ERIC Educational Resources Information Center
Department of the Interior, Denver, CO. Engineering and Research Center.
Subjects covered in this text are controlling the hydroelectric generator, generator excitation, basic principles of direct current generation, direction of current flow, basic alternating current generator, alternating and direct current voltage outputs, converting alternating current to direct current, review of the basic generator and…
Kwon, Yong Hyun; Jang, Sung Ho
2012-08-25
We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.
Kwon, Yong Hyun; Jang, Sung Ho
2012-01-01
We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation. PMID:25624815
Is transcranial direct current stimulation a potential method for improving response inhibition?☆
Kwon, Yong Hyun; Kwon, Jung Won
2013-01-01
Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the transcranial direct-current stimulation condition or a sham-transcranial direct-current stimulation condition. All subjects consecutively performed the stop-signal task before, during, and after the delivery of anodal transcranial direct-current stimulation over the pre-supplementary motor area (pre-transcranial direct-current stimulation phase, transcranial direct-current stimulation phase, and post-transcranial direct-current stimulation phase). Compared to the sham condition, there were significant reductions in the stop-signal processing times during and after transcranial direct-current stimulation, and change times were significantly greater in the transcranial direct-current stimulation condition. There was no significant change in go processing-times during or after transcranial direct-current stimulation in either condition. Anodal transcranial direct-current stimulation was feasibly coupled to an interactive improvement in inhibitory control. This coupling led to a decrease in the stop-signal process time required for the appropriate responses between motor execution and inhibition. However, there was no transcranial direct-current stimulation effect on the no-signal reaction time during the stop-signal task. Transcranial direct-current stimulation can adjust certain behaviors, and it could be a useful clinical intervention for patients who have difficulties with response inhibition. PMID:25206399
Is transcranial direct current stimulation a potential method for improving response inhibition?
Kwon, Yong Hyun; Kwon, Jung Won
2013-04-15
Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the transcranial direct-current stimulation condition or a sham-transcranial direct-current stimulation condition. All subjects consecutively performed the stop-signal task before, during, and after the delivery of anodal transcranial direct-current stimulation over the pre-supplementary motor area (pre-transcranial direct-current stimulation phase, transcranial direct-current stimulation phase, and post-transcranial direct-current stimulation phase). Compared to the sham condition, there were significant reductions in the stop-signal processing times during and after transcranial direct-current stimulation, and change times were significantly greater in the transcranial direct-current stimulation condition. There was no significant change in go processing-times during or after transcranial direct-current stimulation in either condition. Anodal transcranial direct-current stimulation was feasibly coupled to an interactive improvement in inhibitory control. This coupling led to a decrease in the stop-signal process time required for the appropriate responses between motor execution and inhibition. However, there was no transcranial direct-current stimulation effect on the no-signal reaction time during the stop-signal task. Transcranial direct-current stimulation can adjust certain behaviors, and it could be a useful clinical intervention for patients who have difficulties with response inhibition.
46 CFR 111.05-29 - Dual voltage direct current systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Dual voltage direct current systems. Each dual voltage direct current system must have a suitably sensitive ground detection system which indicates current in the ground connection, has a range of at least... 46 Shipping 4 2010-10-01 2010-10-01 false Dual voltage direct current systems. 111.05-29 Section...
46 CFR 111.05-29 - Dual voltage direct current systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Dual voltage direct current systems. Each dual voltage direct current system must have a suitably sensitive ground detection system which indicates current in the ground connection, has a range of at least... 46 Shipping 4 2011-10-01 2011-10-01 false Dual voltage direct current systems. 111.05-29 Section...
Aternating current photovoltaic building block
Bower, Ward Issac; Thomas, Michael G.; Ruby, Douglas S.
2004-06-15
A modular apparatus for and method of alternating current photovoltaic power generation comprising via a photovoltaic module, generating power in the form of direct current; and converting direct current to alternating current and exporting power via one or more power conversion and transfer units attached to the module, each unit comprising a unitary housing extending a length or width of the module, which housing comprises: contact means for receiving direct current from the module; one or more direct current-to-alternating current inverters; an alternating current bus; and contact means for receiving alternating current from the one or more inverters.
Bhanpuri, Nasir H; Bertucco, Matteo; Young, Scott J; Lee, Annie A; Sanger, Terence D
2015-10-01
Abnormal motor cortex activity is common in dystonia. Cathodal transcranial direct current stimulation may alter cortical activity by decreasing excitability while anodal stimulation may increase motor learning. Previous results showed that a single session of cathodal transcranial direct current stimulation can improve symptoms in childhood dystonia. Here we performed a 5-day, sham-controlled, double-blind, crossover study, where we measured tracking and muscle overflow in a myocontrol-based task. We applied cathodal and anodal transcranial direct current stimulation (2 mA, 9 minutes per day). For cathodal transcranial direct current stimulation (7 participants), 3 subjects showed improvements whereas 2 showed worsening in overflow or tracking error. The effect size was small (about 1% of maximum voluntary contraction) and not clinically meaningful. For anodal transcranial direct current stimulation (6 participants), none showed improvement, whereas 5 showed worsening. Thus, multiday cathodal transcranial direct current stimulation reduced symptoms in some children but not to a clinically meaningful extent, whereas anodal transcranial direct current stimulation worsened symptoms. Our results do not support transcranial direct current stimulation as clinically viable for treating childhood dystonia. © The Author(s) 2015.
46 CFR 111.30-27 - Direct current ship's service switchboards.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Direct current ship's service switchboards. 111.30-27... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-27 Direct current ship's service switchboards. (a) Each direct current ship's service switchboard must have the equipment required by paragraphs (b...
46 CFR 111.30-27 - Direct current ship's service switchboards.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Direct current ship's service switchboards. 111.30-27... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-27 Direct current ship's service switchboards. (a) Each direct current ship's service switchboard must have the equipment required by paragraphs (b...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding offtrack direct-current machines and...-UNDERGROUND COAL MINES Grounding § 75.703 Grounding offtrack direct-current machines and the enclosures of related detached components. [Statutory Provisions] The frames of all offtrack direct-current machines and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding offtrack direct-current machines and...-UNDERGROUND COAL MINES Grounding § 75.703 Grounding offtrack direct-current machines and the enclosures of related detached components. [Statutory Provisions] The frames of all offtrack direct-current machines and...
Picelli, Alessandro; Chemello, Elena; Castellazzi, Paola; Filippetti, Mirko; Brugnera, Annalisa; Gandolfi, Marialuisa; Waldner, Andreas; Saltuari, Leopold; Smania, Nicola
2018-01-01
Preliminary evidence showed additional effects of anodal transcranial direct current stimulation over the damaged cerebral hemisphere combined with cathodal transcutaneous spinal direct current stimulation during robot-assisted gait training in chronic stroke patients. This is consistent with the neural organization of locomotion involving cortical and spinal control. The cerebellum is crucial for locomotor control, in particular for avoidance of obstacles, and adaptation to novel conditions during walking. Despite its key role in gait control, to date the effects of transcranial direct current stimulation of the cerebellum have not been investigated on brain stroke patients treated with robot-assisted gait training. To evaluate the effects of cerebellar transcranial direct current stimulation combined with transcutaneous spinal direct current stimulation on robot-assisted gait training in patients with chronic brain stroke. After balanced randomization, 20 chronic stroke patients received ten, 20-minute robot-assisted gait training sessions (five days a week, for two consecutive weeks) combined with central nervous system stimulation. Group 1 underwent on-line cathodal transcranial direct current stimulation over the contralesional cerebellar hemisphere + cathodal transcutaneous spinal direct current stimulation. Group 2 received on-line anodal transcranial direct current stimulation over the damaged cerebral hemisphere + cathodal transcutaneous spinal direct current stimulation. The primary outcome was the 6-minute walk test performed before, after, and at follow-up at 2 and 4 weeks post-treatment. The significant differences in the 6-minute walk test noted between groups at the first post-treatment evaluation (p = 0.041) were not maintained at either the 2-week (P = 0.650) or the 4-week (P = 0.545) follow-up evaluations. Our preliminary findings support the hypothesis that cathodal transcranial direct current stimulation over the contralesional cerebellar hemisphere in combination with cathodal transcutaneous spinal direct current stimulation might be useful to boost the effects of robot-assisted gait training in chronic brain stroke patients with walking impairment.
NASA Astrophysics Data System (ADS)
Meng, Fanwei; Liu, Chengying; Li, Zhijun; Wang, Liping
2013-01-01
Due to low damping ratio, flat permanent magnet linear synchronous motor's vibration is difficult to be damped and the accuracy is limited. The vibration suppressing results are not good enough in the existing research because only the longitudinal direction vibration is considered while the normal direction vibration is neglected. The parameters of the direct-axis current controller are set to be the same as those of the quadrature-axis current controller commonly. This causes contradiction between signal noise and response. To suppress the vibration, the electromagnetic force model of the flat permanent magnet synchronous linear motor is formulated first. Through the analysis of the effect that direct-axis current noise and quadrature-axis current noise have on both direction vibration, it can be declared that the conclusion that longitudinal direction vibration is only related to the quadrature-axis current noise while the normal direction vibration is related to both the quadrature-axis current noise and direct-axis current noise. Then, the simulation test on current loop with a low-pass filter is conducted and the results show that the low-pass filter can not suppress the vibration but makes the vibration more severe. So a vibration suppressing strategy that the proportional gain of direct-axis current controller adapted according to quadrature-axis reference current is proposed. This control strategy can suppress motor vibration by suppressing direct-axis current noise. The experiments results about the effect of K p and T i on normal direction vibration, longitudinal vibration and the position step response show that this strategy suppresses vibration effectively while the motor's motion performance is not affected. The maximum reduction of vibration can be up to 40%. In addition, current test under rated load condition is also conducted and the results show that the control strategy can avoid the conflict between the direct-axis current and the quadrature-axis current under typical load. Adaptive PI control strategy can effectively suppress the flat permanent magnet linear synchronous motor's vibration without affecting the motor's performance.
Enhanced distributed energy resource system
Atcitty, Stanley [Albuquerque, NM; Clark, Nancy H [Corrales, NM; Boyes, John D [Albuquerque, NM; Ranade, Satishkumar J [Las Cruces, NM
2007-07-03
A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.
Zhu, Chang-E; Yu, Bo; Zhang, Wen; Chen, Wen-Hua; Qi, Qi; Miao, Yun
2017-01-19
To evaluate the effectiveness and safety of transcranial direct current stimulation for fibro-myalgia. Databases, conference records and registered trials were searched for articles published from the date of establishment of the database through to October 2015. Six randomized controlled trials (n=192) of transcranial direct current stimulation for fibromyalgia were included in the current study. Two researchers independently screened the literature, assessed methodological quality using the Cochrane Collaboration's tool, and extracted data. Studies were divided into 3 groups for meta-analysis according to stimulation site and polarity. Significant improvement in pain and general fibromyalgia-related function was seen with anodal transcranial direct current stimulation over the primary motor cortex (p<0.05). However, the pressure pain threshold did not improve (p>0.05). Anodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex did not significantly reduce pain or improve general fibromyalgia-related function compared with sham stimulation (p>0.05). Cathodal transcranial direct current stimulation over the primary motor cortex did not improve the pressure pain threshold compared with sham stimulation (p>0.05). No significant adverse effects were seen. Anodal transcranial direct current stimulation over the primary motor cortex is more likely than sham transcranial direct current stimulation to relieve pain and improve general fibromyalgia-related function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, X.; Liang, J. H.; Chen, B. L.
2015-07-28
Face-centered-cubic cobalt films are epitaxially grown on insulating LaAlO{sub 3}(001) substrates by molecular beam epitaxy. Transport measurements are conducted in different current directions relative to the crystal axes. We find that the temperature dependent anisotropic magnetoresistance ratio strongly depends on the current direction. However, the anomalous Hall effect shows isotropic behavior independent of the current direction. Our results demonstrate the interplay between the current direction and the crystalline lattice in single-crystalline ferromagnetic films. A phenomenological analysis is presented to interpret the experimental data.
Orlov, Natasza D; O'Daly, Owen; Tracy, Derek K; Daniju, Yusuf; Hodsoll, John; Valdearenas, Lorena; Rothwell, John; Shergill, Sukhi S
2017-09-01
Individuals with schizophrenia typically suffer a range of cognitive deficits, including prominent deficits in working memory and executive function. These difficulties are strongly predictive of functional outcomes, but there is a paucity of effective therapeutic interventions targeting these deficits. Transcranial direct current stimulation is a novel neuromodulatory technique with emerging evidence of potential pro-cognitive effects; however, there is limited understanding of its mechanism. This was a double-blind randomized sham controlled pilot study of transcranial direct current stimulation on a working memory (n-back) and executive function (Stroop) task in 28 individuals with schizophrenia using functional magnetic resonance imaging. Study participants received 30 min of real or sham transcranial direct current stimulation applied to the left frontal cortex. The 'real' and 'sham' groups did not differ in online working memory task performance, but the transcranial direct current stimulation group demonstrated significant improvement in performance at 24 h post-transcranial direct current stimulation. Transcranial direct current stimulation was associated with increased activation in the medial frontal cortex beneath the anode; showing a positive correlation with consolidated working memory performance 24 h post-stimulation. There was reduced activation in the left cerebellum in the transcranial direct current stimulation group, with no change in the middle frontal gyrus or parietal cortices. Improved performance on the executive function task was associated with reduced activity in the anterior cingulate cortex. Transcranial direct current stimulation modulated functional activation in local task-related regions, and in more distal nodes in the network. Transcranial direct current stimulation offers a potential novel approach to altering frontal cortical activity and exerting pro-cognitive effects in schizophrenia. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
RF lockout circuit for electronic locking system
NASA Astrophysics Data System (ADS)
Becker, Earl M., Jr.; Miller, Allen
1991-02-01
An electronics lockout circuit was invented that includes an antenna adapted to receive radio frequency signals from a transmitter, and a radio frequency detector circuit which converts the radio frequency signals into a first direct current voltage indicative of the relative strength of the field resulting from the radio frequency signals. The first direct current voltage is supplied to a trigger circuit which compares this direct current voltage to an adjustable direct current reference voltage. This provides a second direct current voltage at the output whenever the amplitude of the first direct current voltage exceeds the amplitude of the reference voltage provided by the comparator circuit. This is supplied to a disconnect relay circuit which, upon receiving a signal from the electronic control unit of an electronic combination lock during the time period at which the second direct current voltage is present, isolates the door strike coil of a security door from the electronic control unit. This prevents signals falsely generated by the electronic control unit because of radio frequency signals in the vicinity of the electronic control unit energizing the door strike coil and accidentally opening a security door.
NASA Astrophysics Data System (ADS)
Roux, Stanley; Porterfield, D. Marshall; Haque, Aeraj Ul; Bushart, Thomas
The vector of gravity sets the direction of polarized development of single spore cells of the fern Ceratopteris richardii after light initiates their germination. Gravity also sets the direction of a trans-cell calcium current, which enters the cell along its bottom and exits it from its top. The direction of this current predicts the subsequent direction of spore development, and blocking this current with calcium channel blockers randomizes the direction of subsequent development. Recently the laboratory of D. Marshall Porterfield (Purdue University) developed a microchip device that can measure the direction and magnitude of the trans-spore calcium current in real time. Our laboratory in collaboration with Porterfield's recently found that this current inverts rapidly when the cells are turned upside down and that the magnitude of the current rises and falls with the magnitude of the g-force when these cells are tested in parabolic flight on the DC-9 aircraft. We assume that the gravity-directed entry of calcium into these cells is through calcium channels and its exit is through calcium pumps. Here we report our studies of a calcium pump that is highly expressed in the spores during the period when gravity is setting the direction of the calcium current, and we describe pharmacological tests of the relative importance of calcium pumps in maintaining the calcium current and in controlling the direction of subsequent spore development. We found that inhibitors that block the activity of calcium pumps also greatly depress the trans-cell current, but, surprisingly, have little effect on the ability of gravity to set the direction of spore development. These results, in combination with earlier findings, indicate that the gravity-directed opening of calcium channels along the bottom of spore cells plays a more important role in directing subsequent spore development than the activity of calcium pumps, despite the importance of these pumps in maintaining the trans-cell calcium current. Supported by NASA grants NAG2-1586 and NAG10-295 to S. J. R.
Kaski, D; Dominguez, R O; Allum, J H; Islam, A F; Bronstein, A M
2014-11-01
To improve gait and balance in patients with Parkinson's disease by combining anodal transcranial direct current stimulation with physical training. In a double-blind design, one group (physical training; n = 8) underwent gait and balance training during transcranial direct current stimulation (tDCS; real/sham). Real stimulation consisted of 15 minutes of 2 mA transcranial direct current stimulation over primary motor and premotor cortex. For sham, the current was switched off after 30 seconds. Patients received the opposite stimulation (sham/real) with physical training one week later; the second group (No physical training; n = 8) received stimulation (real/sham) but no training, and also repeated a sequential transcranial direct current stimulation session one week later (sham/real). Hospital Srio Libanes, Buenos Aires, Argentina. Sixteen community-dwelling patients with Parkinson's disease. Transcranial direct current stimulation with and without concomitant physical training. Gait velocity (primary gait outcome), stride length, timed 6-minute walk test, Timed Up and Go Test (secondary outcomes), and performance on the pull test (primary balance outcome). Transcranial direct current stimulation with physical training increased gait velocity (mean = 29.5%, SD = 13; p < 0.01) and improved balance (pull test: mean = 50.9%, SD = 37; p = 0.01) compared with transcranial direct current stimulation alone. There was no isolated benefit of transcranial direct current stimulation alone. Although physical training improved gait velocity (mean = 15.5%, SD = 12.3; p = 0.03), these effects were comparatively less than with combined tDCS + physical therapy (p < 0.025). Greater stimulation-related improvements were seen in patients with more advanced disease. Anodal transcranial direct current stimulation during physical training improves gait and balance in patients with Parkinson's disease. Power calculations revealed that 14 patients per treatment arm (α = 0.05; power = 0.8) are required for a definitive trial. © The Author(s) 2014.
NASA Technical Reports Server (NTRS)
Khanna, S. M.; Urban, E. W. (Inventor)
1979-01-01
A direct current transformer in which the primary consists of an elongated strip of superconductive material, across the ends of which is direct current potential is described. Parallel and closely spaced to the primary is positioned a transformer secondary consisting of a thin strip of magnetoresistive material.
NASA Technical Reports Server (NTRS)
Cash, B.
1985-01-01
Simple technique developed for monitoring direct currents up to several hundred amperes and digitally displaying values directly in current units. Used to monitor current magnitudes beyond range of standard laboratory ammeters, which typically measure 10 to 20 amperes maximum. Technique applicable to any current-monitoring situation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litzenberger, Wayne; Lava, Val
1994-08-01
References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
School of Materials Science and Engineering, State Key Lab for Materials Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Department of Physics, University of California Berkeley, Berkeley, California 94720, USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
2014-12-11
Past research has revealed the propagation of dense, asymmetric ionization zones in both high and low current magnetron discharges. Here we report about the direction reversal of ionization zone propagation as observed with fast cameras. At high currents, zones move in the E B direction with velocities of 103 to 104 m/s. However at lower currents, ionization zones are observed to move in the opposite, the -E B direction, with velocities ~;; 103 m/s. It is proposed that the direction reversal is associated with the local balance of ionization and supply of neutrals in the ionization zone.
Transcranial direct current stimulation for motor recovery of upper limb function after stroke.
Lüdemann-Podubecká, Jitka; Bösl, Kathrin; Rothhardt, Sandra; Verheyden, Geert; Nowak, Dennis Alexander
2014-11-01
Changes in neural processing after stroke have been postulated to impede recovery from stroke. Transcranial direct current stimulation has the potential to alter cortico-spinal excitability and thereby might be beneficial in stroke recovery. We review the pertinent literature prior to 30/09/2013 on transcranial direct current stimulation in promoting motor recovery of the affected upper limb after stroke. We found overall 23 trials (they included 523 participants). All stimulation protocols pride on interhemispheric imbalance model. In a comparative approach, methodology and effectiveness of (a) facilitation of the affected hemisphere, (b) inhibition of the unaffected hemisphere and (c) combined application of transcranial direct current stimulation over the affected and unaffected hemispheres to treat impaired hand function after stroke are presented. Transcranial direct current stimulation is associated with improvement of the affected upper limb after stroke, but current evidence does not support its routine use. Copyright © 2014 Elsevier Ltd. All rights reserved.
46 CFR 111.30-27 - Direct current ship's service switchboards.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Direct current ship's service switchboards. 111.30-27 Section 111.30-27 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-27 Direct current ship's service switchboards...
46 CFR 111.30-27 - Direct current ship's service switchboards.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Direct current ship's service switchboards. 111.30-27 Section 111.30-27 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-27 Direct current ship's service switchboards...
46 CFR 111.30-27 - Direct current ship's service switchboards.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Direct current ship's service switchboards. 111.30-27 Section 111.30-27 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-27 Direct current ship's service switchboards...
Code of Federal Regulations, 2011 CFR
2011-07-01
... separate grounding conductor located within the trailing cable of mobile and portable equipment and... conductor located within the direct-current power cable feeding stationary equipment and connected between... ground conductor connected between stationary equipment and the direct-current grounding medium; or, (d...
Code of Federal Regulations, 2012 CFR
2012-07-01
... separate grounding conductor located within the trailing cable of mobile and portable equipment and... conductor located within the direct-current power cable feeding stationary equipment and connected between... ground conductor connected between stationary equipment and the direct-current grounding medium; or, (d...
Code of Federal Regulations, 2013 CFR
2013-07-01
... separate grounding conductor located within the trailing cable of mobile and portable equipment and... conductor located within the direct-current power cable feeding stationary equipment and connected between... ground conductor connected between stationary equipment and the direct-current grounding medium; or, (d...
Code of Federal Regulations, 2010 CFR
2010-07-01
... separate grounding conductor located within the trailing cable of mobile and portable equipment and... conductor located within the direct-current power cable feeding stationary equipment and connected between... ground conductor connected between stationary equipment and the direct-current grounding medium; or, (d...
Code of Federal Regulations, 2014 CFR
2014-07-01
... separate grounding conductor located within the trailing cable of mobile and portable equipment and... conductor located within the direct-current power cable feeding stationary equipment and connected between... ground conductor connected between stationary equipment and the direct-current grounding medium; or, (d...
Interhemispheric currents in the ring current region as seen by the Cluster spacecraft
NASA Astrophysics Data System (ADS)
Tenfjord, P.; Ostgaard, N.; Haaland, S.; Laundal, K.; Reistad, J. P.
2013-12-01
The existence of interhemispheric currents has been predicted by several authors, but their extent in the ring current has to our knowledge never been studied systematically by using in-situ measurements. These currents have been suggested to be associated with observed asymmetries of the aurora. We perform a statistical study of current density and direction during ring current crossings using the Cluster spacecraft. We analyse the extent of the interhemispheric field aligned currents for a wide range of solar wind conditions. Direct estimations of equatorial current direction and density are achieved through the curlometer technique. The curlometer technique is based on Ampere's law and requires magnetic field measurements from all four spacecrafts. The use of this method requires careful study of factors that limit the accuracy, such as tetrahedron shape and configuration. This significantly limits our dataset, but is a necessity for accurate current calculations. Our goal is to statistically investigate the occurrence of interhemispheric currents, and determine if there are parameters or magnetospheric states on which the current magnitude and directions depend upon.
Manenti, Rosa; Brambilla, Michela; Benussi, Alberto; Rosini, Sandra; Cobelli, Chiara; Ferrari, Clarissa; Petesi, Michela; Orizio, Italo; Padovani, Alessandro; Borroni, Barbara; Cotelli, Maria
2016-05-01
Parkinson's disease (PD) is characterized by both motor and cognitive deficits. In PD, physical exercise has been found to improve physical functioning. Recent studies demonstrated that repeated sessions of transcranial direct current stimulation led to an increased performance in cognitive and motor tasks in patients with PD. The present study investigated the effects of anodal transcranial direct current stimulation applied over the dorsolateral prefrontal cortex and combined with physical therapy in PD patients. A total of 20 patients with PD were assigned to 1 of 2 study groups: group 1, anodal transcranial direct current stimulation plus physical therapy (n = 10) or group 2, placebo transcranial direct current stimulation plus physical therapy (n = 10). The 2 weeks of treatment consisted of daily direct current stimulation application for 25 minutes during physical therapy. Long-term effects of treatment were evaluated on clinical, neuropsychological, and motor task performance at 3-month follow-up. An improvement in motor abilities and a reduction of depressive symptoms were observed in both groups after the end of treatment and at 3-month follow-up. The Parkinson's Disease Cognitive Rating Scale and verbal fluency test performances increased only in the anodal direct current stimulation group with a stable effect at follow-up. The application of anodal transcranial direct current stimulation may be a relevant tool to improve cognitive abilities in PD and might be a novel therapeutic strategy for PD patients with mild cognitive impairment. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
The influence of winding direction of two-layer HTS DC cable on the critical current
NASA Astrophysics Data System (ADS)
Vyatkin, V. S.; Kashiwagi, K.; Ivanov, Y. V.; Otabe, E. S.; Yamaguchi, S.
2017-09-01
The design of twist pitch and direction of winding in multilayer HTS coaxial cable is important. For HTS AC transmitting cables, the main condition of twist pitch is the balance of inductances of each layer for providing the current balance between layers. In this work, the finite element method analysis for the coaxial cables with both same and opposite directions winding is used to calculate magnetic field distribution, and critical current of the cable is estimated. It was found that the critical current of the cable with same direction winding is about 10 percent higher than that in the case of the cable with the opposite direction winding.
Feasibility of transcranial direct current stimulation use in children aged 5 to 12 years.
Andrade, Agnes Carvalho; Magnavita, Guilherme Moreira; Allegro, Juleilda Valéria Brasil Nunes; Neto, Carlos Eduardo Borges Passos; Lucena, Rita de Cássia Saldanha; Fregni, Felipe
2014-10-01
Transcranial direct current stimulation is a noninvasive brain stimulation technique that has been studied for the treatment of neuropsychiatric disorders in adults, with minimal side effects. The objective of this study is to report the feasibility, tolerability, and the short-term adverse effects of transcranial direct current stimulation in children from 5 to 12 years of age. It is a naturalistic study of 14 children who underwent 10 sessions of transcranial direct current stimulation as an alternative, off-label, and open-label treatment for various languages disorders. Frequency, intensity, adverse effects, and perception of improvement reported by parents were collected. The main side effects detected were tingling (28.6%) and itching (28.6%), acute mood changes (42.9%), and irritability (35.7%). Transcranial direct current stimulation is a feasible and tolerable technique in children, although studies regarding plastic and cognitive changes in children are needed to confirm its safety. In conclusion, this is a naturalistic report in which we considered transcranial direct current stimulation as feasible in children. © The Author(s) 2013.
Preliminary Experiment of Non-Inductive Plasma Current Startup in SUNIST Spherical Tokamak
NASA Astrophysics Data System (ADS)
He, Yexi; Zhang, Liang; Xie, Lifeng; Tang, Yi; Yang, Xuanzong; Feng, Chunhua; Fu, Hongjun
2006-01-01
The non-inductive plasma current startup is an important motivation in SUNIST spherical tokamak. In the recent experiment, the magnetron microwave system of 100 kW and 2.45 GHz has been used to the ECR plasma current startup. Besides the toroidal field, a vertical field was applied to generate preliminary toroidal plasma current without the action of the central solenoid. As the evidence of plasma current startup with the effect of vertical field drift, the direction of plasma current is changed when the direction of vertical field changes during the ECR plasma current startup discharge. We also observed a maximum plasma current by scanning vertical field in both directions. Additionally, we used electrode discharge to assist the ECR plasma current startup.
Adjustable direct current and pulsed circuit fault current limiter
Boenig, Heinrich J.; Schillig, Josef B.
2003-09-23
A fault current limiting system for direct current circuits and for pulsed power circuit. In the circuits, a current source biases a diode that is in series with the circuits' transmission line. If fault current in a circuit exceeds current from the current source biasing the diode open, the diode will cease conducting and route the fault current through the current source and an inductor. This limits the rate of rise and the peak value of the fault current.
Mayr, Andreas; Ritsch, Nicole; Knotzer, Hans; Dünser, Martin; Schobersberger, Wolfgang; Ulmer, Hanno; Mutz, Norbert; Hasibeder, Walter
2003-02-01
To evaluate primary success rate and effectiveness of direct-current cardioversion in postoperative critically ill patients with new-onset supraventricular tachyarrhythmias. Prospective intervention study. Twelve-bed surgical intensive care unit in a university teaching hospital. Thirty-seven consecutive, adult surgical intensive care unit patients with new-onset supraventricular tachyarrhythmias without previous history of tachyarrhythmias. Direct-current cardioversion using a monophasic, damped sinus-wave defibrillator. Energy levels used were 50, 100, 200, and 300 J for regular supraventricular tachyarrhythmias (n = 6) and 100, 200, and 360 J for irregular supraventricular tachyarrhythmias (n = 31). None of the patients was hypoxic, hypokalemic, or hypomagnesemic at onset of supraventricular tachyarrhythmia. Direct-current cardioversion restored sinus rhythm in 13 of 37 patients (35% primary responders). Most patients responded to the first or second direct-current cardioversion shock. Only one of 25 patients requiring more than two direct-current cardioversion shocks converted into sinus rhythm. Primary responders were significantly younger and demonstrated significant differences in arterial Po2 values at onset of supraventricular tachyarrhythmias compared with nonresponders. At 24 and 48 hrs, only six (16%) and five (13.5%) patients remained in sinus rhythm, respectively. In contrast to recent literature, direct-current cardioversion proved to be an ineffective method for treatment of new-onset supraventricular tachyarrhythmias and, in particular, atrial fibrillation with a rapid ventricular response in surgical intensive care unit patients.
Yoosefinejad, Amin Kordi; Motealleh, Alireza; Abbasnia, Keramatollah
2016-01-01
Iontophoresis is the noninvasive delivery of ions using direct current. The direct current has some disadvantages such as skin burning. Interferential current is a kind of alternating current without limitations of direct current; so the purpose of this study is to investigate and compare the effects of lidocaine, interferential current and lidocaine iontophoresis using interferential current. 30 healthy women aged 20-24 years participated in this randomized clinical trial study. Pressure, tactile and pain thresholds were evaluated before and after the application of treatment methods. Pressure, tactile and pain sensitivity increased significantly after the application of lidocaine alone (p < 0.005) and lidocaine iontophoresis using interferential current (p < 0.0001). Lidocaine iontophoresis using interferential current can increase perception threshold of pain, tactile stimulus and pressure sense more significantly than lidocaine and interferential current alone.
Sandvik, Elizabeth L.; McLeod, Bruce R.; Parker, Albert E.; Stewart, Philip S.
2013-01-01
The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10th strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log10 CFU/cm2 were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm2) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm2) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications. PMID:23390518
Sandvik, Elizabeth L; McLeod, Bruce R; Parker, Albert E; Stewart, Philip S
2013-01-01
The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10(th) strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log(10) CFU/cm(2) were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm(2)) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm(2)) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... from a direct-current power system with one polarity grounded will be approved: (1) A solid connection..., casings, and other enclosures of electric equipment receiving power from a direct-current power system. 77... enclosures of electric equipment receiving power from a direct-current power system. (a) The following...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., casings and other enclosures of electric equipment receiving power from direct current power systems with... equipment receiving power from direct current power systems with one polarity grounded. For the purpose of... direct-current power system with one polarity grounded, the following methods of grounding will be...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., casings and other enclosures of electric equipment receiving power from direct current power systems with... equipment receiving power from direct current power systems with one polarity grounded. For the purpose of... direct-current power system with one polarity grounded, the following methods of grounding will be...
Code of Federal Regulations, 2011 CFR
2011-07-01
... from a direct-current power system with one polarity grounded will be approved: (1) A solid connection..., casings, and other enclosures of electric equipment receiving power from a direct-current power system. 77... enclosures of electric equipment receiving power from a direct-current power system. (a) The following...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., casings and other enclosures of electric equipment receiving power from direct current power systems with... equipment receiving power from direct current power systems with one polarity grounded. For the purpose of... direct-current power system with one polarity grounded, the following methods of grounding will be...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., casings and other enclosures of electric equipment receiving power from direct current power systems with... equipment receiving power from direct current power systems with one polarity grounded. For the purpose of... direct-current power system with one polarity grounded, the following methods of grounding will be...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., casings and other enclosures of electric equipment receiving power from direct current power systems with... equipment receiving power from direct current power systems with one polarity grounded. For the purpose of... direct-current power system with one polarity grounded, the following methods of grounding will be...
Efficacy of transcranial direct-current stimulation in women with provoked vestibulodynia.
Morin, Annie; Léonard, Guillaume; Gougeon, Véronique; Cyr, Marie-Pierre; Waddell, Guy; Bureau, Yves-André; Girard, Isabelle; Morin, Mélanie
2017-06-01
Provoked vestibulodynia is a highly prevalent condition characterized by acute recurrent pain located at the vaginal entrance in response to pressure application or attempted vaginal penetration. Despite a wide variety of treatments offered to women with provoked vestibulodynia, a high proportion of women are refractory to conventional treatment. Transcranial direct-current stimulation is a noninvasive brain stimulation technique that has been shown effective for improving various chronic pain conditions. Growing evidence suggests that the central nervous system could play a key role in provoked vestibulodynia. Targeting the central nervous system could therefore be a promising treatment for women with provoked vestibulodynia. The purpose of this study was to evaluate and compare the efficacy of active and sham transcranial direct-current stimulation in reducing pain intensity during intercourse in patients with provoked vestibulodynia. We conducted a triple-blind, parallel-group, randomized controlled trial. Women aged 17-45 years diagnosed with provoked vestibulodynia by a gynecologist using a validated protocol were randomized to 10 sessions of either active transcranial direct-current stimulation (intensity = 2 mA) or 10 sessions of sham transcranial direct-current stimulation, over a 2-week period. Both active and sham transcranial direct-current stimulation were applied for 20 minutes, with the anode positioned over the primary motor cortex, and the cathode over the contralateral supraorbital area. Outcome measures were collected at baseline, 2 weeks after treatment, and at 3-month follow-up by an evaluator blinded to group assignment. The primary objective was to assess pain intensity during intercourse, using a numerical rating scale. Secondary outcomes focused on sexual function and distress, vestibular sensitivity, psychological distress, treatment satisfaction, and patient impression of change. Statistical analyses were conducted on the intention-to-treat basis, and treatment effects were evaluated using a mixed linear model for repeated measures. A total of 40 patients were randomly assigned to receive either active (n = 20) or sham (n = 20) transcranial direct-current stimulation treatments from November 2014 through February 2016. Baseline characteristics were similar between the active and sham transcranial direct-current stimulation groups. In full compliance with the study protocol, every participant followed all courses of the study treatment, including assessments at 2-week and 3-month follow-up. Pain during sexual intercourse was not significantly different between active and sham treatment groups 2 weeks after treatment (P = .84) and at follow-up (P = .09). Mean baseline and 2-week assessment pain intensity were, respectively, 6.8 (95% confidence interval, 5.9-7.7) and 5.6 (95% confidence interval, 4.7-6.5) for active transcranial direct-current stimulation (P = .03) vs 7.5 (95% confidence interval, 6.6-8.4) and 5.7 (95% confidence interval, 4.8-6.6) for sham transcranial direct-current stimulation (P = .001). Nonsignificant differences between the 2 groups were also found in their sexual function and distress after treatment (P > .20) and at follow-up (P > .10). Overall, at 2-week assessment 68% assigned to active transcranial direct-current stimulation reported being very much, much, or slightly improved compared to 65% assigned to sham transcranial direct-current stimulation (P = .82), and still comparable at follow-up: 42% vs 65%, respectively (P = .15). Findings suggest that active transcranial direct-current stimulation is not more effective than sham transcranial direct-current stimulation for reducing pain in women with provoked vestibulodynia. Likewise, no significant effects were found on sexual function, vestibular sensitivity, or psychological distress. Copyright © 2017 Elsevier Inc. All rights reserved.
Electrical stimulation of the motor cortex enhances treatment outcome in post-stroke aphasia.
Meinzer, Marcus; Darkow, Robert; Lindenberg, Robert; Flöel, Agnes
2016-04-01
Transcranial direct current stimulation has shown promise to improve recovery in patients with post-stroke aphasia, but previous studies have only assessed stimulation effects on impairment parameters, and evidence for long-term maintenance of transcranial direct current stimulation effects from randomized, controlled trials is lacking. Moreover, due to the variability of lesions and functional language network reorganization after stroke, recent studies have used advanced functional imaging or current modelling to determine optimal stimulation sites in individual patients. However, such approaches are expensive, time consuming and may not be feasible outside of specialized research centres, which complicates incorporation of transcranial direct current stimulation in day-to-day clinical practice. Stimulation of an ancillary system that is functionally connected to the residual language network, namely the primary motor system, would be more easily applicable, but effectiveness of such an approach has not been explored systematically. We conducted a randomized, parallel group, sham-controlled, double-blind clinical trial and 26 patients with chronic aphasia received a highly intensive naming therapy over 2 weeks (8 days, 2 × 1.5 h/day). Concurrently, anodal-transcranial direct current stimulation was administered to the left primary motor cortex twice daily at the beginning of each training session. Naming ability for trained items (n = 60 pictures that could not be named during repeated baseline assessments), transfer to untrained items (n = 284 pictures) and generalization to everyday communication were assessed immediately post-intervention and 6 months later. Naming ability for trained items was significantly improved immediately after the end of the intervention in both the anodal (Cohen's d = 3.67) and sham-transcranial direct current stimulation groups (d = 2.10), with a trend for larger gains in the anodal-transcranial direct current stimulation group (d = 0.71). Treatment effects for trained items were significantly better maintained in the anodal-transcranial direct current stimulation group 6 months later (d = 1.19). Transfer to untrained items was significantly larger in the anodal-transcranial direct current stimulation group after the training (d = 1.49) and during the 6 month follow-up assessment (d = 3.12). Transfer effects were only maintained in the anodal-transcranial direct current stimulation group. Functional communication was significantly more improved in the anodal-transcranial direct current stimulation group at both time points compared to patients treated with sham-transcranial direct current stimulation (d = 0.75-0.99). Our results provide the first evidence from a randomized, controlled trial that transcranial direct current stimulation can improve both function and activity-related outcomes in chronic aphasia, with medium to large effect sizes, and that these effects are maintained over extended periods of time. These effects were achieved with an easy-to-implement and thus clinically feasible motor-cortex montage that may represent a promising 'backdoor' approach to improve language recovery after stroke. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kumru, Hatice; Pelayo, Raul; Vidal, Joan; Tormos, Josep Maria; Fregni, Felipe; Navarro, Xavier; Pascual-Leone, Alvaro
2010-01-01
The aim of this study was to evaluate the analgesic effect of transcranial direct current stimulation of the motor cortex and techniques of visual illusion, applied isolated or combined, in patients with neuropathic pain following spinal cord injury. In a sham controlled, double-blind, parallel group design, 39 patients were randomized into four groups receiving transcranial direct current stimulation with walking visual illusion or with control illusion and sham stimulation with visual illusion or with control illusion. For transcranial direct current stimulation, the anode was placed over the primary motor cortex. Each patient received ten treatment sessions during two consecutive weeks. Clinical assessment was performed before, after the last day of treatment, after 2 and 4 weeks follow-up and after 12 weeks. Clinical assessment included overall pain intensity perception, Neuropathic Pain Symptom Inventory and Brief Pain Inventory. The combination of transcranial direct current stimulation and visual illusion reduced the intensity of neuropathic pain significantly more than any of the single interventions. Patients receiving transcranial direct current stimulation and visual illusion experienced a significant improvement in all pain subtypes, while patients in the transcranial direct current stimulation group showed improvement in continuous and paroxysmal pain, and those in the visual illusion group improved only in continuous pain and dysaesthesias. At 12 weeks after treatment, the combined treatment group still presented significant improvement on the overall pain intensity perception, whereas no improvements were reported in the other three groups. Our results demonstrate that transcranial direct current stimulation and visual illusion can be effective in the management of neuropathic pain following spinal cord injury, with minimal side effects and with good tolerability. PMID:20685806
Multitarget transcranial direct current stimulation for freezing of gait in Parkinson's disease.
Dagan, Moria; Herman, Talia; Harrison, Rachel; Zhou, Junhong; Giladi, Nir; Ruffini, Giulio; Manor, Brad; Hausdorff, Jeffrey M
2018-04-01
Recent findings suggest that transcranial direct current stimulation of the primary motor cortex may ameliorate freezing of gait. However, the effects of multitarget simultaneous stimulation of motor and cognitive networks are mostly unknown. The objective of this study was to evaluate the effects of multitarget transcranial direct current stimulation of the primary motor cortex and left dorsolateral prefrontal cortex on freezing of gait and related outcomes. Twenty patients with Parkinson's disease and freezing of gait received 20 minutes of transcranial direct current stimulation on 3 separate visits. Transcranial direct current stimulation targeted the primary motor cortex and left dorsolateral prefrontal cortex simultaneously, primary motor cortex only, or sham stimulation (order randomized and double-blinded assessments). Participants completed a freezing of gait-provoking test, the Timed Up and Go, and the Stroop test before and after each transcranial direct current stimulation session. Performance on the freezing of gait-provoking test (P = 0.010), Timed Up and Go (P = 0.006), and the Stroop test (P = 0.016) improved after simultaneous stimulation of the primary motor cortex and left dorsolateral prefrontal cortex, but not after primary motor cortex only or sham stimulation. Transcranial direct current stimulation designed to simultaneously target motor and cognitive regions apparently induces immediate aftereffects in the brain that translate into reduced freezing of gait and improvements in executive function and mobility. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.
Narita, Zui; Yokoi, Yuma
2017-06-19
Patients with Alzheimer's disease frequently elicit neuropsychiatric symptoms as well as cognitive deficits. Above all, depression is one of the most common neuropsychiatric symptoms in Alzheimer's disease but antidepressant drugs have not shown significant beneficial effects on it. Moreover, electroconvulsive therapy has not ensured its safety for potential severe adverse events although it does show beneficial clinical effect. Transcranial direct current stimulation can be the safe alternative of neuromodulation, which applies weak direct electrical current to the brain. Although transcranial direct current stimulation has plausible evidence for its effect on depression in young adult patients, no study has explored it in older subjects with depression in Alzheimer's disease. Therefore, we present a study protocol designed to evaluate the safety and clinical effect of transcranial direct current stimulation on depression in Alzheimer's disease in subjects aged over 65 years. This is a two-arm, parallel-design, randomized controlled trial, in which patients and assessors will be blinded. Subjects will be randomized to either an active or a sham transcranial direct current stimulation group. Participants in both groups will be evaluated at baseline, immediately, and 2 weeks after the intervention. This study investigates the safety and effect of transcranial direct current stimulation that may bring a significant impact on both depression and cognition in patients with Alzheimer's disease, and may be useful to enhance their quality of life. ClinicalTrials.gov, NCT02351388 . Registered on 27 January 2015. Last updated on 30 May 2016.
Advanced electric propulsion research - 1990
NASA Technical Reports Server (NTRS)
Monheiser, Jeffery M.; Wilbur, Paul J.
1991-01-01
An experimental study of impingement current collection on the accelerator grid of an ion thruster is presented. The equipment, instruments, and procedures being used to conduct the study are discussed. The contribution to this current due to charge-exchange ions produced close to the grid is determined using a volume-integration procedure and measured ion beam current design, computed neutral atom density and measured beam plasma potential data. This current, which is expected to be almost equal to that measured directly, is found to be an order of magnitude less. The impingement current determined by integrating the current density of ambient ions in the beam plasma close to the grid is found to agree with the directly measured impingement current. Possible reasons for the disagreement between the directly measured and volume integrated impingement currents are discussed.
NASA Astrophysics Data System (ADS)
Geng, J.; Shen, B.; Li, C.; Zhang, H.; Matsuda, K.; Li, J.; Zhang, X.; Coombs, T. A.
2016-06-01
Direct current carrying type II superconductors present a dynamic resistance when subjected to an oscillating magnetic field perpendicular to the current direction. If a superconductor is under a homogeneous field with high magnitude, the dynamic resistance value is nearly independent of transport current. Hoffmann and coworkers [Hoffmann et al., IEEE Trans. Appl. Supercond. 21, 1628 (2011)] discovered, however, flux pumping effect when a superconducting tape is under an inhomogeneous field orthogonal to the tape surface generated by rotating magnets. Following their work, we report the whole Voltage-Ampere (V-I) curves of an YBCO coated conductor under permanent magnets rotating with different frequencies and directions. We discovered that the two curves under opposite rotating directions differ from each other constantly when the transport current is less than the critical current, whereas the difference gradually reduces after the transport current exceeds the critical value. We also find that for different field frequencies, the difference between the two curves decreases faster with lower field frequency. The result indicates that the transport loss is dependent on the relative direction of the transport current and field travelling, which is distinct from traditional dynamic resistance model. The work may be instructive for the design of superconducting motors.
Shirota, Yuichiro; Dhaka, Suman; Paulus, Walter; Sommer, Martin
2017-05-22
Transcranial magnetic stimulation (TMS) with different current directions can activate different sets of neurons. Current direction can also affect the results of repetitive TMS. To test the influence of uni-directional intermittent theta burst stimulation (iTBS) using different current directions, namely posteroanterior (PA) and anteroposterior (AP), on motor behaviour. In a cross-over design, PA- and AP-iTBS was applied over the left primary motor cortex in 19 healthy, right-handed volunteers. Performance of a finger-tapping task was recorded before and 0, 10, 20, and 30min after the iTBS. The task was conducted with the right and left hands separately at each time point. As a control, AP-iTBS with reduced intensity was applied to 14 participants in a separate session (AP weak condition). The finger-tapping count with the left hand was decreased after PA-iTBS. Neither AP- nor AP weak -iTBS altered the performance. Current direction had a significant impact on the after-effects of iTBS. Copyright © 2017 Elsevier B.V. All rights reserved.
Design of an intelligent instrument for large direct-current measurement
NASA Astrophysics Data System (ADS)
Zhang, Rong; Zhang, Gang; Zhang, Zhipeng
2000-05-01
The principle and structure of an intelligent large direct current measurement is presented in this paper. It is of reflective type and detects signal by employing the high direct current sensor. The single-chip microcomputer of this system provides a powerful function of control and processing and greatly improves the extent of intelligence. The value can be displayed and printed automatically or manually.
NASA Astrophysics Data System (ADS)
Jog, Mayank V.; Smith, Robert X.; Jann, Kay; Dunn, Walter; Lafon, Belen; Truong, Dennis; Wu, Allan; Parra, Lucas; Bikson, Marom; Wang, Danny J. J.
2016-10-01
Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation technique that applies mA currents at the scalp to modulate cortical excitability. Here, we present a novel magnetic resonance imaging (MRI) technique, which detects magnetic fields induced by tDCS currents. This technique is based on Ampere’s law and exploits the linear relationship between direct current and induced magnetic fields. Following validation on a phantom with a known path of electric current and induced magnetic field, the proposed MRI technique was applied to a human limb (to demonstrate in-vivo feasibility using simple biological tissue) and human heads (to demonstrate feasibility in standard tDCS applications). The results show that the proposed technique detects tDCS induced magnetic fields as small as a nanotesla at millimeter spatial resolution. Through measurements of magnetic fields linearly proportional to the applied tDCS current, our approach opens a new avenue for direct in-vivo visualization of tDCS target engagement.
Benussi, Alberto; Koch, Giacomo; Cotelli, Maria; Padovani, Alessandro; Borroni, Barbara
2015-10-01
Numerous studies have highlighted the possibility of modulating the excitability of cerebellar circuits using transcranial direct current stimulation. The present study investigated whether a single session of cerebellar anodal transcranial direct current stimulation could improve symptoms in patients with ataxia. Nineteen patients with ataxia underwent a clinical and functional evaluation pre- and post-double-blind, randomized, sham, or anodal transcranial direct current stimulation. There was a significant interaction between treatment and time on the Scale for the Assessment and Rating of Ataxia, on the International Cooperative Ataxia Rating Scale, on the 9-Hole Peg Test, and on the 8-Meter Walking Time (P < 0.001). At the end of the sessions, all performance scores were significantly different in the sham trial, compared to the intervention trial. A single session of anodal cerebellar transcranial direct current stimulation can transiently improve symptoms in patients with ataxia and might represent a promising tool for future rehabilitative approaches. © 2015 International Parkinson and Movement Disorder Society.
Figlewski, Krystian; Blicher, Jakob Udby; Mortensen, Jesper; Severinsen, Kåre Eg; Nielsen, Jørgen Feldbæk; Andersen, Henning
2017-01-01
Transcranial direct current stimulation may enhance effect of rehabilitation in patients with chronic stroke. The objective was to evaluate the efficacy of anodal transcranial direct current stimulation combined with constraint-induced movement therapy of the paretic upper limb. A total of 44 patients with stroke were randomly allocated to receive 2 weeks of constraint-induced movement therapy with either anodal or sham transcranial direct current stimulation. The primary outcome measure, Wolf Motor Function Test, was assessed at baseline and after the intervention by blinded investigators. Both groups improved significantly on all Wolf Motor Function Test scores. Group comparison showed improvement on Wolf Motor Function Test in the anodal group compared with the sham group. Anodal transcranial direct current stimulation combined with constraint-induced movement therapy resulted in improvement of functional ability of the paretic upper limb compared with constraint-induced movement therapy alone. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01983319. © 2016 American Heart Association, Inc.
Short-term anomia training and electrical brain stimulation.
Flöel, Agnes; Meinzer, Marcus; Kirstein, Robert; Nijhof, Sarah; Deppe, Michael; Knecht, Stefan; Breitenstein, Caterina
2011-07-01
Language training success in chronic aphasia remains only moderate. Electric brain stimulation may be a viable way to enhance treatment efficacy. In a randomized, double-blind, sham-controlled crossover trial, we assessed if anodal transcranial direct current stimulation compared to cathodal transcranial direct current stimulation and sham stimulation over the right temporo-parietal cortex would improve the success of short-term high-frequency anomia training. Twelve chronic poststroke aphasia patients were studied. Naming outcome was assessed after training and 2 weeks later. All training conditions led to a significant increase in naming ability, which was retained for at least 2 weeks after the end of the training. Application of anodal transcranial direct current stimulation significantly enhanced the overall training effect compared to sham stimulation. Baseline naming ability significantly predicted anodal transcranial direct current stimulation effects. Anodal transcranial direct current stimulation applied over the nonlanguage dominant hemisphere can enhance language training outcome in chronic aphasia. Clinical Trial Registration- URL: www.clinicaltrials.gov/. Unique identifier: NCT00822068.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-08
... Airworthiness Directives; Agusta S.p.A. (Type Certificate Currently Held by Agusta Westland) Helicopters AGENCY... Sec. 39.13 by adding the following new airworthiness directive (AD): 2013-22-16 Agusta S.P.A. (Type... new airworthiness directive (AD) for certain Agusta S.p.A. (Agusta) Model AW139 helicopters. This AD...
EFFECTS OF ELECTRICAL CURRENTS ON THE ABSORPTION OF WATER BY EGGS OF NEREIS LIMBATA
Osterhout, W. J. V.
1950-01-01
Unfertilized eggs of the marine worm Nereis limbata subjected to electrical currents (direct or alternating) undergo remarkable changes. Certain minute granules just inside the surface of the egg absorb water and swell to more than 300 times their original size and thereby produce a mass of jelly which surrounds the egg with a zone about as wide as the original diameter of the egg. The amount of direct current is too small to produce any change of color in eggs stained with neutral red. In direct current the jelly appears first on the side toward the anode and moves toward the anode. In alternating current it appears on opposite sides facing the electrodes. It might be thought that the current changes the chemical character of the granules so that they are able to absorb very large quantities of water but this seems unlikely. If the current is shut off after 1 minute the swelling continues. This might be explained on the ground that each jelly precursor granule is covered with a waterproof film which is removed by the current. It does not seem probable that the effect is due to heat produced by the current since the exposure is so short. It seems possible that the current may strip off micelles from the waterproof covering of the granules and allow water to penetrate. The fact that alternating current is more effective than direct current might be explained on the ground that the egg may be represented as a capacity in parallel with a resistance so constituted that relatively little direct current can enter. The non-aqueous film which covers the surface of the protoplasm appears to be liquid rather than solid. PMID:15406375
Bandeira, Igor Dórea; Guimarães, Rachel Silvany Quadros; Jagersbacher, João Gabriel; Barretto, Thiago Lima; de Jesus-Silva, Jéssica Regina; Santos, Samantha Nunes; Argollo, Nayara; Lucena, Rita
2016-06-01
Studies investigating the possible benefits of transcranial direct current stimulation on left dorsolateral prefrontal cortex in children and adolescents with attention-deficit hyperactivity disorder (ADHD) have not been performed. This study assesses the effect of transcranial direct current stimulation in children and adolescents with ADHD on neuropsychological tests of visual attention, visual and verbal working memory, and inhibitory control. An auto-matched clinical trial was performed involving transcranial direct current stimulation in children and adolescents with ADHD, using SNAP-IV and subtests Vocabulary and Cubes of the Wechsler Intelligence Scale for Children III (WISC-III). Subjects were assessed before and after transcranial direct current stimulation sessions with the Digit Span subtest of the WISC-III, inhibitory control subtest of the NEPSY-II, Corsi cubes, and the Visual Attention Test (TAVIS-3). There were 9 individuals with ADHD according to Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) criteria. There was statistically significant difference in some aspects of TAVIS-3 tests and the inhibitory control subtest of NEPSY-II. Transcranial direct current stimulation can be related to a more efficient processing speed, improved detection of stimuli, and improved ability to switch between an ongoing activity and a new one. © The Author(s) 2016.
Theory of Direct Optical Measurement of Pure Spin Currents in Direct-gap Semiconductors
NASA Astrophysics Data System (ADS)
Wang, Jing; Liu, Ren-Bao; Zhu, Bang-Fen
2010-01-01
We predict that a pure spin current in a semiconductor may lead to the optical circular birefingence effect without invoking magnetization. This effect may be exploited for a direct, non-destructive measurement of the pure spin current. We derive the effective coupling between a pure spin current and a polarized light beam, and point out that it originates from the inherent spin-orbit coupling in the valence bands, rather than the Rashba or Dresselhaus effects due to inversion asymmetries. The Faraday rotation angle in GaAs is estimated, which indicates that this spin current optical birefringence is experimentally observable.
Turner, Steven Richard
2006-12-26
A method and apparatus for measuring current, and particularly bi-directional current, in a field-effect transistor (FET) using drain-to-source voltage measurements. The drain-to-source voltage of the FET is measured and amplified. This signal is then compensated for variations in the temperature of the FET, which affects the impedance of the FET when it is switched on. The output is a signal representative of the direction of the flow of current through the field-effect transistor and the level of the current through the field-effect transistor. Preferably, the measurement only occurs when the FET is switched on.
Effects of direct current electric-field using ITO plate on breast cancer cell migration.
Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Seo, Hyok Jin; Koo, Min-Ah; You, Kyung Eun; Kim, Dohyun; Park, Jong-Chul
2014-01-01
Cell migration is an essential activity of the cells in various biological phenomena. The evidence that electrotaxis plays important roles in many physiological phenomena is accumulating. In electrotaxis, cells move with a directional tendency toward the anode or cathode under direct-current electric fields. Indium tin oxide, commonly referred to as ITO has high luminous transmittance, high infrared reflectance, good electrical conductivity, excellent substrate adherence, hardness and chemical inertness and hence, have been widely and intensively studied for many years. Because of these properties of ITO films, the electrotaxis using ITO plate was evaluated. Under the 0 V/cm condition, MDA-MB-231 migrated randomly in all directions. When 1 V/cm of dc EF was applied, cells moved toward anode. The y forward migration index was -0.046 ± 0.357 under the 0 V/cm and was 0.273 ± 0.231 under direct-current electric field of 1 V/cm. However, the migration speed of breast cancer cell was not affected by direct-current electric field using ITO plate. In this study, we designed a new electrotaxis system using an ITO coated glass and observed the migration of MDA-MB-231 on direct current electric-field of the ITO glass.
NASA Astrophysics Data System (ADS)
Hopkins, Julia; Elgar, Steve; Raubenheimer, Britt
2017-04-01
Accurately characterizing the interaction of waves and currents can improve predictions of wave propagation and subsequent sediment transport in the nearshore. Along the southern shoreline of Martha's Vineyard, MA, waves propagate across strong tidal currents as they shoal, providing an ideal environment for investigating wave-current interaction. Wave directions and mean currents observed for two 1-month-long periods in 7- and 2-m water depths along 11 km of the Martha's Vineyard shoreline have strong tidal modulations. Wave directions shift by as much as 70 degrees over a tidal cycle in 7 m depth, and by as much as 25 degrees in 2 m depth. The magnitude of the tidal modulations in the wave field decreases alongshore to the west, consistent with the observed decrease in tidal currents from 2.1 to 0.2 m/s. The observations are reproduced accurately by a numerical model (SWAN and Deflt3D-FLOW) that simulates waves and currents over the observed bathymetry. Model simulations with and without wave-current interaction and tidal depth changes demonstrate that the observed tidal modulations of the wave field primarily are caused by wave-current interaction and not by tidal changes to water depths over the nearby complex shoals. Sediment transport estimates from simulated wave conditions using a range of tidal currents and offshore wave fields indicate that the modulation of the wave field at Martha's Vineyard can impact the direction of wave-induced alongshore sediment transport, sometimes driving transport opposing the direction of the offshore incident wave field. As such, the observations and model simulations suggest the importance of wave-current interaction to tidally averaged transport in mixed-energy wave-and-current nearshore environments. Supported by ASD(R&E), NSF, NOAA (Sea Grant), and ONR.
Digital control of a direct current converter for a hybrid vehicle
NASA Astrophysics Data System (ADS)
Hernandez, Juan Manuel
The nonlinear feedback loops permitting the large signal control of pulse width modulators in direct current converters are discussed. A digital feedback loop on a converter controlling the coupling of a direct current machine is described. It is used in the propulsion of a hybrid vehicle (thermal-electric) with regenerative braking. The protection of the power switches is also studied. An active protection of the MOST bipolar transistor association is proposed.
Augmenting Visual Search Performance with Transcranial Direct Current Stimulation (tDCS)
2015-03-01
AFRL-RH-WP-TR-2015-0013 Augmenting Visual Search Performance with transcranial Direct Current Stimulation ( tDCS ) Justin Nelson...Stimulation ( tDCS ) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Justin Nelson‡, Dr. R. Andy McKinley...evaluate a form of non-invasive brain stimulation known as transcranial direct current stimulation ( tDCS ) over the left frontal eye field (LFEF) region
Field free, directly heated lanthanum boride cathode
Leung, Ka-Ngo; Moussa, D.; Wilde, S.B.
1987-02-02
A directly heated cylindrical lanthanum boride cathode assembly is disclosed which minimizes generation of magnetic field which would interfere with electron emission from the cathode. The cathode assembly comprises a lanthanum boride cylinder in electrical contact at one end with a central support shaft which functions as one electrode to carry current to the lanthanum boride cylinder and in electrical contact, at its opposite end with a second electrode which is coaxially position around the central support shaft so that magnetic fields generated by heater current flowing in one direction through the central support shaft are cancelled by an opposite magnetic field generated by current flowing through the lanthanum boride cylinder and the coaxial electrode in a direction opposite to the current flow in the central shaft.
Zener diode controls switching of large direct currents
NASA Technical Reports Server (NTRS)
1965-01-01
High-current zener diode is connected in series with the positive input terminal of a dc supply to block the flow of direct current until a high-frequency control signal is applied across the zener diode. This circuit controls the switching of large dc signals.
Current observations offshore Punta Tuna, Puerto Rico, 21 June-7 December 1980. Part A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frye, D.; Leavitt, K.; Whitney, A.
1981-08-01
An oceanographic measurement program was conducted in the vicinity of a proposed ocean thermal energy conversion (OTEC) site about 20 km offshore of Punta Tuna, Puerto Rico. As part of the program, a mooring consisting of five current meters was maintained between 21 June and 7 December, 1980. The current data collected are summarized according to frequency of occurrence within 5 cm/sec speed and 15/sup 0/ direction intervals. Sums and percentages of total occurrence are given for each speed and direction class, along with mean speed, extreme speeds, mean component speeds, and standard deviations. Hourly averages of current speed, truemore » direction, current vector, temperature, and pressure are plotted as a function of time. On 13 December, 1980, a current meter array was deployed at the Punta Tuna site and recovered on May 16, 1981. The processed current data from this current meter array are described. (LEW)« less
Fiber optic current monitor for high-voltage applications
Renda, G.F.
1992-04-21
A current monitor which derives its power from the conductor being measured for bidirectionally measuring the magnitude of current (from DC to above 50 khz) flowing through a conductor across which a relatively high level DC voltage is applied, includes a pair of identical transmitter modules connected in opposite polarity to one another in series with the conductor being monitored, for producing from one module a first light signal having an intensity directly proportional to the magnitude of current flowing in one direction through the conductor during one period of time, and from the other module a second light signal having an intensity directly proportional to the magnitude of current flowing in the opposite direction through the conductor during another period of time, and a receiver located in a safe area remote from the high voltage area for receiving the first and second light signals, and converting the same to first and second voltage signals having levels indicative of the magnitude of current being measured at a given time. 6 figs.
Fiber optic current monitor for high-voltage applications
Renda, George F.
1992-01-01
A current monitor which derives its power from the conductor being measured for bidirectionally measuring the magnitude of current (from DC to above 50 khz) flowing through a conductor across which a relatively high level DC voltage is applied, includes a pair of identical transmitter modules connected in opposite polarity to one another in series with the conductor being monitored, for producing from one module a first light signal having an intensity directly proportional to the magnitude of current flowing in one direction through the conductor during one period of time, and from the other module a second light signal having an intensity directly proportional to the magnitude of current flowing in the opposite direction through the conductor during another period of time, and a receiver located in a safe area remote from the high voltage area for receiving the first and second light signals, and converting the same to first and second voltage signals having levels indicative of the magnitude of current being measured at a given time.
To, Wing Ting; Hart, John; De Ridder, Dirk; Vanneste, Sven
2016-01-01
Recently, techniques to non-invasively modulate specific brain areas gained popularity in the form of transcranial direct current stimulation (tDCS) and high-definition transcranial direct current stimulation. These non-invasive techniques have already shown promising outcomes in various studies with healthy subjects as well as patient populations. Despite widespread dissemination of tDCS, there remain significant unknowns about the influence of a diverse number of tDCS parameters (e.g. polarity, size, position of electrodes & duration of stimulation) in inducing neurophysiological and behavioral effects. This article explores both techniques starting with the history of tDCS, to the differences between conventional tDCS and high-definition transcranial direct current stimulation, the underlying physiological mechanism, the (in)direct effects, the applications of tDCS with varying parameters, the efficacy, the safety issues and the opportunities for future research.
Naros, Georgios; Geyer, Marc; Koch, Susanne; Mayr, Lena; Ellinger, Tabea; Grimm, Florian; Gharabaghi, Alireza
2016-04-01
Bilateral transcranial direct current stimulation (TDCS) is superior to unilateral TDCS when targeting motor learning. This effect could be related to either the current flow direction or additive polarity-specific effects on each hemisphere. This sham-controlled randomized study included fifty right-handed healthy subjects in a parallel-group design who performed an exoskeleton-based motor task of the proximal left arm on three consecutive days. Prior to training, we applied either sham, right anodal (a-TDCS), left cathodal (c-TDCS), concurrent a-TDCS and c-TDCS with two independent current sources and return electrodes (double source (ds)-TDCS) or classical bilateral stimulation (bi-TDCS). Motor performance improved over time for both unilateral (a-TDCS, c-TDCS) and bilateral (bi-TDCS, ds-TDCS) TDCS montages. However, only the two bilateral paradigms led to an improvement of the final motor performance at the end of the training period as compared to the sham condition. There was no difference between the two bilateral stimulation conditions (bi-TDCS, ds-TDCS). Bilateral TDCS is more effective than unilateral stimulation due to its polarity-specific effects on each hemisphere rather than due to its current flow direction. This study is the first systematic evaluation of stimulation polarity and current flow direction of bi-hemispheric motor cortex TDCS on motor learning of proximal upper limb muscles. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
77 FR 36950 - Airworthiness Directives; Dassault Aviation Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
... time between overhauls, and required an initial overhaul, of the direct current (DC) generator... overhauls, and required an initial overhaul, of the DC generator (bearings). That NPRM resulted from... condition as: Time between overhaul (TBO) of DC [direct current] generator bearings is set at 1,000 flight...
Direct-Current Monitor With Flux-Reset Transformer Coupling
NASA Technical Reports Server (NTRS)
Canter, Stanley
1993-01-01
Circuit measures constant or slowly-varying unidirectional electrical current using flux-reset transformer coupling. Measurement nonintrusive in sense that no need for direct contact with wire that carries load current to be measured, and no need to install series resistive element in load-current path. Toroidal magnetic core wrapped with coil of wire placed around load-current-carrying wire, acts as transformer core, load-current-carrying wire acts as primary winding of transformer, and coil wrapped on core acts as secondary winding.
The control of the upstream movement of fish with pulsated direct current
McLain, Alberton L.
1957-01-01
In the Silver River, 78,648 fish comprising 21 species were taken from the trap of the direct-current diversion device. The total kill of fish moving upstream, including 289 sea lampreys, was 1,016, or 1.3 percent. This river had presented a serious problem in the operation of an alternating-current control device during previous seasons. In 1955, 85.5 percent of three important species of fish were killed at the control structure. During 1956, this mortality was reduced to 8.1 percent by the operation of the direct-current equipment.
An Incubatable Direct Current Stimulation System for In Vitro Studies of Mammalian Cells
Panitch, Alyssa; Caplan, Michael; Sweeney, James D.
2012-01-01
Abstract The purpose of this study was to provide a simplified alternative technology and format for direct current stimulation of mammalian cells. An incubatable reusable stimulator was developed that effectively delivers a regulated current and does not require constant monitoring. PMID:23514694
Trojak, Benoit; Soudry-Faure, Agnès; Abello, Nicolas; Carpentier, Maud; Jonval, Lysiane; Allard, Coralie; Sabsevari, Foroogh; Blaise, Emilie; Ponavoy, Eddy; Bonin, Bernard; Meille, Vincent; Chauvet-Gelinier, Jean-Christophe
2016-05-17
Approximately 15 million persons in the European Union and 10 million persons in the USA are alcohol-dependent. The global burden of disease and injury attributable to alcohol is considerable: worldwide, approximately one in 25 deaths in 2004 was caused by alcohol. At the same time, alcohol use disorders remain seriously undertreated. In this context, alternative or adjunctive therapies such as brain stimulation may play a prominent role. The early results of studies using transcranial direct current stimulation found that stimulations delivered to the dorsolateral prefrontal cortex result in a significant reduction of craving and an improvement of the decision-making processes in various additive disorders. We, therefore, hypothesize that transcranial direct current stimulation can lead to a decrease in alcohol consumption in patients suffering from alcohol use disorders. We report the protocol of a randomized, double-blind, placebo-controlled, parallel-group trial, to evaluate the efficacy of transcranial direct current stimulation on alcohol reduction in patients with an alcohol use disorder. The study will be conducted in 14 centers in France and Monaco. Altogether, 340 subjects over 18 years of age and diagnosed with an alcohol use disorder will be randomized to receive five consecutive twice-daily sessions of either active or placebo transcranial direct current stimulation. One session consists in delivering a current flow continuously (anode F4; cathode F3) twice for 13 minutes, with treatments separated by a rest interval of 20 min. Efficacy will be evaluated using the change from baseline (alcohol consumption during the 4 weeks before randomization) to 24 weeks in the total alcohol consumption and number of heavy drinking days. Secondary outcome measures will include alcohol craving, clinical and biological improvements, and the effects on mood and quality of life, as well as cognitive and safety assessments, and, for smokers, an assessment of the effects of transcranial direct current stimulation on tobacco consumption. Several studies have reported a beneficial effect of transcranial direct current stimulation on substance use disorders by reducing craving, impulsivity, and risk-taking behavior, and suggest that transcranial direct current stimulation may be a promising treatment in addiction. However, to date, no studies have included sufficiently large samples and sufficient follow-up to confirm the hypothesis. Results from this large randomized controlled trial will give a better overview of the therapeutic potential of transcranial direct current stimulation in alcohol use disorders. Clinical Trials Gov, NCT02505126 (registration date: July 15 2015).
30 CFR 75.703-2 - Approved grounding mediums.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Approved grounding mediums. 75.703-2 Section 75... mediums. For purposes of grounding offtrack direct-current machines, the following grounding mediums are... alternating current grounding medium where such machines are fed by an ungrounded direct-current power system...
30 CFR 75.703-2 - Approved grounding mediums.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Approved grounding mediums. 75.703-2 Section 75... mediums. For purposes of grounding offtrack direct-current machines, the following grounding mediums are... alternating current grounding medium where such machines are fed by an ungrounded direct-current power system...
30 CFR 75.703-2 - Approved grounding mediums.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved grounding mediums. 75.703-2 Section 75... mediums. For purposes of grounding offtrack direct-current machines, the following grounding mediums are... alternating current grounding medium where such machines are fed by an ungrounded direct-current power system...
30 CFR 75.703-2 - Approved grounding mediums.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Approved grounding mediums. 75.703-2 Section 75... mediums. For purposes of grounding offtrack direct-current machines, the following grounding mediums are... alternating current grounding medium where such machines are fed by an ungrounded direct-current power system...
30 CFR 75.703-2 - Approved grounding mediums.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Approved grounding mediums. 75.703-2 Section 75... mediums. For purposes of grounding offtrack direct-current machines, the following grounding mediums are... alternating current grounding medium where such machines are fed by an ungrounded direct-current power system...
Sommer, Martin; Norden, Christoph; Schmack, Lars; Rothkegel, Holger; Lang, Nicolas; Paulus, Walter
2013-05-01
Directional sensitivity is relevant for the excitability threshold of the human primary motor cortex, but its importance for externally induced plasticity is unknown. To study the influence of current direction on two paradigms inducing neuroplasticity by repetitive transcranial magnetic stimulation (rTMS). We studied short-lasting after-effects induced in the human primary motor cortex of 8 healthy subjects, using 5 Hz rTMS applied in six blocks of 200 pulses each, at 90% active motor threshold. We controlled for intensity, frequency, waveform and spinal effects. Only biphasic pulses with the effective component delivered in an anterioposterior direction (henceforth posteriorly directed) in the brain yielded an increase of motor-evoked potential (MEP) amplitudes outlasting rTMS. MEP latencies and F-wave amplitudes remained unchanged. Biphasic pulses directed posteroanterior (i.e. anteriorly) were ineffective, as were monophasic pulses from either direction. A 1 Hz study in a group of 12 healthy subjects confirmed facilitation after posteriorly directed biphasic pulses only. The anisotropy of the human primary motor cortex is relevant for induction of plasticity by subtreshold rTMS, with a current flow opposite to that providing lowest excitability thresholds. This is consistent with the idea of TMS primarily targeting cortical columns of the phylogenetically new M1 in the anterior bank of the central sulcus. For these, anteriorly directed currents are soma-depolarizing, therefore optimal for low thresholds, whereas posteriorly directed currents are soma-hyperpolarizing, likely dendrite-depolarizing and bested suited for induction of plasticity. Our findings should help focus and enhance rTMS effects in experimental and clinical settings. Copyright © 2013 Elsevier Inc. All rights reserved.
Cathodal transcranial direct current stimulation in children with dystonia: a sham-controlled study.
Young, Scott J; Bertucco, Matteo; Sanger, Terence D
2014-02-01
Increased motor cortex excitability is a common finding in dystonia, and transcranial direct current stimulation can reduce motor cortex excitability. In an earlier study, we found that cathodal direct-current stimulation decreased motor overflow for some children with dystonia. To investigate this observation further, we performed a sham-controlled, double-blind, crossover study of 14 children with dystonia. We found a significant reduction in overflow following real stimulation, when participants performed the experimental task with the hand contralateral to the cathode. While these results suggest that cathodal stimulation may help some children to reduce involuntary overflow, the size of the effect is small. Further research will need to investigate ways to increase the magnitude of the effect of cathodal transcranial direct current stimulation.
Mechanism of orientation of stimulating currents in magnetic brain stimulation (abstract)
NASA Astrophysics Data System (ADS)
Ueno, S.; Matsuda, T.
1991-04-01
We made a functional map of the human motor cortex related to the hand and foot areas by stimulating the human brain with a focused magnetic pulse. We observed that each functional area in the cortex has an optimum direction for which stimulating currents can produce neural excitation. The present report focuses on the mechanism which is responsible for producing this anisotropic response to brain stimulation. We first obtained a functional map of the brain related to the left ADM (abductor digiti minimi muscles). When the stimulating currents were aligned in the direction from the left to the right hemisphere, clear EMG (electromyographic) responses were obtained only from the left ADM to magnetic stimulation of both hemisphere. When the stimulating currents were aligned in the direction from the right to the left hemisphere, clear EMG signals were obtained only from the right ADM to magnetic stimulation of both hemisphere. The functional maps of the brain were sensitive to changes in the direction of the stimulating currents. To explain the phenomena obtained in the experiments, we developed a model of neural excitation elicited by magnetic stimulation. When eddy currents which are induced by pulsed magnetic fields flow in the direction from soma to the distal part of neural fiber, depolarized area in the distal part are excited, and the membrane excitation propagates along the nerve fiber. In contrast, when the induced currents flow in the direction from the distal part to soma, hyperpolarized parts block or inhibit neural excitation even if the depolarized parts near the soma can be excited. The model explains our observation that the orientation of the induced current vectors reflect both the functional and anatomical organization of the neural fibers in the brain.
Morin, Annie; Léonard, Guillaume; Gougeon, Véronique; Waddell, Guy; Bureau, Yves-André; Girard, Isabelle; Morin, Mélanie
2016-05-14
Provoked vestibulodynia is the most common form of vulvodynia. Despite its high prevalence and deleterious sexual, conjugal, and psychological repercussions, effective evidence-based interventions for provoked vestibulodynia remain limited. For a high proportion of women, significant pain persists despite the currently available treatments. Growing evidence suggests that the central nervous system (CNS) could play a key role in provoked vestibulodynia; thus, treatment targeting the CNS, rather than localized dysfunctions, may be beneficial for women suffering from provoked vestibulodynia. In this study, we aim to build on the promising results of a previous case report and evaluate whether transcranial direct-current stimulation, a non-invasive brain stimulation technique targeting the CNS, could be an effective treatment option for women with provoked vestibulodynia. This single-center, triple-blind, parallel group, randomized, controlled trial aims to compare the efficacy of transcranial direct-current stimulation with sham transcranial direct-current stimulation in women with provoked vestibulodynia. Forty women diagnosed with provoked vestibulodynia by a gynecologist, following a standardized treatment protocol, are randomized to either active transcranial direct-current stimulation treatment for ten sessions of 20 minutes at an intensity of 2 mA or sham transcranial direct-current stimulation over a 2-week period. Outcome measures are collected at baseline, 2 weeks after treatment and at 3-month follow-up. The primary outcome is pain during intercourse, assessed with a numerical rating scale. Secondary measurements focus on the sexual function, vestibular pain sensitivity, psychological distress, treatment satisfaction, and the patient's global impression of change. To our knowledge, this study is the first randomized controlled trial to examine the efficacy of transcranial direct-current stimulation in women with provoked vestibulodynia. Findings from this trial are expected to provide significant information about a promising intervention targeting the centralization of pain in women with provoked vestibulodynia. Clinicaltrials.gov, NCT02543593 . Registered on September 4, 2015.
Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence (Second Revision)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uman, Martin A.; Rakov, V. A.; Elisme, J. O.
2010-10-05
The University of Florida has surveyed all relevant publications reporting lightning characteristics and presents here an up-to-date version of the direct-strike lightning environment specifications for nuclear weapons published in 1989 by R. J. Fisher and M. A. Uman. Further, we present functional expressions for current vs. time, current derivative vs. time, second current derivative vs. time, charge transfer vs. time, and action integral (specific energy) vs. time for positive and negative first return strokes, for negative subsequent return strokes, and for positive and negative continuing currents; and we give sets of constants for these functional expressions so that the resultantmore » waveforms exhibit approximately the median and extreme lightning parameters presented in the updated direct strike environment. Fourier transforms of the return stroke current waveforms are presented. The results of our literature survey are included in three Appendices entitled Return Stroke Current, Continuing Current, and Positive Lightning.« less
Direct-current resistivity data from 94 sites in northeastern Palm Beach County, Florida
Peterson, Cathleen J.
1988-01-01
Direct-current resistivity data were collected from 94 vertical electric sounding profiles in northeastern Palm Beach County, Florida. Direct-current resistivity data, which may be used to determine the location and thicknesses of shallow, semipermeable marls or locate zones of high chloride concentration, are presented in this report. The resistivity data consist of field data, smoothed data, layer resistivity from smoothed data, and Cartesian graphs of resistivity in relation to depth for 94 sites located in northeastern Palm Beach County. (USGS)
Banga, Ajay K.
2014-01-01
The objective of this study was to investigate the iontophoretic delivery of lidocaine hydrochloride through porcine skin and to compare the effects of modulated alternating and direct current iontophoresis. Continuous and modulated iontophoresis was applied for one hour and two hours (0-1 h and 4-5th h) using a 1% w/v solution of lidocaine hydrochloride. Tape stripping was done to quantify the amount of drug permeated into stratum corneum and skin extraction studies were performed to determine the amount of drug in stripped skin. Receptor was sampled and analyzed over predefined time periods. The amount of lidocaine delivered across porcine skin after modulated direct current iontophoresis for 2 h was 1069.87 ± 120.03 μg/sq·cm compared to 744.81 ± 125.41 μg/sq·cm after modulated alternating current iontophoresis for 2 h. Modulated direct current iontophoresis also enhanced lidocaine delivery by twelvefold compared to passive delivery as 91.27 ± 18.71 μg/sq·cm of lidocaine was delivered after passive delivery. Modulated iontophoresis enhanced the delivery of lidocaine hydrochloride across porcine skin compared to the passive delivery. Modulated alternating current iontophoresis for duration of 2 h at frequency of 1 kHz was found to be comparable to the continuous direct current iontophoresis for 1 h. PMID:24959580
Bhatia, Gaurav; Banga, Ajay K
2014-01-01
The objective of this study was to investigate the iontophoretic delivery of lidocaine hydrochloride through porcine skin and to compare the effects of modulated alternating and direct current iontophoresis. Continuous and modulated iontophoresis was applied for one hour and two hours (0-1 h and 4-5th h) using a 1% w/v solution of lidocaine hydrochloride. Tape stripping was done to quantify the amount of drug permeated into stratum corneum and skin extraction studies were performed to determine the amount of drug in stripped skin. Receptor was sampled and analyzed over predefined time periods. The amount of lidocaine delivered across porcine skin after modulated direct current iontophoresis for 2 h was 1069.87 ± 120.03 μ g/sq · cm compared to 744.81 ± 125.41 μ g/sq · cm after modulated alternating current iontophoresis for 2 h. Modulated direct current iontophoresis also enhanced lidocaine delivery by twelvefold compared to passive delivery as 91.27 ± 18.71 μ g/sq · cm of lidocaine was delivered after passive delivery. Modulated iontophoresis enhanced the delivery of lidocaine hydrochloride across porcine skin compared to the passive delivery. Modulated alternating current iontophoresis for duration of 2 h at frequency of 1 kHz was found to be comparable to the continuous direct current iontophoresis for 1 h.
Method for exciting inductive-resistive loads with high and controllable direct current
Hill, Jr., Homer M.
1976-01-01
Apparatus and method for transmitting dc power to a load circuit by applying a dc voltage from a standard waveform synthesizer to duration modulate a bipolar rectangular wave generator. As the amplitude of the dc voltage increases, the widths of the rectangular wave generator output pulses increase, and as the amplitude of the dc voltage decreases, the widths of the rectangular wave generator output pulses decrease. Thus, the waveform synthesizer selectively changes the durations of the rectangular wave generator bipolar output pulses so as to produce a rectangular wave ac carrier that is duration modulated in accordance with and in direct proportion to the voltage amplitude from the synthesizer. Thereupon, by transferring the carrier to the load circuit through an amplifier and a rectifier, the load current also corresponds directly to the voltage amplitude from the synthesizer. To this end, the rectified wave at less than 100% duty factor, amounts to a doubled frequency direct voltage pulse train for applying a direct current to the load, while the current ripple is minimized by a high L/R in the load circuit. In one embodiment, a power transmitting power amplifier means having a dc power supply is matched to the load circuit through a transformer for current magnification without sacrificing load current duration capability, while negative voltage and current feedback are provided in order to insure good output fidelity.
Helicity-Driven Ratchet Effect Enhanced by Plasmons
NASA Astrophysics Data System (ADS)
Rozhansky, I. V.; Kachorovskii, V. Yu.; Shur, M. S.
2015-06-01
We demonstrate that the ratchet effect—a radiation-induced direct current in periodically modulated structures with built-in asymmetry—is dramatically enhanced in the vicinity of the plasmonic resonances and has a nontrivial polarization dependence. For a circular polarization, the current component, perpendicular to the modulation direction, changes sign with the inversion of the radiation helicity. In the high-mobility structures, this component might increase by several orders of magnitude due to the plasmonic effects and exceed the current component in the modulation direction. Our theory also predicts that in the dirty systems, where the plasma resonances are suppressed, the ratchet current is controlled by the Maxwell relaxation.
Santos, Michele Devido; Gagliardi, Rubens José; Mac-Kay, Ana Paula Machado Goyano; Boggio, Paulo Sergio; Lianza, Roberta; Fregni, Felipe
2013-01-01
Previous animal and human studies have shown that transcranial direct current stimulation can induce significant and lasting neuroplasticity and may improve language recovery in patients with aphasia. The objective of the study was to describe a cohort of patients with aphasia after stroke who were treated with transcranial direct current stimulation. Prospective cohort study developed in a public university hospital. Nineteen patients with chronic aphasia received 10 transcranial direct current stimulation sessions lasting 20 minutes each on consecutive days, using a current of 2 mA. The anode was positioned over the supraorbital area and the cathode over the contralateral motor cortex. The following variables were analyzed before and after the 10 neuromodulation sessions: oral language comprehension, copying, dictation, reading, writing, naming and verbal fluency. There were no adverse effects in the study. We found statistically significant differences from before to after stimulation in relation to simple sentence comprehension (P = 0.034), naming (P = 0.041) and verbal fluency for names of animals (P = 0.038). Improved scores for performing these three tasks were seen after stimulation. We observed that excitability of the primary motor cortex through transcranial direct current stimulation was associated with effects on different aspects of language. This can contribute towards future testing in randomized controlled trials.
Spontaneous Polariton Currents in Periodic Lateral Chains.
Nalitov, A V; Liew, T C H; Kavokin, A V; Altshuler, B L; Rubo, Y G
2017-08-11
We predict spontaneous generation of superfluid polariton currents in planar microcavities with lateral periodic modulation of both the potential and decay rate. A spontaneous breaking of spatial inversion symmetry of a polariton condensate emerges at a critical pumping, and the current direction is stochastically chosen. We analyze the stability of the current with respect to the fluctuations of the condensate. A peculiar spatial current domain structure emerges, where the current direction is switched at the domain walls, and the characteristic domain size and lifetime scale with the pumping power.
Surface-Charge-Based Micro-Models--A Solid Foundation for Learning about Direct Current Circuits
ERIC Educational Resources Information Center
Hirvonen, P. E.
2007-01-01
This study explores how the use of a surface-charge-based instructional approach affects introductory university level students' understanding of direct current (dc) circuits. The introduced teaching intervention includes electrostatics, surface-charge-based micro-models that explain the existence of an electric field inside the current-carrying…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-23
...-0643; Directorate Identifier 2012-SW-096-AD] RIN 2120-AA64 Airworthiness Directives; Agusta S.p.A. Helicopters (Type Certificate Currently Held By AgustaWestland S.P.A) (AgustaWestland) AGENCY: Federal... (Type Certificate Currently Held By Agustawestland S.p.A) (AgustaWestland): Docket No. FAA-2013-0643...
Direction selectivity in the larval zebrafish tectum is mediated by asymmetric inhibition.
Grama, Abhinav; Engert, Florian
2012-01-01
The extraction of the direction of motion is an important computation performed by many sensory systems and in particular, the mechanism by which direction-selective retinal ganglion cells (DS-RGCs) in the retina acquire their selective properties, has been studied extensively. However, whether DS-RGCs simply relay this information to downstream areas or whether additional and potentially de novo processing occurs in these recipient structures is a matter of great interest. Neurons in the larval zebrafish tectum, the largest retino-recipent area in this animal, show direction-selective (DS) responses to moving visual stimuli but how these properties are acquired is still unknown. In order to study this, we first used two-photon calcium imaging to classify the population responses of tectal cells to bars moving at different speeds and in different directions. Subsequently, we performed in vivo whole cell electrophysiology on these DS tectal neurons and we found that their inhibitory inputs were strongly biased toward the null direction of motion, whereas the excitatory inputs showed little selectivity. In addition, we found that excitatory currents evoked by a stimulus moving in the preferred direction occurred before the inhibitory currents whereas a stimulus moving in the null direction evoked currents in the reverse temporal order. The membrane potential modulations resulting from these currents were enhanced by the spike generation mechanism to generate amplified direction selectivity in the spike output. Thus, our results implicate a local inhibitory circuit in generating direction selectivity in tectal neurons.
Direction selectivity in the larval zebrafish tectum is mediated by asymmetric inhibition
Grama, Abhinav; Engert, Florian
2012-01-01
The extraction of the direction of motion is an important computation performed by many sensory systems and in particular, the mechanism by which direction-selective retinal ganglion cells (DS-RGCs) in the retina acquire their selective properties, has been studied extensively. However, whether DS-RGCs simply relay this information to downstream areas or whether additional and potentially de novo processing occurs in these recipient structures is a matter of great interest. Neurons in the larval zebrafish tectum, the largest retino-recipent area in this animal, show direction-selective (DS) responses to moving visual stimuli but how these properties are acquired is still unknown. In order to study this, we first used two-photon calcium imaging to classify the population responses of tectal cells to bars moving at different speeds and in different directions. Subsequently, we performed in vivo whole cell electrophysiology on these DS tectal neurons and we found that their inhibitory inputs were strongly biased toward the null direction of motion, whereas the excitatory inputs showed little selectivity. In addition, we found that excitatory currents evoked by a stimulus moving in the preferred direction occurred before the inhibitory currents whereas a stimulus moving in the null direction evoked currents in the reverse temporal order. The membrane potential modulations resulting from these currents were enhanced by the spike generation mechanism to generate amplified direction selectivity in the spike output. Thus, our results implicate a local inhibitory circuit in generating direction selectivity in tectal neurons. PMID:22969706
Hybrid high direct current circuit interrupter
Rockot, Joseph H.; Mikesell, Harvey E.; Jha, Kamal N.
1998-01-01
A device and a method for interrupting very high direct currents (greater than 100,000 amperes) and simultaneously blocking high voltages (greater than 600 volts). The device utilizes a mechanical switch to carry very high currents continuously with low loss and a silicon controlled rectifier (SCR) to bypass the current around the mechanical switch while its contacts are separating. A commutation circuit, connected in parallel with the SCR, turns off the SCR by utilizing a resonant circuit to divert the SCR current after the switch opens.
Drug-induced GABA transporter currents enhance GABA release to induce opioid withdrawal behaviors.
Bagley, Elena E; Hacker, Jennifer; Chefer, Vladimir I; Mallet, Christophe; McNally, Gavan P; Chieng, Billy C H; Perroud, Julie; Shippenberg, Toni S; Christie, MacDonald J
2011-10-30
Neurotransmitter transporters can affect neuronal excitability indirectly via modulation of neurotransmitter concentrations or directly via transporter currents. A physiological or pathophysiological role for transporter currents has not been described. We found that GABA transporter 1 (GAT-1) cation currents directly increased GABAergic neuronal excitability and synaptic GABA release in the periaqueductal gray (PAG) during opioid withdrawal in rodents. In contrast, GAT-1 did not indirectly alter GABA receptor responses via modulation of extracellular GABA concentrations. Notably, we found that GAT-1-induced increases in GABAergic activity contributed to many PAG-mediated signs of opioid withdrawal. Together, these data support the hypothesis that GAT-1 activity directly produces opioid withdrawal signs through direct hyperexcitation of GABAergic PAG neurons and nerve terminals, which presumably enhances GABAergic inhibition of PAG output neurons. These data provide, to the best of our knowledge, the first evidence that dysregulation of a neurotransmitter transporter current is important for the maladaptive plasticity that underlies opiate withdrawal.
Olex-Zarychta, Dorota; Koprowski, Robert; Sobota, Grzegorz; Wróbel, Zygmunt
2009-08-07
The aim of the study was to determine the applicability of magnetic stimulation and magnetic motor evoked potentials (MEPs) in motor asymmetry studies by obtaining quantitative and qualitative measures of efferent activity during low intensity magnetic stimulation of the dominant and non-dominant lower extremities. Magnetic stimulation of the tibial nerve in the popliteal fossa was performed in 10 healthy male right-handed and right-footed young adults. Responses were recorded from the lateral head of the gastrocnemius muscles of the right and left lower extremities. Response characteristics (duration, onset latency, amplitude) were analyzed in relation to the functional dominance of the limbs and in relation to the direction of the current in the magnetic coil by use of the Wilcoxon pair sequence test. The CCW direction of coil current was related to reduced amplitudes of recorded MEPs. Greater amplitudes of evoked potentials were recorded in the non-dominant extremity, both in the CW and CCW coil current directions, with the statistical significance of this effect (p=0.005). No differences in duration of response were found in the CW current direction, while in CCW the time of the left-side response was prolonged (p=0.01). In the non-dominant extremity longer onset latencies were recorded in both current directions, but only for the CW direction the side asymmetries showed a statistical significance of p=0.005. In the dominant extremity the stimulation correlated with stronger paresthesias, especially using the CCW direction of coil current. The results indicate that low intensity magnetic stimulation may be useful in quantitative and qualitative research into the motor asymmetry.
Pure spin polarized current through a full magnetic silicene junction
NASA Astrophysics Data System (ADS)
Lorestaniweiss, Zeinab; Rashidian, Zeinab
2018-06-01
Using the Landauer-Buttiker formula, we investigate electronic transport in silicene junction composed of ferromagnetic silicene. The direction of magnetization in the middle region may change in a plane perpendicular to the junction, whereas the magnetization direction keep fixed upward in silicene electrodes. We investigate how the various magnetization directions in the middle region affect the electronic transport. We demonstrate that conductance depends on the orientation of magnetizations in the middle region. It is found that by changing the direction of the magnetization in the middle region, a pure spin up current can be achieved. This achievement makes this full magnetic junction a good design for a full spin-up current polarizer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, M.B.; Brody, E.; Sowell, B.
1987-12-15
Direct measurements of homojunction and heterojunction carrier leakage currents in InGaAsP/InP buried heterostructure lasers have been made by monitoring the electroluminescence (EL) at 0.96 ..mu..m in the InP confinement layers. These EL measurements show directly, for the first time, a correlation between homojunction leakage currents and the sublinearity in the 1.3-..mu..m light output-current characteristic. The observed decrease in the 0.96-..mu..m intensity with increasing p-dopant concentration is a direct confirmation that heterojunction leakage is reduced when the doping level in the p-InP confinement layer is increased.
Code of Federal Regulations, 2010 CFR
2010-07-01
... current between frames of equipment. 75.524 Section 75.524 Mineral Resources MINE SAFETY AND HEALTH... the last open crosscut; maximum level of alternating or direct electric current between frames of equipment. The maximum level of alternating or direct electric current that exists between the frames of any...
Delvendahl, Igor; Lindemann, Hannes; Jung, Nikolai H; Pechmann, Astrid; Siebner, Hartwig R; Mall, Volker
2014-01-01
Transcranial magnetic stimulation (TMS) of the human primary motor hand area (M1-HAND) can produce multiple descending volleys in fast-conducting corticospinal neurons, especially so-called indirect waves (I-waves) resulting from trans-synaptic excitation. Facilitatory interaction between these I-waves can be studied non-invasively using a paired-pulse paradigm referred to as short-interval intracortical facilitation (SICF). We examined whether SICF depends on waveform and current direction of the TMS pulses. In young healthy volunteers, we applied single- and paired-pulse TMS to M1-HAND. We probed SICF by pairs of monophasic or half-sine pulses at suprathreshold stimulation intensity and inter-stimulus intervals (ISIs) between 1.0 and 5.0 ms. For monophasic paired-pulse stimulation, both pulses had either a posterior-anterior (PA) or anterior-posterior (AP) current direction (AP-AP or PA-PA), whereas current direction was reversed between first and second pulse for half-sine paired-pulse stimulation (PA-AP and AP-PA). Monophasic AP-AP stimulation resulted in stronger early SICF at 1.4 ms relative to late SICF at 2.8 and 4.4 ms, whereas monophasic PA-PA stimulation produced SICF of comparable size at all three peaks. With half-sine stimulation the third SICF peak was reduced for PA-AP current orientation compared with AP-PA. SICF elicited using monophasic as well as half-sine pulses is affected by current direction at clearly suprathreshold intensities. The impact of current orientation is stronger for monophasic compared with half-sine pulses. The direction-specific effect of paired-pulse TMS on the strength of early versus late SICF shows that different cortical circuits mediate early and late SICF. Copyright © 2014 Elsevier Inc. All rights reserved.
Analysis of critical thinking ability in direct current electrical problems solving
NASA Astrophysics Data System (ADS)
Hartono; Sunarno, Widha; Sarwanto; Arya Nugraha, Dewanta
2017-11-01
This study concern on analyzing the ability of students in critical thinking skills on the subject matter of direct current electricity. Samples were taken using purposive random sampling consisted of 32 students of grade XI, Multimedia 1, SMK Negeri 3 Surakarta in academic year 2016/2017. This study used descriptive quantitative method. The data were collected using tests and interviews regarding the subject matter of direct current electricity. Based on the results, students are getting some difficulties in solving problem in indicator 4. The average of students’ correct answer is 62.8%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramaswamy, B.; Algarin, J. M.; Waks, E., E-mail: edowaks@umd.edu
We demonstrate that spin transfer torque nano-oscillators (STNO) can act as wireless sensors for local current. The STNO acts as a transducer that converts weak direct currents into microwave field oscillations that we detect using an inductive coil. We detect direct currents in the range of 300–700 μA and report them wirelessly to a receiving induction coil at distances exceeding 6.5 mm. This current sensor could find application in chemical and biological sensing and industrial inspection.
On wind-wave-current interactions during the Shoaling Waves Experiment
NASA Astrophysics Data System (ADS)
Zhang, Fei W.; Drennan, William M.; Haus, Brian K.; Graber, Hans C.
2009-01-01
This paper presents a case study of wind-wave-current interaction during the Shoaling Waves Experiment (SHOWEX). Surface current fields off Duck, North Carolina, were measured by a high-frequency Ocean Surface Current Radar (OSCR). Wind, wind stress, and directional wave data were obtained from several Air Sea Interaction Spar (ASIS) buoys moored in the OSCR scanning domain. At several times during the experiment, significant coastal currents entered the experimental area. High horizontal shears at the current edge resulted in the waves at the peak of wind-sea spectra (but not those in the higher-frequency equilibrium range) being shifted away from the mean wind direction. This led to a significant turning of the wind stress vector away from the mean wind direction. The interactions presented here have important applications in radar remote sensing and are discussed in the context of recent radar imaging models of the ocean surface.
Thermodynamics analysis of diffusion in spark plasma sintering welding Cr3C2 and Ni
NASA Astrophysics Data System (ADS)
Zhang, Fan; Zhang, Jinyong; Leng, Xiaoxuan; Lei, Liwen; Fu, Zhengyi
2017-03-01
Spark plasma sintering (SPS) welding of chromium carbide (Cr3C2) and nickel (Ni) was used to investigate the atomic diffusion caused by bypassing current. It was found that the diffusion coefficient with bypassing current was enhanced by almost 3.57 times over that without bypassing current. Different from the previous researches, the thermodynamics analysis conducted herein showed that the enhancement included a current direction-independent part besides the known current direction-dependent part. A local temperature gradient (LTG) model was proposed to explain the current direction-independent effect. Assuming that the LTG was mainly due to the interfacial electric resistance causing heterogeneous Joule heating, the theoretical results were in good agreement with the experimental results both in the present and previous studies. This new LTG model provides a reasonable physical meaning for the low-temperature advantage of SPS welding and should be useful in a wide range of applications.
Updating the landscape of direct-to-consumer pharmacogenomic testing.
Filipski, Kelly K; Murphy, John D; Helzlsouer, Kathy J
2017-01-01
Pharmacogenomics has identified important drug-gene interactions that affect the safety and efficacy of medications. Direct-to-consumer genetic testing, when first introduced, included some pharmacogenomic-related genes. The current landscape of pharmacogenomic direct-to-consumer testing is reviewed. Prior published reviews of the literature were updated through February 2017 and a scan of the current availability of direct-to-consumer genomic testing by companies was conducted. Results of the review demonstrate a shift toward physician-approved ordering.
NASA Technical Reports Server (NTRS)
Lyons, L. R.; Speiser, T. W.
1985-01-01
The paper derives an Ohm's law for single-particle motion in a current sheet, where the magnetic field reverses in direction across the sheet. The result is considerably different from the resistive Ohm's law often used in MHD studies of the geomagnetic tail. Single-particle analysis is extended to obtain a self-consistency relation for a current sheet which agrees with previous results. The results are applicable to the concept of reconnection in that the electric field parallel to the current is obtained for a one-dimensional current sheet with constant normal magnetic field. Dissipated energy goes directly into accelerating particles within the current sheet.
Gomes, Marina das Neves; Cardoso, Janine Simas; Leitão, Alvaro Costa; Quaresma, Carla Holandino
2016-05-01
Direct electric current has several therapeutic uses such as antibacterial and antiprotozoal action, tissues scarring and regeneration, as well as tumor treatment. This method has shown promising results in vivo and in vitro, with significant efficacy and almost no side effects. Considering lack of studies regarding direct electric current mutagenic and/or genotoxic effects, the present work evaluated both aspects by using five different bacterial experimental assays: survival of repair-deficient mutants, Salmonella-histidine reversion mutagenesis (Ames test), forward mutations to rifampicin resistance, phage reactivation, and lysogenic induction. In these experimental conditions, cells were submitted to an approach that allows evaluation of anodic, cathodic, and electro-ionic effects generated by 2 mA of direct electric current, with doses ranging from 0.36 to 3.60 Coulombs. Our results showed these doses did not induce mutagenic or genotoxic effects. © 2016 Wiley Periodicals, Inc.
Frontal transcranial direct current stimulation (tDCS) abolishes list-method directed forgetting.
Silas, Jonathan; Brandt, Karen R
2016-03-11
It is a point of controversy as to whether directed forgetting effects are a result of active inhibition or a change of context initiated by the instruction to forget. In this study we test the causal role of active inhibition in directed forgetting. By applying cathodal transcranial direct current stimulation (tDCS) over the right prefrontal cortex we suppressed cortical activity commonly associated with inhibitory control. Participants who underwent real brain stimulation before completing the directed forgetting paradigm showed no directed forgetting effects. Conversely, those who underwent sham brain stimulation demonstrated classical directed forgetting effects. We argue that these findings suggest that inhibition is the primary mechanism that results in directed forgetting costs and benefits. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Hybrid high direct current circuit interrupter
Rockot, J.H.; Mikesell, H.E.; Jha, K.N.
1998-08-11
A device and a method are disclosed for interrupting very high direct currents (greater than 100,000 amperes) and simultaneously blocking high voltages (greater than 600 volts). The device utilizes a mechanical switch to carry very high currents continuously with low loss and a silicon controlled rectifier (SCR) to bypass the current around the mechanical switch while its contacts are separating. A commutation circuit, connected in parallel with the SCR, turns off the SCR by utilizing a resonant circuit to divert the SCR current after the switch opens. 7 figs.
A self-sensing active magnetic bearing based on a direct current measurement approach.
Niemann, Andries C; van Schoor, George; du Rand, Carel P
2013-09-11
Active magnetic bearings (AMBs) have become a key technology in various industrial applications. Self-sensing AMBs provide an integrated sensorless solution for position estimation, consolidating the sensing and actuating functions into a single electromagnetic transducer. The approach aims to reduce possible hardware failure points, production costs, and system complexity. Despite these advantages, self-sensing methods must address various technical challenges to maximize the performance thereof. This paper presents the direct current measurement (DCM) approach for self-sensing AMBs, denoting the direct measurement of the current ripple component. In AMB systems, switching power amplifiers (PAs) modulate the rotor position information onto the current waveform. Demodulation self-sensing techniques then use bandpass and lowpass filters to estimate the rotor position from the voltage and current signals. However, the additional phase-shift introduced by these filters results in lower stability margins. The DCM approach utilizes a novel PA switching method that directly measures the current ripple to obtain duty-cycle invariant position estimates. Demodulation filters are largely excluded to minimize additional phase-shift in the position estimates. Basic functionality and performance of the proposed self-sensing approach are demonstrated via a transient simulation model as well as a high current (10 A) experimental system. A digital implementation of amplitude modulation self-sensing serves as a comparative estimator.
NASA Astrophysics Data System (ADS)
Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin
2018-04-01
This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.
Chesters, Jennifer; Möttönen, Riikka; Watkins, Kate E
2018-04-01
See Crinion (doi:10.1093/brain/awy075) for a scientific commentary on this article.Stuttering is a neurodevelopmental condition affecting 5% of children, and persisting in 1% of adults. Promoting lasting fluency improvement in adults who stutter is a particular challenge. Novel interventions to improve outcomes are of value, therefore. Previous work in patients with acquired motor and language disorders reported enhanced benefits of behavioural therapies when paired with transcranial direct current stimulation. Here, we report the results of the first trial investigating whether transcranial direct current stimulation can improve speech fluency in adults who stutter. We predicted that applying anodal stimulation to the left inferior frontal cortex during speech production with temporary fluency inducers would result in longer-lasting fluency improvements. Thirty male adults who stutter completed a randomized, double-blind, controlled trial of anodal transcranial direct current stimulation over left inferior frontal cortex. Fifteen participants received 20 min of 1-mA stimulation on five consecutive days while speech fluency was temporarily induced using choral and metronome-timed speech. The other 15 participants received the same speech fluency intervention with sham stimulation. Speech fluency during reading and conversation was assessed at baseline, before and after the stimulation on each day of the 5-day intervention, and at 1 and 6 weeks after the end of the intervention. Anodal stimulation combined with speech fluency training significantly reduced the percentage of disfluent speech measured 1 week after the intervention compared with fluency intervention alone. At 6 weeks after the intervention, this improvement was maintained during reading but not during conversation. Outcome scores at both post-intervention time points on a clinical assessment tool (the Stuttering Severity Instrument, version 4) also showed significant improvement in the group receiving transcranial direct current stimulation compared with the sham group, in whom fluency was unchanged from baseline. We conclude that transcranial direct current stimulation combined with behavioural fluency intervention can improve fluency in adults who stutter. Transcranial direct current stimulation thereby offers a potentially useful adjunct to future speech therapy interventions for this population, for whom fluency therapy outcomes are currently limited.
Samaddar, Sreyashi; Vazquez, Kizzy; Ponkia, Dipen; Toruno, Pedro; Sahbani, Karim; Begum, Sultana; Abouelela, Ahmed; Mekhael, Wagdy; Ahmed, Zaghloul
2017-02-01
Direct current electrical fields have been shown to be a major factor in the regulation of cell proliferation, differentiation, migration, and survival, as well as in the maturation of dividing cells during development. During adulthood, spinal cord cells are continuously produced in both animals and humans, and they hold great potential for neural restoration following spinal cord injury. While the effects of direct current electrical fields on adult-born spinal cells cultured ex vivo have recently been reported, the effects of direct current electrical fields on adult-born spinal cells in vivo have not been characterized. Here, we provide convincing findings that a therapeutic form of transspinal direct current stimulation (tsDCS) affects the migration and proliferation of adult-born spinal cells in mice. Specifically, cathodal tsDCS attracted the adult-born spinal cells, while anodal tsDCS repulsed them. In addition, both tsDCS polarities caused a significant increase in cell number. Regarding the potential mechanisms involved, both cathodal and anodal tsDCS caused significant increases in expression of brain-derived neurotrophic factor, while expression of nerve growth factor increased and decreased, respectively. In the spinal cord, both anodal and cathodal tsDCS increased blood flow. Since blood flow and angiogenesis are associated with the proliferation of neural stem cells, increased blood flow may represent a major factor in the modulation of newly born spinal cells by tsDCS. Consequently, we propose that the method and novel findings presented in the current study have the potential to facilitate cellular, molecular, and/or bioengineering strategies to repair injured spinal cords. NEW & NOTEWORTHY Our results indicate that transspinal direct current stimulation (tsDCS) affects the migratory pattern and proliferation of adult newly born spinal cells, a cell population which has been implicated in learning and memory. In addition, our results suggest a potential mechanism of action regarding the functional effects of applying direct current. Thus tsDCS may represent a novel method by which to manipulate the migration and cell number of adult newly born cells and restore functions following brain or spinal cord injury. Copyright © 2017 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, S. A.; Plummer, G.; Fedor, J.
Mapping the distribution of currents inside a superconductor is usually performed indirectly through imaging of the stray magnetic fields above the surface. Here, we show that by direct imaging of the Doppler shift contribution to the quasiparticle excitation spectrum in the superconductor using low temperature scanning tunneling microscopy, we obtain directly the distribution of supercurrents inside the superconductor. We demonstrate the technique at the example of superconductor/ferromagnet hybrid structure that produces intricate current pattern consisting of combination Meissner shielding currents and Abrikosov vortex currents.
Helicopter Rotor Noise Prediction: Background, Current Status, and Future Direction
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.
1997-01-01
Helicopter noise prediction is increasingly important. The purpose of this viewgraph presentation is to: 1) Put into perspective the recent progress; 2) Outline current prediction capabilities; 3) Forecast direction of future prediction research; 4) Identify rotorcraft noise prediction needs. The presentation includes an historical perspective, a description of governing equations, and the current status of source noise prediction.
Symmetric voltage-controlled variable resistance
NASA Technical Reports Server (NTRS)
Vanelli, J. C.
1978-01-01
Feedback network makes resistance of field-effect transistor (FET) same for current flowing in either direction. It combines control voltage with source and load voltages to give symmetric current/voltage characteristics. Since circuit produces same magnitude output voltage for current flowing in either direction, it introduces no offset in presense of altering polarity signals. It is therefore ideal for sensor and effector circuits in servocontrol systems.
Microinverters for employment in connection with photovoltaic modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentine, Anthony L.; Nielson, Gregory N.; Okandan, Murat
2015-09-22
Microinverters useable in association with photovoltaic modules are described. A three phase-microinverter receives direct current output generated by a microsystems-enabled photovoltaic cell and converts such direct current output into three-phase alternating current out. The three-phase microinverter is interleaved with other three-phase-microinverters, wherein such microinverters are integrated in a photovoltaic module with the microsystems-enabled photovoltaic cell.
Mental Models of Elementary and Middle School Students in Analyzing Simple Battery and Bulb Circuits
ERIC Educational Resources Information Center
Jabot, Michael; Henry, David
2007-01-01
Written assessment items were developed to probe students' understanding of a variety of direct current (DC) resistive electric circuit concepts. The items were used to explore the mental models that grade 3-8 students use in explaining the direction of electric current and how electric current is affected by different configurations of simple…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-20
...-0518; Directorate Identifier 2009-SW-021-AD] RIN 2120-AA64 Airworthiness Directives; Agusta S.p.A. (Type Certificate Currently Held by AgustaWestland S.p.A) (Agusta) Helicopters AGENCY: Federal Aviation....p.A. (Type Certificate Currently Held By Agustawestland S.p.A.) (Agusta): Docket No. FAA-2013-0518...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
... Airworthiness Directives; Agusta S.p.A. (Type Certificate Currently Held by AgustaWestland S.p.A.) (Agusta.... Helicopters (Type Certificate Currently Held By AgustaWestland S.P.A.) (Agusta): Amendment 39-17281; Docket No... ``Mail'' address between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. Examining the...
Geometrical control of pure spin current induced domain wall depinning.
Pfeiffer, A; Reeve, R M; Voto, M; Savero-Torres, W; Richter, N; Vila, L; Attané, J P; Lopez-Diaz, L; Kläui, Mathias
2017-03-01
We investigate the pure spin-current assisted depinning of magnetic domain walls in half ring based Py/Al lateral spin valve structures. Our optimized geometry incorporating a patterned notch in the detector electrode, directly below the Al spin conduit, provides a tailored pinning potential for a transverse domain wall and allows for a precise control over the magnetization configuration and as a result the domain wall pinning. Due to the patterned notch, we are able to study the depinning field as a function of the applied external field for certain applied current densities and observe a clear asymmetry for the two opposite field directions. Micromagnetic simulations show that this can be explained by the asymmetry of the pinning potential. By direct comparison of the calculated efficiencies for different external field and spin current directions, we are able to disentangle the different contributions from the spin transfer torque, Joule heating and the Oersted field. The observed high efficiency of the pure spin current induced spin transfer torque allows for a complete depinning of the domain wall at zero external field for a charge current density of [Formula: see text] A m -2 , which is attributed to the optimal control of the position of the domain wall.
Jiang, Y Z; Tan, Y; Gao, Z; Wang, L
2014-11-01
The vacuum vessel of Sino-UNIted Spherical Tokamak was split into two insulated hemispheres, both of which were insulated from the central cylinder. The eddy currents flowing in the vacuum vessel would become asymmetrical due to discontinuity. A 3D finite elements model was applied in order to study the eddy currents. The modeling results indicated that when the Poloidal Field (PF) was applied, the induced eddy currents would flow in the toroidal direction in the center of the hemispheres and would be forced to turn to the poloidal and radial directions due to the insulated slit. Since the eddy currents converged on the top and bottom of the vessel, the current densities there tended to be much higher than those in the equatorial plane were. Moreover, the eddy currents on the top and bottom of vacuum vessel had the same direction when the current flowed in the PF coils. These features resulted in the leading phases of signals on the top and bottom flux loops when compared with the PF waveforms.
Direct current ballast circuit for metal halide lamp
NASA Technical Reports Server (NTRS)
Lutus, P. (Inventor)
1981-01-01
A direct current ballast circuit for a two electrode metal halide lamp is described. Said direct current ballast circuit includes a low voltage DC input and a high frequency power amplifier and power transformer for developing a high voltage output. The output voltage is rectified by diodes and filtered by inductor and capacitor to provide a regulated DC output through commutating diodes to one terminal of the lamp at the output terminal. A feedback path from the output of the filter capacitor through the bias resistor to power the high frequency circuit which includes the power amplifier and the power transformer for sustaining circuit operations during low voltage transients on the input DC supply is described. A current sensor connected to the output of the lamp through terminal for stabilizing lamp current following breakdown of the lamp is described.
Priori, Alberto; Ciocca, Matteo; Parazzini, Marta; Vergari, Maurizio; Ferrucci, Roberta
2014-01-01
Two neuromodulatory techniques based on applying direct current (DC) non-invasively through the skin, transcranial cerebellar direct current stimulation (tDCS) and transcutaneous spinal DCS, can induce prolonged functional changes consistent with a direct influence on the human cerebellum and spinal cord. In this article we review the major experimental works on cerebellar tDCS and on spinal tDCS, and their preliminary clinical applications. Cerebellar tDCS modulates cerebellar motor cortical inhibition, gait adaptation, motor behaviour, and cognition (learning, language, memory, attention). Spinal tDCS influences the ascending and descending spinal pathways, and spinal reflex excitability. In the anaesthetised mouse, DC stimulation applied under the skin along the entire spinal cord may affect GABAergic and glutamatergic systems. Preliminary clinical studies in patients with cerebellar disorders, and in animals and patients with spinal cord injuries, have reported beneficial effects. Overall the available data show that cerebellar tDCS and spinal tDCS are two novel approaches for inducing prolonged functional changes and neuroplasticity in the human cerebellum and spinal cord, and both are new tools for experimental and clinical neuroscientists. PMID:24907311
Document for 270 Voltage Direct Current (270 V dc) System
NASA Astrophysics Data System (ADS)
1992-09-01
The paper presents the technical design and application information established by the SAE Aerospace Recommended Practice concerning the generation, distribution, control, and utilization of aircraft 270 V dc electrical power systems and support equipment. Also presented are references and definitions making it possible to compare various electrical systems and components. A diagram of the generic 270 V Direct Current High-Voltage Direct System is included.
Cascaded resonant bridge converters
NASA Technical Reports Server (NTRS)
Stuart, Thomas A. (Inventor)
1989-01-01
A converter for converting a low voltage direct current power source to a higher voltage, high frequency alternating current output for use in an electrical system where it is desired to use low weight cables and other circuit elements. The converter has a first stage series resonant (Schwarz) converter which converts the direct current power source to an alternating current by means of switching elements that are operated by a variable frequency voltage regulator, a transformer to step up the voltage of the alternating current, and a rectifier bridge to convert the alternating current to a direct current first stage output. The converter further has a second stage series resonant (Schwarz) converter which is connected in series to the first stage converter to receive its direct current output and convert it to a second stage high frequency alternating current output by means of switching elements that are operated by a fixed frequency oscillator. The voltage of the second stage output is controlled at a relatively constant value by controlling the first stage output voltage, which is accomplished by controlling the frequency of the first stage variable frequency voltage controller in response to second stage voltage. Fault tolerance in the event of a load short circuit is provided by making the operation of the first stage variable frequency voltage controller responsive to first and second stage current limiting devices. The second stage output is connected to a rectifier bridge whose output is connected to the input of the second stage to provide good regulation of output voltage wave form at low system loads.
The current state, main problems and directions in improving water chemistry at NPSs
NASA Astrophysics Data System (ADS)
Tyapkov, V. F.; Sharafutdinov, R. B.
2007-05-01
An analysis of the current state of managing water-chemistry (WC) at Russian nuclear power plants with type-VVER and-RBMK reactors presently in operation is presented. The main directions for improvement of WC are shown.
Pump-Probe Noise Spectroscopy of Molecular Junctions.
Ochoa, Maicol A; Selzer, Yoram; Peskin, Uri; Galperin, Michael
2015-02-05
The slow response of electronic components in junctions limits the direct applicability of pump-probe type spectroscopy in assessing the intramolecular dynamics. Recently the possibility of getting information on a sub-picosecond time scale from dc current measurements was proposed. We revisit the idea of picosecond resolution by pump-probe spectroscopy from dc measurements and show that any intramolecular dynamics not directly related to charge transfer in the current direction is missed by current measurements. We propose a pump-probe dc shot noise spectroscopy as a suitable alternative. Numerical examples of time-dependent and average responses of junctions are presented for generic models.
Helicopter noise prediction - The current status and future direction
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.; Farassat, F.
1992-01-01
The paper takes stock of the progress, assesses the current prediction capabilities, and forecasts the direction of future helicopter noise prediction research. The acoustic analogy approach, specifically, theories based on the Ffowcs Williams-Hawkings equations, are the most widely used for deterministic noise sources. Thickness and loading noise can be routinely predicted given good plane motion and blade loading inputs. Blade-vortex interaction noise can also be predicted well with measured input data, but prediction of airloads with the high spatial and temporal resolution required for BVI is still difficult. Current semiempirical broadband noise predictions are useful and reasonably accurate. New prediction methods based on a Kirchhoff formula and direct computation appear to be very promising, but are currently very demanding computationally.
Morphology and Orientation Selection of Non-metallic Inclusions in Electrified Molten Metal
NASA Astrophysics Data System (ADS)
Zhao, Z. C.; Qin, R. S.
2017-10-01
The effect of electric current on morphology and orientation selection of non-metallic inclusions in molten metal has been investigated using theoretical modeling and numerical calculation. Two geometric factors, namely the circularity ( fc ) and alignment ratio ( fe ) were introduced to describe the inclusions shape and configuration. Electric current free energy was calculated and the values were used to determine the thermodynamic preference between different microstructures. Electric current promotes the development of inclusion along the current direction by either expatiating directional growth or enhancing directional agglomeration. Reconfiguration of the inclusions to reduce the system electric resistance drives the phenomena. The morphology and orientation selection follow the routine to reduce electric free energy. The numerical results are in agreement with our experimental observations.
Direct current power delivery system and method
Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin
2016-09-06
A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.
Transformer coupling for transmitting direct current through a barrier
Brown, Ralph L.; Guilford, Richard P.; Stichman, John H.
1988-01-01
The transmission system for transmitting direct current from an energy source on one side of an electrical and mechanical barrier to a load on the other side of the barrier utilizes a transformer comprising a primary core on one side of the transformer and a secondary core on the other side of the transformer. The cores are magnetically coupled selectively by moving a magnetic ferrite coupler in and out of alignment with the poles of the cores. The direct current from the energy source is converted to a time varying current by an oscillating circuit, which oscillating circuit is optically coupled to a secondary winding on the secondary core to interrupt oscillations upon the voltage in the secondary winding exceeding a preselected level.
Transformer coupling for transmitting direct current through a barrier
Brown, R.L.; Guilford, R.P.; Stichman, J.H.
1987-06-29
The transmission system for transmitting direct current from an energy source on one side of an electrical and mechanical barrier to a load on the other side of the barrier utilizes a transformer comprising a primary core on one side of the transformer and a secondary core on the other side of the transformer. The cores are magnetically coupled selectively by moving a magnetic ferrite coupler in and out of alignment with the poles of the cores. The direct current from the energy source is converted to a time varying current by an oscillating circuit, which oscillating circuit is optically coupled to a secondary winding on the secondary core to interrupt oscillations upon the voltage in the secondary winding exceeding a preselected level. 4 figs.
Transcranial direct current stimulation enhances recovery of stereopsis in adults with amblyopia.
Spiegel, Daniel P; Li, Jinrong; Hess, Robert F; Byblow, Winston D; Deng, Daming; Yu, Minbin; Thompson, Benjamin
2013-10-01
Amblyopia is a neurodevelopmental disorder of vision caused by abnormal visual experience during early childhood that is often considered to be untreatable in adulthood. Recently, it has been shown that a novel dichoptic videogame-based treatment for amblyopia can improve visual function in adult patients, at least in part, by reducing inhibition of inputs from the amblyopic eye to the visual cortex. Non-invasive anodal transcranial direct current stimulation has been shown to reduce the activity of inhibitory cortical interneurons when applied to the primary motor or visual cortex. In this double-blind, sham-controlled cross-over study we tested the hypothesis that anodal transcranial direct current stimulation of the visual cortex would enhance the therapeutic effects of dichoptic videogame-based treatment. A homogeneous group of 16 young adults (mean age 22.1 ± 1.1 years) with amblyopia were studied to compare the effect of dichoptic treatment alone and dichoptic treatment combined with visual cortex direct current stimulation on measures of binocular (stereopsis) and monocular (visual acuity) visual function. The combined treatment led to greater improvements in stereoacuity than dichoptic treatment alone, indicating that direct current stimulation of the visual cortex boosts the efficacy of dichoptic videogame-based treatment. This intervention warrants further evaluation as a novel therapeutic approach for adults with amblyopia.
Transcranial Direct Current Stimulation Improves Audioverbal Memory in Stroke Patients
Kazuta, Toshinari; Takeda, Kotaro; Osu, Rieko; Tanaka, Satoshi; Oishi, Ayako; Kondo, Kunitsugu; Liu, Meigen
2017-01-01
Objective The aim of this study was to investigate whether anodal transcranial direct current stimulation over the left temporoparietal area improved audioverbal memory performance in stroke patients. Design Twelve stroke patients with audioverbal memory impairment participated in a single-masked, crossover, and sham-controlled experiment. The anodal or sham transcranial direct current stimulation was applied during the Rey Auditory Verbal Learning Test, which evaluates the ability to recall a list of 15 heard words over five trials. The number of correctly recalled words was compared between the anodal and sham conditions and the influence of transcranial direct current stimulation on serial position effect of the 15 words was also examined. Results The increase in the number of correctly recalled words from the first to the fifth trial was significantly greater in the anodal condition than in the sham condition (P < 0.01). There was a significant difference (P < 0.01) between the anodal and sham conditions in the number of correctly recalled words within the first five words (primacy region) over the second to fifth trial trials, but not in the middle (next five words) or recency (last five words) regions. Conclusions Anodal transcranial direct current stimulation over the left temporoparietal area improved audioverbal memory performance and induced the primacy effect in stroke patients. PMID:28085735
Spielmann, Kerstin; van de Sandt-Koenderman, W Mieke E; Heijenbrok-Kal, Majanka H; Ribbers, Gerard M
2018-04-01
The aim of the present study is to investigate the effect of transcranial direct current stimulation on word-finding treatment outcome in subacute poststroke aphasia. In this multi-center, double-blind, randomized controlled trial with 6-month follow-up, we included 58 patients with subacute aphasia (<3 months poststroke), who were enrolled in a stroke rehabilitation program. Patients participated in 2 separate intervention weeks. Each intervention week included 5 daily sessions of 45-minute word-finding therapy combined with either anodal transcranial direct current stimulation (1 mA, 20 minutes; experimental group) or sham transcranial direct current stimulation (control group) over the left inferior frontal gyrus. The primary outcome measure was the Boston Naming Test. Secondary outcome measures included naming performance for trained/untrained picture items and verbal communication. Both the experimental (n=26) and the control group (n=32) improved on the Boston Naming Test over the intervention period and 6-month follow-up; however, there were no significant differences between groups. Also for the secondary outcome measures, no significant differences were found. The results of the present study do not support an effect of transcranial direct current stimulation as an adjuvant treatment in subacute poststroke aphasia. URL: http://www.trialregister.nl/trialreg/admin/rctview.asp. Unique identifier: NTR4364. © 2018 American Heart Association, Inc.
Transcranial Direct Current Stimulation Improves Audioverbal Memory in Stroke Patients.
Kazuta, Toshinari; Takeda, Kotaro; Osu, Rieko; Tanaka, Satoshi; Oishi, Ayako; Kondo, Kunitsugu; Liu, Meigen
2017-08-01
The aim of this study was to investigate whether anodal transcranial direct current stimulation over the left temporoparietal area improved audioverbal memory performance in stroke patients. Twelve stroke patients with audioverbal memory impairment participated in a single-masked, crossover, and sham-controlled experiment. The anodal or sham transcranial direct current stimulation was applied during the Rey Auditory Verbal Learning Test, which evaluates the ability to recall a list of 15 heard words over five trials. The number of correctly recalled words was compared between the anodal and sham conditions and the influence of transcranial direct current stimulation on serial position effect of the 15 words was also examined. The increase in the number of correctly recalled words from the first to the fifth trial was significantly greater in the anodal condition than in the sham condition (P < 0.01). There was a significant difference (P < 0.01) between the anodal and sham conditions in the number of correctly recalled words within the first five words (primacy region) over the second to fifth trial trials, but not in the middle (next five words) or recency (last five words) regions. Anodal transcranial direct current stimulation over the left temporoparietal area improved audioverbal memory performance and induced the primacy effect in stroke patients.
NASA Astrophysics Data System (ADS)
Golenko, Mariya; Golenko, Nikolay
2014-05-01
Numerical modeling of the currents' spatial structure in some regions of the Baltic Sea is performed on the base of POM (Princeton Ocean Model). The calculations were performed under the westerly (most frequent in the Baltic) and north-easterly wind forcings. In the regions adjacent to the Kaliningrad Region's, Polish and Lithuanian coasts these winds generate oppositely directed geostrophic, drift and others types of currents. On the whole these processes can be considered as downwelling and upwelling. Apart from the regions mentioned above the Slupsk Furrow region, which determines the mass and momentum exchange between the Western and Central Baltic, is also considered. During the analysis of currents not only the whole model velocity but also components directed along and across the barotropic geostrophic current velocity are considered. The along geostrophic component for one's turn is separated into the geostrophic current itself and an ageostrophic part. The across geostrophic component is totally ageostrophic. The velocity components directed along and across the geostrophic current approximately describe the velocity components directed along the coast (along isobathes) and from the coast towards the open sea. The suggested approach allowed to present the currents' spatial structures typical for different wind forcings as two maps with the components directed along and across the barotropic geostrophic current velocity. On these maps the areas of the intensive alongshore currents are clearly depicted (for ex. near the base of the Hel Spit, in the region of the Slupsk Sill). The combined analysis of the vectors of the whole and geostrophic velocities allows to reveal the areas where the geostrophic component is significantly strengthened or weakened by the ageostrophic component. Under the westerly wind such currents' features are clearly observed near the end of the Hel Spit and at the southern boarder of the Slupsk Sill, under the north-easterly wind - near the base of the Hel Spit, at the southern boarder of the Slupsk Furrow, near the Curonian Spit (where the relief is bent). On the maps presenting the spatial distributions of the across shore velocities the areas where the mass and momentum transport from the shore to the open sea in the surface layer and vice versa takes place are discriminated. There are also revealed the areas where sharp changes of different velocity components under the wind changes are expected as well as the areas where such changes are expected to be minimal. The model is validated using the field surveys of current velocities by ADCP in the area adjacent to the Kaliningrad region. The comparison of current velocities has shown a close correspondence. In rather wide area the directions and amplitudes of the model and ADCP surface velocities are close, that is additionally confirmed by the comparison of the local vorticity distributions. On the vertical transects of the ADCP current velocity directed across the shoreline the geostrophic jet is clearly pronounced. Its horizontal and vertical scales are in close correspondence with ones of the model jet. At that the more detail calculations which are allowed during the modeling have shown that the geostrophic currents amount to 40-60% (in average) of the whole velocity; two components of the ageostrophic velocity directed along and across the geostrophic velocity are highly variable (from 10 to 60% of the whole velocity). The ageostrophic component directed along the geostrophic current generally strengthens it (up to 20-40% in average and up to 60-70% near the end of the Hel Spit). But in some regions, for example, in the Slupsk Furrow the ageostrophic component slows down the geostrophic current (to 30-40%). In some narrow local areas immediately adjacent to the coast currents directed oppositely to the general quasi geostrophic jet were registered on both field and model data. Before the comparison with the field data these local jets revealed on the model data were considered as improbable. As a result, the comparative analysis of the field and model data led to more detail understanding of dynamic processes in some coastal parts of the Baltic Sea.
Direct Current Amplifier. Report No. 92; AMPLIFICADOR DE CORRIENTE CONTINUA. Informe No. 92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marazzi, C.
1963-01-01
A direct-current amplifier with low zero current and solid-state chopper for input is described. This amplifier can be used in control circuits and for general applications such as temperature measurement in thermocouples, amplifier for a photo-sensitive element, or zero amplifier in control systems. The input impedance is relatively low, serving principally as current amplifier. It is possible to obtain a symmetry characteristic for positive and negative values of the output voltage with respect to the input. (tr-auth)
NASA Astrophysics Data System (ADS)
Gutierrez, B. T.; Voulgaris, G.; Work, P. A.; Seim, H.; Warner, J. C.
2004-12-01
Cross-shelf variations of near-bed currents and variations in vertical flow were investigated on the inner shelf of Long Bay, South Carolina during the spring and fall of 2001. Current meters sampled near-bed currents at six locations as well as vertical current profiles at three of the sites. The observations showed that the tides accounted for approximately 45-66% of the flow variability. The dominant tidal component, the semi-diurnal constituent M2, exhibited tidal ellipse orientations that are increasingly aligned with the coast closer to the shore. The largest M2 current magnitudes were identified closest to shore and over the top of a sand shoal located 5.5 km offshore of Myrtle Beach. The remaining flow variability was associated with sub-tidal flows which respond to the passage of low-pressure systems across the region. These weather systems were characterized by periods of southwesterly winds in advance of low-pressure centers followed by northeasterly winds as the systems passed over the study area. When strong southwesterly winds persisted, surface flow was oriented approximately in the direction of the wind. At the same time near-bottom flows were also directed to the northeast in the direction of the wind except during periods of stratification when vertical current profiles suggest near-bed onshore flow. The stratified flows were observed mainly during the spring deployment. For periods of strong northeasterly winds, currents were directed alongshore to the southwest and exhibited little variation throughout the water column. These observations are consistent with recent field and modeling studies for the inner-shelf. Comparison of the near-bed flow measurements during the fall deployment revealed a cross-shore gradient in alongshore flow during periods of strong northeasterly winds. During these episodes flows at the offshore measurement stations were oriented in the direction of the wind, while flows closest to shore occurred in the opposite direction. These observations reveal 1) conditions which contribute to cross-shore transport and 2) the presence of an alongshore flow gradient which may affect sediment transport patterns during certain meteorological conditions.
Crystal alignments in the Fast ice of arctic Alaska
NASA Astrophysics Data System (ADS)
Weeks, W. F.; Gow, A. J.
1980-02-01
Field observations at 60 sites located in the fast or near-fast ice along a 1200-km stretch of the north coast of Alaska between the Bering Strait and Barter Island have shown that the great majority of the ice samples (95%) exhibit striking c axis alignments within the horizontal plane. In all cases the degree of preferred orientation increased with depth in the ice. Representative standard deviations around a mean direction in the horizontal plane are commonly less than ±10° for samples collected near the bottom of the ice. At a given site the mean c axis direction ?0 may vary as much as 20° with vertical location in the ice sheet. The c axis allignments in the nearshore region generally parallel the coast, with strong alignments occurring in the lagoon systems between the barrier islands and the coast and seaward of the barrier islands. In passes between islands and in entrances such as the opening to Kotzebue Sound the alignment is parallel to the channel. Only limited observations are available farther seaward over the inner (10- to 50-m isobaths) and outer (50-m isobath to shelf break) shelf regions. These indicate NE-SW and E-W alignments, respectively, in the Beaufort Sea north of Prudhoe Bay. The general patterns of the alignments support the correlation between the preferred c axis direction and the current direction at the ice/water interface suggested by Weeks and Gow (1978). A comparison between c axis alignments and instantaneous current measurements made at 42 locations shows that the most frequent current direction coincides with ?0. At the one site where we were able to determine the current direction (52°T) over a longer period (7 hours), the agreement with ?0. (48°T) was excellent. Similarly, if only ?0. values determined in the nearshore region are considered, the most frequent deviation is 10° or less between ?0. and the trend of the adjacent shoreline, which is presumably parallel to the prevailing longshore currents. The c axis alignments are believed to be the result of geometric selection, with the most favored orientation being that in which the current flows normal to the (0001) plates of ice that comprise the dendritic sea ice/seawater interface. The instantaneous current observations suggest SW nearshore currents along the Chukchi coast between SW of Point Lay and SW of the Rogers-Post Monument. In the vicinity of Barrow all currents measured along the Chukchi coast were toward the NE. Current directions along the Beaufort coast in the nearshore region were generally parallel to the coast, with 45% of the observations indicating currents toward the E and 55% currents toward the W.
Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Koo, Min-Ah; Seon, Gyeung Mi; Park, Jong-Chul
2015-05-01
Directional cell migration requires cell polarization. The reorganization of the Golgi apparatus is an important phenomenon in the polarization and migration of many types of cells. Direct current electric fields (dc (EF) induced directional cell migration in a wide variety of cells. Here nHDFs migrated toward cathode under 1 V/cm dc EF, however 1 μM of brefeldin A (BFA) inhibited the dc EF induced directional migration. BFA (1 μM) did not cause the complete Golgi dispersal for 2 h. When the Golgi polarization maintained their direction of polarity, the direction of cell migration also kept toward the same direction of the Golgi polarization even though the dc EF was reversed. In this study, the importance of the Golgi polarization in the directional migration of nHDf under dc EF was identified. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panneer Chelvam, Prem Kumar; Raja, Laxminarayan L.
2015-12-28
Electron emission from the electrode surface plays an important role in determining the structure of a direct-current microdischarge. Here we have developed a computational model of a direct-current microdischarge to study the effect of external electron injection from the cathode surface into the discharge to manipulate its properties. The model provides a self-consistent, multi-species, multi-temperature fluid representation of the plasma. A microdischarge with a metal-insulator-metal configuration is chosen for this study. The effect of external electron injection on the structure and properties of the microdischarge is described. The transient behavior of the microdischarge during the electron injection is examined. Themore » nonlinearities in the dynamics of the plasma result in a large increase of conduction current after active electron injection. For the conditions simulated a switching time of ∼100 ns from a low-current to high-current discharge state is realized.« less
Directed current in the Holstein system.
Hennig, D; Burbanks, A D; Osbaldestin, A H
2011-03-01
We propose a mechanism to rectify charge transport in the semiclassical Holstein model. It is shown that localized initial conditions associated with a polaron solution, in conjunction with static electron on-site potential not having inversion symmetry, constitute minimal prerequisites for the emergence of a directed current in the underlying periodic lattice system. In particular, we demonstrate that for unbiased spatially localized initial conditions (constituted by kicked static polaron states), violation of parity prevents the existence of pairs of counterpropagating trajectories, thus allowing for a directed current despite the time reversibility of the equations of motion. Nevertheless, propagating polaron solutions associated with sets of unbiased localized initial conditions which eventually leave the region of localized initial conditions do not exhibit time reversibility. Since the initial conditions belonging to the corresponding counterpropagating, current-compensating polaron solutions are not contained in the set, this gives rise to the emergence of a current. Occurrence of long-range coherent charge transport is demonstrated.
Kroczek, A M; Häußinger, F B; Rohe, T; Schneider, S; Plewnia, C; Batra, A; Fallgatter, A J; Ehlis, A-C
2016-11-01
Drug-related cue exposure elicits craving and risk for relapse during recovery. Transcranial direct current stimulation is a promising research tool and possible treatment for relapse prevention. Enhanced functional neuroconnectivity is discussed as a treatment target. The goal of this research was to examine whether transcranial direct current stimulation affected cortical hemodynamic indicators of functional connectivity, craving, and heart rate variability during smoking-related cue exposure in non-treatment-seeking smokers. In vivo smoking cue exposure supported by a 2mA transcranial direct current stimulation (anode: dorsolateral prefrontal cortex, cathode: orbitofrontal cortex; placebo-controlled, randomized, double-blind) in 29 (age: M=25, SD=5) German university students (smoking at least once a week). Cue reactivity was assessed on an autonomous (heart rate variability) and a subjective level (craving ratings). Functional near-infrared spectroscopy measured changes in the concentration of deoxygenated hemoglobin, and seed-based correlation analysis was used to quantify prefrontal connectivity of brain regions involved in cue reactivity. Cue exposure elicited increased subjective craving and heart rate variability changes in smokers. Connectivity between the orbitofrontal and dorsolateral prefrontal cortex was increased in subjects receiving verum compared to placebo stimulation (d=0.66). Hemodynamics in the left dorsolateral prefrontal cortex, however, increased in the group receiving sham stimulation (η 2 =0.140). Transcranial direct current stimulation did not significantly alter craving or heart rate variability during cue exposure. Prefrontal connectivity - between regions involved in the processing of reinforcement value and cognitive control - was increased by anodal transcranial direct current stimulation during smoking cue exposure. Possible clinical implications should be considered in future studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., assembles, or fabricates, or controls the design, manufacture, assembly, or fabrication of a fuse, and who... means a device, no less effective than an automatic circuit breaker, for use with direct current which... MINING PRODUCTS FUSES FOR USE WITH DIRECT CURRENT IN PROVIDING SHORT-CIRCUIT PROTECTION FOR TRAILING...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., assembles, or fabricates, or controls the design, manufacture, assembly, or fabrication of a fuse, and who... means a device, no less effective than an automatic circuit breaker, for use with direct current which... MINING PRODUCTS FUSES FOR USE WITH DIRECT CURRENT IN PROVIDING SHORT-CIRCUIT PROTECTION FOR TRAILING...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., assembles, or fabricates, or controls the design, manufacture, assembly, or fabrication of a fuse, and who... means a device, no less effective than an automatic circuit breaker, for use with direct current which... MINING PRODUCTS FUSES FOR USE WITH DIRECT CURRENT IN PROVIDING SHORT-CIRCUIT PROTECTION FOR TRAILING...
Sleutels, Tom H J A; Hamelers, Hubertus V M; Buisman, Cees J N
2011-01-01
The use of porous electrodes like graphite felt as anode material has the potential of achieving high volumetric current densities. High volumetric current densities, however, may also lead to mass transport limitations within these porous materials. Therefore, in this study we investigated the mass and charge transport limitations by increasing the speed of the forced flow and changing the flow direction through the porous anode. Increase of the flow speed led to a decrease in current density when the flow was directed towards the membrane caused by an increase in anode resistance. Current density increased at higher flow speed when the flow was directed away from the membrane. This was caused by a decrease in transport resistance of ions through the membrane which increased the buffering effect of the system. Furthermore, the increase in flow speed led to an increase of the coulombic efficiency by 306%. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Balaram Atram, Dattatraya
2011-01-01
Fleming's right-hand rule and the right-flat-hand rule are generally applied for determining the direction of flow of induced emf/current in straight conductors. The right-hand-fingers rule is applied for coils only. The right-hand-thumb rule can be applied for either straight conductors or coils. Different rules have to be applied for different situations. Also, a formula for determining the direction of induced emf/current does not exist on the basis of these rules. In this article, based on Faraday's law of electromagnetic induction and Lenz's law, an 'imaginary closed circuit method' and a formula for determination of direction of induced emf/current has been proposed. The method is universal in the sense that it is applicable for conductors of any shape, for any kind of relative motion of the conductor with respect to the magnetic flux, and moreover it is applicable for the case of varying magnetic flux.
Pelletier, Simon J.
2015-01-01
Transcranial direct current stimulation is a noninvasive technique that has been experimentally tested for a number of psychiatric and neurological conditions. Preliminary observations suggest that this approach can indeed influence a number of cellular and molecular pathways that may be disease relevant. However, the mechanisms of action underlying its beneficial effects are largely unknown and need to be better understood to allow this therapy to be used optimally. In this review, we summarize the physiological responses observed in vitro and in vivo, with a particular emphasis on cellular and molecular cascades associated with inflammation, angiogenesis, neurogenesis, and neuroplasticity recruited by direct current stimulation, a topic that has been largely neglected in the literature. A better understanding of the neural responses to transcranial direct current stimulation is critical if this therapy is to be used in large-scale clinical trials with a view of being routinely offered to patients suffering from various conditions affecting the central nervous system. PMID:25522391
Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers
NASA Astrophysics Data System (ADS)
Liu, Jun; Goswami, Ankur; Jiang, Keren; Khan, Faheem; Kim, Seokbeom; McGee, Ryan; Li, Zhi; Hu, Zhiyu; Lee, Jungchul; Thundat, Thomas
2018-02-01
The direct conversion of mechanical energy into electricity by nanomaterial-based devices offers potential for green energy harvesting1-3. A conventional triboelectric nanogenerator converts frictional energy into electricity by producing alternating current (a.c.) triboelectricity. However, this approach is limited by low current density and the need for rectification2. Here, we show that continuous direct-current (d.c.) with a maximum density of 106 A m-2 can be directly generated by a sliding Schottky nanocontact without the application of an external voltage. We demonstrate this by sliding a conductive-atomic force microscope tip on a thin film of molybdenum disulfide (MoS2). Finite element simulation reveals that the anomalously high current density can be attributed to the non-equilibrium carrier transport phenomenon enhanced by the strong local electrical field (105-106 V m-2) at the conductive nanoscale tip4. We hypothesize that the charge transport may be induced by electronic excitation under friction, and the nanoscale current-voltage spectra analysis indicates that the rectifying Schottky barrier at the tip-sample interface plays a critical role in efficient d.c. energy harvesting. This concept is scalable when combined with microfabricated or contact surface modified electrodes, which makes it promising for efficient d.c. triboelectricity generation.
Vigod, Simone; Dennis, Cindy-Lee; Daskalakis, Zafiris; Murphy, Kellie; Ray, Joel; Oberlander, Tim; Somerton, Sarah; Hussain-Shamsy, Neesha; Blumberger, Daniel
2014-09-18
Women with depression in pregnancy are faced with difficult treatment decisions. Untreated, antenatal depression has serious negative implications for mothers and children. While antidepressant drug treatment is likely to improve depressive symptoms, it crosses the placenta and may pose risks to the unborn child. Transcranial direct current stimulation is a focal brain stimulation treatment that improves depressive symptoms within 3 weeks of treatment by inducing changes to brain areas involved in depression, without impacting any other brain areas, and without inducing changes to heart rate, blood pressure or core body temperature. The localized nature of transcranial direct current stimulation makes it an ideal therapeutic approach for treating depression during pregnancy, although it has never previously been evaluated in this population. We describe a pilot randomized controlled trial of transcranial direct current stimulation among women with depression in pregnancy to assess the feasibility of a larger, multicentre efficacy study. Women over 18 years of age and between 14 and 32 weeks gestation can be enrolled in the study provided they meet diagnostic criteria for a major depressive episode of at least moderate severity and have been offered but refused antidepressant medication. Participants are randomized to receive active transcranial direct current stimulation or a sham condition that is administered in 15 30-minute treatments over three weeks. Women sit upright during treatment and receive obstetrical monitoring prior to, during and after each treatment session. Depressive symptoms, treatment acceptability, and pregnancy outcomes are assessed at baseline (prior to randomization), at the end of each treatment week, every four weeks post-treatment until delivery, and at 4 and 12 weeks postpartum. Transcranial direct current stimulation is a novel therapeutic option for treating depression during pregnancy. This protocol allows for assessment of the feasibility of, acceptability of and adherence with a clinical trial protocol to administer this treatment to pregnant women with moderate to severe depression. Results from this pilot study will guide the development of a larger multicentre trial to definitively test the efficacy and safety of transcranial direct current stimulation for pregnant women with depression. Clinical Trials Gov NCT02116127.
Forward and reverse control system for induction motors
Wright, J.T.
1987-09-15
A control system for controlling the direction of rotation of a rotor of an induction motor includes an array of five triacs with one of the triacs applying a current of fixed phase to the windings of the rotor and four of the triacs being switchable to apply either hot ac current or return ac current to the stator windings so as to reverse the phase of current in the stator relative to that of the rotor and thereby reverse the direction of rotation of the rotor. Switching current phase in the stator is accomplished by operating the gates of pairs of the triacs so as to connect either hot ac current or return ac current to the input winding of the stator. 1 fig.
System simulation of direct-current speed regulation based on Simulink
NASA Astrophysics Data System (ADS)
Yang, Meiying
2018-06-01
Many production machines require the smooth adjustment of speed in a certain range In the process of modern industrial production, and require good steady-state and dynamic performance. Direct-current speed regulation system with wide speed regulation range, small relative speed variation, good stability, large overload capacity, can bear the frequent impact load, can realize stepless rapid starting-braking and inversion of frequency and other good dynamic performances, can meet the different kinds of special operation requirements in production process of automation system. The direct-current power drive system is almost always used in the field of drive technology of high performance for a long time.
Anomalous - viscosity current drive
Stix, Thomas H.; Ono, Masayuki
1988-01-01
An apparatus and method for maintaining a steady-state current in a toroidal magnetically confined plasma. An electric current is generated in an edge region at or near the outermost good magnetic surface of the toroidal plasma. The edge current is generated in a direction parallel to the flow of current in the main plasma and such that its current density is greater than the average density of the main plasma current. The current flow in the edge region is maintained in a direction parallel to the main current for a period of one or two of its characteristic decay times. Current from the edge region will penetrate radially into the plasma and augment the main plasma current through the mechanism of anomalous viscosity. In another aspect of the invention, current flow driven between a cathode and an anode is used to establish a start-up plasma current. The plasma-current channel is magnetically detached from the electrodes, leaving a plasma magnetically insulated from contact with any material obstructions including the cathode and anode.
Quantum Plasmonics: Quantum Information at the Nanoscale
2016-11-06
journal. In total this project has thus far resulted in six journal articles. We are currently writing up an additional work, on direct quantum tomography...resulted in six journal articles. We are currently writing up an additional work, on direct quantum tomography on state entanglement in quantum
Deformations of the spin currents by topological screw dislocation and cosmic dispiration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jianhua; Ma, Kai, E-mail: makainca@gmail.com; Li, Kang
2015-11-15
We study the spin currents induced by topological screw dislocation and cosmic dispiration. By using the extended Drude model, we find that the spin dependent forces are modified by the nontrivial geometry. For the topological screw dislocation, only the direction of spin current is bent by deforming the spin polarization vector. In contrast, the force induced by cosmic dispiration could affect both the direction and magnitude of the spin current. As a consequence, the spin-Hall conductivity does not receive corrections from screw dislocation.
Auroral electrojets and evening sector electron dropouts at synchronous orbit
NASA Technical Reports Server (NTRS)
Erickson, K. N.; Winckler, J. R.
1973-01-01
Evidence is presented in support of the concept that, during magnetospheric substorms, ionospheric auroral electrojet currents are directly coupled to the proton partial ring current in the outer magnetosphere. It has been found that for sufficiently isolated substorms the timing of the start of the electron dropout and of its maximum depression is in good agreement with the start and maximum of electrojet activity as indicated by the auroral electrojet index. This correlation suggests a direct coupling between the electrojet currents and the proton partial ring current.
Lazzari, Roberta Delasta; Politti, Fabiano; Santos, Cibele Alimedia; Dumont, Arislander Jonathan Lopes; Rezende, Fernanda Lobo; Grecco, Luanda André Collange; Braun Ferreira, Luiz Alfredo; Oliveira, Claudia Santos
2015-01-01
[Purpose] The aim of the present study was to investigate the effects of a single session of transcranial direct current stimulation combined with virtual reality training on the balance of children with cerebral palsy. [Subjetcs and Methods] Children with cerebral palsy between four and 12 years of age were randomly allocated to two groups: an experimental group which performed a single session of mobility training with virtual reality combined with active transcranial direct current stimulation; and a control group which performed a single session of mobility training with virtual reality combined with placebo transcranial direct current stimulation. The children were evaluated before and after the training protocols. Static balance (sway area, displacement, velocity and frequency of oscillations of the center of pressure on the anteroposterior and mediolateral axes) was evaluated using a force plate under four conditions (30-second measurements for each condition): feet on the force plate with the eyes open, and with the eyes closed; feet on a foam mat with the eyes open, and with the eyes closed. [Results] An increase in sway velocity was the only significant difference found. [Conclusion] A single session of anodal transcranial direct current stimulation combined with mobility training elicited to lead to an increase in the body sway velocity of children with cerebral palsy. PMID:25931726
Hawkes, Grant L.; Herring, James S.; Stoots, Carl M.; O& #x27; Brien, James E.
2013-03-05
Electrolytic/fuel cell bundles and systems including such bundles include an electrically conductive current collector in communication with an anode or a cathode of each of a plurality of cells. A cross-sectional area of the current collector may vary in a direction generally parallel to a general direction of current flow through the current collector. The current collector may include a porous monolithic structure. At least one cell of the plurality of cells may include a current collector that surrounds an outer electrode of the cell and has at least six substantially planar exterior surfaces. The planar surfaces may extend along a length of the cell, and may abut against a substantially planar surface of a current collector of an adjacent cell. Methods for generating electricity and for performing electrolysis include flowing current through a conductive current collector having a varying cross-sectional area.
In, Myung-Ho; Posnansky, Oleg; Speck, Oliver
2016-05-01
To accurately correct diffusion-encoding direction-dependent eddy-current-induced geometric distortions in diffusion-weighted echo-planar imaging (DW-EPI) and to minimize the calibration time at 7 Tesla (T). A point spread function (PSF) mapping based eddy-current calibration method is newly presented to determine eddy-current-induced geometric distortions even including nonlinear eddy-current effects within the readout acquisition window. To evaluate the temporal stability of eddy-current maps, calibration was performed four times within 3 months. Furthermore, spatial variations of measured eddy-current maps versus their linear superposition were investigated to enable correction in DW-EPIs with arbitrary diffusion directions without direct calibration. For comparison, an image-based eddy-current correction method was additionally applied. Finally, this method was combined with a PSF-based susceptibility-induced distortion correction approach proposed previously to correct both susceptibility and eddy-current-induced distortions in DW-EPIs. Very fast eddy-current calibration in a three-dimensional volume is possible with the proposed method. The measured eddy-current maps are very stable over time and very similar maps can be obtained by linear superposition of principal-axes eddy-current maps. High resolution in vivo brain results demonstrate that the proposed method allows more efficient eddy-current correction than the image-based method. The combination of both PSF-based approaches allows distortion-free images, which permit reliable analysis in diffusion tensor imaging applications at 7T. © 2015 Wiley Periodicals, Inc.
Soneji, Samir; Ambrose, Bridget K; Lee, Won; Sargent, James; Tanski, Susanne
2014-08-01
We assess exposure to direct-to-consumer tobacco marketing and its association with ever having tried smoking, smoking within past 30 days (current), and smoking ≥100 cigarettes in lifetime (established) among adolescents and young adults. We surveyed a U.S. telephone sample of 3,342 15- to 23-year-olds and 2,541 respondents subsequently completed a web-based survey. Among respondents completing both the telephone and web-based surveys (N = 2,541 [75%]), we assessed their exposure to direct-to-consumer tobacco marketing (receiving direct mail from tobacco companies and seeing tobacco company websites) and their associations with ever having tried smoking, current smoking, and established smoking. Overall, 12% of 15- to 17-year-olds and 26% of 18- to 23-year-olds were exposed to direct-to-consumer tobacco marketing. Racial/ethnic minority nonsmoking respondents were more likely to see tobacco websites than nonsmoking whites. Respondents exposed to either form of direct-to-consumer tobacco marketing were more likely to currently smoke (adjusted odds ratio 2.2, 95% confidence interval 1.3-3.8), while those exposed to both forms of marketing experienced even higher odds of currently smoking (adjusted odds ratio 2.7, 95% confidence interval 1.1-6.6). We observed similar relationships for ever having tried smoking and established smoking. Direct-to-consumer tobacco marketing reaches adolescent and young adult nonsmokers and is associated with smoking behavior. Copyright © 2014 Society for Adolescent Health and Medicine. All rights reserved.
Characterization, Processing, and Consolidation of Nanoscale Tungsten Powder
2009-12-01
gas fusion, and all other elements were measured by direct current plasma emission spectroscopy. The analysis showed a relatively high amount of...measured by direct current plasma emission spectroscopy, and oxygen was detected by inert gas fusion. The results show that carbon and cobalt levels...of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yuchen; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720; Zhou, Xue
2016-01-18
We present evidence for breathing modes in magnetron sputtering plasmas: periodic axial variations of plasma parameters with characteristic frequencies between 10 and 100 kHz. A set of azimuthally distributed probes shows synchronous oscillations of the floating potential. They appear most clearly when considering the intermediate current regime in which the direction of azimuthal spoke motion changes. Breathing oscillations were found to be superimposed on azimuthal spoke motion. Depending on pressure and current, one can also find a regime of chaotic fluctuations and one of stable discharges, the latter at high current. A pressure-current phase diagram for the different situations is proposed.
40 CFR 230.23 - Current patterns and water circulation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... or fill material can modify current patterns and water circulation by obstructing flow, changing the direction or velocity of water flow, changing the direction or velocity of water flow and circulation, or otherwise changing the dimensions of a water body. As a result, adverse changes can occur in: Location...
40 CFR 230.23 - Current patterns and water circulation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or fill material can modify current patterns and water circulation by obstructing flow, changing the direction or velocity of water flow, changing the direction or velocity of water flow and circulation, or otherwise changing the dimensions of a water body. As a result, adverse changes can occur in: Location...
40 CFR 230.23 - Current patterns and water circulation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... or fill material can modify current patterns and water circulation by obstructing flow, changing the direction or velocity of water flow, changing the direction or velocity of water flow and circulation, or otherwise changing the dimensions of a water body. As a result, adverse changes can occur in: Location...
ERIC Educational Resources Information Center
Baser, Mustafa
2006-01-01
This paper reports upon an active learning approach that promotes conceptual change when studying direct current electricity circuits, using free open source software, "Qucs". The study involved a total of 102 prospective mathematics teacher students. Prior to instruction, students' understanding of direct current electricity was…
Direct Current Series Circuits: An Educational Module.
ERIC Educational Resources Information Center
Sturgess, Keith
This module was developed as remedial material for physics students who have difficulty understanding concepts of circuits and calculating resistances, and voltage drops and currents. Lists of prerequisite skills and instructional objectives are followed by a pretest (with answers). Students are directed to the subject matter in the module based…
Early Childhood Inclusion in the United States: Goals, Current Status, and Future Directions
ERIC Educational Resources Information Center
Guralnick, Michael J.; Bruder, Mary Beth
2016-01-01
The current status and future directions of early childhood inclusion in the United States are discussed from the perspective of 4 key goals: access, accommodations and feasibility, developmental progress, and social integration. Recommendations are put forward to promote inclusion goals emphasizing administrative structures, personnel…
Modelling the effect of electrode displacement on transcranial direct current stimulation (tDCS)
NASA Astrophysics Data System (ADS)
Ramaraju, Sriharsha; Roula, Mohammed A.; McCarthy, Peter W.
2018-02-01
Objective. Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers a low-intensity, direct current to cortical areas with the purpose of modulating underlying brain activity. Recent studies have reported inconsistencies in tDCS outcomes. The underlying assumption of many tDCS studies has been that replication of electrode montage equates to replicating stimulation conditions. It is possible however that anatomical difference between subjects, as well as inherent inaccuracies in montage placement, could affect current flow to targeted areas. The hypothesis that stimulation of a defined brain region will be stable under small displacements was tested. Approach. Initially, we compared the total simulated current flowing through ten specific brain areas for four commonly used tDCS montages: F3-Fp2, C3-Fp2, Fp1-F4, and P3-P4 using the software tool COMETS. The effect of a slight (~1 cm in each of four directions) anode displacement on the simulated regional current density for each of the four tDCS montages was then determined. Current flow was calculated and compared through ten segmented brain areas to determine the effect of montage type and displacement. The regional currents, as well as the localised current densities, were compared with the original electrode location, for each of these new positions. Main results. Recommendations for montages that maximise stimulation current for the ten brain regions are considered. We noted that the extent to which stimulation is affected by electrode displacement varies depending on both area and montage type. The F3-Fp2 montage was found to be the least stable with up to 38% change in average current density in the left frontal lobe while the Fp1-F4 montage was found to the most stable exhibiting only 1% change when electrodes were displaced. Significance. These results indicate that even relatively small changes in stimulation electrode placement appear to result in surprisingly large changes in current densities and distribution.
The Role of Direct Current Electric Field-Guided Stem Cell Migration in Neural Regeneration.
Yao, Li; Li, Yongchao
2016-06-01
Effective directional axonal growth and neural cell migration are crucial in the neural regeneration of the central nervous system (CNS). Endogenous currents have been detected in many developing nervous systems. Experiments have demonstrated that applied direct current (DC) electric fields (EFs) can guide axonal growth in vitro, and attempts have been made to enhance the regrowth of damaged spinal cord axons using DC EFs in in vivo experiments. Recent work has revealed that the migration of stem cells and stem cell-derived neural cells can be guided by DC EFs. These studies have raised the possibility that endogenous and applied DC EFs can be used to direct neural tissue regeneration. Although the mechanism of EF-directed axonal growth and cell migration has not been fully understood, studies have shown that the polarization of cell membrane proteins and the activation of intracellular signaling molecules are involved in the process. The application of EFs is a promising biotechnology for regeneration of the CNS.
Electrical-assisted double side incremental forming and processes thereof
Roth, John; Cao, Jian
2014-06-03
A process for forming a sheet metal component using an electric current passing through the component is provided. The process can include providing a double side incremental forming machine, the machine operable to perform a plurality of double side incremental deformations on the sheet metal component and also apply an electric direct current to the sheet metal component during at least part of the forming. The direct current can be applied before or after the forming has started and/or be terminated before or after the forming has stopped. The direct current can be applied to any portion of the sheet metal. The electrical assistance can reduce the magnitude of force required to produce a given amount of deformation, increase the amount of deformation exhibited before failure and/or reduce any springback typically exhibited by the sheet metal component.
Gartner, J.W.; Yost, B.T.
1988-01-01
Current meter data collected at 11 stations and water level data collected at one station in Suisun and San Pablo Bays, California, in 1986 are compiled in this report. Current-meter measurements include current speed and direction, and water temperature and salinity (computed from temperature and conductivity). For each of the 19 current-meter records, data are presented in two forms. These are: (1) results of harmonic analysis; and (2) plots of tidal current speed and direction versus time and plots of temperature and salinity versus time. Spatial distribution of the properties of tidal currents are given in graphic form. In addition, Eulerian residual currents have been compiled by using a vector-averaging technique. Water level data are presented in the form of a time-series plot and the results of harmonic analysis. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khokhlov, M.Z.
1975-01-01
Electron fluxes directed upward and earthward were compared by means of electrostatic analyzers oriented in opposite directions. The reflection coefficients reached 0.3-0.45 in the loss cone and were frequently less than 1 outside the cone. In some cases the fluxes of reflected electrons exceeded those of incident electrons. The direction of the current carried by such electrons was mostly opposite to the adopted direction of the system of field-aligned currents in the magnetosphere, which is determined by electrons of much lower energies. 17 references.
NASA Astrophysics Data System (ADS)
Jiang, C.; Rumyantsev, S. L.; Samnakay, R.; Shur, M. S.; Balandin, A. A.
2015-02-01
We report on fabrication of MoS2 thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS2 devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS2 thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a "memory step," was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS2 thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS2 thin-film transistors in extreme-temperature electronics and sensors.
Conceptual Design of a 100kW Energy Integrated Type Bi-Directional Tidal Current Turbine
NASA Astrophysics Data System (ADS)
Kim, Ki Pyoung; Ahmed, M. Rafiuddin; Lee, Young Ho
2010-06-01
The development of a tidal current turbine that can extract maximum energy from the tidal current will be extremely beneficial for supplying continuous electric power. The present paper presents a conceptual design of a 100kW energy integrated type tidal current turbine for tidal power generation. The instantaneous power density of a flowing fluid incident on an underwater turbine is proportional to the cubic power of current velocity which is approximately 2.5m/s. A cross-flow turbine, provided with a nozzle and a diffuser, is designed and analyzed. The potential advantages of ducted and diffuser-augmented turbines were taken into consideration in order to achieve higher output at a relatively low speed. This study looks at a cross-flow turbine system which is placed in an augmentation channel to generate electricity bi-directionally. The compatibility of this turbine system is verified using a commercial CFD code, ANSYSCFX. This paper presents the results of the numerical analysis in terms of pressure, streaklines, velocity vectors and performance curves for energy integrated type bi-directional tidal current turbine (BDT) with augmentation.
Sliding mode control of direct coupled interleaved boost converter for fuel cell
NASA Astrophysics Data System (ADS)
Wang, W. Y.; Ding, Y. H.; Ke, X.; Ma, X.
2017-12-01
A three phase direct coupled interleaved boost converter (TP-DIBC) was recommended in this paper. This converter has a small unbalance current sharing among the branches of TP-DIBC. An adaptive control law sliding mode control (SMC) is designed for the TP-DIBC. The aim is to 1) reduce ripple output voltage, inductor current and regulate output voltage tightly 2) The total current carried by direct coupled interleaved boost converter (DIBC) must be equally shared between different parallel branches. The efficacy and robustness of the proposed TP-DIBC and adaptive SMC is confirmed via computer simulations using Matlab SimPower System Tools. The simulation result is in line with the expectation.
Detection of oppositely directed reconnection jets in a solar wind current sheet
NASA Astrophysics Data System (ADS)
Davis, M. S.; Phan, T. D.; Gosling, J. T.; Skoug, R. M.
2006-10-01
We report the first two-spacecraft (Wind and ACE) detection of oppositely directed plasma jets within a bifurcated current sheet in the solar wind. The event occurred on January 3, 2003 and provides further direct evidence that such jets result from reconnection. The magnetic shear across the bifurcated current sheet at both Wind and ACE was ~150°, indicating that the magnetic shear must have been the same at the reconnection site located between the two spacecraft. These observations thus provide strong evidence for component merging with a guide field ~ 30% of the antiparallel field. The dimensionless reconnection rate based on the measured inflow was 0.03, implying fast reconnection.
Detection of oppositely directed reconnection jets in a solar wind current sheet
NASA Astrophysics Data System (ADS)
Davis, M. S.; Phan, T. D.; Gosling, J. T.; Skoug, R. M.
2006-12-01
We report the first two-spacecraft (Wind and ACE) detection of oppositely directed plasma jets within a bifurcated current sheet in the solar wind. The event occurred on January 3, 2003 and provides further direct evidence that such jets result from reconnection. The magnetic shear across the bifurcated current sheet at both Wind and ACE was approximately 150 degrees, indicating that the magnetic shear must have been the same at the reconnection site located between the two spacecraft. These observations thus provide strong evidence for component merging with a guide field approximately 30% of the antiparallel field. The dimensionless reconnection rate based on the measured inflow was 0.03, implying fast reconnection.
Salamon, David; Eriksson, Mirva; Nygren, Mats; Shen, Zhijian
2012-01-01
The spark plasma sintering (SPS) process is known for its rapid densification of metals and ceramics. The mechanism behind this rapid densification has been discussed during the last few decades and is yet uncertain. During our SPS experiments we noticed oscillations in the applied pressure, related to a change in electric current. In this study, we investigated the effect of pulsed electrical current on the applied mechanical pressure and related changes in temperature. We eliminated the effect of sample shrinkage in the SPS setup and used a transparent quartz die allowing direct observation of the sample. We found that the use of pulsed direct electric current in our apparatus induces pressure oscillations with the amplitude depending on the current density. While sintering Ti samples we observed temperature oscillations resulting from pressure oscillations, which we attribute to magnetic forces generated within the SPS apparatus. The described current–pressure–temperature relations might increase understanding of the SPS process. PMID:27877472
Magnetic thin-film split-domain current sensor-recorder
Hsieh, Edmund J.
1979-01-01
A sensor-recorder for recording a representation of the direction and peak amplitude of a transient current. A magnetic thin film is coated on a glass substrate under the influence of a magnetic field so that the finished film is magnetically uniaxial and anisotropic. The film is split into two oppositely magnetized contiguous domains with a central boundary by subjecting adjacent portions of the film simultaneously to magnetic fields that are opposed 180.degree.. With the split-domain sensor-recorder placed with the film plane and domain boundary either perpendicular or parallel to the expected conductive path of a transient current, the occurrence of the transient causes switching of a portion of one domain to the direction of the other domain. The amount of the switched domain portion is indicative of the amplitude of the peak current of the transient, while the particular domain that is switched is indicative of the direction of the current. The resulting domain patterns may be read with a passive magnetic tape viewer.
Technology-based suicide prevention: current applications and future directions.
Luxton, David D; June, Jennifer D; Kinn, Julie T
2011-01-01
This review reports on current and emerging technologies for suicide prevention. Technology-based programs discussed include interactive educational and social networking Web sites, e-mail outreach, and programs that use mobile devices and texting. We describe innovative applications such as virtual worlds, gaming, and text analysis that are currently being developed and applied to suicide prevention and outreach programs. We also discuss the benefits and limitations of technology-based applications and discuss future directions for their use.
42 CFR 413.76 - Direct GME payments: Calculation of payments for GME costs.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-STAGE RENAL DISEASE SERVICES; OPTIONAL PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING... nursing and allied health payment “pool” for the current calendar year as described at § 413.87(f), to the projected total Medicare+Choice direct GME payments made to all hospitals for the current calendar year. (e...
42 CFR 413.76 - Direct GME payments: Calculation of payments for GME costs.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-STAGE RENAL DISEASE SERVICES; OPTIONAL PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING... nursing and allied health payment “pool” for the current calendar year as described at § 413.87(f), to the projected total Medicare+Choice direct GME payments made to all hospitals for the current calendar year. (e...
42 CFR 413.76 - Direct GME payments: Calculation of payments for GME costs.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-STAGE RENAL DISEASE SERVICES; OPTIONAL PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING... nursing and allied health payment “pool” for the current calendar year as described at § 413.87(f), to the projected total Medicare+Choice direct GME payments made to all hospitals for the current calendar year. (e...
42 CFR 413.76 - Direct GME payments: Calculation of payments for GME costs.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-STAGE RENAL DISEASE SERVICES; OPTIONAL PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING... nursing and allied health payment “pool” for the current calendar year as described at § 413.87(f), to the projected total Medicare+Choice direct GME payments made to all hospitals for the current calendar year. (e...
42 CFR 413.76 - Direct GME payments: Calculation of payments for GME costs.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-STAGE RENAL DISEASE SERVICES; OPTIONAL PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING... nursing and allied health payment “pool” for the current calendar year as described at § 413.87(f), to the projected total Medicare+Choice direct GME payments made to all hospitals for the current calendar year. (e...
Sources, Developments and Directions of Task-Based Language Teaching
ERIC Educational Resources Information Center
Bygate, Martin
2016-01-01
This paper provides an outline of the origins, the current shape and the potential directions of task-based language teaching (TBLT) as an approach to language pedagogy. It first offers a brief description of TBLT and considers its origins within language teaching methodology and second language acquisition. It then summarises the current position…
Calculating Electrical Requirements for Direct Current Electric Actuators
2017-11-29
These requirements lead to the determination of multiple design decisions such as: operating voltage, regenerative energy capture/dissipation, and...15. SUBJECT TERMS Electro-mechanical actuation Regenerative energy Electrical power Servo control Direct current (DC...Method 6 Power Supply Requirements 7 Approaches to Handling Regenerative Energy 8 Conductor Selection 10 Results and Discussions 10 Example
Teaching Direct Current Theory Using a Field Model
ERIC Educational Resources Information Center
Stocklmayer, Susan
2010-01-01
Principles of direct current have long been recognised in the literature as presenting difficulties for learners. Most of these difficulties have been reported in the context of the traditional electron flow model. In this paper, an alternative approach for high school students using a field model is explored. Findings from a range of short pilot…
Discrete symmetry breaking and baryon currents in U(N) and SU(N) gauge theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucini, B.; Patella, A.
2009-06-15
In SU(N) gauge theories with fermions in the fundamental or in a two-index (either symmetric or antisymmetric) representation formulated on a manifold with at least one compact dimension with nontrivial holonomy the discrete symmetries C, P, and T are broken at small enough size of the compact direction(s) for certain values of N. We show that for those N in the broken phase a nonzero baryon current wrapping in the compact direction exists, which provides a measurable observable for the breaking of C, P, and T. We prove that in all cases where the current is absent there is nomore » breaking of those discrete symmetries. This includes the limit N{yields}{infinity} of the SU(N) gauge theory with symmetric or antisymmetric fermions and U(N) gauge theory at any value of N. We then argue that the component of the baryon current in the compact direction is the physical order parameter for C, P, and T breaking due to the breaking of Lorentz invariance.« less
On the Loop Current Penetration into the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Weisberg, Robert H.; Liu, Yonggang
2017-12-01
The Gulf of Mexico Loop Current generally intrudes some distance into the Gulf of Mexico before shedding an anticyclonic eddy and retreating back to its more direct entry to exit pathway. The control of this aperiodic process remains only partially known. Here we describe the evolution of the Loop Current throughout the era of satellite altimetry, and offer a mechanistic hypothesis on Loop Current intrusion. As a complement to the known effects of Loop Current forcing on the west Florida shelf circulation, we argue that the west Florida shelf, in turn, impacts the Loop Current evolution. A Self-Organizing Map analysis shows that anomalous northward penetrations of the Loop Current into the Gulf of Mexico occur when the eastern side of Loop Current is positioned west from the southwest corner of the west Florida shelf, whereas the more direct inflow to outflow route occurs when the eastern side of the Loop Current comes in contact with the southwest corner of the west Florida shelf. In essence, we argue that the west Florida shelf anchors the Loop Current in its direct path configuration and that farther northward penetration into the Gulf of Mexico occurs when such anchoring is released. To test of this hypothesis heuristically, we estimate that the dissipation and buoyancy work due to known Loop Current forcing of the west Florida shelf circulation (when in contact with the southwest corner) may exceed the pressure work required for the Loop Current to advance against the ambient Gulf of Mexico fluid.
Stephani, Caspar; Paulus, Walter; Sommer, Martin
2016-01-01
The objective of this study was to investigate the significance of pulse configurations and current direction for corticospinal activation using transcranial magnetic stimulation (TMS). In 11 healthy subjects (8 female), a motor map for the motor evoked potentials (MEPs) recorded from the first dorsal interosseus (FDI), abductor digiti minimi (ADM), extensor carpi radialis, and biceps brachii (BB) muscles of the dominant side was established. Starting from a manually determined hot spot of the FDI representation, we measured MEPs at equal oriented points on an hexagonal grid, with 7 MEPs recorded at each point, using the following pulse configurations: posteriorly directed monophasic (Mo-P), anteriorly directed monophasic (Mo-A), biphasic with the more relevant second cycle oriented posteriorly (Bi-P) as well as a reversed biphasic condition (Bi-A). For each pulse configuration, a hot spot was determined and a center of gravity (CoG) was calculated. We found that the factor current direction had an effect on location of the CoG-adjusted hot spot in the cranio-caudal axis but not in the latero-medial direction with anteriorly directed pulses locating the CoG more anteriorly and vice versa. In addition, the CoG for the FDI was more laterally than the cortical representations for the abductor digiti minimi (ADM) and extensor carpi radialis (ECR) which were registered as well. The results indicate that direction of the current pulse should be taken into account for determination of the motor representation of a muscle by TMS. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Nerve Regeneration in vitro: Comparative Effects of Direct and Induced Current and NGF.
1985-11-26
four treatment groups: a control group (non-treated), a group treated with nerve growth factor (NGF) at a final concentraion of 10 nM, a group...contained 2-4 dishes per experiment; each experiment was repeated 3-4 times. Nerve growth factor (2.5s) was obtained from R. Bradshaw (Irvine, CA). Direct... growth factor , pulsed electromagnetic fields-vertical and direct current) at 3 days in vitrg are demonstrated in Figures 6- 7. Figure 8 and Figure 9
Neuroprotective effect of cathodal transcranial direct current stimulation in a rat stroke model.
Notturno, Francesca; Pace, Marta; Zappasodi, Filippo; Cam, Etrugul; Bassetti, Claudio L; Uncini, Antonino
2014-07-15
Experimental focal brain ischemia generates in the penumbra recurrent depolarizations which spread across the injured cortex inducing infarct growth. Transcranial direct current stimulation can induce a lasting, polarity-specific, modulation of cortical excitability. To verify whether cathodal transcranial direct current stimulation could reduce the infarct size and the number of depolarizations, focal ischemia was induced in the rat by the 3 vessels occlusion technique. In the first experiment 12 ischemic rats received cathodal stimulation (alternating 15 min on and 15 min off) starting 45 min after middle cerebral artery occlusion and lasting 4 h. In the second experiment 12 ischemic rats received cathodal transcranial direct current stimulation with the same protocol but starting soon after middle cerebral artery occlusion and lasting 6 h. In both experiments controls were 12 ischemic rats not receiving stimulation. Cathodal stimulation reduced the infarct volume in the first experiment by 20% (p=0.002) and in the second by 30% (p=0.003). The area of cerebral infarction was smaller in animals receiving cathodal stimulation in both experiments (p=0.005). Cathodal stimulation reduced the number of depolarizations (p=0.023) and infarct volume correlated with the number of depolarizations (p=0.048). Our findings indicate that cathodal transcranial direct current stimulation exert a neuroprotective effect in the acute phase of stroke possibly decreasing the number of spreading depolarizations. These findings may have translational relevance and open a new avenue in neuroprotection of stroke in humans. Copyright © 2014. Published by Elsevier B.V.
Two-motor direct drive control for elevation axis of telescope
NASA Astrophysics Data System (ADS)
Tang, T.; Tan, Y.; Ren, G.
2014-07-01
Two-motor application has become a very attractive filed in important field which high performance is permitted to achieve of position, speed, and acceleration. In the elevation axis of telescope control system, two-motor direct drive is proposed to enhance the high performance of tracking control system. Although there are several dominant strengths such as low size of motors and high torsional structural dynamics, the synchronization control of two motors is a very difficult and important. In this paper, a multi-loop control technique base master-slave current control is used to synchronize two motors, including current control loop, speed control loop and position control loop. First, the direct drive function of two motors is modeled. Compared of single motor direct control system, the resonance frequency of two motor control systems is same; while the anti-resonance frequency of two motors control system is 1.414 times than those of sing motor system. Because of rigid coupling for direct drive, the speed of two motor of the system is same, and the synchronization of torque for motors is critical. The current master-slave control technique is effective to synchronize the torque, which the current loop of the master motors is tracked the other slave motor. The speed feedback into the input of current loop of the master motors. The experiments test the performance of the two motors drive system. The random tracking error is 0.0119" for the line trajectory of 0.01°/s.
Godbout, Charles; Frenette, Jérôme
2006-01-01
A prevailing paradigm is that electrical fields can promote cell migration and tissue healing. To further validate this paradigm, we tested the hypothesis that periodic direct current (DC) can enhance wound closure using an in vitro dynamic model of cell migration. Layers of primary fibroblasts were wounded and treated with DC under various voltages. Repair area, cell velocity, and directionality as well as lamellipodium area were evaluated at different times. Direct current had no beneficial effect on cell migration. Moreover, prolonged stimulation under the highest voltage led to significant reduction in wound closure and cell velocity. The reduction of membrane protusions in stimulated cells may be associated with the deleterious effect of DC. Contrary to the authors' expectations, they found that periodic DC did not promote wound closure, a finding that emphasizes the need to clarify the complex effects of electrical fields on migrating cells.
Saebipour, Mohammad R; Joghataei, Mohammad T; Yoonessi, Ali; Sadeghniiat-Haghighi, Khosro; Khalighinejad, Nima; Khademi, Soroush
2015-10-01
Recent evidence suggests that lack of slow-wave activity may play a fundamental role in the pathogenesis of insomnia. Pharmacological approaches and brain stimulation techniques have recently offered solutions for increasing slow-wave activity during sleep. We used slow (0.75 Hz) oscillatory transcranial direct current stimulation during stage 2 of non-rapid eye movement sleeping insomnia patients for resonating their brain waves to the frequency of sleep slow-wave. Six patients diagnosed with either sleep maintenance or non-restorative sleep insomnia entered the study. After 1 night of adaptation and 1 night of baseline polysomnography, patients randomly received sham or real stimulation on the third and fourth night of the experiment. Our preliminary results show that after termination of stimulations (sham or real), slow oscillatory transcranial direct current stimulation increased the duration of stage 3 of non-rapid eye movement sleep by 33 ± 26 min (P = 0.026), and decreased stage 1 of non-rapid eye movement sleep duration by 22 ± 17.7 min (P = 0.028), compared with sham. Slow oscillatory transcranial direct current stimulation decreased stage 1 of non-rapid eye movement sleep and wake time after sleep-onset durations, together, by 55.4 ± 51 min (P = 0.045). Slow oscillatory transcranial direct current stimulation also increased sleep efficiency by 9 ± 7% (P = 0.026), and probability of transition from stage 2 to stage 3 of non-rapid eye movement sleep by 20 ± 17.8% (P = 0.04). Meanwhile, slow oscillatory transcranial direct current stimulation decreased transitions from stage 2 of non-rapid eye movement sleep to wake by 12 ± 6.7% (P = 0.007). Our preliminary results suggest a sleep-stabilizing role for the intervention, which may mimic the effect of sleep slow-wave-enhancing drugs. © 2015 European Sleep Research Society.
Contribution of Field Strength Gradients to the Net Vertical Current of Active Regions
NASA Astrophysics Data System (ADS)
Vemareddy, P.
2017-12-01
We examined the contribution of field strength gradients for the degree of net vertical current (NVC) neutralization in active regions (ARs). We used photospheric vector magnetic field observations of AR 11158 obtained by Helioseismic and Magnetic Imager on board SDO and Hinode. The vertical component of the electric current is decomposed into twist and shear terms. The NVC exhibits systematic evolution owing to the presence of the sheared polarity inversion line between rotating and shearing magnetic regions. We found that the sign of shear current distribution is opposite in dominant pixels (60%–65%) to that of twist current distribution, and its time profile bears no systematic trend. This result indicates that the gradient of magnetic field strength contributes to an opposite signed, though smaller in magnitude, current to that contributed by the magnetic field direction in the vertical component of the current. Consequently, the net value of the shear current is negative in both polarity regions, which when added to the net twist current reduces the direct current value in the north (B z > 0) polarity, resulting in a higher degree of NVC neutralization. We conjecture that the observed opposite signs of shear and twist currents are an indication, according to Parker, that the direct volume currents of flux tubes are canceled by their return currents, which are contributed by field strength gradients. Furthermore, with the increase of spatial resolution, we found higher values of twist, shear current distributions. However, the resolution effect is more useful in resolving the field strength gradients, and therefore suggests more contribution from shear current for the degree of NVC neutralization.
Hao, Zhi-hong; Yao, Jian-zhen; Tang, Rui-ling; Zhang, Xue-mei; Li, Wen-ge; Zhang, Qin
2015-02-01
The method for the determmation of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current are full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES) was established. Direct current are full spectrum direct reading atomic emission spectrometer with a large area of solid-state detectors has functions of full spectrum direct reading and real-time background correction. The new electrodes and new buffer recipe were proposed in this paper, and have applied for national patent. Suitable analytical line pairs, back ground correcting points of elements and the internal standard method were selected, and Ge was used as internal standard. Multistage currents were selected in the research on current program, and each current set different holding time to ensure that each element has a good signal to noise ratio. Continuous rising current mode selected can effectively eliminate the splash of the sample. Argon as shielding gas can eliminate CN band generating and reduce spectral background, also plays a role in stabilizing the are, and argon flow 3.5 L x min(-1) was selected. Evaporation curve of each element was made, and it was concluded that the evaporation behavior of each element is consistent, and combined with the effects of different spectrographic times on the intensity and background, the spectrographic time of 35s was selected. In this paper, national standards substances were selected as a standard series, and the standard series includes different nature and different content of standard substances which meet the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples. In the optimum experimental conditions, the detection limits for B, Mo, Ag, Sn and Pb are 1.1, 0.09, 0.01, 0.41, and 0.56 microg x g(-1) respectively, and the precisions (RSD, n=12) for B, Mo, Ag, Sn and Pb are 4.57%-7.63%, 5.14%-7.75%, 5.48%-12.30%, 3.97%-10.46%, and 4.26%-9.21% respectively. The analytical accuracy was validated by national standards and the results are in agreement with certified values. The method is simple, rapid, is an advanced analytical method for the determination of trace amounts of geochemical samples' boron, molybdenum, silver, tin and lead, and has a certain practicality.
NASA Astrophysics Data System (ADS)
Grilli, S. T.; Guérin, C. A.; Shelby, M. R.; Grilli, A. R.; Insua, T. L.; Moran, P., Jr.
2016-12-01
A High-Frequency (HF) radar was installed by Ocean Networks Canada in Tofino, BC, to detect tsunamis from far- and near-field seismic sources; in particular, from the Cascadia Subduction Zone. This HF radar can measure ocean surface currents up to a 70-85 km range, depending on atmospheric conditions, based on the Doppler shift they cause in ocean waves at the Bragg frequency. In earlier work, we showed that tsunami currents must be at least 0.15 m/s to be directly detectable by a HF radar, when considering environmental noise and background currents (from tide/mesoscale circulation). This limits a direct tsunami detection to shallow water areas where currents are sufficiently strong due to wave shoaling and, hence, to the continental shelf. It follows that, in locations with a narrow shelf, warning times using a direct inversion method will be small. To detect tsunamis in deeper water, beyond the continental shelf, we proposed a new algorithm that does not require directly inverting currents, but instead is based on observing changes in patterns of spatial correlations of the raw radar signal between two radar cells located along the same wave ray, after time is shifted by the tsunami propagation time along the ray. A pattern change will indicate the presence of a tsunami. We validated this new algorithm for idealized tsunami wave trains propagating over a simple seafloor geometry in a direction normally incident to shore. Here, we further develop, extend, and validate the algorithm for realistic case studies of seismic tsunami sources impacting Vancouver Island, BC. Tsunami currents, computed with a state-of-the-art long wave model are spatially averaged over cells aligned along individual wave rays, located within the radar sweep area, obtained by solving the wave geometric optic equation; for long waves, such rays and tsunami propagation times along those are only function of the seafloor bathymetry, and hence can be precalculated for different incident tsunami directions. A model simulating the radar backscattered signal in space and time as a function of simulated tsunami currents is applied to the sweep area. Numerical experiments show that the new algorithm can detect a realistic tsunami further offshore than a direct detection method. Correlation thresholds for tsunami detection will be derived from the results.
NASA Astrophysics Data System (ADS)
Zhang, Chong; Zha, Jun-Wei; Yan, Hong-Da; Li, Wei-Kang; Dang, Zhi-Min
2018-02-01
Polypropylene is one kind of eco-friendly insulating material, which has attracted more attention for use in high voltage direct current (HVDC) insulation due to the long-distance transmission, low loss, and recyclability. In this work, the morphology and thermal and electrical properties of the block polypropylene with various β-nucleating agent (β-NA) contents were investigated. The relative fraction of the β-crystal can reach 64.7% after adding 0.05 wt. % β-NA. The β-NA also greatly reduced the melting point and improved the crystallization temperature. The electrical property results showed that the alternating and direct current breakdown strength and conduction current were obviously improved. In addition, space charge accumulation was significantly suppressed by introducing the β-NA. This work provides an attractive strategy of design and fabrication of polypropylene for HVDC application.
Kariminezhad, Esmaeel; Elektorowicz, Maria
2018-04-10
The electrokinetic process has shown its ability to separate the different material phases. However, not much is known about the effect of the electric fields on the surface properties of solids in the oil sediments and their behavior under different electrical regimes. In this study, the effect of four different types of electrical current on the surface properties of oil sediments was investigated, namely constant direct current (CDC), pulsed direct current (PDC), incremental direct current (IDC) and decremental direct current (DDC). X-ray photoelectron spectroscopy (XPS) analyses showed a decrease in the concentration of carbon from 99% in centrifuged samples to 63% on the surface of the solids in the PDC-treated oil sediment. Wettability alteration and contact angle studies showed an enhance in hydrophilicity of the solids following electrokinetic treatment. A significant change in carbon and oxygen-containing functionalities at the surface solids of the DDC-treated sediment was also observed. Thermogravimetric analyses (TGA) confirmed the ability of electrokinetic treatment in separating the phases by shifting the thermogram profiles towards lower temperatures. The findings showed that the electrokinetic process exerts its effect by altering the surface properties of the sediment solids and destabilizing water-in-oil emulsions to facilitate phase separation of this complex waste. Copyright © 2018 Elsevier B.V. All rights reserved.
Direct current uninterruptible power supply method and system
Sinha, Gautam
2003-12-02
A method and system are described for providing a direct current (DC) uninterruptible power supply with the method including, for example: continuously supplying fuel to a turbine; converting mechanical power from the turbine into alternating current (AC) electrical power; converting the AC electrical power to DC power within a predetermined voltage level range; supplying the DC power to a load; and maintaining a DC load voltage within the predetermined voltage level range by adjusting the amount of fuel supplied to the turbine.
NASA Astrophysics Data System (ADS)
Yokoyama, Takaaki
Temporal evolution of a current sheet with initial perturbations is studied by using the threedimensional resistive magnetohydrodynamic (MHD) simulations. The magnetic reconnection is considered to be the main engine of the energy rele ase in solar flares. The structure of the diffusion region is, however, not stil l understood under the circumstances with enormously large magnetic Reynolds num ber as the solar corona. In particular, the relationship between the flare's macroscopic physics and the microscopic ones are unclear. It is generally believed that the MHD turbulence s hould play a role in the intermediate scale. The initial current sheet is in an approximately hydromagnetic equilibrium with anti-parallel magnetic field in the y-direction. We imposed a finite-amplitude perturbations (=50ee what happens. Special attention is paid upon the evolution of a three-dimens ional structure in the direction along the initial electric current (z-direction ). Our preliminary results are as follows: (1) In the early phase of the evolut ion, high wavenumber modes in the z-direction are excited and grow. (2) Many "X "-type neutral points (lines) are generated along the magnetic neutral line (pla ne) in the current sheet. When they evolve into the non-linear phase, three-dime nsional structures in the z-direction also evolve. The spatial scale in the z-di rection seems to be almost comparable with that in the xy-plane. (3) The energy release rate is reduced in case of 3D simulations compared with 2D ones probably because of the reduction of the inflow cross sections by the formation of pattc hy structures in the current sheet.
Superconducting dc Current Limiting Vacuum Circuit Breaker
NASA Astrophysics Data System (ADS)
Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Bunin, R. A.; Voloshin, I. F.; Degtyarenko, P. N.; Yevsin, D. V.; Ivanov, V. P.; Sidorov, V. A.; Fisher, L. M.; Tshai, E. V.
Acircuitofadc superconductingfault current limiter witha direct current circuit-breaker fora nominal current 300A is proposed. It includes the 2G high temperature superconducting (HTS) tapes and the high-speed dc vacuum circuit breaker.Thetestresultsof current-limitingcapacityandrecoverytimeof superconductivityafter currentfaultatvoltage upto3 kV are presented.
Update on Geothermal Direct-Use Installations in the United States
Beckers, Koenraad F.; Snyder, Diana M.; Young, Katherine R.
2017-03-02
An updated database of geothermal direct-use systems in the U.S. has been compiled and analyzed, building upon the Oregon Institute of Technology (OIT) Geo-Heat Center direct-use database. Types of direct-use applications examined include hot springs resorts and pools, aquaculture farms, greenhouses, and district heating systems, among others; power-generating facilities and ground-source heat pumps were excluded. Where possible, the current operation status, open and close dates, well data, and other technical data were obtained for each entry. The database contains 545 installations, of which 407 are open, 108 are closed, and 30 have an unknown status. A report is also included which details and analyzes current geothermal direct-use installations and barriers to further implementation.
DE 1 observations of type 1 counterstreaming electrons and field-aligned currents
NASA Technical Reports Server (NTRS)
Lin, C. S.; Burch, J. L.; Barfield, J. N.; Sugiura, M.; Nielsen, E.
1984-01-01
Dynamics Explorer 1 satellite observations of plasma and magnetic fields during type one counterstreaming electron events are presented. Counterstreaming electrons are observed at high altitudes in the region of field-aligned current. The total current density computed from the plasma data in the 18-10,000 eV energy range is generally about 1-2 micro-A/sq m. For the downward current, low-energy electrons contribute more than 40 percent of the total plasma current density integrated above 18 eV. For the upward current, such electrons contribute less than 50 percent of that current density. Electron beams in the field-aligned direction are occasionally detected. The pitch angle distributions of counterstreaming electrons are generally enhanced at both small and large pitch angles. STARE simultaneous observations for one DE 1 pass indicated that the field-aligned current was closed through Pedersen currents in the ionosphere. The directions of the ionospheric current systems are consistent with the DE 1 observations at high altitudes.
Self-Directed Learning: Application and Research.
ERIC Educational Resources Information Center
Long, Huey B.; And Others
These 23 papers provide as complete a picture as possible of the current efforts in self-directed learning application and research. The papers are: "Learning about Self-Directed Learning" (Long); "Philosophical, Psychological, and Practical Justifications for Studying Self-Direction in Learning" (Long); "In Search of…
Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uman, M A; Rakov, V A; Elisme, J O
2008-10-01
The University of Florida has surveyed all relevant publications reporting lightning characteristics and presents here an up-to-date version of the direct-strike lightning environment specifications for nuclear weapons published in 1989 by R. J. Fisher and M. A. Uman. Further, we present functional expressions for current vs. time, current derivative vs. time, second current derivative vs. time, charge transfer vs. time, and action integral (specific energy) vs. time for first return strokes, for subsequent return strokes, and for continuing currents; and we give sets of constants for these expressions so that they yield approximately the median and extreme negative lightning parametersmore » presented in this report. Expressions for the median negative lightning waveforms are plotted. Finally, we provide information on direct-strike lightning damage to metals such as stainless steel, which could be used as components of storage containers for nuclear waste materials; and we describe UF's new experimental research program to add to the sparse data base on the properties of positive lightning. Our literature survey, referred to above, is included in four Appendices. The following four sections (II, III, IV, and V) of this final report deal with related aspects of the research: Section II. Recommended Direct-Strike Median and Extreme Parameters; Section III. Time-Domain Waveforms for First Strokes, Subsequent Strokes, and Continuing Currents; Section IV. Damage to Metal Surfaces by Lightning Currents; and Section V. Measurement of the Characteristics of Positive Lightning. Results of the literature search used to derive the material in Section II and Section IV are found in the Appendices: Appendix 1. Return Stroke Current, Appendix 2. Continuing Current, Appendix 3. Positive Lightning, and Appendix 4. Lightning Damage to Metal Surfaces.« less
The Arts and Handicapped People: Defining the National Direction.
ERIC Educational Resources Information Center
Bureau of Education for the Handicapped (DHEW/OE), Washington, DC. Div. of Innovation and Development.
Proceedings from an April, 1977 conference focus on the current status and future directions of arts programming for the handicapped. M. Appell provides an overview of the field; while W. Kalenius, Jr. reviews data from 138 current research studies which indicate that handicapped children were able to learn the art forms, enjoyed the activities,…
ERIC Educational Resources Information Center
Chambers, Sharon K.; Andre, Thomas
1997-01-01
Presents a study that investigated relationships between gender, interest, and experience in electricity. Also explored the effect of conceptual change text manipulations on learning fundamental concepts of direct current. Suggests that conceptual change text manipulations are likely to be effective for both men and women. Contains 57 references.…
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Other methods of protecting offtrack direct-current equipment; approved by an authorized representative of the Secretary. 75.703-4 Section 75.703-4... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.703-4 Other methods of protecting offtrack...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Other methods of protecting offtrack direct-current equipment; approved by an authorized representative of the Secretary. 75.703-4 Section 75.703-4... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.703-4 Other methods of protecting offtrack...
Code of Federal Regulations, 2011 CFR
2011-07-01
... the last open crosscut; maximum level of alternating or direct electric current between frames of equipment. The maximum level of alternating or direct electric current that exists between the frames of any... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric face equipment; electric equipment...
ERIC Educational Resources Information Center
Baser, Mustafa
2006-01-01
The objective of this research is to investigate the effects of simulations based on conceptual change conditions (CCS) and traditional confirmatory simulations (TCS) on pre-service elementary school teachers' understanding of direct current electric circuits. The data was collected from a sample consisting of 89 students; 48 students in the…
Code of Federal Regulations, 2014 CFR
2014-07-01
... the last open crosscut; maximum level of alternating or direct electric current between frames of equipment. The maximum level of alternating or direct electric current that exists between the frames of any... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric face equipment; electric equipment...
Code of Federal Regulations, 2013 CFR
2013-07-01
... the last open crosscut; maximum level of alternating or direct electric current between frames of equipment. The maximum level of alternating or direct electric current that exists between the frames of any... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric face equipment; electric equipment...
Code of Federal Regulations, 2012 CFR
2012-07-01
... the last open crosscut; maximum level of alternating or direct electric current between frames of equipment. The maximum level of alternating or direct electric current that exists between the frames of any... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric face equipment; electric equipment...
Current directions in non-invasive low intensity electric brain stimulation for depressive disorder.
Schutter, Dennis J L G; Sack, Alexander T
2014-01-01
Non-invasive stimulation of the human brain to improve depressive symptoms is increasingly finding its way in clinical settings as a viable form of somatic treatment. Following successful modulation of neural excitability with subsequent antidepressant effects, neural polarization by administrating weak direct currents to the scalp has gained renewed interest. A new wave of basic and clinical studies seems to underscore the potential therapeutic value of direct current stimulation in the treatment of depression. Issues concerning the lack of mechanistic insights into the workings of modifying brain function through neural polarization and how this process translates to its antidepressant properties calls for additional research. The range of its clinical applicability has yet to be established.
NASA Astrophysics Data System (ADS)
Tao, Xie; Shang-Zhuo, Zhao; William, Perrie; He, Fang; Wen-Jin, Yu; Yi-Jun, He
2016-06-01
To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface, a fractal sea surface wave-current model is derived, based on the mechanism of wave-current interactions. The numerical results show the effect of the ocean current on the wave. Wave amplitude decreases, wavelength and kurtosis of wave height increase, spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave. By comparison, wave amplitude increases, wavelength and kurtosis of wave height decrease, spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave. The wave-current interaction effect of the ocean current is much stronger than that of the nonlinear wave-wave interaction. The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface. The effect of the current on skewness of the probability distribution function is negligible. Therefore, the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Development Program of Jiangsu Higher Education Institutions (PAPD), Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service.
NASA Technical Reports Server (NTRS)
Childs, Dara W.; Baskharone, Erian; Ramsey, Christopher
1991-01-01
Test results are presented for the HPOTP Turbine Interstage Seal with both the current and an alternate, aerodynamically designed, swirl brake. Tests were conducted at speeds out to 16,000 rpm, supply pressures up to 18.3 bars, and the following three inlet tangential velocity conditions: (1) no preswirl; (2) intermediate preswirl in the direction of rotation; and (3) high preswirl in the direction of rotation. The back pressure can be controlled independently and was varied to yield the following four pressure ratios: 0.4, 0.45, 0.56, and 0.67. The central and simplest conclusion to be obtained from the test series is that the alternate swirl brake consistently outperforms the current swirl brake in terms of stability performance. The alternate swirl brake's whirl frequency ratio was generally about one half or less than corresponding values for the current design. In many cases, the alternate design yielded negative whirl frequency ratio values in comparison to positive values for the current design. The alternate design can be directly substituted into the space currently occupied by the current design. There is no change in leakage performance.
Molecular wires acting as quantum heat ratchets.
Zhan, Fei; Li, Nianbei; Kohler, Sigmund; Hänggi, Peter
2009-12-01
We explore heat transfer in molecular junctions between two leads in the absence of a finite net thermal bias. The application of an unbiased time-periodic temperature modulation of the leads entails a dynamical breaking of reflection symmetry, such that a directed heat current may emerge (ratchet effect). In particular, we consider two cases of adiabatically slow driving, namely, (i) periodic temperature modulation of only one lead and (ii) temperature modulation of both leads with an ac driving that contains a second harmonic, thus, generating harmonic mixing. Both scenarios yield sizable directed heat currents, which should be detectable with present techniques. Adding a static thermal bias allows one to compute the heat current-thermal load characteristics, which includes the ratchet effect of negative thermal bias with positive-valued heat flow against the thermal bias, up to the thermal stop load. The ratchet heat flow in turn generates also an electric current. An applied electric stop voltage, yielding effective zero electric current flow, then mimics a solely heat-ratchet-induced thermopower ("ratchet Seebeck effect"), although no net thermal bias is acting. Moreover, we find that the relative phase between the two harmonics in scenario (ii) enables steering the net heat current into a direction of choice.
NASA Astrophysics Data System (ADS)
Lilover, M.-J.; Pavelson, J.; Kõuts, T.
2014-01-01
This study aims to explain those factors influencing low-frequency currents in a shallow unstratified sea with complex topography. Current velocity measurements using a bottom-mounted ADCP, deployed at 8 m depth on the slope of Naissaar Bank (northern entrance to the Tallinn Bay, Gulf of Finland), were performed over five weeks in late autumn 2008. A quasi-steady current from nine sub-periods (two weeks) was relatively well correlated with wind (mean correlation coefficient of 0.70). During moderate to fresh winds, the current is veered to the right relative to the wind direction, by angles in the range of 14-38°. The flow is directed to the left, relative to the wind direction in stronger wind conditions, indicating evidence of topographic forcing. The observed current was reasonably in accordance with the flow predicted by the classical Ekman model. The modelled current speeds (wind speeds < 11 m s- 1) appear to be overestimated by 3-6 cm s- 1, whilst the observed rotation angles were mostly less than those predicted by the model. Inclusion of barotropic forcing to the Ekman model improved its performance. The discrepancies between the model and observations are discussed in terms of topographic steering, baroclinic effect and surface wave induced forcing.
Analysis of electric current flow through the HTc multilayered superconductors
NASA Astrophysics Data System (ADS)
Sosnowski, J.
2016-02-01
Issue of the flow of the transport current through multilayered high-temperature superconductors is considered, depending on the direction of the electric current towards the surface of the superconducting CuO2 layers. For configuration of the current flow inside of the layers and for perpendicular magnetic field, it will be considered the current limitations connected with interaction of pancake type vortices with nano-sized defects, created among other during fast neutrons irradiation. So it makes this issue associated with work of nuclear energy devices, like tokamak ITER, LHC and actually developed accelerator Nuclotron-NICA, as well as cryocables. Phenomenological analysis of the pinning potential barrier formation will be in the paper given, which determines critical current flow inside the plane. Comparison of theoretical model with experimental data will be presented too as well as influence of fast neutrons irradiation dose on critical current calculated. For current direction perpendicular to superconducting planes the current-voltage characteristics are calculated basing on model assuming formation of long intrinsic Josephson's junctions in layered HTc superconductors.
Systematic error of diode thermometer.
Iskrenovic, Predrag S
2009-08-01
Semiconductor diodes are often used for measuring temperatures. The forward voltage across a diode decreases, approximately linearly, with the increase in temperature. The applied method is mainly the simplest one. A constant direct current flows through the diode, and voltage is measured at diode terminals. The direct current that flows through the diode, putting it into operating mode, heats up the diode. The increase in temperature of the diode-sensor, i.e., the systematic error due to self-heating, depends on the intensity of current predominantly and also on other factors. The results of systematic error measurements due to heating up by the forward-bias current have been presented in this paper. The measurements were made at several diodes over a wide range of bias current intensity.
NASA Astrophysics Data System (ADS)
Kawasuso, A.; Fukaya, Y.; Maekawa, M.; Zhang, H.; Seki, T.; Yoshino, T.; Saitoh, E.; Takanashi, K.
2013-09-01
Transversely spin-polarized positrons were injected near Pt and Au surfaces under an applied electric current. The three-photon annihilation of spin-triplet positronium, which was emitted from the surfaces into vacuum, was observed. When the positron spin polarization was perpendicular to the current direction, the maximum asymmetry of the three-photon annihilation intensity was observed upon current reversal for the Pt surfaces, whereas it was significantly reduced for the Au surface. The experimental results suggest that electrons near the Pt surfaces were in-plane and transversely spin-polarized with respect to the direction of the electric current. The maximum electron spin polarization was estimated to be more than 0.01 (1%).
Students' understanding of direct current resistive electrical circuits
NASA Astrophysics Data System (ADS)
Engelhardt, Paula Vetter; Beichner, Robert J.
2004-01-01
Both high school and university students' reasoning regarding direct current resistive electric circuits often differ from the accepted explanations. At present, there are no standard diagnostic tests on electric circuits. Two versions of a diagnostic instrument were developed, each consisting of 29 questions. The information provided by this test can provide instructors with a way of evaluating the progress and conceptual difficulties of their students. The analysis indicates that students, especially females, tend to hold multiple misconceptions, even after instruction. During interviews, the idea that the battery is a constant source of current was used most often in answering the questions. Students tended to focus on the current in solving problems and to confuse terms, often assigning the properties of current to voltage and/or resistance.
Computationally optimized ECoG stimulation with local safety constraints.
Guler, Seyhmus; Dannhauer, Moritz; Roig-Solvas, Biel; Gkogkidis, Alexis; Macleod, Rob; Ball, Tonio; Ojemann, Jeffrey G; Brooks, Dana H
2018-06-01
Direct stimulation of the cortical surface is used clinically for cortical mapping and modulation of local activity. Future applications of cortical modulation and brain-computer interfaces may also use cortical stimulation methods. One common method to deliver current is through electrocorticography (ECoG) stimulation in which a dense array of electrodes are placed subdurally or epidurally to stimulate the cortex. However, proximity to cortical tissue limits the amount of current that can be delivered safely. It may be desirable to deliver higher current to a specific local region of interest (ROI) while limiting current to other local areas more stringently than is guaranteed by global safety limits. Two commonly used global safety constraints bound the total injected current and individual electrode currents. However, these two sets of constraints may not be sufficient to prevent high current density locally (hot-spots). In this work, we propose an efficient approach that prevents current density hot-spots in the entire brain while optimizing ECoG stimulus patterns for targeted stimulation. Specifically, we maximize the current along a particular desired directional field in the ROI while respecting three safety constraints: one on the total injected current, one on individual electrode currents, and the third on the local current density magnitude in the brain. This third set of constraints creates a computational barrier due to the huge number of constraints needed to bound the current density at every point in the entire brain. We overcome this barrier by adopting an efficient two-step approach. In the first step, the proposed method identifies the safe brain region, which cannot contain any hot-spots solely based on the global bounds on total injected current and individual electrode currents. In the second step, the proposed algorithm iteratively adjusts the stimulus pattern to arrive at a solution that exhibits no hot-spots in the remaining brain. We report on simulations on a realistic finite element (FE) head model with five anatomical ROIs and two desired directional fields. We also report on the effect of ROI depth and desired directional field on the focality of the stimulation. Finally, we provide an analysis of optimization runtime as a function of different safety and modeling parameters. Our results suggest that optimized stimulus patterns tend to differ from those used in clinical practice. Copyright © 2018 Elsevier Inc. All rights reserved.
The Effect of the Leeuwin Current on Offshore Surface Gravity Waves in Southwest Western Australia
NASA Astrophysics Data System (ADS)
Wandres, Moritz; Wijeratne, E. M. S.; Cosoli, Simone; Pattiaratchi, Charitha
2017-11-01
The knowledge of regional wave regimes is critical for coastal zone planning, protection, and management. In this study, the influence of the offshore current regime on surface gravity waves on the southwest Western Australian (SWWA) continental shelf was examined. This was achieved by coupling the three dimensional, free surface, terrain-following hydrodynamic Regional Ocean Modelling System (ROMS) and the third generation wave model Simulating WAves Nearshore (SWAN) using the Coupled Ocean-Atmosphere-WaveSediment Transport (COAWST) model. Different representative states of the Leeuwin Current (LC), a strong pole-ward flowing boundary current with a persistent eddy field along the SWWA shelf edge were simulated and used to investigate their influence on different large wave events. The coupled wave-current simulations were compared to wave only simulations, which represented scenarios in the absence of a background current field. Results showed that the LC and the eddy field significantly impact SWWA waves. Significant wave heights increased (decreased) when currents were opposing (aligning with) the incoming wave directions. During a fully developed LC system significant wave heights were altered by up to ±25% and wave directions by up to ±20°. The change in wave direction indicates that the LC may modify nearshore wave dynamics and consequently alter sediment patterns. Operational regional wave forecasts and hindcasts may give flawed predictions if wave-current interaction is not properly accounted for.
Oki, Kentaro; Mahato, Niladri K; Nakazawa, Masato; Amano, Shinichi; France, Christopher R; Russ, David W; Clark, Brian C
2016-08-01
Decreased cortical excitability has been proposed as a potential mechanism underlying task failure during sustained muscular contractions, and cortical excitability may decrease with old age. We tested the hypothesis that transcranial direct current stimulation, which has been reported to raise cortical excitability, would prolong the time to task failure during a sustained muscular contraction in older adults. Thirteen older adults (68.3±2.0 years; eight women and five men) performed isometric, elbow flexions to failure while receiving sham or anodal transcranial direct current stimulation. Order of stimulation was randomized, and the subjects and investigators were blinded to condition. Time to task failure was measured alongside selected psychological indices of perceived exertion and affect. Anodal transcranial direct current stimulation prolonged mean time to task failure by approximately 15% (16.9±2.2 vs 14.7±1.8 minutes) and slowed the rate of increase in rating of perceived exertion (0.29±0.03 vs 0.31±0.03) relative to the sham condition. These preliminary findings suggest that anodal transcranial direct current stimulation enhances time to task failure of a sustained, submaximal contraction in older adults by potentially increasing cortical excitability and/or influencing the perception of exertion. These results raise the question of whether interventions that acutely increase cortical excitability could enhance physical function and/or exercise-induced adaptations in older adults. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Malavera, Alejandra; Vasquez, Alejandra; Fregni, Felipe
2015-01-01
Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that has been extensively studied. While there have been initial positive results in some clinical trials, there is still variability in tDCS results. The aim of this article is to review and discuss patents assessing novel methods to optimize the use of tDCS. A systematic review was performed using Google patents database with tDCS as the main technique, with patents filling date between 2010 and 2015. Twenty-two patents met our inclusion criteria. These patents attempt to address current tDCS limitations. Only a few of them have been investigated in clinical trials (i.e., high-definition tDCS), and indeed most of them have not been tested before in human trials. Further clinical testing is required to assess which patents are more likely to optimize the effects of tDCS. We discuss the potential optimization of tDCS based on these patents and the current experience with standard tDCS.
NASA Astrophysics Data System (ADS)
Guler, Seyhmus; Dannhauer, Moritz; Erem, Burak; Macleod, Rob; Tucker, Don; Turovets, Sergei; Luu, Phan; Erdogmus, Deniz; Brooks, Dana H.
2016-06-01
Objective. Transcranial direct current stimulation (tDCS) aims to alter brain function non-invasively via electrodes placed on the scalp. Conventional tDCS uses two relatively large patch electrodes to deliver electrical current to the brain region of interest (ROI). Recent studies have shown that using dense arrays containing up to 512 smaller electrodes may increase the precision of targeting ROIs. However, this creates a need for methods to determine effective and safe stimulus patterns as the number of degrees of freedom is much higher with such arrays. Several approaches to this problem have appeared in the literature. In this paper, we describe a new method for calculating optimal electrode stimulus patterns for targeted and directional modulation in dense array tDCS which differs in some important aspects with methods reported to date. Approach. We optimize stimulus pattern of dense arrays with fixed electrode placement to maximize the current density in a particular direction in the ROI. We impose a flexible set of safety constraints on the current power in the brain, individual electrode currents, and total injected current, to protect subject safety. The proposed optimization problem is convex and thus efficiently solved using existing optimization software to find unique and globally optimal electrode stimulus patterns. Main results. Solutions for four anatomical ROIs based on a realistic head model are shown as exemplary results. To illustrate the differences between our approach and previously introduced methods, we compare our method with two of the other leading methods in the literature. We also report on extensive simulations that show the effect of the values chosen for each proposed safety constraint bound on the optimized stimulus patterns. Significance. The proposed optimization approach employs volume based ROIs, easily adapts to different sets of safety constraints, and takes negligible time to compute. An in-depth comparison study gives insight into the relationship between different objective criteria and optimized stimulus patterns. In addition, the analysis of the interaction between optimized stimulus patterns and safety constraint bounds suggests that more precise current localization in the ROI, with improved safety criterion, may be achieved by careful selection of the constraint bounds.
ERIC Educational Resources Information Center
Hindy, Kamal T.; And Others
1992-01-01
An atmospheric pollution study applies direct current plasma atomic emission spectrometry (DCP-AES) to samples of total suspended particulate matter collected in two industrial areas and one residential area, and cement dust collected near major cement factories. These samples were analyzed for vanadium, tin, and mercury. The results indicate the…
ERIC Educational Resources Information Center
Wirth, Miranka; Rahman, Rasha Abdel; Kuenecke, Janina; Koenig, Thomas; Horn, Helge; Sommer, Werner; Dierks, Thomas
2011-01-01
Excitatory anodal transcranial direct current stimulation (A-tDCS) over the left dorsal prefrontal cortex (DPFC) has been shown to improve language production. The present study examined neurophysiological underpinnings of this effect. In a single-blinded within-subject design, we traced effects of A-tDCS compared to sham stimulation over the left…
ERIC Educational Resources Information Center
You, Dae Sang; Kim, Dae-Yul; Chun, Min Ho; Jung, Seung Eun; Park, Sung Jong
2011-01-01
Previous studies have shown the appearance of right-sided language-related brain activity in right-handed patients after a stroke. Non-invasive brain stimulation such as transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) have been shown to modulate excitability in the brain. Moreover, rTMS and…
75 FR 27414 - Airworthiness Directives; Airbus A318, A319, A320, A321 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-17
... occurrences of loss of the AC [alternating current] BUS 1 have been reported which led in some instances to the loss of the AC ESS [essential] BUS and DC [direct current] ESS BUS and connected systems. The... condition for the specified products. The MCAI states: Several occurrences of loss of the AC [alternating...
ERIC Educational Resources Information Center
Karaçam, Sedat; Digilli Baran, Azize
2015-01-01
The purpose of this study is to investigate the effects of Field Dependent (FD)/Field Independent (FI) cognitive styles and motivational styles on high school students' conceptual understandings about direct current circuit concepts. The participants of this study consisted of 295 high school students (male = 127, female = 168) who were enrolled…
Senço, Natasha M; Huang, Yu; D'Urso, Giordano; Parra, Lucas C; Bikson, Marom; Mantovani, Antonio; Shavitt, Roseli G; Hoexter, Marcelo Q; Miguel, Eurípedes C; Brunoni, André R
2015-07-01
Neuromodulation techniques for obsessive-compulsive disorder (OCD) treatment have expanded with greater understanding of the brain circuits involved. Transcranial direct current stimulation (tDCS) might be a potential new treatment for OCD, although the optimal montage is unclear. To perform a systematic review on meta-analyses of repetitive transcranianal magnetic stimulation (rTMS) and deep brain stimulation (DBS) trials for OCD, aiming to identify brain stimulation targets for future tDCS trials and to support the empirical evidence with computer head modeling analysis. Systematic reviews of rTMS and DBS trials on OCD in Pubmed/MEDLINE were searched. For the tDCS computational analysis, we employed head models with the goal of optimally targeting current delivery to structures of interest. Only three references matched our eligibility criteria. We simulated four different electrodes montages and analyzed current direction and intensity. Although DBS, rTMS and tDCS are not directly comparable and our theoretical model, based on DBS and rTMS targets, needs empirical validation, we found that the tDCS montage with the cathode over the pre-supplementary motor area and extra-cephalic anode seems to activate most of the areas related to OCD.
Zhao, Haichao; Qiao, Lei; Fan, Dongqiong; Zhang, Shuyue; Turel, Ofir; Li, Yonghui; Li, Jun; Xue, Gui; Chen, Antao; He, Qinghua
2017-01-01
Transcranial direct current stimulation (tDCS) is a widely-used tool to induce neuroplasticity and modulate cortical function by applying weak direct current over the scalp. In this review, we first introduce the underlying mechanism of action, the brief history from discovery to clinical scientific research, electrode positioning and montages, and parameter setup of tDCS. Then, we review tDCS application in clinical samples including people with drug addiction, major depression disorder, Alzheimer's disease, as well as in children. This review covers the typical characteristics and the underlying neural mechanisms of tDCS treatment in such studies. This is followed by a discussion of safety, especially when the current intensity is increased or the stimulation duration is prolonged. Given such concerns, we provide detailed suggestions regarding safety procedures for tDCS operation. Lastly, future research directions are discussed. They include foci on the development of multi-tech combination with tDCS such as with TMS and fMRI; long-term behavioral and morphological changes; possible applications in other research domains, and more animal research to deepen the understanding of the biological and physiological mechanisms of tDCS stimulation. PMID:28539894
Observations of currents and density structure across a buoyant plume front
Gelfenbaum, G.; Stumpf, R.P.
1993-01-01
Observations of the Mobile Bay, Alabama, plume during a flood event in April 1991 reveal significant differences in the current field on either side of a front associated with the buoyant plume. During a strong southeasterly wind, turbid, low salinity water from Mobile Bay was pushed through an opening in the west side of the ebb-tidal delta and moved parallel to the coast. A stable front developed between the low salinity water of the buoyant plume (11‰) and the high salinity coastal water (>23‰) that was being forced landward by the prevailing winds. Despite the shallow water depth of 6 m, measurements of currents, temperature, and salinity show large shears and density gradients in both the vertical and the horizontal directions. At a station outside of the buoyant plume, currents at 0.5 m and 1.5 m below the surface were in the same direction as the wind. Inside the plume, however, currents at 0.5 m below the surface were parallel to the coast, 45°, off the direction of the wind and the magnitude was 45% larger than the magnitude of the surface currents outside the plume. Beneath the level of the plume, the currents were identical to the wind-driven currents in the ambient water south of the front. Our observations suggest that the wind-driven surface currents of the ambient water converged with the buoyant plume at the front and were subducted beneath the plume. The motion of the ambient coastal surface water was in the direction of the local wind stress, however, the motion of the plume had no northerly component of motion. The plume also did not show any flow toward the front, suggesting a balance between the northerly component of wind stress and the southerly component of buoyant spreading. In addition, the motion of the plume did not appear to affect the motion of the underlying ambient water, suggesting a lack of mixing between the two waters.
High voltage MOSFET devices and methods of making the devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Sujit; Matocha, Kevin; Chatty, Kiran
A SiC MOSFET device having low specific on resistance is described. The device has N+, P-well and JFET regions extended in one direction (Y-direction) and P+ and source contacts extended in an orthogonal direction (X-direction). The polysilicon gate of the device covers the JFET region and is terminated over the P-well region to minimize electric field at the polysilicon gate edge. In use, current flows vertically from the drain contact at the bottom of the structure into the JFET region and then laterally in the X direction through the accumulation region and through the MOSFET channels into the adjacent N+more » region. The current flowing out of the channel then flows along the N+ region in the Y-direction and is collected by the source contacts and the final metal. Methods of making the device are also described.« less
High voltage MOSFET devices and methods of making the devices
Banerjee, Sujit; Matocha, Kevin; Chatty, Kiran
2015-12-15
A SiC MOSFET device having low specific on resistance is described. The device has N+, P-well and JFET regions extended in one direction (Y-direction) and P+ and source contacts extended in an orthogonal direction (X-direction). The polysilicon gate of the device covers the JFET region and is terminated over the P-well region to minimize electric field at the polysilicon gate edge. In use, current flows vertically from the drain contact at the bottom of the structure into the JFET region and then laterally in the X direction through the accumulation region and through the MOSFET channels into the adjacent N+ region. The current flowing out of the channel then flows along the N+ region in the Y-direction and is collected by the source contacts and the final metal. Methods of making the device are also described.
Controlling directed transport of matter-wave solitons using the ratchet effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rietmann, M.; Carretero-Gonzalez, R.; Chacon, R.
2011-05-15
We demonstrate that directed transport of bright solitons formed in a quasi-one-dimensional Bose-Einstein condensate can be reliably controlled by tailoring a weak optical lattice potential, biharmonic in both space and time, in accordance with the degree of symmetry breaking mechanism. By considering the regime where matter-wave solitons are narrow compared to the lattice period, (i) we propose an analytical estimate for the dependence of the directed soliton current on the biharmonic potential parameters that is in good agreement with numerical experiments, and (ii) we show that the dependence of the directed soliton current on the number of atoms is amore » consequence of the ratchet universality.« less
Directional antennas for electromagnetic mapping in a borehole
Reagor, David Wesley; Nguyen, Doan Ngoc; Ashworth, Stephen Paul
2017-05-02
A bottom hole assembly used for a field operation is disclosed herein. The bottom hole assembly can include at least one directional antenna disposed on an outer surface of a first tubing pipe of a tubing string, where the at least one directional antenna receives a first electric current from at least one power source, where the first electric current generates a first magnetic field that radiates from the at least one directional antenna into a formation. The bottom hole assembly can also include at least one receiver disposed on a second tubing pipe of the tubing string, where the at least one receiver receives the first magnetic field returning from the formation.
ON THE RELATION OF DIRECT CURRENTS TO CONDENSER DISCHARGES AS STIMULI
Blair, H. A.
1935-01-01
Data on the electrical stimulation of sciatic-gastrocnemius preparations of the frog by both direct currents and condenser discharges at the same time are discussed in relation to the validity of the differential equation See PDF for Equation where p is the local excitatory process, V the stimulating current or voltage, and K and k are constants. It is concluded that the constant k is the same whether it is derived from the data of the one stimulus or the other when the same fibres are being stimulated. PMID:19872885
Electrical initiation of an energetic nanolaminate film
Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.
2010-03-30
A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, M.A.; Jeffries-Nakamura, B.; Williams, R.M.
1995-12-01
Current collection in porous thin film electrodes on solid electrolytes has been improved by using thick film grids to decrease sheet and contact resistance in RhW and PtW electrodes. The grids are directly deposited on the solid electrolyte either by sputter- or photodeposition and the electrode deposited over the grid. Comparison of the performance of electrodes having such underlying grids with that of electrodes without such grids has shown performance, as measured by current or power produced, to be improved by 10--30% in electrodes with grids.
NASA Technical Reports Server (NTRS)
Ryan, M. A.; Jeffries-Nakamura, B.; Williams, R. M.; Underwood, M. L.; OConnor, D.; Kikkert, S.
1995-01-01
Current collection in porous thin film electrodes on solid electrolytes has been improved by using thick film grids to decrease sheet and contact resistance in RhW and PtW electrodes. The grids are directly deposited on the solid electrolyte either by sputter- or photodeposition, and the electrode deposited over the grid. Comparison of the performance of electrodes having such underlying grids with that of electrodes without such grids has shown performance, as measured by current or power produced, to be improved by 10-30% in electrodes with grids.
Field-aligned current and auroral Hall current characteristics derived from the Swarm constellation
NASA Astrophysics Data System (ADS)
Huang, Tao; Wang, Hui; Hermann, Luehr
2017-04-01
On the basis of field-aligned currents (FACs) and Hall currents derived from high-resolution magnetic field data of the Swarm constellation the average characteristics of these two current systems in the auroral regions are comprehensively investigated by statistical methods. This is the first study considering both current types simultaneously and for both hemispheres. The FAC distribution, derived from the Swarm dual-spacecraft approach, reveals the well-known features of Region 1 (R1) and Region 2 (R2) FACs. At high latitudes, Region 0 (R0) FACs appear on the dayside. Their direction depends on the orientation of the interplanetary magnetic field (IMF) By component. Of particular interest is the distribution of auroral Hall currents. The most prominent auroral electrojets are found to be closely controlled by the solar wind input. But there is no dependence on the IMF By orientation. The eastward electrojet is about twice as strong in summer as in winter. Conversely, the westward electrojet shows less dependence on season. Part of the electrojet current is closed over the polar cap. Here the seasonal variation of conductivity mainly controls the current density. There is a clear channeling of return currents over the polar cap. Depending on IMF By orientation most of the current is flowing either on the dawn or dusk side. The direction of Hall currents in the noon sector depends directly on the orientation of the IMF By. This is true for both signs of the IMF Bz component. But largest differences between summer and winter seasons are found for northward IMF Bz. Around the midnight sector the westward substorm electrojet is dominating. As expected, it is highly dependent on magnetic activity, but shows only little response to the IMF By polarity.
NASA Astrophysics Data System (ADS)
Kuperman, Maayan; Peskin, Uri
2017-03-01
It has been known for several decades that the electric current through tunneling junctions is affected by irradiation. In particular, photon-assisted currents by asymmetric irradiation of the two leads was demonstrated and studied extensively in tunneling junctions of different compositions and for different radiation wavelengths. In this work, this phenomenon is revisited in the context of single molecule junctions. Restricting the theoretical discussion to adiabatic periodic driving of one lead with respect to the other within a non-interacting electron formulation, the main features of specific molecules are encoded in the discrete electronic energy levels. The detailed level structure of the molecule is shown to yield new effects in the presence of asymmetric driving of the leads. In particular, when the field-free tunneling process is dominated by a single electronic level, the electric current can be suppressed to zero or flow against the direction of an applied static bias. In the presence of a second electronic level, a directional photo-electric effect is predicted, where not only the magnitude but also the direction of the steady state electric current through the tunneling junction can be changed by a monotonous increase of the field intensity. These effects are analyzed and explained by outlying the relevant theory, using analytic expressions in the wide-band limit, as well as numerical simulations beyond this limit.
Extending the surrogacy analogy: applying the advance directive model to biobanks.
Solomon, Stephanie; Mongoven, Ann
2015-01-01
Biobank donors and biobank governance face a conceptual challenge akin to clinical patients and their designated surrogate decision-makers, the necessity of making decisions and policies now that must be implemented under future unknown circumstances. We propose that biobanks take advantage of this parallel to learn lessons from the historical trajectory of advance directives and develop models analogous to current 'best practice' advance directives such as Values Histories and TheFive Wishes. We suggest how such models could improve biobanks' engagement both with communities and with individual donors by being more honest about the limits of current disclosure and eliciting information to ensure the protection of donor interests more robustly through time than current 'informed consent' processes in biobanking. © 2014 S. Karger AG, Basel.
Superconducting magnetic shielding apparatus and method
Clem, John R.; Clem, John R.
1983-01-01
Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.
Superconducting magnetic shielding apparatus and method
Clem, J.R.; Clem, J.R.
1983-10-11
Disclosed are a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped. 5 figs.
Current ethical and legal issues in health-related direct-to-consumer genetic testing.
Niemiec, Emilia; Kalokairinou, Louiza; Howard, Heidi Carmen
2017-09-01
A variety of health-related genetic testing is currently advertized directly to consumers. This article provides a timely overview of direct-to-consumer genetic testing (DTC GT) and salient ethical issues, as well as an analysis of the impact of the recently adopted regulation on in vitro diagnostic medical devices on DTC GT. DTC GT companies currently employ new testing approaches, report on a wide spectrum of conditions and target new groups of consumers. Such activities raise ethical issues including the questionable analytic and clinical validity of tests, the adequacy of informed consent, potentially misleading advertizing, testing in children, research uses and commercialization of genomic data. The recently adopted regulation on in vitro diagnostic medical devices may limit the offers of predisposition DTC GT in the EU market.
Superconducting magnetic shielding apparatus and method
Clem, J.R.
1982-07-09
Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigorenko, E. E., E-mail: elenagrigorenko2003@yahoo.com; Malova, H. V., E-mail: hmalova@yandex.ru; Malykhin, A. Yu., E-mail: anmaurdreg@gmail.com
2015-01-15
The influence of the shear magnetic field component, which is directed along the electric current in the current sheet (CS) of the Earth’s magnetotail and enhanced near the neutral plane of the CS, on the nonadiabatic dynamics of ions interacting with the CS is studied. The results of simulation of the nonadiabatic ion motion in the prescribed magnetic configuration similar to that observed in the magnetotail CS by the CLUSTER spacecraft demonstrated that, in the presence of some initial shear magnetic field, the north-south asymmetry in the ion reflection/refraction in the CS is observed. This asymmetry leads to the formationmore » of an additional current system formed by the oppositely directed electric currents flowing in the northern and southern parts of the plasma sheet in the planes tangential to the CS plane and in the direction perpendicular to the direction of the electric current in the CS. The formation of this current system perhaps is responsible for the enhancement and further maintenance of the shear magnetic field near the neutral plane of the CS. The CS structure and ion dynamics observed in 17 intervals of the CS crossings by the CLUSTER spacecraft is analyzed. In these intervals, the shear magnetic field was increased near the neutral plane of the CS, so that the bell-shaped spatial distribution of this field across the CS plane was observed. The results of the present analysis confirm the suggested scenario of the enhancement of the shear magnetic field near the neutral plane of the CS due to the peculiarities of the nonadiabatic ion dynamics.« less
NASA Astrophysics Data System (ADS)
Chen, He; Yang, Yueguang; Su, Guolei; Wang, Xiaoqing; Zhang, Hourong; Sun, Xiaoyu; Fan, Youping
2017-09-01
There are increasingly serious electrocorrosion phenomena on insulator hardware caused by direct current transmission due to the wide-range popularization of extra high voltage direct current transmission engineering in our country. Steel foot corrosion is the main corrosion for insulators on positive polarity side of transmission lines. On one hand, the corrosion leads to the tapering off of steel foot diameter, having a direct influence on mechanical property of insulators; on the other hand, in condition of corrosion on steel foot wrapped in porcelain ware, the volume of the corrosion product is at least 50% more than that of the original steel foot, leading to bursting of porcelain ware, threatening safe operation of transmission lines. Therefore, it is necessary to conduct research on the phenomenon and propose feasible measures for corrosion inhibition. Starting with the corrosion mechanism, this article proposes two measures for corrosion inhibition, and verifies the inhibition effect in laboratory conditions, providing reference for application in engineering.
Quantum ratchet in two-dimensional semiconductors with Rashba spin-orbit interaction
Ang, Yee Sin; Ma, Zhongshui; Zhang, Chao
2015-01-01
Ratchet is a device that produces direct current of particles when driven by an unbiased force. We demonstrate a simple scattering quantum ratchet based on an asymmetrical quantum tunneling effect in two-dimensional electron gas with Rashba spin-orbit interaction (R2DEG). We consider the tunneling of electrons across a square potential barrier sandwiched by interface scattering potentials of unequal strengths on its either sides. It is found that while the intra-spin tunneling probabilities remain unchanged, the inter-spin-subband tunneling probabilities of electrons crossing the barrier in one direction is unequal to that of the opposite direction. Hence, when the system is driven by an unbiased periodic force, a directional flow of electron current is generated. The scattering quantum ratchet in R2DEG is conceptually simple and is capable of converting a.c. driving force into a rectified current without the need of additional symmetry breaking mechanism or external magnetic field. PMID:25598490
78 FR 27001 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-09
... one-time mid- frequency eddy current (MFEC) inspection, a low-frequency eddy current (LFEC) inspection... new AD instead requires repetitive external eddy current inspections for cracking of certain fuselage crown lap joints, and corrective actions if necessary; internal eddy current and detailed inspections...
First measurements of Hiro currents in vertical displacement event in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Hao; Xu, Guosheng; Wang, Huiqian
Specially designed tiles were setup in the 2012 campaign of the Experimental Advanced Superconducting Tokamak (EAST), to directly measure the toroidal surface currents during the disruptions. Hiro currents with direction opposite to the plasma currents have been observed, confirming the sign prediction by the Wall Touching Vertical Mode (WTVM) theory and numerical simulations. During the initial phase of the disruption, when the plasma begins to touch the wall, the surface currents can be excited by WTVM along the plasma facing tile surface, varying with the mode magnitude. The currents are not observed in the cases when the plasma moves awaymore » from the tile surface. This discovery addresses the importance of the plasma motion into the wall in vertical disruptions. WTVM, acting as a current generator, forces the Hiro currents to flow through the gaps between tiles. This effect, being overlooked so far in disruption analysis, may damage the edges of the tiles and is important for the ITER device.« less
Measurement of Direct Current Voltage Causing Electrical Pitting
NASA Astrophysics Data System (ADS)
Noguchi, Shoji; Kakinuma, Shin-Nosuke; Kanada, Tohru
It is widely known that electrical pitting occurs when an electrical current is passed through a ball or roller bearing. The authors have investigated critical electrical current density causing electrical pitting and have shown that it occurs in a ball bearing even at an extremely low current. In this paper we present the results of an experiment in which a small ball bearing was supplied with a direct current (DC) voltage to determine the voltage required to induce a current. A film of grease acts as the insulator on an antifriction bearing used, and the thickness of this film is an important consideration and the current must pass through this film. Four types of grease were used on the bearing, which was rotated at various speed during 500 hours. A potential of 1.3V to 1.5V was necessary to induce the flow of current. The results indicate that the voltage supplied by typical dry cell batteries is sufficient to drive a currents through a small bearing, and that the experimental conditions had little effect on the magnitude of the flowing current.
A 1.2-V CMOS front-end for LTE direct conversion SAW-less receiver
NASA Astrophysics Data System (ADS)
Riyan, Wang; Jiwei, Huang; Zhengping, Li; Weifeng, Zhang; Longyue, Zeng
2012-03-01
A CMOS RF front-end for the long-term evolution (LTE) direct conversion receiver is presented. With a low noise transconductance amplifier (LNA), current commutating passive mixer and transimpedance operational amplifier (TIA), the RF front-end structure enables high-integration, high linearity and simple frequency planning for LTE multi-band applications. Large variable gain is achieved using current-steering transconductance stages. A current commutating passive mixer with 25% duty-cycle LO improves gain, noise and linearity. A direct coupled current-input filter (DCF) is employed to suppress the out-of-band interferer. Fabricated in a 0.13-μm CMOS process, the RF front-end achieves a 45 dB conversion voltage gain, 2.7 dB NF, -7 dBm IIP3, and +60 dBm IIP2 with calibration from 2.3 to 2.7 GHz. The total RF front end with divider draws 40 mA from a single 1.2-V supply.
An evaluation of ERTS data for oceanographic uses through Great Lakes studies
NASA Technical Reports Server (NTRS)
Strong, A. E. (Principal Investigator); Stumpf, H. G.
1974-01-01
The author has identified the following significant results. Prevailing wind direction on Lake Michigan is southwesterly, although during winter northwesterly stresses are common. Along the western shore the current favors a northward direction. ERTS-1 observations indicate that the southward-flowing current along the Michigan shoreline of the thumb is only reversed by southerly resultant wind stress. Along the Canadian shoreline, a northward current was observed north of Kettle Point. ERTS-1 data also reveal that a preferred southward-flowing current is found along the Detroit shoreline of Lake St. Clair. Eastward flow of surface water from the shallow western basin of Lake Erie into the middle basin is most obvious during northwesterly and northerly wind stresses. The reverse wind direction especially east and southeasterly, appear to hold the effluents from the Detroit and Maumee Rivers in the western basin. Across-lake winds from the north and south induce eddy-like circulation in surface waters of Lake Ontario. Counterclockwise alongshore flow persists in the western basin under most wind conditions.
Rubio, Belen; Boes, Aaron D; Laganiere, Simon; Rotenberg, Alexander; Jeurissen, Danique; Pascual-Leone, Alvaro
2016-05-01
Attention-deficit hyperactivity disorder (ADHD) is one of the most prevalent neurodevelopmental disorders in the pediatric population. The clinical management of ADHD is currently limited by a lack of reliable diagnostic biomarkers and inadequate therapy for a minority of patients who do not respond to standard pharmacotherapy. There is optimism that noninvasive brain stimulation may help to address these limitations. Transcranial magnetic stimulation and transcranial direct current stimulation are 2 methods of noninvasive brain stimulation that modulate cortical excitability and brain network activity. Transcranial magnetic stimulation can be used diagnostically to probe cortical neurophysiology, whereas daily use of repetitive transcranial magnetic stimulation or transcranial direct current stimulation can induce long-lasting and potentially therapeutic changes in targeted networks. In this review, we highlight research showing the potential diagnostic and therapeutic applications of transcranial magnetic stimulation and transcranial direct current stimulation in pediatric ADHD. We also discuss the safety and ethics of using these tools in the pediatric population. © The Author(s) 2015.
Remote two-wire data entry method and device
Kronberg, James W.
1995-01-01
A device for detecting switch closure such as in a keypad for entering data comprising a matrix of conductor pairs and switches, each pair of conductors shorted by the pressing of a particular switch, and current-regulating devices on each conductor for limiting current in one direction and passing it without limit in the other direction. The device is driven by alternating current. The ends of the conductors in a conductor pair limit current of opposing polarities with respect to each other so that the signal on a shorted pair is an alternating current signal with a unique combination of a positive and a negative peak, which, when analyzed, allows the determination of which key was pressed. The binary identification of the pressed key is passed to the input port of a host device.
Current and Future Parts Management at NASA
NASA Technical Reports Server (NTRS)
Sampson, Michael J.
2011-01-01
This presentation provides a high level view of current and future electronic parts management at NASA. It describes a current perspective of the new human space flight direction that NASA is beginning to take and how that could influence parts management in the future. It provides an overview of current NASA electronic parts policy and how that is implemented at the NASA flight Centers. It also describes some of the technical challenges that lie ahead and suggests approaches for their mitigation. These challenges include: advanced packaging, obsolescence and counterfeits, the global supply chain and Commercial Crew, a new direction by which NASA will utilize commercial launch vehicles to get astronauts to the International Space Station.
NASA Astrophysics Data System (ADS)
Hirayama, Shigeyuki; Mitani, Seiji; Otani, YoshiChika; Kasai, Shinya
2018-01-01
We systematically investigated the spin-torque ferromagnetic resonance (ST-FMR) in permalloy/Pt bilayer thin films under bias direct currents. According to the conventional ST-FMR theory, the half widths of the resonant peaks in the spectra can be modulated by bias currents, which give a reliable value of the spin injection efficiency of the spin Hall effect. On the other hand, the symmetric components of the spectra show an unexpected strong bias current dependence, while the asymmetric components are free from the modulation. These findings suggest that some contributions are missing in the ST-FMR analysis of the ferromagnetic/nonmagnetic metal bilayer thin films.
NASA Astrophysics Data System (ADS)
Entin, M. V.; Magarill, L. I.
2010-02-01
The stationary current induced by a strong running potential wave in one-dimensional system is studied. Such a wave can result from illumination of a straight quantum wire with special grating or spiral quantum wire by circular-polarized light. The wave drags electrons in the direction correlated with the direction of the system symmetry and polarization of light. In a pure system the wave induces minibands in the accompanied system of reference. We study the effect in the presence of impurity scattering. The current is an interplay between the wave drag and impurity braking. It was found that the drag current is quantized when the Fermi level gets into energy gaps.
The revision of the European blood directives: A major challenge for transfusion medicine.
Folléa, G; Aranko, K
2015-08-01
Using both patient-focused and donor-focused perspectives, to review the current EU blood directives, in order to derive proposals, in principle, for what should evolve during the revision process of these directives. Review of the EU blood directives in the light of scientific literature, related reports from the Directorate General Health and Consumers (DG SANTÉ), and from the Council of Europe (CoE). The analyses led us to present the main following proposals: developing voluntary unpaid donations: the directives should consider taking into consideration ethically acceptable forms of compensation consistent with altruistic donation (including plasma donations for fractionation); current expertise: more extensive utilization of the expertise of blood establishments and their consultants should be considered; donor selection: an evidence-based approach for basing donor deferral criteria on sound scientific evidence should be promoted; donor reactions: measures to prevent donor reactions and to make donations safer for the donors should also be included; quality control: The quality control requirements should relate to the Council of Europe Blood Guide specifications: these should become minimum standards (as is the case with monographs of the European Pharmacopeia), facilitating regular update of blood component lists and related specifications and compliance with the specifications; haemovigilance: because of reporting difficulties (e.g. lack of number of blood products transfused), the effectiveness of haemovigilance has so far been limited. This should lead appropriate bodies to investigate alternative or complementary ways to help improve patient safety, taking into consideration, in principle, patient blood management and the appropriate use of blood products. Furthermore, donor vigilance, which is still absent from the current directive should be included in a revised directive. These proposals for revising the current EU blood directives (if taken into account and given appropriate regulatory formulation) should help to optimize patient safety and donor care, progress the compliance with the ethical principles for donors and improve the efficiency of the healthcare systems dedicated to transfusion medicine. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
ERIC Educational Resources Information Center
Schneider, Harry D.; Hopp, Jenna P.
2011-01-01
Minimally verbal children with autism commonly demonstrate language dysfunction, including immature syntax acquisition. We hypothesised that transcranial direct current stimulation (tDCS) should facilitate language acquisition in a cohort (n = 10) of children with immature syntax. We modified the English version of the Bilingual Aphasia Test (BAT)…
Indirect current control with separate IZ drop compensation for voltage source converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanetkar, V.R.; Dawande, M.S.; Dubey, G.K.
1995-12-31
Indirect Current Control (ICC) of boost type Voltage Source Converters (VSCs) using separate compensation of line IZ voltage drop is presented. A separate bi-directional VSC is used to produce the compensation voltage. This simplifies the ICC regulator scheme as the power flow is controlled through single modulation index. Experimental verification is provided for bi-directional control of the power flow.
ERIC Educational Resources Information Center
Lifshitz-Ben-Basat, Adi; Mashal, Nira
2018-01-01
Transcranial direct current stimulation (tDCS) is a noninvasive tool to facilitate brain plasticity and enhance language abilities. Our study aims to search for a potential beneficial influence of tDCS on a cognitive linguistic task of naming which found to decline during aging. A group of fifteen healthy old adults (M = 64.93 ± 5.09 years) were…
Treatment of spider bites by high voltage direct current.
Osborn, C D
1991-06-01
Between September 7, 1988, and January 15, 1991, 147 cases of confirmed (19) and suspected spider bites have been treated by high voltage direct current (HVDC) shocks. Venom damage to tissue was arrested at the time of treatment. Pain and systemic symptoms usually improved within 15 minutes. Lesion excision or grafts have not been necessary in any of the 127 cases with completed followup.
ERIC Educational Resources Information Center
Atram, Dattatraya Balaram
2011-01-01
Fleming's right-hand rule and the right-flat-hand rule are generally applied for determining the direction of flow of induced emf/current in straight conductors. The right-hand-fingers rule is applied for coils only. The right-hand-thumb rule can be applied for either straight conductors or coils. Different rules have to be applied for different…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-25
... Airworthiness Directives; Agusta S.p.A. (Type Certificate Currently Held by Agusta Westland S.p.A) (Agusta... Office between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. The AD docket contains... standard maintenance regulations. For helicopters with T/R hub and blade assembly, part number (P/N) 109...
A modeling study of the radar signatures of rip currents with comparisons to data
NASA Astrophysics Data System (ADS)
O'Dea, A.; Haller, M. C.
2016-12-01
Rip currents are important components of nearshore circulation systems and can pose serious dangers to swimmers. In recent years, X-band imaging radar has been shown to be an effective remote sensor of rip currents over large spatial scales, for long durations, and with high temporal resolution. In contrast to remote sensing methods that infer rip location through the identification of morphological features (i.e. rip channels), rip detection in radar arises directly from the backscatter characteristics of the rip current flow field, thus offering the potential of direct extraction of quantitative information on rip current hydrodynamics. In this study, we present a model for the radar imaging of rip currents based on the wave action balance equation and the changes to the wind-wave spectrum at Bragg (capillary) wavelengths induced by the underlying rip current field. Model results are compared to field data (both in situ and remote sensing) from a 10-day experiment at Duck, NC conducted in September 2010. The model/data comparisons are then used to assess the physical mechanisms contributing to the radar imaging of rip currents including the role of rip current strength, wind speed, wind direction, and very short-scale wave breaking in rip current imaging. Following the methodology of Rascle et al. (J. Phys. Oceanography, 2014), the radar imaging model uses a relaxation approach that models perturbations to the equilibrium wave action spectrum induced by gradients in the underlying current field (specifically, the divergence and strain components of the deformation tensor). From the perturbed wind-wave spectrum, changes in the mean square slope (MSS) are then calculated and taken as a proxy for the change in radar backscatter intensity due to rip currents. Model simulations of rip current velocity fields for the field experiments were developed previously by Wilson et al. (J. Geophys. Res., 2014) using ROMS. The modeled velocities are used as input into the backscatter model and the predicted changes in MSS are compared with the radar observations. Modeled changes in MSS are shown to compare well with the observed occurrence and spatial scales of the rips, including their oblique orientation and their offshore extent. Remaining questions include the effect of wind direction and fetch on the imaging of rips.
Direct Access to Peregrine for External Users | High-Performance Computing
| NREL Direct Access to Peregrine for External Users Direct Access to Peregrine for External : ssh yourHPCuserid@peregrine-ssh.nrel.gov For more information, please read this page. About direct ssh allow access to VPNs. Our current jump-node (hpcsh.nrel.gov) does not provide direct-to-peregrine access
Dandl, R.A.
1961-09-19
A transistor amplifier is designed for vyery small currents below 10/sup -8/ amperes. The filrst and second amplifier stages use unusual selected transistors in which the current amplification increases markedly for values of base current below 10/sup -6/ amperes.
ERIC Educational Resources Information Center
Stocklmayer, Susan; Treagust, David
1994-01-01
Analyzes the presentations of electric current in physics textbooks. Concludes that from 1891 to 1991 most textbooks used a fluid model, which predated Faraday, for explaining direct-current circuits. (PR)
NASA Astrophysics Data System (ADS)
Shiono, Mitsuhiro; Suzuki, Katsuyuki; Kiho, Seiji
The use of renewable energies has been focused on for preserving environments and coping with the shortage of future energy supplies. In oceans, a tide reverses its current direction every six hours, and the current velocity changes into a sine wave after a period of time. Tidal current generation uses a generator to produce energy, changing the kinetic energy of current into a turning force by setting a water turbine in the tidal current. Therefore, it is considered to be very advantageous to use a water turbine that can always revolve in a fixed direction without any influence from tidal current directions. Water turbines with these characteristics are known as Darrieus water turbines. The Darrieus water turbines were modified for water from turbines originally developed for windmills. Darrieus water turbines have a difficulty in starting, but these days Darrieus water turbines have been developed with spiral blades, which make it easy to get the turbines started. However, there are very few reports regarding Darrieus water turbines with spiral blades, and therefore their characteristics are unknown. From the above points of view, this study devises and investigates spiral blade-Darrieus water turbines to clarify their characteristics through hydrographic experiments, and at the same time, it compares the characteristics of spiral-blade Darrieus water turbines with those of straight-blade ones.
NASA Astrophysics Data System (ADS)
Sung, Min-Feng; Kuan, Yean-Der; Chen, Bing-Xian; Lee, Shi-Min
The direct methanol fuel cell (DMFC) is suitable for portable applications. Therefore, a light weight and small size is desirable. The main objective of this paper is to design and fabricate a light weight current collector for DMFC usage. The light weight current collector mainly consists of a substrate with two thin film metal layers. The substrate of the current collector is an FR4 epoxy plate. The thin film metal layers are accomplished by the thermo coater technique to coat metal powders onto the substrate surfaces. The developed light weight current collectors are further assembled to a single cell DMFC test fixture to measure the cell performance. The results show that the proposed current collectors could even be applied to DMFCs because they are light, thin and low cost and have potential for mass production.
36 CFR 216.4 - Determining the need for formal public review of proposed Manual directives.
Code of Federal Regulations, 2010 CFR
2010-07-01
... determination: (1) Direct written or oral communication with those known to be interested in the proposal; (2... from current direction; (4) The extent of recent news media coverage on subjects related to the...
Ocean currents modify the coupling between climate change and biogeographical shifts.
García Molinos, J; Burrows, M T; Poloczanska, E S
2017-05-02
Biogeographical shifts are a ubiquitous global response to climate change. However, observed shifts across taxa and geographical locations are highly variable and only partially attributable to climatic conditions. Such variable outcomes result from the interaction between local climatic changes and other abiotic and biotic factors operating across species ranges. Among them, external directional forces such as ocean and air currents influence the dispersal of nearly all marine and many terrestrial organisms. Here, using a global meta-dataset of observed range shifts of marine species, we show that incorporating directional agreement between flow and climate significantly increases the proportion of explained variance. We propose a simple metric that measures the degrees of directional agreement of ocean (or air) currents with thermal gradients and considers the effects of directional forces in predictions of climate-driven range shifts. Ocean flows are found to both facilitate and hinder shifts depending on their directional agreement with spatial gradients of temperature. Further, effects are shaped by the locations of shifts in the range (trailing, leading or centroid) and taxonomic identity of species. These results support the global effects of climatic changes on distribution shifts and stress the importance of framing climate expectations in reference to other non-climatic interacting factors.
A Circular Microstrip Antenna Sensor for Direction Sensitive Strain Evaluation.
Lopato, Przemyslaw; Herbko, Michal
2018-01-20
In this paper, a circular microstrip antenna for stress evaluation is studied. This kind of microstrip sensor can be utilized in structural health monitoring systems. Reflection coefficient S 11 is measured to determine deformation/strain value. The proposed sensor is adhesively connected to the studied sample. Applied strain causes a change in patch geometry and influences current distribution both in patch and ground plane. Changing the current flow in patch influences the value of resonant frequency. In this paper, two different resonant frequencies were analysed because in each case, different current distributions in patch were obtained. The sensor was designed for operating frequency of 2.5 GHz (at fundamental mode), which results in a diameter less than 55 mm. Obtained sensitivity was up to 1 MHz/100 MPa, resolution depends on utilized vector network analyser. Moreover, the directional characteristics for both resonant frequencies were defined, studied using numerical model and verified by measurements. Thus far, microstrip antennas have been used in deformation measurement only if the direction of external force was well known. Obtained directional characteristics of the sensor allow the determination of direction and value of stress by one sensor. This method of measurement can be an alternative to the rosette strain gauge.
NASA Astrophysics Data System (ADS)
Liu, Yongxun; Tanaka, Hiroyuki; Umeyama, Norio; Koga, Kazuhiro; Khumpuang, Sommawan; Nagao, Masayoshi; Matsukawa, Takashi; Hara, Shiro
2018-06-01
P-channel metal–oxide–semiconductor field-effect transistors (PMOSFETs) with the 〈110〉 or 〈100〉 channel direction have been successfully fabricated on circular silicon-on-insulator (SOI) diaphragms using a cost-effective minimal-fab process, and their electrical characteristics have been systematically investigated before and after the SOI diaphragm formation. It was found that almost the same subthreshold slope (S-slope) and threshold voltage (V t) are observed in the fabricated PMOSFETs before and after the SOI diaphragm formation, and they are independent of the channel direction. On the other hand, significant variations in drain current were observed in the fabricated PMOSFETs with the 〈110〉 channel direction after the SOI diaphragm formation owing to the residual mechanical stress-induced piezoresistive effect. It was also confirmed that electrical characteristics of the fabricated PMOSFETs with the 〈100〉 channel direction are almost the same before and after the SOI diaphragm formation, i.e., not sensitive to the mechanical stress. Moreover, the drain current variations at different directions of mechanical stress and current flow were systematically investigated and discussed.
Computer-Aided Parallelizer and Optimizer
NASA Technical Reports Server (NTRS)
Jin, Haoqiang
2011-01-01
The Computer-Aided Parallelizer and Optimizer (CAPO) automates the insertion of compiler directives (see figure) to facilitate parallel processing on Shared Memory Parallel (SMP) machines. While CAPO currently is integrated seamlessly into CAPTools (developed at the University of Greenwich, now marketed as ParaWise), CAPO was independently developed at Ames Research Center as one of the components for the Legacy Code Modernization (LCM) project. The current version takes serial FORTRAN programs, performs interprocedural data dependence analysis, and generates OpenMP directives. Due to the widely supported OpenMP standard, the generated OpenMP codes have the potential to run on a wide range of SMP machines. CAPO relies on accurate interprocedural data dependence information currently provided by CAPTools. Compiler directives are generated through identification of parallel loops in the outermost level, construction of parallel regions around parallel loops and optimization of parallel regions, and insertion of directives with automatic identification of private, reduction, induction, and shared variables. Attempts also have been made to identify potential pipeline parallelism (implemented with point-to-point synchronization). Although directives are generated automatically, user interaction with the tool is still important for producing good parallel codes. A comprehensive graphical user interface is included for users to interact with the parallelization process.
NASA Astrophysics Data System (ADS)
König, S.; Suriyah, M. R.; Leibfried, T.
2017-08-01
A lumped-parameter model for vanadium redox flow batteries, which use metallic current collectors, is extended into a one-dimensional model using the plug flow reactor principle. Thus, the commonly used simplification of a perfectly mixed cell is no longer required. The resistances of the cell components are derived in the in-plane and through-plane directions. The copper current collector is the only component with a significant in-plane conductance, which allows for a simplified electrical network. The division of a full-scale flow cell into 10 layers in the direction of fluid flow represents a reasonable compromise between computational effort and accuracy. Due to the variations in the state of charge and thus the open circuit voltage of the electrolyte, the currents in the individual layers vary considerably. Hence, there are situations, in which the first layer, directly at the electrolyte input, carries a multiple of the last layer's current. The conventional model overestimates the cell performance. In the worst-case scenario, the more accurate 20-layer model yields a discharge capacity 9.4% smaller than that computed with the conventional model. The conductive current collector effectively eliminates the high over-potentials in the last layers of the plug flow reactor models that have been reported previously.
Kumarasinghe, Chathurangi S.; Premaratne, Malin; Gunapala, Sarath D.; Agrawal, Govind P.
2016-01-01
We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors. PMID:26887286
Particle-in-cell simulations of magnetically driven reconnection using laser-powered capacitor coils
NASA Astrophysics Data System (ADS)
Huang, Kai; Lu, Quanming; Gao, Lan; Ji, Hantao; Wang, Xueyi; Fan, Feibin
2018-05-01
In this paper, we propose an experimental scheme to fulfill magnetically driven reconnections. Here, two laser beams are focused on a capacitor-coil target and then strong currents are wired in two parallel circular coils. Magnetic reconnection occurs between the two magnetic bubbles created by the currents in the two parallel circular coils. A two-dimensional particle-in-cell simulation model in the cylindrical coordinate is used to investigate such a process, and the simulations are performed in the (r ,z ) plane. The results show that with the increase of the currents in the two coils, the associated magnetic bubbles expand and a current sheet is formed between the two bubbles. Magnetic reconnection occurs when the current sheet is sufficiently thin. A quadrupole structure of the magnetic field in the θ direction ( Bθ ) is generated in the diffusion region and a strong electron current along the r direction ( Je r ) is also formed due to the existence of the high-speed electron flow away from the X line in the center of the outflow region. Because the X line is a circle along the θ direction, the convergence of the plasma flow around r =0 will lead to the asymmetry of Je r and Bθ between the two outflow regions of magnetic reconnection.
Kumarasinghe, Chathurangi S; Premaratne, Malin; Gunapala, Sarath D; Agrawal, Govind P
2016-02-18
We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors.
Improving ideomotor limb apraxia by electrical stimulation of the left posterior parietal cortex.
Bolognini, Nadia; Convento, Silvia; Banco, Elisabetta; Mattioli, Flavia; Tesio, Luigi; Vallar, Giuseppe
2015-02-01
Limb apraxia, a deficit of planning voluntary gestures, is most frequently caused by damage to the left hemisphere, where, according to an influential neurofunctional model, gestures are planned, before being executed through the motor cortex of the hemisphere contralateral to the acting hand. We used anodal transcranial direct current stimulation delivered to the left posterior parietal cortex (PPC), the right motor cortex (M1), and a sham stimulation condition, to modulate the ability of six left-brain-damaged patients with ideomotor apraxia, and six healthy control subjects, to imitate hand gestures, and to perform skilled hand movements using the left hand. Transcranial direct current stimulation delivered to the left PPC reduced the time required to perform skilled movements, and planning, but not execution, times in imitating gestures, in both patients and controls. In patients, the amount of decrease of planning times brought about by left PPC transcranial direct current stimulation was influenced by the size of the parietal lobe damage, with a larger parietal damage being associated with a smaller improvement. Of interest from a clinical perspective, left PPC stimulation also ameliorated accuracy in imitating hand gestures in patients. Instead, transcranial direct current stimulation to the right M1 diminished execution, but not planning, times in both patients and healthy controls. In conclusion, by using a transcranial stimulation approach, we temporarily improved ideomotor apraxia in the left hand of left-brain-damaged patients, showing a role of the left PPC in planning gestures. This evidence opens up novel perspectives for the use of transcranial direct current stimulation in the rehabilitation of limb apraxia. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Luo, Jie; Cai, Limei; Qi, Shihua; Wu, Jian; Sophie Gu, Xiaowen
2018-03-01
Direct and alternating current electric fields with various voltages were used to improve the decontamination efficiency of chelator assisted phytoremediation for multi-metal polluted soil. The alleviation effect of electric field on leaching risk caused by chelator application during phytoremediation process was also evaluated. Biomass yield, pollutant uptake and metal leaching retardation under alternating current (AC) and direct current (DC) electric fields were compared. The biomass yield of Eucalyptus globulus under AC fields with various voltages (2, 4 and 10 V) were 3.91, 4.16 and 3.67kg, respectively, significantly higher than the chelator treatment without electric field (2.71kg). Besides growth stimulation, AC fields increased the metal concentrations of plant tissues especially in aerial parts manifested by the raised translocation factor of different metals. Direct current electric fields with low and moderate voltages increased the biomass production of the species to 3.45 and 3.12kg, respectively, while high voltage on the contrary suppressed the growth of the plants (2.66kg). Under DC fields, metal concentrations elevated obviously with increasing voltages and the metal translocation factors were similar under all voltages. Metal extraction per plant achieved the maximum value under moderate voltage due to the greatest biomass production. DC field with high voltage (10V) decreased the volume of leachate from the chelator treatment without electric field from 1224 to 56mL, while the leachate gathered from AC field treatments raised from 512 to 670mL. DC field can retard the downward movement of metals caused by chelator application more effectively relative to AC field due to the constant water flow and electroosmosis direction. Alternating current field had more promotive effect on chelator assisted phytoremediation efficiency than DC field illustrated by more metal accumulation in the species. However, with the consideration of leaching risk, DC field with moderate voltage was the optimal supplementary technique for phytoremediation. Copyright © 2017 Elsevier Inc. All rights reserved.
Kammer, T; Beck, S; Erb, M; Grodd, W
2001-11-01
To quantify phosphene thresholds evoked by transcranial magnetic stimulation (TMS) in the occipital cortex as a function of induced current direction. Phosphene thresholds were determined in 6 subjects. We compared two stimulator types (Medtronic-Dantec and Magstim) with monophasic pulses using the standard figure-of-eight coils and systematically varied hemisphere (left and right) and induced current direction (latero-medial and medio-lateral). Each measurement was made 3 times, with a new stimulation site chosen for each repetition. Only those stimulation sites were investigated where phosphenes were restricted to one visual hemifield. Coil positions were stereotactically registered. Functional magnetic resonance imaging (fMRI) of retinotopic areas was performed in 5 subjects to individually characterize the borders of visual areas; TMS stimulation sites were coregistered with respect to visual areas. Despite large interindividual variance we found a consistent pattern of phosphene thresholds. They were significantly lower if the direction of the induced current was oriented from lateral to medial in the occipital lobe rather than vice versa. No difference with respect to the hemisphere was found. Threshold values normalized to the square root of the stored energy in the stimulators were lower with the Medtronic-Dantec device than with the Magstim device. fMRI revealed that stimulation sites generating unilateral phosphenes were situated at V2 and V3. Variability of phosphene thresholds was low within a cortical patch of 2x2cm(2). Stimulation over V1 yields phosphenes in both visual fields. The excitability of visual cortical areas depends on the direction of the induced current with a preference for latero-medial currents. Although the coil positions used in this study were centered over visual areas V2 and V3, we cannot rule out the possibility that subcortical structures or V1 could actually be the main generator for phosphenes.
Luedtke, Kerstin; Rushton, Alison; Wright, Christine; Jürgens, Tim; Polzer, Astrid; Mueller, Gerd; May, Arne
2015-04-16
To evaluate the effectiveness of transcranial direct current stimulation alone and in combination with cognitive behavioural management in patients with non-specific chronic low back pain. Double blind parallel group randomised controlled trial with six months' follow-up conducted May 2011-March 2013. Participants, physiotherapists, assessors, and analyses were blinded to group allocation. Interdisciplinary chronic pain centre. 135 participants with non-specific chronic low back pain >12 weeks were recruited from 225 patients assessed for eligibility. Participants were randomised to receive anodal (20 minutes to motor cortex at 2 mA) or sham transcranial direct current stimulation (identical electrode position, stimulator switched off after 30 seconds) for five consecutive days immediately before cognitive behavioural management (four week multidisciplinary programme of 80 hours). Two primary outcome measures of pain intensity (0-100 visual analogue scale) and disability (Oswestry disability index) were evaluated at two primary endpoints after stimulation and after cognitive behavioural management. Analyses of covariance with baseline values (pain or disability) as covariates showed that transcranial direct current stimulation was ineffective for the reduction of pain (difference between groups on visual analogue scale 1 mm (99% confidence interval -8.69 mm to 6.3 mm; P=0.68)) and disability (difference between groups 1 point (-1.73 to 1.98; P=0.86)) and did not influence the outcome of cognitive behavioural management (difference between group 3 mm (-10.32 mm to 6.73 mm); P=0.58; difference between groups on Oswestry disability index 0 point (-2.45 to 2.62); P=0.92). The stimulation was well tolerated with minimal transitory side effects. This results of this trial on the effectiveness of transcranial direct current stimulation for the reduction of pain and disability do not support its clinical use for managing non-specific chronic low back pain.Trial registration Current controlled trials ISRCTN89874874. © Luedtke et al 2015.
The prediction of the hydrodynamic performance of tidal current turbines
NASA Astrophysics Data System (ADS)
Y Xiao, B.; Zhou, L. J.; Xiao, Y. X.; Wang, Z. W.
2013-12-01
Nowadays tidal current energy is considered to be one of the most promising alternative green energy resources and tidal current turbines are used for power generation. Prediction of the open water performance around tidal turbines is important for the reason that it can give some advice on installation and array of tidal current turbines. This paper presents numerical computations of tidal current turbines by using a numerical model which is constructed to simulate an isolated turbine. This paper aims at studying the installation of marine current turbine of which the hydro-environmental impacts influence by means of numerical simulation. Such impacts include free-stream velocity magnitude, seabed and inflow direction of velocity. The results of the open water performance prediction show that the power output and efficiency of marine current turbine varies from different marine environments. The velocity distribution should be clearly and the suitable unit installation depth and direction be clearly chosen, which can ensure the most effective strategy for energy capture before installing the marine current turbine. The findings of this paper are expected to be beneficial in developing tidal current turbines and array in the future.
Global limits and interference patterns in dark matter direct detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catena, Riccardo; Gondolo, Paolo
2015-08-13
We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limitsmore » by up to one order of magnitude in the coupling constants.« less
Global limits and interference patterns in dark matter direct detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catena, Riccardo; Gondolo, Paolo, E-mail: riccardo.catena@theorie.physik.uni-goettingen.de, E-mail: paolo.gondolo@utah.edu
2015-08-01
We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limitsmore » by up to one order of magnitude in the coupling constants.« less
Frequency response control of semiconductor laser by using hybrid modulation scheme.
Mieda, Shigeru; Yokota, Nobuhide; Isshiki, Ryuto; Kobayashi, Wataru; Yasaka, Hiroshi
2016-10-31
A hybrid modulation scheme that simultaneously applies the direct current modulation and intra-cavity loss modulation to a semiconductor laser is proposed. Both numerical calculations using rate equations and experiments using a fabricated laser show that the hybrid modulation scheme can control the frequency response of the laser by changing a modulation ratio and time delay between the two modulations. The modulation ratio and time delay provide the degree of signal mixing of the two modulations and an optimum condition is found when a non-flat frequency response for the intra-cavity loss modulation is compensated by that for the direct current modulation. We experimentally confirm a 8.64-dB improvement of the modulation sensitivity at 20 GHz compared with the pure direct current modulation with a 0.7-dB relaxation oscillation peak.
Ionospheric convection driven by NBZ currents
NASA Technical Reports Server (NTRS)
Rasmussen, C. E.; Schunk, R. W.
1987-01-01
Computer simulations of Birkeland currents and electric fields in the polar ionosphere during periods of northward IMF were conducted. When the IMF z component is northward, an additional current system, called the NBZ current system, is present in the polar cap. These simulations show the effect of the addition of NBZ currents on ionospheric convection, particularly in the polar cap. When the total current in the NBZ system is roughly 25 to 50 percent of the net region 1 and 2 currents, convection in the central portion of the polar cap reverses direction and turns sunward. This creates a pattern of four-cell convection with two small cells located in the polar cap, rotating in an opposite direction from the larger cells. When the Birkeland currents are fixed (constant current source), the electric field is reduced in regions of relatively high conductivity, which affects the pattern of ionospheric convection. Day-night asymmetries in conductivity change convection in such a way that the two polar-cap cells are located within the large dusk cell. When ionospheric convection is fixed (constant voltage source), Birkeland currents are increased in regions of relatively high conductivity. Ionospheric currents, which flow horizontally to close the Birkeland currents, are changed appreciably by the NBZ current system. The principal effect is an increase in ionospheric current in the polar cap.
NASA Astrophysics Data System (ADS)
Shibkov, A. A.; Denisov, A. A.; Zheltov, M. A.; Zolotov, A. E.; Gasanov, M. F.; Kochegarov, S. S.
2015-02-01
The effect of direct current induced suppression of the Portevin-Le Chatelier serrated deformation in the aluminum-magnesium alloy 5056 has been revealed experimentally. This effect manifests itself as an increase in the critical plastic strain, which precedes the onset of serrations in the stress-strain curve, with an increase in the current density in the range from 15 to 60 A/mm2. It has been shown that the observed effect is not related to the Joule heating of the entire specimen. Possible mechanisms of the phenomenon have been discussed.
Prince, J.M.; Dodson, M.G.; Lechelt, W.M.
1989-07-18
A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis. 14 figs.
Prince, James M.; Dodson, Michael G.; Lechelt, Wayne M.
1989-01-01
A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis.
Self-similar magnetohydrodynamic model for direct current discharge fireball experiments
NASA Astrophysics Data System (ADS)
Tsui, K. H.; Navia, C. E.; Robba, M. B.; Carneiro, L. T.; Emelin, S. E.
2006-11-01
Ball lightning models and corresponding laboratory efforts in generating fireballs are briefly summarized to give an overview of the current status. In particular, emphasis is given to direct current discharge experiments at atmospheric pressure such as capillary discharge with a plasma plume in front of the anode opening [Emelin et al., Tech. Phys. Letters 23, 758 (1997)] and water resistor discharge with fluttering fireball overhead [Egorov and Stepanov, Tech. Phys. 47, 1584 (2002)]. These fireballs are interpreted as laboratory demonstrations of the self-similar magnetohydrodynamic (MHD) model of ball lightning [Tsui, Phys. Plasmas 13, 072102 (2006)].
NASA Technical Reports Server (NTRS)
Brush, L. N.; Coriell, S. R.; Mcfadden, G. B.
1990-01-01
Directional solidification of pure materials and binary alloys with a planar crystal-metal interface in the presence of a time-dependent electric current is considered. For a variety of time-dependent currents, the temperature fields and the interface velocity as functions of time are presented for indium antimonide and bismuth and for the binary alloys germanium-gallium and tin-bismuth. For the alloys, the solid composition is calculated as a function of position. Quantitative predictions are made of the effect of an electrical pulse on the solute distribution in the solidified material.
Brunoni, Andre Russowsky; Nitsche, Michael A.; Bolognini, Nadia; Bikson, Marom; Wagner, Tim; Merabet, Lotfi; Edwards, Dylan J.; Valero-Cabre, Antoni; Rotenberg, Alexander; Pascual-Leone, Alvaro; Ferrucci, Roberta; Priori, Alberto; Boggio, Paulo; Fregni, Felipe
2011-01-01
Background Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low-intensity, direct current to cortical areas facilitating or inhibiting spontaneous neuronal activity. In the past ten years, tDCS physiological mechanisms of action have been intensively investigated giving support for the investigation of its applications in clinical neuropsychiatry and rehabilitation. However, new methodological, ethical, and regulatory issues emerge when translating the findings of preclinical and phase I studies into phase II and III clinical studies. The aim of this comprehensive review is to discuss the key challenges of this process and possible methods to address them. Methods We convened a workgroup of researchers in the field to review, discuss and provide updates and key challenges of neuromodulation use for clinical research. Main Findings/Discussion We reviewed several basic and clinical studies in the field and identified potential limitations, taking into account the particularities of the technique. We review and discuss the findings into four topics: (i) mechanisms of action of tDCS, parameters of use and computer-based human brain modeling investigating electric current fields and magnitude induced by tDCS; (ii) methodological aspects related to the clinical research of tDCS as divided according to study phase (i.e., preclinical, phase I, phase II and phase III studies); (iii) ethical and regulatory concerns; (iv) future directions regarding novel approaches, novel devices, and future studies involving tDCS. Finally, we propose some alternative methods to facilitate clinical research on tDCS. PMID:22037126
Direct Lending: How To Improve Implementation.
ERIC Educational Resources Information Center
Jepsen, Keith
This evaluation study developed 29 recommendations concerning the implementation of direct loans in providing financial assistance to postsecondary school students. The investigation included examination of a current Department of Education (ED) pilot program, a video teleconference to discuss direct lending with 23 individuals in education…
76 FR 69712 - Agency Information Collection Extension
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-09
... Human Resource Management Programs, http://www.directives.doe.gov/directives/current-directives/350.1... the Office of Management and Budget (OMB). Comments are invited on: (a) Whether the extended...) Purpose: This information is required for management oversight of the Department of Energy's Facilities...
A Radio Frequency Electric Current Enhances Antibiotic Efficacy against Bacterial Biofilms
Caubet, R.; Pedarros-Caubet, F.; Chu, M.; Freye, E.; de Belém Rodrigues, M.; Moreau, J. M.; Ellison, W. J.
2004-01-01
Bacterial biofilms are notably resistant to antibiotic prophylaxis. The concentration of antibiotic necessary to significantly reduce the number of bacteria in the biofilm matrix can be several hundred times the MIC for the same bacteria in a planktonic phase. It has been observed that the addition of a weak continuous direct electric current to the liquid surrounding the biofilm can dramatically increase the efficacy of the antibiotic. This phenomenon, known as the bioelectric effect, has only been partially elucidated, and it is not certain that the electrical parameters are optimal. We confirm here the bioelectric effect for Escherichia coli biofilms treated with gentamicin and with oxytetracycline, and we report a new bioelectric effect with a radio frequency alternating electric current (10 MHz) instead of the usual direct current. None of the proposed explanations (transport of ions within the biofilm, production of additional biocides by electrolysis, etc.) of the direct current bioelectric effect are applicable to the radio frequency bioelectric effect. We suggest that this new phenomenon may be due to a specific action of the radio frequency electromagnetic field upon the polar parts of the molecules forming the biofilm matrix. PMID:15561841
Microscopic models for bridging electrostatics and currents
NASA Astrophysics Data System (ADS)
Borghi, L.; DeAmbrosis, A.; Mascheretti, P.
2007-03-01
A teaching sequence based on the use of microscopic models to link electrostatic phenomena with direct currents is presented. The sequence, devised for high school students, was designed after initial work carried out with student teachers attending a school of specialization for teaching physics at high school, at the University of Pavia. The results obtained with them are briefly presented, because they directed our steps for the development of the teaching sequence. For both the design of the experiments and their interpretation, we drew inspiration from the original works of Alessandro Volta; in addition, a structural model based on the particular role of electrons as elementary charges both in electrostatic phenomena and in currents was proposed. The teaching sequence starts from experiments on charging objects by rubbing and by induction, and engages students in constructing microscopic models to interpret their observations. By using these models and by closely examining the ideas of tension and capacitance, the students acknowledge that a charging (or discharging) process is due to the motion of electrons that, albeit for short time intervals, represent a current. Finally, they are made to see that the same happens in transients of direct current circuits.
NASA Astrophysics Data System (ADS)
Chikvashvili, Ioseb
2011-10-01
In proposed Concept it is offered to use two ion beams directed coaxially at the same direction but with different velocities (center-of-mass collision energy should be sufficient for fusion), to direct oppositely the relativistic electron beam for only partial compensation of positive space charge and for allowing the combined beam's pinch capability, to apply the longitudinal electric field for compensation of alignment of velocities of reacting particles and also for compensation of energy losses of electrons via Bremsstrahlung. On base of Concept different types of reactor designs can be realized: Linear and Cyclic designs. In the simplest embodiment the Cyclic Reactor (design) may include: betatron type device (circular store of externally injected particles - induction accelerator), pulse high-current relativistic electron injector, pulse high-current slower ion injector, pulse high-current faster ion injector and reaction products extractor. Using present day technologies and materials (or a reasonable extrapolation of those) it is possible to reach: for induction linear injectors (ions&electrons) - currents of thousands A, repeatability - up to 10Hz, the same for high-current betatrons (FFAG, Stellatron, etc.). And it is possible to build the fusion reactor using the proposed Method just today.
Wörsching, Jana; Padberg, Frank; Ertl-Wagner, Birgit; Kumpf, Ulrike; Kirsch, Beatrice; Keeser, Daniel
2016-10-01
Transcranial current stimulation approaches include neurophysiologically distinct non-invasive brain stimulation techniques widely applied in basic, translational and clinical research: transcranial direct current stimulation (tDCS), oscillating transcranial direct current stimulation (otDCS), transcranial alternating current stimulation (tACS) and transcranial random noise stimulation (tRNS). Prefrontal tDCS seems to be an especially promising tool for clinical practice. In order to effectively modulate relevant neural circuits, systematic research on prefrontal tDCS is needed that uses neuroimaging and neurophysiology measures to specifically target and adjust this method to physiological requirements. This review therefore analyses the various neuroimaging methods used in combination with prefrontal tDCS in healthy and psychiatric populations. First, we provide a systematic overview on applications, computational models and studies combining neuroimaging or neurophysiological measures with tDCS. Second, we categorise these studies in terms of their experimental designs and show that many studies do not vary the experimental conditions to the extent required to demonstrate specific relations between tDCS and its behavioural or neurophysiological effects. Finally, to support best-practice tDCS research we provide a methodological framework for orientation among experimental designs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Observations of field-aligned currents, particles, and plasma drift in the polar cusps near solstice
NASA Technical Reports Server (NTRS)
Bythrow, P. F.; Potemra, T. A.; Hoffman, R. A.
1982-01-01
Magnetic perturbations observed by the TRIAD magnetometer within two hours of an AE-C spacecraft pass provide field-aligned current data, from the same local time in the northern hemisphere, for a study of the polar cusp. The AE-C spinning mode has allowed the use of the Z-axis magnetometer for Birkeland current observations, in conjunction with particle and drift measurements. The average B(z) were found to be 1.9 nT and -1.1 nT during the first two hourly intervals on January 15, 1977. Measurements from the low energy electron experiment revealed intense fluxes of soft, cusp-like 100 eV Maxwellian electrons throughout the prenoon polar cap. The upward directed current can be identified as the dominant cusp current appropriate for B(y) values lower than zero, while the downward directed current, which has the appropriate sign of a dayside region 1 current, is observed to lie entirely within a westerly, antisunward-convecting plasma.
Review of Radio Frequency Photonics Basics
2017-09-06
essentially from “Direct Current to Daylight,” allowing use for high frequency applications. This report covers some needs and advantages of radio...operate essentially from “Direct Current (DC) to Daylight,” allowing use for high frequency applications. The following sections of this report cover...spectrum leaving higher frequencies open for new uses. Frequency bands from 600 MHz to 5 GHz are used for commercial communications in the US. The future
The effects of direct-current magnetic fields on turtle retinas vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raybourn, M.S.
1983-05-13
Direct-current magnetic fields of 10 to 100 gauss cause a significant short-term reduction of the in vitro electroretinographic b-wave response in turtle retina. This response compression is not accompanied by the usual reduction in retinal sensitivity that occurs with background illumination. Furthermore, this effect is obtained only briefly after the offset of ambient lighting in the diurnal light-dark cycle of nonhibernating animals.
ERIC Educational Resources Information Center
Newman, Richard; van der Ventel, Brandon; Hanekom, Crischelle
2017-01-01
Probing university students' understanding of direct-current (DC) resistive circuits is still a field of active physics education research. We report here on a study we conducted of this understanding, where the cohort consisted of students in a large-enrollment first-year physics module. This is a non-calculus based physics module for students in…
Polar Cap and Polar Cap Boundary Phenomena
2009-06-25
of the high-latitude ionospheric plasma. Incoherent scatter radar and radio tomography measurements were used to directly observe the remnants of...On the relationship between thin Birkeland current arcs and reversed flow channels in the winter cusp/cleft ionosphere Moen J., Y. Rinne, H...current arcs in the winter cusp ionosphere above Svalbard. An RFE is a longitudinally elongated, 100–200 km wide channel, in which the flow direction is
2016-01-01
basis for countries to cooperate on a range of issues from space exploration to addressing global climate change. Ironically, the success of this...countries to solve a current issue such as current “Friends of Yemen” and “Friends of Darfur”. While these groups are looser than a coalition, many of the...additional burden. Requirements Directed by the Department of Defense The Department of Defense uses DoD Directives (DoDDs) to issue institutional
ERIC Educational Resources Information Center
Kang, Myunghee; Kim, Seyoung; Yoon, Seonghye; Chung, Warren
2017-01-01
The purpose of this study was to set future directions of the Cyber Home Learning System in Korea based on its current status. The Cyber Home Learning System has been designed and used by K-12 students to study voluntarily at home using online lessons. The development process of the Cyber Home Learning System was composed of the following four…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moy, Derek; Manivannan, A.; Narayanan, S. R.
2014-11-04
The shuttling of polysulfide ions between the electrodes in a lithium-sulfur battery is a major technical issue limiting the self-discharge and cycle life of this high-energy rechargeable battery. Although there have been attempts to suppress the shuttling process, there has not been a direct measurement of the rate of shuttling. We report here a simple and direct measurement of the rate of the shuttling (that we term “shuttle current”), applicable to the study of any type of lithium-sulfur cell. We demonstrate the effectiveness of this measurement technique using cells with and without lithium nitrate (a widely-used shuttle suppressor additive). Wemore » present a phenomenological analysis of the shuttling process and simulate the shuttle currents as a function of the state-of-charge of a cell. We also demonstrate how the rate of decay of the shuttle current can be used to predict the capacity fade in a lithium-sulfur cell due to the shuttle process. As a result, we expect that this new ability to directly measure shuttle currents will provide greater insight into the performance differences observed with various additives and electrode modifications that are aimed at suppressing the rate of shuttling of polysulfide ions and increasing the cycle life of lithium-sulfur cells.« less
González, Maraelys M; Morales, Dasha F; Cabrales, Luis E B; Pérez, Daniel J; Montijano, Juan I; Castañeda, Antonio R S; González, Victoriano G S; Posada, Oscar O; Martínez, Janet A; Delgado, Arlem G; Martínez, Karina G; Mon, Mayrel L; Monzón, Kalet L; Ciria, Héctor M C; Beatón, Emilia O; Brooks, Soraida C A; González, Tamara R; Jarque, Manuel V; Mateus, Miguel A Ó; Rodríguez, Jorge L G; Calzado, Enaide M
2018-06-05
Electrochemical treatment has been suggested as an effective alternative to local cancer therapy. Nevertheless, its effectiveness decreases when highly aggressive primary tumors are treated. The aim of this research was to understand the growth kinetics of the highly aggressive and metastatic primary F3II tumor growing in male and female BALB/c/Cenp mice under electrochemical treatment. Different amounts of electric charge (6, 9, and 18 C) were used. Two electrodes were inserted into the base, perpendicular to the tumor's long axis, keeping about 1 cm distance between them. Results have shown that the F3II tumor is highly sensitive to direct current. The overall effectiveness (complete response + partial response) of this physical agent was ≥75.0% and observed in 59.3% (16/27) of treated F3II tumors. Complete remission of treated tumors was observed in 22.2% (6/27). An unexpected result was the death of 11 direct current-treated animals (eight females and three males). It is concluded that direct current may be addressed to significantly affect highly aggressive and metastatic primary tumor growth kinetics, including the tumor complete response. Bioelectromagnetics. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Soneji, Samir; Ambrose, Bridget K.; Lee, Won; Sargent, James; Tanski, Susanne
2014-01-01
Objective We assess exposure to direct-to-consumer tobacco marketing and its association with ever having tried smoking, smoking within past 30 days (‘current’), and smoking ≥100 cigarettes in lifetime (‘established’) among adolescents and young adults. Methods We surveyed a U.S. telephone sample of 3,342 15–23 year olds and 2,541 respondents subsequently completed a web-based survey. Among respondents completing both the telephone and web-based surveys (N=2,541 [75%]), we assessed their exposure to direct-to-consumer tobacco marketing (receiving direct mail from tobacco companies and seeing tobacco company websites) and their associations with ever having tried smoking, current smoking, and established smoking. Results Overall, 12% of 15–17 year olds and 26% of 18–23 year olds were exposed to direct-to-consumer tobacco marketing. Racial/ethnic minority non-smoking respondents were more likely to see tobacco websites than non-smoking Whites. Respondents exposed to either form of direct-to-consumer tobacco marketing were more likely to currently smoke (adjusted odds ratio[AOR]: 2.2; 95% CI 1.3–3.8), while those exposed to both forms of marketing experienced even higher odds of currently smoking (AOR: 2.7; 95% CI 1.1–6.6). We observed similar relationships for ever having tried smoking and established smoking. Conclusions Direct-to-consumer tobacco marketing reaches adolescent and young adult non-smokers and is associated with smoking behavior. PMID:24661738
Remote two-wire data entry method and device
Kronberg, J.W.
1991-01-01
This invention is comprised of a device for detecting switch closure such as in a keypad for entering data comprising a matrix of conductor pairs and switches, each pair of conductors shorted by the pressing of a particular switch, and current-regulating devices on each conductor for limiting current in one direction and passing it without limit in the other direction. The device is driven by alternating current. The ends of the conductors in a conductor pair limit current of opposing polarities with respect to each other so that the signal on a shorted pair is an alternating current signal with a unique combination of a positive and a negative peak, which, when analyzed, allows the determination of which key was pressed. The binary identification of the pressed key is passed to the input port of a host device.
Direct detection of spin Nernst effect in platinum
NASA Astrophysics Data System (ADS)
Bose, A.; Bhuktare, S.; Singh, H.; Dutta, S.; Achanta, V. G.; Tulapurkar, A. A.
2018-04-01
Generation of spin current lies at the heart of spintronic research. The spin Hall effect and the spin Seebeck effect have drawn considerable attention in the last few years to create pure spin current by heavy metals and ferromagnets, respectively. In this work, we show the direct evidence of heat current to spin current conversion in non-magnetic Platinum by the spin Nernst effect (SNE) at room temperature. This is the thermal analogue of the spin Hall effect in non-magnets. We have shown that the 8 K/μm thermal gradient in Pt can lead to the generation of pure spin current density of the order of 108 A/m2 by virtue of SNE. This opens up an additional possibility to couple the relativistic spin-orbit interaction with the thermal gradient for spintronic applications.
Eddy current testing probe with dual half-cylindrical coils
NASA Astrophysics Data System (ADS)
Bae, Byung-Hoon; Choi, Jung-Mi; Kim, Soo-Yong
2000-02-01
We have developed a new eddy current probe composed of a dual half-cylindrical (2HC) coil as an exciting coil and a sensing coil that is placed in the small gap of the 2HC coil. The 2HC coil induces a linear eddy current on the narrow region within the target medium. The magnitude of eddy current has a maximum peak with the narrow width, underneath the center of the exciting 2HC coil. Because of the linear eddy current, the probe can be used to detect not only the existence of a crack but also its direction in conducting materials. Using specimen with a machined crack, and varying the exciting frequency from 0.5 to 100 kHz, we investigated the relationships between the direction of crack and the output voltage of the sensing coil.
NASA Astrophysics Data System (ADS)
Kajikawa, K.; Funaki, K.; Shikimachi, K.; Hirano, N.; Nagaya, S.
2010-11-01
AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Bean's critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.
76 FR 19282 - Direct Investment Surveys: Alignment of Regulations With Current Practices
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-07
... surveys that would be eliminated from the regulations are: a survey of foreign direct investment in the U... foreign direct investment in the United States (BE-13 and BE-14). BEA suspended collection of these... a Joint Venture With, a Foreign Person BE-21, Survey of Foreign Direct Investment in U.S. Business...
76 FR 39260 - Direct Investment Surveys: Alignment of Regulations With Current Practices
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-06
... are eliminated from the regulations are: A survey of foreign direct investment in the U.S. seafood... requirements for two surveys of new foreign direct investment in the United States. BEA suspended collection of... Enters into a Joint Venture With, a Foreign Person BE-21, Survey of Foreign Direct Investment in U.S...
Direct memory access transfer completion notification
Chen, Dong; Giampapa, Mark E.; Heidelberger, Philip; Kumar, Sameer; Parker, Jeffrey J.; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos
2010-07-27
Methods, compute nodes, and computer program products are provided for direct memory access (`DMA`) transfer completion notification. Embodiments include determining, by an origin DMA engine on an origin compute node, whether a data descriptor for an application message to be sent to a target compute node is currently in an injection first-in-first-out (`FIFO`) buffer in dependence upon a sequence number previously associated with the data descriptor, the total number of descriptors currently in the injection FIFO buffer, and the current sequence number for the newest data descriptor stored in the injection FIFO buffer; and notifying a processor core on the origin DMA engine that the message has been sent if the data descriptor for the message is not currently in the injection FIFO buffer.
Methods of conditioning direct methanol fuel cells
Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon
2005-11-08
Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.
NASA Astrophysics Data System (ADS)
Liu, Jian-li; Lu, Shi-cai; Ai, Bao-quan
2018-06-01
Due to the chirality of active particles, the transversal asymmetry can induce the the longitudinal directed transport. The transport of chiral active particles in a periodic channel is investigated in the presence of two types of the transversal asymmetry, the transverse force and the transverse rigid half-circle obstacles. For all cases, the counterclockwise and clockwise particles move to the opposite directions. For the case of the only transverse force, the chiral active particles can reverse their directions when increasing the transverse force. When the transverse rigid half-circle obstacles are introduced, the transport behavior of particles becomes more complex and multiple current reversals occur. The direction of the transport is determined by the competition between two types of the transversal asymmetry. For a given chirality, by suitably tailoring parameters, particles with different self-propulsion speed can move in different directions and can be separated.
NASA Astrophysics Data System (ADS)
Lu, Zhongyuan; Serrao, Claudy; Khan, Asif Islam; You, Long; Wong, Justin C.; Ye, Yu; Zhu, Hanyu; Zhang, Xiang; Salahuddin, Sayeef
2017-07-01
We demonstrate non-volatile, n-type, back-gated, MoS2 transistors, placed directly on an epitaxial grown, single crystalline, PbZr0.2Ti0.8O3 (PZT) ferroelectric. The transistors show decent ON current (19 μA/μm), high on-off ratio (107), and a subthreshold swing of (SS ˜ 92 mV/dec) with a 100 nm thick PZT layer as the back gate oxide. Importantly, the ferroelectric polarization can directly control the channel charge, showing a clear anti-clockwise hysteresis. We have self-consistently confirmed the switching of the ferroelectric and corresponding change in channel current from a direct time-dependent measurement. Our results demonstrate that it is possible to obtain transistor operation directly on polar surfaces, and therefore, it should be possible to integrate 2D electronics with single crystalline functional oxides.
Modelling directional solidification
NASA Technical Reports Server (NTRS)
Wilcox, William R.
1991-01-01
The long range goal of this program is to develop an improved understanding of phenomena of importance to directional solidification and to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Current emphasis is on determining the influence of perturbations on directional solidification.
75 FR 15387 - Veterinary Feed Directive
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-29
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Parts 510, 514, and 558 [Docket No. FDA-2010-N-0155] Veterinary Feed Directive AGENCY: Food and Drug Administration, HHS... public regarding potential changes to its current regulation relating to veterinary feed directive (VFD...
Clinical and Biological Heterogeneity in ARDS: Direct versus Indirect Lung Injury
Shaver, Ciara M.; Bastarache, Julie A.
2014-01-01
Synopsis The acute respiratory distress syndrome (ARDS) is a heterogeneous group of illnesses affecting the pulmonary parenchyma with acute onset bilateral inflammatory pulmonary infiltrates with associated hypoxemia. ARDS occurs after two major types of pulmonary injury: direct lung injury affecting the lung epithelium or indirect lung injury disrupting the vascular endothelium. Greater understanding of the differences between direct and indirect lung injury may refine our classification of patients with ARDS and lead to development of new therapeutics targeted at specific subpopulations of patients with ARDS. In this review, we will summarize the differences between direct and indirect causes of ARDS in human patients and then will review current knowledge of the similarities and differences in ARDS pathogenesis based on experimental animal models of direct and indirect lung injury. While the separation between direct and indirect causes of ARDS may be oversimplified, it is a useful approach to advancing our current understanding of the pathogenesis of this complex and often fatal disease. PMID:25453415
A comparison of coronal and interplanetary current sheet inclinations
NASA Technical Reports Server (NTRS)
Behannon, K. W.; Burlaga, L. F.; Hundhausen, A. J.
1983-01-01
The HAO white light K-coronameter observations show that the inclination of the heliospheric current sheet at the base of the corona can be both large (nearly vertical with respect to the solar equator) or small during Cararington rotations 1660 - 1666 and even on a single solar rotation. Voyager 1 and 2 magnetic field observations of crossing of the heliospheric current sheet at distances from the Sun of 1.4 and 2.8 AU. Two cases are considered, one in which the corresponding coronameter data indicate a nearly vertical (north-south) current sheet and another in which a nearly horizontal, near equatorial current sheet is indicated. For the crossings of the vertical current sheet, a variance analysis based on hour averages of the magnetic field data gave a minimum variance direction consistent with a steep inclination. The horizontal current sheet was observed by Voyager as a region of mixed polarity and low speeds lasting several days, consistent with multiple crossings of a horizontal but irregular and fluctuating current sheet at 1.4 AU. However, variance analysis of individual current sheet crossings in this interval using 1.92 see averages did not give minimum variance directions consistent with a horizontal current sheet.
Kojima, Akiko; Ito, Yuki; Kitagawa, Hirotoshi; Matsuura, Hiroshi; Nosaka, Shuichi
2014-06-01
Desflurane inhalation is associated with sympathetic activation and concomitant increase in heart rate in humans and experimental animals. There is, however, little information concerning the direct effects of desflurane on electrical activity of sinoatrial node pacemaker cells that determines the intrinsic heart rate. Whole-cell patch-clamp experiments were conducted on guinea pig sinoatrial node pacemaker cells to record spontaneous action potentials and ionic currents contributing to sinoatrial node automaticity, namely, hyperpolarization-activated cation current (If), T-type and L-type Ca currents (ICa,T and ICa,L, respectively), Na/Ca exchange current (INCX), and rapidly and slowly activating delayed rectifier K currents (IKr and IKs, respectively). Electrocardiograms were recorded from ex vivo Langendorff-perfused hearts and in vivo hearts. Desflurane at 6 and 12% decreased spontaneous firing rate of sinoatrial node action potentials by 15.9% (n = 11) and 27.6% (n = 10), respectively, which was associated with 20.4% and 42.5% reductions in diastolic depolarization rate, respectively. Desflurane inhibited If, ICa,T, ICa,L, INCX, and IKs but had little effect on IKr. The negative chronotropic action of desflurane was reasonably well reproduced in sinoatrial node computer model. Desflurane reduced the heart rate in Langendorff-perfused hearts. High concentration (12%) of desflurane inhalation was associated with transient tachycardia, which was totally abolished by pretreatment with the β-adrenergic blocker propranolol. Desflurane has a direct negative chronotropic action on sinoatrial node pacemaking activity, which is mediated by its inhibitory action on multiple ionic currents. This direct inhibitory action of desflurane on sinoatrial node automaticity seems to be counteracted by sympathetic activation associated with desflurane inhalation in vivo.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-18
... doing internal eddy current inspections, or repairing the crack. As an alternative to the external eddy current inspections, the AD provides for internal eddy current and detailed inspections for cracks in the... 5, 2011, we issued Emergency AD 2011-08-51, which requires repetitive external eddy current...
Cole, Scott N; Berntsen, Dorthe
2016-01-01
Our overriding hypothesis was that future thinking would be linked with goals to a greater extent than memories; conceptualizing goals as current concerns (i.e., uncompleted personal goals). We also hypothesized that current-concern-related events would differ from non-current-concern-related events on a set of phenomenological characteristics. We report novel data from a study examining involuntary and voluntary mental time travel using an adapted laboratory paradigm. Specifically, after autobiographical memories or future thoughts were elicited (between participants) in an involuntary and voluntary retrieval mode (within participants), participants self-generated five current concerns and decided whether each event was relevant or not to their current concerns. Consistent with our hypothesis, compared with memories, a larger percentage of involuntary and voluntary future thoughts reflected current concerns. Furthermore, events related to current concerns differed from non-concern-related events on a range of cognitive, representational, and affective phenomenological measures. These effects were consistent across temporal direction. In general, our results agree with the proposition that involuntary and voluntary future thinking is important for goal-directed cognition and behaviour.
NASA Astrophysics Data System (ADS)
Hamdipour, Mohammad
2017-12-01
By applying a voltage to a Josephson junction, the charge in superconducting layers (S-layers) will oscillate. Wavelength of the charge oscillations in S-layers is related to external current in junction, by increasing the external current, the wavelength will decrease which cause in some currents the wavelength be incommensurate with width of junction, so the CVC shows Fiske like steps. External current throwing along junction has some components, resistive, capacitive and superconducting current, beside these currents there is a current in lateral direction of junction, (x direction). On the other hand, the emitted electromagnetic wave power in THz region is related to AC component of electric field in junction, which itself is related to charge density in S-layers, which is related to currents in the system. So we expect that features of variation of current components reflect the features of emitted THz power form junction. Here we study in detail the superconductive current in a long Josephson junction (JJ), the current voltage characteristics (CVC) of junction and emitted THz power from the system. Then we compare the results. Comparing the results we see that there is a good qualitative coincidence in features of emitted THz power and supercurrent in junction.
ERIC Educational Resources Information Center
Baser, Mustafa; Durmus, Soner
2010-01-01
The purpose of this study was to compare the changes in conceptual understanding of Direct Current Electricity (DCE) in virtual (VLE) and real laboratory environment (RLE) among pre-service elementary school teachers. A pre- and post-test experimental design was used with two different groups. One of the groups was randomly assigned to VLE (n =…
Ferrosilicon smelting in a direct current furnace
Dosaj, Vishu D.; May, James B.
1992-12-29
The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode.
NASA Technical Reports Server (NTRS)
Gardner, Robert; Gillis, James W.; Griesel, Ann; Pardo, Bruce
1985-01-01
An analysis of the direction finding (DF) and fix estimation algorithms in TRAILBLAZER is presented. The TRAILBLAZER software analyzed is old and not currently used in the field. However, the algorithms analyzed are used in other current IEW systems. The underlying algorithm assumptions (including unmodeled errors) are examined along with their appropriateness for TRAILBLAZER. Coding and documentation problems are then discussed. A detailed error budget is presented.
Augmenting Visual Search Performance with Transcranial Direct Current Stimulation (tDCS)
2015-09-28
Augmenting Visual Search Performance with Transcranial Direct Current Stimulation ( tDCS ) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62202F...stimulation ( tDCS ) over the left frontal eye field (LFEF) region of the scalp to improve cognitive performance. The participants received anodal and...blinking frequency in relation to stimulation condition. Our data suggest that tDCS over the LFEF would be a beneficial countermeasure to mitigate the
Cronin, Katherine; van Ormondt, Maarten; Storlazzi, Curt D.; Presto, Katherine; Tonnon, Pieter K.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.
2011-01-01
Current regulations in California prohibit the disposal of more than 20% fine-grained sediment in the coastal zone; this threshold is currently being investigated to determine if this environmental regulation can be improved upon. A field monitoring and numerical modeling experiment took place late 2 009 to determine the fate of fine-grained dredge disposal material from Santa Cruz Harbor, California, U.S.A. A multi-nested, hydrodynamic-sediment transport modeling approach was used to simulate the direction and dispersal of the dredge plume. Result s show that the direction and dispersal of the plume was influenced by the wave climate, a large proportion of which moved in a easterly direction during wave events. Therefore it is vitally important to accurately simulate the tides, waves, currents, temperature and salinity when modeling the dispersal of the fine-grained dredge plume.
Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards
NASA Astrophysics Data System (ADS)
Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.; Damiani, Rick; Musial, Walt
2017-06-01
Offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s-1 mean wind and 70 m s-1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts in wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15-50°) suggest that veer should be considered.
Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards
Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.; ...
2017-05-30
Here, offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s –1 mean wind and 70 m s –1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts inmore » wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15–50°) suggest that veer should be considered.« less
Solid state rapid thermocycling
Beer, Neil Reginald; Spadaccini, Christopher
2014-05-13
The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.
Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.
Here, offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s –1 mean wind and 70 m s –1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts inmore » wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15–50°) suggest that veer should be considered.« less
Nerve Agents: What They Are, How They Work, How to Counter Them.
Costanzi, Stefano; Machado, John-Hanson; Mitchell, Moriah
2018-05-16
Nerve agents are organophosphorus chemical warfare agents that exert their action through the irreversible inhibition of acetylcholinesterase, with a consequent overstimulation of cholinergic transmission followed by its shutdown. Beyond warfare, they have notoriously been employed in acts of terrorism as well as high profile assassinations. After a brief historical introduction on the development and deployment of nerve agents, this review provides a survey of their chemistry, the way they affect cholinergic transmission, the available treatment options, and the current directions for their improvement. As the review illustrates, despite their merits, the currently available treatment options present several shortcomings. Current research directions involve the search for improved antidotes, antagonists of the nicotinic receptors, small-molecule pretreatment options, as well as bioscavengers as macromolecular pretreatment options. These efforts are making good progress in many different directions and, hopefully, will lead to a lower target susceptibility, thus reducing the appeal of nerve agents as chemical weapons.
Current Status of New Anticoagulants in the Management of Venous Thromboembolism
Montoya, Roberto C.; Gajra, Ajeet
2012-01-01
Venous Thromboembolism, manifested as deep venous thrombosis and pulmonary embolism, is a common problem associated with significant morbidity, mortality, and resource expenditure. Unfractionated heparin, low-molecular-weight heparin, and vitamin K antagonists are the most common treatment and prophylaxis, and have demonstrated their efficacy in a vast number of previous studies. Despite their broad use, these agents have important limitations that have led to the development of new drugs in a bid to overcome the disadvantages of the old ones without decreasing their therapeutic effect. These novel medications, some approved and others in different stages of development, include direct thrombin inhibitors like dabigatran etexilate, and direct activated factor X inhibitors like rivaroxaban. The current paper will review the characteristics, clinical trial results, and current and potential therapeutic uses of these new agents with a focus on the categories of direct thrombin inhibitors and activated factor X inhibitors. PMID:22496694
Thermionic cogeneration burner design
NASA Astrophysics Data System (ADS)
Miskolczy, G.; Goodale, D.; Moffat, A. L.; Morgan, D. T.
Since thermionic converters receive heat at very high temperatures (approximately 1800 K) and reject heat at moderately high temperatures (approximately 800 K), they are useful for cogeneration applications involving high temperature processes. The electric power from thermionic converters is produced as a high amperage, low-voltage direct current. An ideal cogeneration application would be to utilize the reject heat at the collector temperature and the electricity without power conditioning. A cogeneration application in the edible oil industry fulfills both of these requirements since both direct heat and hydrogen gas are required in the hydrogenation of the oils. In this application, the low-voltage direct current would be used in a hydrogen electrolyzer.
77 FR 68050 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-15
... repetitive [high frequency eddy current] inspections [for cracks] of certain crossbeams including those... actions have already been done. (g) Repetitive High Frequency Eddy Current Inspections (1) For airplanes... AD, whichever occurs first. FedEx stated that the current repetitive inspection interval is ten times...
Modelling Directional Solidification
NASA Technical Reports Server (NTRS)
Wilcox, William R.; Regel, Liya L.; Zhou, Jian; Yuan, Weijun
1992-01-01
The long range goal of this program has been to develop an improved understanding of phenomena of importance to directional solidification, in order to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Current emphasis is on determining the influence of perturbations on directional solidification.
Outlook: directed development: catalysing a global biotech industry.
Sun, Anthony; Perkins, Tom
2005-09-01
Governments are increasingly relying on directed development tools or proactive public-policy approaches to stimulate scientific and economic development for their biotechnology industries. This article will discuss the four main tools of directed development in biotechnology and the lessons learned from current global efforts utilizing these tools.
Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics.
Boedo, J A; Rudakov, D L
2017-03-01
We present a method to calculate the ion saturation current, I sat , for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat . It is noted that the I sat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e . We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuously biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and its use in reducing arcs.
Hydrodynamic and Sediment Transport Modelling of Suralaya Coastal Area, Cilegon, Indonesia
NASA Astrophysics Data System (ADS)
Fattah, A. H.; Suntoyo; Damerianne, H. A.; Wahyudi
2018-03-01
The coastal zone of Suralaya is located in the district Pulomerak, Cilegon City, Province Banten. This region is a part of the Sunda Strait region that is very important area to support the ongoing activities such as, industries, power plant, ports, and tourism. However, those various activities will certainly give effect to the surrounding environment. To determine the environmental conditions of Suralaya Coast, it is necessary to study the hydrodynamics analysis and sediment transport modelling including the analysis of currents patterns. Tidal elevation observation was conducted for 15 days used to validate the water elevation simulation results, in which a good agreement between the observed data and the model result was obtained with the error value of 1.6%. The dominant current direction is from northeast in west season, while in the east season predominant current direction is from northwest with a speed average current 12,44 cm/s. The dominant wave direction is from the west. The average temperature is at 27°C and the bottom sediment dominant form is fine sand.
Fast charge implications: Pack and cell analysis and comparison
NASA Astrophysics Data System (ADS)
Tanim, Tanvir R.; Shirk, Matthew G.; Bewley, Randy L.; Dufek, Eric J.; Liaw, Bor Yann
2018-03-01
This study investigates the effect of 50-kW (about 2C) direct current fast charging on a full-size battery electric vehicle's battery pack in comparison to a pack exclusively charged at 3.3 kW, which is the common alternating current Level 2 charging power level. Comparable scaled charging protocols are also independently applied to individual cells at three different temperatures, 20 °C, 30 °C, and 40 °C, to perform a comparative analysis with the packs. Dominant cell-level aging modes were identified through incremental capacity analysis and compared with full packs to gain a clear understanding of additional key factors that affect pack aging. While the cell-level study showed a minor impact on performance due to direct current fast charging, the packs showed a significantly higher rate of capacity fade under similar charging protocols. This indicates that pack-level aging cannot be directly extrapolated from cell evaluation. Delayed fast charging, completing shortly before discharge, was found to have less of an impact on battery degradation than conventional alternating current Level 2 charging.
Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boedo, J. A.; Rudakov, D. L.
Here we present a method to calculate the ion saturation current, I sat, for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat. It is noted that the Isat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e. We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuouslymore » biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and it’s use in reducing arcs.« less
Safe Direct Current Stimulator design for reduced power consumption and increased reliability.
Fridman, Gene
2017-07-01
Current state of the art neural prosthetics, such as cochlear implants, spinal cord stimulators, and deep brain stimulators use implantable pulse generators (IPGs) to excite neural activity. Inhibition of neural firing is typically indirect and requires excitation of neurons that then have inhibitory projections downstream. Safe Direct Current Stimulator (SDCS) technology is designed to convert electronic pulses delivered to electrodes embedded within an implantable device to ionic direct current (iDC) at the output of the device. iDC from the device can then control neural extracellular potential with the intent of being able to not only excite, but also inhibit and sensitize neurons, thereby greatly expanding the possible applications of neuromodulation therapies and neural interface mechanisms. While the potential applications and proof of concept of this device have been the focus of previous work, the published descriptions of this technology leave significant room for power and reliability optimization. We describe and model a novel device construction designed to reduce power consumption by a factor of 12 and to improve its reliability by a factor of 8.
Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics
Boedo, J. A.; Rudakov, D. L.
2017-03-20
Here we present a method to calculate the ion saturation current, I sat, for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat. It is noted that the Isat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e. We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuouslymore » biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and it’s use in reducing arcs.« less
Anomalous cross-B field transport and spokes in HiPIMS plasma
NASA Astrophysics Data System (ADS)
Hecimovic, Ante; Maszl, Christian; Schulz-von der Gathen, Volker; von Keudell, Achim
2016-09-01
The rotation of localised ionisation zones, i.e. spokes, in magnetron discharge is investigated as a function of discharge current, ranging from 10 mA (current density 0.5 mA cm-2) to 140 A (7 A cm-2) . The presence of spokes throughout the complete discharge current range indicates that the spokes are an intrinsic property of a magnetron sputtering plasma discharge. Up to discharge currents of several amperes, the spokes rotate in a retrograde ExB direction and beyond the spokes rotate in a ExB direction. In this contribution we present experimental evidence that anomalous diffusion is triggered by the appearance of spokes rotating in the ExB direction. The Hall parameter ωceτc , product of the electron cyclotron frequency and the classical collision time, reduces from Bohm diffusion values (16 and higher) down to the value of 3 as spokes appear, indicating anomalous cross-B field transport. The ion diffusion coefficients calculated from a sideways image of the spoke is six times higher than Bohm diffusion coefficients, which is consistent with the reduction of the Hall parameter.
Korpinen, Leena H; Elovaara, Jarmo A; Kuisti, Harri A
2011-01-01
The aim of the study was to investigate the occupational exposure to electric fields, average current densities, and average total contact currents at 400 kV substation tasks from different service platforms (main transformer inspection, maintenance of operating device of disconnector, maintenance of operating device of circuit breaker). The average values are calculated over measured periods (about 2.5 min). In many work tasks, the maximum electric field strengths exceeded the action values proposed in the EU Directive 2004/40/EC, but the average electric fields (0.2-24.5 kV/m) were at least 40% lower than the maximum values. The average current densities were 0.1-2.3 mA/m² and the average total contact currents 2.0-143.2 µA, that is, clearly less than the limit values of the EU Directive. The average values of the currents in head and contact currents were 16-68% lower than the maximum values when we compared the average value from all cases in the same substation. In the future it is important to pay attention to the fact that the action and limit values of the EU Directive differ significantly. It is also important to take into account that generally, the workers' exposure to the electric fields, current densities, and total contact currents are obviously lower if we use the average values from a certain measured time period (e.g., 2.5 min) than in the case where exposure is defined with only the help of the maximum values. © 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Simmons, Steve; Azpiroz, Maria; Cartigny, Matthieu; Clare, Mike; Parsons, Dan; Sumner, Esther; Talling, Pete
2017-04-01
Turbidity currents transport prodigious volumes of sediment to the deep ocean, depositing a greater volume of sediment than any other process on Earth. Thus far, only a handful of studies have reported direct measurements of turbidity currents, with typical flow durations ranging from a few minutes to a few hours. Consequently, our understanding of turbidity current dynamics is largely derived from scaled laboratory experiments and numerical models. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements of velocity and backscatter were acquired along profiles through the water column at five and six second intervals by two acoustic Doppler current profilers (ADCPs) on separate moorings suspended 80 m and 200 m above the canyon floor, at a water depth of 2000 m. We present a novel inversion method that combines the backscatter from the two ADCPs, acquired at different acoustic frequencies, which enables the first high resolution quantification of sediment concentration and grain size within an oceanic turbidity current. Our results demonstrate the presence of high concentrations of coarse sediment within a fast moving, thin frontal cell, which outruns a slower-moving, thicker, trailing body that can persist for several days. Thus, the flows stretch while propagating down-canyon, demonstrating a behavior that is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended clay-sized sediment and the flow structure is shown to be influenced by interactions with the internal tides in the canyon.
NASA Astrophysics Data System (ADS)
Simmons, S.; Azpiroz, M.; Cartigny, M.; Clare, M. A.; Parsons, D. R.; Sumner, E.; Talling, P. J.
2016-12-01
Turbidity currents that transport sediment to the deep ocean deposit a greater volume of sediment than any other process on Earth. To date, only a handful of studies have directly measured turbidity currents, with flow durations ranging from a few minutes to a few hours. Our understanding of turbidity current dynamics is therefore largely derived from scaled laboratory experiments and numerical modelling. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements using acoustic Doppler current profilers (ADCPs) show that flows can last for many days, rather than hours as seen elsewhere, and provide the first quantification of concentration and grain size within deep-water turbidity currents.Velocity and backscatter were measured at 5 second intervals by an ADCP suspended 80 m above the canyon floor, at 2000 m water depth. A novel inversion method using multiple ADCP frequencies enabled quantification of sediment concentration and grain size within the flows. We identify high concentrations of coarse sediment within a thin frontal cell, which outruns a thicker, trailing body. Thus, the flows grow in length while propagating down-canyon. This is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended fine-grained sediment. The body mixes with the surrounding fluid leaving diffuse clouds of sediment that persist for days after initial entrainment. Ambient tidal flow also controls the mixing within the body and the surrounding fluid. Our results provide a new quantification of suspended sediment within flows and the interaction with the surrounding fluid.
NASA Astrophysics Data System (ADS)
Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe
2017-04-01
Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.
Analysis and modeling of leakage current sensor under pulsating direct current
NASA Astrophysics Data System (ADS)
Li, Kui; Dai, Yihua; Wang, Yao; Niu, Feng; Chen, Zhao; Huang, Shaopo
2017-05-01
In this paper, the transformation characteristics of current sensor under pulsating DC leakage current is investigated. The mathematical model of current sensor is proposed to accurately describe the secondary side current and excitation current. The transformation process of current sensor is illustrated in details and the transformation error is analyzed from multi aspects. A simulation model is built and a sensor prototype is designed to conduct comparative evaluation, and both simulation and experimental results are presented to verify the correctness of theoretical analysis.
A Circular Microstrip Antenna Sensor for Direction Sensitive Strain Evaluation †
Herbko, Michal
2018-01-01
In this paper, a circular microstrip antenna for stress evaluation is studied. This kind of microstrip sensor can be utilized in structural health monitoring systems. Reflection coefficient S11 is measured to determine deformation/strain value. The proposed sensor is adhesively connected to the studied sample. Applied strain causes a change in patch geometry and influences current distribution both in patch and ground plane. Changing the current flow in patch influences the value of resonant frequency. In this paper, two different resonant frequencies were analysed because in each case, different current distributions in patch were obtained. The sensor was designed for operating frequency of 2.5 GHz (at fundamental mode), which results in a diameter less than 55 mm. Obtained sensitivity was up to 1 MHz/100 MPa, resolution depends on utilized vector network analyser. Moreover, the directional characteristics for both resonant frequencies were defined, studied using numerical model and verified by measurements. Thus far, microstrip antennas have been used in deformation measurement only if the direction of external force was well known. Obtained directional characteristics of the sensor allow the determination of direction and value of stress by one sensor. This method of measurement can be an alternative to the rosette strain gauge. PMID:29361697
Nakanishi, Miharu; Imai, Hisato
2012-01-01
The aim of the present study is to examine job role quality relating to intention to leave current facility and to leave profession among direct care workers in residential facilities for elderly in Japan. Direct care workers completed a paper questionnaire on October 2009. From 746 facilities in three prefectures (Tokyo, Shizuoka, and Yamagata) 6428 direct care workers with complete data were included in the analyses. The Job Role Quality (JRQ) scale was translated into Japanese language to assess job role quality. Hierarchical multiple regression analysis showed that intention to leave current facility was primarily associated with job role quality: poor skill discretion, high job demand, and poor relationship with supervisor. Intention to leave profession was primarily associated with poor skill discretion. The results of the present study imply the strategies to direct care worker retention for each facility and policy efforts. Each facility can implement specific strategies such as enhanced variety of work and opportunity for use of skills, adequate job allocation, and improvement of supervisor-employee relationship in work place. Policy efforts should enhance broader career opportunities in care working such as advanced specialization and authorized medical practice. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Synthesis of polymer nanostructures with conductance switching properties
Su, Kai; Nuraje, Nurxat; Zhang, Lingzhi; Matsui, Hiroshi; Yang, Nan Loh
2015-03-03
The present invention is directed to crystalline organic polymer nanoparticles comprising a conductive organic polymer; wherein the crystalline organic polymer nanoparticles have a size of from 10 nm to 200 nm and exhibits two current-voltage states: (1) a high resistance current-voltage state, and (2) a low resistance current-voltage state, wherein when a first positive threshold voltage (V.sub.th1) or higher positive voltage, or a second negative threshold voltage (V.sub.th2) or higher negative voltage is applied to the nanoparticle, the nanoparticle exhibits the low-resistance current-voltage state, and when a voltage less positive than the first positive threshold voltage or a voltage less negative than the second negative threshold voltage is applied to the nanoparticle, the nanoparticle exhibits the high-resistance current-voltage state. The present invention is also directed methods of manufacturing the nanoparticles using novel interfacial oxidative polymerization techniques.
High performance direct methanol fuel cell with thin electrolyte membrane
NASA Astrophysics Data System (ADS)
Wan, Nianfang
2017-06-01
A high performance direct methanol fuel cell is achieved with thin electrolyte membrane. 320 mW cm-2 of peak power density and over 260 mW cm-2 at 0.4 V are obtained when working at 90 °C with normal pressure air supply. It is revealed that the increased anode half-cell performance with temperature contributes primarily to the enhanced performance at elevated temperature. From the comparison of iR-compensated cathode potential of methanol/air with that of H2/air fuel cell, the impact of methanol crossover on cathode performance decreases with current density and becomes negligible at high current density. Current density is found to influence fuel efficiency and methanol crossover significantly from the measurement of fuel efficiency at different current density. At high current density, high fuel efficiency can be achieved even at high temperature, indicating decreased methanol crossover.
Jet behaviors and ejection mode recognition of electrohydrodynamic direct-write
NASA Astrophysics Data System (ADS)
Zheng, Jianyi; Zhang, Kai; Jiang, Jiaxin; Wang, Xiang; Li, Wenwang; Liu, Yifang; Liu, Juan; Zheng, Gaofeng
2018-01-01
By introducing image recognition and micro-current testing, jet behavior research was conducted, in which the real-time recognition of ejection mode was realized. To study the factors influencing ejection modes and the current variation trends under different modes, an Electrohydrodynamic Direct-Write (EDW) system with functions of current detection and ejection mode recognition was firstly built. Then a program was developed to recognize the jet modes. As the voltage applied to the metal tip increased, four jet ejection modes in EDW occurred: droplet ejection mode, Taylor cone ejection mode, retractive ejection mode and forked ejection mode. In this work, the corresponding relationship between the ejection modes and the effect on fiber deposition as well as current was studied. The real-time identification of ejection mode and detection of electrospinning current was realized. The results in this paper are contributed to enhancing the ejection stability, providing a good technical basis to produce continuous uniform nanofibers controllably.
Scale magnetic effect in quantum electrodynamics and the Wigner-Weyl formalism
NASA Astrophysics Data System (ADS)
Chernodub, M. N.; Zubkov, M. A.
2017-09-01
The scale magnetic effect (SME) is the generation of electric current due to a conformal anomaly in an external magnetic field in curved spacetime. The effect appears in a vacuum with electrically charged massless particles. Similarly to the Hall effect, the direction of the induced anomalous current is perpendicular to the direction of the external magnetic field B and to the gradient of the conformal factor τ , while the strength of the current is proportional to the beta function of the theory. In massive electrodynamics the SME remains valid, but the value of the induced current differs from the current generated in the system of massless fermions. In the present paper we use the Wigner-Weyl formalism to demonstrate that in accordance with the decoupling property of heavy fermions the corresponding anomalous conductivity vanishes in the large-mass limit with m2≫|e B | and m ≫|∇τ | .
Measuring Joule heating and strain induced by electrical current with Moire interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Bicheng; Basaran, Cemal
2011-04-01
This study proposes a new method to locate and measure the temperature of the hot spots caused by Joule Heating by measuring the free thermal expansion in-plane strain. It is demonstrated that the hotspot caused by the Joule heating in a thin metal film/plate structure can be measured by Phase shifting Moire interferometry with continuous wavelet transform (PSMI/CWT) at the microscopic scale. A demonstration on a copper film is conducted to verify the theory under different current densities. A correlation between the current density and strain in two orthogonal directions (one in the direction of the current flow) is proposed.more » The method can also be used for the measurement of the Joule heating in the microscopic solid structures in the electronic packaging devices. It is shown that a linear relationship exists between current density squared and normal strains.« less
Persistent superconductor currents in holographic lattices.
Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo
2014-07-04
We consider a persistent superconductor current along the direction with no translational symmetry in a holographic gravity model. Incorporating a lattice structure into the model, we numerically construct novel solutions of hairy charged stationary black branes with momentum or rotation along the latticed direction. The lattice structure prevents the horizon from rotating, and the total momentum is only carried by matter fields outside the black brane horizon. This is consistent with the black hole rigidity theorem, and it suggests that in dual field theory with lattices, superconductor currents are made up of "composite" fields, rather than "fractionalized" degrees of freedom. We also show that our solutions are consistent with the superfluid hydrodynamics.
Current issues in atmospheric change
NASA Technical Reports Server (NTRS)
1987-01-01
In response to questions about the effects of long-term, global-scale changes in the atmosphere raised in congressional hearings, a group of leading experts held a two-day workshop to survey the state of current knowledge about atmospheric changes and their implications. The review focuses on the sources, concentrations, and changes of those gases most directly linked to human activities, i.e., carbon dioxide, ozone, and the chlorofluorocarbons; the direct physical effects of rising concentrations of trace gases. The review discusses the uncertainties associated with the knowledge of current trends and possible future changes, including ozone trends and the Antarctic ozone hole, and the impacts of rising concentrations of trace gases.
Sonoelastography in the musculoskeletal system: Current role and future directions.
Winn, Naomi; Lalam, Radhesh; Cassar-Pullicino, Victor
2016-11-28
Ultrasound is an essential modality within musculoskeletal imaging, with the recent addition of elastography. The elastic properties of tissues are different from the acoustic impedance used to create B mode imaging and the flow properties used within Doppler imaging, hence elastography provides a different form of tissue assessment. The current role of ultrasound elastography in the musculoskeletal system will be reviewed, in particular with reference to muscles, tendons, ligaments, joints and soft tissue tumours. The different ultrasound elastography methods currently available will be described, in particular strain elastography and shear wave elastography. Future directions of ultrasound elastography in the musculoskeletal system will also be discussed.
Direct-current vertical electrical-resistivity soundings in the Lower Peninsula of Michigan
Westjohn, D.B.; Carter, P.J.
1989-01-01
Ninety-three direct-current vertical electrical-resistivity soundings were conducted in the Lower Peninsula of Michigan from June through October 1987. These soundings were made to assist in mapping the depth to brine in areas where borehole resistivity logs and water-quality data are sparse or lacking. The Schlumberger array for placement of current and potential electrodes was used for each sounding. Vertical electrical-resistivity sounding field data, shifted and smoothed sounding data, and electric layers calculated using inverse modeling techniques are presented. Also included is a summary of the near-surface conditions and depths to conductors and resistors for each sounding location.
Edwards, Dylan; Cortes, Mar; Datta, Abhishek; Minhas, Preet; Wassermann, Eric M.; Bikson, Marom
2015-01-01
Transcranial Direct Current Stimulation (tDCS) is a non-invasive, low-cost, well-tolerated technique producing lasting modulation of cortical excitability. Behavioral and therapeutic outcomes of tDCS are linked to the targeted brain regions, but there is little evidence that current reaches the brain as intended. We aimed to: (1) validate a computational model for estimating cortical electric fields in human transcranial stimulation, and (2) assess the magnitude and spread of cortical electric field with a novel High-Definition tDCS (HD-tDCS) scalp montage using a 4×1-Ring electrode configuration. In three healthy adults, Transcranial Electrical Stimulation (TES) over primary motor cortex (M1) was delivered using the 4×1 montage (4× cathode, surrounding a single central anode; montage radius ~3 cm) with sufficient intensity to elicit a discrete muscle twitch in the hand. The estimated current distribution in M1 was calculated using the individualized MRI-based model, and compared with the observed motor response across subjects. The response magnitude was quantified with stimulation over motor cortex as well as anterior and posterior to motor cortex. In each case the model data were consistent with the motor response across subjects. The estimated cortical electric fields with the 4×1 montage were compared (area, magnitude, direction) for TES and tDCS in each subject. We provide direct evidence in humans that TES with a 4×1-Ring configuration can activate motor cortex and that current does not substantially spread outside the stimulation area. Computational models predict that both TES and tDCS waveforms using the 4×1-Ring configuration generate electric fields in cortex with comparable gross current distribution, and preferentially directed normal (inward) currents. The agreement of modeling and experimental data for both current delivery and focality support the use of the HD-tDCS 4×1-Ring montage for cortically targeted neuromodulation. PMID:23370061
NASA Astrophysics Data System (ADS)
Sukhanov, D. Ya.; Zav'yalova, K. V.
2018-03-01
The paper represents induced currents in an electrically conductive object as a totality of elementary eddy currents. The proposed scanning method includes measurements of only one component of the secondary magnetic field. Reconstruction of the current distribution is performed by deconvolution with regularization. Numerical modeling supported by the field experiments show that this approach is of direct practical relevance.
Combinatorial approach toward high-throughput analysis of direct methanol fuel cells.
Jiang, Rongzhong; Rong, Charles; Chu, Deryn
2005-01-01
A 40-member array of direct methanol fuel cells (with stationary fuel and convective air supplies) was generated by electrically connecting the fuel cells in series. High-throughput analysis of these fuel cells was realized by fast screening of voltages between the two terminals of a fuel cell at constant current discharge. A large number of voltage-current curves (200) were obtained by screening the voltages through multiple small-current steps. Gaussian distribution was used to statistically analyze the large number of experimental data. The standard deviation (sigma) of voltages of these fuel cells increased linearly with discharge current. The voltage-current curves at various fuel concentrations were simulated with an empirical equation of voltage versus current and a linear equation of sigma versus current. The simulated voltage-current curves fitted the experimental data well. With increasing methanol concentration from 0.5 to 4.0 M, the Tafel slope of the voltage-current curves (at sigma=0.0), changed from 28 to 91 mV.dec-1, the cell resistance from 2.91 to 0.18 Omega, and the power output from 3 to 18 mW.cm-2.
Advance directives and living wills.
Stewart, K.; Bowker, L.
1998-01-01
Under certain circumstances, living wills or advance directives may carry legal force in the UK. This paper traces the development of advance directives, clarifies their current legal position and discusses potential problems with their use. Case histories are used to illustrate some of the common dilemmas which doctors may face. PMID:9640440
Direct-to-consumer advertising of prescription medicines: a counter argument.
Mintzes, Barbara; Mangin, Dee
2009-12-01
Direct-to-consumer advertising of prescription-only medicines is currently only permitted in the USA and New Zealand. Barbara Mintzes and Dee Mangin provide their case against direct-to-consumer advertising of prescription medicines, arguing that its wider introduction would lead to a 'Pharma-knows-best' culture.
77 FR 37777 - Airworthiness Directives; Eurocopter Deutschland GmbH Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-25
... Airworthiness Directives; Eurocopter Deutschland GmbH Helicopters AGENCY: Federal Aviation Administration (FAA... directive (AD) for all Eurocopter Deutschland GmbH (ECD) Model MBB-BK 117 C-2 helicopters. That AD currently... Safety Agency AD No. 2011-0162, dated August 30, 2011. (h) Subject Joint Aircraft Service Component (JASC...
32 CFR 705.4 - Communication directly with private organizations and individuals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Communication directly with private... Communication directly with private organizations and individuals. (a) Questions from the public and requests... current date may be purchased from the National Archives. Details are available from: Audio-Visual Branch...
Inoue, Yusuke; Nagahara, Kazunori; Kudo, Hiroko; Itoh, Hiroyasu
2018-01-01
Automatic exposure control (AEC) modulates tube current and consequently X-ray exposure in CT. We investigated the behavior of AEC systems in whole-body PET/CT. CT images of a whole-body phantom were acquired using AEC on two scanners from different manufactures. The effects of scout imaging direction and arm positioning on dose modulation were evaluated. Image noise was assessed in the chest and upper abdomen. On one scanner, AEC using two scout images in the posteroanterior (PA) and lateral (Lat) directions provided relatively constant image noise along the z-axis with the arms at the sides. Raising the arms increased tube current in the head and neck and decreased it in the body trunk. Image noise increased in the upper abdomen, suggesting excessive reduction in radiation exposure. AEC using the PA scout alone strikingly increased tube current and reduced image noise in the shoulder. Raising the arms did not substantially influence dose modulation and decreased noise in the abdomen. On the other scanner, AEC using the PA scout alone or Lat scout alone resulted in similar dose modulation. Raising the arms increased tube current in the head and neck and decreased it in the trunk. Image noise was higher in the upper abdomen than in the middle and lower chest, and was not influenced by arm positioning. CT dose modulation using AEC may vary greatly depending on scout direction. Raising the arms tended to decrease radiation exposure; however, the effect depends on scout direction and the AEC system.
Neural substrates underlying stimulation-enhanced motor skill learning after stroke
Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques
2015-01-01
Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the ‘circuit game’, involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention’s enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham series. Finally, dual transcranial direct current stimulation applied during the first session enhanced continued learning with the paretic limb 1 week later, relative to the sham series. This lasting behavioural enhancement was associated with more efficient recruitment of the motor skill learning network, that is, focused activation on the motor-premotor areas in the damaged hemisphere, especially on the dorsal premotor cortex. Dual transcranial direct current stimulation applied during motor skill learning with a paretic upper limb resulted in prolonged shaping of brain activation, which supported behavioural enhancements in stroke patients. PMID:25488186
Controlling Gilbert damping in a YIG film using nonlocal spin currents
NASA Astrophysics Data System (ADS)
Haidar, M.; Dürrenfeld, P.; Ranjbar, M.; Balinsky, M.; Fazlali, M.; Dvornik, M.; Dumas, R. K.; Khartsev, S.; Åkerman, J.
2016-11-01
We demonstrate the control of Gilbert damping in 65-nm-thick yttrium iron garnet (YIG) films using a spin-polarized current generated by a direct current through a nanocontact, spin filtered by a thin Co layer. The magnetodynamics of both the YIG and the Co layers can be excited by a pulse-modulated microwave current injected through the nanocontact and the response detected as a lock-in amplified voltage over the device. The spectra show three clear peaks, two associated with the ferromagnetic resonance (FMR) in each layer, and an additional Co mode with a higher wave vector proportional to the inverse of the nanocontact diameter. By varying the sign and magnitude of the direct nanocontact current, we can either increase or decrease the linewidth of the YIG FMR peak consistent with additional positive or negative damping being exerted by the nonlocal spin current injected into the YIG film. Our nanocontact approach thus offers an alternative route in the search for auto-oscillations in YIG films.
Visualizing Transcranial Direct Current Stimulation (tDCS) in vivo using Magnetic Resonance Imaging
NASA Astrophysics Data System (ADS)
Jog, Mayank Anant
Transcranial Direct Current Stimulation (tDCS) is a low-cost, non-invasive neuromodulation technique that has been shown to treat clinical symptoms as well as improve cognition. However, no techniques exist at the time of research to visualize tDCS currents in vivo. This dissertation presents the theoretical framework and experimental implementations of a novel MRI technique that enables non-invasive visualization of the tDCS electric current using magnetic field mapping. The first chapter establishes the feasibility of measuring magnetic fields induced by tDCS currents. The following chapter discusses the state of the art implementation that can measure magnetic field changes in individual subjects undergoing concurrent tDCS/MRI. The final chapter discusses how the developed technique was integrated with BOLD fMRI-an established MRI technique for measuring brain function. By enabling a concurrent measurement of the tDCS current induced magnetic field as well as the brain's hemodynamic response to tDCS, our technique opens a new avenue to investigate tDCS mechanisms and improve targeting.
Bartlett, John M S
2010-11-01
The phosphatidylinositol 3-kinase (PI3K)/Akt/ mammalian target of rapamycin (mTOR) pathway regulates a broad spectrum of physiologic and pathologic processes. In breast cancer mutation, amplification, deletion, methylation, and posttranslational modifications lead to significant dysregulation of this pathway leading to more aggressive and potentially drug-resistant disease. Multiple novel agents, targeting different nodes within the pathway are currently under development by both commercial and academic partners. The key to the successful validation of these markers is selection of the appropriate patient groups using biomarkers. This article reviews current progress in this area, highlighting the key molecular alterations described in genes within the PI3K/Akt/mTOR pathway that may have an effect on response to current and future therapeutic interventions. Herein, gaps in current knowledge are highlighted and suggestions for future research directions given that may facilitate biomarker development in partnership with current drug development.
Code of Federal Regulations, 2010 CFR
2010-07-01
... MINING PRODUCTS FUSES FOR USE WITH DIRECT CURRENT IN PROVIDING SHORT-CIRCUIT PROTECTION FOR TRAILING... provides short-circuit protection for trailing cables in coal mines by interrupting an excessive current in...
49 CFR 212.211 - Apprentice signal and train control inspector.
Code of Federal Regulations, 2010 CFR
2010-10-01
... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STATE SAFETY PARTICIPATION REGULATIONS State... to use electrical test equipment in direct current and alternating current circuits; and (2) A basic...
Grimes, D.J.; Marranzino, A.P.
1968-01-01
Two spectrographic methods are used in mobile field laboratories of the U. S. Geological Survey. In the direct-current arc method, the ground sample is mixed with graphite powder, packed into an electrode crater, and burned to completion. Thirty elements are determined. In the spark method, the sample, ground to pass a 150-mesh screen, is digested in hydrofluoric acid followed by evaporation to dryness and dissolution in aqua regia. The solution is fed into the spark gap by means of a rotating-disk electrode arrangement and is excited with an alternating-current spark discharge. Fourteen elements are determined. In both techniques, light is recorded on Spectrum Analysis No. 1, 35-millimeter film, and the spectra are compared visually with those of standard films.
Numerical Calculation of the Spectrum of the Severe (1%) Lighting Current and Its First Derivative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C G; Ong, M M; Perkins, M P
2010-02-12
Recently, the direct-strike lighting environment for the stockpile-to-target sequence was updated [1]. In [1], the severe (1%) lightning current waveforms for first and subsequent return strokes are defined based on Heidler's waveform. This report presents numerical calculations of the spectra of those 1% lightning current waveforms and their first derivatives. First, the 1% lightning current models are repeated here for convenience. Then, the numerical method for calculating the spectra is presented and tested. The test uses a double-exponential waveform and its first derivative, which we fit to the previous 1% direct-strike lighting environment from [2]. Finally, the resulting spectra aremore » given and are compared with those of the double-exponential waveform and its first derivative.« less
Tobacco industry direct mail marketing and participation by New Jersey adults.
Lewis, M Jane; Delnevo, Cristine D; Slade, John
2004-02-01
We examined adult participation in tobacco industry direct marketing: receipt of direct mail and use of coupons and brand reward programs. Participation was highest for direct mail; participation in all 3 forms differed by gender, age, and race/ethnicity; current smokers, Whites, and persons aged 25 to 64 years reported greater participation. Although tobacco industry direct marketing may influence smoking initiation, its potential to increase consumption and impede cessation is unquestionable.
ERIC Educational Resources Information Center
Goos, Merrilyn, Ed.; Brown, Ray, Ed.; Makar, Katie, Ed.
2008-01-01
This document presents the proceedings of the 31st Annual Conference of the Mathematics Education Research Group of Australasia (MERGA). The theme of this conference is "Navigating Currents and Charting Directions." The theme reminds us that, although we are constantly pushed to account for the quality and impact of our research, we…
Ferrosilicon smelting in a direct current furnace
Dosaj, V.D.; May, J.B.
1992-12-29
The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.
Photocurrent generation by direct electron transfer using photosynthetic reaction centres
NASA Astrophysics Data System (ADS)
Mahmoudzadeh, A.; Saer, R.; Jun, D.; Mirvakili, S. M.; Takshi, A.; Iranpour, B.; Ouellet, E.; Lagally, E. T.; Madden, J. D. W.; Beatty, J. T.
2011-09-01
Photosynthetic reaction centres (RCs) convert light into separated charges with nearly perfect quantum efficiency, and have been used to generate photocurrent. Previous work has shown that electron tunnelling rates between redox centres in proteins depend exponentially on the tunnelling distance. In this work the RC from Rhodobacter sphaeroides was genetically modified with the aim of achieving the shortest tunnelling distances yet demonstrated between the RC's electron-accepting P site and underlying graphite and gold electrodes, and between the electron donor Q site and graphite electrodes. Opposite charges are carried to counter electrodes using mobile mediators, as in dye-sensitised solar cells. Native RCs are bound to graphite surfaces through N-(1-pyrene)iodoacetamide. Although the linker's length is only 4 Å, the electron transfer pathway between the Q electron donor site on the RC and the electrode surface is still too large for current to be significant. A mutant version with the electron acceptor P side close to the graphite surface produced currents of 15 nA cm-2 upon illumination. Direct binding of RCs to a gold surface is shown, resulting in currents of 5 nA cm-2. In both cases the current was unaffected by mediator concentration but increased with illumination, suggesting that direct electron transfer was achieved. The engineering of an RC to achieve direct electron transfer will help with long term efforts to demonstrate RC-based photovoltaic devices.
The stability of steady motion of magnetic domain wall: Role of higher-order spin-orbit torques
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Peng-Bin, E-mail: hepengbin@hnu.edu.cn; Yan, Han; Cai, Meng-Qiu
The steady motion of magnetic domain wall driven by spin-orbit torques is investigated analytically in the heavy/ferromagnetic metal nanowires for three cases with a current transverse to the in-plane and perpendicular easy axis, and along the in-plane easy axis. By the stability analysis of Walker wall profile, we find that if including the higher-order spin-orbit torques, the Walker breakdown can be avoided in some parameter regions of spin-orbit torques with a current transverse to or along the in-plane easy axis. However, in the case of perpendicular anisotropy, even considering the higher-order spin-orbit torques, the velocity of domain wall cannot bemore » efficiently enhanced by the current. Furthermore, the direction of wall motion is dependent on the configuration and chirality of domain wall with a current along the in-plane easy axis or transverse to the perpendicular one. Especially, the direction of motion can be controlled by the initial chirality of domain wall. So, if only involving the spin-orbit mechanism, it is preferable to adopt the scheme of a current along the in-plane easy axis for enhancing the velocity and controlling the direction of domain wall.« less
So, Edmund Cheung; Hsing, Chung-Hsi; Liang, Chia-Hua; Wu, Sheng-Nan
2012-05-15
Mdivi-1 is an inhibitor of dynamin related protein 1- (drp1)-mediated mitochondrial fission. However, the mechanisms through which this compound interacts directly with ion currents in heart cells remain unknown. In this study, its effects on ion currents and membrane potential in murine HL-1 cardiomyocytes were investigated. In whole-cell recordings, the addition of mdivi-1 decreased the amplitude of tail current (I(tail)) for the rapidly activating delayed-rectifier K⁺ current (I(Kr)) in a concentration-dependent manner with an IC₅₀ value at 11.6 μM, a value that resembles the inhibition requirement for mitochondrial division. It shifted the activation curve of I(tail) to depolarized voltages with no change in the gating charge. However, mdivi-1 did not alter the rate of recovery from current inactivation. In cell-attached configuration, mdivi-1 inside the pipette suppressed the activity of acetylcholine-activated K⁺ channels without modifying the single-channel conductance. Mdivi-1 (30 μM) slightly depressed the peak amplitude of Na⁺ current with no change in the overall current-voltage relationship. Under current-clamp recordings, addition of mdivi-1 resulted in prolongation for the duration of action potentials (APs) and to increase the firing of spontaneous APs in HL-1 cells. Similarly, in pituitary GH₃ cells, mdivi-1 was effective in directly suppressing the amplitude of ether-à-go-go-related gene-mediated K⁺ current. Therefore, the lengthening of AP duration and increased firing of APs caused by mdivi-1 can be primarily explained by its inhibition of these K⁺ channels enriched in heart cells. The observed effects of mdivi-1 on ion currents were direct and not associated with its inhibition of mitochondrial division. Copyright © 2012 Elsevier B.V. All rights reserved.
Umans, Stephen D.
2008-11-11
Apparatus and methods are provided for a system for measurement of a current in a conductor such that the conductor current may be momentarily directed to a current measurement element in order to maintain proper current without significantly increasing an amount of power dissipation attributable to the current measurement element or adding resistance to assist in current measurement. The apparatus and methods described herein are useful in superconducting circuits where it is necessary to monitor current carried by the superconducting elements while minimizing the effects of power dissipation attributable to the current measurement element.
Ionospheric control of the dawn-dusk asymmetry of the Mars magnetotail current sheet
NASA Astrophysics Data System (ADS)
Liemohn, Michael W.; Xu, Shaosui; Dong, Chuanfei; Bougher, Stephen W.; Johnson, Blake C.; Ilie, Raluca; De Zeeuw, Darren L.
2017-06-01
This study investigates the role of solar EUV intensity at controlling the location of the Mars magnetotail current sheet and the structure of the lobes. Four simulation results are examined from a multifluid magnetohydrodynamic model. The solar wind and interplanetary magnetic field (IMF) conditions are held constant, and the Mars crustal field sources are omitted from the simulation configuration. This isolates the influence of solar EUV. It is found that solar maximum conditions, regardless of season, result in a Venus-like tail configuration with the current sheet shifted to the -Y (dawnside) direction. Solar minimum conditions result in a flipped tail configuration with the current sheet shifted to the +Y (duskside) direction. The lobes follow this pattern, with the current sheet shifting away from the larger lobe with the higher magnetic field magnitude. The physical process responsible for this solar EUV control of the magnetotail is the magnetization of the dayside ionosphere. During solar maximum, the ionosphere is relatively strong and the draped IMF field lines quickly slip past Mars. At solar minimum, the weaker ionosphere allows the draped IMF to move closer to the planet. These lower altitudes of the closest approach of the field line to Mars greatly hinder the day-to-night flow of magnetic flux. This results in a buildup of magnetic flux in the dawnside lobe as the S-shaped topology on that side of the magnetosheath extends farther downtail. The study demonstrates that the Mars dayside ionosphere exerts significant control over the nightside induced magnetosphere of that planet.
Spin caloric effects in antiferromagnets assisted by an external spin current
NASA Astrophysics Data System (ADS)
Gomonay, O.; Yamamoto, Kei; Sinova, Jairo
2018-07-01
Searching for novel spin caloric effects in antiferromagnets, we study the properties of thermally activated magnons in the presence of an external spin current and temperature gradient. We predict the spin Peltier effect—generation of a heat flux by spin accumulation—in an antiferromagnetic insulator with cubic or uniaxial magnetic symmetry. This effect is related to the spin-current induced splitting of the relaxation times of the magnons with the opposite spin direction. We show that the Peltier effect can trigger antiferromagnetic domain wall motion with a force whose value grows with the temperature of a sample. At a temperature larger than the energy of the low-frequency magnons, this force is much larger than the force caused by direct spin transfer between the spin current and the domain wall. We also demonstrate that the external spin current can induce the magnon spin Seebeck effect. The corresponding Seebeck coefficient is controlled by the current density. These spin-current assisted caloric effects open new ways for the manipulation of the magnetic states in antiferromagnets.
NASA Technical Reports Server (NTRS)
Johnson, Thomas J.; Stewart, Robert H.; Shum, C. K.; Tapley, Byron D.
1992-01-01
Satellite altimeter data collected by the Geosat Exact Repeat Mission were used to investigate turbulent stress resulting from the variability of surface geostrophic currents in the Antarctic Circumpolar Current. The altimeter measured sea level along the subsatellite track. The variability of the along-track slope of sea level is directly proportional to the variability of surface geostrophic currents in the cross-track direction. Because the grid of crossover points is dense at high latitudes, the satellite data could be used for mapping the temporal and spatial variability of the current. Two and a half years of data were used to compute the statistical structure of the variability. The statistics included the probability distribution functions for each component of the current, the time-lagged autocorrelation functions of the variability, and the Reynolds stress produced by the variability. The results demonstrate that stress is correlated with bathymetry. In some areas the distribution of negative stress indicate that eddies contribute to an acceleration of the mean flow, strengthening the hypothesis that baroclinic instability makes important contributions to strong oceanic currents.
Direct Reconstruction of Two-Dimensional Currents in Thin Films from Magnetic-Field Measurements
NASA Astrophysics Data System (ADS)
Meltzer, Alexander Y.; Levin, Eitan; Zeldov, Eli
2017-12-01
An accurate determination of microscopic transport and magnetization currents is of central importance for the study of the electric properties of low-dimensional materials and interfaces, of superconducting thin films, and of electronic devices. Current distribution is usually derived from the measurement of the perpendicular component of the magnetic field above the surface of the sample, followed by numerical inversion of the Biot-Savart law. The inversion is commonly obtained by deriving the current stream function g , which is then differentiated in order to obtain the current distribution. However, this two-step procedure requires filtering at each step and, as a result, oversmooths the solution. To avoid this oversmoothing, we develop a direct procedure for inversion of the magnetic field that avoids use of the stream function. This approach provides enhanced accuracy of current reconstruction over a wide range of noise levels. We further introduce a reflection procedure that allows for the reconstruction of currents that cross the boundaries of the measurement window. The effectiveness of our approach is demonstrated by several numerical examples.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-28
... Corporation- Manufactured (Sikorsky) Model Helicopters (type certificate currently held by Erickson Air-Crane... Corporation-manufactured Model S-64E helicopters (type certificate currently held by Erickson Air-Crane Incorporated (Erickson)). That AD currently requires inspecting and reworking the main gearbox (MGB) assembly...
46 CFR 111.52-3 - Systems below 1500 kilowatts.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Calculation of Short-Circuit Currents § 111.52-3 Systems below 1500 kilowatts. The... maximum short-circuit current of a direct current system must be assumed to be 10 times the aggregate...
46 CFR 111.52-3 - Systems below 1500 kilowatts.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Calculation of Short-Circuit Currents § 111.52-3 Systems below 1500 kilowatts. The... maximum short-circuit current of a direct current system must be assumed to be 10 times the aggregate...
78 FR 15281 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-11
... horizontal stabilizer. This AD requires repetitive high frequency eddy current (HFEC) inspections for... repetitive high frequency eddy current (HFEC) inspections for cracking of the left and right rib hinge... high frequency eddy current (HFEC) inspection for cracking of the left and right rib hinge bearing lugs...
78 FR 46536 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-01
... eddy current inspection of the fastener holes for defects and repair if necessary. We are proposing... also includes doing a high frequency eddy current inspection of the fastener holes for defects and... frequency eddy current inspection of the fastener holes for defects and all applicable repairs, in...
77 FR 26993 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-08
... high frequency eddy current (HFEC) inspections for cracking in holes common to the splice strap and... tasks required by this paragraph: Before further flight, do a high frequency eddy current (HFEC... approval must specifically refer to this AD. (h) Detailed and High Frequency Eddy Current Inspections...
78 FR 71998 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-02
... initial and repetitive [detailed or eddy current] inspections [for cracking and damage and replacement if... the detailed or eddy current inspection for cracking of the pilot-side rudder pedal tubes, specified... within 600 flight cycles thereafter. (2) If the most recent inspection was an eddy current inspection...
77 FR 61550 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-10
... inspection required by AD 2003-14-06 only terminates the external eddy current inspections required by..., which should not terminate the detailed or eddy current inspection, as specified. We find that... terminating action ``before the effective date of this AD'' terminates the eddy current inspections required...
NASA Astrophysics Data System (ADS)
Huang, Tao; Lühr, Hermann; Wang, Hui
2017-11-01
On the basis of field-aligned currents (FACs) and Hall currents derived from high-resolution magnetic field data of the Swarm constellation, the average characteristics of these two current systems in the auroral regions are comprehensively investigated by statistical methods. This is the first study considering both current types determined simultaneously by the same spacecraft in both hemispheres. The FAC distribution, derived from the novel Swarm dual-spacecraft approach, reveals the well-known features of Region 1 (R1) and Region 2 (R2) FACs. At high latitudes, Region 0 (R0) FACs appear on the dayside. Their flow direction, up or down, depends on the orientation of the interplanetary magnetic field (IMF) By component. Of particular interest is the distribution of auroral Hall currents. The prominent auroral electrojets are found to be closely controlled by the solar wind input, but we find no dependence of their intensity on the IMF By orientation. The eastward electrojet is about 1.5 times stronger in local summer than in winter. Conversely, the westward electrojet shows less dependence on season. As to higher latitudes, part of the electrojet current is closed over the polar cap. Here the seasonal variation of conductivity mainly controls the current density. During local summer of the Northern Hemisphere, there is a clear channeling of return currents over the polar cap. For positive (negative) IMF By a dominant eastward (westward) Hall current circuit is formed from the afternoon (morning) electrojet towards the dawn side (dusk side) polar cap return current. The direction of polar cap Hall currents in the noon sector depends directly on the orientation of the IMF By. This is true for both signs of the IMF Bz component. Comparable Hall current distributions can be observed in the Southern Hemisphere but for opposite IMF By signs. Around the midnight sector the westward substorm electrojet is dominating. As expected, it is highly dependent on magnetic activity, but it shows only little response to season and IMF By polarity. An important finding is that all the IMF By dependences of FACs and Hall currents practically disappear in the dark winter hemisphere.
Explicit wave action conservation for water waves on vertically sheared flows
NASA Astrophysics Data System (ADS)
Quinn, Brenda; Toledo, Yaron; Shrira, Victor
2016-04-01
Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical structure of the currents in wave modelling which is currently universal, might lead to significant errors in wave amplitude and the predicted wave ray paths. An extension of the work toward the more complex case of turbulent currents will also be discussed.
78 FR 20229 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-04
... Airworthiness Directives; The Boeing Company Airplanes AGENCY: Federal Aviation Administration (FAA), DOT... Boeing Company Model 737-600, -700, -700C, -800, -900, and -900ER series airplanes. That AD currently... 20231
Benefits and Risks of Cochlear Implants
... The cochlear implant stimulates the nerves directly with electrical currents. Although this stimulation appears to be safe, the long term effect of these electrical currents on the nerves is unknown. May not ...
ERIC Educational Resources Information Center
Calhoun, Michael J.
1994-01-01
Describes an activity that allows students to use a rectifier circuit to convert alternating current into direct current. Also informs teachers of how to obtain most of the equipment needed for free. (ZWH)
Pell, Gaby S; Abbott, David F; Fleming, Steven W; Prichard, James W; Jackson, Graeme D
2006-05-01
The characteristics of an MRI technique that could be used for direct detection of neuronal activity are investigated. It was shown that magnitude imaging using echo planar imaging can detect transient local currents. The sensitivity of this method was thoroughly investigated. A partial k-space EPI acquisition with homodyne reconstruction was found to increase the signal change. A unique sensitivity to the position of the current pulse within the imaging sequence was demonstrated with the greatest signal change occurring when the current pulse coincides with the acquisition of the center lines of k-space. The signal change was shown to be highly sensitive to the spatial position of the current conductor relative to the voxel. Furthermore, with the use of optimization of spatial and temporal placement of the current pulse, the level of signal change obtained at this lower limit of current detectability was considerably magnified. It was possible to detect a current of 1.7 microA applied for 20 ms with an imaging time of 1.8 min. The level of sensitivity observed in our study brings us closer to that theoretically required for the detection of action currents in nerves. Copyright (c) 2006 Wiley-Liss, Inc.
Wang, Liwei; Cheng, Lianjun; Li, Junru; Zhu, Zhifu; Bai, Shuowei; Cui, Zhongyu
2018-03-22
Influence of alternating current (AC) on pitting corrosion and stress corrosion cracking (SCC) behavior of X70 pipeline steel in the near-neutral pH environment under cathodic protection (CP) was investigated. Both corrosion and SCC are inhibited by -0.775 V SCE CP without AC interference. With the superimposition of AC current (1-10 mA/cm²), the direct current (DC) potential shifts negatively under the CP of -0.775 V SCE and the cathodic DC current decreases and shifts to the anodic direction. Under the CP potential of -0.95 V SCE and -1.2 V SCE , the applied AC current promotes the cathodic reaction and leads to the positive shift of DC potential and increase of cathodic current. Local anodic dissolution occurs attributing to the generated anodic current transients in the positive half-cycle of the AC current, resulting in the initiation of corrosion pits (0.6-2 μm in diameter). AC enhances the SCC susceptibility of X70 steel under -0.775 V SCE CP, attributing to the promotion of anodic dissolution and hydrogen evolution. Even an AC current as low as 1 mA/cm² can enhance the SCC susceptibility.
Wang, Rong; Zhang, Donglian; Xiong, You; Zhou, Xuehong; Liu, Cao; Chen, Weifeng; Wu, Weijing; Zhou, Lei; Xu, Miao; Wang, Lei; Liu, Linlin; Peng, Junbiao; Ma, Yuguang; Cao, Yong
2018-05-30
The thin-film transistor (TFT) driving circuit is a separate electronic component embedded within the panel itself to switch the current for each pixel in active-matrix organic light-emitting diode displays. We reported a TFT-directed dye electroplating method to fabricate pixels; this would be a new method to deposit films on prepatterned electrode for organic full-color display, where TFT driving circuit provide a switching current signal to drive and direct dye depositing on selected RGB pixels. A prototype patterned color pixel matrix was achieved, as high-quality light-emitting films with uniform morphology, pure RGB chromaticity, and stable output.
Rasmussen, K; Chemin, P; Haastrup, P
1999-06-30
In early 1998, the European Commission and Parliament adopted a new Directive concerning the placing on the market of biocidal products. The Directive is to be implemented in the member states by May 2000. The member states are currently concerned with the national implementation into legislation whereas the Commission is setting up the proposal for a review programme for the existing active substances and the products in which they are used. This paper describes the effort currently undertaken (up to the end of December 1998) to define the procedures to be used and characterise the substances covered. Copyright 1999 Elsevier Science B.V.
Wave-current interactions at the FloWave Ocean Energy Research Facility
NASA Astrophysics Data System (ADS)
Noble, Donald; Davey, Thomas; Steynor, Jeffrey; Bruce, Tom; Smith, Helen; Kaklis, Panagiotis
2015-04-01
Physical scale model testing is an important part of the marine renewable energy development process, allowing the study of forces and device behaviour in a controlled environment prior to deployment at sea. FloWave is a new state-of-the-art ocean energy research facility, designed to provide large scale physical modelling services to the tidal and wave sector. It has the unique ability to provide complex multi-directional waves that can be combined with currents from any direction in the 25m diameter circular tank. The facility is optimised for waves around 2s period and 0.4m height, and is capable of generating currents upwards of 1.6m/s. This offers the ability to model metocean conditions suitable for most renewable energy devices at a typical scale of between 1:10 and 1:40. The test section is 2m deep, which can be classed as intermediate-depth for most waves of interest, thus the full dispersion equation must be solved as the asymptotic simplifications do not apply. The interaction between waves and currents has been studied in the tank. This has involved producing in the tank sets of regular waves, focussed wave groups, and random sea spectra including multi-directional sea states. These waves have been both inline-with and opposing the current, as well as investigating waves at arbitrary angles to the current. Changes in wave height and wavelength have been measured, and compared with theoretical results. Using theoretical wave-current interaction models, methods have been explored to "correct" the wave height in the central test area of the tank when combined with a steady current. This allows the wave height with current to be set equal to that without a current. Thus permitting, for example, direct comparison of device motion response between tests with and without current. Alternatively, this would also permit a specific wave height and current combination to be produced in the tank, reproducing recorded conditions at a particular site of interest. The initial tests used a correction factor based on a linear combination of wave and current (Smith 1997), which was found to be reasonably accurate, although the requirement for higher order theory is also explored. FloWave is a new facility that offers the ability to study wave-current interactions at arbitrary angles with relatively fast currents. This is important as waves and tidal currents at sites of interest for renewable energy generation may not be aligned (Lewis et al. 2014), and so better understanding of these conditions is required. References Lewis, M.J. et al., 2014. Realistic wave conditions and their influence on quantifying the tidal stream energy resource. Applied Energy, 136, pp.495-508. Smith, J.M., 1997. Coastal Engineering Technical Note One-dimensional wave-current interaction (CETN IV-9), Vicksburg, MS.
76 FR 68636 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-07
... Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines AGENCY: Federal Aviation... airworthiness directive (AD) for Thielert Aircraft Engines GmbH (TAE) Models TAE 125-01 and TAE 125- 02-99 reciprocating engines. That AD currently requires replacement of certain part numbers (P/Ns) and serial numbers...
Trends in Direct Mail Marketing--A Survey of Private Four-Year Colleges.
ERIC Educational Resources Information Center
Jones, Robert H.
1991-01-01
Surveyed 727 principal admission officers at private, 4-year undergraduate liberal arts colleges in U.S. concerning direct mail marketing. Found that 87 percent of respondents reported currently using direct mail marketing, suggesting that it represents a fundamental building block for vast majority of inquiry and applicant pools. Concludes that,…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-20
... Airworthiness Directives; AVOX Systems and B/E Aerospace Oxygen Cylinder Assemblies, as Installed on Various... directive (AD), which applies to certain AVOX Systems and B/E Aerospace oxygen cylinder assemblies, as installed on various transport airplanes. That AD currently requires removing certain oxygen cylinder...
Using Narratives to Explore Other-Directed Occupational Choice and Academic Success
ERIC Educational Resources Information Center
Rehfuss, Mark C.; Borges, Nicole J.
2006-01-01
The construct of "other-directed versus self-directed career choice" has existed for quite some time. The current focus of vocational psychologists and counselors has made them question the relevance of this construct for contemporary American society. Many counselors today challenge the assumption that a career choice based on others'…
77 FR 67764 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-14
... Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Airplanes AGENCY: Federal Aviation Administration (FAA... directive (AD) for certain Piaggio Aero Industries S.p.A. Model P-180 airplanes. That AD currently requires...., Washington, DC 20590, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. For service...
76 FR 8607 - Airworthiness Directives; The Cessna Aircraft Company Model 750 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-15
... Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for... auxiliary power unit (APU) generator and the left and right engine direct current (DC) generators, and... Building Ground Floor, Room W12-140, 1200 New Jersey Avenue, SE., Washington, DC 20590. FOR FURTHER...
An Automated Method for High-Definition Transcranial Direct Current Stimulation Modeling*
Huang, Yu; Su, Yuzhuo; Rorden, Christopher; Dmochowski, Jacek; Datta, Abhishek; Parra, Lucas C.
2014-01-01
Targeted transcranial stimulation with electric currents requires accurate models of the current flow from scalp electrodes to the human brain. Idiosyncratic anatomy of individual brains and heads leads to significant variability in such current flows across subjects, thus, necessitating accurate individualized head models. Here we report on an automated processing chain that computes current distributions in the head starting from a structural magnetic resonance image (MRI). The main purpose of automating this process is to reduce the substantial effort currently required for manual segmentation, electrode placement, and solving of finite element models. In doing so, several weeks of manual labor were reduced to no more than 4 hours of computation time and minimal user interaction, while current-flow results for the automated method deviated by less than 27.9% from the manual method. Key facilitating factors are the addition of three tissue types (skull, scalp and air) to a state-of-the-art automated segmentation process, morphological processing to correct small but important segmentation errors, and automated placement of small electrodes based on easily reproducible standard electrode configurations. We anticipate that such an automated processing will become an indispensable tool to individualize transcranial direct current stimulation (tDCS) therapy. PMID:23367144
46 CFR 183.220 - General safety provisions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... current utilized. (c) Receptacle outlets of the type providing a grounded pole or a specific direct current polarity must be of a configuration that will not permit improper connection. (d) All electrical...
46 CFR 183.220 - General safety provisions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... current utilized. (c) Receptacle outlets of the type providing a grounded pole or a specific direct current polarity must be of a configuration that will not permit improper connection. (d) All electrical...
Truong, Dennis Q.; Magerowski, Greta; Blackburn, George L.; Bikson, Marom; Alonso-Alonso, Miguel
2013-01-01
Recent studies show that acute neuromodulation of the prefrontal cortex with transcranial direct current stimulation (tDCS) can decrease food craving, attentional bias to food, and actual food intake. These data suggest potential clinical applications for tDCS in the field of obesity. However, optimal stimulation parameters in obese individuals are uncertain. One fundamental concern is whether a thick, low-conductivity layer of subcutaneous fat around the head can affect current density distribution and require dose adjustments during tDCS administration. The aim of this study was to investigate the role of head fat on the distribution of current during tDCS and evaluate whether dosing standards for tDCS developed for adult individuals in general are adequate for the obese population. We used MRI-derived high-resolution computational models that delineated fat layers in five human heads from subjects with body mass index (BMI) ranging from “normal-lean” to “super-obese” (20.9 to 53.5 kg/m2). Data derived from these simulations suggest that head fat influences tDCS current density across the brain, but its relative contribution is small when other components of head anatomy are added. Current density variability between subjects does not appear to have a direct and/or simple link to BMI. These results indicate that guidelines for the use of tDCS can be extrapolated to obese subjects without sacrificing efficacy and/or treatment safety; the recommended standard parameters can lead to the delivery of adequate current flow to induce neuromodulation of brain activity in the obese population. PMID:24159560
Chhatbar, Pratik Y; Kautz, Steven A; Takacs, Istvan; Rowland, Nathan C; Revuelta, Gonzalo J; George, Mark S; Bikson, Marom; Feng, Wuwei
2018-03-13
Transcranial direct current stimulation (tDCS) is a promising brain modulation technique for several disease conditions. With this technique, some portion of the current penetrates through the scalp to the cortex and modulates cortical excitability, but a recent human cadaver study questions the amount. This insufficient intracerebral penetration of currents may partially explain the inconsistent and mixed results in tDCS studies to date. Experimental validation of a transcranial alternating current stimulation-generated electric field (EF) in vivo has been performed on the cortical (using electrocorticography, ECoG, electrodes), subcortical (using stereo electroencephalography, SEEG, electrodes) and deeper thalamic/subthalamic levels (using DBS electrodes). However, tDCS-generated EF measurements have never been attempted. We aimed to demonstrate that tDCS generates biologically relevant EF as deep as the subthalamic level in vivo. Patients with movement disorders who have implanted deep brain stimulation (DBS) electrodes serve as a natural experimental model for thalamic/subthalamic recordings of tDCS-generated EF. We measured voltage changes from DBS electrodes and body resistance from tDCS electrodes in three subjects while applying direct current to the scalp at 2 mA and 4 mA over two tDCS montages. Voltage changes at the level of deep nuclei changed proportionally with the level of applied current and varied with different tDCS montages. Our findings suggest that scalp-applied tDCS generates biologically relevant EF. Incorporation of these experimental results may improve finite element analysis (FEA)-based models. Copyright © 2018 Elsevier Inc. All rights reserved.
Electropneumatic rheostat regulates high current
NASA Technical Reports Server (NTRS)
Haacker, J. F.; Jedlicka, J. R.; Wagoner, C. B.
1965-01-01
Electropneumatic rheostat maintains a constant direct current in each of several high-power parallel loads, of variable resistance, across a single source. It provides current regulation at any preset value by dissipating the proper amount of energy thermally, and uses a column of mercury to vary the effective length of a resistance element.
46 CFR 111.52-3 - Systems below 1500 kilowatts.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-GENERAL REQUIREMENTS Calculation of Short-Circuit Currents § 111.52-3 Systems below 1500 kilowatts. The following short-circuit assumptions must be made for a system with an aggregate generating capacity below... maximum short-circuit current of a direct current system must be assumed to be 10 times the aggregate...
77 FR 31430 - Petition for Waiver of Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
... signaled with the current of traffic (in only one direction on either track). Currently, signals at both bridges that govern movements against the current of traffic are set to display ``stop'' aspects only. The signal control wires for those signals are disconnected. Only the light wires are active, keeping the...
78 FR 4042 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-18
... provides an option for a high frequency eddy current inspection for cracking of the critical fastener holes... for a high frequency eddy current inspection for cracking of the critical fastener holes, and repair..., August 9, 2007)), do a high frequency eddy current (HFEC) inspection for cracking of the four critical...
77 FR 5724 - Airworthiness Directives; Fokker Services B.V. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
... proposed AD would require repetitive low frequency eddy current inspections of the forward fuselage butt... repetitive [low frequency eddy current] inspections of the forward fuselage butt joints for cracks and, when... effective date of this AD, whichever occurs later, do a low frequency eddy current inspection of the forward...
76 FR 38072 - Airworthiness Directives; The Boeing Company Model 777 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... above. This proposed AD would require repetitive detailed inspection and high frequency eddy current... high frequency eddy current (HFEC) inspection for cracks in the WCS web pockets of spanwise beams... = 160 frequency eddy current inspection per hour = $4,250 inspection cycle. airplanes x $4,250 of...
77 FR 37788 - Airworthiness Directives; Fokker Services B.V. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-25
... Model F.28 Mark 0100 airplane. This AD requires repetitive low frequency eddy current inspections of the... described above, this [EASA] AD requires repetitive [low frequency eddy current] inspections of the forward... eddy current inspection of the forward fuselage butt-joints for cracks, in accordance with the...
78 FR 40050 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
... inspections or high frequency eddy current inspections for cracks of the blended area of the fuselage skin... repetitive external detailed inspections or high frequency eddy current inspections for cracks of the blended..., 2009) is August 3, 2009. (h) Repetitive High Frequency Eddy Current (HFEC) Inspections For airplanes on...
Direct current electrical potential measurement of the growth of small cracks
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Slavik, Donald C.; Piascik, Robert S.; Van Stone, Robert H.
1992-01-01
The analytical and experimental aspects of the direct-current electrical potential difference (dcEPD) method for continuous monitoring of the growth kinetics of short (50 to 500 microns) fatigue cracks are reviewed, and successful applications of the deEPD method to study fatigue crack propagation in a variety of metallic alloys exposed to various environments are described. Particular attention is given to the principle of the dcEPD method, the analytical electrical potential calibration relationships, and the experimental procedures and equipment.
Motor Demonstration Using a Hand-Cranked Genecon
NASA Astrophysics Data System (ADS)
Mungan, Carl E.
2014-10-01
A Genecon is an inexpensive hand-cranked dc electric generator. You can use it to charge a one-farad supercapacitor.1 If you stop cranking the handle, the capacitor will discharge, sending a current into the Genecon and thereby causing the handle to start turning as an electric motor. How does the current direction compare before and after you stop cranking the handle? How does the direction of the turning of the handle compare before and after you stop cranking the Genecon?
Thonemann, P.C.; Cowhig, W.T.; Davenport, P.A.
1963-04-01
This patent relates to the transfer of energy in a traveling electromagnetic wave to direct-current electrical energy in a gaseous medium. The traveling wave is generated by means of a radio-frequency oscillator connected across a capacitance-loaded helix wound around a sealed tube enclosing the gaseous medium. The traveling wave causes the electrons within the medium to drift towards one end of the tube. The direct current appearing across electrodes placed at each end of the tube is then used by some electrical means. (AEC)
Soft-commutated direct current motor
Hsu, John S.
1999-01-01
A method and circuit is disclosed for soft-commutation of a direct current (DC) motor. An attenuation circuit is connected through auxiliary brushes A, A', B and B' to the commutator (16) to drain circuit from successive armature coils (15) before the main brushes (27, 28) disconnects from each of the coils (15). This prevents the spark generation that normally occurs in conventional DC motors. The attenuation circuit may also be connected before energization of the coil (15) for a soft turning on operation.
2015-12-01
little or no sediment cover (e.g., such as on coral reefs ) versus a sandy or muddy bottom. However, there is a dearth of direct observations made under...where there is little or no sediment cover (e.g., such as on coral reefs ) versus a sandy or muddy bottom. However, there is a dearth of direct...INTERIM REPORT Large-Scale Laboratory Experiments of Incipient Motion, Transport, and Fate of Underwater Munitions under Waves , Currents, and
NASA Astrophysics Data System (ADS)
Kaya, Ismet I.; Eberl, Karl
2007-05-01
A three-terminal device formed by two electrostatic barriers crossing an asymmetrically patterned two-dimensional electron gas displays an unusual potential depression at the middle contact, yielding absolute negative resistance. The device displays momentum and current transfer ratios that far exceed unity. The observed reversal of the current or potential in the middle terminal can be interpreted as the analog of Bernoulli’s effect in a Fermi liquid. The results are explained by directional scattering of electrons in two dimensions.
Soft-commutated direct current motor
Hsu, J.S.
1999-07-27
A method and circuit is disclosed for soft-commutation of a direct current (DC) motor. An attenuation circuit is connected through auxiliary brushes A, A[prime], B and B[prime] to the commutator (16) to drain circuit from successive armature coils (15) before the main brushes (27, 28) disconnects from each of the coils (15). This prevents the spark generation that normally occurs in conventional DC motors. The attenuation circuit may also be connected before energization of the coil (15) for a soft turning on operation. 13 figs.
Three-axis orthogonal transceiver coil for eddy current sounding
NASA Astrophysics Data System (ADS)
Sukhanov, D.; Zavyalova, K.; Goncharik, M.
2017-08-01
We propose the new structure of three-axis transceiver magnetic-induction coil for eddy current probing. Due to the orientation of the coils, the direct signal from the transmitting coil to the receiving coil is minimized, which provided a high dynamic range. Sensitivity in all directions is provided by combining coils of different orientations. Numerical simulation and experimental studies of such a system have been carried out and confirmed the applicability of the proposed method and the mathematical model.
Space Station Freedom secondary power wiring requirements
NASA Technical Reports Server (NTRS)
Sawyer, C. R.
1994-01-01
Secondary power is produced by DDCU's (direct current to direct current converter units) and routed to and through secondary power distribution assemblies (SPDA's) to loads or tertiary distribution assemblies. This presentation outlines requirements of Space Station Freedom (SSF) EEE (electrical, electronic, and electromechanical) parts wire and the approved electrical wire and cable. The SSF PDRD (Program Definition and Requirements Document) language problems and resolution are reviewed. The cable routing to and from the SPDA's is presented as diagrams and the wire recommendations and characteristics are given.
Hybrid indirect/direct contactor for thermal management of counter-current processes
Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel
2018-03-20
The invention relates to contactors suitable for use, for example, in manufacturing and chemical refinement processes. In an aspect is a hybrid indirect/direct contactor for thermal management of counter-current processes, the contactor comprising a vertical reactor column, an array of interconnected heat transfer tubes within the reactor column, and a plurality of stream path diverters, wherein the tubes and diverters are configured to block all straight-line paths from the top to bottom ends of the reactor column.
Current status and future direction of NASA's Space Life Sciences Program
NASA Technical Reports Server (NTRS)
White, Ronald J.; Lujan, Barbara F.
1989-01-01
The elements of the NASA Life Sciences Program that are related to manned space flight and biological scientific studies in space are reviewed. Projects included in the current program are outlined and the future direction of the program is discussed. Consideration is given to issues such as long-duration spaceflight, medical support in space, readaptation to the gravity field of earth, considerations for the Space Station, radiation hazards, environmental standards for space habitation, and human operator interaction with computers, robots, and telepresence systems.
Two-dimensional scanner apparatus. [flaw detector in small flat plates
NASA Technical Reports Server (NTRS)
Kurtz, G. W.; Bankston, B. F. (Inventor)
1984-01-01
An X-Y scanner utilizes an eddy current or ultrasonic current test probe to detect surface defects in small flat plates and the like. The apparatus includes a scanner which travels on a pair of slide tubes in the X-direction. The scanner, carried on a carriage which slides in the Y-direction, is driven by a helix shaft with a closed-loop helix groove in which a follower pin carried by scanner rides. The carriage is moved incrementally in the Y-direction upon the completion of travel of the scanner back and forth in the X-direction by means of an indexing actuator and an indexing gear. The actuator is in the form of a ratchet which engages ratchet gear upon return of the scanner to the indexing position. The indexing gear is rotated a predetermined increment along a crack gear to move carriage incrementally in the Y-direction. Thus, simplified highly responsive mechanical motion may be had in a small lightweight portable unit for accurate scanning of small area.
Han, Jin Kyu; Jeon, Do Hyun; Cho, Sam Yeon; Kang, Sin Wook; Yang, Sun A.; Bu, Sang Don; Myung, Sung; Lim, Jongsun; Choi, Moonkang; Lee, Minbaek; Lee, Min Ku
2016-01-01
We report the first attempt to prepare a flexoelectric nanogenerator consisting of direct-grown piezoelectrics on multi-walled carbon nanotubes (mwCNT). Direct-grown piezoelectrics on mwCNTs are formed by a stirring and heating method using a Pb(Zr0.52Ti0.48)O3 (PZT)-mwCNT precursor solution. We studied the unit cell mismatch and strain distribution of epitaxial PZT nanoparticles, and found that lattice strain is relaxed along the growth direction. A PZT-mwCNT nanogenerator was found to produce a peak output voltage of 8.6 V and an output current of 47 nA when a force of 20 N is applied. Direct-grown piezoelectric nanogenerators generate a higher voltage and current than simple mixtures of PZT and CNTs resulting from the stronger connection between PZT crystals and mwCNTs and an enhanced flexoelectric effect caused by the strain gradient. These experiments represent a significant step toward the application of nanogenerators using piezoelectric nanocomposite materials. PMID:27406631
Direct current hybrid breakers: A design and its realization
NASA Astrophysics Data System (ADS)
Atmadji, Ali Mahfudz Surya
2000-12-01
The use of semiconductors for electric power circuit breakers instead of conventional breakers remains a utopia when designing fault current interrupters for high power networks. The major problems concerning power semiconductor circuit breakers are the excessive heat losses and their sensitivity to transients. However, conventional breakers are capable of dealing with such matters. A combination of the two methods, or so-called `hybrid breakers', would appear to be a solution; however, hybrid breakers use separate parallel branches for conducting the main current and interrupting the short-circuit current. Such breakers are intended for protecting direct current (DC) traction systems. In this thesis hybrid switching techniques for current limitation and purely solidstate current interruption are investigated for DC breakers. This work analyzes the transient behavior of hybrid breakers and compares their operations with conventional breakers and similar solid-state devices in DC systems. Therefore a hybrid breaker was constructed and tested in a specially designed high power test circuit. A vacuum breaker was chosen as the main breaker in the main conducting path; then a commutation path was connected across the vacuum breaker where it provided current limitation and interruption. The commutation path operated only during any current interruption and the process required additional circuits. These included a certain energy storage, overvoltage suppressor and commutation switch. So that when discharging this energy, a controlled counter-current injection could be produced. That counter-current opposed the main current in the breaker by superposition in order to create a forced current-zero. One-stage and two-stage commutation circuits have been treated extensively. This study project contains both theoretical and experimental investigations. A direct current shortcircuit source was constructed capable of delivering power equivalent to a fault. It supplied a direct voltage of 1kVDC which was rectified having been obtained from a 3-phase lOkV/380V supply. The source was successfully tested to deliver a fault current of 7kA with a time constant of 5ms. The hybrid breaker that was developed could provide protection for 750VDC traction systems. The breaker was equipped with a fault- recognizing circuit based on a current level triggering. An electronic circuit was built for this need and was included in the system. It monitored the system continuously and took action by generating trip signals when a fault was recognized. Interruption was followed by a suitable timing of the fast contact separation in the main breaker and the current-zero creation. An electrodynamically driven mechanism was successfully tested having a dead-time of 300μs to separate the main breaker contacts. Furthermore, a maximum peak current injection of RA at a frequency of 500Hz could be obtained in order to produce an artificial current-zero in the vacuum breaker. A successful current interruption with a prospective value of RA was achieved by the hybrid switching technique. In addition, measures were taken to prevent overvoltages. Experimentally, the concept of a hybrid breaker was compared with the functioning of all mechanical (air breaker) and all electronical (IGCT breaker) versions. Although a single stage interrupting method was verified experimentally, two two-stage interrupting methods were analyzed theoretically.
Development of the Direct Fabrication Process for Plutonium Immobilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, J.W.
2001-07-10
The current baseline process for fabricating pucks for the Plutonium Immobilization Program includes granulation of the milled feed prior to compaction. A direct fabrication process was demonstrated that eliminates the need for granulation.
Smith, Ray T.; Jjunju, Fred P. M.; Young, Iain S.; Taylor, Stephen
2016-01-01
A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting’s theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond. PMID:27493580
Blocking and guiding adult sea lamprey with pulsed direct current from vertical electrodes
Johnson, Nicholas S.; Thompson, Henry T.; Holbrook, Christopher M.; Tix, John A.
2014-01-01
Controlling the invasion front of aquatic nuisance species is of high importance to resource managers. We tested the hypothesis that adult sea lamprey (Petromyzon marinus), a destructive invasive species in the Laurentian Great Lakes, would exhibit behavioral avoidance to dual-frequency pulsed direct current generated by vertical electrodes and that the electric field would not injure or kill sea lamprey or non-target fish. Laboratory and in-stream experiments demonstrated that the electric field blocked sea lamprey migration and directed sea lamprey into traps. Rainbow trout (Oncorhynchus mykiss) and white sucker (Catostomus commersoni), species that migrate sympatrically with sea lamprey, avoided the electric field and had minimal injuries when subjected to it. Vertical electrodes are advantageous for fish guidance because (1) the electric field produced varies minimally with depth, (2) the electric field is not grounded, reducing power consumption to where portable and remote deployments powered by solar, wind, hydro, or a small generator are feasible, and (3) vertical electrodes can be quickly deployed without significant stream modification allowing rapid responses to new invasions. Similar dual-frequency pulsed direct current fields produced from vertical electrodes may be advantageous for blocking or trapping other invasive fish or for guiding valued fish around dams.
Smith, Ray T; Jjunju, Fred P M; Young, Iain S; Taylor, Stephen; Maher, Simon
2016-07-01
A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting's theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond.
NASA Astrophysics Data System (ADS)
Berthon, Beatrice; Dansette, Pierre-Marc; Tanter, Mickaël; Pernot, Mathieu; Provost, Jean
2017-07-01
Direct imaging of the electrical activation of the heart is crucial to better understand and diagnose diseases linked to arrhythmias. This work presents an ultrafast acoustoelectric imaging (UAI) system for direct and non-invasive ultrafast mapping of propagating current densities using the acoustoelectric effect. Acoustoelectric imaging is based on the acoustoelectric effect, the modulation of the medium’s electrical impedance by a propagating ultrasonic wave. UAI triggers this effect with plane wave emissions to image current densities. An ultrasound research platform was fitted with electrodes connected to high common-mode rejection ratio amplifiers and sampled by up to 128 independent channels. The sequences developed allow for both real-time display of acoustoelectric maps and long ultrafast acquisition with fast off-line processing. The system was evaluated by injecting controlled currents into a saline pool via copper wire electrodes. Sensitivity to low current and low acoustic pressure were measured independently. Contrast and spatial resolution were measured for varying numbers of plane waves and compared to line per line acoustoelectric imaging with focused beams at equivalent peak pressure. Temporal resolution was assessed by measuring time-varying current densities associated with sinusoidal currents. Complex intensity distributions were also imaged in 3D. Electrical current densities were detected for injected currents as low as 0.56 mA. UAI outperformed conventional focused acoustoelectric imaging in terms of contrast and spatial resolution when using 3 and 13 plane waves or more, respectively. Neighboring sinusoidal currents with opposed phases were accurately imaged and separated. Time-varying currents were mapped and their frequency accurately measured for imaging frame rates up to 500 Hz. Finally, a 3D image of a complex intensity distribution was obtained. The results demonstrated the high sensitivity of the UAI system proposed. The plane wave based approach provides a highly flexible trade-off between frame rate, resolution and contrast. In conclusion, the UAI system shows promise for non-invasive, direct and accurate real-time imaging of electrical activation in vivo.
Bodranghien, Florian; Manto, Mario; Lebon, Florent
2016-06-01
Transcranial direct current stimulation is a safe technique which is now part of the therapeutic armamentarium for the neuromodulation of motor functions and cognitive operations. It is currently considered that tDCS is an intervention that might promote functional recovery after a lesion in the central nervous system, thus reducing long-term disability and associated socio-economic burden. A recent study shows that kinesthetic illusion and motor imagery prolong the effects of tDCS on corticospinal excitability, overcoming one of the limitations of this intervention. Because changes in excitability anticipate changes in structural plasticity in the CNS, this interesting multi-modal approach might very soon find applications in neurorehabilitation.
Service and Methods Demonstrations Program Summary Report
DOT National Transportation Integrated Search
1981-12-01
This report summarizes the activities and accomplishments of the UMTA Service and Methods Demonstrations Program for FY 1979, 1980, and 1981. Overall program objectives, current activities, and future directions are briefly described. Current demonst...
46 CFR 122.304 - Navigation underway.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... Special attention should be paid to: (1) The current(s) velocity and direction of the transmitting area...) Potential damage caused by own wake; (6) The danger of each closing visual or radar contact; (7) Vessels's...
78 FR 22215 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-15
... necessary; a one-time eddy current inspection of certain fastener holes for cracking, and repair if... realignment if necessary; a one-time eddy current inspection of certain fastener holes for cracking, and...
Effect of reabsorbed recombination radiation on the saturation current of direct gap p-n junctions
NASA Technical Reports Server (NTRS)
Von Roos, O.; Mavromatis, H.
1984-01-01
The application of the radiative transfer theory for semiconductors to p-n homojunctions subject to low level injection conditions is discussed. By virtue of the interaction of the radiation field with free carriers across the depletion layer, the saturation current density in Shockley's expression for the diode current is reduced at high doping levels. The reduction, due to self-induced photon generation, is noticeable for n-type material owing to the small electron effective mass in direct band-gap III-V compounds. The effect is insignificant in p-type material. At an equilibrium electron concentration of 2 x 10 to the 18th/cu cm in GaAs, a reduction of the saturation current density by 15 percent is predicted. It is concluded that realistic GaAs p-n junctions possess a finite thickness.
Starting characteristics of direct current motors powered by solar cells
NASA Technical Reports Server (NTRS)
Singer, S.; Appelbaum, J.
1989-01-01
Direct current motors are used in photovoltaic systems. Important characteristics of electric motors are the starting to rated current and torque ratios. These ratios are dictated by the size of the solar cell array and are different for the various dc motor types. Discussed here is the calculation of the starting to rated current ratio and starting to rated torque ratio of the permanent magnet, and series and shunt excited motors when powered by solar cells for two cases: with and without a maximum-power-point-tracker (MPPT) included in the system. Comparing these two cases, one gets a torque magnification of about 3 for the permanent magnet motor and about 7 for other motor types. The calculation of the torques may assist the PV system designer to determine whether or not to include an MPPT in the system.
Kakuta, Naoto; Okuyama, Naoki; Yamada, Yukio
2010-02-01
Micropipette electrodes are fabricated by coating glass micropipettes first with metal and then with hydrogenated amorphous carbon (a-C:H) as an electrical insulator. Furthermore, at the tip of the micropipette electrode, the deposited a-C:H film needs to be removed to expose the metal-coated surface and hollow for the purposes of electrical measurement and injection. This paper describes a convenient and reliable method for removing the a-C:H film using direct current corona discharge in atmospheric air. The initial film removal occurred at an applied voltage of 1.5-2.0 kV, accompanied by an abrupt increase in the discharge current. The discharge current then became stable at a microampere level in the glow corona mode, and the removed area gradually extended.
She, Xu; Chokhawala, Rahul Shantilal; Bray, James William; Sommerer, Timothy John; Zhou, Rui; Zhang, Di
2017-08-29
A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off" the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.
Current status of direct dark matter detection experiments
NASA Astrophysics Data System (ADS)
Liu, Jianglai; Chen, Xun; Ji, Xiangdong
2017-03-01
Much like ordinary matter, dark matter might consist of elementary particles, and weakly interacting massive particles are one of the prime suspects. During the past decade, the sensitivity of experiments trying to directly detect them has improved by three to four orders of magnitude, but solid evidence for their existence is yet to come. We overview the recent progress in direct dark matter detection experiments and discuss future directions.
ERIC Educational Resources Information Center
Bradley, Peter; Oterholt, Christina; Nordheim, Lena; Bjorndal, Arild
2005-01-01
This qualitative study aims to interpret the results of a randomized controlled trial comparing two educational programs (directed learning and self-directed learning) in evidence-based medicine (EBM) for medical students at the University of Oslo from 2002 to 2003. There is currently very little comparative educational research in this field. In…
Detection of rip current using camera monitoring techniques
NASA Astrophysics Data System (ADS)
Kim, T.
2016-02-01
Rip currents are approximately shore normal seaward flows which are strong, localized and rather narrow. They are known that stacked water by longshore currents suddenly flow back out to sea as rip currents. They are transient phenomena and their generation time and location are unpredictable. They are also doing significant roles for offshore sediment transport and beach erosion. Rip currents can be very hazardous to swimmers or floaters because of their strong seaward flows and sudden depth changes by narrow and strong flows. Because of its importance in terms of safety, shoreline evolution and pollutant transport, a number of studies have been attempted to find out their mechanisms. However, understanding of rip currents is still not enough to make warning to people in the water by predicting their location and time. This paper investigates the development of rip currents using camera images. Since rip currents are developed by longshore currents, the observed longshore current variations in space and time can be used to detect rip current generation. Most of the time convergence of two longshore currents in the opposite direction is the outbreak of rip current. In order to observe longshore currents, an optical current meter(OCM) technique proposed by Chickadel et al.(2003) is used. The relationship between rip current generation time and longshore current velocity variation observed by OCM is analyzed from the images taken on the shore. The direct measurement of rip current velocity is also tested using image analysis techniques. Quantitative estimation of rip current strength is also conducted by using average and variance image of rip current area. These efforts will contribute to reduce the hazards of swimmers by prediction and warning of rip current generation.
Power Generation from a Radiative Thermal Source Using a Large-Area Infrared Rectenna
NASA Astrophysics Data System (ADS)
Shank, Joshua; Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Howell, Stephen; Peters, David W.; Davids, Paul S.
2018-05-01
Electrical power generation from a moderate-temperature thermal source by means of direct conversion of infrared radiation is important and highly desirable for energy harvesting from waste heat and micropower applications. Here, we demonstrate direct rectified power generation from an unbiased large-area nanoantenna-coupled tunnel diode rectifier called a rectenna. Using a vacuum radiometric measurement technique with irradiation from a temperature-stabilized thermal source, a generated power density of 8 nW /cm2 is observed at a source temperature of 450 °C for the unbiased rectenna across an optimized load resistance. The optimized load resistance for the peak power generation for each temperature coincides with the tunnel diode resistance at zero bias and corresponds to the impedance matching condition for a rectifying antenna. Current-voltage measurements of a thermally illuminated large-area rectenna show current zero crossing shifts into the second quadrant indicating rectification. Photon-assisted tunneling in the unbiased rectenna is modeled as the mechanism for the large short-circuit photocurrents observed where the photon energy serves as an effective bias across the tunnel junction. The measured current and voltage across the load resistor as a function of the thermal source temperature represents direct current electrical power generation.
Babona-Pilipos, Robart; Droujinine, Ilia A; Popovic, Milos R; Morshead, Cindi M
2011-01-01
The existence of neural stem and progenitor cells (together termed neural precursor cells) in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory agents following injury augments this activation and has been shown to result in behavioural functional recovery following stroke. With the goal of enhancing neural precursor migration to facilitate the repair process we report that externally applied direct current electric fields induce rapid and directed cathodal migration of pure populations of undifferentiated adult subependyma-derived neural precursors. Using time-lapse imaging microscopy in vitro we performed an extensive single-cell kinematic analysis demonstrating that this galvanotactic phenomenon is a feature of undifferentiated precursors, and not differentiated phenotypes. Moreover, we have shown that the migratory response of the neural precursors is a direct effect of the electric field and not due to chemotactic gradients. We also identified that epidermal growth factor receptor (EGFR) signaling plays a role in the galvanotactic response as blocking EGFR significantly attenuates the migratory behaviour. These findings suggest direct current electric fields may be implemented in endogenous repair paradigms to promote migration and tissue repair following neurotrauma.
Triboelectric generators and sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhong Lin; Wang, Sihong; Zhu, Guang
2017-10-17
A triboelectric power system includes a triboelectric generator, a rechargeable energy storage unit and a power management circuit. The rechargeable energy storage unit is associated to the triboelectric generator. The power management circuit is configured to receive an input current from the triboelectric generator and to deliver an output current corresponding to the input current to the rechargeable battery so that the output current has a current direction and a voltage that will recharge the rechargeable battery.
Pulsed direct and constant direct currents in the pilocarpine iontophoresis sweat chloride test.
Gomez, Carla Cristina Souza; Servidoni, Maria de Fatima; Marson, Fernando Augusto de Lima; Canavezi, Paulo Jose Coelho; Vinagre, Adriana Mendes; Costa, Eduardo Tavares; Ribeiro, Antonio Fernando; Ribeiro, Maria Angela Gonçalves de Oliveira; Toro, Adyleia Aparecida Dalbo Contrera; Pavan, Celia Regina; Rondon, Michelle Vivine Sá Dos Santos; Lorena, Sonia Leticia Silva; Vieria, Francisco Ubaldi; Ribeiro, Jose Dirceu
2014-12-13
The classic sweat test (CST) is the golden standard for cystic fibrosis (CF) diagnosis. Then, our aim was compare the production and volume of sweat, and side effects caused by pulsed direct current (PDC) and constant direct current (CDC). To determine the optimal stimulation time (ST) for the sweat collection. To verify the PDC as CF diagnosis option. Prospective study with cross-sectional experimental intervention. Experiment 1 (right arm): PDC and CDC. ST at 10 min and sweat collected at 30 min. Currents of 0.5; 0.75; 1.0 and 1.5 mA and frequencies of 0, 200, 1,000 and 5,000 Hz applied. Experiment 2 (left arm): current of 1.0 mA, ST at 5 and 10 min and sweat collected at 15 and 30 min with frequencies of 0; 200; 1,000 and 5,000 Hz applied Experiments 1 and 2 were performed with current density (CD) from 0.07 to 0.21 mA/cm2. Experiment 3: PDC was used in typical CF patients with two CFTR mutations screened and or with CF diagnosis by rectal biopsy and patients with atypical CF. 48 subjects (79.16% female) with average of 29.54 ± 8.87 years old were enrolled. There was no statistical difference between the interaction of frequency and current in the sweat weight (p = 0.7488). Individually, positive association was achieved between weight sweat and stimulation frequency (p = 0.0088); and current (p = 0.0025). The sweat production was higher for 10 min of stimulation (p = 0.0023). The sweat collection was better for 30 min (p = 0.0019). The skin impedance was not influenced by ST and sweat collection (p > 0.05). The current frequency was inversely associated with the skin impedance (p < 0.0001). The skin temperature measured before stimulation was higher than after (p < 0.0001). In Experiment 3 (29 subjects) the PDC showed better kappa index compared to CDC (0.9218 versus 0.5205, respectively). The performance of the CST with CDC and PDC with CD of 0.14 to 0.21 mA/cm2 showed efficacy in steps of stimulation and collection of sweat, without side effects. The optimal stimulation time and sweat collection were, respectively, 10 and 30 min.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, A.N.; Cole, E.I. Jr.; Dodd, B.A.
This invited paper describes recently reported work on the application of magnetic force microscopy (MFM) to image currents in IC conductors [1]. A computer model for MFM imaging of IC currents and experimental results demonstrating the ability to determine current direction and magnitude with a resolution of {approximately} 1 mA dc and {approximately} 1 {mu}A ac are presented. The physics of MFM signal generation and applications to current imaging and measurement are described.
Choi, Jae-Hwan; Park, Jin-Soo; Moon, Seung-Hyeon
2002-07-15
In this study the concentration distributions within the diffusion boundary layer were obtained by directly measuring the potential drops while the currents (under- and overlimiting) passed through the Neosepta CMX cation-exchange membrane (Tokuyama Corp., Japan). Potential drops according to the distance from the membrane surface on the depleted side were measured using a microelectrode to obtain the concentration profile. From the concentration profiles obtained, it was observed that the diffusion boundary layers existed in the range of 300-350 microm, which reasonably coincide with the theoretical diffusion boundary layer thickness calculated from the limiting current density. Although there were some deviations between the concentrations determined from the Nernst model and those from experiments, it was confirmed that the Nernst model effectively depicts the transport phenomena in the ion-exchange membrane system. In addition it was found that the salt concentration at the membrane surface increased when the currents applied exceeded the limiting current. It is thought that the concentration polarization formed in the diffusion boundary layer at currents near or lower than the limiting current was disturbed by a turbulent convection when the current was greater than the limiting current. As a consequence, the concentration at the membrane surface increased to a sufficient level for generation of the overlimiting current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balazs, Csaba; Conrad, Jan; Farmer, Ben
Imaging atmospheric Cherenkov telescopes (IACTs) that are sensitive to potential γ-ray signals from dark matter (DM) annihilation above ~50 GeV will soon be superseded by the Cherenkov Telescope Array (CTA). CTA will have a point source sensitivity an order of magnitude better than currently operating IACTs and will cover a broad energy range between 20 GeV and 300 TeV. Using effective field theory and simplified models to calculate γ-ray spectra resulting from DM annihilation, we compare the prospects to constrain such models with CTA observations of the Galactic center with current and near-future measurements at the Large Hadron Collider (LHC)more » and direct detection experiments. Here, for DM annihilations via vector or pseudoscalar couplings, CTA observations will be able to probe DM models out of reach of the LHC, and, if DM is coupled to standard fermions by a pseudoscalar particle, beyond the limits of current direct detection experiments.« less
Bonaiuto, James J; de Berker, Archy; Bestmann, Sven
2016-01-01
Animals and humans have a tendency to repeat recent choices, a phenomenon known as choice hysteresis. The mechanism for this choice bias remains unclear. Using an established, biophysically informed model of a competitive attractor network for decision making, we found that decaying tail activity from the previous trial caused choice hysteresis, especially during difficult trials, and accurately predicted human perceptual choices. In the model, choice variability could be directionally altered through amplification or dampening of post-trial activity decay through simulated depolarizing or hyperpolarizing network stimulation. An analogous intervention using transcranial direct current stimulation (tDCS) over left dorsolateral prefrontal cortex (dlPFC) yielded a close match between model predictions and experimental results: net soma depolarizing currents increased choice hysteresis, while hyperpolarizing currents suppressed it. Residual activity in competitive attractor networks within dlPFC may thus give rise to biases in perceptual choices, which can be directionally controlled through non-invasive brain stimulation. DOI: http://dx.doi.org/10.7554/eLife.20047.001 PMID:28005007
NASA Astrophysics Data System (ADS)
Dang Chien, Nguyen; Shih, Chun-Hsing; Hoa, Phu Chi; Minh, Nguyen Hong; Thi Thanh Hien, Duong; Nhung, Le Hong
2016-06-01
The two-band Kane model has been popularly used to calculate the band-to-band tunneling (BTBT) current in tunnel field-effect transistor (TFET) which is currently considered as a promising candidate for low power applications. This study theoretically clarifies the maximum electric field approximation (MEFA) of direct BTBT Kane model and evaluates its appropriateness for low bandgap semiconductors. By analysing the physical origin of each electric field term in the Kane model, it has been elucidated in the MEFA that the local electric field term must be remained while the nonlocal electric field terms are assigned by the maximum value of electric field at the tunnel junction. Mathematical investigations have showed that the MEFA is more appropriate for low bandgap semiconductors compared to high bandgap materials because of enhanced tunneling probability in low field regions. The appropriateness of the MEFA is very useful for practical uses in quickly estimating the direct BTBT current in low bandgap TFET devices.
Balazs, Csaba; Conrad, Jan; Farmer, Ben; ...
2017-10-04
Imaging atmospheric Cherenkov telescopes (IACTs) that are sensitive to potential γ-ray signals from dark matter (DM) annihilation above ~50 GeV will soon be superseded by the Cherenkov Telescope Array (CTA). CTA will have a point source sensitivity an order of magnitude better than currently operating IACTs and will cover a broad energy range between 20 GeV and 300 TeV. Using effective field theory and simplified models to calculate γ-ray spectra resulting from DM annihilation, we compare the prospects to constrain such models with CTA observations of the Galactic center with current and near-future measurements at the Large Hadron Collider (LHC)more » and direct detection experiments. Here, for DM annihilations via vector or pseudoscalar couplings, CTA observations will be able to probe DM models out of reach of the LHC, and, if DM is coupled to standard fermions by a pseudoscalar particle, beyond the limits of current direct detection experiments.« less
Chang, Wei-Pang; Lu, Hsiang-Chin; Shyu, Bai-Chuang
2015-03-01
Clinical studies have shown that cathodal transcranial direct-current stimulation (tDCS) application can produce long-term suppressive effects on drug-resistant seizures. Whether this long-term effect produced by cathodal tDCS can counterbalance the enhancement of synaptic transmission during seizures requires further investigation. Our hypothesis was that the long-term effects of DCS on seizure suppression by the application of cathodal DCS occur through a long-term depression (LTD)-like mechanism. We used a thalamocingulate brain slice preparation combined with a multielectrode array and patch recording to investigate the underlying mechanism of the suppressive effect of DCS on anterior cingulate cortex (ACC) seizures. Patch-clamp recordings showed that cathodal DCS significantly decreased spontaneous excitatory postsynaptic currents (EPSCs) and epileptic EPSCs caused by the 4-aminopyridine. Fifteen minutes of DCS application reliably induced LTD, and the synaptic activation frequency was an important factor in LTD formation. The application of DCS alone without continuous synaptic activation did not induce LTD. Direct-current stimulation-induced LTD appeared to be N-methyl-d-aspartate (NMDA)-dependent, in which the application of the NMDA receptor antagonist D-1-2-amino-5-phosphonopentanoic acid (APV) abolished DCS-induced LTD, and the immediate effect remained. Direct-current stimulation-induced LTD and the long-term effects of DCS on seizure-like activities were also abolished by okadaic acid, a protein phosphatase 1 inhibitor. The long-term effects of DCS on seizures were not influenced by the depotentiation blocker FK-506. Therefore, we conclude that the long-term effects of DCS on seizure-like activities in brain slice occur through an LTD-like mechanism. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Karl; Vossos, Vagelis; Kloss, Margarita
2016-09-01
Cost effective zero net energy (ZNE) schemes exist for many types of residential and commercial buildings. Yet, today’s alternating current (AC) based ZNE designs may be as much as 10% to 20% less efficient, more costly, and more complicated than a design based on direct current (DC) technologies. An increasing number of research organizations and manufacturers are just starting the process of developing products and conducting research and development (R&D) efforts. These early R&D efforts indicate that the use of DC technologies may deliver many energy and non-energy benefits relative to AC-based typologies. DC ZNE schemes may provide for anmore » ideal integrating platform for natively DC-based onsite generation, storage, electric vehicle (EV) charging and end-use loads. Emerging empirical data suggest that DC end-use appliances are more efficient, simpler, more durable, and lower cost. DC technologies appear to provide ratepayers a lower cost pathway to achieve resilient ZNE buildings, and simultaneously yield a plethora of benefits. This paper draws from the current research effort entitled "Direct Current as an Integrating and Enabling Platform," co-led by the Lawrence Berkeley National Laboratory (LBNL), the California Institute for Energy and the Environment (CIEE), the Electric Power Research Institute (EPRI) and funded under the California Energy Commission’s Energy Program Investment Charge (CEC EPIC). The first phase of this EPIC research is focused on assembling and summarizing known global performance information on DC and DC-AC hybrid end-use appliances and power systems. This paper summarizes the information and insights gained from this research effort.« less