic strain relaxation of Si-doped metamorphic InAlAs graded buffers on InP

    NASA Astrophysics Data System (ADS)

    Gu, Yi; Zhang, Yonggang; Chen, Xingyou; Ma, Yingjie; Zheng, Yuanliao; Du, Ben; Zhang, Jian

    2017-09-01

    The effects of Si doping on the strain relaxation of InP-based metamorphic In x Al1-x As graded buffers have been investigated. The highly Si-doped sample shows an increased ridge period along the [1 1 0] direction in the cross-hatch morphology measured by atomic force microscope. X-ray diffraction reciprocal space mapping measurements reveal that the high Si-doping induced incomplete relaxation as well as inhomogeneous residual strain along the [1 -1 0] direction, which was also observed in micro-Raman measurements. The anisotropic strain relaxation is attributed to the Si-doping enhanced anisotropy of misfit dislocations along the orthogonal directions. The α-misfit dislocations along the [1 -1 0] direction are further delayed to generate in highly Si-doped InAlAs buffer, while the β-misfit dislocations along the [1 1 0] direction are not. These results supply useful suggestions on the design and demonstration of semiconductor metamorphic devices.

  9. An Overview of Power, Energy Storage, and Conversion Efforts for 2014 SBIR Phases I and II

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 15 of the innovative SBIR 2014 Phase I and II projects that focus on one of NASA Glenn Research Center's six core competencies-Power, Energy Storage and Conversion. The technologies cover a wide spectrum of applications such as high-radiation-tolerant ceramic voltage isolators, development of hermetic sealing glasses for solid oxide fuel cells, rechargeable lithium metal cells, high-efficiency direct methane solid oxide fuel cell systems, Li metal protection for high-energy space batteries, isolated bidirectional direct current converters for distributed battery energy applications, and high-efficiency rad-hard ultrathin Si photovoltaic cell technology for space. Each article describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  10. Electric measurements of PV heterojunction structures a-SiC/c-Si

    NASA Astrophysics Data System (ADS)

    Perný, Milan; Šály, Vladimír; Janíček, František; Mikolášek, Miroslav; Váry, Michal; Huran, Jozef

    2018-01-01

    Due to the particular advantages of amorphous silicon or its alloys with carbon in comparison to conventional crystalline materials makes such a material still interesting for study. The amorphous silicon carbide may be used in a number of micro-mechanical and micro-electronics applications and also for photovoltaic energy conversion devices. Boron doped thin layers of amorphous silicon carbide, presented in this paper, were prepared due to the optimization process for preparation of heterojunction solar cell structure. DC and AC measurement and subsequent evaluation were carried out in order to comprehensively assess the electrical transport processes in the prepared a-SiC/c-Si structures. We have investigated the influence of methane content in deposition gas mixture and different electrode configuration.

  11. Direct Conversion of Energy.

    ERIC Educational Resources Information Center

    Corliss, William R.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Direct energy conversion involves energy transformation without moving parts. The concepts of direct and dynamic energy conversion plus the laws governing energy conversion are investigated. Among the topics…

  12. Intense infrared emission of Er(3+) in Ca(8)Mg(SiO(4))(4)Cl(2) phosphor from energy transfer of Eu(2+) by broadband down-conversion.

    PubMed

    Zhou, Jiajia; Teng, Yu; Liu, Xiaofeng; Ye, Song; Xu, Xiaoqiu; Ma, Zhijun; Qiu, Jianrong

    2010-10-11

    We report on conversion of near-ultraviolet and visible radiation ranging from 250 to 500 nm into near-infrared emission by a Ca(8)Mg(SiO(4))(4)Cl(2): Eu(2+), Er(3+) phosphor. Efficient 1530-1560 nm Er(3+) emission ((4)I(13/2)-->(4)I(15/2)) was detected under the excitation of Eu(2+) (4f?5d) absorption band as a result of energy transfer from Eu(2+) to Er(3+), which is confirmed by both steady state and time-resolved emission spectra. The laser power dependent emission intensity changes were investigated to analysis the energy transfer mechanism. Energy transfer from Eu(2+) to Er(3+) followed by a multi-photon quantum cutting of Er(3+) is proposed. The result indicates that the phosphor has potential application in enhancement of conversion efficient of germanium solar cells because the energy difference of Er(3+): (4)I(13/2)-->(4)I(15/2) transition matches well with the bandgap of Ge (Eg~0.785 eV).

  13. Calcite Phase Conversion Prediction Model for CaO-Al2O3-SiO2 Slag: An Aqueous Carbonation Process at Ambient Pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Huining; Dong, Jianhong; Li, Hui; Xiong, Huihui; Xu, Anjun

    2018-06-01

    To evaluate the effect of the mineralogical phase on carbonation efficiency for CaO-Al2O3-SiO2 slag, a calcite phase conversion prediction model is proposed. This model combines carbon dioxide solubility with carbonation reaction kinetic analysis to improve the prediction capability. The effect of temperature and carbonation time on the carbonation degree is studied in detail. Results show that the reaction rate constant ranges from 0.0135 h-1 to 0.0458 h-1 and that the mineralogical phase contribution sequence for the carbonation degree is C2S, CaO, C3A and CS. The model accurately predicts the effect of temperature and carbonation time on the simulated calcite conversion, and the results agree with the experimental data. The optimal carbonation temperature and reaction time are 333 K and 90 min, respectively. The maximum carbonation efficiency is about 184.3 g/kg slag, and the simulation result of the calcite phase content in carbonated slag is about 20%.

  14. Realization of optical multimode TSV waveguides for Si-Interposer in 3D-chip-stacks

    NASA Astrophysics Data System (ADS)

    Killge, S.; Charania, S.; Richter, K.; Neumann, N.; Al-Husseini, Z.; Plettemeier, D.; Bartha, J. W.

    2017-05-01

    Optical connectivity has the potential to outperform copper-based TSVs in terms of bandwidth at the cost of more complexity due to the required electro-optical and opto-electrical conversion. The continuously increasing demand for higher bandwidth pushes the breakeven point for a profitable operation to shorter distances. To integrate an optical communication network in a 3D-chip-stack optical through-silicon vertical VIAs (TSV) are required. While the necessary effort for the electrical/optical and vice versa conversion makes it hard to envision an on-chip optical interconnect, a chip-to-chip optical link appears practicable. In general, the interposer offers the potential advantage to realize electro-optical transceivers on affordable expense by specific, but not necessarily CMOS technology. We investigated the realization and characterization of optical interconnects as a polymer based waveguide in high aspect ratio (HAR) TSVs proved on waferlevel. To guide the optical field inside a TSV as optical-waveguide or fiber, its core has to have a higher refractive index than the surrounding material. Comparing different material / technology options it turned out that thermal grown silicon dioxide (SiO2) is a perfect candidate for the cladding (nSiO2 = 1.4525 at 850 nm). In combination with SiO2 as the adjacent polymer layer, the negative resist SU-8 is very well suited as waveguide material (nSU-8 = 1.56) for the core. Here, we present the fabrication of an optical polymer based multimode waveguide in TSVs proved on waferlevel using SU-8 as core and SiO2 as cladding. The process resulted in a defect-free filling of waveguide TSVs with SU-8 core and SiO2 cladding up to aspect ratio (AR) 20:1 and losses less than 3 dB.

  15. Highly transparent and efficient counter electrode using SiO2/PEDOT-PSS composite for bifacial dye-sensitized solar cells.

    PubMed

    Song, Dandan; Li, Meicheng; Li, Yingfeng; Zhao, Xing; Jiang, Bing; Jiang, Yongjian

    2014-05-28

    A highly transparent and efficient counter electrode was facilely fabricated using SiO2/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) inorganic/organic composite and used in bifacial dye-sensitized solar cells (DSCs). The optical properties of SiO2/PEDOT-PSS electrode can be tailored by the blending amount of SiO2 and film thickness, and the incorporation of SiO2 in PEDOT-PSS provides better transmission in the long wavelength range. Meanwhile, the SiO2/PEDOT-PSS counter electrode shows a better electrochemical catalytic activity than PEDOT-PSS electrode for triiodide reduction, and the role of SiO2 in the catalytic process is investigated. The bifacial DSC with SiO2/PEDOT-PSS counter electrode achieves a high power conversion efficiency (PCE) of 4.61% under rear-side irradiation, which is about 83% of that obtained under front-side irradiation. Furthermore, the PCE of bifacial DSC can be significantly increased by adding a reflector to achieve bifacial irradiation, which is 39% higher than that under conventional front-side irradiation.

  16. Comparison of steam gasification reactivity of algal and lignocellulosic biomass: influence of inorganic elements.

    PubMed

    Hognon, Céline; Dupont, Capucine; Grateau, Maguelone; Delrue, Florian

    2014-07-01

    This study aims at comparing the steam gasification behaviour of two species of algal biomass (Chlamydomonas reinhardtii and Arthrospira platensis) and three species of lignocellulosic biomass (miscanthus, beech and wheat straw). Isothermal experiments were carried out in a thermobalance under chemical regime. Samples had very different contents in inorganic elements, which resulted in different reactivities, with about a factor of 5 between samples. For biomasses with ratio between potassium content and phosphorus and silicon content K/(Si+P) higher than one, the reaction rate was constant during most of the reaction and then slightly increased at high conversion. On the contrary, for biomasses with ratio K/(Si+P) lower than one, the reaction rate decreased along conversion. A simple kinetic model was proposed to predict these behaviours. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A room temperature method for the formation of ultrathin silicon oxide films

    NASA Astrophysics Data System (ADS)

    Muisener, Richard John

    Growing interest surrounds the use of thin films to impart unique surface properties without adversely affecting those of the bulk. One such example is the formation of a stable high-energy silicon oxide surface on polymers. Thin silicon oxide films have been used to tailor the surface properties of many materials. Conventional methods for SiOx film fabrication such as chemical vapor deposition require either high temperature or expensive vacuum chambers. This research focuses on the intrinsically inexpensive process of UV-ozone to form ultrathin SiOx films from polysiloxane precursors at room temperature and atmospheric pressure. Chemical evidence suggests a complete conversion from organic polymer to inorganic ceramic. Through XPS, the UV-ozone treatment oxidizes over 95% of the silicone's organic side groups with a resulting stoichiometry Of Si 1O2.2C0.08. The silicon oxidation state changes from 2+ in poly(dimethylsiloxane) to 93% 4+ corresponding to SiO2. IR studies show a total loss of methyl bands and the growth of a new Si-O band centered at 1225 cm-1. Gas phase reaction products suggest a radical driven process. The physical properties also suggest a complete conversion to SiO x. Excellent control of film thickness, as low as 2 nm, has been demonstrated by variable angle spectroscopic ellipsometry. The ellipsometrically determined thickness loss of 55% during treatment corresponds to an SiOx film density of 1.9 g/cm3. The continuity of the film is demonstrated by electrical properties and a very low water contact angle consistent with SiOx. The later property ensures that the SiOx films are anti-fogging in nature. Unique hydrophilic-hydrophobic structures were formed through photo-patterning. The reaction has been successfully modeled as self-limiting based on the diffusion of ozone. The chief reactant, atomic oxygen, is generated by the photochemical dissociation of ozone and quickly generates radical species within the polymer film. The reaction proceeds through a cascade of radical reaction pathways until the resulting oxide is formed. The penetration of ozone is limited to the topmost 30 nm of the film; hence, the formation of SiOx is also surface limited. SiOx films of upto 10 nm are formed at room temperature from polymeric precursors.

  18. Effects of (NH4)2S x treatment on the surface properties of SiO2 as a gate dielectric for pentacene thin-film transistor applications

    NASA Astrophysics Data System (ADS)

    Hung, Cheng-Chun; Lin, Yow-Jon

    2018-01-01

    The effect of (NH4)2S x treatment on the surface properties of SiO2 is studied. (NH4)2S x treatment leads to the formation of S-Si bonds on the SiO2 surface that serves to reduce the number of donor-like trap states, inducing the shift of the Fermi level toward the conduction band minimum. A finding in this case is the noticeably reduced value of the SiO2 capacitance as the sulfurated layer is formed at the SiO2 surface. The effect of SiO2 layers with (NH4)2S x treatment on the carrier transport behaviors for the pentacene/SiO2-based organic thin-film transistor (OTFT) is also studied. The pentacene/as-cleaned SiO2-based OTFT shows depletion-mode behavior, whereas the pentacene/(NH4)2S x -treated SiO2-based OTFT exhibits enhancement-mode behavior. Experimental identification confirms that the depletion-/enhancement-mode conversion is due to the dominance competition between donor-like trap states in SiO2 near the pentacene/SiO2 interface and acceptor-like trap states in the pentacene channel. A sulfurated layer between pentacene and SiO2 is expected to give significant contributions to carrier transport for pentacene/SiO2-based OTFTs.

  19. Direct fabrication of hybrid nanofibres composed of SiO2-PMMA nanospheres via electrospinning.

    PubMed

    Zhang, Ran; Shang, Tinghua; Yang, Guang; Jia, Xiaolong; Cai, Qing; Yang, Xiaoping

    2016-08-01

    The direct fabrication of hybrid nanofibres composed of poly(methyl methacrylate)-grafted SiO2 (SiO2-PMMA) nanospheres via electrospinning was investigated in detail. SiO2-PMMA nanospheres were successfully prepared, with the SiO2 nanospheres synthesized via the Stober method, followed by in situ surface-initiated atom transfer radical polymerization of methyl methacrylate (MMA). Electrospinning was carried out with N,N-dimethylformamide (DMF) as the solvent to disperse SiO2-PMMA nanospheres. The size of the SiO2 core, the molecular weight of the PMMA shell and the concentration of the SiO2-PMMA/DMF solution all had substantial effects on the morphology and structure of electrospun nanofibres composed of SiO2-PMMA nanospheres. When these determining factors were well-tailored, it was found that one-dimensional necklace-like nanofibres were obtained, with SiO2-PMMA nanospheres aligned one by one along the fibre. The successful fabrication of nanofibres by directly electrospinning the SiO2-PMMA/DMF solution verified that polymer-grafted particles possess polymer-like characteristics, which endowed them with the ability to be processed into desirable shapes and structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Preparation of ZnS microdisks using chemical bath deposition and ZnS/p-Si heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Hsiao, Y. J.; Meen, T. H.; Ji, L. W.; Tsai, J. K.; Wu, Y. S.; Huang, C. J.

    2013-10-01

    The synthesis and heterojunction solar cell properties of ZnS microdisks prepared by the chemical bath deposition method were investigated. The ZnS deposited on the p-Si blanket substrate exhibits good coverage. The lower reflectance spectra were found as the thickness of the ZnS film increased. The optical absorption spectra of the 80 °C ZnS microdisk exhibited a band-gap energy of 3.4 eV and the power conversion efficiency (PCE) of the AZO/ZnS/p-Si heterojunction solar cell with a 300 nm thick ZnS film was η=2.72%.

  1. Investigation of 3C-SiC/SiO2 interfacial point defects from ab initio g-tensor calculations and electron paramagnetic resonance measurements

    NASA Astrophysics Data System (ADS)

    Nugraha, T. A.; Rohrmueller, M.; Gerstmann, U.; Greulich-Weber, S.; Stellhorn, A.; Cantin, J. L.; von Bardeleben, J.; Schmidt, W. G.; Wippermann, S.

    SiC is widely used in high-power, high-frequency electronic devices. Recently, it has also been employed as a building block in nanocomposites used as light absorbers in solar energy conversion devices. Analogous to Si, SiC features SiO2 as native oxide that can be used for passivation and insulating layers. However, a significant number of defect states are reported to form at SiC/SiO2 interfaces, limiting mobility and increasing recombination of free charge carriers. We investigated the growth of oxide on different 3C-SiC surfaces from first principles. Carbon antisite Csi defects are found to be strongly stabilized in particular at the interface, because carbon changes its hybridization from sp3 in the SiC-bulk to sp2 at the interface, creating a dangling bond inside a porous region of the SiO2 passivating layer. Combining ab initio g-tensor calculations and electron paramagnetic resonance (EPR) measurements, we show that Csi defects explain the measured EPR signatures, while the hyperfine structure allows to obtain local structural information of the oxide layer. Financial support from BMBF NanoMatFutur Grant 13N12972 and DFG priority program SPP-1601 is gratefully acknowledged.

  2. Designing Tyrosinase siRNAs by Multiple Prediction Algorithms and Evaluation of Their Anti-Melanogenic Effects.

    PubMed

    Kwon, Ok-Seon; Kwon, Soo-Jung; Kim, Jin Sang; Lee, Gunbong; Maeng, Han-Joo; Lee, Jeongmi; Hwang, Gwi Seo; Cha, Hyuk-Jin; Chun, Kwang-Hoon

    2018-05-01

    Melanin is a pigment produced from tyrosine in melanocytes. Although melanin has a protective role against UVB radiation-induced damage, it is also associated with the development of melanoma and darker skin tone. Tyrosinase is a key enzyme in melanin synthesis, which regulates the rate-limiting step during conversion of tyrosine into DOPA and dopaquinone. To develop effective RNA interference therapeutics, we designed a melanin siRNA pool by applying multiple prediction programs to reduce human tyrosinase levels. First, 272 siRNAs passed the target accessibility evaluation using the RNAxs program. Then we selected 34 siRNA sequences with ΔG ≥-34.6 kcal/mol, i-Score value ≥65, and siRNA scales score ≤30. siRNAs were designed as 19-bp RNA duplexes with an asymmetric 3' overhang at the 3' end of the antisense strand. We tested if these siRNAs effectively reduced tyrosinase gene expression using qRT-PCR and found that 17 siRNA sequences were more effective than commercially available siRNA. Three siRNAs further tested showed an effective visual color change in MNT-1 human cells without cytotoxic effects, indicating these sequences are anti-melanogenic. Our study revealed that human tyrosinase siRNAs could be efficiently designed using multiple prediction algorithms.

  3. Designing Tyrosinase siRNAs by Multiple Prediction Algorithms and Evaluation of Their Anti-Melanogenic Effects

    PubMed Central

    Kwon, Ok-Seon; Kwon, Soo-Jung; Kim, Jin Sang; Lee, Gunbong; Maeng, Han-Joo; Lee, Jeongmi; Hwang, Gwi Seo; Cha, Hyuk-Jin; Chun, Kwang-Hoon

    2018-01-01

    Melanin is a pigment produced from tyrosine in melanocytes. Although melanin has a protective role against UVB radiation-induced damage, it is also associated with the development of melanoma and darker skin tone. Tyrosinase is a key enzyme in melanin synthesis, which regulates the rate-limiting step during conversion of tyrosine into DOPA and dopaquinone. To develop effective RNA interference therapeutics, we designed a melanin siRNA pool by applying multiple prediction programs to reduce human tyrosinase levels. First, 272 siRNAs passed the target accessibility evaluation using the RNAxs program. Then we selected 34 siRNA sequences with ΔG ≥−34.6 kcal/mol, i-Score value ≥65, and siRNA scales score ≤30. siRNAs were designed as 19-bp RNA duplexes with an asymmetric 3′ overhang at the 3′ end of the antisense strand. We tested if these siRNAs effectively reduced tyrosinase gene expression using qRT-PCR and found that 17 siRNA sequences were more effective than commercially available siRNA. Three siRNAs further tested showed an effective visual color change in MNT-1 human cells without cytotoxic effects, indicating these sequences are anti-melanogenic. Our study revealed that human tyrosinase siRNAs could be efficiently designed using multiple prediction algorithms. PMID:29223142

  4. Enhanced photoelectrochemical properties of copper-assisted catalyzed etching black silicon by electrodepositing cobalt

    NASA Astrophysics Data System (ADS)

    Cai, Weidong; Xiong, Haiying; Su, Xiaodong; Zhou, Hao; Shen, Mingrong; Fang, Liang

    2017-11-01

    Black silicon (Si) photoelectrodes are promising for improving the performance of photoelectrochemical (PEC) water splitting. Here, we report the fabrication of p-black Si and n+p-black Si photocathodes via a controllable copper-assisted catalyzed etching method. The etching process affects only the topmost less than 200 nm of Si and is independent of the surface doping. The synergistic effects of the excellent light harvesting of the black Si and the improved charge transfer properties of the p-n junction boost the production and utilization of photogenerated carriers. The mean reflectance of the pristine Si samples is about 10% from 400 to 950 nm, while that of the black Si samples is reduced as low as 5%. In addition, the PEC properties of the n+p-black Si photocathode can be further enhanced by depositing a cobalt (Co) layer. Compared with the p-Si sample, the onset potential of the Co/n+p-black Si photocathode is positively shifted by 560 mV to 0.33 V vs. reversible hydrogen electrode and the saturation photocurrent density is increased from 22.7 to 32.6 mA/cm2. The design of the Co/n+p-black Si photocathode offers an efficient strategy for preparing PEC solar energy conversion devices.

  5. Dependence of performance of Si nanowire solar cells on geometry of the nanowires.

    PubMed

    Khan, Firoz; Baek, Seong-Ho; Kim, Jae Hyun

    2014-01-01

    The dependence of performance of silicon nanowires (SiNWs) solar cells on the growth condition of the SiNWs has been described. Metal-assisted electroless etching (MAE) technique has been used to grow SiNWs array. Different concentration of aqueous solution containing AgNO3 and HF for Ag deposition is used. The diameter and density of SiNWs are found to be dependent on concentration of solution used for Ag deposition. The diameter and density of SiNWs have been used to calculate the filling ratio of the SINWs arrays. The filling ratio is increased with increase in AgNO3 concentration, whereas it is decreased with increase in HF concentration. The minimum reflectance value achieved is ~1% for SiNWs of length of ~1.2 μ m in the wavelength range of 300-1000 nm. The performance and diode parameters strongly depend on the geometry of SiNWs. The maximum short circuit current density achieved is 35.6 mA/cm(2). The conversion efficiency of solar cell is 9.73% for SiNWs with length, diameter, and wire density of ~1.2 μ m, ~75 nm, and 90 μ m(-2), respectively.

  6. High efficiency silicon nanowire/organic hybrid solar cells with two-step surface treatment.

    PubMed

    Wang, Jianxiong; Wang, Hao; Prakoso, Ari Bimo; Togonal, Alienor Svietlana; Hong, Lei; Jiang, Changyun; Rusli

    2015-03-14

    A simple two-step surface treatment process is proposed to boost the efficiency of silicon nanowire/PEDOT:PSS hybrid solar cells. The Si nanowires (SiNWs) are first subjected to a low temperature ozone treatment to form a surface sacrificial oxide, followed by a HF etching process to partially remove the oxide. TEM investigation demonstrates that a clean SiNW surface is achieved after the treatment, in contrast to untreated SiNWs that have Ag nanoparticles left on the surface from the metal-catalyzed etching process that is used to form the SiNWs. The cleaner SiNW surface achieved and the thin layer of residual SiO2 on the SiNWs have been found to improve the performance of the hybrid solar cells. Overall, the surface recombination of the hybrid SiNW solar cells is greatly suppressed, resulting in a remarkably improved open circuit voltage of 0.58 V. The power conversion efficiency has also increased from about 10% to 12.4%. The two-step surface treatment method is promising in enhancing the photovoltaic performance of the hybrid silicon solar cells, and can also be applied to other silicon nanostructure based solar cells.

  7. Final Report

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This cooperative agreement explored the novel polymerization of vinylsilane, alone and in combination with other alkenylsilanes, alkylsilanes, and/or crosslinking agents, using dimethyltitanocene as homogeneous catalyst. The reactions were found to be initiated photochemically under mild conditions, and no hydrogen gas was evolved when alkenylsilanes were polymerized. The polymers were found to have predominately a carbosilane-type backbone containing -SiH2-CH2-CH2-Si and -SiH2-CH(CH3)-Si type linkages. The mechanism of polymerization was found to be step-growth. Despite the relatively low molecular weight of the polymer (M(sub n) - 500 and M(sub W) - 1500), pyrolysis resulted in conversion to C-rich SiC ceramic in high char yields (-60%). Copolymerization with methylsilane resulted in higher chars and more crystalline polymer. Addition of crosslinking agents such as polybutadiene or methyltrivinylsilane increased the viscosity of the polymer produced and enabled application as coatings to fiber toes.

  8. Silicide formation process of Er films with Ta and TaN capping layers.

    PubMed

    Choi, Juyun; Choi, Seongheum; Kim, Jungwoo; Na, Sekwon; Lee, Hoo-Jeong; Lee, Seok-Hee; Kim, Hyoungsub

    2013-12-11

    The phase development and defect formation during the silicidation reaction of sputter-deposited Er films on Si with ∼20-nm-thick Ta and TaN capping layers were examined. TaN capping effectively prevented the oxygen incorporation from the annealing atmosphere, which resulted in complete conversion to the ErSi2-x phase. However, significant oxygen penetration through the Ta capping layer inhibited the ErSi2-x formation, and incurred the growth of several Er-Si-O phases, even consuming the ErSi2-x layer formed earlier. Both samples produced a number of small recessed defects at an early silicidation stage. However, large rectangular or square-shaped surface defects, which were either pitlike or pyramidal depending on the capping layer identity, were developed as the annealing temperature increased. The origin of different defect generation mechanisms was suggested based on the capping layer-dependent silicidation kinetics.

  9. Preparation and electrochemistry of Pd-Ni/Si nanowire nanocomposite catalytic anode for direct ethanol fuel cell.

    PubMed

    Miao, Fengjuan; Tao, Bairui; Chu, Paul K

    2012-04-28

    A new silicon-based anode suitable for direct ethanol fuel cells (DEFCs) is described. Pd-Ni nanoparticles are coated on Si nanowires (SiNWs) by electroless co-plating to form the catalytic materials. The electrocatalytic properties of the SiNWs and ethanol oxidation on the Pd-Ni catalyst (Pd-Ni/SiNWs) are investigated electrochemically. The effects of temperature and working potential limit in the anodic direction on ethanol oxidation are studied by cyclic voltammetry. The Pd-Ni/SiNWs electrode exhibits higher electrocatalytic activity and better long-term stability in an alkaline solution. It also yields a larger current density and negative onset potential thus boding well for its application to fuel cells. This journal is © The Royal Society of Chemistry 2012

  10. Composite Nanoshells for Enhanced Solar-to-Fuel Photocatalytic Conversion

    DTIC Science & Technology

    2012-06-20

    nanoparticles can be used as seeds to further deposit other metal oxide layer, e.g. ZnO in this study. Experiment 1. Preparation of...localized surface plasmon resonance, typically with addition of Ag@Au NPs ( nanoparticles ) was evaluated. Layered structure composed of nanoshell/SiO2/ ZnO was...films were measured. Secondly, we reported the novel synthesis of metal oxide (SiO2 and SnO2)-coated metal-metal nanoshells. These unique IR-absorption

  11. Graphene as a transparent conducting and surface field layer in planar Si solar cells

    PubMed Central

    2014-01-01

    This work presents an experimental and finite difference time domain (FDTD) simulation-based study on the application of graphene as a transparent conducting layer on a planar and untextured crystalline p-n silicon solar cell. A high-quality monolayer graphene with 97% transparency and 350 Ω/□ sheet resistance grown by atmospheric pressure chemical vapor deposition method was transferred onto planar Si cells. An increase in efficiency from 5.38% to 7.85% was observed upon deposition of graphene onto Si cells, which further increases to 8.94% upon SiO2 deposition onto the graphene/Si structure. A large increase in photon conversion efficiency as a result of graphene deposition shows that the electronic interaction and the presence of an electric field at the graphene/Si interface together play an important role in this improvement and additionally lead to a reduction in series resistance due to the conducting nature of graphene. PMID:25114642

  12. Synthesis of a conducting SiO2-carbon composite from commercial silicone grease and its conversion to paramagnetic SiO2 particles.

    PubMed

    Pol, V G; Pol, S V; George, P P; Markovsky, B; Gedanken, A

    2006-07-13

    The thermal decomposition of commercial silicone grease was carried out in a closed reactor (Swagelok) that was heated at 800 degrees C for 3 h, yielding a SiO2-carbon composite with a BET surface area of 369 m2/g. The bulk conductivity (5.72 x 10(-6) S x cm(-2)) of the SiO2-carbon composite was determined by impedance measurements. The as-prepared SiO2-carbon composite was further annealed at 500 degrees C in air for 2 h, which led to the formation of white paramagnetic silica particles (confirmed by ESR), possessing a surface area of 111 m2/g. The present synthetic technique requires unsophisticated equipment and a low-cost commercial precursor, and the reaction is carried out without a solvent, surfactant, or catalyst. The mechanism for the formation of a porous SiO2-carbon composite from the silicone grease is also presented.

  13. Numerical simulations: Toward the design of 27.6% efficient four-terminal semi-transparent perovskite/SiC passivated rear contact silicon tandem solar cell

    NASA Astrophysics Data System (ADS)

    Pandey, Rahul; Chaujar, Rishu

    2016-12-01

    In this work, a novel four-terminal perovskite/SiC-based rear contact silicon tandem solar cell device has been proposed and simulated to achieve 27.6% power conversion efficiency (PCE) under single AM1.5 illumination. 20.9% efficient semitransparent perovskite top subcell has been used for perovskite/silicon tandem architecture. The tandem structure of perovskite-silicon solar cells is a promising method to achieve efficient solar energy conversion at low cost. In the four-terminal tandem configuration, the cells are connected independently and hence avoids the need for current matching between top and bottom subcell, thus giving greater design flexibility. The simulation analysis shows, PCE of 27.6% and 22.4% with 300 μm and 10 μm thick rear contact Si bottom subcell, respectively. This is a substantial improvement comparing to transparent perovskite solar cell and c-Si solar cell operated individually. The impact of perovskite layer thickness, monomolecular, bimolecular, and trimolecular recombination have also been obtained on the performance of perovskite top subcell. Reported PCEs of 27.6% and 22.4% are 1.25 times and 1.42 times higher as compared to experimentally available efficiencies of 22.1% and 15.7% in 300 μm and 10 μm thick stand-alone silicon solar cell devices, respectively. The presence of SiC significantly suppressed the interface recombination in bottom silicon subcell. Detailed realistic technology computer aided design (TCAD) analysis has been performed to predict the behaviour of the device.

  14. Cobalt disilicide contacts to silicon-germanium alloys

    NASA Astrophysics Data System (ADS)

    Goeller, Peter Thomas

    This dissertation investigated the structure and stability of thin (18--45 nm) cobalt disilicide films, electron beam evaporated onto strained and relaxed Si1--xGex/Si(001) alloy layers. The aim of these investigations was to develop a means of growing smooth, continuous, epitaxial and thermally stable CoSi2 films suitable for use as contacts in SiGe device technology. Previous research on the reaction of Co metal with SiGe alloys has indicated a number of problems, such as film islanding, formation of polycrystalline silicide films, Ge segregation and poor thermal stability. In the present work, we studied the scientific issues underlying these phenomena with a variety of experimental techniques. Our initial studies comparing direct deposition of Co versus co-deposition of Co and Si indicated that co-deposition resulted in CoSi2 formation at much lower temperatures (500°C) than with the direct deposition method (700°C). Furthermore, the co-deposited films were epitaxial to the SiGe layer, whereas the direct deposited films were polycrystalline. Both methods resulting in increasing islanding of the films with increasing annealing temperature. The issues underlying the islanding of the co-deposited films were investigated with an in situ XAFS investigation of the Co/SiGe interface using monolayers of Co. It was determined that Co preferentially bonds with Si atoms as the annealing temperature is increased, leading to segregation of Ge at the interface and faceting of the silicide. A modified template method of silicide growth was devised, in which a sacrificial Si layer was deposited onto the SiGe surface before the CoSi2 template was grown. This growth method was shown to result in smooth, epitaxial and thermally stable films of CoSi2 on Si0.80Ge0.20 alloys. A thickness effect was observed for the direct deposition of Co on SiGe alloys, in which Co layers do not completely convert to CoSi2 until thicknesses greater than 35 nm are deposited. A thermodynamic model was developed, based on the Gibbs free energy change of the CoSi → CoSi2 transition, which indicated that the thickness effect was driven by the presence of Ge in the reaction zone. Finally, the Ge segregation phenomenon accompanying the direct reaction of Co on both strained and relaxed Si0.80Ge0.20 alloys was investigated. It was determined using XRD and EDS in the STEM microscope that Ge segregation on strained SiGe takes the form of Ge-enriched SiGe regions surrounding CoSi and CoSi2 grains at the surface of the film. (Abstract shortened by UMI.)

  15. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions.

    PubMed

    Huang, Wenhai; Day, Delbert E; Kittiratanapiboon, Kanisa; Rahaman, Mohamed N

    2006-07-01

    Bioactive glasses with controllable conversion rates to hydroxyapatite (HA) may provide a novel class of scaffold materials for bone tissue engineering. The objective of the present work was to comprehensively characterize the conversion of a silicate bioactive glass (45S5), a borate glass, and two intermediate borosilicate glass compositions to HA in a dilute phosphate solution at 37 degrees Celsius. The borate glass and the borosilicate glasses were derived from the 45S5 glass by fully or partially replacing the SiO(2) with B(2)O(3). Higher B(2)O(3) content produced a more rapid conversion of the glass to HA and a lower pH value of the phosphate solution. Whereas the borate glass was fully converted to HA in less than 4 days, the silicate (45S5) and borosilicate compositions were only partially converted even after 70 days, and contained residual SiO(2) in a Na-depleted core. The concentration of Na(+) in the phosphate solution increased with reaction time whereas the PO(4) (3-) concentration decreased, both reaching final limiting values at a rate that increased with the B(2)O(3) content of the glass. However, the Ca(2+) concentration in the solution remained low, below the detection limit of atomic absorption, throughout the reaction. Immersion of the glasses in a mixed solution of K(2)HPO(4) and K(2)CO(3) produced a carbonate-substituted HA but the presence of the K(2)CO(3) had little effect on the kinetics of conversion to HA. The kinetics and mechanisms of the conversion process of the four glasses to HA are compared and used to develop a model for the process.

  16. Three-dimensional models of conventional and vertical junction laser-photovoltaic energy converters

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Walker, Gilbert H.

    1988-01-01

    Three-dimensional models of both conventional planar junction and vertical junction photovoltaic energy converters have been constructed. The models are a set of linear partial differential equations and take into account many photoconverter design parameters. The model is applied to Si photoconverters; however, the model may be used with other semiconductors. When used with a Nd laser, the conversion efficiency of the Si vertical junction photoconverter is 47 percent, whereas the efficiency for the conventional planar Si photoconverter is only 17 percent. A parametric study of the Si vertical junction photoconverter is then done in order to describe the optimum converter for use with the 1.06-micron Nd laser. The efficiency of this optimized vertical junction converter is 44 percent at 1 kW/sq cm.

  17. Periodically Aligned Si Nanopillar Arrays as Efficient Antireflection Layers for Solar Cell Applications

    PubMed Central

    2010-01-01

    Periodically aligned Si nanopillar (PASiNP) arrays were fabricated on Si substrate via a silver-catalyzed chemical etching process using the diameter-reduced polystyrene spheres as mask. The typical sub-wavelength structure of PASiNP arrays had excellent antireflection property with a low reflection loss of 2.84% for incident light within the wavelength range of 200–1,000 nm. The solar cell incorporated with the PASiNP arrays exhibited a power conversion efficiency (PCE) of ~9.24% with a short circuit current density (JSC) of ~29.5 mA/cm2 without using any extra surface passivation technique. The high PCE of PASiNP array-based solar cell was attributed to the excellent antireflection property of the special periodical Si nanostructure. PMID:21124636

  18. Pyrolysis chemistry of polycarbosilane polymer precursors to ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Qi

    The main theme of this research work was investigation of the precursor-ceramic conversion process for some polycarbosilane polymers, (-RRsp' SiCHsb2-)sb{n}, known as the poly(silylenemethylene)s (PSMs), where R and Rsp' are either hydrogen or bridging oxygen. The pyrolysis chemistry was characterized by elemental analysis, thermogravimetric analysis, liquid and solid state NMR spectroscopy, FTIR, and mass spectrometric analysis of the gaseous pyrolysis products. The strategy included three steps: First, linear poly(silaethylene), (SiHsb2CHsb2), PSE, was synthesized by ROP and examined as potential precursor to silicon carbide. This was one of the limiting cases where in (-RRsp' SiCHsb2-)sb{n}, R=Rsp'=H. The conversion process was studied by the examination of the gaseous species evolved during pyrolysis using a mass spectrometer. The results suggested that molecular H-transfer and elimination reactions involving silylene intermediates occurred initially and caused the crosslinking of the polymer between 300 and 420sp'C. Free radical reactions became operative and were the main mechanisms occurring above 420sp'C. The unusually high ceramic yield of linear PSE (ca. 80%) suggested that the SiHsb{x} groups in this polymer provided a latent reactivity that could be "turned on" by heating, thereby allowing the formation of a network structure that resists fragmentation. Second, polycarbosilane/siloxane hybrid polymers, (Si(O)CHsb2rbracksb{n}, were synthesized by sol-gel processing and were pyrolyzed to silicon oxycarbide ceramics. This was the other limiting case where in (-RRsp' SiCHsb2-)sb{n}, R=Rsp'=bridging or terminal oxygens. The gels were converted into silicon oxycarbides that contain a statistical distribution of the five possible SiCsb{4-x}Osb{x} environments between 600 and 1000sp'C. This rearrangement of the Si environments was attributed to the redistribution reactions involving the exchange of Si-O and Si-C bonds during the latter stages of the pyrolysis, likely facilitated by the Si-OH-induced attack on the Si-CHsb2-Si linkages. In addition, the microstructure of the gels and their pyrolytic products was investigated by Nsb2 adsorption-desorption test (the BET test). The results suggested that the investigated samples are microporous solids with relatively high surface areas even at 1000sp°C, indicating the potential interest of these samples as microporous materials. Finally, a mixture system was synthesized by introducing oxygen into the (SiHsb2CHsb2), polymer purposely to obtain a model (SiHsb2CHsb2rbracksb{n}rbrack Si(O)CHsb2rbracksb{m} system which has a variable and controllable amount of oxygen. This was the intermediate case between the two extremes. In this system, the pyrolysis mechanisms which worked in the two extreme cases also operated here along with a new mechanism resulting the formation of part of the total Hsb2 between Si-OH and Si-H groups.

  19. Phase transformation in SiOx/SiO₂ multilayers for optoelectronics and microelectronics applications.

    PubMed

    Roussel, M; Talbot, E; Pratibha Nalini, R; Gourbilleau, F; Pareige, P

    2013-09-01

    Due to the quantum confinement, silicon nanoclusters (Si-ncs) embedded in a dielectric matrix are of prime interest for new optoelectronics and microelectronics applications. In this context, SiO(x)/SiO₂ multilayers have been prepared by magnetron sputtering and subsequently annealed to induce phase separation and Si clusters growth. The aim of this paper is to study phase separation processes and formation of nanoclusters in SiO(x)/SiO₂ multilayers by atom probe tomography. Influences of the silicon supersaturation, annealing temperature and SiO(x) and SiO₂ layer thicknesses on the final microstructure have been investigated. It is shown that supersaturation directly determines phase separation regime between nucleation/classical growth and spinodal decomposition. Annealing temperature controls size of the particles and interface with the surrounding matrix. Layer thicknesses directly control Si-nc shapes from spherical to spinodal-like structures. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Synthesis, DFT calculations, spectroscopic and photovoltaic of the novel N″, N‴-bis[(4,9-dimethoxy-5-oxo-5H-furo[3,2-g]chromen-6-yl)methylidene] thiocarbonohydrazide (BFCMT) and its photodiode application

    NASA Astrophysics Data System (ADS)

    Farag, A. A. M.; Ibrahim, Magdy A.; Halim, Shimaa Abdel; Roushdy, N.; El-Gohary, Nasser M.

    2018-03-01

    Condensation reaction of 6-formylkhellin (1) with thiocarbohydrazide in 2:1 M ratio afforded the novel N″, N‴-bis [(4, 9-dimethoxy-5-oxo-5H-furo [3,2-g]chromen-6-yl) methylidene]thiocarbonohydrazide (BFCMT) and its electronic absorption spectrum was interpreted by TD-DFT calculations. The electronic transition is direct allowed with onset and fundamental energy gaps of 1.06 and 3.36 eV, respectively. The estimated optical constants were applied to evaluate the optical transition type as well as the effective optical parameters. The current density-voltage characteristics of BFCMT/p-Si heterojunction at 300 K in dark and under illumination of 100 mW/cm2 showed rectifying characteristics. The capacitance-voltage characteristic parameters under illumination showed a reduction in the built-in potential and increasing the active carrier concentration. The loaded J-V characteristics of BFCMT/p-Si heterojunction under illumination were investigated and showed a remarkable power conversion efficiency of 0.83% without consideration of the refection correction or losses from the upper electrode absorption.

  1. Quasi-2D silicon structures based on ultrathin Me2Si (Me = Mg, Ca, Sr, Ba) films

    NASA Astrophysics Data System (ADS)

    Migas, D. B.; Bogorodz, V. O.; Filonov, A. B.; Borisenko, V. E.; Skorodumova, N. V.

    2018-04-01

    By means of ab initio calculations with hybrid functionals we show a possibility for quasi-2D silicon structures originated from semiconducting Mg2Si, Ca2Si, Sr2Si and Ba2Si silicides to exist. Such a 2D structure is similar to the one of transition metal chalcogenides where silicon atoms form a layer in between of metal atoms aligned in surface layers. These metal surface atoms act as pseudo passivation species stabilizing crystal structure and providing semiconducting properties. Considered 2D Mg2Si, Ca2Si, Sr2Si and Ba2Si have band gaps of 1.14 eV, 0.69 eV, 0.33 eV and 0.19 eV, respectively, while the former one is also characterized by a direct transition with appreciable oscillator strength. Electronic states of the surface atoms are found to suppress an influence of the quantum confinement on the band gaps. Additionally, we report Sr2Si bulk in the cubic structure to have a direct band gap of 0.85 eV as well as sizable oscillator strength of the first direct transition.

  2. Hybrid silicon–carbon nanostructures for broadband optical absorption

    DOE PAGES

    Yang, Wen -Hua; Lu, Wen -Cai; Ho, K. M.; ...

    2017-01-25

    Proper design of nanomaterials for broadband light absorption is a key factor for improving the conversion efficiency of solar cells. Here we present a hybrid design of silicon–carbon nanostructures with silicon clusters coated by carbon cages, i.e., Si m@C 2n for potential solar cell application. The optical properties of these hybrid nanostructures were calculated based on time dependent density function theory (TDDFT). The results show that the optical spectra of Si m@C 2n are very different from those of pure Si m and C 2n clusters. While the absorption spectra of pure carbon cages and Si m clusters exhibit peaksmore » in the UV region, those of the Si m@C 2n nanostructures exhibit a significant red shift. Superposition of the optical spectra of various Si m@C 2n nanostructures forms a broad-band absorption, which extends to the visible light and infrared regions. As a result, the broadband adsorption of the assembled Si m@C 2n nanoclusters may provide a new approach for the design of high efficiency solar cell nanomaterials.« less

  3. Land use change affects biogenic silica pool distribution in a subtropical soil toposequence

    NASA Astrophysics Data System (ADS)

    Unzué-Belmonte, Dácil; Ameijeiras-Mariño, Yolanda; Opfergelt, Sophie; Cornelis, Jean-Thomas; Barão, Lúcia; Minella, Jean; Meire, Patrick; Struyf, Eric

    2017-07-01

    Land use change (deforestation) has several negative consequences for the soil system. It is known to increase erosion rates, which affect the distribution of elements in soils. In this context, the crucial nutrient Si has received little attention, especially in a tropical context. Therefore, we studied the effect of land conversion and erosion intensity on the biogenic silica pools in a subtropical soil in the south of Brazil. Biogenic silica (BSi) was determined using a novel alkaline continuous extraction where Si / Al ratios of the fractions extracted are used to distinguish BSi and other soluble fractions: Si / Al > 5 for the biogenic AlkExSi (alkaline-extractable Si) and Si / Al < 5 for the non-biogenic AlkExSi. Our study shows that deforestation can rapidly (< 50 years) deplete the biogenic AlkExSi pool in soils depending on the slope of the study site (10-53 %), with faster depletion in steeper sites. We show that higher erosion in steeper sites implies increased accumulation of biogenic Si in deposition zones near the bottom of the slope, where rapid burial can cause removal of BSi from biologically active zones. Our study highlights the interaction of erosion strength and land use for BSi redistribution and depletion in a soil toposequence, with implications for basin-scale Si cycling.

  4. Simulation of a high-efficiency silicon-based heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Jian, Liu; Shihua, Huang; Lü, He

    2015-04-01

    The basic parameters of a-Si:H/c-Si heterojunction solar cells, such as layer thickness, doping concentration, a-Si:H/c-Si interface defect density, and the work functions of the transparent conducting oxide (TCO) and back surface field (BSF) layer, are crucial factors that influence the carrier transport properties and the efficiency of the solar cells. The correlations between the carrier transport properties and these parameters and the performance of a-Si:H/c-Si heterojunction solar cells were investigated using the AFORS-HET program. Through the analysis and optimization of a TCO/n-a-Si:H/i-a-Si:H/p-c-Si/p+-a-Si:H/Ag solar cell, a photoelectric conversion efficiency of 27.07% (VOC) 749 mV, JSC: 42.86 mA/cm2, FF: 84.33%) was obtained through simulation. An in-depth understanding of the transport properties can help to improve the efficiency of a-Si:H/c-Si heterojunction solar cells, and provide useful guidance for actual heterojunction with intrinsic thin layer (HIT) solar cell manufacturing. Project supported by the National Natural Science Foundation of China (No. 61076055), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. FDS-KL2011-04), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).

  5. Impact of hydrogen dilution on optical properties of intrinsic hydrogenated amorphous silicon films prepared by high density plasma chemical vapor deposition for solar cell applications

    NASA Astrophysics Data System (ADS)

    Chen, Huai-Yi; Lee, Yao-Jen; Chang, Chien-Pin; Koo, Horng-Show; Lai, Chiung-Hui

    2013-01-01

    P-i-n single-junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells were successfully fabricated in this study on a glass substrate by high density plasma chemical vapor deposition (HDP-CVD) at low power of 50 W, low temperature of 200°C and various hydrogen dilution ratios (R). The open circuit voltage (Voc ), short circuit current density (Jsc ), fill factor (FF) and conversion efficiency (η) of the solar cell as well as the refractive index (n) and absorption coefficient (α) of the i-layer at 600 nm wavelength rise with increasing R until an abrupt drop at high hydrogen dilution, i.e. R > 0.95. However, the optical energy bandgap (Eg ) of the i-layer decreases with the R increase. Voc and α are inversely correlated with Eg . The hydrogen content affects the i-layer and p/i interface quality of the a-Si:H thin film solar cell with an optimal value of R = 0.95, which corresponds to solar cell conversion efficiency of 3.85%. The proposed a-Si:H thin film solar cell is expected to be improved in performance.

  6. Cd-free Cu-Zn-In-S/ZnS quantum dots@SiO2 multiple cores nanostructure: preparation and application for white LEDs

    NASA Astrophysics Data System (ADS)

    Jiang, Tongtong; Shen, Mohan; Dai, Peng; Wu, Mingzai; Yu, Xinxin; Li, Guang; Xu, Xiaoliang; Zeng, Haibo

    2017-10-01

    The work reports the fabrication of Cu doped Zn-In-S (CZIS) alloy quantum dots (QDs) using dodecanethiol and oleic acid as stabilizing ligands. With the increase of doped Cu element, the photoluminescence (PL) peak is monotonically red shifted. After coating ZnS shell, the PL quantum yield of CZIS QDs can reach 78%. Using reverse micelle microemulsion method, CZIS/ZnS QDs@SiO2 multi-core nanospheres were synthesized to improve the colloidal stability and avoid the aggregation of QDs. The obtained multi-core nanospheres were dispersed in curing adhesive, and applied as a color conversion layer in down converted light-emitting diodes. After encapsulation in curing adhesive, the newly designed LEDs show artifically regulated color coordinates with varying the weight ratio of green QDs and red QDs, and the concentrations of these two types of QDs. Moreover, natural white and warm white LEDs with correlated color temperature of 5287, 6732, 2731, and 3309 K can be achieved, which indicates that CZIS/ZnS QDs@SiO2 nanostructures are promising color conversion layer material for solid-state lighting application.

  7. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures

    PubMed Central

    Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei

    2016-01-01

    Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2–3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm−2 and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs. PMID:27125309

  8. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures.

    PubMed

    Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei

    2016-04-29

    Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2-3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm(-2) and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs.

  9. Rare-Earth Activated Nitride Phosphors: Synthesis, Luminescence and Applications

    PubMed Central

    Xie, Rong-Jun; Hirosaki, Naoto; Li, Yuanqiang; Takeda, Takashi

    2010-01-01

    Nitridosilicates are structurally built up on three-dimensional SiN4 tetrahedral networks, forming a very interesting class of materials with high thermomechanical properties, hardness, and wide band gap. Traditionally, nitridosilicates are often used as structural materials such as abrasive particles, cutting tools, turbine blade, etc. Recently, the luminescence of rare earth doped nitridosilicates has been extensively studied, and a novel family of luminescent materials has been developed. This paper reviews the synthesis, luminescence and applications of nitridosilicate phosphors, with emphasis on rare earth nitrides in the system of M-Si-Al-O-N (M = Li, Ca, Sr, Ba, La) and their applications in white LEDs. These phosphors exhibit interesting luminescent properties, such as red-shifted excitation and emission, small Stokes shift, small thermal quenching, and high conversion efficiency, enabling them to use as down-conversion luminescent materials in white LEDs with tunable color temperature and high color rendering index.

  10. Near-infrared luminescence from Y2O3:Eu3+, Yb3+ prepared by sol-gel method.

    PubMed

    Xie, Ying; Xiao, Lin J; Yan, Feng Q; Chen, Yong J; Li, Wen Z; Geng, Xiu J

    2014-06-01

    Eu3+ and Yb3+ codoped Y2O3 phosphors were synthesized by the sol-gel method. The phosphors possess absorption in the region of 300-550 nm, exhibiting an intense NIR emission of Yb3+ around 1000 nm, which is suitable for matching the maximum spectral response of c-Si solar cells. The optimum composition of Eu3+ and Yb3+ codoped Y2O3 was (Y1.94Yb0.04Eu0.02)2O3. It is observed that two-step energy transfer occurs from the 5D2 level of Eu3+ situated around (466 nm) exciting two neighboring Yb3+ ions to the 2F5/2 level (1000 nm). The down-conversion material based on Eu(3+)- Yb3+ couple may have great potential applications in c-Si solar cells to enhance their photovoltaic conversion efficiency via spectral modification.

  11. Silicon Carbide Radioisotope Batteries

    NASA Technical Reports Server (NTRS)

    Rybicki, George C.

    2005-01-01

    The substantial radiation resistance and large bandgap of SiC semiconductor materials makes them an attractive candidate for application in a high efficiency, long life radioisotope battery. To evaluate their potential in this application, simulated batteries were constructed using SiC diodes and the alpha particle emitter Americium Am-241 or the beta particle emitter Promethium Pm-147. The Am-241 based battery showed high initial power output and an initial conversion efficiency of approximately 16%, but the power output decayed 52% in 500 hours due to radiation damage. In contrast the Pm-147 based battery showed a similar power output level and an initial conversion efficiency of approximately 0.6%, but no degradation was observed in 500 hours. However, the Pm-147 battery required approximately 1000 times the particle fluence as the Am-242 battery to achieve a similar power output. The advantages and disadvantages of each type of battery and suggestions for future improvements will be discussed.

  12. Near infrared emission of TbAG:Ce{sup 3+},Yb{sup 3+} phosphor for solar cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meshram, N. D., E-mail: meshramnileshsd@gmail.com; Yadav, P. J., E-mail: yadav.pooja75@yahoo.in; Pathak, A. A., E-mail: aapathak@yahoo.com

    2016-05-06

    Luminescent materials doped with rare earth ions are used for many devices such as optical amplifiers in telecommunication, phosphors for white light emitting diodes (LEDs), displays, and so on. Recently, they also have attracted a great interest for photovoltaic applications to improve solar cell efficiency by modifying solar spectrum. Crystal silicon (c-Si) solar cells most effectively convert photons of energy close to the semiconductor band gap. The mis-match between the incident solar spectrum and the spectral response of solar cells is one of the main reasons to limit the cell efficiency. The efficiency limit of the c-Si has been estimatedmore » to be 29% by Shockley and Queisser. However, this limit is estimated to be improved up to 38.4% by modifying the solar spectrum by a quantum cutting (down converting) phosphor which converts one photon of high energy into two photons of lower energy. The phenomenon such as the quantum cutting or the down conversion of rare earth ions have been investigated since Dexter reported the possibility of a luminescent quantum yield greater than unity in 1957. In the past, the quantum cutting from a vacuum ultraviolet photon to visible photons for Pr{sup 3+}, Gd{sup 3+},Gd{sup 3+}–Eu{sup 3+}, and Er{sup 3+}–Tb{sup 3+} had been studied. Recently, a new quantum cutting phenomenon from visible photon shorter than 500 nm to two infrared photons for Tb{sup 3+}–Yb{sup 3+}, Pr{sup 3+}–Yb{sup 3+}, and Tm{sup 3+}–Yb{sup 3+} has been reported. The Yb{sup 3+} ion is suitable as an acceptor and emitter because luminescent quantum efficiency of Yb{sup 3+} is close to 100% and the energy of the only excited level of Yb{sup 3+} (1.2 eV) is roughly in accordance with the band gap of Si (1.1 eV). In addition, the Ce{sup 3+}-doped Tb{sub 3}Al{sub 5}O{sub 12} (TbAG), used as a phosphor for white LED, has broad absorption bands in the range of 300–500 nm due to strong ligand field and high luminescent quantum efficiency. Therefore, the Ce{sup 3+} ions in the TbAG can be suitable as an excellent sensitizing donor for down conversion materials of Si solar cells. In this paper, Ce{sup 3+} –Yb{sup 3+}-codoped TbAG ceramics were prepared and the energy transfer (ET) including down conversion mechanism in Ce{sup 3+} – Yb{sup 3+} codoped TbAG ceramics have been evaluated by the photoluminescence (PL), the photoluminescence excitation (PLE), the lifetime and the quantum yield (QY), which was measured directly using an integrating sphere.« less

  13. Formation of the Structure of a Eutectic Alloy of the Nb - Si System During Directed Crystallization with Liquid-Metal Coolant

    NASA Astrophysics Data System (ADS)

    Bondarenko, Yu. A.; Echin, A. B.; Kolodyazhnyi, M. Yu.; Surova, V. A.

    2017-11-01

    Peculiarities of the structure of a refractory eutectic alloy of the Nb - Si system, formed by the method of directed crystallization with liquid-metal coolant, have been studied. Characteristic zones of microstructure of the ingot obtained upon directed crystallization are considered, the alloy composition is analyzed, and volume fractions of phases in the Nb - Si composite are determined.

  14. Stability and structure in [alpha]- and [beta]-keggin heteropolytungstates, [Xn+W12O40](8-n)-, X = p-block cation

    Treesearch

    Wade A. Neiwert; Jennifer J. Cowan; Kenneth I. Hardcastle; Craig L. Hill; Ira A. Weinstock

    2002-01-01

    [Beta]-[SiW12O40]4- (C3v symmetry) is sufficiently higher in energy than its [alpha]-isomer analogue that effectively complete conversion to [alpha]-[SiW12O40]4- (Td) is observed. By contrast, [beta]- and [alpha]-[AlW12O40]5- ([beta]- and [alpha]-1; C3v and Td, respectively) are sufficiently close in energy that both isomers are readily seen in 27Al NMR spectra of...

  15. Catalytic Gas-Phase Glycerol Processing over SiO2-, Cu-, Ni- and Fe- Supported Au Nanoparticles

    PubMed Central

    Kapkowski, Maciej; Siudyga, Tomasz; Sitko, Rafal; Lelątko, Józef; Szade, Jacek; Balin, Katarzyna; Klimontko, Joanna; Bartczak, Piotr; Polanski, Jaroslaw

    2015-01-01

    In this study, we investigated different metal pairings of Au nanoparticles (NPs) as potential catalysts for glycerol dehydration for the first time. All of the systems preferred the formation of hydroxyacetone (HYNE). Although the bimetallics that were tested, i.e., Au NPs supported on Ni, Fe and Cu appeared to be more active than the Au/SiO2 system, only Cu supported Au NPs gave high conversion (ca. 63%) and selectivity (ca. 70%) to HYNE. PMID:26580400

  16. Planar Homojunction Gallium Nitride (GaN) P-i-N Device Evaluated for Betavoltaic Energy Conversion: Measurement and Analysis

    DTIC Science & Technology

    2016-09-01

    REPORT DATE (DD-MM-YYYY) September 2016 2. REPORT TYPE Technical Report 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Planar Homojunction...development of mass- production semiconductor processing methods of 4H-SiC. The ease of fabrication of thicker epitaxial layers make SiC a prime...the 0.1- and 1-nA current settings are very stable and represent the low intensity expected from radioisotope beta decay. 2.2 Planar GaN Device

  17. Low temperature production of large-grain polycrystalline semiconductors

    DOEpatents

    Naseem, Hameed A [Fayetteville, AR; Albarghouti, Marwan [Loudonville, NY

    2007-04-10

    An oxide or nitride layer is provided on an amorphous semiconductor layer prior to performing metal-induced crystallization of the semiconductor layer. The oxide or nitride layer facilitates conversion of the amorphous material into large grain polycrystalline material. Hence, a native silicon dioxide layer provided on hydrogenated amorphous silicon (a-Si:H), followed by deposited Al permits induced crystallization at temperatures far below the solid phase crystallization temperature of a-Si. Solar cells and thin film transistors can be prepared using this method.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scientists set a new world record for converting non-concentrated sunlight into electricity using a dual-junction III-V/Si solar cell. National Renewable Energy Laboratory (NREL) and Swiss Center for Electronics and Microtechnology (CSEM) scientists have collaborated to create a novel tandem solar cell that operates at 29.8% conversion efficiency under non-concentrator (1-sun) conditions. In comparison, the 1-sun efficiency of a silicon (Si) single-junction solar cell is probably still a few years away from converging on its practical limit of about 26%.

  19. Significant thermal conductivity reduction of silicon nanowire forests through discrete surface doping of germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Ying; Hong, Guo; Raja, Shyamprasad N.

    2015-03-02

    Silicon nanowires (SiNWs) are promising materials for the realization of highly-efficient and cost effective thermoelectric devices. Reduction of the thermal conductivity of such materials is a necessary and viable pathway to achieve sufficiently high thermoelectric efficiencies, which are inversely proportional to the thermal conductivity. In this article, vertically aligned forests of SiNW and germanium (Ge)-doped SiNW with diameters around 100 nm have been fabricated, and their thermal conductivity has been measured. The results show that discrete surface doping of Ge on SiNW arrays can lead to 23% reduction in thermal conductivity at room temperature compared to uncoated SiNWs. Such reduction canmore » be further enhanced to 44% following a thermal annealing step. By analyzing the binding energy changes of Ge-3d and Si-2p using X-ray photoelectron spectroscopy, we demonstrate that surface doped Ge interacts strongly with Si, enhancing phonon scattering at the Si-Ge interface as has also been shown in non-equilibrium molecular dynamics studies of single nanowires. Overall, our results suggest a viable pathway to improve the energy conversion efficiency of nanowire-forest thermoelectric nanomaterials.« less

  20. Creep deformation of grain boundary in a highly crystalline SiC fibre.

    PubMed

    Shibayama, Tamaki; Yoshida, Yutaka; Yano, Yasuhide; Takahashi, Heishichiro

    2003-01-01

    Silicon carbide (SiC) matrix composites reinforced by SiC fibres (SiC/SiC composites) are currently being considered as alternative materials in high Ni alloys for high-temperature applications, such as aerospace components, gas-turbine energy-conversion systems and nuclear fusion reactors, because of their high specific strength and fracture toughness at elevated temperatures compared with monolithic SiC ceramics. It is important to evaluate the creep properties of SiC fibres under tensile loading in order to determine their usefulness as structural components. However, it would be hard to evaluate creep properties by monoaxial tensile properties when we have little knowledge on the microstructure of crept specimens, especially at the grain boundary. Recently, a simple fibre bend stress relaxation (BSR) test was introduced by Morscher and DiCarlo to address this problem. Interpretation of the fracture mechanism at the grain boundary is also essential to allow improvement of the mechanical properties. In this paper, effects of stress applied by BSR test on microstructural evolution in advanced SiC fibres, such as Tyranno-SA including small amounts of Al, are described and discussed along with the results of microstructure analysis on an atomic scale by using advanced microscopy.

  1. Hybrid silicon honeycomb/organic solar cells with enhanced efficiency using surface etching.

    PubMed

    Liu, Ruiyuan; Sun, Teng; Liu, Jiawei; Wu, Shan; Sun, Baoquan

    2016-06-24

    Silicon (Si) nanostructure-based photovoltaic devices are attractive for their excellent optical and electrical performance, but show lower efficiency than their planar counterparts due to the increased surface recombination associated with the high surface area and roughness. Here, we demonstrate an efficiency enhancement for hybrid nanostructured Si/polymer solar cells based on a novel Si honeycomb (SiHC) structure using a simple etching method. SiHC structures are fabricated using a combination of nanosphere lithography and plasma treatment followed by a wet chemical post-etching. SiHC has shown superior light-trapping ability in comparison with the other Si nanostructures, along with a robust structure. Anisotropic tetramethylammonium hydroxide etching not only tunes the final surface morphologies of the nanostructures, but also reduces the surface roughness leading to a lower recombination rate in the hybrid solar cells. The suppressed recombination loss, benefiting from the reduced surface-to-volume ratio and roughness, has resulted in a high open-circuit voltage of 600 mV, a short-circuit current of 31.46 mA cm(-2) due to the light-trapping ability of the SiHCs, and yields a power conversion efficiency of 12.79% without any other device structure optimization.

  2. Sustainable intensification in agricultural systems

    PubMed Central

    Pretty, Jules; Bharucha, Zareen Pervez

    2014-01-01

    Background Agricultural systems are amended ecosystems with a variety of properties. Modern agroecosystems have tended towards high through-flow systems, with energy supplied by fossil fuels directed out of the system (either deliberately for harvests or accidentally through side effects). In the coming decades, resource constraints over water, soil, biodiversity and land will affect agricultural systems. Sustainable agroecosystems are those tending to have a positive impact on natural, social and human capital, while unsustainable systems feed back to deplete these assets, leaving fewer for the future. Sustainable intensification (SI) is defined as a process or system where agricultural yields are increased without adverse environmental impact and without the conversion of additional non-agricultural land. The concept does not articulate or privilege any particular vision or method of agricultural production. Rather, it emphasizes ends rather than means, and does not pre-determine technologies, species mix or particular design components. The combination of the terms ‘sustainable’ and ‘intensification’ is an attempt to indicate that desirable outcomes around both more food and improved environmental goods and services could be achieved by a variety of means. Nonetheless, it remains controversial to some. Scope and Conclusions This review analyses recent evidence of the impacts of SI in both developing and industrialized countries, and demonstrates that both yield and natural capital dividends can occur. The review begins with analysis of the emergence of combined agricultural–environmental systems, the environmental and social outcomes of recent agricultural revolutions, and analyses the challenges for food production this century as populations grow and consumption patterns change. Emergent criticisms are highlighted, and the positive impacts of SI on food outputs and renewable capital assets detailed. It concludes with observations on policies and incentives necessary for the wider adoption of SI, and indicates how SI could both promote transitions towards greener economies as well as benefit from progress in other sectors. PMID:25351192

  3. Sustainable intensification in agricultural systems.

    PubMed

    Pretty, Jules; Bharucha, Zareen Pervez

    2014-12-01

    Agricultural systems are amended ecosystems with a variety of properties. Modern agroecosystems have tended towards high through-flow systems, with energy supplied by fossil fuels directed out of the system (either deliberately for harvests or accidentally through side effects). In the coming decades, resource constraints over water, soil, biodiversity and land will affect agricultural systems. Sustainable agroecosystems are those tending to have a positive impact on natural, social and human capital, while unsustainable systems feed back to deplete these assets, leaving fewer for the future. Sustainable intensification (SI) is defined as a process or system where agricultural yields are increased without adverse environmental impact and without the conversion of additional non-agricultural land. The concept does not articulate or privilege any particular vision or method of agricultural production. Rather, it emphasizes ends rather than means, and does not pre-determine technologies, species mix or particular design components. The combination of the terms 'sustainable' and 'intensification' is an attempt to indicate that desirable outcomes around both more food and improved environmental goods and services could be achieved by a variety of means. Nonetheless, it remains controversial to some. This review analyses recent evidence of the impacts of SI in both developing and industrialized countries, and demonstrates that both yield and natural capital dividends can occur. The review begins with analysis of the emergence of combined agricultural-environmental systems, the environmental and social outcomes of recent agricultural revolutions, and analyses the challenges for food production this century as populations grow and consumption patterns change. Emergent criticisms are highlighted, and the positive impacts of SI on food outputs and renewable capital assets detailed. It concludes with observations on policies and incentives necessary for the wider adoption of SI, and indicates how SI could both promote transitions towards greener economies as well as benefit from progress in other sectors. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Prediction of direct band gap silicon superlattices with dipole-allowed optical transition

    NASA Astrophysics Data System (ADS)

    Kim, Sunghyun; Oh, Young Jun; Lee, In-Ho; Lee, Jooyoung; Chang, K. J.

    While cubic diamond silicon (c-Si) is an important element in electronic devices, it has poor optical properties owing to its indirect gap nature, thereby limiting its applications to optoelectronic devices. Here, we report Si superlattice structures which are computationally designed to possess direct band gaps and excellent optical properties. The computational approach adopts density functional calculations and conformational space annealing for global optimization. The Si superlattices, which consist of alternating stacks of Si(111) layers and a defective layer with Seiwatz chains, have either direct or quasi-direct band gaps depending on the details of attacking layers. The photovoltaic efficiencies are calculated by solving Bethe-Salpeter equation together with quasiparticle G0W0 calculations. The strong direct optical transition is attributed to the overlap of the valence and conduction band edge states in the interface region. Our Si superlattices exhibit high thermal stability, with the energies lower by an order of magnitude than those of the previously reported Si allotropes. We discuss a possible route to the synthesis of the superlattices through wafer bonding. This work is supported by Samsung Science and Technology Foundation under Grant No. SSTF-BA1401-08.

  5. Disintegration of the net-shaped grain-boundary phase by multi-directional forging and its influence on the microstructure and properties of Cu-Ni-Si alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Jinlong; Lu, Zhenlin; Zhao, Yuntao; Jia, Lei; Xie, Hui; Tao, Shiping

    2017-09-01

    Cu-Ni-Si alloys with 90% Cu content and Ni to Si ratios of 5:1 were fabricated by fusion casting, and severe plastic deformation of the Cu-Ni-Si alloy was carried out by multi-direction forging (MDF). The results showed that the as-cast and homogenized Cu-Ni-Si alloys consisted of three phases, namely the matrix phase α-Cu (Ni, Si), the reticular grain boundary phase Ni31Si12 and the precipitated phase Ni2Si. MDF significantly destroyed the net-shaped grain boundary phase, the Ni31Si12 phase and refined the grain size of the Cu matrix, and also resulted in the dissolving of Ni2Si precipitates into the Cu matrix. The effect of MDF on the conductivity of the solid solution Cu-Ni-Si alloy was very significant, with an average increase of 165.16%, and the hardness of the Cu-Ni-Si alloy also increased obviously.

  6. Influence of intermediate layers on the surface condition of laser crystallized silicon thin films and solar cell performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höger, Ingmar, E-mail: ingmar.hoeger@ipht-jena.de; Gawlik, Annett; Brückner, Uwe

    The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiO{sub x}N{sub y}) ormore » silicon oxide (SiO{sub 2}) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiO{sub x}N{sub y} formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiO{sub x}N{sub y} top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.« less

  7. An investigation of down-conversion luminescence properties of rare earth doped CaMoO4 phosphors for solar cell application

    NASA Astrophysics Data System (ADS)

    Verma, Akta; Sharma, S. K.

    2018-05-01

    In the present work, we have synthesized a CaMoO4:(1%)Er3+,(1%)Yb3+ down-converting phosphor by hydrothermal method. The primary goal of studying down-conversion is to enhance the conversion efficiency of Si-solar cell by converting one high energy (UV) photon into two low energy (NIR) photons. The various characterization such as XRD, FESEM and Photoluminescence (PL) were carried out. The X-ray diffraction (XRD) pattern exhibit tetragonal crystal structure and has a space group of I41a (88). The FESEM microphotograph shows surface morphology having a abundance of particles in spherical shape. The PL emission spectra were recorded both in Visible and NIR regions. There is hypertensive emission peak at 555 nm in the visible region due to 4S3/2 → 4I15/2 transition of Er3+ ions and an emission at 980 nm (2F5/2 → 2F7/2) due to Yb3+ ions. The result shows a demand of this down-converting material in the field of solar energy to improve the efficiency of Si-solar-cell.

  8. Preparation and Layer-by-Layer Solution Deposition of Cu(In,Ga)O2 Nanoparticles with Conversion to Cu(In,Ga)S2 Films

    PubMed Central

    Dressick, Walter J.; Soto, Carissa M.; Fontana, Jake; Baker, Colin C.; Myers, Jason D.; Frantz, Jesse A.; Kim, Woohong

    2014-01-01

    We present a method of Cu(In,Ga)S2 (CIGS) thin film formation via conversion of layer-by-layer (LbL) assembled Cu-In-Ga oxide (CIGO) nanoparticles and polyelectrolytes. CIGO nanoparticles were created via a novel flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films were assembled by alternately dipping quartz, Si, and/or Mo substrates into a solution of either polydopamine (PDA) or polystyrenesulfonate (PSS) and then in the CIGO-PAH dispersion to fabricate films as thick as 1–2 microns. PSS/CIGO-PAH films were found to be inadequate due to weak adhesion to the Si and Mo substrates, excessive particle diffusion during sulfurization, and mechanical softness ill-suited to further processing. PDA/CIGO-PAH films, in contrast, were more mechanically robust and more tolerant of high temperature processing. After LbL deposition, films were oxidized to remove polymer and sulfurized at high temperature under flowing hydrogen sulfide to convert CIGO to CIGS. Complete film conversion from the oxide to the sulfide is confirmed by X-ray diffraction characterization. PMID:24941104

  9. Single-layer group IV-V and group V-IV-III-VI semiconductors: Structural stability, electronic structures, optical properties, and photocatalysis

    NASA Astrophysics Data System (ADS)

    Lin, Jia-He; Zhang, Hong; Cheng, Xin-Lu; Miyamoto, Yoshiyuki

    2017-07-01

    Recently, single-layer group III monochalcogenides have attracted both theoretical and experimental interest at their potential applications in photonic devices, electronic devices, and solar energy conversion. Excited by this, we theoretically design two kinds of highly stable single-layer group IV-V (IV =Si ,Ge , and Sn; V =N and P) and group V-IV-III-VI (IV =Si ,Ge , and Sn; V =N and P; III =Al ,Ga , and In; VI =O and S) compounds with the same structures with single-layer group III monochalcogenides via first-principles simulations. By using accurate hybrid functional and quasiparticle methods, we show the single-layer group IV-V and group V-IV-III-VI are indirect bandgap semiconductors with their bandgaps and band edge positions conforming to the criteria of photocatalysts for water splitting. By applying a biaxial strain on single-layer group IV-V, single-layer group IV nitrides show a potential on mechanical sensors due to their bandgaps showing an almost linear response for strain. Furthermore, our calculations show that both single-layer group IV-V and group V-IV-III-VI have absorption from the visible light region to far-ultraviolet region, especially for single-layer SiN-AlO and SnN-InO, which have strong absorption in the visible light region, resulting in excellent potential for solar energy conversion and visible light photocatalytic water splitting. Our research provides valuable insight for finding more potential functional two-dimensional semiconductors applied in optoelectronics, solar energy conversion, and photocatalytic water splitting.

  10. Mild Hydroprocessing with Dispersed Catalyst of Highly Asphaltenic Pitch

    NASA Astrophysics Data System (ADS)

    Isquierdo, Fernanda

    Asphaltene are known to have diverse negative impacts on heavy oil extraction and hydroprocessing. This research then, explores the optimal conditions to convert asphaltenes into lighter material using mild conditions of pressure and temperature, and investigates changes in asphaltene structure during hydroprocessing. Feedstock and products were characterized by Simulated Distillation, Microdeasphalting, Sulfur content, X-ray diffraction, X-ray photoelectron spectroscopy, and Nuclear magnetic resonance spectroscopy. Solid catalysts were analyzed by Themogravimetric analysis, X-ray diffraction, and Dynamic light scattering. Based on the results obtained from X-ray diffraction and Nuclear magnetic resonance spectroscopy analysis a mechanism for the asphaltene hydroprocessing at mild conditions is proposed in which the alky peripheric portion from the original asphaltenes is partially removed during the reaction. The consequence of that process being an increase in the stacking of the aromatics sheets in the remaining asphaltenes. Also, this study investigates different for ultradispersed catalyst compositions, where CoWS, CoMoS, NiWS, FeWS, NiMo/NaHFeSi 2O6 and NaHFeSi2O6 showed a high asphaltene conversion as determined by asphaltene microdeasphalting, FeMoS and NaHFeSi 2O6 presented a high Vacuum Residue as determined by distillation (SIMDIST) analysis conversion, and in terms of sulfur removal CoMoS gave the higher conversion. In addition, all the catalyst tested showed a coke production lower than 1%. Finally, a kinetic study for the pitch hydroprocessing using CoMoS as catalysts gave a global activation energy of 97.3 kJ/mol.

  11. Interferometric imaging of crustal structure from wide-angle multicomponent OBS-airgun data

    NASA Astrophysics Data System (ADS)

    Shiraishi, K.; Fujie, G.; Sato, T.; Abe, S.; Asakawa, E.; Kodaira, S.

    2015-12-01

    In wide-angle seismic surveys with ocean bottom seismograph (OBS) and airgun, surface-related multiple reflections and upgoing P-to-S conversions are frequently observed. We applied two interferometric imaging methods to the multicomponent OBS data in order to highly utilize seismic signals for subsurface imaging.First, seismic interferometry (SI) is applied to vertical component in order to obtain reflection profile with multiple reflections. By correlating seismic traces on common receiver records, pseudo seismic data are generated with virtual sources and receivers located on all original shot positions. We adopt the deconvolution SI because source and receiver spectra can be canceled by spectral division. Consequently, gapless reflection images from just below the seafloor to the deeper are obtained.Second, receiver function (RF) imaging is applied to multicomponent OBS data in order to image P-to-S conversion boundary. Though RF is commonly applied to teleseismic data, our purpose is to extract upgoing PS converted waves from wide-angle OBS data. The RF traces are synthesized by deconvolution of radial and vertical components at same OBS location for each shot. Final section obtained by stacking RF traces shows the PS conversion boundaries beneath OBSs. Then, Vp/Vs ratio can be estimated by comparing one-way traveltime delay with two-way traveltime of P wave reflections.We applied these methods to field data sets; (a) 175 km survey in Nankai trough subduction zone using 71 OBSs with from 1 km to 10 km intervals and 878 shots with 200 m interval, and (b) 237 km survey in northwest pacific ocean with almost flat layers before subduction using 25 OBSs with 6km interval and 1188 shots with 200 m interval. In our study, SI imaging with multiple reflections is highly applicable to OBS data even in a complex geological setting, and PS conversion boundary is well imaged by RF imaging and Vp/Vs ratio distribution in sediment is estimated in case of simple structure.

  12. Form of silicon and method of making the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strobel, Timothy A.; Kim, Duck Young; Kurakevych, Oleksandr O.

    The invention relates to a new phase of silicon, Si.sub.24, and a method of making the same. Si.sub.24 has a quasi-direct band gap, with a direct gap value of 1.34 eV and an indirect gap value of 1.3 eV. The invention also relates to a compound of the formula Na.sub.4Si.sub.24 and a method of making the same. N.sub.a4Si.sub.24 may be used as a precursor to make Si.sub.24.

  13. Vertical Si nanowire arrays fabricated by magnetically guided metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Chun, Dong Won; Kim, Tae Kyoung; Choi, Duyoung; Caldwell, Elizabeth; Kim, Young Jin; Paik, Jae Cheol; Jin, Sungho; Chen, Renkun

    2016-11-01

    In this work, vertically aligned Si nanowire arrays were fabricated by magnetically guided metal-assisted directional chemical etching. Using an anodized aluminum oxide template as a shadow mask, nanoscale Ni dot arrays were fabricated on an Si wafer to serve as a mask to protect the Si during the etching. For the magnetically guided chemical etching, we deposited a tri-layer metal catalyst (Au/Fe/Au) in a Swiss-cheese configuration and etched the sample under the magnetic field to improve the directionality of the Si nanowire etching and increase the etching rate along the vertical direction. After the etching, the nanowires were dried with minimal surface-tension-induced aggregation by utilizing a supercritical CO2 drying procedure. High-resolution transmission electron microscopy (HR-TEM) analysis confirmed the formation of single-crystal Si nanowires. The method developed here for producing vertically aligned Si nanowire arrays could find a wide range of applications in electrochemical and electronic devices.

  14. Design of Strain-Engineered GeSn/GeSiSn Quantum Dots for Mid-IR Direct Bandgap Emission on Si Substrate

    NASA Astrophysics Data System (ADS)

    Al-Saigh, Reem; Baira, Mourad; Salem, Bassem; Ilahi, Bouraoui

    2018-06-01

    Strain-engineered self-assembled GeSn/GeSiSn quantum dots in Ge matrix have been numerically investigated aiming to study their potentiality towards direct bandgap emission in the mid-IR range. The use of GeSiSn alloy as surrounding media for GeSn quantum dots (QD) allows adjusting the strain around the QD through the variation of Si and/or Sn composition. Accordingly, the lattice mismatch between the GeSn quantum dots and the GeSiSn surrounding layer has been tuned between - 2.3 and - 4.5% through the variation of the Sn barrier composition for different dome-shaped QD sizes. The obtained results show that the emission wavelength, fulfilling the specific QD directness criteria, can be successively tuned over a broad mid-IR range from 3 up to7 μm opening new perspectives for group IV laser sources fully integrated in Si photonic systems for sensing applications.

  15. On the Effect of Native SiO2 on Si over the SPR-mediated Photocatalytic Activities of Au and Ag Nanoparticles.

    PubMed

    Wang, Jiale; de Freitas, Isabel C; Alves, Tiago V; Ando, Romulo A; Fang, Zebo; Camargo, Pedro H C

    2017-05-29

    In hybrid materials containing plasmonic nanoparticles such as Au and Ag, charge-transfer processes from and to Au or Ag can affect both activities and selectivity in plasmonic catalysis. Inspired by the widespread utilization of commercial Si wafers in surface-enhanced Raman spectroscopy (SERS) studies, we investigated herein the effect of the native SiO 2 layer on Si wafers over the surface plasmon resonance (SPR)-mediated activities of the Au and Ag nanoparticles (NPs). We prepared SERS-active plasmonic comprised of Au and Ag NPs deposited onto a Si wafer. Here, two kinds of Si wafers were employed: Si with a native oxide surface layer (Si/SiO 2 ) and Si without a native oxide surface layer (Si). This led to Si/SiO 2 /Au, Si/SiO 2 /Ag, Si/Au, and Si/Ag NPs. The SPR-mediated oxidation of p-aminothiophenol (PATP) to p,p'-dimercaptoazobenzene (DMAB) was employed as a model transformation. By comparing the performances and band structures for the Si/Au and Si/Ag relative to Si/SiO 2 /Au and Si/SiO 2 /Ag NPs, it was found that the presence of a SiO 2 layer was crucial to enable higher SPR-mediated PATP to DMAB conversions. The SiO 2 layer acts to prevent the charge transfer of SPR-excited hot electrons from Au or Ag nanoparticles to the Si substrate. This enabled SPR-excited hot electrons to be transferred to adsorbed O 2 molecules, which then participate in the selective oxidation of PATP to DMAB. In the absence of a SiO 2 layer, SPR-excited hot electrons are preferentially transferred to Si instead of adsorbed O 2 molecules, leading to much lower PATP oxidation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Tailoring single-cycle electromagnetic pulses in the 2-9 THz frequency range using DAST/SiO₂ multilayer structures pumped at Ti:sapphire wavelength.

    PubMed

    Stepanov, Andrei G; Rogov, Andrii; Bonacina, Luigi; Wolf, Jean-Pierre; Hauri, Christoph P

    2014-09-08

    We present a numerical parametric study of single-cycle electromagnetic pulse generation in a DAST/SiO₂multilayer structure via collinear optical rectification of 800 nm femtosecond laser pulses. It is shown that modifications of the thicknesses of the DAST and SiO₂layers allow tuning of the average frequency of the generated THz pulses in the frequency range from 3 to 6 THz. The laser-to-THz energy conversion efficiency in the proposed structures is compared with that in a bulk DAST crystal and a quasi-phase-matching periodically poled DAST crystal and shows significant enhancement.

  17. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS₂ thin film.

    PubMed

    Tsuboi, Yuka; Wang, Feijiu; Kozawa, Daichi; Funahashi, Kazuma; Mouri, Shinichiro; Miyauchi, Yuhei; Takenobu, Taishi; Matsuda, Kazunari

    2015-09-14

    Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell.

  18. A parametric study of non-thermal plasma synthesis of silicon nanoparticles from a chlorinated precursor

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Yamada, Riku; Gresback, Ryan; Zhou, Shu; Pi, Xiaodong; Nozaki, Tomohiro

    2014-12-01

    Silicon nanoparticles (Si NPs) synthesized in non-thermal plasma with silicon tetrachloride (SiCl4) are anticipated as a non-toxic and inexpensive Si source for important applications. This study examines the crystallinity, yield, and size distribution of Si NPs in terms of specific energy input (SEI) for 2.5-65 J cm‒3 and the H2/SiCl4 ratio (1-10). The particle growth mechanism is discussed comprehensively. Atomic hydrogen (H) production using non-thermal plasma is the primary important step for SiCl4 dechlorination at low temperatures. The Si NP yield increases with SEI (plasma power divided by total gas flow) because SiCl4 conversion increases with energy fed into the unit volume of the feed gas. At low SEI, Si NPs were mostly in amorphous material because of insufficient plasma heating. A maximum yield of 50 wt% was obtained when SEI = 10 J cm‒3 (H2/SiCl4 = 10) with a crystal fraction of about 1%. Increased SEI is necessary to improve crystal fraction, but excessive SEI decreases the NP yield remarkably. The NP yield losses correspond to increasing NP-free thin film growth on the reactor wall. Mass spectrometry shows that SiCl4 is highly decomposed with greater SEI. Hydrogen chloride (HCl) increases as a by-product. At higher SEI, particle nucleation and subsequent growth are suppressed.

  19. Solid-phase crystallization of amorphous Si films on glass and Si wafer

    NASA Astrophysics Data System (ADS)

    Lee, Dong Nyung

    2011-11-01

    When amorphous silicon films deposited on glass by physical or chemical vapor deposition are annealed, they undergo crystallization by nucleation and growth. The growth rate of Si crystallites is the highest in their <111> directions along or nearly along the film surface. The directed crystallization is likely to develop the <110>//ND or <111>//ND oriented Si crystallites. As the annealing temperature increases, the equiaxed crystallization increases, which in turn increases the random orientation. When amorphous Si is under a stress of the order of 0.1 GPa at about 540 °C, the tensile stress increases the growth rate of Si grains, whereas the compressive stress decreases the growth rate. However, the crystal growth rate increases with the increasing hydrostatic pressure, when the pressure is of the order of GPa at 530-540 °C. These phenomena have been discussed based on the directed crystallization model advanced before, which has been further elaborated.

  20. Ti Impurity Effect on the Optical Coefficients in 2D Cu2Si: A DFT Study

    NASA Astrophysics Data System (ADS)

    Nourozi, Bromand; Boochani, Arash; Abdolmaleki, Ahmad; Sartpi, Elmira; Darabi, Pezhman; Naderi, Sirvan

    2018-01-01

    The electronic and optical properties of 2D Cu2Si and Cu2Si:Ti are investigated based on the density functional theory (DFT) using the FP-LAPW method and GGA approximation. The 2D Cu2Si has metallic and non magnetic properties, whereas adding Ti impurity to its structure changes the electronic behavior to the half-metallic with 3.256μB magnetic moment. The optical transition is not occurred in the infrared and visible area for the 2D Cu2Si in x-direction and by adding Ti atom, the real part of dielectric function in the x-direction, Re (ε(ω))x is reached to a Dirac peak at this energy range. Moreover, the absorption gap tends to zero in x-direction of the 2D Cu2Si:Ti. Supported by Islamic Azad University, Kermanshah branch, Kermanshah, Iran

  1. Neutral Silicon-Vacancy Center in Diamond: Spin Polarization and Lifetimes

    NASA Astrophysics Data System (ADS)

    Green, B. L.; Mottishaw, S.; Breeze, B. G.; Edmonds, A. M.; D'Haenens-Johansson, U. F. S.; Doherty, M. W.; Williams, S. D.; Twitchen, D. J.; Newton, M. E.

    2017-09-01

    We demonstrate optical spin polarization of the neutrally charged silicon-vacancy defect in diamond (SiV0 ), an S =1 defect which emits with a zero-phonon line at 946 nm. The spin polarization is found to be most efficient under resonant excitation, but nonzero at below-resonant energies. We measure an ensemble spin coherence time T2>100 μ s at low-temperature, and a spin relaxation limit of T1>25 s . Optical spin-state initialization around 946 nm allows independent initialization of SiV0 and NV- within the same optically addressed volume, and SiV0 emits within the telecoms down-conversion band to 1550 nm: when combined with its high Debye-Waller factor, our initial results suggest that SiV0 is a promising candidate for a long-range quantum communication technology.

  2. New Diamond Color Center for Quantum Communication

    NASA Astrophysics Data System (ADS)

    Huang, Ding; Rose, Brendon; Tyryshkin, Alexei; Sangtawesin, Sorawis; Srinivasan, Srikanth; Twitchen, Daniel; Markham, Matthew; Edmonds, Andrew; Gali, Adam; Stacey, Alastair; Wang, Wuyi; D'Haenens-Johansson, Ulrika; Zaitsev, Alexandre; Lyon, Stephen; de Leon, Nathalie

    2017-04-01

    Color centers in diamond are attractive for quantum communication applications because of their long electron spin coherence times and efficient optical transitions. Previous demonstrations of color centers as solid-state spin qubits were primarily focused on centers that exhibit either long coherence times or highly efficient optical interfaces. Recently, we developed a method to stabilize the neutral charge state of silicon-vacancy center in diamond (SiV0) with high conversion efficiency. We observe spin relaxation times exceeding 1 minute and spin coherence times of 1 ms for SiV0 centers. Additionally, the SiV0 center also has > 90 % of its emission into its zero-phonon line and a narrow inhomogeneous optical linewidth. The combination of a long spin coherence time and efficient optical interface make the SiV0 center a promising candidate for applications in long distance quantum communication.

  3. Harnessing surface plasmons for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Anderson, L. M.

    1983-01-01

    NASA research on the feasibility of solar-energy conversion using surface plasmons is reviewed, with a focus on inelastic-tunnel-diode techniques for power extraction. The need for more efficient solar converters for planned space missions is indicated, and it is shown that a device with 50-percent efficiency could cost up to 40 times as much per sq cm as current Si cells and still be competitive. The parallel-processing approach using broadband carriers and tunable diodes is explained, and the physics of surface plasmons on metal surfaces is outlined. Technical problems being addressed include phase-matching sunlight to surface plasmons, minimizing ohmic losses and reradiation in energy transport, coupling into the tunnels by mode conversion, and gaining an understanding of the tunnel-diode energy-conversion process. Diagrams illustrating the design concepts are provided.

  4. Stepwise mechanism and H2O-assisted hydrolysis in atomic layer deposition of SiO2 without a catalyst.

    PubMed

    Fang, Guo-Yong; Xu, Li-Na; Wang, Lai-Guo; Cao, Yan-Qiang; Wu, Di; Li, Ai-Dong

    2015-01-01

    Atomic layer deposition (ALD) is a powerful deposition technique for constructing uniform, conformal, and ultrathin films in microelectronics, photovoltaics, catalysis, energy storage, and conversion. The possible pathways for silicon dioxide (SiO2) ALD using silicon tetrachloride (SiCl4) and water (H2O) without a catalyst have been investigated by means of density functional theory calculations. The results show that the SiCl4 half-reaction is a rate-determining step of SiO2 ALD. It may proceed through a stepwise pathway, first forming a Si-O bond and then breaking Si-Cl/O-H bonds and forming a H-Cl bond. The H2O half-reaction may undergo hydrolysis and condensation processes, which are similar to conventional SiO2 chemical vapor deposition (CVD). In the H2O half-reaction, there are massive H2O molecules adsorbed on the surface, which can result in H2O-assisted hydrolysis of the Cl-terminated surface and accelerate the H2O half-reaction. These findings may be used to improve methods for the preparation of SiO2 ALD and H2O-based ALD of other oxides, such as Al2O3, TiO2, ZrO2, and HfO2.

  5. Stepwise mechanism and H2O-assisted hydrolysis in atomic layer deposition of SiO2 without a catalyst

    NASA Astrophysics Data System (ADS)

    Fang, Guo-Yong; Xu, Li-Na; Wang, Lai-Guo; Cao, Yan-Qiang; Wu, Di; Li, Ai-Dong

    2015-02-01

    Atomic layer deposition (ALD) is a powerful deposition technique for constructing uniform, conformal, and ultrathin films in microelectronics, photovoltaics, catalysis, energy storage, and conversion. The possible pathways for silicon dioxide (SiO2) ALD using silicon tetrachloride (SiCl4) and water (H2O) without a catalyst have been investigated by means of density functional theory calculations. The results show that the SiCl4 half-reaction is a rate-determining step of SiO2 ALD. It may proceed through a stepwise pathway, first forming a Si-O bond and then breaking Si-Cl/O-H bonds and forming a H-Cl bond. The H2O half-reaction may undergo hydrolysis and condensation processes, which are similar to conventional SiO2 chemical vapor deposition (CVD). In the H2O half-reaction, there are massive H2O molecules adsorbed on the surface, which can result in H2O-assisted hydrolysis of the Cl-terminated surface and accelerate the H2O half-reaction. These findings may be used to improve methods for the preparation of SiO2 ALD and H2O-based ALD of other oxides, such as Al2O3, TiO2, ZrO2, and HfO2.

  6. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si

    NASA Astrophysics Data System (ADS)

    Sun, Yi; Zhou, Kun; Sun, Qian; Liu, Jianping; Feng, Meixin; Li, Zengcheng; Zhou, Yu; Zhang, Liqun; Li, Deyao; Zhang, Shuming; Ikeda, Masao; Liu, Sheng; Yang, Hui

    2016-09-01

    Silicon photonics would greatly benefit from efficient, visible on-chip light sources that are electrically driven at room temperature. To fully utilize the benefits of large-scale, low-cost manufacturing foundries, it is highly desirable to grow direct bandgap III-V semiconductor lasers directly on Si. Here, we report the demonstration of a blue-violet (413 nm) InGaN-based laser diode grown directly on Si that operates under continuous-wave current injection at room temperature, with a threshold current density of 4.7 kA cm-2. The heteroepitaxial growth of GaN on Si is confronted with a large mismatch in both the lattice constant and the coefficient of thermal expansion, often resulting in a high density of defects and even microcrack networks. By inserting an Al-composition step-graded AlN/AlGaN multilayer buffer between the Si and GaN, we have not only successfully eliminated crack formation, but also effectively reduced the dislocation density. The result is the realization of a blue-violet InGaN-based laser on Si.

  7. Shoreline Conditions and Bank Recession Along the U.S. Shorelines of the Saint Marys, Saint Clair, Detroit and Saint Lawrence Rivers,

    DTIC Science & Technology

    1982-05-01

    FACTORS: U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT These conversion factors include all the significant digits given in the conversion...where suspended (Wuebben et al. 1978a). ships pass through narrow channels. Also, the ra- This disruption of river bottom sediments can pid water level...graphs that showed sites in the middle of the pic - 29 of these reaches (5.2 miles) showed evidence ture. The average photographic scale was deter- of

  8. Enhanced direct-gap light emission from Si-capped n+-Ge epitaxial layers on Si after post-growth rapid cyclic annealing: impact of non-radiative interface recombination toward Ge/Si double heterostructure lasers.

    PubMed

    Higashitarumizu, Naoki; Ishikawa, Yasuhiko

    2017-09-04

    Enhanced direct-gap light emission is reported for Si-capped n + -Ge layers on Si after post-growth rapid cyclic annealing (RCA), and impact of non-radiative recombination (NRR) at the Ge/Si interface is discussed toward Ge/Si double heterostructure (DH) lasers. P-doped n + -Ge layer (1 × 10 19 cm -3 , 400 nm) is grown on Si by ultra-high vacuum chemical vapor deposition, followed by a growth of Si capping layer (5 nm) to form a Si/Ge/Si DH structure. Post-growth RCA to eliminate defects in Ge is performed in N 2 at temperatures between 900°C and 780°C, where the annealing time is minimized to be 5 s in each RCA cycle to prevent an out-diffusion of P dopants from the Ge surface. Direct-gap photoluminescence (PL) intensity at 1.6 µm increases with the RCA cycles up to 40, although the threading dislocation density in Ge is not reduced after 3 cycles in the present condition. The PL enhancement is ascribed to the suppression of NRR at the Ge/Si interface, where an intermixed SiGe alloy is formed. For Ge/Si DH lasers, NRR at the Ge/Si interface is found to have a significant impact on the threshold current density Jth. In order to achieve Jth on the order of 1 kA/cm 2 , similar to III-V lasers, the interface recombination velocity S is required below 10 3 cm/s in spite of S as large as 10 5 cm/s at the ordinary defect-rich Ge/Si interface.

  9. Low-Cost III-V Photovoltaic Materials by Chloride Vapor Transport Deposition Using Safe Solid Precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boettcher, Shannon; Aloni, Shaul; Weiss, Robert

    Si-based photovoltaic devices dominate the market. As photovoltaic (PV) manufacturing costs have plummeted, technologies which increase efficiency have become critical. Si cell efficiencies are nearing theoretical limits and Si-based PV modules are unlikely to reach the 25-30% efficiency range. The use of III-V semiconductors is an obvious technical solution to improve efficiency, especially if they can be integrated directly with existing Si technology as tandems. High coefficients of light absorption along with tunable bandgaps and lattice constants have resulted in record conversion efficiencies for both one-sun and concentrator PV applications. GaAs, for example, has been used to manufacture single-junction photovoltaicsmore » with world-record efficiencies of 28.8% at one sun.2 However, costs for III-Vs must be dramatically reduced to produce cost-effective, high-efficiency PV solutions. III-V costs are controlled by two factors: semiconductor growth and the substrate. III-V growth is dominated today by metal-organic vapor phase epitaxy (MOVPE) with a lesser role played by molecular beam epitaxy (MBE). MOVPE costs are high due to the expense and low utilization (~30%) of precursors, modest growth rates (~100 nm min-1), equipment complexity, and safety infrastructure needed to handle toxic, pyrophoric gases.3 MBE costs are high due to slow growth rates and limitations of scalability. Details comparing plausible low-cost III-V growth methods are available in a review article published as a result of this project. The primary goal of this project was to demonstrate that close-spaced vapor transport (CSVT) using chloride (from HCl) as a transport agent can be used for the rapid growth of device-ready III-V layers from safe, solid-source precursors. In pursuit of this goal, we designed, built, and installed a new Cl-CSVT reactor based on insights from our previous H2O-CSVT growth system and in collaboration with equipment professionals at Malachite Technologies. This system was successfully used to grow epitaxial GaAs with controlled n-type doping, having mobilities similar to MOVPE. Detailed technical information and results can also be found in the primary publication resulting from this project. This work sets the stage for tackling the development of high-performance III-V single junctions and tandem devices directly on Si substrates, which was beyond the capabilities of our H2O-CSVT system. The design of the reactor’s source and substrate transfer system should allow for direct deposition of device structures. The collective innovations of our Cl-CSVT system might ultimately serve as an enabling process for commercialization of the technology through a collaboration with appropriate industrial partners.« less

  10. Impact of isovalent doping on radiation defects in silicon

    NASA Astrophysics Data System (ADS)

    Londos, C. A.; Sgourou, E. N.; Timerkaeva, D.; Chroneos, A.; Pochet, P.; Emtsev, V. V.

    2013-09-01

    Isovalent doping is an important process for the control of point defects in Si. Here, by means of infrared spectroscopy, we investigated the properties of the two main radiation-induced defects in Czochralski-Si (Cz-Si) the oxygen-vacancy (VO) and the carbon-oxygen (CiOi) centres. In particular, we investigated the effect of isovalent doping on the production, the thermal evolution, and the thermal stability of the VO and the CiOi defects. Additionally, we studied the reactions that participate upon annealing and the defects formed as a result of these reactions. Upon annealing VO is converted to VO2 defect although part of the CiOi is converted to CsO2i complexes. Thus, we studied the conversion ratios [VO2]/[VO] and [CsO2i]/[CiOi] with respect to the isovalent dopant. Additionally, the role of carbon in the above processes was discussed. A delay between the temperature characterizing the onset of the VO decay and the temperature characterizing the VO2 growth as well the further growth of VO2 after the complete disappearance of VO indicate that the VO to VO2 conversion is a complex phenomenon with many reaction processes involved. Differences exhibited between the effects of the various dopants on the properties of the two defects were highlighted. The results are discussed in view of density functional theory calculations involving the interaction of isovalent dopants with intrinsic defects, the oxygen and carbon impurities in Si.

  11. The Interfacial Thermal Conductance of Epitaxial Metal-Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Ye, Ning

    Understanding heat transport at nanometer and sub-nanometer lengthscales is critical to solving a wide range of technological challenges related to thermal management and energy conversion. In particular, finite Interfacial Thermal Conductance (ITC) often dominates transport whenever multiple interfaces are closely spaced together or when heat originates from sources that are highly confined by interfaces. Examples of the former include superlattices, thin films, quantum cascade lasers, and high density nanocomposites. Examples of the latter include FinFET transistors, phase-change memory, and the plasmonic transducer of a heat-assisted magnetic recording head. An understanding of the physics of such interfaces is still lacking, in part because experimental investigations to-date have not bothered to carefully control the structure of interfaces studied, and also because the most advanced theories have not been compared to the most robust experimental data. This thesis aims to resolve this by investigating ITC between a range of clean and structurally well-characterized metal-semiconductor interfaces using the Time-Domain Thermoreflectance (TDTR) experimental technique, and by providing theoretical/computational comparisons to the experimental data where possible. By studying the interfaces between a variety of materials systems, each with unique aspects to their tunability, I have been able to answer a number of outstanding questions regarding the importance of interfacial quality (epitaxial/non-epitaxial interfaces), semiconductor doping, matching of acoustic and optical phonon band structure, and the role of phonon transport mechanisms apart from direct elastic transmission on ITC. In particular, we are able to comment on the suitability of the diffuse mismatch model (DMM) to describe the transport across epitaxial interfaces. To accomplish this goal, I studied interfacial thermal transport across CoSi2, TiSi2, NiSi and PtSi - Si(100) and Si(111), (silicides-silicon), interfaces with varying levels of disorder (epitaxial and non-epitaxial). The ITC values of silicides-silicon interfaces observed in this study are higher than those of other metallic interfaces to Si found in literature. Most surprisingly, it is experimentally found that ITC values are independent of interfacial quality and substrate orientation. Computationally, it is found that the non-equilibrium atomistic Green's Function technique (NEGF), which is specically designed to simulate coherent elastic phonon transport across interfaces, significantly underpredicts ITC values for CoSi2-Si interfaces, suggesting that energy transport does not occur purely by coherent transmission of phonons, even for epitaxial interfaces. In contrast, the Diffuse Mismatch Model closely mimics the experimentally observed ITC values for CoSi 2-Si, NiSi-Si and TiSi2-Si interfaces, and only slightly overestimating the same for PtSi-Si interfaces. Furthermore, the results also show that ITC is independent of degenerate doping up to doping levels of ≈1 x 1019 cm-3, indicating there is no significant direct electronic transport or transport effects which depend on long-range metal-semiconductor band alignment. Then, I study the effect of phonon band structure on ITC through measurements of epitaxial NiAl1-xGax-GaAs interfaces for varying levels of alloy composition, which independently tunes the mass of the metal's heavy atom without much affect on the lattice structure or interatomic force constants. The ITC values are found to linearly increase with increasing Ga content, consistent with the disappearance of a phonon band gap in NiAl 1-xGax films with increasing Ga content, which enhances the phonon transmission coefficients due to a better density of states overlap between the two (NiAl1-xGax, GaAs) materials. Finally, I study a unique subset of epitaxial rocksalt interfaces between the Group IV metal nitrides (TiN, ZrN, and HfN) to MgO substrates as well as ScN layers. Prior to the currrent study, TiN-MgO was the only measured interface of this type, and maintained the record for the highest reported ITC for a metal-semiconductor interface. By varying the Group IV metal, the mass of the metal's light atom was independently tuned, allowing the ability to tune the acoustic phonon frequencies in the metal without significant effect to optical phonon band structure. We find that the ITC of all the studied interfaces are quite high, significantly exceeding the DMM predictions, and in the case of XN-ScN interfaces even exceed the radiative limit for elastic phonon transport. The results imply that mechanisms such as anharmonic phonon transmission, strong cross-interfacial electron phonon coupling, or direct electric transmission are required to explain the transport. The TiN-ScN interface conductance is the highest room temperature metal-dielectric conductance ever reported.

  12. Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays.

    PubMed

    Yang, Yong; Wang, Mei; Zhang, Peili; Wang, Weihan; Han, Hongxian; Sun, Licheng

    2016-11-09

    Modification of p-type Si surface by active and stable earth-abundant electrocatalysts is an effective strategy to improve the sluggish kinetics for the hydrogen evolution reaction (HER) at p-Si/electrolyte interface and to develop highly efficient and low-cost photocathodes for hydrogen production from water. To this end, Si nanowire (Si-NW) array has been loaded with highly efficient electrocatalysts, M-B (M = Ni, Co), by facile and quick electroless plating to build M-B catalyst-modified Si nanowire-array-textured photocathodes for water reduction to H 2 . Compared with the bare Si-NW array, composite Si-NWs/M-B arrays display evidently enhanced photoelectrochemical (PEC) performance. The onset potential (V phon ) of cathodic photocurrent is positively shifted by 530-540 mV to 0.44-0.45 V vs RHE, and the short-circuit current density (J sc ) is up to 19.5 mA cm -2 in neutral buffer solution under simulated 1 sun illumination. Impressively, the half-cell photopower conversion efficiencies (η hc ) of the optimized Si-NWs/Co-B (2.53%) and Si-NWs/Ni-B (2.45%) are comparable to that of Si-NWs/Pt (2.46%). In terms of the large J sc , V phon , and η hc values, as well as the high Faradaic efficiency, Si-NWs/M-B electrodes are among the top performing Si photocathodes which are modified with HER electrocatalysts but have no buried solid/solid junction.

  13. Reduction in interface defect density in p-BaSi2/n-Si heterojunction solar cells by a modified pretreatment of the Si substrate

    NASA Astrophysics Data System (ADS)

    Yamashita, Yudai; Yachi, Suguru; Takabe, Ryota; Sato, Takuma; Emha Bayu, Miftahullatif; Toko, Kaoru; Suemasu, Takashi

    2018-02-01

    We have investigated defects that occurred at the interface of p-BaSi2/n-Si heterojunction solar cells that were fabricated by molecular beam epitaxy. X-ray diffraction measurements indicated that BaSi2 (a-axis-oriented) was subjected to in-plane compressive strain, which relaxed when the thickness of the p-BaSi2 layer exceeded 50 nm. Additionally, transmission electron microscopy revealed defects in the Si layer near steps that were present on the Si(111) substrate. Deep level transient spectroscopy revealed two different electron traps in the n-Si layer that were located at 0.33 eV (E1) and 0.19 eV (E2) below the conduction band edge. The densities of E1 and E2 levels in the region close to the heterointerface were approximately 1014 cm-3. The density of these electron traps decreased below the limits of detection following Si pretreatment to remove the oxide layers from the n-Si substrate, which involved heating the substrate to 800 °C for 30 min under ultrahigh vacuum while depositing a layer of Si (1 nm). The remaining traps in the n-Si layer were hole traps located at 0.65 eV (H1) and 0.38 eV (H2) above the valence band edge. Their densities were as low as 1010 cm-3. Following pretreatment, the current versus voltage characteristics of the p-BaSi2/n-Si solar cells under AM1.5 illumination were reproducible with conversion efficiencies beyond 5% when using a p-BaSi2 layer thickness of 100 nm. The origin of the H2 level is discussed.

  14. Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices.

    PubMed

    Aurang, Pantea; Turan, Rasit; Unalan, Husnu Emrah

    2017-10-06

    Reducing silicon (Si) wafer thickness in the photovoltaic industry has always been demanded for lowering the overall cost. Further benefits such as short collection lengths and improved open circuit voltages can also be achieved by Si thickness reduction. However, the problem with thin films is poor light absorption. One way to decrease optical losses in photovoltaic devices is to minimize the front side reflection. This approach can be applied to front contacted ultra-thin crystalline Si solar cells to increase the light absorption. In this work, homojunction solar cells were fabricated using ultra-thin and flexible single crystal Si wafers. A metal assisted chemical etching method was used for the nanowire (NW) texturization of ultra-thin Si wafers to compensate weak light absorption. A relative improvement of 56% in the reflectivity was observed for ultra-thin Si wafers with the thickness of 20 ± 0.2 μm upon NW texturization. NW length and top contact optimization resulted in a relative enhancement of 23% ± 5% in photovoltaic conversion efficiency.

  15. Questing and the application for silicon based ternary compound within ultra-thin layer of SIS intermediate region

    NASA Astrophysics Data System (ADS)

    Chen, Shumin; Gao, Ming; Wan, Yazhou; Du, Huiwei; Li, Yong; Ma, Zhongquan

    2016-12-01

    A silicon based ternary compound was supposed to be solid synthesized with In, Si and O elements by magnetron sputtering of indium tin oxide target (ITO) onto crystal silicon substrate at 250 °C. To make clear the configuration of the intermediate region, a potential method to obtain the chemical bonding of Si with other existing elements was exploited by X-ray photoelectron spectroscopy (XPS) instrument combined with other assisted techniques. The phase composition and solid structure of the interfacial region between ITO and Si substrate were investigated by X-ray diffraction (XRD) and high resolution cross sectional transmission electron microscope (HR-TEM). A photovoltaic device with structure of Al/Ag/ITO/SiOx/p-Si/Al was assembled by depositing ITO films onto the p-Si substrate by using magnetron sputtering. The new matter has been assumed to be a buffer layer for semiconductor-insulator-semiconductor (SIS) photovoltaic device and plays critical role for the promotion of optoelectronic conversion performance from the view point of device physics.

  16. Analysis of the PEDOT:PSS/Si nanowire hybrid solar cell with a tail state model

    NASA Astrophysics Data System (ADS)

    Ho, Kuan-Ying; Li, Chi-Kang; Syu, Hong-Jhang; Lai, Yi; Lin, Ching-Fuh; Wu, Yuh-Renn

    2016-12-01

    In this paper, the electrical properties of the poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/silicon nanowire hybrid solar cell have been analyzed and an optimized structure is proposed. In addition, the planar PEDOT:PSS/c-Si hybrid solar cell is also modeled for comparison. We first developed a simulation software which is capable of modeling organic/inorganic hybrid solar cells by including Gaussian shape density of states into Poisson and drift-diffusion solver to present the tail states and trap states in the organic material. Therefore, the model can handle carrier transport, generation, and recombination in both organic and inorganic materials. Our results show that at the applied voltage near open-circuit voltage (Voc), the recombination rate becomes much higher at the PEDOT:PSS/Si interface region, which limits the fill factor and Voc. Hence, a modified structure with a p-type amorphous silicon (a-Si) layer attached on the interface of Si layer and an n+-type Si layer inserted near the bottom contact are proposed. The highest conversion efficiency of 16.10% can be achieved if both structures are applied.

  17. Si

    NASA Astrophysics Data System (ADS)

    Fiameni, S.; Famengo, A.; Agresti, F.; Boldrini, S.; Battiston, S.; Saleemi, M.; Johnsson, M.; Toprak, M. S.; Fabrizio, M.

    2014-06-01

    Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion in the middle-high temperature range. The detrimental effect of the presence of MgO on the TE properties of Mg2Si based materials is widely known. For this reason, the conditions used for synthesis and sintering were optimized to limit oxygen contamination. The effect of Bi doping on the TE performance of dense Mg2Si materials was also investigated. Synthesis was performed by ball milling in an inert atmosphere starting from commercial Mg2Si powder and Bi powder. The samples were consolidated, by spark plasma sintering, to a density >95%. The morphology, and the composition and crystal structure of samples were characterized by field-emission scanning electronic microscopy and x-ray diffraction, respectively. Moreover, determination of Seebeck coefficients and measurement of electrical and thermal conductivity were performed for all the samples. Mg2Si with 0.1 mol% Bi doping had a ZT value of 0.81, indicative of the potential of this method for fabrication of n-type bulk material with good TE performance.

  18. Size- and orientation-selective si nanowire growth: thermokinetic effects of nanoscale plasma chemistry.

    PubMed

    Mehdipour, Hamid; Ostrikov, Kostya Ken

    2013-02-06

    A multiscale, multiphase thermokinetic model is used to show the effective control of the growth orientation of thin Si NWs for nanoelectronic devices enabled by nanoscale plasma chemistry. It is shown that very thin Si NWs with [110] growth direction can nucleate at much lower process temperatures and pressures compared to thermal chemical vapor deposition where [111]-directed Si NWs are predominantly grown. These findings explain a host of experimental results and offer the possibility of energy- and matter-efficient, size- and orientation-controlled growth of [110] Si NWs for next-generation nanodevices.

  19. Low temperature surface passivation of crystalline silicon and its application to interdigitated back contact silicon heterojunction (ibc-shj) solar cell

    NASA Astrophysics Data System (ADS)

    Shu, Zhan

    With the absence of shading loss together with improved quality of surface passivation introduced by low temperature processed amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction, the interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell exhibits a potential for higher conversion efficiency and lower cost than a traditional front contact diffused junction solar cell. In such solar cells, the front surface passivation is of great importance to achieve both high open-circuit voltage (Voc) and short-circuit current (Jsc). Therefore, the motivation of this work is to develop a low temperature processed structure for the front surface passivation of IBC-SHJ solar cells, which must have an excellent and stable passivation quality as well as a good anti-reflection property. Four different thin film materials/structures were studied and evaluated for this purpose, namely: amorphous silicon nitride (a-SiNx:H), thick amorphous silicon film (a-Si:H), amorphous silicon/silicon nitride/silicon carbide (a-Si:H/a-SiN x:H/a-SiC:H) stack structure with an ultra-thin a-Si:H layer, and zinc sulfide (ZnS). It was demonstrated that the a-Si:H/a-SiNx:H/a-SiC:H stack surpasses other candidates due to both of its excellent surface passivation quality (SRV<5 cm/s) and lower absorption losses. The low recombination rate at the stack structure passivated c-Si surface is found to be resulted from (i) field effect passivation due to the positive fixed charge (Q fix~1x1011 cm-2 with 5 nm a-Si:H layer) in a-SiNx:H as measured from capacitance-voltage technique, and (ii) reduced defect state density (mid-gap Dit~4x1010 cm-2eV-1) at a-Si:H/c-Si interface provided by a 5 nm thick a-Si:H layer, as characterized by conductance-frequency measurements. Paralleled with the experimental studies, a computer program was developed in this work based on the extended Shockley-Read-Hall (SRH) model of surface recombination. With the help of this program, the experimental injection level dependent SRV curves of the stack passivated c-Si samples were successfully reproduced and the carrier capture cross sections of interface defect states were extracted. Additionally, anti-reflection properties of the stack structure were optimized and optical losses were analyzed. The Voc over 700 mV and Jsc over 38 mA/cm2 were achieved in IBC-SHJ solar cells using the stack structure for front surface passivation. Direct comparison shows that such low temperature deposited stack structure developed in this work achieves comparable device performance to the high temperature processed front surface passivation structure used in other high efficiency IBC solar cells. However, the lower fill factor (FF) of IBC-SHJ solar cell as compared with traditional front a-Si:H/c-Si heterojunction cell (HIT cell) greatly limits the overall performance of these devices. Two-dimensional (2D) simulations were used to comparatively model the HIT and IBC-SHJ solar cells to understand the underlying device physics which controls cell performance. The effects of a wide range of device parameters were investigated in the simulation, and pathways to improve the FF of IBC-SHJ solar cell were suggested.

  20. Chemical mixing at “Al on Fe” and “Fe on Al” interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Süle, P.; Horváth, Z. E.; Kaptás, D.

    2015-10-07

    The chemical mixing at the “Al on Fe” and “Fe on Al” interfaces was studied by molecular dynamics simulations of the layer growth and by {sup 57}Fe Mössbauer spectroscopy. The concentration distribution along the layer growth direction was calculated for different crystallographic orientations, and atomically sharp “Al on Fe” interfaces were found when Al grows over (001) and (110) oriented Fe layers. The Al/Fe(111) interface is also narrow as compared to the intermixing found at the “Fe on Al” interfaces for any orientation. Conversion electron Mössbauer measurements of trilayers—Al/{sup 57}Fe/Al and Al/{sup 57}Fe/Ag grown simultaneously over Si(111) substrate by vacuummore » evaporation—support the results of the molecular dynamics calculations.« less

  1. Reduction of bonding resistance of two-terminal III-V/Si tandem solar cells fabricated using smart-stack technology

    NASA Astrophysics Data System (ADS)

    Baba, Masaaki; Makita, Kikuo; Mizuno, Hidenori; Takato, Hidetaka; Sugaya, Takeyoshi; Yamada, Noboru

    2017-12-01

    This paper describes a method that remarkably reduces the bonding resistance of mechanically stacked two-terminal GaAs/Si and InGaP/Si tandem solar cells, where the top and bottom cells are bonded using a Pd nanoparticle array. A transparent conductive oxide (TCO) layer, which partially covers the surface of the Si bottom cell below the electrodes of the III-V top cell, significantly enhances the fill factor (FF) and cell conversion efficiency. The partial TCO layer reduces the bonding resistance and thus, increases the FF and efficiency of InGaP/Si by factors of 1.20 and 1.11, respectively. Eventually, the efficiency exceeds 15%. Minimizing the optical losses at the bonding interfaces of the TCO layer is important in the fabrication of high-efficiency solar cells. To help facilitate this, the optical losses in the tandem solar cells are thoroughly characterized through optical simulations and experimental verifications.

  2. n-MoS2/p-Si Solar Cells with Al2O3 Passivation for Enhanced Photogeneration.

    PubMed

    Rehman, Atteq Ur; Khan, Muhammad Farooq; Shehzad, Muhammad Arslan; Hussain, Sajjad; Bhopal, Muhammad Fahad; Lee, Sang Hee; Eom, Jonghwa; Seo, Yongho; Jung, Jongwan; Lee, Soo Hong

    2016-11-02

    Molybdenum disulfide (MoS 2 ) has recently emerged as a promising candidate for fabricating ultrathin-film photovoltaic devices. These devices exhibit excellent photovoltaic performance, superior flexibility, and low production cost. Layered MoS 2 deposited on p-Si establishes a built-in electric field at MoS 2 /Si interface that helps in photogenerated carrier separation for photovoltaic operation. We propose an Al 2 O 3 -based passivation at the MoS 2 surface to improve the photovoltaic performance of bulklike MoS 2 /Si solar cells. Interestingly, it was observed that Al 2 O 3 passivation enhances the built-in field by reduction of interface trap density at surface. Our device exhibits an improved power conversion efficiency (PCE) of 5.6%, which to our knowledge is the highest efficiency among all bulklike MoS 2 -based photovoltaic cells. The demonstrated results hold the promise for integration of bulklike MoS 2 films with Si-based electronics to develop highly efficient photovoltaic cells.

  3. Temperature-dependent structure and phase variation of nickel silicide nanowire arrays prepared by in situ silicidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hailong; She, Guangwei, E-mail: shegw@mail.ipc.ac.cn; Mu, Lixuan

    Graphical abstract: Display Omitted Highlight: ► Nickel silicides nanowire arrays prepared by a simple in situ silicidation method. ► Phases of nickel silicides could be varied by tuning the reaction temperature. ► A growth model was proposed for the nickel silicides nanowires. ► Diffusion rates of Ni and Si play a critical role for the phase variation. -- Abstract: In this paper, we report an in situ silicidizing method to prepare nickel silicide nanowire arrays with varied structures and phases. The in situ reaction (silicidation) between Si and NiCl{sub 2} led to conversion of Si nanowires to nickel silicide nanowires.more » Structures and phases of the obtained nickel silicides could be varied by changing the reaction temperature. At a relatively lower temperature of 700 °C, the products are Si/NiSi core/shell nanowires or NiSi nanowires, depending on the concentration of NiCl{sub 2} solution. At a higher temperature (800 °C and 900 °C), other phases of the nickel silicides, including Ni{sub 2}Si, Ni{sub 31}Si{sub 12}, and NiSi{sub 2}, were obtained. It is proposed that the different diffusion rates of Ni and Si atoms at different temperatures played a critical role in the formation of nickel silicide nanowires with different phases.« less

  4. PINPIN a-Si:H based structures for X-ray image detection using the laser scanning technique

    NASA Astrophysics Data System (ADS)

    Fernandes, M.; Vygranenko, Y.; Vieira, M.

    2015-05-01

    Conventional film based X-ray imaging systems are being replaced by their digital equivalents. Different approaches are being followed by considering direct or indirect conversion, with the later technique dominating. The typical, indirect conversion, X-ray panel detector uses a phosphor for X-ray conversion coupled to a large area array of amorphous silicon based optical sensors and a couple of switching thin film transistors (TFT). The pixel information can then be readout by switching the correspondent line and column transistors, routing the signal to an external amplifier. In this work we follow an alternative approach, where the electrical switching performed by the TFT is replaced by optical scanning using a low power laser beam and a sensing/switching PINPIN structure, thus resulting in a simpler device. The optically active device is a PINPIN array, sharing both front and back electrical contacts, deposited over a glass substrate. During X-ray exposure, each sensing side photodiode collects photons generated by the scintillator screen (560 nm), charging its internal capacitance. Subsequently a laser beam (445 nm) scans the switching diodes (back side) retrieving the stored charge in a sequential way, reconstructing the image. In this paper we present recent work on the optoelectronic characterization of the PINPIN structure to be incorporated in the X-ray image sensor. The results from the optoelectronic characterization of the device and the dependence on scanning beam parameters are presented and discussed. Preliminary results of line scans are also presented.

  5. Selective femtosecond laser structuring of dielectric thin films with different band gaps: a time-resolved study of ablation mechanisms

    NASA Astrophysics Data System (ADS)

    Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2016-12-01

    Ultrashort pulse lasers have been increasingly gaining importance for the selective structuring of dielectric thin films in industrial applications. In a variety of works the ablation of thin SiO2 and SiNx films from Si substrates has been investigated with near infrared laser wavelengths with photon energies of about 1.2 eV where both dielectrics are transparent (E_{{gap,SiO2}}≈ 8 eV; E_{{gap,SiN}x}≈ 2.5 eV). In these works it was found that few 100 nm thick SiO2 films are selectively ablated with a "lift-off" initiated by confined laser ablation whereas the SiN_{{x}} films are ablated by a combination of confined and direct laser ablation. In the work at hand, ultrafast pump-probe imaging was applied to compare the laser ablation dynamics of the two thin film systems directly with the uncoated Si substrate—on the same setup and under identical parameters. On the SiO2 sample, results show the pulse absorption in the Si substrate, leading to the confined ablation of the SiO2 layer by the expansion of the substrate. On the SiN_{{x}} sample, direct absorption in the layer is observed leading to its removal by evaporation. The pump-probe measurements combined with reflectivity corrected threshold fluence investigations suggest that melting of the Si substrate is sufficient to initiate the lift-off of an overlaying transparent film—evaporation of the substrate seems not to be necessary.

  6. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity.

    PubMed

    Nakamura, Yoshiaki

    2018-01-01

    The design and fabrication of nanostructured materials to control both thermal and electrical properties are demonstrated for high-performance thermoelectric conversion. We have focused on silicon (Si) because it is an environmentally friendly and ubiquitous element. High bulk thermal conductivity of Si limits its potential as a thermoelectric material. The thermal conductivity of Si has been reduced by introducing grains, or wires, yet a further reduction is required while retaining a high electrical conductivity. We have designed two different nanostructures for this purpose. One structure is connected Si nanodots (NDs) with the same crystal orientation. The phonons scattering at the interfaces of these NDs occurred and it depended on the ND size. As a result of phonon scattering, the thermal conductivity of this nanostructured material was below/close to the amorphous limit. The other structure is Si films containing epitaxially grown Ge NDs. The Si layer imparted high electrical conductivity, while the Ge NDs served as phonon scattering bodies reducing thermal conductivity drastically. This work gives a methodology for the independent control of electron and phonon transport using nanostructured materials. This can bring the realization of thermoelectric Si-based materials that are compatible with large scale integrated circuit processing technologies.

  7. Raising the one-sun conversion efficiency of III-V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions

    NASA Astrophysics Data System (ADS)

    Essig, Stephanie; Allebé, Christophe; Remo, Timothy; Geisz, John F.; Steiner, Myles A.; Horowitz, Kelsey; Barraud, Loris; Ward, J. Scott; Schnabel, Manuel; Descoeudres, Antoine; Young, David L.; Woodhouse, Michael; Despeisse, Matthieu; Ballif, Christophe; Tamboli, Adele

    2017-09-01

    Today's dominant photovoltaic technologies rely on single-junction devices, which are approaching their practical efficiency limit of 25-27%. Therefore, researchers are increasingly turning to multi-junction devices, which consist of two or more stacked subcells, each absorbing a different part of the solar spectrum. Here, we show that dual-junction III-V//Sidevices with mechanically stacked, independently operated III-V and Si cells reach cumulative one-sun efficiencies up to 32.8%. Efficiencies up to 35.9% were achieved when combining a GaInP/GaAs dual-junction cell with a Si single-junction cell. These efficiencies exceed both the theoretical 29.4% efficiency limit of conventional Si technology and the efficiency of the record III-V dual-junction device (32.6%), highlighting the potential of Si-based multi-junction solar cells. However, techno-economic analysis reveals an order-of-magnitude disparity between the costs for III-V//Si tandem cells and conventional Si solar cells, which can be reduced if research advances in low-cost III-V growth techniques and new substrate materials are successful.

  8. Synthesis of Si nanosheets by using Sodium Chloride as template for high-performance lithium-ion battery anode material

    NASA Astrophysics Data System (ADS)

    Wang, P. P.; Zhang, Y. X.; Fan, X. Y.; Zhong, J. X.; Huang, K.

    2018-03-01

    Due to the shorter path length and more channels for lithium ion diffusion and insertion, the two-dimensional (2D) Si nanosheets exhibit superior electrochemical performances in the field of electrochemical energy storage and conversion. Recently, various efforts have been focused on how to synthesize 2D Si nanosheets. However, there are many difficulties to achieve the larger area, high purity of 2D Si nanosheets. Herein, we developed a facile and scalable synthesis strategy to fabricate 2D Si nanosheets, utilizing the unique combination of the water-soluble NaCl particles as the sacrificial template and the hydrolyzed tetraethyl orthosilicate as the silica source, and assisting with the magnesium reduction method. Importantly, the obtained Si nanosheets have a larger area up to 10 μm2. Through combining with reduced graphene oxides (rGO), the Si nanosheets@rGO composite electrode exhibits excellent electrochemical performances. It delivers high reversible capacity about 2500 mAh g-1 at the current density of 0.2 A g-1, as well as an excellent rate capability over 900 mAh g-1 at 2 A g-1 even after 200 cycles.

  9. Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essig, Stephanie; Allebé, Christophe; Remo, Timothy

    Today's dominant photovoltaic technologies rely on single-junction devices, which are approaching their practical efficiency limit of 25-27%. Therefore, researchers are increasingly turning to multi-junction devices, which consist of two or more stacked subcells, each absorbing a different part of the solar spectrum. Here, we show that dual-junction III-V//Sidevices with mechanically stacked, independently operated III-V and Si cells reach cumulative one-sun efficiencies up to 32.8%. Efficiencies up to 35.9% were achieved when combining a GaInP/GaAs dual-junction cell with a Si single-junction cell. These efficiencies exceed both the theoretical 29.4% efficiency limit of conventional Si technology and the efficiency of the recordmore » III-V dual-junction device (32.6%), highlighting the potential of Si-based multi-junction solar cells. However, techno-economic analysis reveals an order-of-magnitude disparity between the costs for III-V//Si tandem cells and conventional Si solar cells, which can be reduced if research advances in low-cost III-V growth techniques and new substrate materials are successful.« less

  10. Accessing quadratic nonlinearities of metals through metallodielectric photonic-band-gap structures.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Bloemer, Mark J; Scalora, Michael

    2006-09-01

    We study second harmonic generation in a metallodielectric photonic-band-gap structure made of alternating layers of silver and a generic, dispersive, linear, dielectric material. We find that under ideal conditions the conversion efficiency can be more than two orders of magnitude greater than the maximum conversion efficiency achievable in a single layer of silver. We interpret this enhancement in terms of the simultaneous availability of phase matching conditions over the structure and good field penetration into the metal layers. We also give a realistic example of a nine-period, Si3/N4Ag stack, where the backward conversion efficiency is enhanced by a factor of 50 compared to a single layer of silver.

  11. MYBPH inhibits NM IIA assembly via direct interaction with NMHC IIA and reduces cell motility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosono, Yasuyuki; Usukura, Jiro; Yamaguchi, Tomoya

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer MYBPH inhibits NMHC IIA assembly and cell motility. Black-Right-Pointing-Pointer MYBPH interacts to assembly-competent NM IIA. Black-Right-Pointing-Pointer MYBPH inhibits RLC and NMHC IIA, independent components of NM IIA. -- Abstract: Actomyosin filament assembly is a critical step in tumor cell migration. We previously found that myosin binding protein H (MYBPH) is directly transactivated by the TTF-1 lineage-survival oncogene in lung adenocarcinomas and inhibits phosphorylation of the myosin regulatory light chain (RLC) of non-muscle myosin IIA (NM IIA) via direct interaction with Rho kinase 1 (ROCK1). Here, we report that MYBPH also directly interacts with an additional molecule, non-muscle myosinmore » heavy chain IIA (NMHC IIA), which was found to occur between MYBPH and the rod portion of NMHC IIA. MYBPH inhibited NMHC IIA assembly and reduced cell motility. Conversely, siMYBPH-induced increased motility was partially, yet significantly, suppressed by blebbistatin, a non-muscle myosin II inhibitor, while more profound effects were attained by combined treatment with siROCK1 and blebbistatin. Electron microscopy observations showed well-ordered paracrystals of NMHC IIA reflecting an assembled state, which were significantly less frequently observed in the presence of MYBPH. Furthermore, an in vitro sedimentation assay showed that a greater amount of NMHC IIA was in an unassembled state in the presence of MYBPH. Interestingly, treatment with a ROCK inhibitor that impairs transition of NM IIA from an assembly-incompetent to assembly-competent state reduced the interaction between MYBPH and NMHC IIA, suggesting that MYBPH has higher affinity to assembly-competent NM IIA. These results suggest that MYBPH inhibits RLC and NMHC IIA, independent components of NM IIA, and negatively regulates actomyosin organization at 2 distinct steps, resulting in firm inhibition of NM IIA assembly.« less

  12. Towards rhombohedral SiGe epitaxy on 150mm c-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Duzik, Adam J.; Park, Yeonjoon; Choi, Sang H.

    2015-04-01

    Previous work demonstrated for the first time the ability to epitaxially grow uniform single crystal diamond cubic SiGe (111) films on trigonal sapphire (0001) substrates. While SiGe (111) forms two possible crystallographic twins on sapphire (0001), films consisting primarily of one twin were produced on up to 99.95% of the total wafer area. This permits new bandgap engineering possibilities and improved group IV based devices that can exploit the higher carrier mobility in Ge compared to Si. Models are proposed on the epitaxy of such dissimilar crystal structures based on the energetic favorability of crystallographic twins and surface reconstructions. This new method permits Ge (111) on sapphire (0001) epitaxy, rendering Ge an economically feasible replacement for Si in some applications, including higher efficiency Si/Ge/Si quantum well solar cells. Epitaxial SiGe films on sapphire showed a 280% increase in electron mobility and a 500% increase in hole mobility over single crystal Si. Moreover, Ge possesses a wider bandgap for solar spectrum conversion than Si, while the transparent sapphire substrate permits an inverted device structure, increasing the total efficiency to an estimated 30-40%, much higher than traditional Si solar cells. Hall Effect mobility measurements of the Ge layer in the Si/Ge/Si quantum well structure were performed to demonstrate the advantage in carrier mobility over a pure Si solar cell. Another application comes in the use of microelectromechanical devices technology, where high-resistivity Si is currently used as a substrate. Sapphire is a more resistive substrate and offers better performance via lower parasitic capacitance and higher film carrier mobility over the current Si-based technology.

  13. Prediction of 4H-SiC betavoltaic microbattery characteristics based on practical Ni-63 sources.

    PubMed

    Gui, Gui; Zhang, Kan; Blanchard, James P; Ma, Zhenqiang

    2016-01-01

    We have investigated the performance of 4H-SiC betavoltaic microbatteries under exposure to the practical Ni-63 sources using the Monte Carlo method and Synopsys® Medici device simulator. A typical planar p-n junction betavoltaic device with the Ni-63 source of 20% purity on top is modeled in the simulation. The p-n junction structure includes a p+ layer, a p- layer, an n+ layer, and an n- layer. In order to obtain an accurate and valid predication, our simulations consider several practical factors, including isotope impurities, self-absorption, and full beta energy spectra. By simulating the effects of both the p-n junction configuration and the isotope source thickness on the battery output performance, we have achieved the optimal design of the device and maximum energy conversion efficiency. Our simulation results show that the energy conversion efficiency increases as the doping concentration and thickness of the p- layer increase, whereas it is independent of the total depth of the p-n junction. Furthermore, the energy conversion efficiency decreases as the thickness of the practical Ni-63 source increases, because of self-absorption in the isotope source. Therefore, we propose that a p-n junction betavoltaic cell with a thicker and heavily doped p- layer under exposure to a practical Ni-63 source with an appreciable thickness could produce the optimal energy conversion efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. High-Purity Composite Briquette for Direct UMG-Si Production in Arc Furnaces

    NASA Astrophysics Data System (ADS)

    Perruchoud, Raymond; Fischer, Jean-Claude

    2013-12-01

    In metallurgical grade Si (MG-Si), the coal (B) and charcoal (P) contents are on average above 30 ppm as the carbon reduction materials used in the arc furnace are either rich in B or in P. A decrease of both impurities by a factor of 3 using purer raw materials would allow for the direct production of the upgraded metallurgical grade (UMG).This would significantly improve the efficiency of the resulting photovoltaic (PV) cells made with the refined solar grade silicon (SoG-Si) or massively decrease the costs of Si purification by shortening the number of steps needed for reaching B and P contents below 1 ppm requested for the SoG-Si used for the PV cells. A composite C/SiO2 briquette fulfilling the purity targets for the direct production of UMG-Si in the arc furnace was developed. The composite contains several carbon materials with different levels of reactivities and quartz sand. The raw materials aspects, the paste and briquette preparation, as well as the final carbonization step are discussed. The finished briquettes are free of volatiles and are mechanically and thermally very stable, thus, ensuring stable arc furnace charges with minimum losses of dust and SiO gas. Semi-industrial trials including the downstream purification steps for the production of SoG-Si by a metallurgical low-cost route are contemplated.

  15. Chemical Insight Into The Origin of Red and Blue Photoluminescence Arising From Freestanding Silicon Nanocrystals

    PubMed Central

    Dasog, Mita; Yang, Zhenyu; Regli, Sarah; Atkins, Tonya M.; Faramus, Angelique; Singh, Mani P.; Muthuswamy, Elayaraja; Kauzlarich, Susan M.; Tilley, Richard D.; Veinot, Jonathan G. C.

    2013-01-01

    Silicon nanocrystals (Si NCs) are attractive functional materials. They are compatible with standard electronics and communications platforms as well being biocompatible. Numerous methods have been developed to realize size-controlled Si NC synthesis. While these procedures produce Si NCs that appear identical, their optical responses can differ dramatically. Si NCs prepared using high-temperature methods routinely exhibit photoluminescence agreeing with the effective mass approximation (EMA), while those prepared via solution methods exhibit blue emission that is somewhat independent of particle size. Despite many proposals, a definitive explanation for this difference has been elusive for no less than a decade. This apparent dichotomy brings into question our understanding of Si NC properties and potentially limits the scope of their application. The present contribution takes a substantial step forward toward identifying the origin of the blue emission that is not expected based upon EMA predictions. It describes a detailed comparison of Si NCs obtained from three of the most widely cited procedures as well as the conversion of red-emitting Si NCs to blue-emitters upon exposure to nitrogen containing reagents. Analysis of the evidence is consistent with the hypothesis that the presence of trace nitrogen and oxygen even at the ppm level in Si NCs gives rise to the blue emission. PMID:23394574

  16. Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals.

    PubMed

    Dasog, Mita; Yang, Zhenyu; Regli, Sarah; Atkins, Tonya M; Faramus, Angelique; Singh, Mani P; Muthuswamy, Elayaraja; Kauzlarich, Susan M; Tilley, Richard D; Veinot, Jonathan G C

    2013-03-26

    Silicon nanocrystals (Si NCs) are attractive functional materials. They are compatible with standard electronics and communications platforms and are biocompatible. Numerous methods have been developed to realize size-controlled Si NC synthesis. While these procedures produce Si NCs that appear identical, their optical responses can differ dramatically. Si NCs prepared using high-temperature methods routinely exhibit photoluminescence agreeing with the effective mass approximation (EMA), while those prepared via solution methods exhibit blue emission that is somewhat independent of particle size. Despite many proposals, a definitive explanation for this difference has been elusive for no less than a decade. This apparent dichotomy brings into question our understanding of Si NC properties and potentially limits the scope of their application. The present contribution takes a substantial step forward toward identifying the origin of the blue emission that is not expected based upon EMA predictions. It describes a detailed comparison of Si NCs obtained from three of the most widely cited procedures as well as the conversion of red-emitting Si NCs to blue emitters upon exposure to nitrogen-containing reagents. Analysis of the evidence is consistent with the hypothesis that the presence of trace nitrogen and oxygen even at the parts per million level in Si NCs gives rise to the blue emission.

  17. Advanced Cu chemical displacement technique for SiO2-based electrochemical metallization ReRAM application.

    PubMed

    Chin, Fun-Tat; Lin, Yu-Hsien; You, Hsin-Chiang; Yang, Wen-Luh; Lin, Li-Min; Hsiao, Yu-Ping; Ko, Chum-Min; Chao, Tien-Sheng

    2014-01-01

    This study investigates an advanced copper (Cu) chemical displacement technique (CDT) with varying the chemical displacement time for fabricating Cu/SiO2-stacked resistive random-access memory (ReRAM). Compared with other Cu deposition methods, this CDT easily controls the interface of the Cu-insulator, the switching layer thickness, and the immunity of the Cu etching process, assisting the 1-transistor-1-ReRAM (1T-1R) structure and system-on-chip integration. The modulated shape of the Cu-SiO2 interface and the thickness of the SiO2 layer obtained by CDT-based Cu deposition on SiO2 were confirmed by scanning electron microscopy and atomic force microscopy. The CDT-fabricated Cu/SiO2-stacked ReRAM exhibited lower operation voltages and more stable data retention characteristics than the control Cu/SiO2-stacked sample. As the Cu CDT processing time increased, the forming and set voltages of the CDT-fabricated Cu/SiO2-stacked ReRAM decreased. Conversely, decreasing the processing time reduced the on-state current and reset voltage while increasing the endurance switching cycle time. Therefore, the switching characteristics were easily modulated by Cu CDT, yielding a high performance electrochemical metallization (ECM)-type ReRAM.

  18. Mass spectrometric studies of SiO2 deposition in an indirect plasma enhanced LPCVD system

    NASA Technical Reports Server (NTRS)

    Iyer, R.; Lile, D. L.; Mcconica, C. M.

    1993-01-01

    Reaction pathways for the low temperature deposition of SiO2 from silane and indirect plasma-excited oxygen-nitrogen mixtures are proposed based on experimental evidence gained from mass spectrometry in an indirect plasma enhanced chemical vapor deposition chamber. It was observed that about 80-85 percent of the silane was oxidized to byproduct hydrogen and only about 15-20 percent to water. Such conversion levels have led us to interpret that silanol (SiH3OH) could be the precursor for SiO2 film deposition, rather than siloxane /(SiH3)2O/ which has generally been cited in the literature. From mass spectrometry, we have also shown the effects of the plasma, and of mixing small amounts of N2 with the oxygen flow, in increasing the deposition rate of SiO2. Free radical reaction of nitric oxide, synthesized from the reaction of oxygen and nitrogen in the plasma chamber, and an *ncrease in atomic oxygen concentration, are believed to be the reasons for these SiO2 deposition rate increases. Through mass spectrometry we have, in addition, been able to identify products, presumably originating from terminating reactions, among a sequence of chemical reactions proposed for the deposition of SiO2.

  19. Photocatalytic reduction of NO with NH3 using Si-doped TiO2 prepared by hydrothermal method.

    PubMed

    Jin, Ruiben; Wu, Zhongbiao; Liu, Yue; Jiang, Boqiong; Wang, Haiqiang

    2009-01-15

    A series of Si-doped TiO2 (Si/TiO2) photocatalysts supported on woven glass fabric were prepared by hydrothermal method for photocatalytic reduction of NO with NH3. The photocatalytic activity tests were carried out in a continuous Pyrex reactor with the flow rate of 2000mL/min under UV irradiation (luminous flux: 1.1x10(4)lm, irradiated catalyst area: 160cm2). The photocatalysts were characterized by X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectrophotometer, transmission electron microscopy (TEM), photoluminescence (PL) and temperature-programmed desorption (TPD). The experiment results showed that NO conversion on Si/TiO2 at 323K could exceed 60%, which was about 50% higher than that on Degussa P25 and pure TiO2. With the doping of Si, photocatalysts with smaller crystal size, larger surface area and larger pore volume were obtained. It was also found that Ti-O-Si bands were formed on the surface of Si/TiO2 and that the surface hydroxyl concentration was greatly increased. As a result, total acidity and NH3 chemisorption amount were enhanced for Si/TiO2 leading to its photocatalytic activity improvement.

  20. Robustness up to 400°C of the passivation of c-Si by p-type a-Si:H thanks to ion implantation

    NASA Astrophysics Data System (ADS)

    Defresne, A.; Plantevin, O.; Roca i Cabarrocas, Pere

    2016-12-01

    Heterojunction solar cells based on crystalline silicon (c-Si) passivated by hydrogenated amorphous silicon (a-Si:H) thin films are one of the most promising architectures for high energy conversion efficiency. Indeed, a-Si:H thin films can passivate both p-type and n-type wafers and can be deposited at low temperature (<200°C) using PECVD. However, such passivation layers, in particular p-type a-Si:H, show a dramatic degradation in passivation quality above 200°C. Yet, annealing at 300 - 400°C the TCO layer and metallic contacts is highly desirable to reduce the contact resistance as well as the TCO optical absorption. In this work, we show that as expected, ion implantation (5 - 30 keV) introduces defects at the c-Si/a-Si:H interface which strongly degrade the effective lifetime, down to a few micro-seconds. However, the passivation quality can be restored and lifetime values can be improved up to 2 ms over the initial value with annealing. We show here that effective lifetimes above 1 ms can be maintained up to 380°C, opening up the possibility for higher process temperatures in silicon heterojunction device fabrication.

  1. Proof of concept of an imaging system demonstrator for PET applications with SiPM

    NASA Astrophysics Data System (ADS)

    Morrocchi, Matteo; Marcatili, Sara; Belcari, Nicola; Giuseppina Bisogni, Maria; Collazuol, Gianmaria; Ambrosi, Giovanni; Santoni, Cristiano; Corsi, Francesco; Foresta, Maurizio; Marzocca, Cristoforo; Matarrese, Gianvito; Sportelli, Giancarlo; Guerra, Pedro; Santos, Andres; Del Guerra, Alberto

    2013-08-01

    A PET imaging system demonstrator based on LYSO crystal arrays coupled to SiPM matrices is under construction at the University and INFN of Pisa. Two SiPM matrices, composed of 8×8 SiPM pixels, and 1,5 mm pitch, have been coupled one to one to a LYSO crystals array and read out by a custom electronics system. front-end ASICs were used to read 8 channels of each matrix. Data from each front-end were multiplexed and sent to a DAQ board for the digital conversion; a motherboard collects the data and communicates with a host computer through a USB port for the storage and off-line data processing. In this paper we show the first preliminary tomographic image of a point-like radioactive source acquired with part of the two detection heads in time coincidence.

  2. Graphene/Si solar cells employing triethylenetetramine dopant and polymethylmethacrylate antireflection layer

    NASA Astrophysics Data System (ADS)

    Shin, Dong Hee; Jang, Chan Wook; Lee, Ha Seung; Seo, Sang Woo; Kim, Sung; Choi, Suk-Ho

    2018-03-01

    We report the use of triethylenetetramine (TETA) as a dopant of graphene transparent conducting electrodes (TCEs) for Si heterojunction solar cells. The molar concentration (nD) of TETA is varied from 0.05 to 0.3 mM to optimize the graphene TCEs. The TETA-doped graphene/Si Schottky solar cells show a maximum power-conversion efficiency (PCE) of 4.32% at nD = 0.2 mM, resulting from the enhanced electrical and optical properties, as proved from the nD-dependent behaviors of sheet resistance, transmittance, reflectance, series resistance, and external quantum efficiency. In addition, polymethylmethacrylate is employed as an antireflection layer to enhance the light-trapping effect on graphene/Si solar cells, resulting in further enhancement of the maximum PCE from 4.32 to 5.48%. The loss of the PCE is only within 2% of its original value during 10 days in air.

  3. Fe implantation effect in the 6H-SiC semiconductor investigated by Mössbauer spectrometry

    NASA Astrophysics Data System (ADS)

    Diallo, M. L.; Diallo, L.; Fnidiki, A.; Lechevallier, L.; Cuvilly, F.; Blum, I.; Viret, M.; Marteau, M.; Eyidi, D.; Juraszek, J.; Declémy, A.

    2017-08-01

    P-doped 6H-SiC substrates were implanted with 57Fe ions at 380 °C or 550 °C to produce a diluted magnetic semiconductor with an Fe homogeneous concentration of about 100 nm thickness. The magnetic properties were studied with 57Fe Conversion Electron Mössbauer Spectrometry at room temperature (RT). Results obtained by this technique on annealed samples prove that ferromagnetism in 57Fe-implanted SiC for Fe concentrations close to 2% and 4% is mostly due to Fe atoms diluted in the matrix. In contrast, for Fe concentrations close to 6%, it also comes from Fe in magnetic phase nano-clusters. This study allows quantifying the Fe amount in the interstitial and substitutional sites and the nanoparticles and shows that the majority of the diluted Fe atoms are substituted on Si sites inducing ferromagnetism up to RT.

  4. Final states in Si and GaAs via RF μSR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kreitzman, S. R.; Pfiz, T.; Sun-Mack, S.; Riseman, T. M.; Brewer, J. H.; Williams, D. Ll.; Estle, T. L.

    1991-02-01

    The ionization of muonium centers in Si and GaAs have been studied using radio frequency (RF) resonant techniques. In Si all three muonic centers are detectable by RF. No evidence was found for delayed Mu and Mu* states at any temperature. However, our results on the diamagnetic final state (μ{f/+}) show that it is composed of prompt fractions (as seen by conventional μSR) and delayed fractions arising from the ionization of Mu* and Mu. We observe a full μ{f/+} fraction at 317 K when the Mu relaxation rate is above 10 μs-1. GaAs differs from the situation in Si in that we observed only a partial conversion of Mu* and Mu to a μ+ final state up to 310 K in spite of the fact that the transverse field relaxation rates become very high at 150 and 250 K respectively.

  5. Progress in amorphous silicon based large-area multijunction modules

    NASA Astrophysics Data System (ADS)

    Carlson, D. E.; Arya, R. R.; Bennett, M.; Chen, L.-F.; Jansen, K.; Li, Y.-M.; Maley, N.; Morris, J.; Newton, J.; Oswald, R. S.; Rajan, K.; Vezzetti, D.; Willing, F.; Yang, L.

    1996-01-01

    Solarex, a business unit of Amoco/Enron Solar, is scaling up its a-Si:H/a-SiGe:H tandem device technology for the production of 8 ft2 modules. The current R&D effort is focused on improving the performance, reliability and cost-effectiveness of the tandem junction technology by systematically optimizing the materials and interfaces in small-area single- and tandem junction cells. Average initial conversion efficiencies of 8.8% at 85% yield have been obtained in pilot production runs with 4 ft2 tandem modules.

  6. 16 CFR 500.19 - Conversion of SI metric quantities to inch/pound quantities and inch/pound quantities to SI...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... centimeter=0.393 701 in. 1 yard=0.9144m* 1 meter=3.280 84 ft. Area 1 square inch=6.4516 cm2* 1 square centimeter=0.155 000 in2. 1 square foot=929.0304 cm2* 1 square decimeter=0.107 639 ft2. =9.290 304 dm2 1 square meter=10.763 9 ft2. 1 square yard=0.836 127 m2 Volume or Capacity 1 cubic inch=16.3871 cm3 1 cubic...

  7. 16 CFR 500.19 - Conversion of SI metric quantities to inch/pound quantities and inch/pound quantities to SI...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... centimeter=0.393 701 in. 1 yard=0.9144m* 1 meter=3.280 84 ft. Area 1 square inch=6.4516 cm2* 1 square centimeter=0.155 000 in2. 1 square foot=929.0304 cm2* 1 square decimeter=0.107 639 ft2. =9.290 304 dm2 1 square meter=10.763 9 ft2. 1 square yard=0.836 127 m2 Volume or Capacity 1 cubic inch=16.3871 cm3 1 cubic...

  8. 16 CFR 500.19 - Conversion of SI metric quantities to inch/pound quantities and inch/pound quantities to SI...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... centimeter=0.393 701 in. 1 yard=0.9144m* 1 meter=3.280 84 ft. Area 1 square inch=6.4516 cm2* 1 square centimeter=0.155 000 in2. 1 square foot=929.0304 cm2* 1 square decimeter=0.107 639 ft2. =9.290 304 dm2 1 square meter=10.763 9 ft2. 1 square yard=0.836 127 m2 Volume or Capacity 1 cubic inch=16.3871 cm3 1 cubic...

  9. 16 CFR 500.19 - Conversion of SI metric quantities to inch/pound quantities and inch/pound quantities to SI...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... centimeter=0.393 701 in. 1 yard=0.9144m* 1 meter=3.280 84 ft. Area 1 square inch=6.4516 cm2* 1 square centimeter=0.155 000 in2. 1 square foot=929.0304 cm2* 1 square decimeter=0.107 639 ft2. =9.290 304 dm2 1 square meter=10.763 9 ft2. 1 square yard=0.836 127 m2 Volume or Capacity 1 cubic inch=16.3871 cm3 1 cubic...

  10. EBSD characterization of the growth mechanism of SiC synthesized via direct microwave heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jigang, E-mail: wangjigang@seu.edu.cn; Xizang Key Laboratory of Optical Information Processing and Visualization Technology, School of Information Engineering, Xizang Minzu University, Xianyang 712082; Huang, Shan

    2016-04-15

    Well-crystallized 3C-silicon carbide (SiC) grains/nanowires have been synthesized rapidly and conveniently via direct microwave heating, simply using silicon dioxide powders and artificial graphite as raw materials. The comprehensive characterizations have been employed to investigate the micro-structure of the obtained 3C-SiC products. Results indicated that, different from the classic screw dislocation growth mechanism, the 3C-SiC grains/nanowires synthesized via high-energy vacuum microwave irradiation were achieved through the two-dimension nucleation and laminar growth mechanism. Especially, the electron backscattered diffraction (EBSD) was employed to characterize the crystal planes of the as-grown SiC products. The calculated Euler angles suggested that the fastest-growing crystal planes (211)more » were overlapped gradually. Through the formation of the (421) transformation plane, (211) finally evolved to (220) which existed as the side face of SiC grains. The most stable crystal planes (111) became the regular hexagonal planes in the end, which could be explained by the Bravais rule. The characterization results of EBSD provided important experimental information for the evolution of crystal planes. - Graphical abstract: The formation of 3C-SiC prepared via direct microwave heating follows the mechanism of two-dimension nucleation and laminar growth. - Highlights: • 3C−SiC grains/nanowires were obtained via direct microwave heating. • 3C−SiC followed the mechanism of two-dimension nucleation and laminar growth. • In-situ EBSD analysis provided the experimental evidences of the growth.« less

  11. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon.

    PubMed

    Chang, Lin; Pfeiffer, Martin H P; Volet, Nicolas; Zervas, Michael; Peters, Jon D; Manganelli, Costanza L; Stanton, Eric J; Li, Yifei; Kippenberg, Tobias J; Bowers, John E

    2017-02-15

    An ideal photonic integrated circuit for nonlinear photonic applications requires high optical nonlinearities and low loss. This work demonstrates a heterogeneous platform by bonding lithium niobate (LN) thin films onto a silicon nitride (Si3N4) waveguide layer on silicon. It not only provides large second- and third-order nonlinear coefficients, but also shows low propagation loss in both the Si3N4 and the LN-Si3N4 waveguides. The tapers enable low-loss-mode transitions between these two waveguides. This platform is essential for various on-chip applications, e.g., modulators, frequency conversions, and quantum communications.

  12. A High-Efficiency Si Nanowire Array/Perovskite Hybrid Solar Cell.

    PubMed

    Yan, Xin; Zhang, Chen; Wang, Jiamin; Zhang, Xia; Ren, Xiaomin

    2017-12-01

    A low-cost Si nanowire array/perovskite hybrid solar cell is proposed and simulated. The solar cell consists of a Si p-i-n nanowire array filled with CH 3 NH 3 PbI 3 , in which both the nanowires and perovskite absorb the incident light while the nanowires act as the channels for transporting photo-generated electrons and holes. The hybrid structure has a high absorption efficiency in a broad wavelength range of 300~800 nm. A large short-circuit current density of 28.8 mA/cm 2 and remarkable conversion efficiency of 13.3% are obtained at a thin absorber thickness of 1.6 μm, which are comparable to the best results of III-V nanowire solar cells.

  13. Ultra high voltage MOS controlled 4H-SiC power switching devices

    NASA Astrophysics Data System (ADS)

    Ryu, S.; Capell, C.; Van Brunt, E.; Jonas, C.; O'Loughlin, M.; Clayton, J.; Lam, K.; Pala, V.; Hull, B.; Lemma, Y.; Lichtenwalner, D.; Zhang, Q. J.; Richmond, J.; Butler, P.; Grider, D.; Casady, J.; Allen, S.; Palmour, J.; Hinojosa, M.; Tipton, C. W.; Scozzie, C.

    2015-08-01

    Ultra high voltage (UHV, >15 kV) 4H-silicon carbide (SiC) power devices have the potential to significantly improve the system performance, reliability, and cost of energy conversion systems by providing reduced part count, simplified circuit topology, and reduced switching losses. In this paper, we compare the two MOS based UHV 4H-SiC power switching devices; 15 kV 4H-SiC MOSFETs and 15 kV 4H-SiC n-IGBTs. The 15 kV 4H-SiC MOSFET shows a specific on-resistance of 204 mΩ cm2 at 25 °C, which increased to 570 mΩ cm2 at 150 °C. The 15 kV 4H-SiC MOSFET provides low, temperature-independent, switching losses which makes the device more attractive for applications that require higher switching frequencies. The 15 kV 4H-SiC n-IGBT shows a significantly lower forward voltage drop (VF), along with reasonable switching performance, which make it a very attractive device for high voltage applications with lower switching frequency requirements. An electrothermal analysis showed that the 15 kV 4H-SiC n-IGBT outperforms the 15 kV 4H-SiC MOSFET for applications with switching frequencies of less than 5 kHz. It was also shown that the use of a carrier storage layer (CSL) can significantly improve the conduction performance of the 15 kV 4H-SiC n-IGBTs.

  14. Fabrication of n-type Si nanostructures by direct nanoimprinting with liquid-Si ink

    NASA Astrophysics Data System (ADS)

    Takagishi, Hideyuki; Masuda, Takashi; Yamazaki, Ken; Shimoda, Tatsuya

    2018-01-01

    Nanostructures of n-type amorphous silicon (a-Si) and polycrystalline silicon (poly-Si) with a height of 270 nm and line widths of 110-165 nm were fabricated directly onto a substrate through a simple imprinting process that does not require vacuum conditions or photolithography. The n-type Liquid-Si ink was synthesized via photopolymerization of cyclopentasilane (Si5H10) and white phosphorus (P4). By raising the temperature from 160 °C to 200 °C during the nanoimprinting process, well-defined angular patterns were fabricated without any cracking, peeling, or deflections. After the nanoimprinting process, a-Si was produced by heating the nanostructures at 400°C-700 °C, and poly-Si was produced by heating at 800 °C. The dopant P diffuses uniformly in the Si films, and its concentration can be controlled by varying the concentration of P4 in the ink. The specific resistance of the n-type poly-Si pattern was 7.0 × 10-3Ω ṡ cm, which is comparable to the specific resistance of flat n-type poly-Si films.

  15. Electron transport in nanocrystalline SiC films obtained by direct ion deposition

    NASA Astrophysics Data System (ADS)

    Kozlovskyi, A.; Semenov, A.; Skorik, S.

    2016-12-01

    Electrical conductivity of nanocrystalline SiC films obtained by direct ion deposition was investigated within the temperature interval from 2 to 770 K. It were investigated the samples of films with 3С-SiC polytype structure and the heteropolytype films formed by layers of different polytypes SiC (3C-SiC/21R-SiC, 21R-SiC/27R-SiC, 3C-SiC/15R-SiC). The films had n-type conductivity that ensured a small excess of silicon ions. The thermally activated character of electron transport in the 3С-SiC polytype films was established. In the heteropolytype films the temperature dependence of the electrical resistance was described by the relation R(T) = R0 × exp[-kT/E0]. It was shown that the charge transport mechanism in the heteropolytype samples is electron tunneling through potential barriers formed by the conduction band offset in the contact region of the heterojunction. Tunnel charge transport occurs due to the presence of discrete energy states in the forbidden band caused the dimensional quantization.

  16. Band gap and electronic structure of MgSiN2

    NASA Astrophysics Data System (ADS)

    Quirk, J. B.; Râsander, M.; McGilvery, C. M.; Palgrave, R.; Moram, M. A.

    2014-09-01

    Density functional theory calculations and electron energy loss spectroscopy indicate that the electronic structure of ordered orthorhombic MgSiN2 is similar to that of wurtzite AlN. A band gap of 5.7 eV was calculated for both MgSiN2 (indirect) and AlN (direct) using the Heyd-Scuseria-Ernzerhof approximation. Correction with respect to the experimental room-temperature band gap of AlN indicates that the true band gap of MgSiN2 is 6.2 eV. MgSiN2 has an additional direct gap of 6.3 eV at the Γ point.

  17. Ultrasound-Targeted Microbubble Destruction to Deliver siRNA Cancer Therapy

    PubMed Central

    Carson, Andrew R; McTiernan, Charles F; Lavery, Linda; Grata, Michelle; Leng, Xiaoping; Wang, Jianjun; Chen, Xucai; Villanueva, Flordeliza S

    2012-01-01

    Microbubble contrast agents can specifically deliver nucleic acids to target tissues when exposed to ultrasound treatment parameters that mediate microbubble destruction. In this study, we evaluated whether microbubbles and ultrasound targeted microbubble destruction (UTMD) could be used to enhance delivery of EGFR-directed small inhibitory RNA (siRNA) to murine squamous cell carcinomas. Custom designed microbubbles efficiently bound siRNA and mediated RNAse protection. UTMD-mediated delivery of microbubbles loaded with EGFR-directed siRNA to murine squamous carcinoma cells in vitro reduced EGFR expression and EGF-dependent growth, relative to delivery of control siRNA. Similarly, serial UTMD-mediated delivery of EGFR siRNA to squamous cell carcinoma in vivo decreased EGFR expression and increased tumor doubling times, relative to controls receiving EGFR siRNA loaded microbubbles but not ultrasound or control siRNA loaded microbubbles and UTMD. Taken together, our results offer a preclinical proof of concept for customized microbubbles and UTMD to deliver gene-targeted siRNA for cancer therapy. PMID:23010078

  18. Eu(2+)-Activated Phase-Pure Oxonitridosilicate Phosphor in a Ba-Si-O-N System via Facile Silicate-Assisted Routes Designed by First-Principles Thermodynamic Simulation.

    PubMed

    Yun, Young Jun; Kim, Jin Kyu; Ju, Ji Young; Choi, Seul Ki; Park, Woon Ik; Jung, Ha-Kyun; Kim, Yongseon; Choi, Sungho

    2016-09-06

    Eu(2+)-activated single phase Ba(2+)-oxonitridosilicate phosphors were prepared under a mild synthetic condition via silicate precursors, and their luminescent properties were investigated. Both the preferred oxonitridosilicate formation as for the available host compounds and thermodynamic stability within the Ba-Si-O-N system were elucidated in detail by the theoretical simulation based on the first-principles density functional theory. Those results can visualize the optimum synthetic conditions for Eu(2+)-activated highly luminescent Ba(2+)-oxonitridosilicates, especially Ba3Si6O12N2, as promising conversion phosphors for white LEDs, including Ba3Si6O9N4 and BaSi2O2N2 phases. To prove the simulated design rule, we synthesized the Ba3Si6O12N2:Eu(2+) phosphor using various silicate precursors, Ba2Si4O10, Ba2Si3O8, and BaSiO3, in a carbothermal reduction ambient and finally succeeded in obtaining a phase of pure highly luminescent oxonitridosilicate phosphor without using any solid-state nitride addition and/or high pressure synthetic procedures. Our study provides useful guidelines for robust synthetic procedures for developing thermally stable rare-earth-ion activated oxonitridosilicate phosphors and an established simulation method that can be effectively applied to other multigas systems.

  19. Monolithic Ge-on-Si lasers for large-scale electronic-photonic integration

    NASA Astrophysics Data System (ADS)

    Liu, Jifeng; Kimerling, Lionel C.; Michel, Jurgen

    2012-09-01

    A silicon-based monolithic laser source has long been envisioned as a key enabling component for large-scale electronic-photonic integration in future generations of high-performance computation and communication systems. In this paper we present a comprehensive review on the development of monolithic Ge-on-Si lasers for this application. Starting with a historical review of light emission from the direct gap transition of Ge dating back to the 1960s, we focus on the rapid progress in band-engineered Ge-on-Si lasers in the past five years after a nearly 30-year gap in this research field. Ge has become an interesting candidate for active devices in Si photonics in the past decade due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In 2007, we proposed combing tensile strain with n-type doping to compensate the energy difference between the direct and indirect band gap of Ge, thereby achieving net optical gain for CMOS-compatible diode lasers. Here we systematically present theoretical modeling, material growth methods, spontaneous emission, optical gain, and lasing under optical and electrical pumping from band-engineered Ge-on-Si, culminated by recently demonstrated electrically pumped Ge-on-Si lasers with >1 mW output in the communication wavelength window of 1500-1700 nm. The broad gain spectrum enables on-chip wavelength division multiplexing. A unique feature of band-engineered pseudo-direct gap Ge light emitters is that the emission intensity increases with temperature, exactly opposite to conventional direct gap semiconductor light-emitting devices. This extraordinary thermal anti-quenching behavior greatly facilitates monolithic integration on Si microchips where temperatures can reach up to 80 °C during operation. The same band-engineering approach can be extended to other pseudo-direct gap semiconductors, allowing us to achieve efficient light emission at wavelengths previously considered inaccessible.

  20. Characterization of β-FeSi II films as a novel solar cell semiconductor

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Yasuhiro; Ootsuka, Teruhisa; Otogawa, Naotaka; Abe, Hironori; Nakayama, Yasuhiko; Makita, Yunosuke

    2006-04-01

    β-FeSi II is an attractive semiconductor owing to its extremely high optical absorption coefficient (α>10 5 cm -1), and is expected to be an ideal semiconductor as a thin film solar cell. For solar cell use, to prepare high quality β-FeSi II films holding a desired Fe/Si ratio, we chose two methods; one is a molecular beam epitaxy (MBE) method in which Fe and Si were evaporated by using normal Knudsen cells, and occasionally by e-gun for Si. Another one is the facing-target sputtering (FTS) method in which deposition of β-FeSi II films is made on Si substrate that is placed out of gas plasma cloud. In both methods to obtain β-FeSi II films with a tuned Fe/Si ratio, Fe/Si super lattice was fabricated by varying Fe and Si deposition thickness. Results showed significant in- and out-diffusion of host Fe and Si atoms at the interface of Si substrates into β-FeSi II layers. It was experimentally demonstrated that this diffusion can be suppressed by the formation of template layer between the epitaxial β-FeSi II layer and the substrate. The template layer was prepared by reactive deposition epitaxy (RDE) method. By fixing the Fe/Si ratio as precisely as possible at 1/2, systematic doping experiments of acceptor (Ga and B) and donor (As) impurities into β-FeSi II were carried out. Systematical changes of electron and hole carrier concentration in these samples along variation of incorporated impurities were observed through Hall effect measurements. Residual carrier concentrations can be ascribed to not only the remaining undesired impurities contained in source materials but also to a variety of point defects mainly produced by the uncontrolled stoichiometry. A preliminary structure of n-β-FeSi II/p-Si used as a solar cell indicated a conversion efficiency of 3.7%.

  1. Solvent-Free Self-Assembly to the Synthesis of Nitrogen-Doped Ordered Mesoporous Polymers for Highly Selective Capture and Conversion of CO2.

    PubMed

    Liu, Fujian; Huang, Kuan; Wu, Qin; Dai, Sheng

    2017-07-01

    A solvent-free induced self-assembly technology for the synthesis of nitrogen-doped ordered mesoporous polymers (N-OMPs) is developed, which is realized by mixing polymer precursors with block copolymer templates, curing at 140-180 °C, and calcination to remove the templates. This synthetic strategy represents a significant advancement in the preparation of functional porous polymers through a fast and scalable yet environmentally friendly route, since no solvents or catalysts are used. The synthesized N-OMPs and their derived catalysts are found to exhibit competitive CO 2 capacities (0.67-0.91 mmol g -1 at 25 °C and 0.15 bar), extraordinary CO 2 /N 2 selectivities (98-205 at 25 °C), and excellent activities for catalyzing conversion of CO 2 into cyclic carbonate (conversion >95% at 100 °C and 1.2 MPa for 1.5 h). The solvent-free technology developed in this work can also be extended to the synthesis of N-OMP/SiO 2 nanocomposites, mesoporous SiO 2 , crystalline mesoporous TiO 2 , and TiPO, demonstrating its wide applicability in porous material synthesis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Frequency Up-Conversion Photon-Type Terahertz Imager.

    PubMed

    Fu, Z L; Gu, L L; Guo, X G; Tan, Z Y; Wan, W J; Zhou, T; Shao, D X; Zhang, R; Cao, J C

    2016-05-05

    Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices.

  3. Frequency Up-Conversion Photon-Type Terahertz Imager

    PubMed Central

    Fu, Z. L.; Gu, L. L.; Guo, X. G.; Tan, Z. Y.; Wan, W. J.; Zhou, T.; Shao, D. X.; Zhang, R.; Cao, J. C.

    2016-01-01

    Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices. PMID:27147281

  4. Direct ink writing of silica-bonded calcite scaffolds from preceramic polymers and fillers.

    PubMed

    Fiocco, L; Elsayed, H; Badocco, D; Pastore, P; Bellucci, D; Cannillo, V; Detsch, R; Boccaccini, A R; Bernardo, E

    2017-05-11

    Silica-bonded calcite scaffolds have been successfully 3D-printed by direct ink writing, starting from a paste comprising a silicone polymer and calcite powders, calibrated in order to match a SiO 2 /CaCO 3 weight balance of 35/65. The scaffolds, fabricated with two slightly different geometries, were first cross-linked at 350 °C, then fired at 600 °C, in air. The low temperature adopted for the conversion of the polymer into amorphous silica, by thermo-oxidative decomposition, prevented the decomposition of calcite. The obtained silica-bonded calcite scaffolds featured open porosity of about 56%-64% and compressive strength of about 2.9-5.5 MPa, depending on the geometry. Dissolution studies in SBF and preliminary cell culture tests, with bone marrow stromal cells, confirmed the in vitro bioactivity of the scaffolds and their biocompatibility. The seeded cells were found to be alive, well anchored and spread on the samples surface. The new silica-calcite composites are expected to be suitable candidates as tissue-engineering 3D scaffolds for regeneration of cancellous bone defects.

  5. Si--Au Schottky barrier nuclear battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tse, Anthony N.

    1972-11-01

    A long-life, high-power-density, high-reliability, compact microwatt battery is needed in many applications. In the field of medicine, for example, such a battery could power an artificial pacemaker which would greatly extend the residence time of the device. Various alternatives are analyzed and discussed. Betavoltaic conversion systems with Si-Au Schottky barrier cells coupled with 147Pm metal foil were selected for investigation. Characterization experiments were performed to obtain optimized silicon resistivity and promethium metal foil thickness. Radiation dose rates were measured and the safety aspects of the battery were analyzed. A prototype battery was assembled and tested. The economics of the batterymore » were demonstrated for special applications. It is concluded that a microwatt nuclear battery can be built with a conversion efficiency of 1 to 2%, a power density of 60 to 300 pW/cm 3 depending on the power level, and a useful life of 5 to 10 years. Further research areas are recommended.« less

  6. Influence of basal-plane dislocation structures on expansion of single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes

    NASA Astrophysics Data System (ADS)

    Hayashi, Shohei; Yamashita, Tamotsu; Senzaki, Junji; Miyazato, Masaki; Ryo, Mina; Miyajima, Masaaki; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime

    2018-04-01

    The origin of expanded single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes was investigated by the stress-current test. At a stress-current density lower than 25 A cm-2, triangular stacking faults were formed from basal-plane dislocations in the epitaxial layer. At a stress-current density higher than 350 A cm-2, both triangular and long-zone-shaped stacking faults were formed from basal-plane dislocations that converted into threading edge dislocations near the interface between the epitaxial layer and the substrate. In addition, the conversion depth of basal-plane dislocations that expanded into the stacking fault was inside the substrate deeper than the interface. These results indicate that the conversion depth of basal-plane dislocations strongly affects the threshold stress-current density at which the expansion of stacking faults occurs.

  7. Selective emitter solar cell formation by NH3 plasma nitridation and single diffusion

    NASA Astrophysics Data System (ADS)

    Wu, Yung-Hsien; Chen, Lun-Lun; Wu, Jia-Rong; Wu, Min-Lin

    2010-01-01

    A new and simple process for fabricating a selective emitter solar cell has been proposed. Lightly and heavily doped emitters could be concurrently formed after a single POCl3 diffusion step through the selective formation of SiNx, which serves as the diffusion barrier and can be grown by NH3 plasma nitridation of the Si surface. The desired phosphorus depth profile for the lightly and heavily doped region verifies the eligibility of this process. From the electrical characterization, the selective emitter solar cell fabricated by this process manifests a higher absolute conversion efficiency than a conventional one by 0.5%. It is the enhanced response to the short wavelength light and the reduced surface recombination that causes the considerable improvement in conversion efficiency which is beneficial to further hold the competitive advantage for solar cell manufacturers. Most importantly, the proposed process can be fully integrated into the conventional solar cell process in a mass-production laboratory.

  8. Applications of AMPS-1D for solar cell simulation

    NASA Astrophysics Data System (ADS)

    Zhu, Hong; Kalkan, Ali Kaan; Hou, Jingya; Fonash, Stephen J.

    1999-03-01

    The AMPS-1D PC computer program is now used by over 70 groups world-wide for detector and solar cell analysis. It has proved to be a very powerful tool in understanding device operation and physics for single crystal, poly-crystalline and amorphous structures. For example, AMPS-1D has been successful in explaining the "red kink" [1] and the "transient effect" in CdS/CIGS poly-crystalline solar cells. It has been used to show that thin film poly-Si structures, with reasonable light trapping, are capable of competitive solar cell conversion efficiencies. In the case of a-Si:H structures, it has been used, for example, to settle the discrepancies in bandgap measurement, to predict the effective QE>1 phenomenon later seen in these materials [2], to determine the relative roles of interface and bulk properties, and to point the direction toward 16% triple junction structures. In general AMPS-1D is used for cell and detector design, material parameter sensitivity studies, and parameter extraction. Recently we have shown that it can be used to determine optimum structure and light and voltage biasing conditions in the material parameter extraction function. Information on AMPS can be found at www.psu.edu/dept/AMPS/amps_web/AMPS.html and at other web sites set up by user groups.

  9. A comparative study on the direct deposition of μc-Si:H and plasma-induced recrystallization of a-Si:H: Insight into Si crystallization in a high-density plasma

    NASA Astrophysics Data System (ADS)

    Zhou, H. P.; Xu, M.; Xu, S.; Feng, Y. Y.; Xu, L. X.; Wei, D. Y.; Xiao, S. Q.

    2018-03-01

    Deep insight into the crystallization mechanism of amorphous silicon is of theoretical and technological significance for the preparation of high-quality microcrystalline/polycrystalline silicon. In this work, we intensively compare the present two plasma-involved routes, i.e., the direct deposition and recrystallization of precursor amorphous silicon (a-Si) films, to fabricate microcrystalline silicon. Both the directly deposited and recrystallized samples show multi-layered structures as revealed by electronic microscopy. High-density hydrogen plasma involved recrystallization process, which is mediated by the hydrogen diffusion into the deep region of the precursor a-Si film, displays significantly different nucleation configuration, interface properties, and crystallite shape. The underlying mechanisms are analyzed in combination with the interplay of high-density plasma and growing or treated surface.

  10. MAX phase – Alumina composites via elemental and exchange reactions in the Ti{sub n+1}AC{sub n} systems (A=Al, Si, Ga, Ge, In and Sn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuskelly, Dylan, E-mail: dylan.cuskelly@uon.edu.au; Richards, Erin; Kisi, Erich, E-mail: Erich.Kisi@newcastle.edu.au

    2016-05-15

    Extension of the aluminothermal exchange reaction synthesis of M{sub n+1}AX{sub n} phases to systems where the element ‘A’ is not the reducing agent was investigated in systems TiO{sub 2}–A–Al–C for A=Al, Si, Ga, Ge, In and Sn as well as Cr{sub 2}O{sub 3}–Ga–Al–C. MAX phase-Al{sub 2}O{sub 3} composites were made in all systems except those with A=Ga or In. The effectiveness of conversion to MAX phases was generally in the range 63–96% without optimisation of starting ratios. Optimisation in the Ti–Si–C system gave a MAX phase component with >98% Ti{sub 3}SiC{sub 2}. - Graphical abstract: A range of Ti{sub n+1}AX{submore » n} phases with different A elements were synthesised directly from the M oxide via exchange reactions. The process has now been shown to be general in all the systems marked in green in the table. - Highlights: • Ti{sub n+1}AC{sub n} phases were produced via a single step exchange reaction. • 3 MAX phase systems were successful via this method for the first time. • Cr{sub 2}GeC was also able to be produced via an exchange reaction. • The interconversion reaction in MAX phases is more general than previously thought.« less

  11. Nanotubes within transition metal silicate hollow spheres: Facile preparation and superior lithium storage performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fan; An, Yongling; Zhai, Wei

    2015-10-15

    Highlights: • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were successfully prepared by a facile hydrothermal method using SiO{sub 2} nanosphere. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were tested as anode materials for lithium batteries. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} delivered superior electrochemical performance. • The lithium storage mechanism is probe via cyclic voltammetry and XPS. - Abstract: A series of transition metal silicate hollow spheres, including cobalt silicate (Co{sub 2}SiO{sub 4}), manganese silicate (MnSiO{sub 3}) and copper silicate (CuSiO{sub 3}.2H{sub 2}O, CuSiO{sub 3} as abbreviationmore » in the text) were prepared via a simple and economic hydrothermal method by using silica spheres as chemical template. Time-dependent experiments confirmed that the resultants formed a novel type of hierarchical structure, hollow spheres assembled by numerous one-dimensional (1D) nanotubes building blocks. For the first time, the transition metal silicate hollow spheres were characterized as novel anode materials of Li-ion battery, which presented superior lithium storage capacities, cycle performance and rate performance. The 1D nanotubes assembly and hollow interior endow this kind of material facilitate fast lithium ion and electron transport and accommodate the big volume change during the conversion reactions. Our study shows that low-cost transition metal silicate with rationally designed nanostructures can be promising anode materials for high capacity lithium-ion battery.« less

  12. Direct conversion technology

    NASA Technical Reports Server (NTRS)

    Massier, Paul F.; Bankston, C. P.; Williams, R.; Underwood, M.; Jeffries-Nakamura, B.; Fabris, G.

    1989-01-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal Magnetohydrodynamic Electrical Generator (LMMHD) for the period January 1, 1989 through December 31, 1989. Research on these concepts was initiated during October 1987. Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (nitinol heat engines); and also, more complete discussions of AMTEC and LMMHD systems.

  13. Unidirectional endotaxial cobalt di-silicide nanowires on Si(110) substrates

    NASA Astrophysics Data System (ADS)

    Mahato, J. C.; Das, Debolina; Banu, Nasrin; Satpati, Biswarup; Dev, B. N.

    2017-10-01

    Self-organized growth of well-ordered endotaxial silicide nanowires (NWs) on clean Si(110) surfaces has been investigated by in situ scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). Co deposition on clean Si(110) reconstructed surfaces at ∼600 °C produces unidirectional CoSi2 NWs by reaction of cobalt with the hot silicon substrate. STM investigations reveal four major types of distinct NWs, all growing along the [-110] in-plane direction except one type growing along the in-plane [-113] direction. There are also some nanodots. The cross-sectional TEM measurements show that the unidirectional NWs are of two types—flat-top and ridged. The NWs grow not only on the substrate but also into the substrate. CoSi2 in flat top NWs are in the same crystallographic orientation as the substrate Si and the buried interfaces between CoSi2 and Si are A-type. In the ridged NWs CoSi2 and Si are in different crystallographic orientations and the interfaces are B-type. The ridged NWs are in general wider and grow deeper into the substrate.

  14. Unidirectional endotaxial cobalt di-silicide nanowires on Si(110) substrates.

    PubMed

    Mahato, J C; Das, Debolina; Banu, Nasrin; Satpati, Biswarup; Dev, B N

    2017-10-20

    Self-organized growth of well-ordered endotaxial silicide nanowires (NWs) on clean Si(110) surfaces has been investigated by in situ scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). Co deposition on clean Si(110) reconstructed surfaces at ∼600 °C produces unidirectional CoSi 2 NWs by reaction of cobalt with the hot silicon substrate. STM investigations reveal four major types of distinct NWs, all growing along the [-110] in-plane direction except one type growing along the in-plane [-113] direction. There are also some nanodots. The cross-sectional TEM measurements show that the unidirectional NWs are of two types-flat-top and ridged. The NWs grow not only on the substrate but also into the substrate. CoSi 2 in flat top NWs are in the same crystallographic orientation as the substrate Si and the buried interfaces between CoSi 2 and Si are A-type. In the ridged NWs CoSi 2 and Si are in different crystallographic orientations and the interfaces are B-type. The ridged NWs are in general wider and grow deeper into the substrate.

  15. WE-G-18C-06: Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J; School of Information Science and Engineering, Shandong University, Jinan, Shandong; Cai, J

    2014-06-15

    Purpose: To investigate whether diaphragm motion is a good surrogate for liver tumor motion by comparing their motion trajectories obtained from cine-MRI. Methods: Fourteen patients with hepatocellular carcinoma (10/14) or liver metastases (4/14) undergoing radiation therapy were included in this study. All patients underwent single-slice 2D cine-MRI simulations across the center of the tumor in three orthogonal planes. Tumor and diaphragm motion trajectories in the superior-inferior (SI), anteriorposterior (AP), and medial-lateral (ML) directions were obtained using the normalized cross-correlation based tracking technique. Agreement between tumor and diaphragm motions was assessed by calculating the phase difference percentage (PDP), intra-class correlation coefficientmore » (ICC), Bland-Altman analysis (Diffs) and paired t-test. The distance (D) between tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between tumor and diaphragm motions. Results: Of all patients, the means (±standard deviations) of PDP were 7.1 (±1.1)%, 4.5 (±0.5)% and 17.5 (±4.5)% in the SI, AP and ML directions, respectively. The means of ICC were 0.98 (±0.02), 0.97 (±0.02), and 0.08 (±0.06) in the SI, AP and ML directions, respectively. The Diffs were 2.8 (±1.4) mm, 2.4 (±1.1) mm, and 2.2 (±0.5) mm in the SI, AP and ML directions, respectively. The p-values derived from the paired t-test were < 0.02 in SI and AP directions, whereas were > 0.58 in ML direction primarily due to the small motion in ML direction. Tumor and diaphragmatic motion had high concordance when the distance between the tumor and tracked diaphragm areas was small. Conclusion: Preliminary results showed that liver tumor motion had good correlations with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be a reliable surrogate for liver tumor motion. NIH (1R21CA165384-01A1), Golfers Against Cancer (GAC) Foundation, The China Scholarship Council (CSC)« less

  16. Insomnia and suicidal ideation and behaviors in former and current U.S. service members: Does depression mediate the relations?

    PubMed

    Allan, Nicholas P; Conner, Kenneth R; Pigeon, Wilfred R; Gros, Daniel F; Salami, Temilola K; Stecker, Tracy

    2017-06-01

    Insomnia is a risk factor for Suicidal Ideation (SI) and Behavior (SB), yet the nature of the relations is unclear, including the potential mediating role of cognitive and affective/somatic symptoms of depression. It was hypothesized that the impact of insomnia on SI would be mediated through depressive symptoms and that insomnia would directly impact SB. Current and former military service members (N =405; M age =31.6 years, SD =7.3; 90.4% male, 76.5% White) who endorsed recent suicidal ideation and/or a history of suicide attempt completed measures of insomnia, depression, SI, and SB at baseline and at month 12 follow-up. Mediation models were conducted using structural equation modeling. Significant mediation from insomnia to baseline SI and month 12 SI was found through cognitive/affective depression. Insomnia was directly related to SB occurring between baseline and month 12 follow-up. These findings suggest that cognitive/affective depression mediates the association with SI but not SB. Results build on research showing the importance of depressive symptoms in SI in particular. The direct and indirect pathways from insomnia to SI/SB suggest that clinicians should be aware of these relations when treating patients reporting insomnia. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  17. Silica hydride intermediate for octadecylsilica and phenyl bonded phase preparation via heterogeneous hydrosilation in supercritical carbon dioxide.

    PubMed

    Scully, N M; Ashu-Arrah, B A; Nagle, A P; Omamogho, J O; O'Sullivan, G P; Friebolin, V; Dietrich, B; Albert, K; Glennon, J D

    2011-04-15

    Investigations into the preparation of silica hydride intermediate in supercritical carbon dioxide (sc-CO(2)) that avoids the use of organic solvents such as toluene or dioxane are described. The effects of reaction temperature, pressure and time on the surface coverage of the supercritical fluid generated silica hydride intermediate were studied. Under optimised supercritical conditions of 120°C, 483 bar and 3 h reaction time, silica hydride (Si-H) conversion efficiencies of ca. 40% were achieved for the hydride intermediate prepared from a monofunctional silane reagent (dimethylmethoxysilane). Si-H conversion efficiencies (as determined from (29)Si CP-MAS NMR spectral analysis) for the hydride intermediate prepared from triethoxysilane (TES) in sc-CO(2) were found to be comparable to those obtained using a TES silanisation approach in an organic solvent. (13)C and (29)Si CP-MAS-NMR spectroscopy was employed to provide a complete structural assignment of the silica hydride intermediates. Furthermore, supercritical CO(2) was subsequently employed as a reaction medium for the heterogenous hydrosilation of silica hydride with octadecene and with styrene, in the presence of a free radical initiator. These supercritical fluid generated reversed-phase materials were prepared in a substantially reduced reaction time (3 h) compared to organic solvent based methods (100 h reaction time). Silica functionalisation in sc-CO(2) presents an efficient and clean alternative to organic solvent based methods for the preparation of important silica hydride intermediate and silica bonded stationary phases via a hydrosilation approach. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Role of interface states on electron transport in a-Si:H/nc-Si:H multilayer structures

    NASA Astrophysics Data System (ADS)

    Yadav, Asha; Kumari, Juhi; Agarwal, Pratima

    2018-05-01

    In this paper we report, I-V characteristic of a-Si:H/nc-Si:H multilayer structures in lateral as well as transverse direction. In lateral geometry, where the interfaces are parallel to the direction of electronic transport, residual photo conductivity (persistent photoconductivity) is observed after the light was turned off. On the other hand, in transverse geometry, where interfaces are along the direction of electronic transport, the space charge limited currents are affected and higher density of states is obtained. The PPC was more in the structures where numbers of such interface were more. These results have been understood in terms of the charge carriers trapped at the interface, which influence the electronic transport.

  19. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    NASA Astrophysics Data System (ADS)

    de Jong, M. M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic substrates can be a solution. In this thesis, we investigate the possibilities of depositing thin film solar cells directly onto cheap plastic substrates. Micro-textured glass and sheets, which have a wide range of applications, such as in green house, lighting etc, are applied in these solar cells for light trapping. Thin silicon films can be produced by decomposing silane gas, using a plasma process. In these types of processes, the temperature of the growing surface has a large influence on the quality of the grown films. Because plastic substrates limit the maximum tolerable substrate temperature, new methods have to be developed to produce device-grade silicon layers. At low temperature, polysilanes can form in the plasma, eventually forming dust particles, which can deteriorate device performance. By studying the spatially resolved optical emission from the plasma between the electrodes, we can identify whether we have a dusty plasma. Furthermore, we found an explanation for the temperature dependence of dust formation; Monitoring the formation of polysilanes as a function of temperature using a mass-spectrometer, we observed that the polymerization rate is indeed influenced by the substrate temperature. For solar cell substrate material, our choice was polycarbonate (PC), because of its low cost, its excellent transparency and its relatively high glass transition temperature of 130-140°C. At 130°C we searched for deposition recipes for device quality silicon, using a very high frequency plasma enhanced chemical deposition process. By diluting the feedstock silane with hydrogen gas, the silicon quality can be improved for amorphous silicon (a-Si), until we reach the nanocrystalline silicon (nc-Si) regime. In the nc-Si regime, the crystalline fraction can be further controlled by changing the power input into the plasma. With these layers, a-Si thin film solar cells were fabricated, on glass and PC substrates. The adverse effect of the low temperature growth on the photoactive material is further mitigated by using thinner silicon layers, which can deliver a good current only with an adequate light trapping technique. We have simulated and experimentally tested three light trapping techniques, using embossed structures in PC substrates and random structures on glass: regular pyramid structures larger than the wavelength of light (micropyramids), regular pyramid structures comparable to the wavelength of light (nanopyramids) and random nano-textures (Asahi U-type). The use of nanostructured polycarbonate substrates results in initial conversion efficiencies of 7.4%, compared to 7.6% for cells deposited under identical conditions on Asahi U-type glass. The potential of manufacturing thin film solar cells at processing temperatures lower than 130oC is further illustrated by obtained results on texture-etched aluminium doped zinc-oxide (ZnO:Al) on glass: we achieved 6.9% for nc-Si cells using a very thin absorber layer of only 750 nm, and by combining a-Si and nc-Si cells in tandem solar cells we reached an initial conversion efficiency of 9.5%.

  20. Modeling the Elastic Modulus of 2D Woven CVI SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2006-01-01

    The use of fiber, interphase, CVI SiC minicomposites as structural elements for 2D-woven SiC fiber reinforced chemically vapor infiltrated (CVI) SiC matrix composites is demonstrated to be a viable approach to model the elastic modulus of these composite systems when tensile loaded in an orthogonal direction. The 0deg (loading direction) and 90deg (perpendicular to loading direction) oriented minicomposites as well as the open porosity and excess SiC associated with CVI SiC composites were all modeled as parallel elements using simple Rule of Mixtures techniques. Excellent agreement for a variety of 2D woven Hi-Nicalon(TradeMark) fiber-reinforced and Sylramic-iBN reinforced CVI SiC matrix composites that differed in numbers of plies, constituent content, thickness, density, and number of woven tows in either direction (i.e, balanced weaves versus unbalanced weaves) was achieved. It was found that elastic modulus was not only dependent on constituent content, but also the degree to which 90deg minicomposites carried load. This depended on the degree of interaction between 90deg and 0deg minicomposites which was quantified to some extent by composite density. The relationships developed here for elastic modulus only necessitated the knowledge of the fractional contents of fiber, interphase and CVI SiC as well as the tow size and shape. It was concluded that such relationships are fairly robust for orthogonally loaded 2D woven CVI SiC composite system and can be implemented by ceramic matrix composite component modelers and designers for modeling the local stiffness in simple or complex parts fabricated with variable constituent contents.

  1. Fabrication And Evaluation Of Sic/Sic Tubes With Various Fiber Architectures

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.; Fox, D. S.

    2003-01-01

    SiC/SiC composites are excellent material candidates for high temperature applications where the performance requirements are high strength, high creep-rupture resistance, high environmental durability, and high thermal conductivity. In the past, the NASA UEET program has demonstrated fabrication of high-performance SiC/SiC flat panels reinforced by Sylramic-iBN SiC fibers. Currently NASA UEET is scaling up this SiC/SiC system by fabrication of more complex shaped components using the same fiber type. This paper reports the effects of various fiber architectures on the processing, mechanical, and durability behavior of small-diameter 0.5" ID SiC/SiC tubes, which are potential sub-elements for leading edges and cooling channels in turbine vanes and blades. Nine different fiber architectures were utilized for construction of seamless tube preforms, from simple 2D jelly-rolling to complex braiding, pin-weaving, filament-winding and 3D orthogonal weaving with approximately 5% fibers in the thru-thickness direction. Using the BN interphase and Sic matrix processing steps established for the flat panels, SiC/SiC tubes were fabricated with wall thicknesses of approximately 60 mils and total fiber fractions of approximately 35%. The "D" split ring tests for hoop tensile properties, micro-structural examinations for relationship between fiber architecture formation and matrix infiltration, and the low-pressure burner rig tests for the high temperature durability under thru-thickness thermal gradient were conducted. The better matrix infiltration and higher hoop strength were achieved using the tri-axial braided and the three-float pin woven SiC/SiC tubes. In general, it needs not only higher hoop direction fibers but also axial direction fibers for the higher hoop strength and the better infiltration, respectively. These results are analyzed to offer general guidelines for selecting fiber pre-form architectures and SiC/SiC processes that maximize tube hoop strength, thru-thickness thermal conductivity, and burner-rig durability under a high thermal gradient.

  2. Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor

    NASA Astrophysics Data System (ADS)

    Xu, CAO; Weixuan, ZHAO; Renxi, ZHANG; Huiqi, HOU; Shanping, CHEN; Ruina, ZHANG

    2017-11-01

    This paper discusses the conversion of nitric oxide (NO) with a low-temperature plasma induced by a catalytic packed-bed dielectric barrier discharge (DBD) reactor. Alumina oxide (Al2O3), glass (SiO2) and zirconium oxide (ZrO2), three different spherical packed materials of the same size, were each present in the DBD reactor. The NO conversion under varying input voltage and specific energy density, and the effects of catalysts (titanium dioxide (TiO2) and manganese oxide (MnO x ) coated on Al2O3) on NO conversion were investigated. The experimental results showed that NO conversion was greatly enhanced in the presence of packed materials in the reactor, and the catalytic packed bed of MnO x /Al2O3 showed better performance than that of TiO2/Al2O3. The surface and crystal structures of the materials and catalysts were characterized through scanning electron microscopy analysis. The final products were clearly observed by a Fourier transform infrared spectrometer and provided a better understanding of NO conversion.

  3. A reliable method to grow vertically-aligned silicon nanowires by a novel ramp-cooling process

    NASA Astrophysics Data System (ADS)

    Ho, Tzuen-Wei; Hong, Franklin Chau-Nan

    2012-08-01

    We have grown silicon nanowires (SiNWs) on Si (1 1 1) substrates by gold-catalyzed vapor-liquid-solid (VLS) process using tetrachlorosilane (SiCl4) in a hot-wall chemical vapor deposition reactor. Even under the optimized conditions including H2 annealing to reduce the surface native oxide, epitaxial SiNWs of 150-200 nm in diameter often grew along all four <1 1 1> family directions with one direction vertical and three others inclined to the surface. Therefore, the growth of high degree ordered SiNW arrays along [1 1 1] only was attempted on Au-coated Si (1 1 1) by a ramp-cooling process utilizing the liquid phase epitaxy (LPE) mechanism. The Au-coated Si substrate was first annealed in H2 at 650 °C to form Au-Si alloy nanoparticles, and then ramp-cooled at a controlled rate to precipitate epitaxial Si seeds on the substrate based on LPE mechanism. The substrate was further heated in SiCl4/H2 to 850 °C for the VLS growths of SiNWs on the Si seeds. Thus, almost 100% vertically-aligned SiNWs along [1 1 1] only could be reproducibly grown on Si (1 1 1), without using a template or patterning the metal catalyst. The high-density vertically-aligned SiNWs have good potentials for solar cells and nano-devices.

  4. Acronyms, initialisms, and abbreviations: Fourth Revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolman, B.J.

    1994-04-01

    This document lists acronyms used in technical writing. The immense list is supplemented by an appendix containing chemical elements, classified information access, common abbreviations used for functions, conversion factors for selected SI units, a flowcharting template, greek alphabet, metrix terminology, proofreader`s marks, signs and symbols, and state abbreviations.

  5. Phase Analysis of Laser Direct Etching and Water Assisted Laser Combined Etching of SiC Ceramics

    NASA Astrophysics Data System (ADS)

    Yuan, Genfu; Cong, Qidong; Zhang, Chen; Xie, Bingbing

    2017-12-01

    In this study, to discover the etching mechanism of SiC ceramics under laser direct etching and water-jet assisted laser combined etching, the phenomena of substance change on the etched surface were investigated. Also, the rules of substance transfer in etching are discussed. The elemental content change and the phase change of the etching products on the etched surface were analyzed by energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. These studies showed a high amount of carbon black on the etched surface, because of the decomposition of SiC ceramics under the high-power-density laser irradiation. SiC decomposed to Si under the laser irradiation, and the subsequent chemical reaction of Si and O2 easily produced SiO2. The SiO2 on the etched surface melted and vaporized, whereas most of SiO2 was removed through splashing, changing the chemical composition of the etched surface. Following the water jet introduction, an increased amount of O existed on the combined etching surface, because the chemical reaction of SiC and H2O easily produced SiO2 under the high-power-density laser irradiation.

  6. Observation of layered antiferromagnetism in self-assembled parallel NiSi nanowire arrays on Si(110) by spin-polarized scanning tunneling spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Hong, Ie-Hong; Hsu, Hsin-Zan

    2018-03-01

    The layered antiferromagnetism of parallel nanowire (NW) arrays self-assembled on Si(110) have been observed at room temperature by direct imaging of both the topographies and magnetic domains using spin-polarized scanning tunneling microscopy/spectroscopy (SP-STM/STS). The topographic STM images reveal that the self-assembled unidirectional and parallel NiSi NWs grow into the Si(110) substrate along the [\\bar{1}10] direction (i.e. the endotaxial growth) and exhibit multiple-layer growth. The spatially-resolved SP-STS maps show that these parallel NiSi NWs of different heights produce two opposite magnetic domains, depending on the heights of either even or odd layers in the layer stack of the NiSi NWs. This layer-wise antiferromagnetic structure can be attributed to an antiferromagnetic interlayer exchange coupling between the adjacent layers in the multiple-layer NiSi NW with a B2 (CsCl-type) crystal structure. Such an endotaxial heterostructure of parallel magnetic NiSi NW arrays with a layered antiferromagnetic ordering in Si(110) provides a new and important perspective for the development of novel Si-based spintronic nanodevices.

  7. Study of Direct-Contact HfO2/Si Interfaces

    PubMed Central

    Miyata, Noriyuki

    2012-01-01

    Controlling monolayer Si oxide at the HfO2/Si interface is a challenging issue in scaling the equivalent oxide thickness of HfO2/Si gate stack structures. A concept that the author proposes to control the Si oxide interface by using ultra-high vacuum electron-beam HfO2 deposition is described in this review paper, which enables the so-called direct-contact HfO2/Si structures to be prepared. The electrical characteristics of the HfO2/Si metal-oxide-semiconductor capacitors are reviewed, which suggest a sufficiently low interface state density for the operation of metal-oxide-semiconductor field-effect-transistors (MOSFETs) but reveal the formation of an unexpected strong interface dipole. Kelvin probe measurements of the HfO2/Si structures provide obvious evidence for the formation of dipoles at the HfO2/Si interfaces. The author proposes that one-monolayer Si-O bonds at the HfO2/Si interface naturally lead to a large potential difference, mainly due to the large dielectric constant of the HfO2. Dipole scattering is demonstrated to not be a major concern in the channel mobility of MOSFETs. PMID:28817060

  8. Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3.

    PubMed

    Liu, Caixia; Chen, Liang; Li, Junhua; Ma, Lei; Arandiyan, Hamidreza; Du, Yu; Xu, Jiayu; Hao, Jiming

    2012-06-05

    A series of novel metal-oxide-supported CeO(2) catalysts were prepared via the wet impregnation method, and their NH(3)-SCR activities were investigated. The Ce/TiO(2)-SiO(2) catalyst with a Ti/Si mass ratio of 3/1 exhibited superior NH(3)-SCR activity and high N(2) selectivity in the temperature range of 250-450 °C. The characterization results revealed that the activity enhancement was correlated with the properties of the support material. Cerium was highly dispersed on the TiO(2)-SiO(2) binary metal oxide support, and the interaction of Ti and Si resulted in greater conversion of Ce(4+) to Ce(3+) on the surface of the catalyst compared to that on the single metal oxide supports. As a result of in the increased number of acid sites on Ce/TiO(2)-SiO(2) that resulted from the addition of SiO(2), the NH(3) adsorption capacity was significantly improved. All of these factors played significant roles in the high SCR activity. More importantly, Ce/TiO(2)-SiO(2) exhibited strong resistance to SO(2) and H(2)O poisoning. After the addition of SiO(2), the number of Lewis-acid sites was not decreased, but the number of Brønsted-acid sites on the TiO(2)-SiO(2) carrier was increased. The introduction of SiO(2) further weakened the alkalinity over the surface of the Ce/TiO(2)-SiO(2) catalyst, which resulted in sulfate not easily accumulating on the surface of the Ce/TiO(2)-SiO(2) catalyst in comparison with Ce/TiO(2).

  9. Bright nanowire single photon source based on SiV centers in diamond

    DOE PAGES

    Marseglia, L.; Saha, K.; Ajoy, A.; ...

    2018-01-01

    The practical implementation of quantum technologies such as quantum commu- nication and quantum cryptography relies on the development of indistinguishable, robust, and bright single photon sources that works at room temperature. The silicon- vacancy (SiV -) center in diamond has emerged as a possible candidate for a single photon source with all these characteristics. Unfortunately, due to the high refraction index mismatch between diamond and air, color centers in diamond show low photon out-coupling. This drawback can be overcome by fabrication of photonic structures that improve the in-coupling of excitation laser to the diamond defect as well as the out-couplingmore » emission from the color centers. An additional shortcoming is due to the random localization of native defects in the diamond sample. Here we demonstrate deterministic implantation of Si ions with high conversion effciency to single SiV -, targeted to fabricated nanowires. The co-localization of single SiV - defects with the nanostructures yields a ten times higher light coupling effciency as compared to single SiV - in the bulk. This result, with its intrinsic scalability, enables a new class of devices for integrated photonics and quantum information processing.« less

  10. The improvement of SiO2 nanotubes electrochemical behavior by hydrogen atmosphere thermal treatment

    NASA Astrophysics Data System (ADS)

    Spataru, Nicolae; Anastasescu, Crina; Radu, Mihai Marian; Balint, Ioan; Negrila, Catalin; Spataru, Tanta; Fujishima, Akira

    2018-06-01

    Highly defected SiO2 nanotubes (SiO2-NT) were obtained by a simple sol-gel procedure followed by calcination. Boron-doped diamond (BDD) polycrystalline films coated with SiO2-NT were used as working electrodes and, unexpectedly, cyclic voltammetric experiments have shown that the concentration of both positive and negative defects at the surface is high enough to enable redox processes involving positively charged Ru(bpy)32+/3+ to occur. Conversely, no electrochemical activity was put into evidence for Fe(CN)63-/4- species, most likely as a result of the strong electrostatic repulsion exerted by the negatively charged SiO2 surface. The concentration of surface defects was further increased by a subsequent thermal treatment in a hydrogen atmosphere which, as EIS measurements have shown, significantly promotes Ru(bpy)32+ anodic oxidation. Digital simulation of the voltammetric responses demonstrated that this treatment does not lead to a similar increase of the number of electron-donor sites. It was also found that methanol anodic oxidation at hydrogenated SiO2-NT-supported platinum results in Tafel slopes of 116-220 mV decade-1, comparable to those reported for both conventional PtRu and Pt-oxide catalysts.

  11. Sputter-Grown Sb-DOPED Silicon Nanocrystals Embedded in Silicon-Rich Carbide for si Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Chen, Xiaobo; Tang, Yu; Hao, Jiabo

    Sb-doped silicon nanocrystals (Si-NCs) films were fabricated by magnetron co-sputtering combined with rapid-thermal annealing. The effects of Sb content on the structural and electrical properties of the films were studied. The dot size increased with the increasing Sb content, and could be correlated to the effect of Sb-induced crystallization. The variation in the concentration of Sb shows a significant impact on the film properties, where as doped with 0.8at.% of Sb exhibited major property improvements when compared with other films. By employing Sb-doped Si-NCs films as emitter layers, Si-NCs/monocrystalline silicon heterojunction solar cells were fabricated and the effect of the Sb doping concentration on the photovoltaic properties was studied. It is found that the doping level in the Si-NCs layer is a key factor in determining the short-circuit current density and power conversion efficiency (PCE). With an optimized doping concentration of 0.8at.% of Sb, a maximal PCE of 7.10% was obtained. This study indicates that the Sb-doped Si-NCs can be good candidates for all-silicon tandem solar cells.

  12. The utility of tumor-specifically internalizing peptides for targeted siRNA delivery into human solid tumors.

    PubMed

    Un, Frank; Zhou, Bingsen; Yen, Yun

    2012-11-01

    Ribonucleotide reductase composed of the hRRM1 and hRRM2 subunits catalyzes the conversion of ribonucleotides to their corresponding deoxy forms for DNA replication. Anti-hRRM2 siRNA degrades hRRM2's mRNA and suppresses tumorigenesis. A Phase I clinical trial demonstrated its therapy potential. HN-1 represents a tumor-specifically internalizing peptide for targeted-drug delivery into human head and neck squamous cell carcinoma. Internalization of peptide was monitored by fluorescence microscopy. The peptide-siRNA conjugate was chemically synthesized. The hRRM2 expression was monitored by western blot analysis. HN-1(TYR) (HN-1 with two N-terminally added tyrosines) was internalized by human head and neck or breast cancer cells. Anti-hRRM2 siRNA(R) (resistant to RNase degradation) was conjugated to HN-1(TYR) without compromising their properties. The treatment with HN-1(TYR)-anti-hRRM2 siRNA(R) partly suppressed the endogenously expressed hRRM2 in human breast cancer cells. Our results establish the utility of tumor-specifically internalizing peptides for targeted siRNA delivery into human cancer cells.

  13. Improved PEDOT:PSS/c-Si hybrid solar cell using inverted structure and effective passivation

    PubMed Central

    Zhang, Xisheng; Yang, Dong; Yang, Zhou; Guo, Xiaojia; Liu, Bin; Ren, Xiaodong; Liu, Shengzhong (Frank)

    2016-01-01

    The PEDOT:PSS is often used as the window layer in the normal structured PEDOT:PSS/c-Si hybrid solar cell (HSC), leading to significantly reduced response, especially in red and near-infrared region. By depositing the PEDOT:PSS on the rear side of the c-Si wafer, we developed an inverted structured HSC with much higher solar cell response in the red and near-infrared spectrum. Passivating the other side with hydrogenated amorphous silicon (a-Si:H) before electrode deposition, the minority carrier lifetime has been significantly increased and the power conversion efficiency (PCE) of the inverted HSC is improved to as high as 16.1% with an open-circuit voltage (Voc) of 634 mV, fill factor (FF) of 70.5%, and short-circuit current density (Jsc) of 36.2 mA cm−2, an improvement of 33% over the control device. The improvements are ascribed to inverted configuration and a-Si:H passivation, which can increase photon carrier generation and reduce carrier recombination, respectively. Both of them will benefit the photovoltaic performance and should be considered as effective design strategies to improve the performance of organic/c-Si HSCs. PMID:27725714

  14. Primary vs Conversion Total Hip Arthroplasty: A Cost Analysis

    PubMed Central

    Chin, Garwin; Wright, David J.; Snir, Nimrod; Schwarzkopf, Ran

    2018-01-01

    Introduction Increasing hip fracture incidence in the United States is leading to higher occurrences of conversion total hip arthroplasty (THA) for failed surgical treatment of the hip. In spite of studies showing higher complication rates in conversion THA, the Centers for Medicare and Medicaid services currently bundles conversion and primary THA under the same diagnosis-related group. We examined the cost of treatment of conversion THA compared with primary THA. Our hypothesis is that conversion THA will have higher cost and resource use than primary THA. Methods Fifty-one consecutive conversion THA patients (Current Procedure Terminology code 27132) and 105 matched primary THA patients (Current Procedure Terminology code 27130) were included in this study. The natural log-transformed costs for conversion and primary THA were compared using regression analysis. Age, gender, body mass index, American Society of Anesthesiologist, Charlson comorbidity score, and smoker status were controlled in the analysis. Conversion THA subgroups formed based on etiology were compared using analysis of variance analysis. Results Conversion and primary THAs were determined to be significantly different (P < .05) and greater in the following costs: hospital operating direct cost (29.2% greater), hospital operating total cost (28.8% greater), direct hospital cost (24.7% greater), and total hospital cost (26.4% greater). Conclusions Based on greater hospital operating direct cost, hospital operating total cost, direct hospital cost, and total hospital cost, conversion THA has significantly greater cost and resource use than primary THA. In order to prevent disincentives for treating these complex surgical patients, reclassification of conversion THA is needed, as they do not fit together with primary THA. PMID:26387923

  15. Conversion electron measurements of 195Au using ICEBall for Nuclear Structure and Astrophysics at the University of Notre Dame

    NASA Astrophysics Data System (ADS)

    Battaglia, Anthony; Tan, Wanpeng; Aprahamian, Ani; Bauder, William; Casarella, Clark; Gurdal, Gulhan; Long, Alexander; Nystrom, Andrew; Siegl, Kevin; Smith, Karl; Smith, Mallory

    2013-10-01

    The Internal Conversion Electron Ball Array (ICEBall) consists of six Si(Li) detectors and it was recently re-comissioned at the University of Notre Dame Nuclear Science Laboratory for spectroscopic studies of heavy nuclei. For the commissioning experiment, a 16 MeV bunched proton beam was used from the FN Tandem for a (p,2n) reaction to populate low spin states of 195Au. Both conversion electrons and gamma-rays were detected in coincidence between ICEBall and a single high-purity germanium detector. A total of 14 conversion coeffcients were measured. The results will be presented and compared to previous results. This work was supported by the National Science Foundation under contract number NSF PHY-1068192. M.P. Metlay, J.X. Saladin, I.Y. Lee, and O. Dietzsch, Nucl. Instrum. Meth. A, 336, 162 (1993).

  16. The NASA program in Space Energy Conversion Research and Technology

    NASA Astrophysics Data System (ADS)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  17. Hydrogen adsorption on two catalysts for the ortho- to parahydrogen conversion: Cr-doped silica and ferric oxide gel.

    PubMed

    Hartl, Monika; Gillis, Robert Chad; Daemen, Luke; Olds, Daniel P; Page, Katherine; Carlson, Stefan; Cheng, Yongqiang; Hügle, Thomas; Iverson, Erik B; Ramirez-Cuesta, A J; Lee, Yongjoong; Muhrer, Günter

    2016-06-29

    Molecular hydrogen exists in two spin-rotation coupled states: parahydrogen and orthohydrogen. Due to the variation of energy with rotational level, the occupation of ortho- and parahydrogen states is temperature dependent, with parahydrogen being the dominant species at low temperatures. The equilibrium at 20 K (99.8% parahydrogen) can be reached by natural conversion only after a lengthy process. With the use of a suitable catalyst, this process can be shortened significantly. Two types of commercial catalysts currently being used for ortho- to parahydrogen conversion are: iron(iii) oxide (Fe2O3, IONEX®), and chromium(ii) oxide doped silica catalyst (CrO·SiO2, OXISORB®). We investigate the interaction of ortho- and parahydrogen with the surfaces of these ortho-para conversion catalysts using neutron vibrational spectroscopy. The catalytic surfaces have been characterized using X-ray absorption fine structure (XAFS) and X-ray/neutron pair distribution function measurements.

  18. The NASA program in Space Energy Conversion Research and Technology

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    1982-01-01

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  19. Si3 AlP: A New Promising Material for Solar Cell Absorber

    NASA Astrophysics Data System (ADS)

    Yang, Jihui; Zhai, Yingteng; Liu, Hengrui; Xiang, Hongjun; Gong, Xingao; Wei, Suhuai

    2014-03-01

    First-principles calculations are performed to study the structural and optoelectronic properties of the newly synthesized nonisovalent and lattice-matched (Si2)0.6(AlP)0.4 alloy [T. Watkins et al., J. Am. Chem. Soc. 2011, 133, 16212.] The most stable structure of Si3AlP is a superlattice along the <111>direction with separated AlP and Si layers, which has a similar optical absorption spectrum to silicon. The ordered C1c1-Si3AlP is found to be the most stable one among all the structures with -AlPSi3- motifs, in agreement with the experimental suggestions. We predict that C1c1-Si3AlP has good optical properties, i.e., it has a larger fundamental band gap and a smaller direct band gap than Si, thus it has much higher absorption in the visible light region, making it a promising candidate for improving the performance of the existing Si-based solar cells.

  20. An alternative route for the synthesis of silicon nanowires via porous anodic alumina masks

    PubMed Central

    2011-01-01

    Amorphous Si nanowires have been directly synthesized by a thermal processing of Si substrates. This method involves the deposition of an anodic aluminum oxide mask on a crystalline Si (100) substrate. Fe, Au, and Pt thin films with thicknesses of ca. 30 nm deposited on the anodic aluminum oxide-Si substrates have been used as catalysts. During the thermal treatment of the samples, thin films of the metal catalysts are transformed in small nanoparticles incorporated within the pore structure of the anodic aluminum oxide mask, directly in contact with the Si substrate. These homogeneously distributed metal nanoparticles are responsible for the growth of Si nanowires with regular diameter by a simple heating process at 800°C in an Ar-H2 atmosphere and without an additional Si source. The synthesized Si nanowires have been characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman. PMID:21849077

  1. Formation of porous surface layers in reaction bonded silicon nitride during processing

    NASA Technical Reports Server (NTRS)

    Shaw, N. J.; Glasgow, T. K.

    1979-01-01

    An effort was undertaken to determine if the formation of the generally observed layer of large porosity adjacent to the as-nitride surfaces of reaction bonded silicon nitrides could be prevented during processing. Isostatically pressed test bars were prepared from wet vibratory milled Si powder. Sintering and nitriding were each done under three different conditions:(1) bars directly exposed to the furnance atmosphere; (2) bars packed in Si powder; (3) bars packed in Si3N4 powder. Packing the bars in either Si of Si3N4 powder during sintering retarded formation of the layer of large porosity. Only packing the bars in Si prevented formation of the layer during nitridation. The strongest bars (316 MPa) were those sintered in Si and nitrided in Si3N4 despite their having a layer of large surface porosity; failure initiated at very large pores and inclusions. The alpha/beta ratio was found to be directly proportional to the oxygen content; a possible explanation for this relationship is discussed.

  2. Effect of conductive LaNiO3 electrode on the structural and ferroelectric properties of Bi3.25La0.75Ti3O12 films

    NASA Astrophysics Data System (ADS)

    Jain, M.; Kang, B. S.; Jia, Q. X.

    2006-12-01

    Ferroelectric Bi3.25La0.75Ti3O12 (BLT) films were grown on Pt /Ti/SiO2/Si (Pt/Si), LaNiO3/Pt /Si, and LaNiO3/Si substrates using chemical solution deposition technique. X-ray diffraction analysis shows that films grown on conductive LaNiO3 electrodes had higher degree of (117) orientation as compared to that grown directly on Pt /Si substrate. High remanent polarization value (2Pr)˜43.14μC/cm2 (Ec of 111kV/cm) under an applied field of 396kV/cm was obtained for BLT film on LaNiO3/Pt /Si as compared to a value of 26μC/cm2 obtained for BLT film on Pt/Si directly. There was no degradation in the switchable polarization (Psw-Pns) after 1010 switching cycles.

  3. Influence of Si substitution on the reactivity of α-tricalcium phosphate.

    PubMed

    Motisuke, Mariana; Mestres, Gemma; Renó, Caroline O; Carrodeguas, Raúl G; Zavaglia, Cecília A C; Ginebra, Maria-Pau

    2017-06-01

    Silicon substituted calcium phosphates have been widely studied over the last ten years due to their enhanced osteogenic properties. Notwithstanding, the role of silicon on α-TCP reactivity is not clear yet. Therefore, the aim of this work was to evaluate the reactivity and the properties of Si-α-TCP in comparison to α-TCP. Precursor powders have similar properties regarding purity, particle size distribution and specific surface area, which allowed a better comparison of the Si effects on their reactivity and cements properties. Both Si-α-TCP and α-TCP hydrolyzed to a calcium-deficient hydroxyapatite when mixed with water but their conversion rates were different. Si-α-TCP exhibited a slower setting rate than α-TCP, i.e. k SSA for Si-TCP (0.021g·m -2 ·h -1 ) was almost four times lower than for α-TCP (0.072g·m -2 ·h -1 ). On the other hand, the compressive strength of the CPC resulting from fully reacted Si-α-TCP was significantly higher (12.80±0.38MPa) than that of α-TCP (11.44±0.54MPa), due to the smaller size of the entangled precipitated apatite crystals. Copyright © 2017. Published by Elsevier B.V.

  4. Nanoscale in-depth modification of CrOSi layers

    NASA Astrophysics Data System (ADS)

    Bertóti, I.; Tóth, A.; Mohai, M.; Kelly, R.; Marletta, G.; Farkas-Jahnke, M.

    1997-02-01

    In-depth modification of CrOSi layers on a nanoscale has been performed by low energy inert (Ar +, He +) and reactive (N 2+) ions. Chemical and short range structural investigations were done by XPS. Cr and Si were essentially oxidised in the as-prepared (i.e. virgin) samples. Ar + bombardment led to a nearly complete reduction of Cr to Cr 0. At the same time, about one third of the oxidised Si was converted to Si 0, which was shown to form SiCr bonds. Also, silicide type clusters, predicted earlier by XPS, have been identified by glancing angle electron diffraction. He + bombardment led to an increase of the surface O concentration. This was manifested also in the disruption of SiCr bonds formed by the preceding Ar + bombardment and conversion of Cr and Si predominantly to Cr 3+O, Cr 6+O and Si 4+O. With N 2+ bombardment formation of CrN and SiN bonds was observed. The thickness of the transformed surface layers were about 5 nm, 9 nm and 30 nm for Ar, N and He projectiles as estimated by TRIM calculations. The observed transformations were interpreted in terms of the relative importance of sputtering or ion induced mixing for Ar + and He +, and also by the role of thermodynamic driving forces.

  5. Towards better light harvesting capability for DSSC (dye sensitized solar cells) through addition of Au@SiO2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Fadhilah, Nur; Alhadi, Emha Riyadhul Jinan; Risanti, Doty Dewi

    2018-04-01

    The Au nanoparticles as core can increase the light harvesting due to the strong near-field effect LSPR (Localized Surface Plasmon Resonance), effectively minimized the electron recombination process and also can improve the optical absorption of the dye sensitized. Au@SiO2 core-shell nanoparticles were prepared using SiO2 extracted from Sidoarjo mud volcano. In this work investigated the influence of pH solution and silica shell volume fraction in Au@SiO2 nanoparticles core-shell structure on DSSC loaded with Ru-based dye. From XRD characterization it was found that core-shell contains SiO2, Au, γAl2O3 and traces NaCl. UV-Vis absorption spectra of core-shell showed the position of the surface plasmon AuNP band in the range of 500-600 nm. The Au@SiO2 core-shell with volume fraction of 30ml silica has the highest peak absorbance. The enhanced light absorption is primarily attributed to the LSPR effect of the Au core. Our results on incident photon-to-current conversion efficiency indicates that the presence of SiO2 depending on its volume fraction tends to shift to longer wavelength.

  6. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity

    PubMed Central

    Nakamura, Yoshiaki

    2018-01-01

    Abstract The design and fabrication of nanostructured materials to control both thermal and electrical properties are demonstrated for high-performance thermoelectric conversion. We have focused on silicon (Si) because it is an environmentally friendly and ubiquitous element. High bulk thermal conductivity of Si limits its potential as a thermoelectric material. The thermal conductivity of Si has been reduced by introducing grains, or wires, yet a further reduction is required while retaining a high electrical conductivity. We have designed two different nanostructures for this purpose. One structure is connected Si nanodots (NDs) with the same crystal orientation. The phonons scattering at the interfaces of these NDs occurred and it depended on the ND size. As a result of phonon scattering, the thermal conductivity of this nanostructured material was below/close to the amorphous limit. The other structure is Si films containing epitaxially grown Ge NDs. The Si layer imparted high electrical conductivity, while the Ge NDs served as phonon scattering bodies reducing thermal conductivity drastically. This work gives a methodology for the independent control of electron and phonon transport using nanostructured materials. This can bring the realization of thermoelectric Si-based materials that are compatible with large scale integrated circuit processing technologies. PMID:29371907

  7. Promising SiC support for Pd catalyst in selective hydrogenation of acetylene to ethylene

    NASA Astrophysics Data System (ADS)

    Guo, Zhanglong; Liu, Yuefeng; Liu, Yan; Chu, Wei

    2018-06-01

    In this study, SiC supported Pd nanoparticles were found to be an efficient catalyst in acetylene selective hydrogenation reaction. The ethylene selectivity can be about 20% higher than that on Pd/TiO2 catalyst at the same acetylene conversion at 90%. Moreover, Pd/SiC catalyst showed a stable catalytic life at 65 °C with 80% ethylene selectivity. With the detailed characterization using temperature-programmed reduction (H2-TPR), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption analysis, CO-chemisorption and thermo-gravimetric analysis (TGA), it was found that SiC owns a lower surface area (22.9 m2/g) and a broad distribution of meso-/macro-porosity (from 5 to 65 nm), which enhanced the mass transfer during the chemical process at high reaction rate and decreased the residence time of ethylene on catalyst surface. Importantly, SiC support has the high thermal conductivity, which favored the rapid temperature homogenization through the catalyst bed and inhabited the over-hydrogenation of acetylene. The surface electronic density of Pd on Pd/SiC catalyst was higher than that on Pd/TiO2, which could promote desorption of ethylene from surface of the catalyst. TGA results confirmed a much less coke deposition on Pd/SiC catalyst.

  8. Realization of 13.6% Efficiency on 20 μm Thick Si/Organic Hybrid Heterojunction Solar Cells via Advanced Nanotexturing and Surface Recombination Suppression.

    PubMed

    He, Jian; Gao, Pingqi; Liao, Mingdun; Yang, Xi; Ying, Zhiqin; Zhou, Suqiong; Ye, Jichun; Cui, Yi

    2015-06-23

    Hybrid silicon/polymer solar cells promise to be an economically feasible alternative energy solution for various applications if ultrathin flexible crystalline silicon (c-Si) substrates are used. However, utilization of ultrathin c-Si encounters problems in light harvesting and electronic losses at surfaces, which severely degrade the performance of solar cells. Here, we developed a metal-assisted chemical etching method to deliver front-side surface texturing of hierarchically bowl-like nanopores on 20 μm c-Si, enabling an omnidirectional light harvesting over the entire solar spectrum as well as an enlarged contact area with the polymer. In addition, a back surface field was introduced on the back side of the thin c-Si to minimize the series resistance losses as well as to suppress the surface recombination by the built high-low junction. Through these improvements, a power conversion efficiency (PCE) up to 13.6% was achieved under an air mass 1.5 G irradiation for silicon/organic hybrid solar cells with the c-Si thickness of only about 20 μm. This PCE is as high as the record currently reported in hybrid solar cells constructed from bulk c-Si, suggesting a design rule for efficient silicon/organic solar cells with thinner absorbers.

  9. In-line phase retarder and polarimeter for conversion of linear to circular polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kortright, J.B.; Smith, N.V.; Denlinger, J.D.

    1997-04-01

    An in-line polarimeter including phase retarder and linear polarizer was designed and commissioned on undulator beamline 7.0 for the purpose of converting linear to circular polarization for experiments downstream. In commissioning studies, Mo/Si multilayers at 95 eV were used both as the upstream, freestanding phase retarder and the downstream linear polarized. The polarization properties of the phase retarder were characterized by direct polarimetry and by collecting MCD spectra in photoemission from Gd and other magnetic surfaces. The resonant birefringence of transmission multilayers results from differing distributions of s- and p-component wave fields in the multilayer when operating near a structuralmore » (Bragg) interference condition. The resulting phase retardation is especially strong when the interference is at or near the Brewster angle, which is roughly 45{degrees} in the EUV and soft x-ray ranges.« less

  10. Incident light adjustable solar cell by periodic nanolens architecture

    PubMed Central

    Yun, Ju-Hyung; Lee, Eunsongyi; Park, Hyeong-Ho; Kim, Dong-Wook; Anderson, Wayne A.; Kim, Joondong; Litchinitser, Natalia M.; Zeng, Jinwei; Yi, Junsin; Kumar, M. Melvin David; Sun, Jingbo

    2014-01-01

    Could nanostructures act as lenses to focus incident light for efficient utilization of photovoltaics? Is it possible, in order to avoid serious recombination loss, to realize periodic nanostructures in solar cells without direct etching in a light absorbing semiconductor? Here we propose and demonstrate a promising architecture to shape nanolenses on a planar semiconductor. Optically transparent and electrically conductive nanolenses simultaneously provide the optical benefit of modulating the incident light and the electrical advantage of supporting carrier transportation. A transparent indium-tin-oxide (ITO) nanolens was designed to focus the incident light-spectrum in focal lengths overlapping to a strong electric field region for high carrier collection efficiency. The ITO nanolens effectively broadens near-zero reflection and provides high tolerance to the incident light angles. We present a record high light-conversion efficiency of 16.0% for a periodic nanostructured Si solar cell. PMID:25371099

  11. Self-Powered Wireless Sensors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Sayir, Ali

    2008-01-01

    NASA's integrated vehicle health management (IVHM) program offers the potential to improve aeronautical safety, reduce cost and improve performance by utilizing networks of wireless sensors. Development of sensor systems for engine hot sections will provide real-time data for prognostics and health management of turbo-engines. Sustainable power to embedded wireless sensors is a key challenge for prolong operation. Harvesting energy from the environment has emerged as a viable technique for power generation. Thermoelectric generators provide a direct conversion of heat energy to electrical energy. Micro-power sources derived from thermoelectric films are desired for applications in harsh thermal environments. Silicon based alloys are being explored for applications in high temperature environments containing oxygen. Chromium based p-type Si/Ge alloys exhibit Seebeck coefficients on the order of 160 micro V/K and low thermal conductance of 2.5 to 5 W/mK. Thermoelectric properties of bulk and thin film silicides will be discussed

  12. [The property and applications of the photovoltaic solar panel in the region of diagnostic X-ray].

    PubMed

    Hirota, Jun'ichi; Tarusawa, Kohetsu; Kudo, Kohsei

    2010-10-20

    In this study, the sensitivity in the diagnostic X-ray region of the single crystalline Si photovoltaic solar panel, which is expected to grow further, was measured by using an X-ray tube. The output voltage of the solar panel was clearly proportional to the tube voltage and a good time response in the irradiation time setting of the tube was measured. The factor which converts measured voltage to irradiation dose was extracted experimentally using a correction filter to investigate the ability of the solar panel as a dose monitor. The obtained conversion factors were N(S) = 13 ± 1[µV/µSv/s] for the serial and N(P) = 58 ± 2[µV/µSv/s] for the parallel connected solar panels, both with the Al 1 mm + Cu 0.1 mm correction filter, respectively. Therefore, a good dose dependence of the conversion factor was confirmed by varying the distance between the X-ray tube and the solar panel with that filter. In conclusion, a simple extension of our results pointed out the potential of a new concept of measurements using, for example, the photovoltaic solar panel, the direct dose measurement from X-ray tube and real time estimation of the exposed dose in IVR.

  13. Direct synthesis of ultrathin SOI structure by extremely low-energy oxygen implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, Yasushi, E-mail: yhoshino@kanagawa-u.ac.jp; Yachida, Gosuke; Inoue, Kodai

    2016-06-15

    We performed extremely low-energy {sup 16}O{sup +} implantation at 10 keV (R{sub p} ∼ 25 nm) followed by annealing aiming at directly synthesizing an ultrathin Si layer separated by a buried SiO{sub 2} layer in Si(001) substrates, and then investigated feasible condition of recrystallization and stabilization of the superficial Si and the buried oxide layer by significantly low temperature annealing. The elemental compositions were analyzed by Rutherford backscattering (RBS) and secondary ion mass spectroscopy (SIMS). The crystallinity of the superficial Si layer was quantitatively confirmed by ananlyzing RBS-channeling spectra. Cross-sectional morphologies and atomic configurations were observed by transmission electron microscopemore » (TEM). As a result, we succeeded in directly synthesizing an ultrathin single-crystalline silicon layer with ≤20 nm thick separated by a thin buried stoichiometric SiO{sub 2} layer with ≤20 nm thick formed by extremely low-energy {sup 16}O{sup +} implantation followed by surprisingly low temperature annealing at 1050{sup ∘} C.« less

  14. Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells

    NASA Astrophysics Data System (ADS)

    Li, Guijun; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing

    2014-06-01

    Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400-800 nm) and bottom (800-1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.

  15. The interface modification for GNWs/Si Schottky junction with PEI/PEIE interlayers

    NASA Astrophysics Data System (ADS)

    Zhou, Quan; Liu, Xiangzhi; Luo, Wei; Shen, Jun; Wang, Yuefeng; Wei, Dapeng

    2018-03-01

    Polyethylenimine ethoxylated (PEIE) and polyethyl-enimine (PEI), the two kinds of interface buffer layer, are widely used in the organic light-emitting diodes and solar cells for band alignment adjustment. In this report, we carefully studied the influence of the inserting organic layer on the graphene nanowalls(GNWS)/Si junction quality and the photoresponse of the Schottky devices. We found that thinner layers of PEI could decrease the dark current and improve the photo-to-dark ratio to 105 for n-Si devices. The s-kink effect and degradation of open circuit voltage could be observed for thicker thickness and excessive doping. Relatively, PEIE with stable thin layer not only improve the rectifying characteristics of p-Si devices but also the incident photon conversion efficiency. The maximus IPCE could reach 44% and be adjusted to zero by the reverse bias. The tunneling inhibition for electrons can be alleviated by increasing the barrier height. Our results provide an attractive method to improve the efficiency of pristine GNWs/Si junction with interface doping and passivation.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marseglia, L.; Saha, K.; Ajoy, A.

    The practical implementation of quantum technologies such as quantum commu- nication and quantum cryptography relies on the development of indistinguishable, robust, and bright single photon sources that works at room temperature. The silicon- vacancy (SiV -) center in diamond has emerged as a possible candidate for a single photon source with all these characteristics. Unfortunately, due to the high refraction index mismatch between diamond and air, color centers in diamond show low photon out-coupling. This drawback can be overcome by fabrication of photonic structures that improve the in-coupling of excitation laser to the diamond defect as well as the out-couplingmore » emission from the color centers. An additional shortcoming is due to the random localization of native defects in the diamond sample. Here we demonstrate deterministic implantation of Si ions with high conversion effciency to single SiV -, targeted to fabricated nanowires. The co-localization of single SiV - defects with the nanostructures yields a ten times higher light coupling effciency as compared to single SiV - in the bulk. This result, with its intrinsic scalability, enables a new class of devices for integrated photonics and quantum information processing.« less

  17. Effect of substrates and thickness on optical properties in atomic layer deposition grown ZnO thin films

    NASA Astrophysics Data System (ADS)

    Pal, Dipayan; Singhal, Jaya; Mathur, Aakash; Singh, Ajaib; Dutta, Surjendu; Zollner, Stefan; Chattopadhyay, Sudeshna

    2017-11-01

    Atomic Layer Deposition technique was used to grow high quality, very low roughness, crystalline, Zinc Oxide (ZnO) thin films on silicon (Si) and fused quartz (SiO2) substrates to study the optical properties. Spectroscopic ellipsometry results of ZnO/Si system, staggered type-II quantum well, demonstrate that there is a significant drop in the magnitudes of both the real and imaginary parts of complex dielectric constants and in near-band gap absorption along with a blue shift of the absorption edge with decreasing film thickness at and below ∼20 nm. Conversely, UV-vis absorption spectroscopy of ZnO/SiO2, thin type-I quantum well, consisting of a narrower-band gap semiconductor grown on a wider-band gap (insulator) substrate, shows the similar thickness dependent blue-shift of the absorption edge but with an increase in the magnitude of near-band gap absorption with decreasing film thickness. Thickness dependent blue shift, energy vs. 1/d2, in two different systems, ZnO/Si and ZnO/SiO2, show a difference in their slopes. The observed phenomena can be consistently explained by the corresponding exciton (or carrier/s) deconfinement and confinement effects at the ZnO/Si and ZnO/SiO2 interface respectively, where Tanguy-Elliott amplitude pre-factor plays the key role through the electron-hole overlap factor at the interface.

  18. Junction formation and current transport mechanisms in hybrid n-Si/PEDOT:PSS solar cells

    PubMed Central

    Jäckle, Sara; Mattiza, Matthias; Liebhaber, Martin; Brönstrup, Gerald; Rommel, Mathias; Lips, Klaus; Christiansen, Silke

    2015-01-01

    We investigated hybrid inorganic-organic solar cells combining monocrystalline n-type silicon (n-Si) and a highly conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS). The build-in potential, photo- and dark saturation current at this hybrid interface are monitored for varying n-Si doping concentrations. We corroborate that a high build-in potential forms at the hybrid junction leading to strong inversion of the n-Si surface. By extracting work function and valence band edge of the polymer from ultraviolet photoelectron spectroscopy, a band diagram of the hybrid n-Si/PEDOT:PSS heterojunction is presented. The current-voltage characteristics were analyzed using Schottky and abrupt pn-junction models. The magnitude as well as the dependence of dark saturation current on n-Si doping concentration proves that the transport is governed by diffusion of minority charge carriers in the n-Si and not by thermionic emission of majorities over a Schottky barrier. This leads to a comprehensive explanation of the high observed open-circuit voltages of up to 634 mV connected to high conversion efficiency of almost 14%, even for simple planar device structures without antireflection coating or optimized contacts. The presented work clearly shows that PEDOT:PSS forms a hybrid heterojunction with n-Si behaving similar to a conventional pn-junction and not, like commonly assumed, a Schottky junction. PMID:26278010

  19. NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prša, Andrej; Harmanec, Petr; Torres, Guillermo

    In this brief communication we provide the rationale for and the outcome of the International Astronomical Union (IAU) resolution vote at the XXIXth General Assembly in Honolulu, Hawaii, in 2015, on recommended nominal conversion constants for selected solar and planetary properties. The problem addressed by the resolution is a lack of established conversion constants between solar and planetary values and SI units: a missing standard has caused a proliferation of solar values (e.g., solar radius, solar irradiance, solar luminosity, solar effective temperature, and solar mass parameter) in the literature, with cited solar values typically based on best estimates at the timemore » of paper writing. As precision of observations increases, a set of consistent values becomes increasingly important. To address this, an IAU Working Group on Nominal Units for Stellar and Planetary Astronomy formed in 2011, uniting experts from the solar, stellar, planetary, exoplanetary, and fundamental astronomy, as well as from general standards fields to converge on optimal values for nominal conversion constants. The effort resulted in the IAU 2015 Resolution B3, passed at the IAU General Assembly by a large majority. The resolution recommends the use of nominal solar and planetary values, which are by definition exact and are expressed in SI units. These nominal values should be understood as conversion factors only, not as the true solar/planetary properties or current best estimates. Authors and journal editors are urged to join in using the standard values set forth by this resolution in future work and publications to help minimize further confusion.« less

  20. Nominal Values for Selected Solar and Planetary Quantities: IAU 2015 Resolution B3

    NASA Astrophysics Data System (ADS)

    Prša, Andrej; Harmanec, Petr; Torres, Guillermo; Mamajek, Eric; Asplund, Martin; Capitaine, Nicole; Christensen-Dalsgaard, Jørgen; Depagne, Éric; Haberreiter, Margit; Hekker, Saskia; Hilton, James; Kopp, Greg; Kostov, Veselin; Kurtz, Donald W.; Laskar, Jacques; Mason, Brian D.; Milone, Eugene F.; Montgomery, Michele; Richards, Mercedes; Schmutz, Werner; Schou, Jesper; Stewart, Susan G.

    2016-08-01

    In this brief communication we provide the rationale for and the outcome of the International Astronomical Union (IAU) resolution vote at the XXIXth General Assembly in Honolulu, Hawaii, in 2015, on recommended nominal conversion constants for selected solar and planetary properties. The problem addressed by the resolution is a lack of established conversion constants between solar and planetary values and SI units: a missing standard has caused a proliferation of solar values (e.g., solar radius, solar irradiance, solar luminosity, solar effective temperature, and solar mass parameter) in the literature, with cited solar values typically based on best estimates at the time of paper writing. As precision of observations increases, a set of consistent values becomes increasingly important. To address this, an IAU Working Group on Nominal Units for Stellar and Planetary Astronomy formed in 2011, uniting experts from the solar, stellar, planetary, exoplanetary, and fundamental astronomy, as well as from general standards fields to converge on optimal values for nominal conversion constants. The effort resulted in the IAU 2015 Resolution B3, passed at the IAU General Assembly by a large majority. The resolution recommends the use of nominal solar and planetary values, which are by definition exact and are expressed in SI units. These nominal values should be understood as conversion factors only, not as the true solar/planetary properties or current best estimates. Authors and journal editors are urged to join in using the standard values set forth by this resolution in future work and publications to help minimize further confusion.

Top