Sample records for direct current injection

  1. Computational modeling of the effect of external electron injection into a direct-current microdischarge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panneer Chelvam, Prem Kumar; Raja, Laxminarayan L.

    2015-12-28

    Electron emission from the electrode surface plays an important role in determining the structure of a direct-current microdischarge. Here we have developed a computational model of a direct-current microdischarge to study the effect of external electron injection from the cathode surface into the discharge to manipulate its properties. The model provides a self-consistent, multi-species, multi-temperature fluid representation of the plasma. A microdischarge with a metal-insulator-metal configuration is chosen for this study. The effect of external electron injection on the structure and properties of the microdischarge is described. The transient behavior of the microdischarge during the electron injection is examined. Themore » nonlinearities in the dynamics of the plasma result in a large increase of conduction current after active electron injection. For the conditions simulated a switching time of ∼100 ns from a low-current to high-current discharge state is realized.« less

  2. Direct memory access transfer completion notification

    DOEpatents

    Chen, Dong; Giampapa, Mark E.; Heidelberger, Philip; Kumar, Sameer; Parker, Jeffrey J.; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos

    2010-07-27

    Methods, compute nodes, and computer program products are provided for direct memory access (`DMA`) transfer completion notification. Embodiments include determining, by an origin DMA engine on an origin compute node, whether a data descriptor for an application message to be sent to a target compute node is currently in an injection first-in-first-out (`FIFO`) buffer in dependence upon a sequence number previously associated with the data descriptor, the total number of descriptors currently in the injection FIFO buffer, and the current sequence number for the newest data descriptor stored in the injection FIFO buffer; and notifying a processor core on the origin DMA engine that the message has been sent if the data descriptor for the message is not currently in the injection FIFO buffer.

  3. Construction of a Direct Water-Injected Two-Stroke Engine for Phased Direct Fuel Injection-High Pressure Charging Investigations

    NASA Technical Reports Server (NTRS)

    Somsel, James P.

    1998-01-01

    The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).

  4. Investigation on the Characteristics of Pellet Ablation in a Toroidal Plasma

    NASA Astrophysics Data System (ADS)

    Sato, K. N.; Sakakita, H.; Fujita, H.

    2003-06-01

    Characteristics of a cloud ablated from an ice pellet has been investigated in detail in the JIPP T-IIU tokamak plasma by utilizing a new scheme of pellet injection system, "the injection-angle controllable system". A long "helical tail" of ablation light has been observed using CCD cameras and a high speed framing photograph in the case of on-axis and off-axis injection with the injection angle smaller than a certain value. The direction of the helical tail is found to be independent to that of the total magnetic field lines of the torus. From the experiments with the combination of two toroildal filed directions and two plasma current directions, it is considered that the tail seems to rotate, in most cases, to the electron diamagnetic direction poloidally, and to the opposite to the plasma current direction toroidally. Consideration on various cross sections including charge exchange, ionization and elastic collisions leads us to the conclusion that the tail-shaped phenomena may come from the situation of charge exchange equilibrium of hydrogen ions and neutrals at extremely high density regime in the cloud. The relation of ablation behavior with plasma potential and rotation has also been studied. Potential measurements of pellet-injected plasmas using heavy ion beam probe (HIBP) method were carried out for the first time. In the case of an injection angle to be anti-parallel to the electron diamagnetic direction in the poloidal plane, the result shows that the direction of potential change is negative, and consequently the potential after the injection should be negative because it has been measured to be negative in usual ohmic plasmas without pellet injection. Thus, the direction of the "tail" structure seems to be consistent to that of the plasma potential measured, if it is considered that tail structure may be caused by the effect of the plasma potential and the rotation.

  5. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping

    NASA Astrophysics Data System (ADS)

    Lim, Jaehoon; Park, Young-Shin; Klimov, Victor I.

    2018-01-01

    Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge--realization of lasing with electrical injection--remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, we apply a special current-focusing device architecture, which allows us to produce high current densities (j) up to ~18 A cm-2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3-4 A cm-2 we achieve the population inversion of the band-edge states.

  6. Controlling heat and particle currents in nanodevices by quantum observation

    NASA Astrophysics Data System (ADS)

    Biele, Robert; Rodríguez-Rosario, César A.; Frauenheim, Thomas; Rubio, Angel

    2017-07-01

    We demonstrate that in a standard thermo-electric nanodevice the current and heat flows are not only dictated by the temperature and potential gradient, but also by the external action of a local quantum observer that controls the coherence of the device. Depending on how and where the observation takes place, the direction of heat and particle currents can be independently controlled. In fact, we show that the current and heat flow in a quantum material can go against the natural temperature and voltage gradients. Dynamical quantum observation offers new possibilities for the control of quantum transport far beyond classical thermal reservoirs. Through the concept of local projections, we illustrate how we can create and directionality control the injection of currents (electronic and heat) in nanodevices. This scheme provides novel strategies to construct quantum devices with application in thermoelectrics, spintronic injection, phononics, and sensing among others. In particular, highly efficient and selective spin injection might be achieved by local spin projection techniques.

  7. Breast EIT using a new projected image reconstruction method with multi-frequency measurements.

    PubMed

    Lee, Eunjung; Ts, Munkh-Erdene; Seo, Jin Keun; Woo, Eung Je

    2012-05-01

    We propose a new method to produce admittivity images of the breast for the diagnosis of breast cancer using electrical impedance tomography(EIT). Considering the anatomical structure of the breast, we designed an electrode configuration where current-injection and voltage-sensing electrodes are separated in such a way that internal current pathways are approximately along the tangential direction of an array of voltage-sensing electrodes. Unlike conventional EIT imaging methods where the number of injected currents is maximized to increase the total amount of measured data, current is injected only twice between two pairs of current-injection electrodes attached along the circumferential side of the breast. For each current injection, the induced voltages are measured from the front surface of the breast using as many voltage-sensing electrodes as possible. Although this electrode configurational lows us to measure induced voltages only on the front surface of the breast,they are more sensitive to an anomaly inside the breast since such an injected current tends to produce a more uniform internal current density distribution. Furthermore, the sensitivity of a measured boundary voltage between two equipotential lines on the front surface of the breast is improved since those equipotential lines are perpendicular to the primary direction of internal current streamlines. One should note that this novel data collection method is different from those of other frontal plane techniques such as the x-ray projection and T-scan imaging methods because we do not get any data on the plane that is perpendicular to the current flow. To reconstruct admittivity images using two measured voltage data sets, a new projected image reconstruction algorithm is developed. Numerical simulations demonstrate the frequency-difference EIT imaging of the breast. The results show that the new method is promising to accurately detect and localize small anomalies inside the breast.

  8. Dark Current Characterization of SW HgCdTe IRFPAs Detectors on Si Substrate with Long Time Integration

    NASA Astrophysics Data System (ADS)

    Song, P. Y.; Ye, Z. H.; Huang, A. B.; Chen, H. L.; Hu, X. N.; Ding, R. J.; He, L.

    2016-09-01

    The dark currents of two short wave (SW) HgCdTe infrared focal plane arrays (IRFPA) detectors hybridized with direct injection (DI) readout and capacitance transimpedance amplifier (CTIA) with long time integration were investigated. The cutoff wavelength of the two SW IRFPAs is about 2.6 μm at 84 K. The dark current densities of DI and CTIA samples are approximately 8.0 × 10-12 A/cm2 and 7.2 × 10-10 A/cm2 at 110 K, respectively. The large divergence of the dark current density might arise from the injection efficiency difference of the two readouts. The low injection efficiency of the DI readout, compared with the high injection efficiency of the CTIA readout at low temperature, makes the dark current density of the DI sample much lower than that of the CTIA sample. The experimental value of injection efficiency of the DI sample was evaluated as 1.1% which is consistent with its theoretical value.

  9. Development and Validation of a Fast Procedure to Analyze Amoxicillin in River Waters by Direct-Injection LC-MS/MS

    ERIC Educational Resources Information Center

    Homem, Vera; Alves, Arminda; Santos, Lu´cia

    2014-01-01

    A laboratory application with a strong component in analytical chemistry was designed for undergraduate students, in order to introduce a current problem in the environmental science field, the water contamination by antibiotics. Therefore, a simple and rapid method based on direct injection and high performance liquid chromatography-tandem mass…

  10. Time-domain measurement of terahertz frequency magnetoplasmon resonances in a two-dimensional electron system by the direct injection of picosecond pulsed currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jingbo; Mayorov, Alexander S.; Wood, Christopher D.

    2016-02-29

    We have investigated terahertz (THz) frequency magnetoplasmon resonances in a two-dimensional electron system through the direct injection of picosecond duration current pulses. The evolution of the time-domain signals was measured as a function of magnetic field, and the results were found to be in agreement with calculations using a mode-matching approach for four modes observed in the frequency range above 0.1 THz. This introduces a generic technique suitable for sampling ultrafast carrier dynamics in low-dimensional semiconductor nanostructures at THz frequencies.

  11. Direct Observation of the Biaxial Stress Effect on Efficiency Droop in GaN-based Light-emitting Diode under Electrical Injection.

    PubMed

    Zheng, Jinjian; Li, Shuiqing; Chou, Chilun; Lin, Wei; Xun, Feilin; Guo, Fei; Zheng, Tongchang; Li, Shuping; Kang, Junyong

    2015-12-04

    Light-emitting diode (LED) efficiency has attracted considerable interest because of the extended use of solid-state lighting. Owing to lack of direct measurement, identification of the reasons for efficiency droop has been restricted. A direct measurement technique is developed in this work for characterization of biaxial stress in GaN-based blue LEDs under electrical injection. The Raman shift of the GaN E2 mode evidently decreases by 4.4 cm(-1) as the driving current on GaN-based LEDs increases to 700 mA. Biaxial compressive stress is released initially and biaxial tensile stress builds up as the current increases with respect to the value of stress-free GaN. First-principles calculations reveal that electron accumulation is responsible for the stress variation in InxGa1-xN/GaN quantum wells, and then reduces the transition probability among quantum levels. This behavior is consistent with the measured current-dependent external quantum efficiency. The rule of biaxial stress-dependent efficiency is further validated by controlling the biaxial stress of GaN-based LEDs with different sapphire substrate thicknesses. This work provides a method for direct observation of the biaxial stress effect on efficiency droop in LEDs under electrical injection.

  12. Direct Observation of the Biaxial Stress Effect on Efficiency Droop in GaN-based Light-emitting Diode under Electrical Injection

    PubMed Central

    Zheng, Jinjian; Li, Shuiqing; Chou, Chilun; Lin, Wei; Xun, Feilin; Guo, Fei; Zheng, Tongchang; Li, Shuping; Kang, Junyong

    2015-01-01

    Light-emitting diode (LED) efficiency has attracted considerable interest because of the extended use of solid-state lighting. Owing to lack of direct measurement, identification of the reasons for efficiency droop has been restricted. A direct measurement technique is developed in this work for characterization of biaxial stress in GaN-based blue LEDs under electrical injection. The Raman shift of the GaN E2 mode evidently decreases by 4.4 cm−1 as the driving current on GaN-based LEDs increases to 700 mA. Biaxial compressive stress is released initially and biaxial tensile stress builds up as the current increases with respect to the value of stress-free GaN. First-principles calculations reveal that electron accumulation is responsible for the stress variation in InxGa1−xN/GaN quantum wells, and then reduces the transition probability among quantum levels. This behavior is consistent with the measured current-dependent external quantum efficiency. The rule of biaxial stress-dependent efficiency is further validated by controlling the biaxial stress of GaN-based LEDs with different sapphire substrate thicknesses. This work provides a method for direct observation of the biaxial stress effect on efficiency droop in LEDs under electrical injection. PMID:26634816

  13. Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection

    DOE Data Explorer

    Ebrahimi, Fatima [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000331095367); Raman, Roger [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000220273271)

    2016-01-01

    A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form a narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet–Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. These results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.

  14. Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection

    DOE Data Explorer

    Ebrahimi, F. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Raman, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-04-01

    A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form a narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet–Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. These results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.

  15. Plasma Rotation During Neutral Beam Injection In MST

    NASA Astrophysics Data System (ADS)

    Hudson, Ben; Ding, W.; Fiksel, G.; Prager, S.; Yates, T.

    2006-10-01

    The effect of fast ions from neutral beam injection (20 keV, 30 A, 1.5 ms) on plasma rotation and magnetic tearing modes is studied. We observe that during co-injected NBI (with the injection in the same direction as the plasma and mode rotation) the rotation of the core-resonant n = 5 magnetic mode decreases and in many instances lock to the vessel wall. There is an associated drop in the poloidal component of n = 5 magnetic mode amplitude. The drop in the mode velocity suggests a counter-directed torque, perhaps due to modification of the radial electric field. The rotation slows during the injection phase, then restores itself on the timescale of the fast ion slowing down time (5 ms @ Te = 100 eV). The fluctuation-induced j x b Maxwell stress is measured using MST's FIR diagnostic and presented for comparison. Equilibrium reconstruction suggests a small increase in on-axis J||, consistent with the presence of a localized fast ion population moving in the direction of the plasma current. Mode rotation during NBI counter-injection is also presented.

  16. BEAM DIAGNOSTICS USING BPM SIGNALS FROM INJECTED AND STORED BEAMS IN A STORAGE RING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.M.; Shaftan; T.

    2011-03-28

    Many modern light sources are operating in top-off injection mode or are being upgraded to top-off injection mode. The storage ring always has the stored beam and injected beam for top-off injection mode. So the BPM data is the mixture of both beam positions and the injected beam position cannot be measured directly. We propose to use dedicated wide band BPM electronics in the NSLS II storage ring to retrieve the injected beam trajectory with the singular value decomposition (SVD) method. The beam position monitor (BPM) has the capability to measure bunch-by-bunch beam position. Similar electronics can be used tomore » measure the bunch-by-bunch beam current which is necessary to get the injection beam position. The measurement precision of current needs to be evaluated since button BPM sum signal has position dependence. The injected beam trajectory can be measured and monitored all the time without dumping the stored beam. We can adjust and optimize the injected beam trajectory to maximize the injection efficiency. We can also measure the storage ring acceptance by mapping the injected beam trajectory.« less

  17. Controlling Gilbert damping in a YIG film using nonlocal spin currents

    NASA Astrophysics Data System (ADS)

    Haidar, M.; Dürrenfeld, P.; Ranjbar, M.; Balinsky, M.; Fazlali, M.; Dvornik, M.; Dumas, R. K.; Khartsev, S.; Åkerman, J.

    2016-11-01

    We demonstrate the control of Gilbert damping in 65-nm-thick yttrium iron garnet (YIG) films using a spin-polarized current generated by a direct current through a nanocontact, spin filtered by a thin Co layer. The magnetodynamics of both the YIG and the Co layers can be excited by a pulse-modulated microwave current injected through the nanocontact and the response detected as a lock-in amplified voltage over the device. The spectra show three clear peaks, two associated with the ferromagnetic resonance (FMR) in each layer, and an additional Co mode with a higher wave vector proportional to the inverse of the nanocontact diameter. By varying the sign and magnitude of the direct nanocontact current, we can either increase or decrease the linewidth of the YIG FMR peak consistent with additional positive or negative damping being exerted by the nonlocal spin current injected into the YIG film. Our nanocontact approach thus offers an alternative route in the search for auto-oscillations in YIG films.

  18. Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection

    DOE PAGES

    Ebrahimi, F.; Raman, R.

    2016-03-23

    A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form amore » narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet-Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. Furthermore, these results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.« less

  19. Focal plane infrared readout circuit with automatic background suppression

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Yang, Guang (Inventor); Sun, Chao (Inventor); Shaw, Timothy J. (Inventor); Wrigley, Chris J. (Inventor)

    2002-01-01

    A circuit for reading out a signal from an infrared detector includes a current-mode background-signal subtracting circuit having a current memory which can be enabled to sample and store a dark level signal from the infrared detector during a calibration phase. The signal stored by the current memory is subtracted from a signal received from the infrared detector during an imaging phase. The circuit also includes a buffered direct injection input circuit and a differential voltage readout section. By performing most of the background signal estimation and subtraction in a current mode, a low gain can be provided by the buffered direct injection input circuit to keep the gain of the background signal relatively small, while a higher gain is provided by the differential voltage readout circuit. An array of such readout circuits can be used in an imager having an array of infrared detectors. The readout circuits can provide a high effective handling capacity.

  20. Massive Gas Injection Valve Development for NSTX-U

    DOE Data Explorer

    Raman, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Plunkett, G. J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Way, W.-S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-05-01

    NSTX-U research will offer new insight by studying gas assimilation efficiencies for MGI injection from different poloidal locations using identical gas injection systems. In support of this activity, an electromagnetic MGI valve has been built and tested. The valve operates by repelling two conductive disks due to eddy currents induced on them by a rapidly changing magnetic field created by a pancake disk solenoid positioned beneath the circular disk attached to a piston. The current is driven in opposite directions in the two solenoids, which creates a cancelling torque when the valve is operated in an ambient magnetic field, as would be required in a tokamak installation. The valve does not use ferromagnetic materials. Results from the operation of the valve, including tests conducted in 1 T external magnetic fields, are described. The pressure rise in the test chamber is measured directly using a fast time response baratron gauge. At a plenum pressure of just 1.38 MPa (~200 psig), the valve injects 27 Pa.m^3 (~200 Torr.L) of nitrogen with a pressure rise time of 3 ms.

  1. Transcranial Electrical Neuromodulation Based on the Reciprocity Principle

    PubMed Central

    Fernández-Corazza, Mariano; Turovets, Sergei; Luu, Phan; Anderson, Erik; Tucker, Don

    2016-01-01

    A key challenge in multi-electrode transcranial electrical stimulation (TES) or transcranial direct current stimulation (tDCS) is to find a current injection pattern that delivers the necessary current density at a target and minimizes it in the rest of the head, which is mathematically modeled as an optimization problem. Such an optimization with the Least Squares (LS) or Linearly Constrained Minimum Variance (LCMV) algorithms is generally computationally expensive and requires multiple independent current sources. Based on the reciprocity principle in electroencephalography (EEG) and TES, it could be possible to find the optimal TES patterns quickly whenever the solution of the forward EEG problem is available for a brain region of interest. Here, we investigate the reciprocity principle as a guideline for finding optimal current injection patterns in TES that comply with safety constraints. We define four different trial cortical targets in a detailed seven-tissue finite element head model, and analyze the performance of the reciprocity family of TES methods in terms of electrode density, targeting error, focality, intensity, and directionality using the LS and LCMV solutions as the reference standards. It is found that the reciprocity algorithms show good performance comparable to the LCMV and LS solutions. Comparing the 128 and 256 electrode cases, we found that use of greater electrode density improves focality, directionality, and intensity parameters. The results show that reciprocity principle can be used to quickly determine optimal current injection patterns in TES and help to simplify TES protocols that are consistent with hardware and software availability and with safety constraints. PMID:27303311

  2. Transcranial Electrical Neuromodulation Based on the Reciprocity Principle.

    PubMed

    Fernández-Corazza, Mariano; Turovets, Sergei; Luu, Phan; Anderson, Erik; Tucker, Don

    2016-01-01

    A key challenge in multi-electrode transcranial electrical stimulation (TES) or transcranial direct current stimulation (tDCS) is to find a current injection pattern that delivers the necessary current density at a target and minimizes it in the rest of the head, which is mathematically modeled as an optimization problem. Such an optimization with the Least Squares (LS) or Linearly Constrained Minimum Variance (LCMV) algorithms is generally computationally expensive and requires multiple independent current sources. Based on the reciprocity principle in electroencephalography (EEG) and TES, it could be possible to find the optimal TES patterns quickly whenever the solution of the forward EEG problem is available for a brain region of interest. Here, we investigate the reciprocity principle as a guideline for finding optimal current injection patterns in TES that comply with safety constraints. We define four different trial cortical targets in a detailed seven-tissue finite element head model, and analyze the performance of the reciprocity family of TES methods in terms of electrode density, targeting error, focality, intensity, and directionality using the LS and LCMV solutions as the reference standards. It is found that the reciprocity algorithms show good performance comparable to the LCMV and LS solutions. Comparing the 128 and 256 electrode cases, we found that use of greater electrode density improves focality, directionality, and intensity parameters. The results show that reciprocity principle can be used to quickly determine optimal current injection patterns in TES and help to simplify TES protocols that are consistent with hardware and software availability and with safety constraints.

  3. Spheromak plasma flow injection into a torus chamber and the HIST plasmas

    NASA Astrophysics Data System (ADS)

    Hatuzaki, Akinori

    2005-10-01

    The importance of plasma flow or two-fluid effect is recognized in understanding the relaxed states of high-beta torus plasmas, start-up and current drive by non-coaxial helicity injection, magnetic reconnection and plasma dynamo in fusion, laboratory and space plasmas. As a new approach to create a flowing two-fluid plasma equilibrium, we have tried to inject tangentially the plasma flow with spheromak-type magnetic configurations into a torus vacuum chamber with an external toroidal magnetic field (TF) coil. In the initial experiments, the RFP-like configuration with helical magnetic structures was realized in the torus vessel. The ion flow measurement with Mach probes showed that the ion flow keeps the same direction despite the reversal of the toroidal current and the axial electric field. The ion fluid comes to flow in the opposite direction to the electron fluid by the reversal of TF. This result suggests that not only electron but also ion flow contributes significantly on the reversed toroidal current. In this case, the ratio of ui to the electron flow velocity ue is estimated as ui/ue ˜ 1/2. We also will inject the spheromak flow into the HIST spherical torus plasmas to examine the possibilities to embedding the two-fluid effect in the ST plasmas.

  4. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Jaehoon; Park, Young-Shin; Klimov, Victor Ivanovich

    Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge—realization of lasing with electrical injection—remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here in this paper, we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, wemore » apply a special current-focusing device architecture, which allows us to produce high current densities (j) up to ~18 A cm -2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3-4 A cm -2 we achieve the population inversion of the band-edge states.« less

  5. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping

    DOE PAGES

    Lim, Jaehoon; Park, Young-Shin; Klimov, Victor Ivanovich

    2017-11-20

    Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge—realization of lasing with electrical injection—remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here in this paper, we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, wemore » apply a special current-focusing device architecture, which allows us to produce high current densities (j) up to ~18 A cm -2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3-4 A cm -2 we achieve the population inversion of the band-edge states.« less

  6. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.

    PubMed

    Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-11-01

    Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes.

  7. InGaN/GaN light-emitting diode having direct hole injection plugs and its high-current operation.

    PubMed

    Kim, Sungjoon; Cho, Seongjae; Jeong, Jaedeok; Kim, Sungjun; Hwang, Sungmin; Kim, Garam; Yoon, Sukho; Park, Byung-Gook

    2017-03-20

    The light-emitting diode (LED) with an improved hole injection and straightforward process integration is proposed. p-type GaN direct hole injection plugs (DHIPs) are formed on locally etched multiple-quantum wells (MQWs) by epitaxial lateral overgrowth (ELO) method. We confirm that the optical output power is increased up to 23.2% at an operating current density of 100 A/cm2. Furthermore, in order to identify the origin of improvement in optical performance, the transient light decay time and light intensity distribution characteristics were analyzed on the DHIP LED devices. Through the calculation of the electroluminescence (EL) decay time, internal quantum efficiency (IQE) is extracted along with the recombination parameters, which reveals that the DHIPs have a significant effect on enhancement of radiative recombination and reduction of efficiency droop. Furthermore, the mapping PL reveals that the DHIP LED also has a potential to improve the light extraction efficiency by hexagonal pyramid shaped DHIPs.

  8. Computationally optimized ECoG stimulation with local safety constraints.

    PubMed

    Guler, Seyhmus; Dannhauer, Moritz; Roig-Solvas, Biel; Gkogkidis, Alexis; Macleod, Rob; Ball, Tonio; Ojemann, Jeffrey G; Brooks, Dana H

    2018-06-01

    Direct stimulation of the cortical surface is used clinically for cortical mapping and modulation of local activity. Future applications of cortical modulation and brain-computer interfaces may also use cortical stimulation methods. One common method to deliver current is through electrocorticography (ECoG) stimulation in which a dense array of electrodes are placed subdurally or epidurally to stimulate the cortex. However, proximity to cortical tissue limits the amount of current that can be delivered safely. It may be desirable to deliver higher current to a specific local region of interest (ROI) while limiting current to other local areas more stringently than is guaranteed by global safety limits. Two commonly used global safety constraints bound the total injected current and individual electrode currents. However, these two sets of constraints may not be sufficient to prevent high current density locally (hot-spots). In this work, we propose an efficient approach that prevents current density hot-spots in the entire brain while optimizing ECoG stimulus patterns for targeted stimulation. Specifically, we maximize the current along a particular desired directional field in the ROI while respecting three safety constraints: one on the total injected current, one on individual electrode currents, and the third on the local current density magnitude in the brain. This third set of constraints creates a computational barrier due to the huge number of constraints needed to bound the current density at every point in the entire brain. We overcome this barrier by adopting an efficient two-step approach. In the first step, the proposed method identifies the safe brain region, which cannot contain any hot-spots solely based on the global bounds on total injected current and individual electrode currents. In the second step, the proposed algorithm iteratively adjusts the stimulus pattern to arrive at a solution that exhibits no hot-spots in the remaining brain. We report on simulations on a realistic finite element (FE) head model with five anatomical ROIs and two desired directional fields. We also report on the effect of ROI depth and desired directional field on the focality of the stimulation. Finally, we provide an analysis of optimization runtime as a function of different safety and modeling parameters. Our results suggest that optimized stimulus patterns tend to differ from those used in clinical practice. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Currents Induced by Injected Charge in Junction Detectors

    PubMed Central

    Gaubas, Eugenijus; Ceponis, Tomas; Kalesinskas, Vidas

    2013-01-01

    The problem of drifting charge-induced currents is considered in order to predict the pulsed operational characteristics in photo- and particle-detectors with a junction controlled active area. The direct analysis of the field changes induced by drifting charge in the abrupt junction devices with a plane-parallel geometry of finite area electrodes is presented. The problem is solved using the one-dimensional approach. The models of the formation of the induced pulsed currents have been analyzed for the regimes of partial and full depletion. The obtained solutions for the current density contain expressions of a velocity field dependence on the applied voltage, location of the injected surface charge domain and carrier capture parameters. The drift component of this current coincides with Ramo's expression. It has been illustrated, that the synchronous action of carrier drift, trapping, generation and diffusion can lead to a vast variety of possible current pulse waveforms. Experimental illustrations of the current pulse variations determined by either the rather small or large carrier density within the photo-injected charge domain are presented, based on a study of Si detectors. PMID:24036586

  10. High efficiency single transverse mode photonic band crystal lasers with low vertical divergence

    NASA Astrophysics Data System (ADS)

    Zhao, Shaoyu; Qu, Hongwei; Liu, Yun; Li, Lunhua; Chen, Yang; Zhou, Xuyan; Lin, Yuzhe; Liu, Anjin; Qi, Aiyi; Zheng, Wanhua

    2016-10-01

    High efficiency 980 nm longitudinal photonic band crystal (PBC) edge emitting laser diodes are designed and fabricated. The calculated results show that eight periods of Al0.1Ga0.9As and Al0.25Ga0.75As layer pairs can reduce the vertical far field divergence to 10.6° full width at half maximum (FWHM). The broad area (BA) lasers show a very high internal quantum efficiency ηi of 98% and low internal loss αi of 1.92 cm-1. Ridge waveguide (RW) lasers with 3 mm cavity length and 5um strip width provide 430 mW stable single transverse mode output at 500 mA injection current with power conversion efficiency (PCE) of 47% under continuous wave (CW) mode. A maximum PCE of 50% is obtained at the 300 mA injection current. A very low vertical far field divergence of 9.4° is obtained at 100 mA injection. At 500 mA injection, the vertical far field divergence increases to 11°, the beam quality factors M2 values are 1.707 in vertical direction and 1.769 in lateral direction.

  11. Studies on impact of electron cyclotron wave injection on the internal transport barriers in JT-60U weak shear plasmas

    NASA Astrophysics Data System (ADS)

    Ide, S.; Takenaga, H.; Isayama, A.; Sakamoto, Y.; Yoshida, M.; Gormezano, C.

    2007-11-01

    Impact of the electron cyclotron range of frequency wave (ECRF) on the internal transport barriers (ITBs) in a weak shear (WS) plasma has been investigated in JT-60U. The fundamental O-mode ECRF of 110 GHz injected obliquely (co-current drive) from the low field side is used. It is observed that the ion temperature (Ti) ITB in a WS plasma can be degraded by ECRF. It is clarified for the first time that the degradation depends increasingly on the EC power (PEC) but decreasingly on the plasma current (Ip). Moreover it is confirmed that ECRF affects the toroidal rotation (Vt) indirectly and results in the flattening of Vt(ρ) and therefore the radial electric field (Er) profiles regardless of the direction of the target Vt(ρ), peaking co or counter direction (relative to the Ip direction). Furthermore, it is recently found that Ti and Vt in the whole ITB region are affected with almost no delay from the EC onset even with off-axis EC deposition. These results indicate that EC injection unveiled a semi-global structure that characterizes Ti ITB in a WS plasma.

  12. Observations of waves artificially stimulated by an electron beam inside a region with auroral precipitation

    NASA Technical Reports Server (NTRS)

    Grandal, B.; Troim, J.; Maehlum, B.; Holtet, J. A.; Pran, B.

    1980-01-01

    Observations of waves stimulated by artificial injection inside an auroral arc by an electron accelerator mounted on the POLAR 5 sounding rocket are presented. The accelerator produced a pulsed electron beam with currents up to 130 mA and energies up to 10 keV; emissions after the end of beam injection were generated by perturbations in the ambient plasma near the accelerator during beam injection. These emissions were independent of the electron beam direction along the geomagnetic field. The high frequency emission observed after beam injection correlated with the passage through an auroral arc; the low frequency emissions after beam injection were concentrated in two bands below the lower hybrid frequency.

  13. Room Temperature Electroluminescence from Tensile-Strained Si0.13Ge0.87/Ge Multiple Quantum Wells on a Ge Virtual Substrate

    PubMed Central

    Lin, Guangyang; Chen, Ningli; Zhang, Lu; Huang, Zhiwei; Huang, Wei; Wang, Jianyuan; Xu, Jianfang; Chen, Songyan; Li, Cheng

    2016-01-01

    Direct band electroluminescence (EL) from tensile-strained Si0.13Ge0.87/Ge multiple quantum wells (MQWs) on a Ge virtual substrate (VS) at room temperature is reported herein. Due to the competitive result of quantum confinement Stark effect and bandgap narrowing induced by tensile strain in Ge wells, electroluminescence from Γ1-HH1 transition in 12-nm Ge wells was observed at around 1550 nm. As injection current density increases, additional emission shoulders from Γ2-HH2 transition in Ge wells and Ge VS appeared at around 1300–1400 nm and 1600–1700 nm, respectively. The peak energy of EL shifted to the lower energy side superquadratically with an increase of injection current density as a result of the Joule heating effect. During the elevation of environmental temperature, EL intensity increased due to a reduction of energy between L and Γ valleys of Ge. Empirical fitting of the relationship between the integrated intensity of EL (L) and injection current density (J) with L~Jm shows that the m factor increased with injection current density, suggesting higher light emitting efficiency of the diode at larger injection current densities, which can be attributed to larger carrier occupations in the Γ valley and the heavy hole (HH) valance band at higher temperatures. PMID:28773923

  14. Room Temperature Electroluminescence from Tensile-Strained Si0.13Ge0.87/Ge Multiple Quantum Wells on a Ge Virtual Substrate.

    PubMed

    Lin, Guangyang; Chen, Ningli; Zhang, Lu; Huang, Zhiwei; Huang, Wei; Wang, Jianyuan; Xu, Jianfang; Chen, Songyan; Li, Cheng

    2016-09-27

    Direct band electroluminescence (EL) from tensile-strained Si 0.13 Ge 0.87 /Ge multiple quantum wells (MQWs) on a Ge virtual substrate (VS) at room temperature is reported herein. Due to the competitive result of quantum confinement Stark effect and bandgap narrowing induced by tensile strain in Ge wells, electroluminescence from Γ1-HH1 transition in 12-nm Ge wells was observed at around 1550 nm. As injection current density increases, additional emission shoulders from Γ2-HH2 transition in Ge wells and Ge VS appeared at around 1300-1400 nm and 1600-1700 nm, respectively. The peak energy of EL shifted to the lower energy side superquadratically with an increase of injection current density as a result of the Joule heating effect. During the elevation of environmental temperature, EL intensity increased due to a reduction of energy between L and Γ valleys of Ge. Empirical fitting of the relationship between the integrated intensity of EL ( L ) and injection current density ( J ) with L ~ J m shows that the m factor increased with injection current density, suggesting higher light emitting efficiency of the diode at larger injection current densities, which can be attributed to larger carrier occupations in the Γ valley and the heavy hole (HH) valance band at higher temperatures.

  15. System and method for generating current by selective electron heating

    DOEpatents

    Fisch, Nathaniel J.; Boozer, Allen H.

    1984-01-01

    A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of high-frequency waves into the plasma by means of waveguides. The wave frequency and polarization are chosen such that when the waveguides are tilted in a predetermined fashion, the wave energy is absorbed preferentially by electrons traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.

  16. Observation of plasma rotation driven by static nonaxisymmetric magnetic fields in a tokamak.

    PubMed

    Garofalo, A M; Burrell, K H; DeBoo, J C; deGrassie, J S; Jackson, G L; Lanctot, M; Reimerdes, H; Schaffer, M J; Solomon, W M; Strait, E J

    2008-11-07

    We present the first evidence for the existence of a neoclassical toroidal rotation driven in a direction counter to the plasma current by nonaxisymmetric, nonresonant magnetic fields. At high beta and with large injected neutral beam momentum, the nonresonant field torque slows down the plasma toward the neoclassical "offset" rotation rate. With small injected neutral beam momentum, the toroidal rotation is accelerated toward the offset rotation, with resulting improvement in the global energy confinement time. The observed magnitude, direction, and radial profile of the offset rotation are consistent with neoclassical theory predictions.

  17. Injection moulding of plastic parts with laser textured surfaces with optical applications

    NASA Astrophysics Data System (ADS)

    Pina-Estany, J.; García-Granada, A. A.; Corull-Massana, E.

    2018-05-01

    The purpose of this work is to manufacture micro and nanotextured surfaces on plastic injection moulds with the aim of replicating them and obtaining plastic parts with optical applications. Different patterns are manufactured with nanosecond and femtosecond lasers in order to obtain three different optical applications: (i) homogeneous light diffusion (ii) 1D light directionality and (iii) 2D light directionality. Induction heating is used in the injections in order to improve the textures degree of replication. The steel mould and the plastic parts are analyzed with a confocal/focus variation microscope and with a surface roughness tester. A mock-up and a luminance camera are used to evaluate the homogeneity and luminance of the homogeneous light diffusion application in comparison with the current industrial solutions.

  18. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si

    NASA Astrophysics Data System (ADS)

    Sun, Yi; Zhou, Kun; Sun, Qian; Liu, Jianping; Feng, Meixin; Li, Zengcheng; Zhou, Yu; Zhang, Liqun; Li, Deyao; Zhang, Shuming; Ikeda, Masao; Liu, Sheng; Yang, Hui

    2016-09-01

    Silicon photonics would greatly benefit from efficient, visible on-chip light sources that are electrically driven at room temperature. To fully utilize the benefits of large-scale, low-cost manufacturing foundries, it is highly desirable to grow direct bandgap III-V semiconductor lasers directly on Si. Here, we report the demonstration of a blue-violet (413 nm) InGaN-based laser diode grown directly on Si that operates under continuous-wave current injection at room temperature, with a threshold current density of 4.7 kA cm-2. The heteroepitaxial growth of GaN on Si is confronted with a large mismatch in both the lattice constant and the coefficient of thermal expansion, often resulting in a high density of defects and even microcrack networks. By inserting an Al-composition step-graded AlN/AlGaN multilayer buffer between the Si and GaN, we have not only successfully eliminated crack formation, but also effectively reduced the dislocation density. The result is the realization of a blue-violet InGaN-based laser on Si.

  19. Magnetic reconnection process in transient coaxial helicity injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebrahimi, F.; Hooper, E. B.; Sovinec, C. R.

    The physics of magnetic reconnection and fast flux closure in transient coaxial helicity injection experiments in NSTX is examined using resistive MHD simulations. These simulations have been performed using the NIMROD code with fixed boundary flux (including NSTX poloidal coil currents) in the NSTX experimental geometry. Simulations show that an X point is formed in the injector region, followed by formation of closed flux surfaces within 0.5 ms after the driven injector voltage and injector current begin to rapidly decrease. As the injector voltage is turned off, the field lines tend to untwist in the toroidal direction and magnetic fieldmore » compression exerts a radial J × B force and generates a bi-directional radial E{sub toroidal}×B{sub poloidal} pinch flow to bring oppositely directed field lines closer together to reconnect. At sufficiently low magnetic diffusivity (high Lundquist number), and with a sufficiently narrow injector flux footprint width, the oppositely directed field lines have sufficient time to reconnect (before dissipating), leading to the formation of closed flux surfaces. The reconnection process is shown to have transient Sweet-Parker characteristics.« less

  20. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: High-frequency impedance and spontaneous carrier lifetime in narrow-stripe semiconductor injection lasers

    NASA Astrophysics Data System (ADS)

    Hoernlein, W.

    1988-11-01

    Measurements were made of the complex reflection coefficient of hf (10-400 MHz) signals from semiconductor injection lasers supplied with a direct bias current ranging from several milliamperes up to the threshold value or higher. The hf impedance was calculated. The parameters of the equivalent electrical circuit made it possible to predict the modulation characteristics. The impedance corresponding to currents below the lasing threshold was used to find the differential carrier lifetime from the RC constant of the p-n junction of a laser diode. A description of the apparatus is supplemented by an account of the method used in calculation of the electrical parameters and carrier lifetimes. The first results obtained using this apparatus and method are reported.

  1. Method for enhancing selectivity and recovery in the fractional flotation of particles in a flotation column

    DOEpatents

    Klunder, Edgar B [Bethel Park, PA

    2011-08-09

    The method relates to particle separation from a feed stream. The feed stream is injected directly into the froth zone of a vertical flotation column in the presence of a counter-current reflux stream. A froth breaker generates a reflux stream and a concentrate stream, and the reflux stream is injected into the froth zone to mix with the interstitial liquid between bubbles in the froth zone. Counter-current flow between the plurality of bubbles and the interstitial liquid facilitates the attachment of higher hydrophobicity particles to bubble surfaces as lower hydrophobicity particles detach. The height of the feed stream injection and the reflux ratio may be varied in order to optimize the concentrate or tailing stream recoveries desired based on existing operating conditions.

  2. Dynamo-driven plasmoid formation from a current-sheet instability

    DOE PAGES

    Ebrahimi, F.

    2016-12-15

    Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. In this study, we utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from the oppositely directed field lines in the injector region (primary reconnecting current sheet), and the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetric fluctuations arising from the current-sheet instability isolated near the plasma edge have tearingmore » parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time, a dynamo poloidal flux amplification is observed at the reconnection site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplification increases the local Lundquist number, which then triggers a plasmoid instability and breaks the primary current sheet at the reconnection site. Finally, the plasmoids formation driven by large-scale flux amplification, i.e., a large-scale dynamo, observed here has strong implications for astrophysical reconnection as well as fast reconnection events in laboratory plasmas.« less

  3. Nanoscale current uniformity and injection efficiency of nanowire light emitting diodes

    NASA Astrophysics Data System (ADS)

    May, Brelon J.; Selcu, Camelia M.; Sarwar, A. T. M. G.; Myers, Roberto C.

    2018-02-01

    As an alternative to light emitting diodes (LEDs) based on thin films, nanowire based LEDs are the focus of recent development efforts in solid state lighting as they offer distinct photonic advantages and enable direct integration on a variety of different substrates. However, for practical nanowire LEDs to be realized, uniform electrical injection must be achieved through large numbers of nanowire LEDs. Here, we investigate the effect of the integration of a III-Nitride polarization engineered tunnel junction (TJ) in nanowire LEDs on Si on both the overall injection efficiency and nanoscale current uniformity. By using conductive atomic force microscopy (cAFM) and current-voltage (IV) analysis, we explore the link between the nanoscale nonuniformities and the ensemble devices which consist of many diodes wired in parallel. Nanometer resolved current maps reveal that the integration of a TJ on n-Si increases the amount of current a single nanowire can pass at a given applied bias by up to an order of magnitude, with the top 10% of wires passing more than ×3.5 the current of nanowires without a TJ. This manifests at the macroscopic level as a reduction in threshold voltage by more than 3 V and an increase in differential conductance as a direct consequence of the integration of the TJ. These results show the utility of cAFM to quantitatively probe the electrical inhomogeneities in as-grown nanowire ensembles without introducing uncertainty due to additional device processing steps, opening the door to more rapid development of nanowire ensemble based photonics.

  4. Optical power equalization for upstream traffic with injection-locked Fabry-Perot lasers in TDM-PON

    NASA Astrophysics Data System (ADS)

    Huang, Ting-Tsan; Sheu, Lih-Gen; Chi, Sien

    2010-10-01

    An optical power equalization of upstream traffic in time-division-multiplexed passive optical network (TDM-PON) based on injection-locked Fabry-Perot lasers has been experimentally investigated. The upstream transmitters with stable spectrum are achieved by using an external injection light source in the optical line terminal (OLT). The different upstream powers can be equalized by injection locking a Fabry-Perot laser diode (FP-LD) biased below threshold current in OLT. The dynamic upstream power range from - 8.5 to - 19.5 db m is reduced to a 1.6 dB maximal power variation, when the uplink signal is directly modulated at 1.25 Gb/s.

  5. Focal plane infrared readout circuit

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2002-01-01

    An infrared imager, such as a spectrometer, includes multiple infrared photodetectors and readout circuits for reading out signals from the photodetectors. Each readout circuit includes a buffered direct injection input circuit including a differential amplifier with active feedback provided through an injection transistor. The differential amplifier includes a pair of input transistors, a pair of cascode transistors and a current mirror load. Photocurrent from a photodetector can be injected onto an integration capacitor in the readout circuit with high injection efficiency at high speed. A high speed, low noise, wide dynamic range linear infrared multiplexer array for reading out infrared detectors with large capacitances can be achieved even when short exposure times are used. The effect of image lag can be reduced.

  6. Modeling all-electrical detection of the inverse Edelstein effect by spin-polarized tunneling in a topological-insulator/ferromagnetic-metal heterostructure

    NASA Astrophysics Data System (ADS)

    Dey, Rik; Register, Leonard F.; Banerjee, Sanjay K.

    2018-04-01

    The spin-momentum locking of the surface states in a three-dimensional topological insulator (TI) allows a charge current on the surface of the TI induced by an applied spin current onto the surface, which is known as the inverse Edelstein effect (IEE), that could be achieved either by injecting pure spin current by spin-pumping from a ferromagnetic metal (FM) layer or by injecting spin-polarized charge current by direct tunneling of electrons from the FM to the TI. Here, we present a theory of the observed IEE effect in a TI-FM heterostructure for the spin-polarized tunneling experiments. If an electrical current is passed from the FM to the surface of the TI, because of density-of-states polarization of the FM, an effective imbalance of spin-polarized electrons occurs on the surface of the TI. Due to the spin-momentum helical locking of the surface states in the TI, a difference of transverse charge accumulation appears on the TI surface in a direction orthogonal to the direction of the magnetization of the FM, which is measured as a voltage difference. Here, we derive the two-dimensional transport equations of electrons on the surface of a diffusive TI, coupled to a FM, starting from the quantum kinetic equation, and analytically solve the equations for a rectangular geometry to calculate the voltage difference.

  7. Ultra trace determination of 31 pesticides in water samples by direct injection-rapid resolution liquid chromatography-electrospray tandem mass spectrometry.

    PubMed

    Díaz, Laura; Llorca-Pórcel, Julio; Valor, Ignacio

    2008-08-22

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for the detection of pesticides in tap and treated wastewater was developed and validated according to the ISO/IEC 17025:1999. Key features of this method include direct injection of 100 microL of sample, an 11 min separation by means of a rapid resolution liquid chromatography system with a 4.6 mm x 50 mm, 1.8 microm particle size reverse phase column and detection by electrospray ionization (ESI) MS-MS. The limits of detection were below 15 ng L(-1) and correlation coefficients for the calibration curves in the range of 30-2000 ng L(-1) were higher than 0.99. Precision was always below 20% and accuracy was confirmed by external evaluation. The main advantages of this method are direct injection of sample without preparative procedures and low limits of detection that fulfill the requirements established by the current European regulations governing pesticide detection.

  8. Direct injection GC method for measuring light hydrocarbon emissions from cooling-tower water.

    PubMed

    Lee, Max M; Logan, Tim D; Sun, Kefu; Hurley, N Spencer; Swatloski, Robert A; Gluck, Steve J

    2003-12-15

    A Direct Injection GC method for quantifying low levels of light hydrocarbons (C6 and below) in cooling water has been developed. It is intended to overcome the limitations of the currently available technology. The principle of this method is to use a stripper column in a GC to strip waterfrom the hydrocarbons prior to entering the separation column. No sample preparation is required since the water sample is introduced directly into the GC. Method validation indicates that the Direct Injection GC method offers approximately 15 min analysis time with excellent precision and recovery. The calibration studies with ethylene and propylene show that both liquid and gas standards are suitable for routine calibration and calibration verification. The sampling method using zero headspace traditional VOA (Volatile Organic Analysis) vials and a sample chiller has also been validated. It is apparent that the sampling method is sufficient to minimize the potential for losses of light hydrocarbons, and samples can be held at 4 degrees C for up to 7 days with more than 93% recovery. The Direct Injection GC method also offers <1 ppb (w/v) level method detection limits for ethylene, propylene, and benzene. It is superior to the existing El Paso stripper method. In addition to lower detection limits for ethylene and propylene, the Direct Injection GC method quantifies individual light hydrocarbons in cooling water, provides better recoveries, and requires less maintenance and setup costs. Since the instrumentation and supplies are readily available, this technique could easily be established as a standard or alternative method for routine emission monitoring and leak detection of light hydrocarbons in cooling-tower water.

  9. Frequency division multiplexed radio-over-fiber transmission using an optically injected laser diode

    NASA Astrophysics Data System (ADS)

    Chan, Sze-Chun

    2008-04-01

    Nonlinear dynamics of semiconductor lasers have recently attracted much attention in the area of microwave photonics. By invoking the nonlinear dynamics of an optically injected laser diode, high-speed microwave oscillation can be generated using the period-one oscillation state. The oscillation is harnessed for application as a photonic microwave source in radio-over-fiber (RoF) systems. It is advantageous over conventional direct current modulation because it alleviates the modulation bandwidth limitation and naturally generates single sideband signals. The method is thus applicable to wireless communication systems even when the subcarrier frequency increases to 60 GHz. Because RoF is usually incorporated with standard wireless schemes that involve frequency division multiplexing (FDM), we investigate the performance of the optical injection system under simultaneous current injection of multiple data streams. Frequency mixings and competition for locking among subcarriers result in intermodulation distortion (IMD). The relative weightings of different channels should be optimized to ensure acceptable signal qualities. The results illustrate the feasibility of applying the optical injection system for FDM RoF transmission at high subcarrier frequencies.

  10. Design of the Helicity Injected Torus with Steady Inductive Helicity Injection (HIT-SI)

    NASA Astrophysics Data System (ADS)

    Sieck, P. E.; Gu, P.; Hamp, W. T.; Izzo, V. A.; McCollam, K. J.; Jarboe, T. R.; Nelson, B. A.; Redd, A. J.; Rogers, J. A.; Shumlak, U.

    2000-10-01

    Steady Inductive Helicity Injection (SIHI) is an inductive current drive method that injects helicity at a nearly constant rate, without open field lines, and without removing any helicity or magnetic energy from the plasma(T.R. Jarboe, Fusion Technology 36), p. 85, 1999. SIHI directly produces a rotating magnetic field structure, and the current profile is nearly time independent in the frame of the rotating field. The Helicity Injected Torus with SIHI (HIT-SI) is a ``bow tie'' spheromak designed to implement SIHI so that the current profile in the rotating frame is optimized. SIHI is accomplished using two inductive helicity injectors that operate 90^o out of phase with each other. Each helicity injector is a 180^o segment of a ZT-P size (a ≈ 8cm, R ≈ 32cm) RFP. The presence of a spheromak equilibrium will be readily apparent on several diagnostics, including the surface magnetic probes. The design of HIT-SI is presented, including the manufacturing techniques and metallurgical processes being used in the construction of the one-meter diameter close-fitting flux conserver. Several small prototype tests have been performed to prove the vacuum seal and electrical insulation capabilities of the design, and a finite element stress analysis of the flux conserver will be presented.

  11. Direct current injection and thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xu; Islam, Ahmad E.; Seabron, Eric

    2015-04-07

    Aligned arrays of semiconducting single-walled carbon nanotubes (s-SWNTs) represent ideal configurations for use of this class of material in high performance electronics. Development of means for removing the metallic SWNTs (m-SWNTs) in as-grown arrays represents an essential challenge. Here, we introduce a simple scheme that achieves this type of purification using direct, selective current injection through interdigitated electrodes into the m-SWNTs, to allow their complete removal using processes of thermocapillarity and dry etching. Experiments and numerical simulations establish the fundamental aspects that lead to selectivity in this process, thereby setting design rules for optimization. Single-step purification of arrays that includemore » thousands of SWNTs demonstrates the effectiveness and simplicity of the procedures. The result is a practical route to large-area aligned arrays of purely s-SWNTs with low-cost experimental setups.« less

  12. Non-local opto-electrical spin injection and detection in germanium at room temperature

    NASA Astrophysics Data System (ADS)

    Jamet, Matthieu; Rortais, Fabien; Zucchetti, Carlo; Ghirardini, Lavinia; Ferrari, Alberto; Vergnaud, Celine; Widiez, Julie; Marty, Alain; Attane, Jean-Philippe; Jaffres, Henri; George, Jean-Marie; Celebrano, Michele; Isella, Giovanni; Ciccacci, Franco; Finazzi, Marco; Bottegoni, Federico

    Non-local charge carriers injection/detection schemes lie at the foundation of information manipulation in integrated systems. The next generation electronics may operate on the spin instead of the charge and germanium appears as the best hosting material to develop such spintronics for its compatibility with mainstream silicon technology and long spin lifetime at room temperature. Moreover, the energy proximity between the direct and indirect bandgaps allows for optical spin orientation. In this presentation, we demonstrate injection of pure spin currents in Ge, combined with non-local spin detection blocks at room temperature. Spin injection is performed either electrically through a magnetic tunnel junction (MTJ) or optically, by using lithographed nanostructures to diffuse the light and create an in-plane polarized electron spin population. Pure spin current detection is achieved using either a MTJ or the inverse spin-Hall effect across a Pt stripe. Supported by the ANR project SiGeSPIN #ANR-13-BS10-0002 and the CARIPLO project SEARCH-IV (Grant 2013-0623).

  13. ELF waves and ion resonances produced by an electron beam emitting rocket in the ionosphere

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.; Abe, Y.; Erickson, K. N.

    1986-01-01

    Results are reported from the ECHO-6 electron-beam-injection experiment, performed in the auroral-zone ionosphere on March 30, 1983 using a sounding rocket equipped with two electron guns and a free-flying plasma-diagnostics instrument package. The data are presented in extensive graphs and diagrams and characterized in detail. Large ELF wave variations, superposed on the strong beam-sector-directed quasi-dc component, are observed in the 100-eV beam-induced plasma when the beam is injected in a transverse spiral, but not when it is injected upward parallel to the magnetic-field line. ELF activity is found to be suppressed whenever the rocket passed through field lines with auroral activity, suggesting that the waves are produced by the interaction of the beam potentials, plasma currents, and return currents neutralizing the accelerator payload.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevik, James; Pamminger, Michael; Wallner, Thomas

    Interest in natural gas as an alternative fuel source to petroleum fuels for light-duty vehicle applications has increased due to its domestic availability and stable price compared to gasoline. With its higher hydrogen-to-carbon ratio, natural gas has the potential to reduce engine out carbon dioxide emissions, which has shown to be a strong greenhouse gas contributor. For part-load conditions, the lower flame speeds of natural gas can lead to an increased duration in the inflammation process with traditional port-injection. Direct-injection of natural gas can increase in-cylinder turbulence and has the potential to reduce problems typically associated with port-injection of naturalmore » gas, such as lower flame speeds and poor dilution tolerance. A study was designed and executed to investigate the effects of direct-injection of natural gas at part-load conditions. Steady-state tests were performed on a single-cylinder research engine representative of current gasoline direct-injection engines. Tests were performed with direct-injection in the central and side location. The start of injection was varied under stoichiometric conditions in order to study the effects on the mixture formation process. In addition, exhaust gas recirculation was introduced at select conditions in order to investigate the dilution tolerance. Relevant combustion metrics were then analyzed for each scenario. Experimental results suggest that regardless of the injector location, varying the start of injection has a strong impact on the mixture formation process. Delaying the start of injection from 300 to 120°CA BTDC can reduce the early flame development process by nearly 15°CA. While injecting into the cylinder after the intake valves have closed has shown to produce the fastest combustion process, this does not necessarily lead to the highest efficiency, due to increases in pumping and wall heat losses. When comparing the two injection configurations, the side location shows the best performance in terms of combustion metrics and efficiencies. For both systems, part-load dilution tolerance is affected by the injection timing, due to the induced turbulence from the gaseous injection event. CFD simulation results have shown that there is a fundamental difference in how the two injection locations affect the mixture formation process. Delayed injection timing increases the turbulence level in the cylinder at the time of the spark, but reduces the available time for proper mixing. Side injection delivers a gaseous jet that interacts more effectively with the intake induced flow field, and this improves the engine performance in terms of efficiency.« less

  15. Flux amplification and sustainment of ST plasmas by multi-pulsed coaxial helicity injection on HIST

    NASA Astrophysics Data System (ADS)

    Higashi, T.; Ishihara, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2010-11-01

    The Helicity Injected Spherical Torus (HIST) device has been developed towards high-current start up and sustainment by Multi-pulsed Coaxial Helicity Injection (M-CHI) method. Multiple pulses operation of the coaxial plasma gun can build the magnetic field of STs and spheromak plasmas in a stepwise manner. So far, successive gun pulses on SSPX at LLNL were demonstrated to maintain the magnetic field of spheromak in a quasi-steady state against resistive decay [1]. The resistive 3D-MHD numerical simulation [2] for STs reproduced the current amplification by the M-CHI method and confirmed that stochastic magnetic field was reduced during the decay phase. By double pulsed operation on HIST, the plasma current was effectively amplified against the resistive decay. The life time increases up to 10 ms which is longer than that in the single CHI case (4 ms). The edge poloidal fields last between 0.5 ms and 6 ms like a repetitive manner. During the second driven phase, the toroidal ion flow is driven in the same direction as the plasma current as well as in the initial driven phase. At the meeting, we will discuss a current amplification mechanism based on the merging process with the plasmoid injected secondly from the gun. [1] B. Hudson et al., Phys. Plasmas Vol.15, 056112 (2008). [2] Y. Kagei et al., J. Plasma Fusion Res. Vol.79, 217 (2003).

  16. Optimal geometry toward uniform current density electrodes

    NASA Astrophysics Data System (ADS)

    Song, Yizhuang; Lee, Eunjung; Woo, Eung Je; Seo, Jin Keun

    2011-07-01

    Electrodes are commonly used to inject current into the human body in various biomedical applications such as functional electrical stimulation, defibrillation, electrosurgery, RF ablation, impedance imaging, and so on. When a highly conducting electrode makes direct contact with biological tissues, the induced current density has strong singularity along the periphery of the electrode, which may cause painful sensation or burn. Especially in impedance imaging methods such as the magnetic resonance electrical impedance tomography, we should avoid such singularity since more uniform current density underneath a current-injection electrode is desirable. In this paper, we study an optimal geometry of a recessed electrode to produce a well-distributed current density on the contact area under the electrode. We investigate the geometry of the electrode surface to minimize the edge singularity and produce nearly uniform current density on the contact area. We propose a mathematical framework for the uniform current density electrode and its optimal geometry. The theoretical results are supported by numerical simulations.

  17. Turning Noise into Signal: Utilizing Impressed Pipeline Currents for EM Exploration

    NASA Astrophysics Data System (ADS)

    Lindau, Tobias; Becken, Michael

    2017-04-01

    Impressed Current Cathodic Protection (ICCP) systems are extensively used for the protection of central Europe's dense network of oil-, gas- and water pipelines against destruction by electrochemical corrosion. While ICCP systems usually provide protection by injecting a DC current into the pipeline, mandatory pipeline integrity surveys demand a periodical switching of the current. Consequently, the resulting time varying pipe currents induce secondary electric- and magnetic fields in the surrounding earth. While these fields are usually considered to be unwanted cultural noise in electromagnetic exploration, this work aims at utilizing the fields generated by the ICCP system for determining the electrical resistivity of the subsurface. The fundamental period of the switching cycles typically amounts to 15 seconds in Germany and thereby roughly corresponds to periods used in controlled source EM applications (CSEM). For detailed studies we chose an approximately 30km long pipeline segment near Herford, Germany as a test site. The segment is located close to the southern margin of the Lower Saxony Basin (LSB) and part of a larger gas pipeline composed of multiple segments. The current injected into the pipeline segment originates in a rectified 50Hz AC signal which is periodically switched on and off. In contrast to the usual dipole sources used in CSEM surveys, the current distribution along the pipeline is unknown and expected to be non-uniform due to coating defects that cause current to leak into the surrounding soil. However, an accurate current distribution is needed to model the fields generated by the pipeline source. We measured the magnetic fields at several locations above the pipeline and used Biot-Savarts-Law to estimate the currents decay function. The resulting frequency dependent current distribution shows a current decay away from the injection point as well as a frequency dependent phase shift which is increasing with distance from the injection point. Electric field data were recorded at 45 stations located in an area of about 60 square kilometers in the vicinity to the pipeline. Additionally, the injected source current was recorded directly at the injection point. Transfer functions between the local electric fields and the injected source current are estimated for frequencies ranging from 0.03Hz to 15Hz using robust time series processing techniques. The resulting transfer functions are inverted for a 3D conductivity model of the subsurface using an elaborate pipeline model. We interpret the model with regards to the local geologic setting, demonstrating the methods capabilities to image the subsurface.

  18. System and method for generating current by selective minority species heating

    DOEpatents

    Fisch, Nathaniel J.

    1983-01-01

    A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of low-frequency waves into the plasma by means of phased antenna arrays or phased waveguide arrays. The plasma is prepared with a minority ion species of different charge state and different gyrofrequency from the majority ion species. The wave frequency and wave phasing are chosen such that the wave energy is absorbed preferentially by minority species ions traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.

  19. On neutral-beam injection counter to the plasma current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helander, P.; Akers, R.J.; Eriksson, L.-G.

    2005-11-15

    It is well known that when neutral beams inject ions into trapped orbits in a tokamak, the transfer of momentum between the beam and the plasma occurs through the torque exerted by a radial return current. It is shown that this implies that the angular momentum transferred to the plasma can be larger than the angular momentum of the beam, if the injection is in the opposite direction to the plasma current and the beam ions suffer orbit losses. On the Mega-Ampere Spherical Tokamak (MAST) [R. J. Akers, J. W. Ahn, G. Y. Antar, L. C. Appel, D. Applegate, C.more » Brickley et al., Plasma Phys. Controlled Fusion 45, A175 (2003)], this results in up to 30% larger momentum deposition with counterinjection than with co-injection, with substantially increased plasma rotation as a result. It is also shown that heating of the plasma (most probably of the ions) can occur even when the beam ions are lost before they have had time to slow down in the plasma. This is the dominant heating mechanism in the outer 40% of the MAST plasma during counterinjection.« less

  20. Non-Solenoidal Startup Research Directions on the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Fonck, R. J.; Bongard, M. W.; Lewicki, B. T.; Reusch, J. A.; Winz, G. R.

    2017-10-01

    The Pegasus research program has been focused on developing a physical understanding and predictive models for non-solenoidal tokamak plasma startup using Local Helicity Injection (LHI). LHI employs strong localized electron currents injected along magnetic field lines in the plasma edge that relax through magnetic turbulence to form a tokamak-like plasma. Pending approval, the Pegasus program will address a broader, more comprehensive examination of non-solenoidal tokamak startup techniques. New capabilities may include: increasing the toroidal field to 0.6 T to support critical scaling tests to near-NSTX-U field levels; deploying internal plasma diagnostics; installing a coaxial helicity injection (CHI) capability in the upper divertor region; and deploying a modest (200-400 kW) electron cyclotron RF capability. These efforts will address scaling of relevant physics to higher BT, separate and comparative studies of helicity injection techniques, efficiency of handoff to consequent current sustainment techniques, and the use of ECH to synergistically improve the target plasma for consequent bootstrap and neutral beam current drive sustainment. This has an ultimate goal of validating techniques to produce a 1 MA target plasma in NSTX-U and beyond. Work supported by US DOE Grant DE-FG02-96ER54375.

  1. Defining the Role of Alpha-Synuclein in Enteric Dysfunction in Parkinsons Disease

    DTIC Science & Technology

    2017-10-01

    direction. o What were the major goals of the project?  Animal use approvals – accomplished pre-funding  Vector production - 1st round of vector...August 2017. 100% Complete  Vector injections. We injected all animals for the long-term survival group as well as additional subjects for shorter...time points. However, as noted below, the transgene expression seen in these animals was below that which was expected/intended. Thus, we are currently

  2. "The first shot": the context of first injection of illicit drugs, ongoing injecting practices, and hepatitis C infection in Rio de Janeiro, Brazil.

    PubMed

    Oliveira, Maria de Lourdes Aguiar; Hacker, Mariana A; Oliveira, Sabrina Alberti Nóbrega de; Telles, Paulo Roberto; O, Kycia Maria Rodrigues do; Yoshida, Clara Fumiko Tachibana; Bastos, Francisco I

    2006-04-01

    The context of first drug injection and its association with ongoing injecting practices and HCV (hepatitis C virus) infection were investigated. Injection drug users (IDUs) (N = 606) were recruited in "drug scenes" (public places, bars) in Rio de Janeiro, Brazil, interviewed, and tested for HCV. Sharing of needles/syringes was more prevalent at the first injection (51.3%) than at the baseline interview (36.8%). Those who shared syringes/needles at first injection were more likely to be currently engaged in direct/indirect sharing practices. Among young injectors (< 30 years), those reporting sharing of needles/ syringes at the first injection were about four times more likely to have been infected by HCV. Hepatitis C virus prevalence among active IDUs (n = 272) was 11%. Prison history and longer duration of drug injection were identified as independent predictors of HCV infection. To effectively curb HCV transmission among IDUs and minimize harms associated with risk behaviors, preventive strategies should target individuals initiating drug injection beginning with their very first injection and discourage the transition from non-injecting use to the self-injection of illicit drugs.

  3. The collective gyration of a heavy ion cloud in a magnetized plasma

    NASA Technical Reports Server (NTRS)

    Brenning, N.; Swenson, C.; Kelley, M. C.; Providakes, J.; Torbert, R.

    1990-01-01

    In both the ionospheric barium injection experiments CRIT 1 and CRIT 2, a long duration oscillation was seen with a frequency close to the gyro frequency of barium and a time duration of about one second. A model for the phenomena which was proposed for the CRIT 1 experiment is compared to the results from CRIT 2 which made a much more complete set of measurements. The model follows the motion of a low Beta ion cloud through a larger ambient plasma. The internal field of the model is close to antiparallel to the injection direction v sub i but slightly tilted towards the self polarization direction E sub p = -V sub i by B. As the ions move across the magnetic field, the space charge is continuously neutralized by magnetic field aligned electron currents from the ambient ionosphere, drawn by the divergence in the perpendicular electric field. These currents give a perturbation of the magnetic field related to the electric field perturbation by Delta E/Delta B approximately equal to V sub A. The model predictions agree quite well with the observed vector directions, field strengths, and decay times of the electric and magnetic fields in CRIT 2. The possibility to extend the model to the active region, where the ions are produces in this type of self-ionizing injection experiments, is discussed.

  4. Anomalous modulation of spin torque-induced ferromagnetic resonance caused by direct currents in permalloy/platinum bilayer thin films

    NASA Astrophysics Data System (ADS)

    Hirayama, Shigeyuki; Mitani, Seiji; Otani, YoshiChika; Kasai, Shinya

    2018-01-01

    We systematically investigated the spin-torque ferromagnetic resonance (ST-FMR) in permalloy/Pt bilayer thin films under bias direct currents. According to the conventional ST-FMR theory, the half widths of the resonant peaks in the spectra can be modulated by bias currents, which give a reliable value of the spin injection efficiency of the spin Hall effect. On the other hand, the symmetric components of the spectra show an unexpected strong bias current dependence, while the asymmetric components are free from the modulation. These findings suggest that some contributions are missing in the ST-FMR analysis of the ferromagnetic/nonmagnetic metal bilayer thin films.

  5. Current-induced spin polarization on a Pt surface: A new approach using spin-polarized positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kawasuso, A.; Fukaya, Y.; Maekawa, M.; Zhang, H.; Seki, T.; Yoshino, T.; Saitoh, E.; Takanashi, K.

    2013-09-01

    Transversely spin-polarized positrons were injected near Pt and Au surfaces under an applied electric current. The three-photon annihilation of spin-triplet positronium, which was emitted from the surfaces into vacuum, was observed. When the positron spin polarization was perpendicular to the current direction, the maximum asymmetry of the three-photon annihilation intensity was observed upon current reversal for the Pt surfaces, whereas it was significantly reduced for the Au surface. The experimental results suggest that electrons near the Pt surfaces were in-plane and transversely spin-polarized with respect to the direction of the electric current. The maximum electron spin polarization was estimated to be more than 0.01 (1%).

  6. Compact Torus Fueling of the STOR-M Tokamak

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Hirose, A.; Zawalski, W.; White, D.; Raman, R.; Decoste, R.; Gregory, B. C.; Martin, F.

    1996-11-01

    Tangential injection of accelerated compact torus (CT) has been performed on the STOR-M tokamak (R/a=46/12 cm, B_t<1 T, I_p<= 50 kA, barn_e=(0.5 - 1)×10^13 cm-3) using the University of Saskatchewan Compact Torus Injector (USCTI). The CT parameters are: m~=1 μg, v=120 km/sec, B=0.1 T and n=(2 - 4)×10^15 cm-3. After CT injection, the electron density in tokamak doubles and the poloidal β-value increases. Indications of reduction in the loop voltage and H_α emission level have also been observed. Currently, following efforts are being made: (a) to coat chromium on the electrode surface, (b) to increase the on-line baking temperature, and (c) to reduce the neutral gas load which follows the CT plasma. In addition, numerical calculation of CT motion in a tokamak magnetic field has been carried out. For horizontal injection, the initial CT magnetic dipole direction should be aligned with the CT velocity for deeper penetration. In the case of vertical injection, the CT trajectory is independent of the initial magnetic dipole direction and central penetration is facilitated by off-axis injection.

  7. Utilizing Schottky barriers to suppress short-channel effects in organic transistors

    NASA Astrophysics Data System (ADS)

    Fernández, Anton F.; Zojer, Karin

    2017-10-01

    Transistors with short channel lengths exhibit profound deviations from the ideally expected behavior. One of the undesired short-channel effects is an enlarged OFF current that is associated with a premature turn on of the transistor. We present an efficient approach to suppress the OFF current, defined as the current at zero gate source bias, in short-channel organic transistors. We employ two-dimensional device simulations based on the drift-diffusion model to demonstrate that intentionally incorporating a Schottky barrier for injection enhances the ON-OFF ratio in both staggered and coplanar transistor architectures. The Schottky barrier is identified to directly counteract the origin of enlarged OFF currents: Short channels promote a drain-induced barrier lowering. The latter permits unhindered injection of charges even at reverse gate-source bias. An additional Schottky barrier hampers injection for such points of operations. We explain how it is possible to find the Schottky barrier of the smallest height necessary to exactly compensate for the premature turn on. This approach offers a substantial enhancement of the ON-OFF ratio. We show that this roots in the fact that such optimal barrier heights offer an excellent compromise between an OFF current diminished by orders of magnitude and an only slightly reduced ON current.

  8. Numerical Investigation of Statistical Turbulence Effects on Beam Propagation through 2-D Shear Mixing Layer

    DTIC Science & Technology

    2010-03-01

    instrumental in helping me refine my grid and flow profile to produce my investigation flow field. Dr. Brooks and Dr. Grismer helped me by getting me current ...wavelength of the source and changes in the index of refraction from density changes in the medium. They are directly attributed to three physical phenomenon...Turbulence arises from injection of energy into the fluid causing the motion to become unstable. This source of this energy injection is usually

  9. Anomalous Ion Heating, Intrinsic and Induced Rotation in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Thome, K. E.

    2014-10-01

    Pegasus plasmas are initiated through either standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of anomalous impurity ion heating has been observed, with Ti ~ 800 eV but Te < 100 eV. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n = 1 MHD mode. Chordal Ti spatial profiles indicate centrally peaked temperatures, suggesting a region of good confinement near the plasma core surrounded by a stochastic region. LHI plasmas are observed to rotate, perhaps due to an inward radial current generated by the stochastization of the plasma edge by the injected current streams. H-mode plasmas are initiated using a combination of high-field side fueling and Ohmic current drive. This regime shows a significant increase in rotation shear compared to L-mode plasmas. In addition, these plasmas have been observed to rotate in the counter-Ip direction without any external momentum sources. The intrinsic rotation direction is consistent with predictions from the saturated Ohmic confinement regime. Work supported by US DOE Grant DE-FG02-96ER54375.

  10. Reconstruction of apparent orthotropic conductivity tensor image using magnetic resonance electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Sajib, Saurav Z. K.; Kim, Ji Eun; Jeong, Woo Chul; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2015-03-01

    Magnetic resonance electrical impedance tomography visualizes current density and/or conductivity distributions inside an electrically conductive object. Injecting currents into the imaging object along at least two different directions, induced magnetic flux density data can be measured using a magnetic resonance imaging scanner. Without rotating the object inside the scanner, we can measure only one component of the magnetic flux density denoted as Bz. Since the biological tissues such as skeletal muscle and brain white matter show strong anisotropic properties, the reconstruction of anisotropic conductivity tensor is indispensable for the accurate observations in the biological systems. In this paper, we propose a direct method to reconstruct an axial apparent orthotropic conductivity tensor by using multiple Bz data subject to multiple injection currents. To investigate the anisotropic conductivity properties, we first recover the internal current density from the measured Bz data. From the recovered internal current density and the curl-free condition of the electric field, we derive an over-determined matrix system for determining the internal absolute orthotropic conductivity tensor. The over-determined matrix system is designed to use a combination of two loops around each pixel. Numerical simulations and phantom experimental results demonstrate that the proposed algorithm stably determines the orthotropic conductivity tensor.

  11. Characterization of quantum interference control of injected currents in LT-GaAs for carrier-envelope phase measurements.

    PubMed

    Roos, Peter; Quraishi, Qudsia; Cundiff, Steven; Bhat, Ravi; Sipe, J

    2003-08-25

    We use two mutually coherent, harmonically related pulse trains to experimentally characterize quantum interference control (QIC) of injected currents in low-temperature-grown gallium arsenide. We observe real-time QIC interference fringes, optimize the QIC signal fidelity, uncover critical signal dependences regarding beam spatial position on the sample, measure signal dependences on the fundamental and second harmonic average optical powers, and demonstrate signal characteristics that depend on the focused beam spot sizes. Following directly from our motivation for this study, we propose an initial experiment to measure and ultimately control the carrier-envelope phase evolution of a single octave-spanning pulse train using the QIC phenomenon.

  12. How Do Deep Saline Aquifer Microbial Communities Respond to Supercritical CO2 Injection?

    NASA Astrophysics Data System (ADS)

    Mu, A.; Billman-Jacobe, H.; Boreham, C.; Schacht, U.; Moreau, J. W.

    2011-12-01

    Carbon Capture and Storage (CCS) is currently seen as a viable strategy for mitigating anthropogenic carbon dioxide pollution. The Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) is currently conducting a field experiment in the Otway Basin (Australia) studying residual gas saturation in the water-saturated reservoir of the Paaratte Formation. As part of this study, a suite of pre-CO2 injection water samples were collected from approximately 1400 meters depth (60°C, 13.8 MPa) via an in situ sampling system. The in situ sampling system isolates aquifer water from sources of contamination while maintaining the formation pressure. Whole community DNA was extracted from these samples to investigate the prokaryotic biodiversity of the saline Paaratte aquifer (EC = 1509.6 uS/cm). Bioinformatic analysis of preliminary 16S ribosomal gene data revealed Thermincola, Acinetobacter, Sphingobium, and Dechloromonas amongst the closest related genera to environmental clone sequences obtained from a subset of pre-CO2 injection groundwater samples. Epifluorescent microscopy with 4',6-diamidino-2-phenylindole (DAPI) highlighted an abundance of filamentous cells ranging from 5 to 45 μM. Efforts are currently directed towards utilising a high throughput sequencing approach to capture an exhaustive profile of the microbial diversity of the Paaratte aquifer CO2 injection site, and to understand better the response of in situ microbial populations to the injection of large volumes (e.g. many kilotonnes) of supercritical CO2 (sc-CO2). Sequencing results will be used to direct cultivation efforts towards enrichment of a CO2-tolerant microorganism. Understanding the microbial response to sc-CO2 is an integral aspect of carbon dioxide storage, for which very little information exists in the literature. This study aims to elucidate molecular mechanisms, through genomic and cultivation-based methods, for CO2 tolerance with the prospect of engineering biofilms to enhance trapping of CO2 in saline aquifers.

  13. Overview of MST Results and Plans

    NASA Astrophysics Data System (ADS)

    Sarff, J. S.

    2008-11-01

    Improved confinement with high beta has been established in MST over its full range of plasma current capability using transient inductive current profile control. Both thermal electron and ion confinement are increased, and energetic electrons are observed to 100 keV. The global energy confinement time is 12 ms at high current and high temperature (Te=2 keV, Ti =1 keV), with βtot=10% (only Ohmic heating). Maximum βtot=26% is attained at lower current and temperature with D2 pellet injection, without evidence of hard-beta-limit phenomena. Momentum transport associated with MHD tearing shows the fascinating behavior that the Maxwell and Reynolds turbulent stresses are both large but oppositely directed in sawtooth magnetic relaxation events. Momentum is transported rapidly in these events, presumably through the imbalance in the stresses. Electron temperature fluctuations associated with MHD tearing are measured using a multi-point, multi-pulse Thomson scattering diagnostic. A 5-250 kHz pulse-burst laser is under construction to extend the Thomson capability to high frequency. Lower hybrid and electron Bernstein wave injection are under development to provide more sustained current profile control and heating. X-ray emission from the plasma is observed for both waves at 175 kW injected power. Substantial new experimental capability will be provided by a recently installed programmable power supply for the toroidal field, a new 1 MW, 20 ms neutral beam injection system, and upgraded OFCD system. Supported by U.S. DoE and NSF.

  14. New technologies for HWIL testing of WFOV, large-format FPA sensor systems

    NASA Astrophysics Data System (ADS)

    Fink, Christopher

    2016-05-01

    Advancements in FPA density and associated wide-field-of-view infrared sensors (>=4000x4000 detectors) have outpaced the current-art HWIL technology. Whether testing in optical projection or digital signal injection modes, current-art technologies for infrared scene projection, digital injection interfaces, and scene generation systems simply lack the required resolution and bandwidth. For example, the L3 Cincinnati Electronics ultra-high resolution MWIR Camera deployed in some UAV reconnaissance systems features 16MP resolution at 60Hz, while the current upper limit of IR emitter arrays is ~1MP, and single-channel dual-link DVI throughput of COTs graphics cards is limited to 2560x1580 pixels at 60Hz. Moreover, there are significant challenges in real-time, closed-loop, physics-based IR scene generation for large format FPAs, including the size and spatial detail required for very large area terrains, and multi - channel low-latency synchronization to achieve the required bandwidth. In this paper, the author's team presents some of their ongoing research and technical approaches toward HWIL testing of large-format FPAs with wide-FOV optics. One approach presented is a hybrid projection/injection design, where digital signal injection is used to augment the resolution of current-art IRSPs, utilizing a multi-channel, high-fidelity physics-based IR scene simulator in conjunction with a novel image composition hardware unit, to allow projection in the foveal region of the sensor, while non-foveal regions of the sensor array are simultaneously stimulated via direct injection into the post-detector electronics.

  15. Nonlinear MHD simulation of current drive by multi-pulsed coaxial helicity injection in spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro

    2011-10-01

    The dynamics of structures of magnetic field, current density, and plasma flow generated during multi-pulsed coaxial helicity injection in spherical torus is investigated by 3-D nonlinear MHD simulations. During the driven phase, the flux and current amplifications occur due to the merging and magnetic reconnection between the preexisting plasma in the confinement region and the ejected plasma from the gun region involving the n = 1 helical kink distortion of the central open flux column (COFC). Interestingly, the diamagnetic poloidal flow which tends toward the gun region is then observed due to the steep pressure gradients of the COFC generated by ohmic heating through an injection current winding around the inboard field lines, resulting in the formation of the strong poloidal flow shear at the interface between the COFC and the core region. This result is consistent with the flow shear observed in the HIST. During the decay phase, the configuration approaches the axisymmetric MHD equilibrium state without flow because of the dissipation of magnetic fluctuation energy to increase the closed flux surfaces, suggesting the generation of ordered magnetic field structure. The parallel current density λ concentrated in the COFC then diffuses to the core region so as to reduce the gradient in λ, relaxing in the direction of the Taylor state.

  16. Effects of muscimol, amphetamine, and DAMGO injected into the nucleus accumbens shell on food-reinforced lever pressing by undeprived rats.

    PubMed

    Stratford, Thomas R; Wirtshafter, David

    2012-05-01

    Previous studies have shown that large increases in food intake in nondeprived animals can be induced by injections of both the GABA(A) agonist muscimol and the μ-opioid agonist DAMGO into the nucleus accumbens shell (AcbSh), while injections of the catecholamine agonist amphetamine have little effect. In the current study we examined whether injections of these drugs are able to increase food-reinforced lever pressing in nondeprived rats. Twelve subjects were trained to lever press on a continuous reinforcement schedule while food deprived and were then tested after being placed back on ad libitum feeding. Under these conditions, responding was markedly increased by injections of either muscimol or DAMGO, although the onset of the effects of the latter drug was delayed by 30-40 min. In contrast, amphetamine injections failed to increase reinforced lever pressing, although they did enhance responding on a non-reinforced lever, presumably reflecting alterations in behavioral activation. These results demonstrate that stimulation of GABA(A) and μ-opioid receptors within the AcbSh is able to promote not only food intake, but also food-directed operant behavior. In contrast, stimulation of AcbSh dopamine receptors may enhance behavioral arousal, but does not appear to specifically potentiate behaviors directed toward food procurement. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation.

    PubMed

    Gellie, Pierre; Barbieri, Stefano; Lampin, Jean-François; Filloux, Pascal; Manquest, Christophe; Sirtori, Carlo; Sagnes, Isabelle; Khanna, Suraj P; Linfield, Edmund H; Davies, A Giles; Beere, Harvey; Ritchie, David

    2010-09-27

    We demonstrate that the cavity resonance frequency - the round-trip frequency - of Terahertz quantum cascade lasers can be injection-locked by direct modulation of the bias current using an RF source. Metal-metal and single-plasmon waveguide devices with roundtrip frequencies up to 35GHz have been studied, and show locking ranges above 200MHz. Inside this locking range the laser round-trip frequency is phase-locked, with a phase noise determined by the RF-synthesizer. We find a square-root dependence of the locking range with RF-power in agreement with classical injection-locking theory. These results are discussed in the context of mode-locking operation.

  18. Flow and dynamo measurements during the coaxial helicity injection on HIST

    NASA Astrophysics Data System (ADS)

    Ando, K.; Higashi, T.; Nakatsuka, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2009-11-01

    The current drive by Coaxial Helicity Injection (CHI-CD) was performed on HIST in a wide range of configurations from high-q ST to low-q ST and spheromak generated by the utilization of the toroidal field. It is a key issue to investigate the dynamo mechanism required to maintain each configuration. To identify the detail mechanisms, it is needed to manifest a role of plasma flows in the CHI-CD. For this purpose, we have measured the ion flow and the dynamo electric field using an ion Doppler spectrometer (IDS) system, a Mach probe and a dynamo probe. The new dynamo probe consists of 3-axis Mach probes and magnetic pick-up coils. The flow measurements have shown that the intermittent generation of the flow is correlated to the fluctuation seen on the electron density and current signals during the driven phase. At this time, the toroidal direction of the ion flow in the central open flux column is opposite to that of the toroidal current there, i.e. the same direction as electrons. After the plasma enters to the resistive decay phase, the toroidal flow tends to reverse to the same direction as the toroidal current. The results are consistent with the model of the repetitive plasmoid ejection and coalescence proposed for CHI-CD. The plasma jet emanating from the gun source and magnetic field generations through reconnection during the driven phase is well reflected in the 3D MHD simulation.

  19. An integrated and highly sensitive ultrafast acoustoelectric imaging system for biomedical applications

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Dansette, Pierre-Marc; Tanter, Mickaël; Pernot, Mathieu; Provost, Jean

    2017-07-01

    Direct imaging of the electrical activation of the heart is crucial to better understand and diagnose diseases linked to arrhythmias. This work presents an ultrafast acoustoelectric imaging (UAI) system for direct and non-invasive ultrafast mapping of propagating current densities using the acoustoelectric effect. Acoustoelectric imaging is based on the acoustoelectric effect, the modulation of the medium’s electrical impedance by a propagating ultrasonic wave. UAI triggers this effect with plane wave emissions to image current densities. An ultrasound research platform was fitted with electrodes connected to high common-mode rejection ratio amplifiers and sampled by up to 128 independent channels. The sequences developed allow for both real-time display of acoustoelectric maps and long ultrafast acquisition with fast off-line processing. The system was evaluated by injecting controlled currents into a saline pool via copper wire electrodes. Sensitivity to low current and low acoustic pressure were measured independently. Contrast and spatial resolution were measured for varying numbers of plane waves and compared to line per line acoustoelectric imaging with focused beams at equivalent peak pressure. Temporal resolution was assessed by measuring time-varying current densities associated with sinusoidal currents. Complex intensity distributions were also imaged in 3D. Electrical current densities were detected for injected currents as low as 0.56 mA. UAI outperformed conventional focused acoustoelectric imaging in terms of contrast and spatial resolution when using 3 and 13 plane waves or more, respectively. Neighboring sinusoidal currents with opposed phases were accurately imaged and separated. Time-varying currents were mapped and their frequency accurately measured for imaging frame rates up to 500 Hz. Finally, a 3D image of a complex intensity distribution was obtained. The results demonstrated the high sensitivity of the UAI system proposed. The plane wave based approach provides a highly flexible trade-off between frame rate, resolution and contrast. In conclusion, the UAI system shows promise for non-invasive, direct and accurate real-time imaging of electrical activation in vivo.

  20. Low NOx, Lean Direct Wall Injection Combustor Concept Developed

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.; Wey, Changlie; Choi, Kyung J.

    2003-01-01

    The low-emissions combustor development at the NASA Glenn Research Center is directed toward advanced high-pressure aircraft gas turbine applications. The emphasis of this research is to reduce nitrogen oxides (NOx) at high-power conditions and to maintain carbon monoxide and unburned hydrocarbons at their current low levels at low-power conditions. Low-NOx combustors can be classified into rich burn and lean burn concepts. Lean burn combustors can be further classified into lean-premixed-prevaporized (LPP) and lean direct injection (LDI) combustors. In both concepts, all the combustor air, except for liner cooling flow, enters through the combustor dome so that the combustion occurs at the lowest possible flame temperature. The LPP concept has been shown to have the lowest NOx emissions, but for advanced high-pressure-ratio engines, the possibly of autoignition or flashback precludes its use. LDI differs from LPP in that the fuel is injected directly into the flame zone and, thus, does not have the potential for autoignition or flashback and should have greater stability. However, since it is not premixed and prevaporized, the key is good atomization and mixing of the fuel quickly and uniformly so that flame temperatures are low and NOx formation levels are comparable to those of LPP.

  1. Engineering and Design of the Steady Inductive Helicity Injected Torus (HIT--SI)

    NASA Astrophysics Data System (ADS)

    Sieck, P. E.; Jarboe, T. R.; Nelson, B. A.; Rogers, J. A.; Shumlak, U.

    1999-11-01

    Steady Inductive Helicity Injection (SIHI) is an inductive helicity injection method that injects helicity at a nearly constant rate, without open field lines, and without removing any helicity or magnetic energy from the plasma.(T.R. Jarboe, Fusion Technology, 36) (1), p. 85, 1999 SIHI directly produces a rotating magnetic field structure, and in the frame of the rotating field the current profile is nearly time independent. The Steady Inductive Helicity Injected Torus (HIT--SI) is a spheromak designed to implement SIHI so that the current profile in the rotating frame is optimized. The geometry of HIT--SI will be presented, including the manufacturing techniques and metallurgical processes planned for construction of the close-fitting flux conserver. The flux conserver is made of aged chromium copper with 80% the conductivity of pure copper. The detailed electrical insulation requirements in the helicity injector design lead to a complex o-ring seal and a plasma-sprayed alumina insulation coating. This has prompted the construction of an o-ring prototype test fixture having the main features of the o-ring design and the alumina coating. The design and evaluation of this fixture will also be presented with vacuum and voltage test results.

  2. Digital optical signal processing with polarization-bistable semiconductor lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jai-Ming Liu,; Ying-Chin Chen,

    1985-04-01

    The operations of a complete set of optical AND, NAND, OR, and NOR gates and clocked optical S-R, D, J-K, and T flip-flops are demonstrated, based on direct polarization switching and polarization bistability, which we have recently observed in InGaAsP/InP semiconductor lasers. By operating the laser in the direct-polarizationswitchable mode, the output of the laser can be directly switched between the TM00 and TE00 modes with high extinction ratios by changing the injection-current level, and optical logic gates are constructed with two optoelectronic switches or photodetectors. In the polarization-bistable mode, the laser exhibits controllable hysteresis loops in the polarization-resolved powermore » versus current characteristics. When the laser is biased in the middle of the hysteresis loop, the light output can be switched between the two polarization states by injection of short electrical or optical pulses, and clocked optical flip-flops are constructed with a few optoelectronic switches and/or photodetectors. The 1 and 0 states of these devices are defined through polarization changes of the laser and direct complement functions are obtainable from the TE and TM output signals from the same laser. Switching of the polarization-bistable lasers with fast-rising current pulses has an instrument-limited mode-switching time on the order of 1 ns. With fast optoelectronic switches and/or fast photodetectors, the overall switching speed of the logic gates and flip-flops is limited by the polarizationbistable laser to <1 ns. We have demonstrated the operations of these devices using optical signals generated by semiconductor lasers. The proposed schemes of our devices are compatible with monolithic integration based on current fabrication technology and are applicable to other types of bistable semiconductor lasers.« less

  3. Magnetohydrodynamic simulations of noninductive helicity injection in the reversed-field pinch and tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sovinec, Carl R.

    1995-11-01

    Numerical computation is used to investigate resistive magnetohydrodynamic (MHD) fluctuations in the reversed-field pinch (RFP) and in tokamak-like configurations driven solely by direct current (DC) helicity injection. A Lundquist number (S) scan of RFP turbulence without plasma pressure produces the weak scaling of S -0.18 for the root-mean-square magnetic fluctuation level for 2.5x10 3≤S≤4x10 4. The temporal behavior of fluctuations and the reversal parameter becomes more regular as S is increased, acquiring a "sawtooth" shape at the largest value of S. Simulations with plasma pressure and anisotropic thermal conduction demonstrate energy transport resulting from parallel heat fluctuations. To investigate meansmore » of improving RFP energy confinement, three forms of current profile modification are tested. Radio frequency (RF) current drive is modeled with an auxiliary electron force, and linear stability calculations are used.« less

  4. Thermionic emission and tunneling at carbon nanotube-organic semiconductor interface.

    PubMed

    Sarker, Biddut K; Khondaker, Saiful I

    2012-06-26

    We study the charge carrier injection mechanism across the carbon nanotube (CNT)-organic semiconductor interface using a densely aligned carbon nanotube array as electrode and pentacene as organic semiconductor. The current density-voltage (J-V) characteristics measured at different temperatures show a transition from a thermal emission mechanism at high temperature (above 200 K) to a tunneling mechanism at low temperature (below 200 K). A barrier height of ∼0.16 eV is calculated from the thermal emission regime, which is much lower compared to the metal/pentacene devices. At low temperatures, the J-V curves exhibit a direct tunneling mechanism at low bias, corresponding to a trapezoidal barrier, while at high bias the mechanism is well described by Fowler-Nordheim tunneling, which corresponds to a triangular barrier. A transition from direct tunneling to Fowler-Nordheim tunneling further signifies a small injection barrier at the CNT/pentacene interface. Our results presented here are the first direct experimental evidence of low charge carrier injection barrier between CNT electrodes and an organic semiconductor and are a significant step forward in realizing the overall goal of using CNT electrodes in organic electronics.

  5. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    NASA Astrophysics Data System (ADS)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  6. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.

    PubMed

    Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  7. The Safety of Aircraft Exposed to Electromagnetic Fields: HIRF Testing of Aircraft Using Direct Current Injection

    DTIC Science & Technology

    2007-06-01

    massive RF power to the antenna feed points without providing an inductive path to earth. Given all the above challenges, and especially the... circuit theory currents are flowing limited by the three parallel 50 ohm resistances and low inductive reactance. This plateaus at eigencurrent...relative to nett TEM cell input power has been calculated: Figure 86 Expected power output from probe, neglecting probe inductance DSTO-RR-0329

  8. Gate field plate IGBT with trench accumulation layer for extreme injection enhancement

    NASA Astrophysics Data System (ADS)

    Xu, Xiaorui; Chen, Wanjun; Liu, Chao; Chen, Nan; Tao, Hong; Shi, Yijun; Ma, Yinchang; Zhou, Qi; Zhang, Bo

    2017-04-01

    A gate field plate IGBT (GFP-IGBT) with extreme injection enhancement is proposed and verified using TCAD simulations. The GFP-IGBT features a gate field plate (GFP) inserted into n-drift region directly and a tiny P-base region separated from the GFP. In the ON-state, the accumulation layer is formed near to not only the bottom but also the side of the trench, which enhances electron injection efficiency. And the tiny P-base region reduces the holes extracted by reverse-biased P-base/N-drift junction. Both the GFP and tiny P-base contribute to achieving extreme injection enhancement, leading to a low forward voltage drop. In the OFF-state, due to the low stored charges in N-buffer layer, GFP-IGBT shows a short current fall time, leading to a decrease of turn-off loss. The simulation results show that, compared with the conventional IGBT, the GFP-IGBT offers a forward voltage drop reduction of 25% or current fall time reduction of 89% (i.e. turn-off loss reduction of 53%), resulting in low power loss. The excellent device performance, coupled with a commercial IGBT-compatible fabrication process, makes the proposed GFP-IGBT a promising candidate for power switching applications.

  9. Gate-dependent asymmetric transport characteristics in pentacene barristors with graphene electrodes.

    PubMed

    Hwang, Wang-Taek; Min, Misook; Jeong, Hyunhak; Kim, Dongku; Jang, Jingon; Yoo, Daekyung; Jang, Yeonsik; Kim, Jun-Woo; Yoon, Jiyoung; Chung, Seungjun; Yi, Gyu-Chul; Lee, Hyoyoung; Wang, Gunuk; Lee, Takhee

    2016-11-25

    We investigated the electrical characteristics and the charge transport mechanism of pentacene vertical hetero-structures with graphene electrodes. The devices are composed of vertical stacks of silicon, silicon dioxide, graphene, pentacene, and gold. These vertical heterojunctions exhibited distinct transport characteristics depending on the applied bias direction, which originates from different electrode contacts (graphene and gold contacts) to the pentacene layer. These asymmetric contacts cause a current rectification and current modulation induced by the gate field-dependent bias direction. We observed a change in the charge injection barrier during variable-temperature current-voltage characterization, and we also observed that two distinct charge transport channels (thermionic emission and Poole-Frenkel effect) worked in the junctions, which was dependent on the bias magnitude.

  10. Sawtooth control in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Angioni, C.; Budny, R. V.; Buttery, R. J.; Coda, S.; Eriksson, L.-G.; Gimblett, C. G.; Goodman, T. P.; Hastie, R. J.; Henderson, M. A.; Koslowski, H. R.; Mantsinen, M. J.; Martynov, An; Mayoral, M.-L.; Mück, A.; Nave, M. F. F.; Sauter, O.; Westerhof, E.; Contributors, JET–EFDA

    2005-12-01

    Clear observations of early triggering of neo-classical tearing modes by sawteeth with long quiescent periods have motivated recent efforts to control, and in particular destabilize, sawteeth. One successful approach explored in TCV utilizes electron cyclotron heating in order to locally increase the current penetration time in the core. The latter is also achieved in various machines by depositing electron cyclotron current drive or ion cyclotron current drive close to the q = 1 rational surface. Crucially, localized current drive also succeeds in destabilizing sawteeth which are otherwise stabilized by a co-existing population of energetic trapped ions in the core. In addition, a recent reversed toroidal field campaign at JET demonstrates that counter-neutral beam injection (NBI) results in shorter sawtooth periods than in the Ohmic regime. The clear dependence of the sawtooth period on the NBI heating power and the direction of injection also manifests itself in terms of the toroidal plasma rotation, which consequently requires consideration in the theoretical interpretation of the experiments. Another feature of NBI, expected to be especially evident in the negative ion based neutral beam injection (NNBI) heating planned for ITER, is the parallel velocity asymmetry of the fast ion population. It is predicted that a finite orbit effect of asymmetrically distributed circulating ions could strongly modify sawtooth stability. Furthermore, NNBI driven current with non-monotonic profile could significantly slow down the evolution of the safety factor in the core, thereby delaying sawteeth.

  11. Influence of electron injection into 27 cm audio plasma cell on the plasma diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haleem, N. A.; Ragheb, M. S.; Zakhary, S. G.

    2013-08-15

    In this article, the plasma is created in a Pyrex tube (L = 27 cm, φ= 4 cm) as a single cell, by a capacitive audio frequency (AF) discharge (f = 10–100 kHz), at a definite pressure of ∼0.2 Torr. A couple of tube linear and deviating arrangements show plasma characteristic conformity. The applied AF plasma and the injection of electrons into two gas mediums Ar and N{sub 2} revealed the increase of electron density at distinct tube regions by one order to attain 10{sup 13}/cm{sup 3}. The electrons temperature and density strengths are in contrast to each other. Whilemore » their distributions differ along the plasma tube length, they show a decaying sinusoidal shape where their peaks position varies by the gas type. The electrons injection moderates electron temperature and expands their density. The later highest peak holds for the N{sub 2} gas, at electrons injection it changes to hold for the Ar. The sinusoidal decaying density behavior generates electric fields depending on the gas used and independent of tube geometry. The effect of the injected electrons performs a responsive impact on electrons density not attributed to the gas discharge. Analytical tools investigate the interaction of the plasma, the discharge current, and the gas used on the electrodes. It points to the emigration of atoms from each one but for greater majority they behave to a preferred direction. Meanwhile, only in the linear regime, small percentage of atoms still moves in reverse direction. Traces of gas atoms revealed on both electrodes due to sheath regions denote lack of their participation in the discharge current. In addition, atoms travel from one electrode to the other by overcoming the sheaths regions occurring transportation of particles agglomeration from one electrode to the other. The electrons injection has contributed to increase the plasma electron density peaks. These electrons populations have raised the generated electrostatic fields assisting the elemental ions emigration to a preferred electrode direction. Regardless of plasma electrodes positions and plasma shape, ions can be departed from one electrode to deposit on the other one. In consequence, as an application the AF plasma type can enhance the metal deposition from one electrode to the other.« less

  12. Electrokinetic Control of Viscous Fingering

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Mohammad; Bazant, Martin Z.

    2017-10-01

    We present a theory of the interfacial stability of two immiscible electrolytes under the coupled action of pressure gradients and electric fields in a Hele-Shaw cell or porous medium. Mathematically, our theory describes a phenomenon of "vector Laplacian growth," in which the interface moves in response to the gradient of a vector-valued potential function through a generalized mobility tensor. Physically, we extend the classical Saffman-Taylor problem to electrolytes by incorporating electrokinetic (EK) phenomena. A surprising prediction is that viscous fingering can be controlled by varying the injection ratio of electric current to flow rate. Beyond a critical injection ratio, stability depends only upon the relative direction of flow and current, regardless of the viscosity ratio. Possible applications include porous materials processing, electrically enhanced oil recovery, and EK remediation of contaminated soils.

  13. Underground Injection Control, Hydraulic Fracturing, and Sources of Drinking Water in the Western United States

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.; Kang, M.

    2016-12-01

    Oil and gas extraction is expanding in the United States, attributable to the success of high-volume hydraulic fracturing, and associated wastewater disposal is increasing as a result. The United States currently has approximately 180,000 Class II injection wells associated with the oil and gas industry, more than 50,000 of them in California. Hydraulic fracturing and underground injection often occur many thousands of feet belowground. Previously, however, we documented shallow hydraulic fracturing and other oil and gas activities across the western United States in particular, including California and Wyoming. In eight CA counties, for example, as many as 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively (Kang and Jackson 2016 PNAS). Here we expand this analysis to examine the underground injection control program and accompanying hydrogeologic variables found in California and elsewhere.

  14. Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons

    PubMed Central

    Larkum, M E; Zhu, J J; Sakmann, B

    2001-01-01

    Double, triple and quadruple whole-cell voltage recordings were made simultaneously from different parts of the apical dendritic arbor and the soma of adult layer 5 (L5) pyramidal neurons. We investigated the membrane mechanisms that support the conduction of dendritic action potentials (APs) between the dendritic and axonal AP initiation zones and their influence on the subsequent AP pattern. The duration of the current injection to the distal dendritic initiation zone controlled the degree of coupling with the axonal initiation zone and the AP pattern. Two components of the distally evoked regenerative potential were pharmacologically distinguished: a rapidly rising peak potential that was TTX sensitive and a slowly rising plateau-like potential that was Cd2+ and Ni2+ sensitive and present only with longer-duration current injection. The amplitude of the faster forward-propagating Na+-dependent component and the amplitude of the back-propagating AP fell into two classes (more distinctly in the forward-propagating case). Current injection into the dendrite altered propagation in both directions. Somatic current injections that elicited single Na+ APs evoked bursts of Na+ APs when current was injected simultaneously into the proximal apical dendrite. The mechanism did not depend on dendritic Na+–Ca2+ APs. A three-compartment model of a L5 pyramidal neuron is proposed. It comprises the distal dendritic and axonal AP initiation zones and the proximal apical dendrite. Each compartment contributes to the initiation and to the pattern of AP discharge in a distinct manner. Input to the three main dendritic arbors (tuft dendrites, apical oblique dendrites and basal dendrites) has a dominant influence on only one of these compartments. Thus, the AP pattern of L5 pyramids reflects the laminar distribution of synaptic activity in a cortical column. PMID:11389204

  15. An Experimental Investigation of the Risk of Triggering Geological Disasters by Injection under Shear Stress

    PubMed Central

    Liu, Yixin; Xu, Jiang; Peng, Shoujian

    2016-01-01

    Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered. PMID:27929142

  16. An Experimental Investigation of the Risk of Triggering Geological Disasters by Injection under Shear Stress.

    PubMed

    Liu, Yixin; Xu, Jiang; Peng, Shoujian

    2016-12-08

    Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO 2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered.

  17. Semiconductor Nonlinear Waveguide Devices and Integrated-Mirror Etalons

    NASA Astrophysics Data System (ADS)

    Chuang, Chih-Li.

    This dissertation investigates different III-V semiconductor devices for applications in nonlinear photonics. These include passive and active nonlinear directional couplers, current-controlled optical phase shifter, and integrated -mirror etalons. A novel method to find the propagation constants of an optical waveguide is introduced. The same method is applied, with minor modifications, to find the coupling length of a directional coupler. The method presented provides a tool for the design of optical waveguide devices. The design, fabrication, and performance of a nonlinear directional coupler are presented. This device uses light intensity to control the direction of light coming out. This is achieved through photo-generated-carriers mechanism in the picosecond regime and through the optical Stark effect in the femtosecond regime. A two-transverse -dimensions beam-propagation computation is used to model the switching behavior in the nonlinear directional coupler. It is found that, by considering the pulse degradation effect, the computation agrees well with experiments. The possibility of operating a nonlinear directional coupler with gain is investigated. It is concluded that by injecting current into the nonlinear directional coupler does not provide the advantages hoped for and the modelling using 2-D beam -propagation methods verifies that. Using current injection to change the refractive index of a waveguide, an optical phase shifter is constructed. This device has the merit of delivering large phase shift with almost no intensity modulation. A phase shift as large as 3pi is produced in a waveguide 400 μm in length. Finally, a new structure, grown by the molecular beam epitaxy machine, is described. The structure consists of two quarter-wave stacks and a spacer layer to form an integrated-mirror etalon. The theory, design principles, spectral analyses are discussed with design examples to clarify the ideas. Emphasis is given to the vertical-cavity surface-emitting laser constructed from this structure. Here we demonstrated the cw operation of the VCSEL at room temperature.

  18. Design of Low Power CMOS Read-Out with TDI Function for Infrared Linear Photodiode Array Detectors

    NASA Technical Reports Server (NTRS)

    Vizcaino, Paul; Ramirez-Angulo, Jaime; Patel, Umesh D.

    2007-01-01

    A new low voltage CMOS infrared readout circuit using the buffer-direct injection method is presented. It uses a single supply voltage of 1.8 volts and a bias current of 1uA. The time-delay integration technique is used to increase the signal to noise ratio. A current memory circuit with faulty diode detection is used to remove dark current for background compensation and to disable a photodiode in a cell if detected as faulty. Simulations are shown that verify the circuit that is currently in fabrication in 0.5ym CMOS technology.

  19. Design and operation of a fast electromagnetic inductive massive gas injection valve for NSTX-U.

    PubMed

    Raman, R; Jarboe, T R; Nelson, B A; Gerhardt, S P; Lay, W-S; Plunkett, G J

    2014-11-01

    Results from the operation of an electromagnetic valve, that does not incorporate ferromagnetic materials, are presented. Image currents induced on a conducting disc placed near a pancake solenoid cause it to move away from the solenoid and open the vacuum seal. A new and important design feature is the use of Lip Seals for the sliding piston. The pressure rise in the test chamber is measured directly using a fast time response Baratron gauge. The valve injects over 200 Torr l of nitrogen in less than 3 ms, which remains unchanged at moderate magnetic fields.

  20. Design and operation of a fast electromagnetic inductive massive gas injection valve for NSTX-U

    NASA Astrophysics Data System (ADS)

    Raman, R.; Jarboe, T. R.; Nelson, B. A.; Gerhardt, S. P.; Lay, W.-S.; Plunkett, G. J.

    2014-11-01

    Results from the operation of an electromagnetic valve, that does not incorporate ferromagnetic materials, are presented. Image currents induced on a conducting disc placed near a pancake solenoid cause it to move away from the solenoid and open the vacuum seal. A new and important design feature is the use of Lip Seals for the sliding piston. The pressure rise in the test chamber is measured directly using a fast time response Baratron gauge. The valve injects over 200 Torr l of nitrogen in less than 3 ms, which remains unchanged at moderate magnetic fields.

  1. Effect of reabsorbed recombination radiation on the saturation current of direct gap p-n junctions

    NASA Technical Reports Server (NTRS)

    Von Roos, O.; Mavromatis, H.

    1984-01-01

    The application of the radiative transfer theory for semiconductors to p-n homojunctions subject to low level injection conditions is discussed. By virtue of the interaction of the radiation field with free carriers across the depletion layer, the saturation current density in Shockley's expression for the diode current is reduced at high doping levels. The reduction, due to self-induced photon generation, is noticeable for n-type material owing to the small electron effective mass in direct band-gap III-V compounds. The effect is insignificant in p-type material. At an equilibrium electron concentration of 2 x 10 to the 18th/cu cm in GaAs, a reduction of the saturation current density by 15 percent is predicted. It is concluded that realistic GaAs p-n junctions possess a finite thickness.

  2. Removal of a hydrogenated amorphous carbon film from the tip of a micropipette electrode using direct current corona discharge.

    PubMed

    Kakuta, Naoto; Okuyama, Naoki; Yamada, Yukio

    2010-02-01

    Micropipette electrodes are fabricated by coating glass micropipettes first with metal and then with hydrogenated amorphous carbon (a-C:H) as an electrical insulator. Furthermore, at the tip of the micropipette electrode, the deposited a-C:H film needs to be removed to expose the metal-coated surface and hollow for the purposes of electrical measurement and injection. This paper describes a convenient and reliable method for removing the a-C:H film using direct current corona discharge in atmospheric air. The initial film removal occurred at an applied voltage of 1.5-2.0 kV, accompanied by an abrupt increase in the discharge current. The discharge current then became stable at a microampere level in the glow corona mode, and the removed area gradually extended.

  3. Reaction-space analysis of homogeneous charge compression ignition combustion with varying levels of fuel stratification under positive and negative valve overlap conditions

    DOE PAGES

    Kodavasal, Janardhan; Lavoie, George A.; Assanis, Dennis N.; ...

    2015-10-26

    Full-cycle computational fluid dynamics simulations with gasoline chemical kinetics were performed to determine the impact of breathing and fuel injection strategies on thermal and compositional stratification, combustion and emissions during homogeneous charge compression ignition combustion. The simulations examined positive valve overlap and negative valve overlap strategies, along with fueling by port fuel injection and direct injection. The resulting charge mass distributions were analyzed prior to ignition using ignition delay as a reactivity metric. The reactivity stratification arising from differences in the distributions of fuel–oxygen equivalence ratio (Φ FO), oxygen molar fraction (χ O2) and temperature (T) was determined for threemore » parametric studies. In the first study, the reactivity stratification and burn duration for positive valve overlap valve events with port fuel injection and early direct injection were nearly identical and were dominated by wall-driven thermal stratification. nitrogen oxide (NO) and carbon monoxide (CO) emissions were negligible for both injection strategies. In the second study, which examined negative valve overlap valve events with direct injection and port fuel injection, reactivity stratification increased for direct injection as the Φ FO and T distributions associated with direct fuel injection into the hot residual gas were positively correlated; however, the latent heat absorbed from the hot residual gas by the evaporating direct injection fuel jet reduced the overall thermal and reactivity stratification. These stratification effects were offsetting, resulting in similar reactivity stratification and burn durations for the two injection strategies. The higher local burned gas temperatures with direct injection resulted in an order of magnitude increase in NO, while incomplete combustion of locally over-lean regions led to a sevenfold increase in CO emissions compared to port fuel injection. The final study evaluated positive valve overlap and negative valve overlap valve events with direct injection. Furthermore, relative to positive valve overlap, the negative valve overlap condition had a wider reactivity stratification, a longer burn duration and higher NO and CO emissions associated with reduced fuel–air mixing.« less

  4. Lean direct wall fuel injection method and devices

    NASA Technical Reports Server (NTRS)

    Choi, Kyung J. (Inventor); Tacina, Robert (Inventor)

    2000-01-01

    A fuel combustion chamber, and a method of and a nozzle for mixing liquid fuel and air in the fuel combustion chamber in lean direct injection combustion for advanced gas turbine engines, including aircraft engines. Liquid fuel in a form of jet is injected directly into a cylindrical combustion chamber from the combustion chamber wall surface in a direction opposite to the direction of the swirling air at an angle of from about 50.degree. to about 60.degree. with respect to a tangential line of the cylindrical combustion chamber and at a fuel-lean condition, with a liquid droplet momentum to air momentum ratio in the range of from about 0.05 to about 0.12. Advanced gas turbines benefit from lean direct wall injection combustion. The lean direct wall injection technique of the present invention provides fast, uniform, well-stirred mixing of fuel and air. In addition, in order to further improve combustion, the fuel can be injected at a venturi located in the combustion chamber at a point adjacent the air swirler.

  5. Do flexible inter-injection intervals improve the effects of botulinum toxin A treatment in reducing impairment and disability in patients with spasticity?

    PubMed

    Trompetto, Carlo; Marinelli, Lucio; Mori, Laura; Puce, Luca; Pelosin, Elisa; Serrati, Carlo; Fattapposta, Francesco; Rinalduzzi, Steno; Abbruzzese, Giovanni; Currà, Antonio

    2017-05-01

    In patients treated with botulinum toxin-A (BoNT-A), toxin-directed antibody formation was related to the dosage and frequency of injections, leading to the empirical adoption of minimum time intervals between injections of 3months or longer. However, recent data suggest that low immunogenicity of current BoNT-A preparations could allow more frequent injections. Our hypothesis is that a short time interval between injections may be safe and effective in reducing upper limb spasticity and related disability. IncobotulinumtoxinA was injected under ultrasound guidance in spastic muscles of 11 subjects, who were evaluated just before BoNT-A injection (T0), and 1month (T1), 2months (T2) and 4months (T3) after injecting. At T1, in the case of persistent disability related to spasticity interfering with normal activities, patients received an additional toxin dose. Seven subjects received the additional dose at T1 because of persistent disability; 4 of them had a decrease of disability 1month later (T2). Rethinking the injection scheme for BoNT-A treatment may have a major impact in the management of spasticity and related disability. Future studies with larger sample sizes are warranted to confirm that injection schedules with short time intervals should no longer be discouraged in clinical practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Charge injection and accumulation in organic light-emitting diode with PEDOT:PSS anode

    NASA Astrophysics Data System (ADS)

    Weis, Martin; Otsuka, Takako; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2015-04-01

    Organic light-emitting diode (OLED) displays using flexible substrates have many attractive features. Since transparent conductive oxides do not fit the requirements of flexible devices, conductive polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative. The charge injection and accumulation in OLED devices with PEDOT:PSS anodes are investigated and compared with indium tin oxide anode devices. Higher current density and electroluminescence light intensity are achieved for the OLED device with a PEDOT:PSS anode. The electric field induced second-harmonic generation technique is used for direct observation of temporal evolution of electric fields. It is clearly demonstrated that the improvement in the device performance of the OLED device with a PEDOT:PSS anode is associated with the smooth charge injection and accumulation.

  7. Comparison of gene delivery techniques for therapeutic angiogenesis ultrasound-mediated destruction of carrier microbubbles versus direct intramuscular injection.

    PubMed

    Kobulnik, Jeremy; Kuliszewski, Michael A; Stewart, Duncan J; Lindner, Jonathan R; Leong-Poi, Howard

    2009-10-27

    This study was designed to compare the efficacy of angiogenic gene delivery by ultrasound-mediated (UM) destruction of intravenous carrier microbubbles to direct intramuscular (IM) injections. Current trials of gene therapy for angiogenesis remain limited by suboptimal, invasive delivery techniques. Hind-limb ischemia was produced by iliac artery ligation in 99 rats. In 32 rats, UM delivery of green fluorescent protein (GFP)/vascular endothelial growth factor-165 (VEGF(165)) plasmid deoxyribonucleic acid was performed. Thirty-five animals received IM injections of VEGF(165)/GFP plasmid. Remaining rats received no treatment. Before delivery (day 14 after ligation) and at days 17, 21, and 28 and week 8 after ligation, microvascular blood volume and microvascular blood flow to the proximal hind limbs were assessed by contrast-enhanced ultrasound (n = 8 per group). Total transfection was assessed by reverse transcriptase-polymerase chain reaction, and localization of transfection was determined by immunohistochemistry. By day 28, both IM and UM delivery of VEGF(165) produced significant increases in microvascular blood volume and microvascular blood flow. Whereas increases in microvascular blood volume were similar between treatment groups, microvascular blood flow was greater (p < 0.005) in UM-treated animals as compared with IM-treated animals, persisting to week 8. The VEGF(165)/GFP messenger ribonucleic acid expression was greater (p < 0.05) for IM-treated animals. A strong GFP signal was detected for both groups and was localized to focal perivascular regions and myocytes around injection sites for IM and to the vascular endothelium of arterioles/capillaries in a wider distribution for UM delivery. Despite lower transfection levels, UM delivery of VEGF(165) is as effective as IM injections. The UM delivery results in directed vascular transfection over a wider distribution, which may account for the more efficient angiogenesis.

  8. Theoretical aspects for estimating anisotropic saturated hydraulic conductivity from in-well or direct-push probe injection tests in uniform media

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Layton, Leif; Nemer, Bassel; Hatfield, Kirk; Mohseni, Ana

    2017-06-01

    Hydraulic conductivity and its anisotropy are fundamental aquifer properties for groundwater flow and transport modeling. Current in-well or direct-push field measurement techniques allow for relatively quick determination of general conductivity profiles with depth. However, capabilities for identifying local scale conductivities in the horizontal and vertical directions are very limited. Here, we develop the theoretical basis for estimating horizontal and vertical conductivities from different types of steady-state single-well/probe injection tests under saturated conditions and in the absence of a well skin. We explore existing solutions and a recent semi-analytical solution approach to the flow problem under the assumption that the aquifer is locally homogeneous. The methods are based on the collection of an additional piece of information in the form of a second injection (or recirculation) test at a same location, or in the form of an additional head or flow observation along the well/probe. Results are represented in dimensionless charts for partial validation against approximate solutions and for practical application to test interpretation. The charts further allow for optimization of a test configuration to maximize sensitivity to anisotropy ratio. The two methods most sensitive to anisotropy are found to be (1) subsequent injection from a lateral screen and from the bottom of an otherwise cased borehole, and (2) single injection from a lateral screen with an additional head observation along the casing. Results may also be relevant for attributing consistent divergences in conductivity measurements from different testing methods applied at a same site or location to the potential effects of anisotropy. Some practical aspects are discussed and references are made to existing methods, which appear easily compatible with the proposed procedures.

  9. Direct electron injection into an oxide insulator using a cathode buffer layer

    PubMed Central

    Lee, Eungkyu; Lee, Jinwon; Kim, Ji-Hoon; Lim, Keon-Hee; Seok Byun, Jun; Ko, Jieun; Dong Kim, Young; Park, Yongsup; Kim, Youn Sang

    2015-01-01

    Injecting charge carriers into the mobile bands of an inorganic oxide insulator (for example, SiO2, HfO2) is a highly complicated task, or even impossible without external energy sources such as photons. This is because oxide insulators exhibit very low electron affinity and high ionization energy levels. Here we show that a ZnO layer acting as a cathode buffer layer permits direct electron injection into the conduction bands of various oxide insulators (for example, SiO2, Ta2O5, HfO2, Al2O3) from a metal cathode. Studies of current–voltage characteristics reveal that the current ohmically passes through the ZnO/oxide-insulator interface. Our findings suggests that the oxide insulators could be used for simply fabricated, transparent and highly stable electronic valves. With this strategy, we demonstrate an electrostatic discharging diode that uses 100-nm SiO2 as an active layer exhibiting an on/off ratio of ∼107, and protects the ZnO thin-film transistors from high electrical stresses. PMID:25864642

  10. Testicular Busulfan Injection in Mice to Prepare Recipients for Spermatogonial Stem Cell Transplantation Is Safe and Non-Toxic.

    PubMed

    Qin, YuSheng; Liu, Ling; He, YaNan; Wang, Chen; Liang, MingYuan; Chen, XiaoLi; Hao, HaiSheng; Qin, Tong; Zhao, XueMing; Wang, Dong

    2016-01-01

    Current methods of administering busulfan to remove the endogenous germ cells cause hematopoietic toxicity, require special instruments and a narrow transplantation time. We use a direct testicular injection of busulfan method for preparing recipients for SSC transplantation. Male ICR mice (recipients) were divided into four groups, and two experimental groups were treated with a bilateral testicular injection of 4 or 6 mg/kg/side busulfan (n = 60 per concentration group). Mice received an intraperitoneal injection (i.p.) of 40 mg/kg busulfan (n = 60, positive control) and bilateral testicular injections of 50% DMSO (n = 60, negative control). Donor SSCs from RFP-transgenic C57BL/6J mice were introduced into the seminiferous tubules of each recipient testis via efferent duct injection on day 16-17 after busulfan treatment. Recipient mice mated with mature female ICR mice and the number of progeny was recorded. The index detected at day 14, 21, 28, 35 and 70 after busulfan treatment. Blood analysis shows that the toxicity of busulfan treated groups was much lower than i.p. injection groups. Fertility was restored in mice treated with busulfan and donor-derived offspring were obtained after SSC transplantation. Our study indicated that intratesticular injection busulfan for the preparation of recipients in mice is safe and feasible.

  11. Efficacy of Direct Injection of Etanercept into Knee Joints for Pain in Moderate and Severe Knee Osteoarthritis

    PubMed Central

    Orita, Sumihisa; Yamauchi, Kazuyo; Eguchi, Yawara; Ochiai, Nobuyasu; Kishida, Shunji; Kuniyoshi, Kazuki; Aoki, Yasuchika; Nakamura, Junichi; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Kamoda, Hiroto; Suzuki, Miyako; Kubota, Gou; Sakuma, Yoshihiro; Oikawa, Yasuhiro; Inage, Kazuhide; Sainoh, Takeshi; Sato, Jun; Shiga, Yasuhiro; Abe, Koki; Fujimoto, Kazuki; Kanamoto, Hiroto; Toyone, Tomoaki; Inoue, Gen; Takahashi, Kazuhisa

    2015-01-01

    Purpose Osteoarthritic (OA) pain is largely considered to be inflammatory pain. However, during the last stage of knee OA, sensory nerve fibers in the knee are shown to be significantly damaged when the subchondral bone junction is destroyed, and this can induce neuropathic pain. Several authors have reported that tumor necrosis factor-α (TNFα) in a knee joint plays a crucial role in pain modulation. The purpose of the current study was to evaluate the efficacy of etanercept, a TNFα inhibitor, for pain in knee OA. Materials and Methods Thirty-nine patients with knee OA and a 2-4 Kellgren-Lawrence grading were evaluated in this prospective study. Patients were divided into two groups; hyaluronic acid (HA) and etanercept injection. All patients received a single injection into the knee. Pain scores were evaluated before and 4 weeks after injection using a visual analogue scale (VAS) and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and they were compared between the groups. Results Before injection, VAS and WOMAC scores were not significantly different between the groups (p>0.05). Significant pain relief was found in the etanercept group at 1 and 2 weeks by VAS, and at 4 weeks by WOMAC score, compared with the HA group (p<0.05). No adverse events were observed in either group. Conclusion Direct injection of etanercept into OA knee joints was an effective treatment for pain in moderate and severe OA patients. Furthermore, this finding suggests that TNFα is one factor that induces OA pain. PMID:26256983

  12. THE DETERMINATION OF MERCURY AND MULTIPLE METALS IN DIETARY MATRICES USING DIRECT INJECTION NEBULIZATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY (DIN-ICP/MS)

    EPA Science Inventory

    Mercury (Hg) is a Persistent Bioaccumulative Toxin. Currently, low-level mercury (Hg) and low-level multiple-metals analyses require separate methods. Due to the high costs of performing both types of analyses, research planners often have to choose one or the other. For examp...

  13. EVALUATION OF IODINE BASED IMPINGER SOLUTIONS FOR THE EFFICIENT CAPTURE OF HG USING DIRECT INJECTION NEBULIZATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY (DIN-ICP/MS) ANALYSIS

    EPA Science Inventory

    Currently there are no EPA reference sampling methods that have been promulgated for measuring stack emissions of Hg from coal combustion sources, however, EPA Method 29 is most commonly applied. The draft ASTM Ontario Hydro Method for measuring oxidized, elemental, particulate-b...

  14. IMPINGER SOLUTIONS FOR THE EFFICIENT CAPTURE OF GASEOUS MERCURY SPECIES USING DIRECT INJECTION NEBULIZATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY (DIN-ICP/MS) ANALYSIS

    EPA Science Inventory

    Currently there are no EPA reference sampling mehtods that have been promulgated for measuring Hg from coal combustion sources. EPA Method 29 is most commonly applied. The ASTM Ontario Hydro Draft Method for measuring oxidized, elemental, particulate-bound and total Hg is now und...

  15. Effects of interface electric field on the magnetoresistance in spin devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanamoto, T., E-mail: tetsufumi.tanamoto@toshiba.co.jp; Ishikawa, M.; Inokuchi, T.

    2014-04-28

    An extension of the standard spin diffusion theory is presented by using a quantum diffusion theory via a density-gradient (DG) term that is suitable for describing interface quantum tunneling phenomena. The magnetoresistance (MR) ratio is greatly modified by the DG term through an interface electric field. We have also carried out spin injection and detection measurements using four-terminal Si devices. The local measurement shows that the MR ratio changes depending on the current direction. We show that the change of the MR ratio depending on the current direction comes from the DG term regarding the asymmetry of the two interfacemore » electronic structures.« less

  16. Studies of beam injection with a compensated bump and uncompensated bump in a synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbar Fakhri, Ali; Prajapati, S. K.; Ghodke, A. D.

    2013-08-15

    Synchrotron radiation sources Indus-1 and Indus-2 have a synchrotron as the common injector. A three kicker compensated bump injection scheme was employed for beam injection into this synchrotron. The stored beam current in the synchrotron is higher, when all the three kickers are operated at the same current than when kickers are operated at currents required to generate compensated bump. Beam dynamics studies have been done to understand why this happens. Theoretical studies indicate that higher stored current in the later case is attributed to smaller residual oscillations of injected beam. These studies also reveal that if the angle ofmore » the injected beam during beam injection is kept varying, the performance could be further improved. This is experimentally confirmed by injecting the beam on rising part of the injection septum magnet current pulse.« less

  17. Thermally-enhanced oil recovery method and apparatus

    DOEpatents

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  18. Improving measurement of injection drug risk behavior using item response theory.

    PubMed

    Janulis, Patrick

    2014-03-01

    Recent research highlights the multiple steps to preparing and injecting drugs and the resultant viral threats faced by drug users. This research suggests that more sensitive measurement of injection drug HIV risk behavior is required. In addition, growing evidence suggests there are gender differences in injection risk behavior. However, the potential for differential item functioning between genders has not been explored. To explore item response theory as an improved measurement modeling technique that provides empirically justified scaling of injection risk behavior and to examine for potential gender-based differential item functioning. Data is used from three studies in the National Institute on Drug Abuse's Criminal Justice Drug Abuse Treatment Studies. A two-parameter item response theory model was used to scale injection risk behavior and logistic regression was used to examine for differential item functioning. Item fit statistics suggest that item response theory can be used to scale injection risk behavior and these models can provide more sensitive estimates of risk behavior. Additionally, gender-based differential item functioning is present in the current data. Improved measurement of injection risk behavior using item response theory should be encouraged as these models provide increased congruence between construct measurement and the complexity of injection-related HIV risk. Suggestions are made to further improve injection risk behavior measurement. Furthermore, results suggest direct comparisons of composite scores between males and females may be misleading and future work should account for differential item functioning before comparing levels of injection risk behavior.

  19. The evolution of the storm-time ring current in response to different characteristics of the plasma source

    NASA Astrophysics Data System (ADS)

    Lemon, C.; Chen, M.; O'Brien, T. P.; Toffoletto, F.; Sazykin, S.; Wolf, R.; Kumar, V.

    2006-12-01

    We present simulation results of the Rice Convection Model-Equilibrium (RCM-E) that test and compare the effect on the storm time ring current of varying the plasma sheet source population characteristics at 6.6 Re during magnetic storms. Previous work has shown that direct injection of ionospheric plasma into the ring current is not a significant source of ring current plasma, suggesting that the plasma sheet is the only source. However, storm time processes in the plasma sheet and inner magnetosphere are very complex, due in large part to the feedback interactions between the plasma distribution, magnetic field, and electric field. We are particularly interested in understanding the role of the plasma sheet entropy parameter (PV^{5/3}, where V=\\int ds/B) in determining the strength and distribution of the ring current in both the main and recovery phases of a storm. Plasma temperature and density can be measured from geosynchrorous orbiting satellites, and these are often used to provide boundary conditions for ring current simulations. However, magnetic field measurements in this region are less commonly available, and there is a relatively poor understanding of the interplay between the plasma and the magnetic field during magnetic storms. The entropy parameter is a quantity that incorporates both the plasma and the magnetic field, and understanding its role in the ring current injection and recovery is essential to describing the processes that are occuring during magnetic storms. The RCM-E includes the physics of feedback between the plasma and both the electric and magnetic fields, and is therefore a valuable tool for understanding these complex storm-time processes. By contrasting the effects of different plasma boundary conditions at geosynchronous orbit, we shed light on the physical processes involved in ring current injection and recovery.

  20. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOEpatents

    Fisch, Nathaniel J.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma.

  1. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOEpatents

    Bers, Abraham

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma.

  2. Direct comparison of administration routes for AAV8-mediated ocular gene therapy.

    PubMed

    Igarashi, Tsutomu; Miyake, Koichi; Asakawa, Nagisa; Miyake, Noriko; Shimada, Takashi; Takahashi, Hiroshi

    2013-05-01

    We recently demonstrated that direct subretinal (SR) injection of adeno-associated virus (AAV) type 8 (AAV8) into photoreceptor cells and retinal pigment epithelium (RPE) is a highly efficient model of gene delivery. The current study compared transduction efficiency and expression patterns associated with various routes of vector administration. The efficacy of intravitreal (VT), SR and subconjunctival (SC) injections for delivery of AAV8-derived vectors, i.e. those expressing luciferase (Luc) and enhanced green fluorescent protein (GFP) - AAV8/Luc and AAV8/GFP, respectively - were compared in an animal (mouse) model (n = 8 mice/group). Transduction efficiency and expression patterns were examined at post-injection weeks 1 and 2, and months 1, 3, 6 and 12 via in vivo imaging. One year after AAV injection, AAV8/Luc-treated mice exhibited stable and sustained high expression of vector in the VT and SR groups, but not in the SC group (VT:SR:SC = 3,218:2,923:115; 1 × 10(5 )photons/s). Histological analysis showed that GFP expression was observed in the inner retina of VT group mice, and in photoreceptor cells and RPE of SR group mice, whereas no GFP expression was noted in the SC group. Electroretinography (ERG) revealed adverse effects following SR delivery. Results suggest that both SR and VT injections of AAV8 vectors are useful routes for administering ocular gene therapy, and stress the importance of selecting an appropriate administration route, i.e. one that targets specific cells, for treating ocular disorders.

  3. Status of the laser ion source at IMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sha, S.; Graduate University of Chinese Academy of Sciences, Beijing 100049; School of Nuclear science and technology, Lanzhou University, Lanzhou 73000

    2012-02-15

    A laser (Nd:YAG laser, 3 J, 1064 nm, 8-10 ns) ion source has been built and under development at IMP to provide pulsed high-charge-state heavy ion beams to a radio frequency quadrupole (RFQ) for upgrading the IMP accelerators with a new low-energy beam injector. The laser ion source currently operates in a direct plasma injection scheme to inject the high charge state ions produced from a solid target into the RFQ. The maximum power density on the target was about 8.4 x 10{sup 12} W/cm{sup 2}. The preliminary experimental results will be presented and discussed in this paper.

  4. Development of an Ethanol Blend Two-Stroke Direct-Injection Snowmobile for Use in the Clean Snowmobile Challenge and National Parks

    DOT National Transportation Integrated Search

    2010-09-01

    The University of Idaho's entry into the 2010 SAE Clean Snowmobile Challenge (CSC) was a direct-injection (DI) two-stroke powered snowmobile modified to use blended ethanol fuel. The modulated and battery-less direct-injection system used to decrease...

  5. Thermal management and light extraction in multi-chip and high-voltage LEDs by cup-shaped copper heat spreader technology

    NASA Astrophysics Data System (ADS)

    Horng, Ray-Hua; Hu, Hung-Lieh; Tang, Li-Shen; Ou, Sin-Liang

    2013-03-01

    For LEDs with original structure and copper heat spreader, the highest surface temperatures of 3×3 array LEDs modules were 52.6 and 42.67 °C (with 1050 mA injection current), while the highest surface temperatures of 4×4 array LEDs modules were 58.55 and 48.85 °C (with 1400 mA injection current), respectively. As the 5×5 array LEDs modules with original structure and copper heat spreader were fabricated, the highest surface temperatures at 1750 mA injection current were 68.51 and 56.73 °C, respectively. The thermal resistance of optimal LEDs array module with copper heat spreader on heat sink using compound solder is reduced obviously. On the other hand, the output powers of 3×3, 4×4 and 5×5 array LEDs modules with original structure were 3621.7, 6346.3 and 9760.4 mW at injection currents of 1050, 1400 and 1750 mA, respectively. Meanwhile, the output powers of these samples with copper heat spreader can be improved to 4098.5, 7150.3 and 10919.6 mW, respectively. The optical and thermal characteristics of array LEDs module have been improved significantly using the cup-shaped copper structure. Furthermore, various types of epoxy-packaged LEDs with cup-shaped structure were also fabricated. It is found that the light extraction efficiency of LED with semicircle package has 55% improvement as compared to that of LED with flat package. The cup-shaped copper structure was contacted directly with sapphire to enhance heat dissipation. In addition to efficient heat dissipation, the light extraction of the lateral emitting in high-power LEDs can be improved.

  6. Charge injection and accumulation in organic light-emitting diode with PEDOT:PSS anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weis, Martin, E-mail: martin.weis@stuba.sk; Otsuka, Takako; Taguchi, Dai

    2015-04-21

    Organic light-emitting diode (OLED) displays using flexible substrates have many attractive features. Since transparent conductive oxides do not fit the requirements of flexible devices, conductive polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative. The charge injection and accumulation in OLED devices with PEDOT:PSS anodes are investigated and compared with indium tin oxide anode devices. Higher current density and electroluminescence light intensity are achieved for the OLED device with a PEDOT:PSS anode. The electric field induced second-harmonic generation technique is used for direct observation of temporal evolution of electric fields. It is clearly demonstrated that the improvement in the devicemore » performance of the OLED device with a PEDOT:PSS anode is associated with the smooth charge injection and accumulation.« less

  7. Validated ¹H and 13C Nuclear Magnetic Resonance Methods for the Quantitative Determination of Glycerol in Drug Injections.

    PubMed

    Lu, Jiaxi; Wang, Pengli; Wang, Qiuying; Wang, Yanan; Jiang, Miaomiao

    2018-05-15

    In the current study, we employed high-resolution proton and carbon nuclear magnetic resonance spectroscopy (¹H and 13 C NMR) for quantitative analysis of glycerol in drug injections without any complex pre-treatment or derivatization on samples. The established methods were validated with good specificity, linearity, accuracy, precision, stability, and repeatability. Our results revealed that the contents of glycerol were convenient to calculate directly via the integration ratios of peak areas with an internal standard in ¹H NMR spectra, while the integration of peak heights were proper for 13 C NMR in combination with an external calibration of glycerol. The developed methods were both successfully applied in drug injections. Quantitative NMR methods showed an extensive prospect for glycerol determination in various liquid samples.

  8. Miniaturized flow injection analysis system

    DOEpatents

    Folta, James A.

    1997-01-01

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  9. NACE-ESI-TOF MS to reveal phenolic compounds from olive oil: introducing enriched olive oil directly inside capillary.

    PubMed

    Gómez-Caravaca, Ana María; Carrasco-Pancorbo, Alegría; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2009-09-01

    Most CE methods for the analysis of phenols from olive oil use an aqueous electrolyte separation medium, although the importance of NACE is obvious, as this kind of CE seems to be more compatible with the hydrophobic olive oil matrix and could facilitate its direct injection. In the current work we develop a method involving SPE and NACE coupled to ESI-TOF MS. All the CE and ESI-TOF MS parameters were optimized in order to maximize the number of phenolic compounds detected and the sensitivity in their determination. Electrophoretic separation was carried out using a CE buffer system consisting of 25 mM NH(4)OAc/AcH in methanol/ACN (1/1 v/v) at an apparent pH value of 5.0. We studied in depth the effect of the nature and concentration of different electrolytes dissolved in different organic solvents and other experimental and instrumental CE variables. The results were compared with those obtained by CZE (with aqueous buffers) coupled to ESI-TOF MS; both methods offered to the analyst the chance to study phenolic compounds of different families (such as phenolic alcohols, lignans, complex phenols, flavonoids, etc.) from virgin olive oil by injecting methanolic extracts with efficient and fast CE separations. In the case of NACE method, we also studied the direct injection of the investigated matrix introducing a plug of olive oil directly into the capillary.

  10. Neurotensin inversely modulates maternal aggression

    PubMed Central

    Gammie, Stephen C.; D’Anna, Kimberly L.; Gerstein, Hilary; Stevenson, Sharon A.

    2008-01-01

    Neurotensin (NT) is a versatile neuropeptide involved in analgesia, hypothermia, and schizophrenia. Although NT is released from and acts upon brain regions involved in social behaviors, it has not been linked to a social behavior. We previously selected mice for high maternal aggression (maternal defense), an important social behavior that protects offspring, and found significantly lower NT expression in the CNS of highly protective females. Our current study directly tested NT’s role in maternal defense. Intracerebroventricular (icv) injections of NT significantly impaired defense in terms of time aggressive and number of attacks at all doses tested (0.05, 0.1, 1.0, and 3.0 μg). Other maternal behaviors, including pup retrieval, were unaltered following NT injections (0.05 μg) relative to vehicle, suggesting specificity of NT action on defense. Further, icv injections of the NT receptor 1 (NT1) antagonist, SR 48692 (30 μg), significantly elevated maternal aggression in terms of time aggressive and attack number. To understand where NT may regulate aggression, we examined Fos following injection of either 0.1 μg NT or vehicle. 13 of 26 brain regions examined exhibited significant Fos increases with NT, including regions expressing NT1 and previously implicated in maternal aggression, such as lateral septum, bed nucleus of stria terminalis, paraventricular nucleus, and central amygdala. Together, our results indicate that NT inversely regulates maternal aggression and provide the first direct evidence that lowering of NT signaling can be a mechanism for maternal aggression. To our knowledge, this is the first study to directly link NT to a social behavior. PMID:19118604

  11. Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response

    NASA Astrophysics Data System (ADS)

    Iorsh, Ivan; Glauser, Marlene; Rossbach, Georg; Levrat, Jacques; Cobet, Munise; Butté, Raphaël; Grandjean, Nicolas; Kaliteevski, Mikhail A.; Abram, Richard A.; Kavokin, Alexey V.

    2012-09-01

    The main emission characteristics of electrically driven polariton lasers based on planar GaN microcavities with embedded InGaN quantum wells are studied theoretically. The polariton emission dependence on pump current density is first modeled using a set of semiclassical Boltzmann equations for the exciton polaritons that are coupled to the rate equation describing the electron-hole plasma population. Two experimentally relevant pumping geometries are considered, namely the direct injection of electrons and holes into the strongly coupled microcavity region and intracavity optical pumping via an embedded light-emitting diode. The theoretical framework allows the determination of the minimum threshold current density Jthr,min as a function of lattice temperature and exciton-cavity photon detuning for the two pumping schemes. A Jthr,min value of 5 and 6 A cm-2 is derived for the direct injection scheme and for the intracavity optical pumping one, respectively, at room temperature at the optimum detuning. Then an approximate quasianalytical model is introduced to derive solutions for both the steady-state and high-speed current modulation. This analysis makes it possible to show that the exciton population, which acts as a reservoir for the stimulated relaxation process, gets clamped once the condensation threshold is crossed, a behavior analogous to what happens in conventional laser diodes with the carrier density above threshold. Finally, the modulation transfer function is calculated for both pumping geometries and the corresponding cutoff frequency is determined.

  12. Top-Off Injection and Higher Currents at the Stanford Synchrotron Radiation Lightsource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Johannes M.; Liu, James C.; Prinz, Alyssa A.

    2011-04-05

    The Stanford Synchrotron Radiation Lightsource (SSRL) at the SLAC National Accelerator Laboratory is a 234 m circumference storage ring for 3 GeV electrons with its synchrotron radiation serving currently 13 beamlines with about 27 experimental stations. It operated for long time with 100 mA peak current provided by usually three injections per day. In July 2009, the maximum beam current was raised to 200 mA. Over the period from June 2009 to March 2010, Top-Off operation started at every beamline. Top-Off, i.e., the injection of electrons into the storage ring with injection stoppers open, is necessary for SSRL to reachmore » its design current of 500 mA. In the future, the maximal power of the injection current will also soon be raised from currently 1.5 W to 5 W. The Radiation Protection Department at SLAC worked with SSRL on the specifications for the safety systems for operation with Top-Off injection and higher beam currents.« less

  13. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Computer model for quasioptic waveguide lasers

    NASA Astrophysics Data System (ADS)

    Wenzel, H.; Wünsche, H. J.

    1988-11-01

    A description is given of a numerical model of a semiconductor laser with a quasioptic waveguide (index guide). This model can be used on a personal computer. The model can be used to find the radiation field distributions in the vertical and lateral directions, the pump currents at the threshold, and also to solve dynamic rate equations.

  14. 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication.

    PubMed

    Lee, Changmin; Zhang, Chong; Cantore, Michael; Farrell, Robert M; Oh, Sang Ho; Margalith, Tal; Speck, James S; Nakamura, Shuji; Bowers, John E; DenBaars, Steven P

    2015-06-15

    We demonstrate high-speed data transmission with a commercial high power GaN laser diode at 450 nm. 2.6 GHz bandwidth was achieved at an injection current of 500 mA using a high-speed visible light communication setup. Record high 4 Gbps free-space data transmission rate was achieved at room temperature.

  15. Survey of inlet noise reduction concepts for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Lansing, D. L.; Chestnutt, D.

    1976-01-01

    This paper presents an overview of advanced concepts for the suppression of noise in the inlets of gas turbine engines. Noise suppression concepts are described, the directions of current research are reviewed, and problem areas requiring further work are indicated. The discussion focuses on acoustic liners, high Mach number inlets, active acoustic absorption, water vapor injection, and blade row reflection.

  16. Fabrication of Vertical Organic Light-Emitting Transistor Using ZnO Thin Film

    NASA Astrophysics Data System (ADS)

    Yamauchi, Hiroshi; Iizuka, Masaaki; Kudo, Kazuhiro

    2007-04-01

    Organic light-emitting diodes (OLEDs) combined with thin film transistor (TFT) are well suitable elements for low-cost, large-area active matrix displays. On the other hand, zinc oxide (ZnO) is a transparent material and its electrical conductivity is controlled from conductive to insulating by growth conditions. The drain current of ZnO FET is 180 μA. The OLED uses ZnO thin film (Al-doped) for the electron injection layer and is controlled by radio frequency (rf) and direct current (dc) sputtering conditions, such as Al concentration and gas pressure. Al concentration in the ZnO film and deposition rate have strong effects on electron injection. Furthermore, the OLED driven by ZnO FET shows a luminance of 13 cd/m2, a luminance efficiency of 0.7 cd/A, and an on-off ratio of 650.

  17. [Could it be a little less? Let the dose of thiopental in euthanasia depend on the body weight].

    PubMed

    Sprij, Bram

    2010-01-01

    The Dutch 'euthanasia and assisted suicide' practice guideline advises using 2000 mg thiopental to induce coma, followed by a muscle relaxant to cause death by respiratory paralysis. However, when a doctor administers such a high dose of thiopental as a bolus injection to a cachectic patient, there is a high likelihood of immediate death and other side effects, which can be distressing for the family. Doctors who administered less than 2000 mg have been reprimanded for not working according to current standards. Arguments are given concerning in which circumstances it is reasonable to use the advised dose of 2000 mg of thiopental and when to use less thiopental to induce coma by direct intravenous injection. The author suggests that it may be better to adjust the dose of thiopental according to the body weight of the patient. The current practice guideline needs revision.

  18. Effective gene expression in the rat dorsal root ganglia with a non-viral vector delivered via spinal nerve injection

    PubMed Central

    Chang, Ming-Fong; Hsieh, Jung-Hsien; Chiang, Hao; Kan, Hung-Wei; Huang, Cho-Min; Chellis, Luke; Lin, Bo-Shiou; Miaw, Shi-Chuen; Pan, Chun-Liang; Chao, Chi-Chao; Hsieh, Sung-Tsang

    2016-01-01

    Delivering gene constructs into the dorsal root ganglia (DRG) is a powerful but challenging therapeutic strategy for sensory disorders affecting the DRG and their peripheral processes. The current delivery methods of direct intra-DRG injection and intrathecal injection have several disadvantages, including potential injury to DRG neurons and low transfection efficiency, respectively. This study aimed to develop a spinal nerve injection strategy to deliver polyethylenimine mixed with plasmid (PEI/DNA polyplexes) containing green fluorescent protein (GFP). Using this spinal nerve injection approach, PEI/DNA polyplexes were delivered to DRG neurons without nerve injury. Within one week of the delivery, GFP expression was detected in 82.8% ± 1.70% of DRG neurons, comparable to the levels obtained by intra-DRG injection (81.3% ± 5.1%, p = 0.82) but much higher than those obtained by intrathecal injection. The degree of GFP expression by neurofilament(+) and peripherin(+) DRG neurons was similar. The safety of this approach was documented by the absence of injury marker expression, including activation transcription factor 3 and ionized calcium binding adaptor molecule 1 for neurons and glia, respectively, as well as the absence of behavioral changes. These results demonstrated the efficacy and safety of delivering PEI/DNA polyplexes to DRG neurons via spinal nerve injection. PMID:27748450

  19. Testicular Busulfan Injection in Mice to Prepare Recipients for Spermatogonial Stem Cell Transplantation Is Safe and Non-Toxic

    PubMed Central

    Qin, YuSheng; Liu, Ling; He, YaNan; Wang, Chen; Liang, MingYuan; Chen, XiaoLi; Hao, HaiSheng; Qin, Tong; Zhao, XueMing; Wang, Dong

    2016-01-01

    Current methods of administering busulfan to remove the endogenous germ cells cause hematopoietic toxicity, require special instruments and a narrow transplantation time. We use a direct testicular injection of busulfan method for preparing recipients for SSC transplantation. Male ICR mice (recipients) were divided into four groups, and two experimental groups were treated with a bilateral testicular injection of 4 or 6 mg/kg/side busulfan (n = 60 per concentration group). Mice received an intraperitoneal injection (i.p.) of 40 mg/kg busulfan (n = 60, positive control) and bilateral testicular injections of 50% DMSO (n = 60, negative control). Donor SSCs from RFP-transgenic C57BL/6J mice were introduced into the seminiferous tubules of each recipient testis via efferent duct injection on day 16–17 after busulfan treatment. Recipient mice mated with mature female ICR mice and the number of progeny was recorded. The index detected at day 14, 21, 28, 35 and 70 after busulfan treatment. Blood analysis shows that the toxicity of busulfan treated groups was much lower than i.p. injection groups. Fertility was restored in mice treated with busulfan and donor-derived offspring were obtained after SSC transplantation. Our study indicated that intratesticular injection busulfan for the preparation of recipients in mice is safe and feasible. PMID:26871566

  20. Profiling of the injected charge drift current transients by cross-sectional scanning technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaubas, E., E-mail: eugenijus.gaubas@ff.vu.lt; Ceponis, T.; Pavlov, J.

    2014-02-07

    The electric field distribution and charge drift currents in Si particle detectors are analyzed. Profiling of the injected charge drift current transients has been implemented by varying charge injection position within a cross-sectional boundary of the particle detector. The obtained profiles of the induction current density and duration of the injected charge drift pulses fit well the simulated current variations. Induction current transients have been interpreted by different stages of the bipolar and monopolar drift of the injected carriers. Profiles of the injected charge current transients registered in the non-irradiated and neutron irradiated Si diodes are compared. It has beenmore » shown that the mixed regime of the competing processes of drift, recombination, and diffusion appears in the measured current profiles on the irradiated samples. The impact of the avalanche effects can be ignored based on the investigations presented. It has been shown that even a simplified dynamic model enabled us to reproduce the main features of the profiled transients of induced charge drift current.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dong, E-mail: wang.dong.539@m.kyushu-u.ac.jp; Maekura, Takayuki; Kamezawa, Sho

    We demonstrated direct band gap (DBG) electroluminescence (EL) at room temperature from n-type bulk germanium (Ge) using a fin type asymmetric lateral metal/Ge/metal structure with TiN/Ge and HfGe/Ge contacts, which was fabricated using a low temperature (<400 °C) process. Small electron and hole barrier heights were obtained for TiN/Ge and HfGe/Ge contacts, respectively. DBG EL spectrum peaked at 1.55 μm was clearly observed even at a small current density of 2.2 μA/μm. Superlinear increase in EL intensity was also observed with increasing current density, due to superlinear increase in population of elections in direct conduction band. The efficiency of hole injection was alsomore » clarified.« less

  2. Direct visualization and in-depth physical study of metal filament formation in percolated high-κ dielectrics

    NASA Astrophysics Data System (ADS)

    Li, X.; Pey, K. L.; Bosman, M.; Liu, W. H.; Kauerauf, T.

    2010-01-01

    The migration of Ta atoms from a transistor gate electrode into the percolated high-κ (HK) gate dielectrics is directly shown using transmission electron microscopy analysis. A nanoscale metal filament that formed under high current injection is identified to be the physical defect responsible for the ultrafast transient breakdown (BD) of the metal-gate/high-κ (MG/HK) gate stacks. This highly conductive metal filament poses reliability concerns for MG/HK gate stacks as it significantly reduces the post-BD reliability margin of a transistor.

  3. Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

    DOE PAGES

    Dempsey, Adam B.; Curran, Scott; Reitz, Rolf D.

    2015-04-14

    The focus of the present paper was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over amore » variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition. The experiments were conducted on a modern four cylinder light-duty diesel engine that was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. The results indicate that the authority to control the combustion phasing through the fuel delivery strategy (e.g., direct injection timing or premixed gasoline percentage) is not a strong function of the EHN concentration in the direct-injected fuel. It was also observed that NOx emissions are a strong function of the global EHN concentration in-cylinder and the combustion phasing. Finally, in general, NOx emissions are significantly elevated for gasoline/gasoline+EHN operation compared with gasoline/diesel RCCI operation at a given operating condition.« less

  4. Exploratory behavior and withdrawal signs in crayfish: chronic central morphine injections and termination effects.

    PubMed

    Imeh-Nathaniel, Adebobola; Okon, Marvin; Huber, Robert; Nathaniel, Thomas I

    2014-05-01

    Functional and evolutionary conservation of neural circuits of reward seeking >is a symbol of survival. It is found in most animals from insects to humans. Exploration is a component of a wide range of drug-elicited behaviors that reflects an appetitive motivational state when animals seek natural rewards such as food, water, and shelter for survival. Not only does the characterization of exploratory behaviors indicate the specific components of appetitive motor patterns, it also reveals how exploratory behavioral patterns are implemented via increased incentive salience of environmental stimuli. The current work demonstrates that novel stimuli appear to directly augment exploration in crayfish, while injections of morphine directly into the brain of crayfish enhanced robust arousal resulting in increased locomotion and exploration of the environment. Elimination of morphine suppressed exploratory motor patterns. Crayfish displayed atypical behavioral changes evident of withdrawal-like states when saline is injected into the brain. With proven evidence of rewarding to the exposure to mammalian drugs of abuse, modularly organized and experimentally accessible nervous system makes crayfish exceptionally suitable for characterizing the central workings of addiction at its key behavioral and neuroanatomic locations. Published by Elsevier B.V.

  5. The role of MHD in 3D aspects of massive gas injection

    DOE PAGES

    Izzo, Valerie A.; Parks, P. B.; Eidietis, Nicholas W.; ...

    2015-06-26

    Simulations of massive gas injection (MGI) for disruption mitigation in DIII-D are carried out to compare the toroidal peaking of radiated power for the cases of one and two gas jets. The radiation toroidal peaking factor (TPF) results from a combination of the distribution of impurities and the distribution of heat flux associated with then =1 mode. The injected impurities are found to spread helically along field lines preferentially toward the high-field-side, which is explained in terms of a nozzle equation. In light of this mechanism, reversing the current direction also reverses the toroidal direction of impurity spreading. During themore » pre-thermal quench phase of the disruption, the toroidal peaking of radiated power is reduced in the straightforward manner by increasing from one to two gas jets. However, during the thermal quench phase, reduction in the TPF is achieved only for a particular arrangement of the two gas valves with respect to the field line pitch. In particular, the relationship between the two valve locations and the 1/1 mode phase is critical, where gas valve spacing that is coherent with 1/1 symmetry effectively reduces TPF.« less

  6. New Fusion Concept Using Coaxial Passing Through Each Other Self-focusing Colliding Beams (Invention)

    NASA Astrophysics Data System (ADS)

    Chikvashvili, Ioseb

    2011-10-01

    In proposed Concept it is offered to use two ion beams directed coaxially at the same direction but with different velocities (center-of-mass collision energy should be sufficient for fusion), to direct oppositely the relativistic electron beam for only partial compensation of positive space charge and for allowing the combined beam's pinch capability, to apply the longitudinal electric field for compensation of alignment of velocities of reacting particles and also for compensation of energy losses of electrons via Bremsstrahlung. On base of Concept different types of reactor designs can be realized: Linear and Cyclic designs. In the simplest embodiment the Cyclic Reactor (design) may include: betatron type device (circular store of externally injected particles - induction accelerator), pulse high-current relativistic electron injector, pulse high-current slower ion injector, pulse high-current faster ion injector and reaction products extractor. Using present day technologies and materials (or a reasonable extrapolation of those) it is possible to reach: for induction linear injectors (ions&electrons) - currents of thousands A, repeatability - up to 10Hz, the same for high-current betatrons (FFAG, Stellatron, etc.). And it is possible to build the fusion reactor using the proposed Method just today.

  7. Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA

    NASA Astrophysics Data System (ADS)

    Harte, Philip T.; Smith, Thor E.; Williams, John H.; Degnan, James R.

    2012-05-01

    In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment.

  8. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musculus, Mark P.

    Regulatory drivers and market demands for lower pollutant emissions, lower carbon dioxide emissions, and lower fuel consumption motivate the development of clean and fuel-efficient engine operating strategies. Most current production engines use a combination of both in-cylinder and exhaust emissions-control strategies to achieve these goals. The emissions and efficiency performance of in-cylinder strategies depend strongly on flow and mixing processes associated with fuel injection. Various diesel engine manufacturers have adopted close-coupled post-injection combustion strategies to both reduce pollutant emissions and to increase engine efficiency for heavy-duty applications, as well as for light- and medium-duty applications. Close-coupled post-injections are typically shortmore » injections that follow a larger main injection in the same cycle after a short dwell, such that the energy conversion efficiency of the post-injection is typical of diesel combustion. Of the various post-injection schedules that have been reported in the literature, effects on exhaust soot vary by roughly an order of magnitude in either direction of increasing or decreasing emissions relative to single injections (O’Connor et al., 2015). While several hypotheses have been offered in the literature to help explain these observations, no clear consensus has been established. For new engines to take full advantage of the benefits that post-injections can offer, the in-cylinder mechanisms that affect emissions and efficiency must be identified and described to provide guidance for engine design.« less

  9. Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA

    USGS Publications Warehouse

    Harte, Philip T.; Smith, Thor E.; Williams, John H.; Degnan, James R.

    2012-01-01

    In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment.

  10. Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA.

    PubMed

    Harte, Philip T; Smith, Thor E; Williams, John H; Degnan, James R

    2012-05-01

    In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment. Published by Elsevier B.V.

  11. Direct push injection logging for high resolution characterization of low permeability zones

    NASA Astrophysics Data System (ADS)

    Liu, G.; Knobbe, S.; Butler, J. J., Jr.; Reboulet, E. C.; Borden, R. C.; Bohling, G.

    2017-12-01

    One of the grand challenges for groundwater protection and contaminated site remediation efforts is dealing with the slow, yet persistent, release of contaminants from low permeability zones. In zones of higher permeability, groundwater flow is relatively fast and contaminant transport can be more effectively affected by treatment activities. In the low permeability zones, however, groundwater flow and contaminant transport are slow and thus become largely insensitive to many in-situ treatment efforts. Clearly, for sites with low permeability zones, accurate depiction of the mass exchange between the low and higher permeability zones is critical for designing successful groundwater protection and remediation systems, which requires certain information such as the hydraulic conductivity (K) and porosity of the subsurface. The current generation of field methods is primarily developed for relatively permeable zones, and little work has been undertaken for characterizing zones of low permeability. For example, the direct push injection logging (DPIL) approach (e.g., Hydraulic Profiling Tool by Geoprobe) is commonly used for high resolution estimation of K over a range of 0.03 to 23 m/d. When K is below 0.03 m/d, the pressure responses from the current DPIL are generally too high for both the formation (potential formation alteration at high pressure) and measuring device (pressure exceeding the upper sensor limit). In this work, we modified the current DPIL tool by adding a low-flow pump and flowmeter so that injection logging can be performed with much reduced flow rates when K is low. Numerical simulations showed that the reduction in injection rates (reduced from 250 to 1 mL/min) allowed pressures to be measurable even when K was as low as 0.001 m/d. They also indicated that as the K decreased, the pore water pressure increase induced by probe advancement had a more significant impact on DPIL results. A new field DPIL profiling procedure was developed for reducing that impact. Our preliminary test results in both the lab and at a field site have demonstrated the promise of the modified DPIL approach as a practical method for characterizing low permeability zones.

  12. Beam steering via resonance detuning in coherently coupled vertical cavity laser arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Matthew T., E-mail: matthew.johnson.9@us.af.mil; Siriani, Dominic F.; Peun Tan, Meng

    2013-11-11

    Coherently coupled vertical-cavity surface-emitting laser arrays offer unique advantages for nonmechanical beam steering applications. We have applied dynamic coupled mode theory to show that the observed temporal phase shift between vertical-cavity surface-emitting array elements is caused by the detuning of their resonant wavelengths. Hence, a complete theoretical connection between the differential current injection into array elements and the beam steering direction has been established. It is found to be a fundamentally unique beam-steering mechanism with distinct advantages in efficiency, compactness, speed, and phase-sensitivity to current.

  13. Theoretical studies on a new pattern of laser-driven systems: towards elucidation of direct photo-injection in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mishima, Kenji; Yamashita, Koichi

    2011-03-01

    We theoretically and numerically investigated a new type of analytically solvable laser-driven systems inspired by electron-injection dynamics in dye-sensitized solar cells. The simple analytical expressions were found to be useful for understanding the difference between dye excitation and direct photo-injection occurring between dye molecule and semiconductor nanoparticles. More importantly, we propose a method for discriminating experimentally dye excitation and direct photo-injection by using time-dependent fluorescence. We found that dye excitation shows no significant quantum beat whereas the direct photo-injection shows a significant quantum beat. This work was supported by Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) ``Development of Organic Photovoltaics toward a Low-Carbon Society,'' Cabinet Office, Japan.

  14. Miniaturized flow injection analysis system

    DOEpatents

    Folta, J.A.

    1997-07-01

    A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

  15. Electrical and Magnetic Imaging of Proppants in Shallow Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Denison, J. L. S.; Murdoch, L. C.; LaBrecque, D. J.; Slack, W. W.

    2015-12-01

    Hydraulic fracturing is an important tool to increase the productivity of wells used for oil and gas production, water resources, and environmental remediation. Currently there are relatively few tools available to monitor the distribution of proppants within a hydraulic fracture, or the propagation of the fracture itself. We have been developing techniques for monitoring hydraulic fractures by injecting electrically conductive, dielectric, or magnetically permeable proppants. We then use the resulting contrast with the enveloping rock to image the proppants using geophysical methods. Based on coupled laboratory and numerical modeling studies, three types of proppants were selected for field evaluation. Eight hydraulic fractures were created near Clemson, SC in May of 2015 by injecting specialized proppants at a depth of 1.5 m. The injections created shallow sub-horizontal fractures extending several meters from the injection point.Each cell had a dense array of electrodes and magnetic sensors on the surface and four shallow vertical electrode arrays that were used to obtain data before and after hydraulic fracturing. Net vertical displacement and transient tilts were also measured. Cores from 130 boreholes were used to characterize the general geometries, and trenching was used to characterize the forms of two of the fractures in detail. Hydraulic fracture geometries were estimated by inverting pre- and post-injection geophysical data. Data from cores and trenching show that the hydraulic fractures were saucer-shaped with a preferred propagation direction. The geophysical inversions generated images that were remarkably similar in form, size, and location to the ground truth from direct observation. Displacement and tilt data appear promising as a constraint on fracture geometry.

  16. Nanoparticle Plasma Jet as Fast Probe for Runaway Electrons in Tokamak Disruptions

    NASA Astrophysics Data System (ADS)

    Bogatu, I. N.; Galkin, S. A.

    2017-10-01

    Successful probing of runaway electrons (REs) requires fast (1 - 2 ms) high-speed injection of enough mass able to penetrate through tokamak toroidal B-field (2 - 5 T) over 1 - 2 m distance with large assimilation fraction in core plasma. A nanoparticle plasma jet (NPPJ) from a plasma gun is a unique combination of millisecond trigger-to-delivery response and mass-velocity of 100 mg at several km/s for deep direct injection into current channel of rapidly ( 1 ms) cooling post-TQ core plasma. After C60 NPPJ test bed demonstration we started to work on ITER-compatible boron nitride (BN) NPPJ. Once injected into plasma, BN NP undergoes ablative sublimation, thermally decomposes into B and N, and releases abundant B and N high-charge ions along plasma-traversing path and into the core. We present basic characteristics of our BN NPPJ concept and first results from B and N ions on Zeff > 1 effect on REs dynamics by using a self-consistent model for RE current density. Simulation results of BNQ+ NPPJ penetration through tokamak B-field to RE beam location performed with Hybrid Electro-Magnetic code (HEM-2D) are also presented. Work supported by U.S. DOE SBIR Grant.

  17. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    DOEpatents

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  18. False Operation of Static Random Access Memory Cells under Alternating Current Power Supply Voltage Variation

    NASA Astrophysics Data System (ADS)

    Sawada, Takuya; Takata, Hidehiro; Nii, Koji; Nagata, Makoto

    2013-04-01

    Static random access memory (SRAM) cores exhibit susceptibility against power supply voltage variation. False operation is investigated among SRAM cells under sinusoidal voltage variation on power lines introduced by direct RF power injection. A standard SRAM core of 16 kbyte in a 90 nm 1.5 V technology is diagnosed with built-in self test and on-die noise monitor techniques. The sensitivity of bit error rate is shown to be high against the frequency of injected voltage variation, while it is not greatly influenced by the difference in frequency and phase against SRAM clocking. It is also observed that the distribution of false bits is substantially random in a cell array.

  19. HIV risk-taking behaviour among injecting drug users currently, previously and never enrolled in methadone treatment.

    PubMed

    Baker, A; Kochan, N; Dixon, J; Wodak, A; Heather, N

    1995-04-01

    This study compares the injecting and sexual risk-taking behaviour among injecting drug users (IDUs) currently, previously and never enrolled in methadone maintenance treatment (MMT). All subjects had injected during the 6 months prior to the day of interview. The current MMT group showed significantly lower injecting risk-taking behaviour subscale scores on the HIV Risk-taking Behaviour Scale (HRBS) of the Opiate Treatment Index than the previous MMT and non-MMT groups together. The current MMT group differed from the other two groups in the frequency of injecting and cleaning of injection equipment with bleach. There was no difference between the current MMT group and the other two groups combined in sexual risk-taking behaviour scores on the HRBS. There were no differences between the previous MMT and non-MMT groups in injecting and sexual risk-taking behaviour. HIV seroprevalence was low and there was no difference in seroprevalence between groups. Thus, IDUs currently enrolled in MMT are at reduced risk for HIV infection when compared with IDUs who have previously or never been enrolled in MMT. However, the absence of a difference between the current MMT and other two groups in frequency of sharing behaviours suggests the need for additional strategies among MMT clients to reduce needle-sharing. Possible strategies include the application of relapse prevention interventions and the availability of sterile injecting equipment in MMT clinics. Further research is needed to identify factors which increase attraction and retention of IDUs to MMT.

  20. 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals derived from a single-institution 18F-FDG-directed surgery experience: feasibility and quantification of 18F-FDG accumulation within 18F-FDG-avid lesions and background tissues

    PubMed Central

    2014-01-01

    Background 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) is a well-established imaging modality for a wide variety of solid malignancies. Currently, only limited data exists regarding the utility of PET/CT imaging at very extended injection-to-scan acquisition times. The current retrospective data analysis assessed the feasibility and quantification of diagnostic 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals. Methods 18F-FDG-avid lesions (not surgically manipulated or altered during 18F-FDG-directed surgery, and visualized both on preoperative and postoperative 18F-FDG PET/CT imaging) and corresponding background tissues were assessed for 18F-FDG accumulation on same-day preoperative and postoperative 18F-FDG PET/CT imaging. Multiple patient variables and 18F-FDG-avid lesion variables were examined. Results For the 32 18F-FDG-avid lesions making up the final 18F-FDG-avid lesion data set (from among 7 patients), the mean injection-to-scan times of the preoperative and postoperative 18F-FDG PET/CT scans were 73 (±3, 70-78) and 530 (±79, 413-739) minutes, respectively (P < 0.001). The preoperative and postoperative mean 18F-FDG-avid lesion SUVmax values were 7.7 (±4.0, 3.6-19.5) and 11.3 (±6.0, 4.1-29.2), respectively (P < 0.001). The preoperative and postoperative mean background SUVmax values were 2.3 (±0.6, 1.0-3.2) and 2.1 (±0.6, 1.0-3.3), respectively (P = 0.017). The preoperative and postoperative mean lesion-to-background SUVmax ratios were 3.7 (±2.3, 1.5-9.8) and 5.8 (±3.6, 1.6-16.2), respectively, (P < 0.001). Conclusions 18F-FDG PET/CT oncologic imaging can be successfully performed at extended injection-to-scan acquisition time intervals of up to approximately 5 half-lives for 18F-FDG while maintaining good/adequate diagnostic image quality. The resultant increase in the 18F-FDG-avid lesion SUVmax values, decreased background SUVmax values, and increased lesion-to-background SUVmax ratios seen from preoperative to postoperative 18F-FDG PET/CT imaging have great potential for allowing for the integrated, real-time use of 18F-FDG PET/CT imaging in conjunction with 18F-FDG-directed interventional radiology biopsy and ablation procedures and 18F-FDG-directed surgical procedures, as well as have far-reaching impact on potentially re-shaping future thinking regarding the “most optimal” injection-to-scan acquisition time interval for all routine diagnostic 18F-FDG PET/CT oncologic imaging. PMID:24942656

  1. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si.

    PubMed

    Tomioka, Katsuhiro; Motohisa, Junichi; Hara, Shinjiroh; Hiruma, Kenji; Fukui, Takashi

    2010-05-12

    We report on integration of GaAs nanowire-based light-emitting-diodes (NW-LEDs) on Si substrate by selective-area metalorganic vapor phase epitaxy. The vertically aligned GaAs/AlGaAs core-multishell nanowires with radial p-n junction and NW-LED array were directly fabricated on Si. The threshold current for electroluminescence (EL) was 0.5 mA (current density was approximately 0.4 A/cm(2)), and the EL intensity superlinearly increased with increasing current injections indicating superluminescence behavior. The technology described in this letter could help open new possibilities for monolithic- and on-chip integration of III-V NWs on Si.

  2. Direct Gallbladder Indocyanine Green Injection Fluorescence Cholangiography During Laparoscopic Cholecystectomy.

    PubMed

    Graves, Claire; Ely, Sora; Idowu, Olajire; Newton, Christopher; Kim, Sunghoon

    2017-10-01

    Intravenous injection of indocyanine green (ICG) is used to illuminate extrahepatic biliary anatomy. Fluorescence of biliary structures may lower surgical complications that can arise due to inadvertent injury to the common bile duct. We describe a method of injecting ICG directly into the gallbladder to define the cystic duct and common bile duct anatomy. A standard laparoscopic cholecystectomy was performed using a laparoscope with near-infrared imaging capability. Before dissection, the gallbladder was punctured with a cholangiogram catheter or a pigtail catheter to aspirate the bile within the gallbladder. The aspirated bile is mixed with ICG solution, which is reinjected into the gallbladder to fluoresce the gallbladder, cystic duct, and common bile duct structures. Eleven patients underwent direct gallbladder ICG injection for fluorescence cholangiography during cholecystectomy. Direct gallbladder ICG injection clearly defined the extrahepatic biliary anatomy, including the cystic duct-common bile duct junction, by fluorescence. In addition, the dissection plane between the gallbladder and the liver is highlighted with the gallbladder ICG fluorescence. Direct gallbladder ICG injection provides immediate visualization of extrahepatic biliary structures and clarifies the dissection plane between the gallbladder and the liver bed.

  3. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    DOEpatents

    Fisch, N.J.; Rax, J.M.

    1994-12-20

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor. 4 figures.

  4. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    DOEpatents

    Fisch, Nathaniel J.; Rax, Jean M.

    1994-01-01

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.

  5. Effects of hole self-trapping by polarons on transport and negative bias illumination stress in amorphous-IGZO

    NASA Astrophysics Data System (ADS)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2018-04-01

    The effects of hole injection in amorphous indium-gallium-zinc-oxide (a-IGZO) are analyzed by means of first-principles calculations. The injection of holes in the valence band tail states leads to their capture as a polaron, with high self-trapping energies (from 0.44 to 1.15 eV). Once formed, they mediate the formation of peroxides and remain localized close to the hole injection source due to the presence of a large diffusion energy barrier (of at least 0.6 eV). Their diffusion mechanism can be mediated by the presence of hydrogen. The capture of these holes is correlated with the low off-current observed for a-IGZO transistors, as well as with the difficulty to obtain a p-type conductivity. The results further support the formation of peroxides as being the root cause of Negative Bias Illumination Stress (NBIS). The strong self-trapping substantially reduces the injection of holes from the contact and limits the creation of peroxides from a direct hole injection. In the presence of light, the concentration of holes substantially rises and mediates the creation of peroxides, responsible for NBIS.

  6. Current-limited electron beam injection

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.

    1977-01-01

    The injection of an electron beam into a weakly collisional, magnetized background plasma was investigated experimentally. The injected beam was energetic and cold, the background plasma was initially isothermal. Beam and plasma dimensions were so large that the system was considered unbounded. The temporal and spatial evolution of the beam-plasma system was dominated by collective effects. High-frequency electrostatic instabilities rapidly thermalized the beam and heated the background electrons. The injected beam current was balanced by a return current consisting of background electrons drifting toward the beam source. The drift between electrons and ions gave rise to an ion acoustic instability which developed into strong three-dimensional turbulence. It was shown that the injected beam current was limited by the return current which is approximately given by the electron saturation current. Non-Maxwellian electron distribution functions were observed.

  7. Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission.

    PubMed

    Cheng, Min-Chi; Chi, Yu-Chieh; Li, Yi-Cheng; Tsai, Cheng-Ting; Lin, Gong-Ru

    2014-06-30

    By up-shifting the relaxation oscillation peak and suppressing its relative intensity noise in a weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) under intense injection-locking, the directly modulated transmission of optical 16 quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data-stream is demonstrated. The total bit rate of up to 20 Gbit/s within 5-GHz bandwidth is achieved by using the OFDM subcarrier pre-leveling technique. With increasing the injection-locking power from -12 to -3 dBm, the effective reduction on threshold current of the WRC-FPLD significantly shifts its relaxation oscillation frequency from 5 to 7.5 GHz. This concurrently induces an up-shift of the peak relative intensity noise (RIN) of the WRC-FPLD, and effectively suppresses the background RIN level to -104 dBc/Hz within the OFDM band between 3 and 6 GHz. The enhanced signal-to-noise ratio from 16 to 20 dB leads to a significant reduction of bit-error-rate (BER) of the back-to-back transmitted 16-QAM-OFDM data from 1.3 × 10(-3) to 5 × 10(-5), which slightly degrades to 1.1 × 10(-4) after 25-km single-mode fiber (SMF) transmission. However, the enlarged injection-locking power from -12 to -3 dBm inevitably declines the modulation throughput and increases its negative throughput slope from -0.8 to -1.9 dBm/GHz. After pre-leveling the peak amplitude of the OFDM subcarriers to compensate the throughput degradation of the directly modulated WRC-FPLD, the BER under 25-km SMF transmission can be further improved to 3 × 10(-5) under a receiving power of -3 dBm.

  8. Cyclic AMP-dependent regulation of P-type calcium channels expressed in Xenopus oocytes.

    PubMed

    Fournier, F; Bourinet, E; Nargeot, J; Charnet, P

    1993-05-01

    Xenopus oocytes injected with rat cerebellum mRNA, express voltage-dependent calcium channels (VDCC). These were identified as P-type Ca2+ channels by their insensitivity to dihydropyridines and omega-conotoxin and by their blockade by Agelenopsis aperta venom (containing the funnel-web spider toxins: FTX and omega-Aga-IV-A). Coinjection of cerebellar mRNA and antisense oligonucleotide complementary to the dihydropyridine-resistant brain Ca2+ channel, named BI [Mori Y. et al. (1991) Nature 350:398-402] or rbA [Starr T. V. B. et al. (1991) Proc Natl Acad Sci USA 88:5621-5625], strongly reduced the expressed Ba2+ current suggesting that these clones encode a P-type VDCC. The macroscopic Ca2+ channel activity was increased by direct intraoocyte injection of cAMP. This increase in current amplitude was concomitant with a slowing of current inactivation, and was attributed to activation of protein kinase A, since it could be antagonized by a peptidic inhibitor of this enzyme. Positive regulation of P-type VDCC could be of importance in Purkinje neurons and motor nerve terminals where this channel is predominant.

  9. Toroidal Ampere-Faraday Equations Solved Simultaneously with CQL3D Fokker-Planck Time-Evolution

    NASA Astrophysics Data System (ADS)

    Harvey, R. W. (Bob); Petrov, Yu. V. (Yuri); Forest, C. B.; La Haye, R. J.

    2017-10-01

    A self-consistent, time-dependent toroidal electric field calculation is a key feature of a complete 3D Fokker-Planck kinetic distribution radial transport code for f(v,theta,rho,t). We discuss benchmarking and first applications of an implementation of the Ampere-Faraday equation for the self-consistent toroidal electric field, as applied to (1) resistive turn on of applied electron cyclotron current in the DIII-D tokamak giving initial back current adjacent to the direct CD region and having possible NTM stabilization implications, and (2) runaway electron production in tokamaks due to rapid reduction of the plasma temperature as occurs in pellet injection, massive gas injection, or a plasma disruption. Our previous results assuming a constant current density (Lenz' Law) model showed that prompt ``hot-tail runaways'' dominated ``knock-on'' and Dreicer ``drizzle'' runaways; we perform full-radius modeling and examine modifications due to the more complete Ampere-Faraday solution. Presently, the implementation relies on a fixed shape eqdsk, and this limitation will be addressed in future work. Research supported by USDOE FES award ER54744.

  10. Directed dynamical influence is more detectable with noise

    PubMed Central

    Jiang, Jun-Jie; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng

    2016-01-01

    Successful identification of directed dynamical influence in complex systems is relevant to significant problems of current interest. Traditional methods based on Granger causality and transfer entropy have issues such as difficulty with nonlinearity and large data requirement. Recently a framework based on nonlinear dynamical analysis was proposed to overcome these difficulties. We find, surprisingly, that noise can counterintuitively enhance the detectability of directed dynamical influence. In fact, intentionally injecting a proper amount of asymmetric noise into the available time series has the unexpected benefit of dramatically increasing confidence in ascertaining the directed dynamical influence in the underlying system. This result is established based on both real data and model time series from nonlinear ecosystems. We develop a physical understanding of the beneficial role of noise in enhancing detection of directed dynamical influence. PMID:27066763

  11. Directed dynamical influence is more detectable with noise.

    PubMed

    Jiang, Jun-Jie; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng

    2016-04-12

    Successful identification of directed dynamical influence in complex systems is relevant to significant problems of current interest. Traditional methods based on Granger causality and transfer entropy have issues such as difficulty with nonlinearity and large data requirement. Recently a framework based on nonlinear dynamical analysis was proposed to overcome these difficulties. We find, surprisingly, that noise can counterintuitively enhance the detectability of directed dynamical influence. In fact, intentionally injecting a proper amount of asymmetric noise into the available time series has the unexpected benefit of dramatically increasing confidence in ascertaining the directed dynamical influence in the underlying system. This result is established based on both real data and model time series from nonlinear ecosystems. We develop a physical understanding of the beneficial role of noise in enhancing detection of directed dynamical influence.

  12. Understanding and meeting injection device needs in multiple sclerosis: a survey of patient attitudes and practices

    PubMed Central

    Verdun di Cantogno, Elisabetta; Russell, Susan; Snow, Tom

    2011-01-01

    Background: All established disease-modifying drugs for multiple sclerosis require parenteral administration, which can cause difficulties for some patients, sometimes leading to suboptimal adherence. A new electronic autoinjection device has been designed to address these issues. Methods: Patients with relapsing multiple sclerosis currently receiving subcutaneous or intramuscular interferon beta-1a, interferon beta-1b, or glatiramer acetate completed an online questionnaire (July 4–25, 2008) that surveyed current injection practices, experiences with current injection methods, and impressions and appeal of the new device. Results: In total, 422 patients completed the survey, of whom 44% used autoinjectors, 43% prefilled syringes, and 13% syringes and vials; overall, 66% currently self-injected. Physical and psychological barriers to self-injection included difficulty with injections, needle phobia, and concerns over correct injection technique. Only 40% of respondents were “very satisfied” with their current injection method. The new electronic autoinjector was rated as “very appealing” by 65% of patients. The benefits of the new device included the ability to customize injection settings and to review dosing history. Conclusion: New technologies may help patients overcome physical and psychological barriers to self-injection. The combination of a reliable and flexible autoinjection device with dose-monitoring technology may improve communication between health care professionals and patients, and improve treatment adherence. PMID:21573048

  13. Ducted fuel injection: A new approach for lowering soot emissions from direct-injection engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Charles J.; Nilsen, Christopher W.; Ruth, Daniel J.

    Designers of direct-injection compression-ignition engines use a variety of strategies to improve the fuel/charge-gas mixture within the combustion chamber for increased efficiency and reduced pollutant emissions. Strategies include the use of high fuel-injection pressures, multiple injections, small injector orifices, flow swirl, long-ignition-delay conditions, and oxygenated fuels. This is the first journal publication paper on a new mixing-enhancement strategy for emissions reduction: ducted fuel injection. The concept involves injecting fuel along the axis of a small cylindrical duct within the combustion chamber, to enhance the mixture in the autoignition zone relative to a conventional free-spray configuration (i.e., a fuel spray thatmore » is not surrounded by a duct). Finally, the results described herein, from initial proof-of-concept experiments conducted in a constant-volume combustion vessel, show dramatically lower soot incandescence from ducted fuel injection than from free sprays over a range of charge-gas conditions that are representative of those in modern direct-injection compression-ignition engines.« less

  14. Ducted fuel injection: A new approach for lowering soot emissions from direct-injection engines

    DOE PAGES

    Mueller, Charles J.; Nilsen, Christopher W.; Ruth, Daniel J.; ...

    2017-07-18

    Designers of direct-injection compression-ignition engines use a variety of strategies to improve the fuel/charge-gas mixture within the combustion chamber for increased efficiency and reduced pollutant emissions. Strategies include the use of high fuel-injection pressures, multiple injections, small injector orifices, flow swirl, long-ignition-delay conditions, and oxygenated fuels. This is the first journal publication paper on a new mixing-enhancement strategy for emissions reduction: ducted fuel injection. The concept involves injecting fuel along the axis of a small cylindrical duct within the combustion chamber, to enhance the mixture in the autoignition zone relative to a conventional free-spray configuration (i.e., a fuel spray thatmore » is not surrounded by a duct). Finally, the results described herein, from initial proof-of-concept experiments conducted in a constant-volume combustion vessel, show dramatically lower soot incandescence from ducted fuel injection than from free sprays over a range of charge-gas conditions that are representative of those in modern direct-injection compression-ignition engines.« less

  15. Mobility, Deposition and Remobilization of pre-Synthesis Stabilized Nano-scale Zero Valent Iron in Long Column Experiments

    NASA Astrophysics Data System (ADS)

    de Boer, C. V.; O'Carroll, D. M.; Sleep, B.

    2014-12-01

    Reactive zero-valent iron is currently being used for remediation of contaminated groundwater. Permeable reactive barriers are the current state-of-the-practice method for using zero-valent iron. Instead of an excavated trench filled with granular zero-valent iron, a relatively new and promising method is the injection of a nano-scale zero-valent iron colloid suspension (nZVI) into the subsurface using injection wells. One goal of nZVI injection can be to deposit zero valent iron in the aquifer and form a reactive permeable zone which is no longer bound to limited depths and plume treatment, but can also be used directly at the source. It is very important to have a good understanding of the transport behavior of nZVI during injection as well as the fate of nZVI after injection due to changes in the flow regime or water chemistry changes. So far transport was mainly tested using commercially available nZVI, however these studies suggest that further work is required as commercial nZVI was prone to aggregation, resulting in low physical stability of the suspension and very short travel distances in the subsurface. In the presented work, nZVI is stabilized during synthesis to significantly increase the physical suspension stability. To improve our understanding of nZVI transport, the feasibility for injection into various porous media materials and controlled deposition, a suite of column experiments are conducted. The column experiments are performed using a long 1.5m column and a novel nZVI measuring technique. The measuring technique was developed to non-destructively determine the concentration of nano-scale iron during the injection. It records the magnetic susceptibility, which makes it possible to get transient nZVI retention profiles along the column. These transient nZVI retention profiles of long columns provide unique insights in the transport behavior of nZVI which cannot be obtained using short columns or effluent breakthrough curves.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dempsey, Adam B.; Curran, Scott; Reitz, Rolf D.

    The focus of the present paper was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over amore » variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition. The experiments were conducted on a modern four cylinder light-duty diesel engine that was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. The results indicate that the authority to control the combustion phasing through the fuel delivery strategy (e.g., direct injection timing or premixed gasoline percentage) is not a strong function of the EHN concentration in the direct-injected fuel. It was also observed that NOx emissions are a strong function of the global EHN concentration in-cylinder and the combustion phasing. Finally, in general, NOx emissions are significantly elevated for gasoline/gasoline+EHN operation compared with gasoline/diesel RCCI operation at a given operating condition.« less

  17. Research priorities to achieve universal access to hepatitis C prevention, management and direct-acting antiviral treatment among people who inject drugs.

    PubMed

    Grebely, Jason; Bruneau, Julie; Lazarus, Jeffrey V; Dalgard, Olav; Bruggmann, Philip; Treloar, Carla; Hickman, Matthew; Hellard, Margaret; Roberts, Teri; Crooks, Levinia; Midgard, Håvard; Larney, Sarah; Degenhardt, Louisa; Alho, Hannu; Byrne, Jude; Dillon, John F; Feld, Jordan J; Foster, Graham; Goldberg, David; Lloyd, Andrew R; Reimer, Jens; Robaeys, Geert; Torrens, Marta; Wright, Nat; Maremmani, Icro; Norton, Brianna L; Litwin, Alain H; Dore, Gregory J

    2017-09-01

    Globally, it is estimated that 71.1 million people have chronic hepatitis C virus (HCV) infection, including an estimated 7.5 million people who have recently injected drugs (PWID). There is an additional large, but unquantified, burden among those PWID who have ceased injecting. The incidence of HCV infection among current PWID also remains high in many settings. Morbidity and mortality due to liver disease among PWID with HCV infection continues to increase, despite the advent of well-tolerated, simple interferon-free direct-acting antiviral (DAA) HCV regimens with cure rates >95%. As a result of this important clinical breakthrough, there is potential to reverse the rising burden of advanced liver disease with increased treatment and strive for HCV elimination among PWID. Unfortunately, there are many gaps in knowledge that represent barriers to effective prevention and management of HCV among PWID. The Kirby Institute, UNSW Sydney and the International Network on Hepatitis in Substance Users (INHSU) established an expert round table panel to assess current research gaps and establish future research priorities for the prevention and management of HCV among PWID. This round table consisted of a one-day workshop held on 6 September, 2016, in Oslo, Norway, prior to the International Symposium on Hepatitis in Substance Users (INHSU 2016). International experts in drug and alcohol, infectious diseases, and hepatology were brought together to discuss the available scientific evidence, gaps in research, and develop research priorities. Topics for discussion included the epidemiology of injecting drug use, HCV, and HIV among PWID, HCV prevention, HCV testing, linkage to HCV care and treatment, DAA treatment for HCV infection, and reinfection following successful treatment. This paper highlights the outcomes of the roundtable discussion focused on future research priorities for enhancing HCV prevention, testing, linkage to care and DAA treatment for PWID as we strive for global elimination of HCV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Association between prescription drug misuse and injection among runaway and homeless youth

    PubMed Central

    Al-Tayyib, Alia A; Rice, Eric; Rhoades, Harmony; Riggs, Paula

    2013-01-01

    Background The nonmedical use of prescription drugs is the fastest growing drug problem in the United States, disproportionately impacting youth. Furthermore, the population prevalence of injection drug use among youth is also on the rise. This short communication examines the association between current prescription drug misuse (PDM) and injection among runaway and homeless youth. Methods Homeless youth were surveyed between October, 2011 and February, 2012 at two drop-in service agencies in Los Angeles, CA. Prevalence ratios (PR) and 95% confidence intervals (CI) for the association between current PDM and injection behavior were estimated. The outcome of interest was use of a needle to inject any illegal drug into the body during the past 30 days. Results Of 380 homeless youth (median age, 21; IQR, 17-25; 72% male), 84 (22%) reported current PDM and 48 (13%) reported currently injecting. PDM during the past 30 days was associated with a 7.7 (95% CI: 4.4, 13.5) fold increase in the risk of injecting during that same time. Among those reporting current PDM with concurrent heroin, cocaine, and methamphetamine use, the PR with injection was 15.1 (95% CI: 8.5, 26.8). Conclusions Runaway and homeless youth are at increased risk for a myriad of negative outcomes. Our preliminary findings are among the first to show the strong association between current PDM and injection in this population. Our findings provide the basis for additional research to delineate specific patterns of PDM and factors that enable or inhibit transition to injection among homeless and runaway youth. PMID:24300900

  19. Association between prescription drug misuse and injection among runaway and homeless youth.

    PubMed

    Al-Tayyib, Alia A; Rice, Eric; Rhoades, Harmony; Riggs, Paula

    2014-01-01

    The nonmedical use of prescription drugs is the fastest growing drug problem in the United States, disproportionately impacting youth. Furthermore, the population prevalence of injection drug use among youth is also on the rise. This short communication examines the association between current prescription drug misuse (PDM) and injection among runaway and homeless youth. Homeless youth were surveyed between October 2011 and February 2012 at two drop-in service agencies in Los Angeles, CA. Prevalence ratios (PR) and 95% confidence intervals (CI) for the association between current PDM and injection behavior were estimated. The outcome of interest was use of a needle to inject any illegal drug into the body during the past 30 days. Of 380 homeless youth (median age, 21; IQR, 17-25; 72% male), 84 (22%) reported current PDM and 48 (13%) reported currently injecting. PDM during the past 30 days was associated with a 7.7 (95% CI: 4.4, 13.5) fold increase in the risk of injecting during that same time. Among those reporting current PDM with concurrent heroin, cocaine, and methamphetamine use, the PR with injection was 15.1 (95% CI: 8.5, 26.8). Runaway and homeless youth are at increased risk for a myriad of negative outcomes. Our preliminary findings are among the first to show the strong association between current PDM and injection in this population. Our findings provide the basis for additional research to delineate specific patterns of PDM and factors that enable or inhibit transition to injection among homeless and runaway youth. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Effect of high current density to defect generation of blue LED and its characterization with transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Gunawan, R.; Sugiarti, E.; Isnaeni; Purawiardi, R. I.; Widodo, H.; Muslimin, A. N.; Yuliasari; Ronaldus, C. E.; Prastomo, N.; Hastuty, S.

    2018-03-01

    The optical, electrical and structural characteristics of InGaN-based blue light-emitting diodes (LEDs) were investigated to identify the degradation of LED before and after current injection. The sample was injected by high current of 200 A/cm2 for 5 and 20 minutes. It was observed that injection of current shifts light intensity and wavelength characteristics that indicated defect generation. Transmission Electron Microscopy (TEM) characterization was carried out in order to clarify the structure degradation caused by defect in active layer which consisted of 14 quantum well with thickness of about 5 nm and confined with barrier layer with thickness of about 12 nm. TEM results showed pre-existing defect in LED before injection with high current. Furthermore, discontinue and edge defect was found in dark spot region of LED after injection with high current.

  1. QUANTITATIVE ANALYSIS OF 68 POLAR COMPOUNDS FROM TEN CHEMICAL CLASSES BY DIRECT AQUEOUS INJECTION GAS CHROMATOGRAPHY

    EPA Science Inventory

    Porous polymer packings have been used successfully in many applications of direct aqueous injection gas chromatography. The authors have expanded the use of aqueous injection to the quantitative analysis of 68 alcohols, acetates, ketones, ethers, sulfides, aldehydes, diols, dion...

  2. Pharmacokinetic properties of new antitumor radiopharmaceutical on the basis of diamond nanoporous composites labeled with rhenium-188

    NASA Astrophysics Data System (ADS)

    Petriev, V. M.; Tishchenko, V. K.; Kuril'chik, A. A.; Skvortsov, V. G.

    2017-01-01

    Today the development of address therapeutic radionuclide delivery systems directly to tumor tissue is of current interest. It can be achieved by the design of drug containers of specific sizes and shapes from carbon-based composite materials. It will be allowed to enhance the efficacy of anticancer therapy and avoid serious side effects. In this work we studied the pharmacokinetic properties of nanodiamond nanoporous composite labeled with rhenium-188 in rats with hepatocholangioma PC-1 after intratumoral injection. It was established that substantial part of injected radioactivity remained in tumor tissue. Within three hours after 188Re-nanoporous composites injection activity in tumor constituted 79.1-91.3% of injected dose (ID). Then activity level declined to 45.9% ID at 120 hours. No more than 1.34% ID entered the bloodstream. In soft organs and tissues, except thyroid gland, the content of compound didn’t exceed 0.3% ID/g. The highest activity in thyroid gland was 6.95% ID/g. In conclusion, received results suggest 188Re-nanoporous composites can be promising radionuclide delivery systems for cancer treatment.

  3. Needle Tip Position and Bevel Direction Have No Effect in the Fluoroscopic Epidural Spreading Pattern in Caudal Epidural Injections: A Randomized Trial

    PubMed Central

    Kwon, Won Kyoung; Kim, Ah Na; Lee, Pil Moo; Park, Cheol Hwan; Kim, Jae Hun

    2016-01-01

    Background. Caudal epidural steroid injections (CESIs) are an effective treatment for pain. If the injection spreads in a specific pattern depending on the needle position or bevel direction, it would be possible to inject the agent into a specific and desired area. Objectives. We conducted a prospective randomized trial to determine if the needle position and bevel direction have any effect on the epidural spreading pattern in CESI. Methods. Demographic data of the patient were collected. During CESI, the needle position (middle or lateral) and direction (ventral or dorsal) were randomly allocated. Following fluoroscope-guided injection of 4 mL contrast media and 10 mL of injectates, the epidural spreading patterns (ventral or dorsal, bilateral or lateral) were imaged. Results. In the 210 CESIs performed, the needle tip position and bevel direction did not influence the epidural spreading patterns at L4-5 and L5-S1 disc levels. A history of Lumbar spine surgery was associated with a significantly limited spread to each disc level. A midline needle tip position was more effective than the lateral position in spreading to the distant disc levels. Conclusions. Neither the needle tip position nor the bevel direction affected the epidural drug spreading pattern during CESI. PMID:27445609

  4. Fabrication and characterization of a germanium nanowire light emitting diode

    NASA Astrophysics Data System (ADS)

    Greil, Johannes; Bertagnolli, Emmerich; Salem, Bassem; Baron, Thierry; Gentile, Pascal; Lugstein, Alois

    2017-12-01

    In this letter, we demonstrate the feasibility of a germanium nanowire light emitting diode as a reasonable approach for downscaling of CMOS compatible light sources. We show room-temperature direct bandgap electroluminescence from axial p-n junction nanowire devices. The electron population in the Γ valley, necessary for direct bandgap emission, is achieved by high injection current densities. Carrier temperature is consistently found to be higher than the lattice temperature, indicating inhibited carrier cooling in small diameter wires. Strong polarization of the emission parallel to the nanowire axis is observed and attributed to dielectric contrast phenomena.

  5. Numerical investigation of liver radioembolization via computational particle-hemodynamics: The role of the microcatheter distal direction and microsphere injection point and velocity.

    PubMed

    Aramburu, Jorge; Antón, Raúl; Rivas, Alejandro; Ramos, Juan Carlos; Sangro, Bruno; Bilbao, José Ignacio

    2016-11-07

    Liver radioembolization is a treatment option for patients with primary and secondary liver cancer. The procedure consists of injecting radiation-emitting microspheres via an intra-arterially placed microcatheter, enabling the deposition of the microspheres in the tumoral bed. The microcatheter location and the particle injection rate are determined during a pretreatment work-up. The purpose of this study was to numerically study the effects of the injection characteristics during the first stage of microsphere travel through the bloodstream in a patient-specific hepatic artery (i.e., the near-tip particle-hemodynamics and the segment-to-segment particle distribution). Specifically, the influence of the distal direction of an end-hole microcatheter and particle injection point and velocity were analyzed. Results showed that the procedure targeted the right lobe when injecting from two of the three injection points under study and the remaining injection point primarily targeted the left lobe. Changes in microcatheter direction and injection velocity resulted in an absolute difference in exiting particle percentage for a given liver segment of up to 20% and 30%, respectively. It can be concluded that even though microcatheter placement is presumably reproduced in the treatment session relative to the pretreatment angiography, the treatment may result in undesired segment-to-segment particle distribution and therefore undesired treatment outcomes due to modifications of any of the parameters studied, i.e., microcatheter direction and particle injection point and velocity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Regressed relations for forced convection heat transfer in a direct injection stratified charge rotary engine

    NASA Technical Reports Server (NTRS)

    Lee, Chi M.; Schock, Harold J.

    1988-01-01

    Currently, the heat transfer equation used in the rotary combustion engine (RCE) simulation model is taken from piston engine studies. These relations have been empirically developed by the experimental input coming from piston engines whose geometry differs considerably from that of the RCE. The objective of this work was to derive equations to estimate heat transfer coefficients in the combustion chamber of an RCE. This was accomplished by making detailed temperature and pressure measurements in a direct injection stratified charge (DISC) RCE under a range of conditions. For each specific measurement point, the local gas velocity was assumed equal to the local rotor tip speed. Local physical properties of the fluids were then calculated. Two types of correlation equations were derived and are described in this paper. The first correlation expresses the Nusselt number as a function of the Prandtl number, Reynolds number, and characteristic temperature ratio; the second correlation expresses the forced convection heat transfer coefficient as a function of fluid temperature, pressure and velocity.

  7. Van Allen Probes observations of intense parallel Poynting flux associated with magnetic dipolarization, conjugate discrete auroral arcs, and energetic particle injection

    NASA Astrophysics Data System (ADS)

    Wygant, J. R.; Thaller, S. A.; Breneman, A. W.; Tian, S.; Cattell, C. A.; Chaston, C. C.; Mozer, F.; Bonnell, J. W.; Kistler, L. M.; Mouikis, C.; Hudson, M. K.; Claudepierre, S. G.; Fennell, J. F.; Reeves, G. D.; Baker, D. N.; Donovan, E.; Spanswick, E.; Kletzing, C.

    2015-12-01

    We present measurements from the Van Allen Probes, in the near Earth tail, at the outer boundary of the plasma sheet, of a magnetic dipolarization/injection event characterized by unusually strong earthward poynting flux flowing along magnetic field lines with amplitudes of 200 mW/m2 lasting ~ 1 minute. The Poynting flux was conjugate to a 30 km wide discrete auroral arc observed by the THEMIS auroral array. The observations were obtained at 5.8 Re in the pre-midnight sector during the main phase of a geomagnetic storm on 5/01/2013. This brief interval transferred more electromagnetic energy (at the spacecraft position) than that transferred during entire remainder of the main phase of the storm. The parallel Poynting flux coincided with a local section of the "cross tail current sheet" which generated the dipolarization signature. The latitudinal width of the arc, mapped along magnetic field lines, provides an estimate of the spatial scale of the Poynting flux, the electric fields, and the current sheets (parallel and perpendicular). It is estimated that the latitudinal width of the Poynting flux "sheet" was ~600 km or ~1-2 H+ inertial lengths. An estimate of the ∫E·dl across the current sheet along the direction normal to the plasma sheet is ~20-40 kilovolts. The "normal" to the plasma sheet component of the electric field (~70 mV/m) strongly dominated the azimuthal component(which is reponsible for drift energetization). The dipolarization event resulted in the local dispersion-less injection of electrons between 50 keV and ~2 MeV at the Van Allen Probe position. The injection event involved brief (factor of two) local spike in ~2 MeV electron fluxes. Measurements from the Los Alamos geosynchronous spacecraft, displaced eastward from the Van Allen probes, provided evidence for dispersive energy-time electron signatures consistent with injection and energization at the RBSP position. The Poynting flux also coincided with the energy peak in the up-flowing dispersive ion energy-time profile and the onset of earthward ExB convection. A similar injection event during the storm on 6/1/2013 will be discussed.

  8. Detection of recombinant EPO in blood and urine samples with EPO WGA MAIIA, IEF and SAR-PAGE after microdose injections.

    PubMed

    Dehnes, Yvette; Shalina, Alexandra; Myrvold, Linda

    2013-01-01

    The misuse of microdoses of performance enhancing drugs like erythropoietin (EPO) constitutes a major challenge in doping analysis. When injected intravenously, the half-life of recombinant human EPO (rhEPO) like epoetin alfa, beta, and zeta is only a few hours and hence, the window for direct detection of rhEPO in urine is small. In order to investigate the detection window for rhEPO directly in blood and urine with a combined affinity chromatography and lateral flow immunoassay (EPO WGA MAIIA), we recruited nine healthy people who each received six intravenously injected microdoses (7.5 IU/kg) of NeoRecormon (epoetin beta) over a period of three weeks. Blood and urine samples were collected in the days following the injections and analyzed with EPO WGA MAIIA as well as the current validated methods for rhEPO; isoelectric focusing (IEF) and sarcosyl polyacrylamide gel electrophoresis (SAR-PAGE). For samples collected 18 h after a microdose, the sensitivity of the EPO WGA MAIIA assay was 100% in plasma and 87.5% in urine samples at the respective 98% specificity threshold levels. In comparison, the sensitivity in plasma and urine was 75% and 100%, respectively, with IEF, and 87.5% in plasma and 100% in urine when analyzed with SAR-PAGE. We conclude that EPO WGA MAIIA is a sensitive assay for the detection of rhEPO, with the potential of being a fast, supplemental screening assay for use in doping analysis.

  9. Effect of current injection into thin-film Josephson junctions

    DOE PAGES

    Kogan, V. G.; Mints, R. G.

    2014-11-11

    New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Λ=2λ 2/d;λ is the bulk London penetration depth of the film material and d is the film thickness.

  10. Separating inverse spin Hall voltage and spin rectification voltage by inverting spin injection direction

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxu; Peng, Bin; Han, Fangbin; Wang, Qiuru; Soh, Wee Tee; Ong, Chong Kim; Zhang, Wanli

    2016-03-01

    We develop a method for universally resolving the important issue of separating the inverse spin Hall effect (ISHE) from the spin rectification effect (SRE) signal. This method is based on the consideration that the two effects depend on the spin injection direction: The ISHE is an odd function of the spin injection direction while the SRE is independent on it. Thus, the inversion of the spin injection direction changes the ISHE voltage signal, while the SRE voltage remains. It applies generally to analyzing the different voltage contributions without fitting them to special line shapes. This fast and simple method can be used in a wide frequency range and has the flexibility of sample preparation.

  11. Writing and deleting single magnetic skyrmions.

    PubMed

    Romming, Niklas; Hanneken, Christian; Menzel, Matthias; Bickel, Jessica E; Wolter, Boris; von Bergmann, Kirsten; Kubetzka, André; Wiesendanger, Roland

    2013-08-09

    Topologically nontrivial spin textures have recently been investigated for spintronic applications. Here, we report on an ultrathin magnetic film in which individual skyrmions can be written and deleted in a controlled fashion with local spin-polarized currents from a scanning tunneling microscope. An external magnetic field is used to tune the energy landscape, and the temperature is adjusted to prevent thermally activated switching between topologically distinct states. Switching rate and direction can then be controlled by the parameters used for current injection. The creation and annihilation of individual magnetic skyrmions demonstrates the potential for topological charge in future information-storage concepts.

  12. Gravity-Driven Flow of non-Newtonian Fluids in Heterogeneous Porous Media: a Theoretical and Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Di Federico, V.; Longo, S.; Ciriello, V.; Chiapponi, L.

    2015-12-01

    A theoretical and experimental analysis of non-Newtonian gravity-driven flow in porous media with spatially variable properties is presented. The motivation for our study is the rheological complexity exhibited by several environmental contaminants (wastewater sludge, oil pollutants, waste produced by the minerals and coal industries) and remediation agents (suspensions employed to enhance the efficiency of in-situ remediation). Natural porous media are inherently heterogeneous, and this heterogeneity influences the extent and shape of the porous domain invaded by the contaminant or remediation agent. To grasp the combined effect of rheology and spatial heterogeneity, we consider: a) the release of a thin current of non-Newtonian power-law fluid into a 2-D, semi-infinite and saturated porous medium above a horizontal bed; b) perfectly stratified media, with permeability and porosity varying along the direction transverse (vertical) or parallel (horizontal) to the flow direction. This continuous variation of spatial properties is described by two additional parameters. In order to represent several possible spreading scenarios, we consider: i) instantaneous injection with constant mass; ii) continuous injection with time-variable mass; iii) instantaneous release of a mound of fluid, which can drain freely out of the formation at the origin (dipole flow). Under these assumptions, scalings for current length and thickness are derived in self similar form. An analysis of the conditions on model parameters required to avoid an unphysical or asymptotically invalid result is presented. Theoretical results are validated against multiple sets of experiments, conducted for different combinations of spreading scenarios and types of stratification. Two basic setups are employed for the experiments: I) direct flow simulation in an artificial porous medium constructed superimposing layers of glass beads of different diameter; II) a Hele-Shaw (HS) analogue made of two parallel plates set at an angle. The HS analogy is extended to power-law fluid flow in porous media with variable properties parallel or transverse to the flow direction. Comparison with experimental results show that the proposed models capture the propagation of the current front and the current profile at intermediate and late time.

  13. A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission.

    PubMed

    Lin, Gong-Ru; Chi, Yu-Chieh; Liao, Yu-Sheng; Kuo, Hao-Chung; Liao, Zhi-Wang; Wang, Hai-Lin; Lin, Gong-Cheng

    2012-06-18

    By spectrally slicing a single longitudinal-mode from a master weak-resonant-cavity Fabry-Perot laser diode with transient wavelength scanning and tracking functions, the broadened self-injection-locking of a slave weak-resonant-cavity Fabry-Perot laser diode is demonstrated to achieve bi-directional transmission in a 200-GHz array-waveguide-grating channelized dense-wavelength-division-multiplexing passive optical network system. Both the down- and up-stream slave weak-resonant-cavity Fabry-Perot laser diodes are non-return-to-zero modulated below threshold and coherently injection-locked to deliver the pulsed carrier for 25-km bi-directional 2.5 Gbits/s return-to-zero transmission. The master weak-resonant-cavity Fabry-Perot laser diode is gain-switched at near threshold condition and delivers an optical coherent pulse-train with its mode linewidth broadened from 0.2 to 0.8 nm by transient wavelength scanning, which facilitates the broadband injection-locking of the slave weak-resonant-cavity Fabry-Perot laser diodes with a threshold current reducing by 10 mA. Such a transient wavelength scanning induced spectral broadening greatly releases the limitation on wavelength injection-locking range required for the slave weak-resonant-cavity Fabry-Perot laser diode. The theoretical modeling and numerical simulation on the wavelength scanning and tracking effects of the master and slave weak-resonant-cavity Fabry-Perot laser diodes are performed. The receiving power sensitivity for back-to-back transmission at bit-error-rate <10(-10) is -25.6 dBm, and the power penalty added after 25-km transmission is less than 2 dB for all 16 channels.

  14. Storm Induced Injection of the Mississippi River Plume Into the Open Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Yuan, Jinchun; Miller, Richard L.; Powell, Rodney T.; Dagg, Michael J.

    2004-01-01

    The direct impact of the Mississippi River on the open Gulf of Mexico is typically considered to be limited due to the predominantly along-shore current pattern. Using satellite imagery, we analyzed chl a distributions in the northern Gulf of Mexico before and after the passage of two storms: Hurricane Lili and Tropical Storm Barry. Our analyses indicate that storm-induced eddies can rapidly inject large volumes of nutrient-rich Mississippi River water to the open gulf, and lead to phytoplankton blooms. Although these events last only a few weeks, they transport significant amounts of fluvial substances to the ocean. These river-ocean interactions are especially significant in tropical and subtropical regions because receiving waters are typically permanently stratified and oligotrophic.

  15. Charge injection from gate electrode by simultaneous stress of optical and electrical biases in HfInZnO amorphous oxide thin film transistor

    NASA Astrophysics Data System (ADS)

    Kwon, Dae Woong; Kim, Jang Hyun; Chang, Ji Soo; Kim, Sang Wan; Sun, Min-Chul; Kim, Garam; Kim, Hyun Woo; Park, Jae Chul; Song, Ihun; Kim, Chang Jung; Jung, U. In; Park, Byung-Gook

    2010-11-01

    A comprehensive study is done regarding stabilities under simultaneous stress of light and dc-bias in amorphous hafnium-indium-zinc-oxide thin film transistors. The positive threshold voltage (Vth) shift is observed after negative gate bias and light stress, and it is completely different from widely accepted phenomenon which explains that negative-bias stress results in Vth shift in the left direction by bias-induced hole-trapping. Gate current measurement is performed to explain the unusual positive Vth shift under simultaneous application of light and negative gate bias. As a result, it is clearly found that the positive Vth shift is derived from electron injection from gate electrode to gate insulator.

  16. Formation and dissipation of runaway current by MGI on J-TEXT

    NASA Astrophysics Data System (ADS)

    Wei, Yunong; Chen, Zhongyong; Huang, Duwei; Tong, Ruihai; Zhang, Xiaolong

    2017-10-01

    Plasma disruptions are one of the major concern for ITER. A large fraction of runaway current may be formed due to the avalanche generation of runaway electrons (REs) during disruptions and ruin the device structure. Experiments of runaway current formation and dissipation have been done on J-TEXT. Two massive gas injection (MGI) valves are used to form and dissipate the runaway current. Hot tail RE generation caused by the fast thermal quench leads to an abnormal formation of runaway current when the pre-TQ electron density increases in a range of 0.5-2-10 19m-3. 1020-22 quantities of He, Ne, Ar or Kr impurities are injected by MGI2 to dissipate the runaway current. He injection shows no obvious effect on runaway current dissipation in the experiments and Kr injection shows the best. The kinetic energy of REs and the magnetic energy of RE beam will affect the dissipation efficiency to a certain extent. Runaway current decay rate is found increasing quickly with the increase of the gas injection when the quantity is moderate, and then reaches to a saturation value with large quantity injection. A possible reason to explain the saturation of dissipation effect is the saturation of gas assimilation efficiency.

  17. Contraction produced by intracellular injection of calcium, strontium, and barium in the single crayfish muscle fibers.

    PubMed

    Matsumura, M; Mashima, H

    1976-01-01

    Ca ions were ionophoretically injected through an intracellular microelectrode into the single muscle fiber of a crayfish, and the resulting contraction sphere was observed under a microscope and photographed with a movie camera. The minimum contraction produced by the threshold current involved usually three or four, sometimes two, sarcomers on both sides of the injecting pipette but contraction involving only one sarcomere was not observered. The rheobase of the Ca-injecting current was 3.2 X 10(-9) A. The strength-duration curves were determined for Ca-, Sr-, and Ba-injecting currents; all fitted a similar hyperbolic equation. The threshold amount of Ca above rheobasic injection was 2.1 X 10(-15)mol, and the ratios between threshold amounts were Ca: Sr: Ba=1: 1.9: 3.0. The effects of Ca and Sr were additive for the contraction. More current was required for the Ca-injection to produce the contraction in the K-depolarized-or 15mM-procaine-treated muscle, although less current was sufficient for the muscle treated with 0.5-1.0 mM of caffeine. The participation of the Ca-induced Ca release mechanism in the contraction produced by Ca injection and the role of Sr or Ba as a substitute for Ca were discussed.

  18. Orthogonal ion injection apparatus and process

    DOEpatents

    Kurulugama, Ruwan T; Belov, Mikhail E

    2014-04-15

    An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.

  19. A line source tracer test - a better method for assessing high groundwater velocity

    NASA Astrophysics Data System (ADS)

    Magal, E.; Weisbrod, N.; Yakirevich, A.; Kurtzman, D.; Yechieli, Y.

    2009-12-01

    A line source injection is suggested as an effective method for assessing groundwater velocities and flow directions in subsurface characterized by high water fluxes. Modifying the common techniques of injecting a tracer into a well was necessary after frequently-used methods of natural and forced gradient tracer tests ended with no reliable information on the local groundwater flow. In a field experiment, tracers were injected into 8-m long line injection system constructed below the water table almost perpendicular to the assumed flow direction. The injection system was divided to four separate segments (each 2 m long) enabling the injection of four different tracers along the line source. An array of five boreholes located in an area of 10x10 m downstream was used for monitoring the tracers' transport. Two dye tracers (Uranine and Na Naphthionate) were injected in a long pulse of several hours into two of the injection pipe segments and two tracers (Rhenium oxide and Gd-DTPA) were instantaneously injected to the other two segments. The tracers were detected 0.7 to 2.3 hours after injection in four of the five observation wells, located 2.3 to 10 m from the injection system, respectively. Groundwater velocities were calculated directly from the tracers' arrival times and by fitting the observed breakthrough curves to simulations with one and two dimensions analytical solutions for conservative tracer transport. The groundwater velocity was determined to be ~100 m/d. The longitudinal dispersivity value, generated from fitting the tracer breakthrough curves, was in a range of 0.2-3m. The groundwater flow direction was derived based on the arrival of the tracers and was found to be consistent with the apparent direction of the hydraulic gradient. The hydraulic conductivity derived from the groundwater velocity was ~1200 m/d, which is in the upper range of gravel sediment.

  20. Ion channel recordings on an injection-molded polymer chip.

    PubMed

    Tanzi, Simone; Matteucci, Marco; Christiansen, Thomas Lehrmann; Friis, Søren; Christensen, Mette Thylstrup; Garnaes, Joergen; Wilson, Sandra; Kutchinsky, Jonatan; Taboryski, Rafael

    2013-12-21

    In this paper, we demonstrate recordings of the ion channel activity across the cell membrane in a biological cell by employing the so-called patch clamping technique on an injection-molded polymer microfluidic device. The findings will allow direct recordings of ion channel activity to be made using the cheapest materials and production platform to date and with the potential for very high throughput. The employment of cornered apertures for cell capture allowed the fabrication of devices without through holes and via a scheme comprising master origination by dry etching in a silicon substrate, electroplating in nickel and injection molding of the final part. The most critical device parameters were identified as the length of the patching capillary and the very low surface roughness on the inside of the capillary. The cross-sectional shape of the orifice was found to be less critical, as both rectangular and semicircular profiles seemed to have almost the same ability to form tight seals with cells with negligible leak currents. The devices were functionally tested using human embryonic kidney cells expressing voltage-gated sodium channels (Nav1.7) and benchmarked against a commercial state-of-the-art system for automated ion channel recordings. These experiments considered current-voltage (IV) relationships for activation and inactivation of the Nav1.7 channels and their sensitivity to a local anesthetic, lidocaine. Both IVs and lidocaine dose-response curves obtained from the injection-molded polymer device were in good agreement with data obtained from the commercial system.

  1. A kinetic Monte Carlo model with improved charge injection model for the photocurrent characteristics of organic solar cells

    NASA Astrophysics Data System (ADS)

    Kipp, Dylan; Ganesan, Venkat

    2013-06-01

    We develop a kinetic Monte Carlo model for photocurrent generation in organic solar cells that demonstrates improved agreement with experimental illuminated and dark current-voltage curves. In our model, we introduce a charge injection rate prefactor to correct for the electrode grid-size and electrode charge density biases apparent in the coarse-grained approximation of the electrode as a grid of single occupancy, charge-injecting reservoirs. We use the charge injection rate prefactor to control the portion of dark current attributed to each of four kinds of charge injection. By shifting the dark current between electrode-polymer pairs, we align the injection timescales and expand the applicability of the method to accommodate ohmic energy barriers. We consider the device characteristics of the ITO/PEDOT/PSS:PPDI:PBTT:Al system and demonstrate the manner in which our model captures the device charge densities unique to systems with small injection energy barriers. To elucidate the defining characteristics of our model, we first demonstrate the manner in which charge accumulation and band bending affect the shape and placement of the various current-voltage regimes. We then discuss the influence of various model parameters upon the current-voltage characteristics.

  2. Portable device and method for determining permeability characteristics of earth formations

    DOEpatents

    Shuck, Lowell Z.

    1977-01-01

    The invention is directed to a device which is used for determining permeability characteristics of earth formations at the surface thereof. The determination of the maximum permeability direction and the magnitude of permeability are achieved by employing a device comprising a housing having a central fluid-injection port surrounded by a plurality of spaced-apart fluid flow and pressure monitoring ports radially extending from the central injection port. With the housing resting on the earth formation in a relatively fluid-tight manner as provided by an elastomeric pad disposed therebetween, fluid is injected through the central port into the earth formation and into registry with the fluid-monitoring ports disposed about the injection port. The fluid-monitoring ports are selectively opened and the flow of the fluid through the various fluid ports is measured so as to provide a measurement of flow rates and pressure distribution about the center hole which is indicative on the earth formation permeability direction and magnitude. For example, the azimuthal direction of the fluid-monitoring ports in the direction through which the greatest amount of injected fluid flows as determined by the lowest pressure distribution corresponds to the direction of maximum permeability in the earth formation.

  3. Finite difference time domain (FDTD) method for modeling the effect of switched gradients on the human body in MRI.

    PubMed

    Zhao, Huawei; Crozier, Stuart; Liu, Feng

    2002-12-01

    Numerical modeling of the eddy currents induced in the human body by the pulsed field gradients in MRI presents a difficult computational problem. It requires an efficient and accurate computational method for high spatial resolution analyses with a relatively low input frequency. In this article, a new technique is described which allows the finite difference time domain (FDTD) method to be efficiently applied over a very large frequency range, including low frequencies. This is not the case in conventional FDTD-based methods. A method of implementing streamline gradients in FDTD is presented, as well as comparative analyses which show that the correct source injection in the FDTD simulation plays a crucial rule in obtaining accurate solutions. In particular, making use of the derivative of the input source waveform is shown to provide distinct benefits in accuracy over direct source injection. In the method, no alterations to the properties of either the source or the transmission media are required. The method is essentially frequency independent and the source injection method has been verified against examples with analytical solutions. Results are presented showing the spatial distribution of gradient-induced electric fields and eddy currents in a complete body model. Copyright 2002 Wiley-Liss, Inc.

  4. Evaluation of the foetal time to death in mice after application of direct and indirect euthanasia methods.

    PubMed

    Muñoz-Mediavilla, C; Cámara, J A; Salazar, S; Segui, B; Sanguino, D; Mulero, F; de la Cueva, E; Blanco, I

    2016-04-01

    Directive 2010/63/EU on the protection of animals used for scientific purposes requires that the killing of mammal foetuses during the last third of their gestational period should be accomplished through effective and humane methods. The fact that murine foetuses are resistant to hypoxia-mediated euthanasia renders the current euthanasia methods ineffective or humane for the foetuses when these methods are applied to pregnant female mice. We have assessed the time to death of foetuses after performing either indirect (dam euthanasia) or direct (via intraplacental injection--a new approach to euthanasia) euthanasia methods in order to determine a euthanasia method that is appropriate, ethical and efficient for the killing of mouse foetuses. The respective times to death of foetuses after performing the three most commonly used euthanasia methods (namely cervical dislocation, CO2inhalation and intraperitoneal sodium pentobarbital administration) were recorded. Absence of foetal heartbeat was monitored via ultrasound. We consider that the most effective and humane method of foetal euthanasia was the one able to achieve foetal death within the shortest possible period of time. Among the indirect euthanasia methods assessed, the administration of a sodium pentobarbital overdose to pregnant female mice was found to be the fastest for foetuses, with an average post-treatment foetal death of approximately 29.8 min. As for the direct euthanasia method assessed, foetal time to death after intraplacental injection of sodium pentobarbital was approximately 14 min. Significant differences among the different mouse strains employed were found. Based on the results obtained in our study, we consider that the administration of a sodium pentobarbital overdose by intraplacental injection to be an effective euthanasia method for murine foetuses. © The Author(s) 2015.

  5. Guided Optical Structures in the Military Environment

    DTIC Science & Technology

    1986-05-01

    we will concentrate on two new techniques using laser tuning; passive homodyne techniques and (3 X 3) directional couplers, Each of these schemes have...growth system used a 50 C002 laser and a two beam arrangement similar to lurrus and $tone (7). Power is controlIed by a three function proportional...Discussion will then centel on demodulation techniques and injection laser noise, Potential telemetry configdritions currently under study for use with OFS

  6. Injectable Sources of Locally Controlled Electrical Fields to Facilitate Tissue Repair

    DTIC Science & Technology

    2001-10-25

    craniofacial and somatic developmental anomalies for which the current gold standard is highly invasive distraction osteogenesis. Shown here is a...representation of "Developmental Osteogenic Stimulation" [2] being used to direct and promote maxillary and palatal shelf growth following cleft lip...Tessier to distraction ," Childs Nerv Syst, vol. 15:11-12, pp. 681-694 , Nov. 1999. [2] H.M. Kaplan, "’Developmental Osteogenic Stimulation’ – An

  7. Efficient optical injection locking of electronic oscillators

    NASA Astrophysics Data System (ADS)

    Cochran, S. R.; Wang, S. Y.

    1989-05-01

    The paper presents techniques for direct optical injection locking of electronic oscillators and analyzes the problem of direct optical injection locking of a common-source FET oscillator using a high impedance optoelectronic transducer. A figure-of-merit for optically injection locked oscillators is defined, and an experimental oscillator based on the design criteria was fabricated. The oscillator achieved efficient, high power operation and moderate locking bandwidth with small locking signal magnitude. The experimental results are consistent with the theoretical model.

  8. The stimulation of central kappa opioid receptors decreases male sexual behavior and locomotor activity.

    PubMed

    Leyton, M; Stewart, J

    1992-10-23

    Systemic injections of the kappa (kappa) opioid receptor agonist U-50,488H decreased male sexual behavior, locomotor activity, body temperature and bodily grooming, and induced body flattening. The U-50,488H-induced inhibitions of male sexual behavior were prevented by systemic injections of naloxone and by intra-cranial injections of the kappa opioid antagonist nor-binaltorphimine (NBNI). Injections of NBNI to either the ventral tegmental area (VTA) or the nucleus accumbens septi (NAS) increased female-directed behavior, and prevented the U-50,488H-induced decreases in female-directed behavior. Intra-VTA NBNI prevented U-50,488H-induced decreases in the mean number of ejaculations, intra-NAS NBNI prevented U-50,488H-induced increases in copulation latencies. Intra-medial preoptic area (mPOA) injections of NBNI increased female-directed behavior, and attenuated U-50,488H-induced decreases in female-directed behavior as well as U-50,488H-induced increases in both copulation and ejaculation latencies. Injections of NBNI dorsal to the mPOA were ineffective. Two of 26 days following the central injection of NBNI, systemic injections of U-50,488H remained behaviorally ineffective, leaving both sexual behavior and locomotor activity undiminished. These results suggest that the stimulation of central kappa opioid receptors inhibits sexual behavior in the male rat; perhaps endogenous kappa opioid agonists induce sexual refractory periods.

  9. Dose intraarticular steroid injection increase the rate of infection in subsequent arthroplasty: grading the evidence through a meta-analysis.

    PubMed

    Xing, Dan; Yang, Yang; Ma, Xinlong; Ma, Jianxiong; Ma, Baoyi; Chen, Yang

    2014-11-13

    Intraarticular steroid injections are widely used in joint arthritis. However, the data regarding an association between an increased risk for arthroplasty infection after an intraarticular steroid injection are still conflicting. We conducted a meta-analysis to evaluate the evidence from relevant studies that examine the relation between intraarticular steroid injections and infection rates in subsequent joint arthroplasty and to develop GRADE based recommendations for using the steroid before arthroplasty. A systematic search of all studies published through August 2014 was conducted using the MEDLINE, EMBASE, OVID, ScienceDirect and Cochrane CENTRAL databases. The relevant studies that examined the relation between intraarticular steroid injections and infection rates in subsequent joint arthroplasty were identified. Demographic characteristics, infection rates and clinical outcomes were manually extracted from all of the selected studies. The evidence quality levels and recommendations were assessed using the GRADE system. Eight studies looking at hip and knee arthroplasties were included. Meta-analysis showed that patients with steroid injection before arthroplasty had a higher deep infection rate than patients without steroid injection (OR = 2.13, 95% CI 1.02-4.45), but no significant effect on superficial infection rate (OR = 1.75, 95% CI 0.74-4.16). The overall GRADE system evidence quality was very low, which lowers our confidence in their recommendations. Intraarticular steroid injections may lead to increased deep infection rates of subsequent joint arthroplasty but not the superficial infection rates. Due to the poor quality of the evidence currently available, further studies are still required.

  10. Optimal design strategy of switching converters employing current injected control

    NASA Astrophysics Data System (ADS)

    Lee, F. C.; Fang, Z. D.; Lee, T. H.

    1985-01-01

    This paper analyzes a buck/boost regulator employing current-injected control (CIC). It reveals the complex interactions between the dc loop and the current-injected loop and underlines the fundamental principle that governs the loop gain determination. Three commonly used compensation techniques are compared. The integral and lead/lag compensation are shown to be most desirable for performance optimization and stability.

  11. Effects of tetraethylammonium on potassium currents in a molluscan neurons

    PubMed Central

    1981-01-01

    The effects of tetraethylammonium (TEA) on the delayed K+ current and on the Ca2+-activated K+ current of the Aplysia pacemaker neurons R-15 and L-6 were studied. The delayed outward K+ current was measured in Ca2+-free ASW containing tetrodotoxin (TTX), using brief depolarizing clamp pulses. External TEA blocks the delayed K+ current reversibly in a dose-dependent manner. The experimental results are well fitted with a Michaelis-Menten expression, assuming a one-to-one reaction between TEA and a receptor site, with an apparent dissociation constant of 6.0 mM. The block depends on membrane voltage and is reduced at positive membrane potentials. The Ca2+-activated K+ current was measured in Ca2+- free artificial seawater (ASW) containing TTX, using internal Ca2+ ion injection to directly activate the K+ conductance. External TEA and a number of other quaternary ammonium ions block the Ca2+-activated K+ current reversibly in a dose-dependent manner. TEA is the most effective blocker, with an apparent dissociation constant, for a one-to- one reaction with a receptor site, of 0.4 mM. The block decreases with depolarization. The Ca2+-activated K+ current was also measured after intracellular iontophoretic TEA injection. Internal TEA blocks the Ca2+- activated K+ current (but the block is only apparent at positive membrane potentials), is increased by depolarization, and is irreversible. The effects of external and internal TEA can be seen in measurements of the total outward K+ current at different membrane potentials in normal ASW. PMID:6265594

  12. 78 FR 32081 - Airworthiness Directives; Aircraft Industries a.s. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... Injection System WATER INJECTION circuit ON breakter. TCL TQ=min. 60% WATER INJECTION/ON push- Push and hold till amber button. WATER INJECTION signal comes on (on the front control panel) Before throttling back power: WATER INJECTION/OFF push- Push and check amber button. WATER INJECTION signal extinguishes...

  13. Direct current hybrid breakers: A design and its realization

    NASA Astrophysics Data System (ADS)

    Atmadji, Ali Mahfudz Surya

    2000-12-01

    The use of semiconductors for electric power circuit breakers instead of conventional breakers remains a utopia when designing fault current interrupters for high power networks. The major problems concerning power semiconductor circuit breakers are the excessive heat losses and their sensitivity to transients. However, conventional breakers are capable of dealing with such matters. A combination of the two methods, or so-called `hybrid breakers', would appear to be a solution; however, hybrid breakers use separate parallel branches for conducting the main current and interrupting the short-circuit current. Such breakers are intended for protecting direct current (DC) traction systems. In this thesis hybrid switching techniques for current limitation and purely solidstate current interruption are investigated for DC breakers. This work analyzes the transient behavior of hybrid breakers and compares their operations with conventional breakers and similar solid-state devices in DC systems. Therefore a hybrid breaker was constructed and tested in a specially designed high power test circuit. A vacuum breaker was chosen as the main breaker in the main conducting path; then a commutation path was connected across the vacuum breaker where it provided current limitation and interruption. The commutation path operated only during any current interruption and the process required additional circuits. These included a certain energy storage, overvoltage suppressor and commutation switch. So that when discharging this energy, a controlled counter-current injection could be produced. That counter-current opposed the main current in the breaker by superposition in order to create a forced current-zero. One-stage and two-stage commutation circuits have been treated extensively. This study project contains both theoretical and experimental investigations. A direct current shortcircuit source was constructed capable of delivering power equivalent to a fault. It supplied a direct voltage of 1kVDC which was rectified having been obtained from a 3-phase lOkV/380V supply. The source was successfully tested to deliver a fault current of 7kA with a time constant of 5ms. The hybrid breaker that was developed could provide protection for 750VDC traction systems. The breaker was equipped with a fault- recognizing circuit based on a current level triggering. An electronic circuit was built for this need and was included in the system. It monitored the system continuously and took action by generating trip signals when a fault was recognized. Interruption was followed by a suitable timing of the fast contact separation in the main breaker and the current-zero creation. An electrodynamically driven mechanism was successfully tested having a dead-time of 300μs to separate the main breaker contacts. Furthermore, a maximum peak current injection of RA at a frequency of 500Hz could be obtained in order to produce an artificial current-zero in the vacuum breaker. A successful current interruption with a prospective value of RA was achieved by the hybrid switching technique. In addition, measures were taken to prevent overvoltages. Experimentally, the concept of a hybrid breaker was compared with the functioning of all mechanical (air breaker) and all electronical (IGCT breaker) versions. Although a single stage interrupting method was verified experimentally, two two-stage interrupting methods were analyzed theoretically.

  14. The Incidence of Intravascular Needle Entrance during Inferior Alveolar Nerve Block Injection.

    PubMed

    Taghavi Zenouz, Ali; Ebrahimi, Hooman; Mahdipour, Masoumeh; Pourshahidi, Sara; Amini, Parisa; Vatankhah, Mahdi

    2008-01-01

    Dentists administer thousands of local anesthetic injections every day. Injection to a highly vascular area such as pterygomandibular space during an inferior alveolar nerve block has a high risk of intravascular needle entrance. Accidental intravascular injection of local anesthetic agent with vasoconstrictor may result in cardiovascular and central nervous system toxicity, as well as tachycardia and hypertension. There are reports that indicate aspiration is not performed in every injection. The aim of the present study was to assess the incidence of intravascular needle entrance in inferior alveolar nerve block injections. Three experienced oral and maxillofacial surgeons performed 359 inferior alveolar nerve block injections using direct or indirect techniques, and reported the results of aspiration. Aspirable syringes and 27 gauge long needles were used, and the method of aspiration was similar in all cases. Data were analyzed using t-test. 15.3% of inferior alveolar nerve block injections were aspiration positive. Intravascular needle entrance was seen in 14.2% of cases using direct and 23.3% of cases using indirect block injection techniques. Of all injections, 15.8% were intravascular on the right side and 14.8% were intravascular on the left. There were no statistically significant differences between direct or indirect block injection techniques (P = 0.127) and between right and left injection sites (P = 0.778). According to our findings, the incidence of intravascular needle entrance during inferior alveolar nerve block injection was relatively high. It seems that technique and maneuver of injection have no considerable effect in incidence of intravascular needle entrance.

  15. The Incidence of Intravascular Needle Entrance during Inferior Alveolar Nerve Block Injection

    PubMed Central

    Taghavi Zenouz, Ali; Ebrahimi, Hooman; Mahdipour, Masoumeh; Pourshahidi, Sara; Amini, Parisa; Vatankhah, Mahdi

    2008-01-01

    Background and aims Dentists administer thousands of local anesthetic injections every day. Injection to a highly vascular area such as pterygomandibular space during an inferior alveolar nerve block has a high risk of intravascular needle entrance. Accidental intravascular injection of local anesthetic agent with vasoconstrictor may result in cardiovascular and central nervous system toxicity, as well as tachycardia and hypertension. There are reports that indicate aspiration is not performed in every injection. The aim of the present study was to assess the incidence of intravascular needle entrance in inferior alveolar nerve block injections. Materials and methods Three experienced oral and maxillofacial surgeons performed 359 inferior alveolar nerve block injections using direct or indirect techniques, and reported the results of aspiration. Aspirable syringes and 27 gauge long needles were used, and the method of aspiration was similar in all cases. Data were analyzed using t-test. Results 15.3% of inferior alveolar nerve block injections were aspiration positive. Intravascular needle entrance was seen in 14.2% of cases using direct and 23.3% of cases using indirect block injection techniques. Of all injections, 15.8% were intravascular on the right side and 14.8% were intravascular on the left. There were no statistically significant differences between direct or indirect block injection techniques (P = 0.127) and between right and left injection sites (P = 0.778). Conclusion According to our findings, the incidence of intravascular needle entrance during inferior alveolar nerve block injection was relatively high. It seems that technique and maneuver of injection have no considerable effect in incidence of intravascular needle entrance. PMID:23285329

  16. Ferroelectric Diodes with Charge Injection and Trapping

    NASA Astrophysics Data System (ADS)

    Fan, Zhen; Fan, Hua; Lu, Zengxing; Li, Peilian; Huang, Zhifeng; Tian, Guo; Yang, Lin; Yao, Junxiang; Chen, Chao; Chen, Deyang; Yan, Zhibo; Lu, Xubing; Gao, Xingsen; Liu, Jun-Ming

    2017-01-01

    Ferroelectric diodes with polarization-modulated Schottky barriers are promising for applications in resistive switching (RS) memories. However, they have not achieved satisfactory performance reliability as originally hoped. The physical origins underlying this issue have not been well studied, although they deserve much attention. Here, by means of scanning Kelvin probe microscopy we show that the electrical poling of ferroelectric diodes can cause significant charge injection and trapping besides polarization switching. We further show that the reproducibility and stability of switchable diode-type RS behavior are significantly affected by the interfacial traps. A theoretical model is then proposed to quantitatively describe the modifications of Schottky barriers by charge injection and trapping. This model is able to reproduce various types of hysteretic current-voltage characteristics as experimentally observed. It is further revealed that the charge injection and trapping can significantly modify the electroresistance ratio, RS polarity, and high- or low-resistance states initially defined by the polarization direction. Several approaches are suggested to suppress the effect of charge injection and trapping so as to realize high-performance polarization-reversal-induced RS. This study, therefore, reveals the microscopic mechanisms for the RS behavior comodulated by polarization reversal and charge trapping in ferroelectric diodes, and also provides useful suggestions for developing reliable ferroelectric RS memories.

  17. Effect of the Ethanol Injection Moment During Compression Stroke on the Combustion of Ethanol - Diesel Dual Direct Injection Engine

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhou, Liying; Huang, Haomin; Xu, Mingfei; Guo, Mei; Chen, Xin

    2018-01-01

    A set of GDI system is installed on a F188 single-cylinder, air-cooled and direct injection diesel engine, which is used for ethanol injection, with the injection time controlled by the crank angle signal collected by AVL angle encoder. The injection of ethanol amounts to half of the thermal equivalent of an original diesel fuel. A 3D combustion model is established for the ethanol - diesel dual direct injection engine. Diesel was injected from the original fuel injection system, with a fuel supply advance angle of 20°CA. The ethanol was injected into the cylinder during compression process. Diesel injection began after the completion of ethanol injection. Ethanol injection starting point of 240°CA, 260°CA, 280°CA, 300°CA and 319.4°CA were simulated and analyzed. Due to the different timing of ethanol injection, the ignition of the ethanol mixture when diesel fires, results in non-uniform ignition distribution and flame propagation rate, since the distribution and concentration gradients of the ethanol mixture in the cylinder are different, thus affecting the combustion process. The results show that, when ethanol is injected at 319.4°CA, the combustion heat release rate and the pressure rise rate during the initial stage are the highest. Also, the maximum combustion pressure, with a relatively advance phase, is the highest. In case of later initial ethanol injection, the average temperature in the cylinder during the initial combustion period will have a faster rise. In case of initial injection at 319.4°CA, the average temperature in the cylinder is the highest, followed by 240°CA ethanol injection. In the post-combustion stage, the earlier ethanol injection will result in higher average temperature in the cylinder and more complete fuel combustion. The injection of ethanol at 319.4°CA produces earlier and highest NOX emissions.

  18. Prognostic health monitoring in switch-mode power supplies with voltage regulation

    NASA Technical Reports Server (NTRS)

    Hofmeister, James P (Inventor); Judkins, Justin B (Inventor)

    2009-01-01

    The system includes a current injection device in electrical communication with the switch mode power supply. The current injection device is positioned to alter the initial, non-zero load current when activated. A prognostic control is in communication with the current injection device, controlling activation of the current injection device. A frequency detector is positioned to receive an output signal from the switch mode power supply and is able to count cycles in a sinusoidal wave within the output signal. An output device is in communication with the frequency detector. The output device outputs a result of the counted cycles, which are indicative of damage to an a remaining useful life of the switch mode power supply.

  19. Effects of multi-pulsed coaxial helicity injection on dynamics of spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.; Kagei, Y.

    2012-10-01

    The mechanism to rebuild the magnetic fields and to amplify the currents in the high-q spherical torus (ST) by the multi-pulsed coaxial helicity injection is investigated using the resistive nonlinear 3D-MHD simulations. During the driven phase, the dynamics is almost axisymmetric because the magnetic fluctuation level of n=0 mode compared with other higher modes is much larger. The toroidal current It is effectively amplified due to the merging of plasmoid ejected from the gun region with the pre-existing ST in the confinement region. The poloidal flux is not significantly amplified because the current sheet generated by the merging process does not rapidly decay. The negative toroidal flow vt is then induced in the direction of It around the central open flux column (OFC) region by inductive toroidal electric field Et (=-vzBr) because of the plasmoid ejection. The strong poloidal flow vz (=ErBt) is also driven from the gun to confinement region due to the Lorentz force. As the result of vz, the flow vortices associated with the dynamo effect are caused around the upper confinement region. During the decay phase, the closed field lines are regenerated due to the dissipation of magnetic fluctuations. The helical distortion of the OFC becomes small, and then ordered magnetic field structures without flows are built. Just after turning off the external electric field, the poloidal flow from the confinement to gun region is caused by the pressure gradients. The parallel current density λ concentrated in the OFC diffuses to the core region, but does not relax in the direction of the Taylor state due to the pressure gradients.

  20. Effect of cavitation in high-pressure direct injection

    NASA Astrophysics Data System (ADS)

    Aboulhasanzadeh, Bahman; Johnsen, Eric

    2015-11-01

    As we move toward higher pressures for Gasoline Direct Injection and Diesel Direct Injection, cavitation has become an important issue. To better understand the effect of cavitation on the nozzle flow and primary atomization, we use a high-order accurate Discontinuous Galerkin approach using multi-GPU parallelism to simulate the compressible flow inside and outside the nozzle. Phase change is included using the six-equations model. We investigate the effect of nozzle geometry on cavitation inside the injector and on primary atomization outside the nozzle.

  1. Current drive by spheromak injection into a tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, M.R.; Bellan, P.M.

    1990-04-30

    We report the first observation of current drive by injection of a spheromak plasma into a tokamak (Caltech ENCORE small reasearch tokamak) due to the process of helicity injection. After an abrupt 30% increase, the tokamak current decays by a factor of 3 due to plasma cooling caused by the merging of the relatively cold spheromak with the tokamak. The tokamak density profile peaks sharply due to the injected spheromak plasma ({ital {bar n}}{sub 3} increases by a factor of 6) then becomes hollow, suggestive of an interchange instability.

  2. Design of photonic crystal surface emitting lasers with indium-tin-oxide top claddings

    NASA Astrophysics Data System (ADS)

    Huang, Shen-Che; Hong, Kuo-Bin; Chiu, Han-Lun; Lan, Shao-Wun; Chang, Tsu-Chi; Li, Heng; Lu, Tien-Chang

    2018-02-01

    Electrically pumped GaAs-based photonic crystal surface emitting lasers were fabricated using a simple fabrication process by directly capping the indium-tin-oxide transparent conducting thin film as the top cladding layer upon a photonic crystal layer. Optimization of the separate-confinement heterostructures of a laser structure is crucial to improving characteristics by providing advantageous optical confinements. The turn-on voltage, series resistance, threshold current, and slope efficiency of the laser with a 100 × 100 μm2 photonic crystal area operated at room temperature were 1.3 V, 1.5 Ω, 121 mA, and 0.2 W/A, respectively. Furthermore, we demonstrated a single-lobed lasing wavelength of 928.6 nm at 200 mA and a wavelength redshift rate of 0.05 nm/K in temperature-dependent measurements. The device exhibited the maximum output power of approximately 400 mW at an injection current of 2 A; moreover, divergence angles of less than 1° for the unpolarized circular-shaped laser beam were measured at various injection currents. Overall, the low threshold current, excellent beam quality, small divergence, high output power, and high-operating-temperature (up to 343 K) of our devices indicate that they can potentially fill the requirements for next-generation light sources and optoelectronic devices.

  3. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    NASA Astrophysics Data System (ADS)

    Shrestha, Suman K.

    Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was referenced to the rotor surface speed for radial injection cooling. The mass flow rates for the radial injection were 0.032, 0.0432, 0.054 and 0.068 Kg/min, which result in average injection speed of 150, 200, 250 and 300% of rotor surface speed. Several thermocouples were attached at various circumferential directions of the bearing sleeve, two plenums, bearing holder and ball bearing housings to collect the temperature data of the bearing at 30krpm under 10lb of load. Both axial cooling and radial injection are effective cooling mechanism and effectiveness of both cooling methods is directly proportional to the total mass flow rates. However, axial cooling is slightly more efficient in controlling the average temperature of the bearing sleeve, but results in higher thermal gradient of the shaft along the axial direction and also higher thermal gradient of the bearing sleeve along the circumferential direction compared to the radial injection cooling. The smaller thermal gradient of the radial injection cooling is due to the direct cooling effect of the shaft by impinging jets. While the axial cooling has an effect on only the bearing, the radial injection has a cooling effect on both the bearing sleeve and shaft. It is considered the radial injection cooling needs to be further optimized in terms of number of injection holes and their locations.

  4. Asymmetries in the spectral density of an interaction-quenched Luttinger liquid

    NASA Astrophysics Data System (ADS)

    Calzona, A.; Gambetta, F. M.; Carrega, M.; Cavaliere, F.; Sassetti, M.

    2018-03-01

    The spectral density of an interaction-quenched one-dimensional system is investigated. Both direct and inverse quench protocols are considered and it is found that the former leads to stronger effects on the spectral density with respect to the latter. Such asymmetry is directly reflected on transport properties of the system, namely the charge and energy current flowing to the system from a tunnel coupled biased probe. In particular, the injection of particles from the probe to the right-moving channel of the system is considered. The resulting fractionalization phenomena are strongly affected by the quench protocol and display asymmetries in the case of direct and inverse quench. Transport properties therefore emerge as natural probes for the observation of this quench-induced behavior.

  5. Greatly Increasing Trapped Ion Populations for Mobility Separations Using Traveling Waves in Structures for Lossless Ion Manipulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Liulin; Ibrahim, Yehia M.; Garimella, Sandilya V. B.

    The initial use of traveling waves (TW) for ion mobility (IM) separations using a structures for lossless ion manipulations (SLIM) employed an ion funnel trap (IFT) to accumulate ions from a continuous electrospray ionization source, and limited to injected ion populations of ~106 charges due to the onset of space charge effects in the trapping region. Additional limitations arise due to the loss of resolution for the injection of ions over longer periods (e.g. in extended pulses). In this work a new SLIM ‘flat funnel’ (FF) module has been developed and demonstrated to enable the accumulation of much larger ionmore » populations and their injection for IM separations. Ion current measurements indicate a capacity of ~3.2×108 charges for the extended trapping volume, over an order of magnitude greater than the IFT. The orthogonal ion injection into a funnel shaped separation region can greatly reduce space charge effects during the initial IM separation stage, and the gradually reduced width of the path allows the ion packet to be increasingly compressed in the lateral dimension as the separation progresses, allowing e.g. efficient transmission through conductance limits or compatibility with subsequent ion manipulations. This work examined the TW, RF, and DC confining field SLIM parameters involved in ion accumulation, injection, transmission and separation in the FF IM module using both direct ion current and MS measurements. Wide m/z range ion transmission is demonstrated, along with significant increases in signal to noise (S/N) ratios due to the larger ion populations injected. Additionally, we observed a reduction in the chemical background, which was attributed to more efficient desolvation of solvent related clusters over the extended ion accumulation periods. The TW SLIM FF IM module is anticipated to be especially effective as a front end for long path SLIM IM separation modules.« less

  6. Robust spin-current injection in lateral spin valves with two-terminal Co2FeSi spin injectors

    NASA Astrophysics Data System (ADS)

    Oki, S.; Kurokawa, T.; Honda, S.; Yamada, S.; Kanashima, T.; Itoh, H.; Hamaya, K.

    2017-05-01

    We demonstrate generation and detection of pure spin currents by combining a two-terminal spin-injection technique and Co2FeSi (CFS) spin injectors in lateral spin valves (LSVs). We find that the two-terminal spin injection with CFS has the robust dependence of the nonlocal spin signals on the applied bias currents, markedly superior to the four-terminal spin injection with permalloy reported previously. In our LSVs, since the spin transfer torque from one CFS injector to another CFS one is large, the nonlocal magnetoresistance with respect to applied magnetic fields shows large asymmetry in high bias-current conditions. For utilizing multi-terminal spin injection with CFS as a method for magnetization reversals, the terminal arrangement of CFS spin injectors should be taken into account.

  7. Current instability and burnout of HEMT structures

    NASA Astrophysics Data System (ADS)

    Vashchenko, V. A.; Sinkevitch, V. F.

    1996-06-01

    The burnout mechanism and region of high conductivity formation under breakdown of pseudomorphic GalnAs/GaAlAs and GaAs/GaAlAs HEMT structures have been studied in a pulsed and direct current (d.c.) regime. Peculiarities of the HEMT breakdown have been compared with a GaAs MESFET structure of the same topology. It appears that in all types of investigated structures the drain voltage increase is limited by the transition into a high conductivity state as a result of "parasitic" avalanche-injection conductivity modulation of the undoped GaAs or i-GaAs layer. It has been established that the transition into a high conductivity state is caused by holes from the drain avalanche region in the channel and is the result of a mutual intensification of the avalanche generation rate near the drain and the injection level from the source contact. It turns out that under a typical gate bias operation the transition in the high conductivity state is accompanied by a negative differential conductivity (NDC) and results in the formation of high current density filaments. The resulting high local overheating in the filament region is the cause of local melting and burnout of the HEMT structures.

  8. A mechanism of charge transport in electroluminescent structures consisting of porous silicon and single-crystal silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtukh, A. A., E-mail: dept_5@isp.kiev.ua; Kaganovich, E. B.; Manoilov, E. G.

    2006-02-15

    Electroluminescent structures that emit in the visible region of the spectrum and are based on porous silicon (por-Si) formed on the p-Si substrate electrolytically using an internal current source are fabricated. The photoluminescent and electroluminescent properties, as well as the current-and capacitance-voltage characteristics of the structures are studied. Electroluminescence is observed only if the forward bias voltage is applied to the structure; the electroluminescence mechanism is based on the injection and is related to the radiative recombination of electrons and holes in quantum-dimensional Si nanocrystals. The injection of holes is controlled by the condition of their accumulation in the space-chargemore » region of p-Si and by a comparatively low concentration of electronic states at the por-Si/p-Si interface. The charge transport in por-Si is caused by the direct tunneling of charge carriers between the quantum-mechanical levels, which is ensured by an appreciable number of quantum-dimensional Si nanocrystals. The leakage currents are low as a result of a small variance in the sizes of Si nanocrystals and the absence of comparatively large nanocrystals.« less

  9. Reduction of conductance mismatch in Fe/Al2O3/MoS2 system by tunneling-barrier thickness control

    NASA Astrophysics Data System (ADS)

    Hayakawa, Naoki; Muneta, Iriya; Ohashi, Takumi; Matsuura, Kentaro; Shimizu, Jun’ichi; Kakushima, Kuniyuki; Tsutsui, Kazuo; Wakabayashi, Hitoshi

    2018-04-01

    Molybdenum disulfide (MoS2) among two-dimensional semiconductor films is promising for spintronic devices because it has a longer spin-relaxation time with contrasting spin splitting than silicon. However, it is difficult to fabricate integrated circuits by the widely used exfoliation method. Here, we investigate the contact characteristics in the Fe/Al2O3/sputtered-MoS2 system with various thicknesses of the Al2O3 film. Current density increases with increasing thickness up to 2.5 nm because of both thermally-assisted and direct tunneling currents. On the other hand, it decreases with increasing thickness over 2.5 nm limited by direct tunneling currents. These results suggest that the Schottky barrier width can be controlled by changing thicknesses of the Al2O3 film, as supported by calculations. The reduction of conductance mismatch with this technique can lead to highly efficient spin injection from iron into the MoS2 film.

  10. A current-driven resistive instability and its nonlinear effects in simulations of coaxial helicity injection in a tokamak

    DOE PAGES

    Hooper, E. B.; Sovinec, C. R.

    2016-10-06

    An instability observed in whole-device, resistive magnetohydrodynamic simulations of the driven phase of coaxial helicity injection in the National Spherical Torus eXperiment is identified as a current-driven resistive mode in an unusual geometry that transiently generates a current sheet. The mode consists of plasma flow velocity and magnetic field eddies in a tube aligned with the magnetic field at the surface of the injected magnetic flux. At low plasma temperatures (~10–20 eV), the mode is benign, but at high temperatures (~100 eV) its amplitude undergoes relaxation oscillations, broadening the layer of injected current and flow at the surface of themore » injected toroidal flux and background plasma. The poloidal-field structure is affected and the magnetic surface closure is generally prevented while the mode undergoes relaxation oscillations during injection. Furthermore, this study describes the mode and uses linearized numerical computations and an analytic slab model to identify the unstable mode.« less

  11. Modification of anisotropic plasma diffusion via auxiliary electrons emitted by a carbon nanotubes-based electron gun in an electron cyclotron resonance ion source.

    PubMed

    Malferrari, L; Odorici, F; Veronese, G P; Rizzoli, R; Mascali, D; Celona, L; Gammino, S; Castro, G; Miracoli, R; Serafino, T

    2012-02-01

    The diffusion mechanism in magnetized plasmas is a largely debated issue. A short circuit model was proposed by Simon, assuming fluxes of lost particles along the axial (electrons) and radial (ions) directions which can be compensated, to preserve the quasi-neutrality, by currents flowing throughout the conducting plasma chamber walls. We hereby propose a new method to modify Simon's currents via electrons injected by a carbon nanotubes-based electron gun. We found this improves the source performances, increasing the output current for several charge states. The method is especially sensitive to the pumping frequency. Output currents for given charge states, at different auxiliary electron currents, will be reported in the paper and the influence of the frequency tuning on the compensation mechanism will be discussed.

  12. Thermal analysis in the rat glioma model during directly multipoint injection hyperthermia incorporating magnetic nanoparticles.

    PubMed

    Liu, Lianke; Ni, Fang; Zhang, Jianchao; Wang, Chunyu; Lu, Xiang; Guo, Zhirui; Yao, Shaowei; Shu, Yongqian; Xu, Ruizhi

    2011-12-01

    Hyperthermia incorporating magnetic nanoparticles (MNPs) is a hopeful therapy to cancers and steps into clinical tests at present. However, the clinical plan of MNPs deposition in tumors, especially applied for directly multipoint injection hyperthermia (DMIH), and the information of temperature rise in tumors by DMIH is lack of studied. In this paper, we mainly discussed thermal distributions induced by MNPs in the rat brain tumors during DMIH. Due to limited experimental measurement for detecting thermal dose of tumors, and in order to acquire optimized results of temperature distributions clinically needed, we designed the thermal model in which three types of MNPs injection for hyperthermia treatments were simulated. The simulated results showed that MNPs injection plan played an important role in determining thermal distribution, as well as the overall dose of MNPs injected. We found that as injected points enhanced, the difference of temperature in the whole tumor volume decreased. Moreover, from temperature detecting data by Fiber Optic Temperature Sensors (FOTSs) in glioma bearing rats during MNPs hyperthermia, we found the temperature errors by FOTSs reduced as the number of points injected enhanced. Finally, the results showed that the simulations are preferable and the optimized plans of the numbers and spatial positions of MNPs points injected are essential during direct injection hyperthermia.

  13. A volumetric flow sensor for automotive injection systems

    NASA Astrophysics Data System (ADS)

    Schmid, U.; Krötz, G.; Schmitt-Landsiedel, D.

    2008-04-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature.

  14. A review of Curtiss-Wright rotary engine developments with respect to general aviation potential

    NASA Technical Reports Server (NTRS)

    Jones, C.

    1979-01-01

    Aviation related rotary (Wankel-type) engine tests, possible growth directions and relevant developments at Curtiss-Wright have been reviewed. Automotive rotary engines including stratified charge are described and flight test results of rotary aircraft engines are presented. The current 300 HP engine prototype shows basic durability and competitive performance potential. Recent parallel developments have separately confirmed the geometric advantages of the rotary engine for direct injected unthrottled stratified charge. Specific fuel consumption equal to or better than pre- or swirl-chamber diesels, low emission and multi-fuel capability have been shown by rig tests of similar rotary engine.

  15. Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets

    NASA Astrophysics Data System (ADS)

    Akosa, Collins Ashu; Kim, Won-Seok; Bisig, André; Kläui, Mathias; Lee, Kyung-Jin; Manchon, Aurélien

    2015-03-01

    Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ˜∇2[m ×(u .∇ ) m ] +ξ ∇2[(u .∇ ) m ] , where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.

  16. University of Idaho's low-speed flex fuel direct-injected 797cc two-stroke rear drive snowmobile.

    DOT National Transportation Integrated Search

    2012-06-01

    The University of Idahos entry into the 2012 SAE Clean Snowmobile Challenge uses a Ski-Doo XP chassis with a low-speed 797 cc direct-injection two-stroke powered snowmobile modified for flex fuel use on blended ethanol fuel. A battery-less direct ...

  17. Staged direct injection diesel engine

    DOEpatents

    Baker, Quentin A.

    1985-01-01

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  18. Macroscopic fluorescence imaging: a novel technique to monitor retention and distribution of injected microspheres in an experimental model of ischemic heart failure.

    PubMed

    Martens, Andreas; Rojas, Sebastian V; Baraki, Hassina; Rathert, Christian; Schecker, Natalie; Hernandez, Sara Rojas; Schwanke, Kristin; Zweigerdt, Robert; Martin, Ulrich; Saito, Shunsuke; Haverich, Axel; Kutschka, Ingo

    2014-01-01

    The limited effectiveness of cardiac cell therapy has generated concern regarding its clinical relevance. Experimental studies show that cell retention and engraftment are low after injection into ischemic myocardium, which may restrict therapy effectiveness significantly. Surgical aspects and mechanical loss are suspected to be the main culprits behind this phenomenon. As current techniques of monitoring intramyocardial injections are complex and time-consuming, the aim of the study was to develop a fast and simple model to study cardiac retention and distribution following intramyocardial injections. For this purpose, our main hypothesis was that macroscopic fluorescence imaging could adequately serve as a detection method for intramyocardial injections. A total of 20 mice underwent ligation of the left anterior descending artery (LAD) for myocardial infarction. Fluorescent microspheres with cellular dimensions were used as cell surrogates. Particles (5 × 10(5)) were injected into the infarcted area of explanted resting hearts (Ex vivo myocardial injetions EVMI, n = 10) and in vivo into beating hearts (In vivo myocardial injections IVMI, n = 10). Microsphere quantification was performed by fluorescence imaging of explanted organs. Measurements were repeated after a reduction to homogenate dilutions. Cardiac microsphere retention was 2.78 × 10(5) ± 0.31 × 10(5) in the EVMI group. In the IVMI group, cardiac retention of microspheres was significantly lower (0.74 × 10(5) ± 0.18 × 10(5); p<0.05). Direct fluorescence imaging revealed venous drainage through the coronary sinus, resulting in a microsphere accumulation in the left (0.90 × 10(5) ± 0.20 × 10(5)) and the right (1.07 × 10(5) ± 0.17 × 10(5)) lung. Processing to homogenates involved further particle loss (p<0.05) in both groups. We developed a fast and simple direct fluorescence imaging method for biodistribution analysis which enabled the quantification of fluorescent microspheres after intramyocardial delivery using macroscopic fluorescence imaging. This new technique showed massive early particle loss and venous drainage into the right atrium leading to substantial accumulation of graft particles in both lungs.

  19. An Induced Infiltration and Groundwater Transfer Project to Enhance Recharge in the Lower Mississippi River Valley Alluvial Aquifer: Modeling and Analysis

    NASA Astrophysics Data System (ADS)

    Rigby, J.; Haugh, C. J.; Barlow, J.

    2015-12-01

    The Lower Mississippi River Basin is one of the major agricultural production regions in the United States producing over two-thirds of the rice, nearly half of sugarcane produced in the U.S., as well as significant amounts of soybeans, corn, and cotton. While the region experiences over 50 inches of precipitation annually, reaching yield potential for crops requires irrigation. Approximately 75% of crop acres in the alluvial valley are irrigated, and the expectation is that all acreage will eventually be irrigated. Currently over 90% of water for crop irrigation is derived from the shallow alluvial aquifer outpacing net recharge by several million acre-feet per year. This has resulted in severe groundwater declines in Arkansas and an increasingly threatening situation in northwestern Mississippi. In Mississippi, direct injection has received increasing attention as a means of artificial recharge, though water quality remains a concern both for the integrity of the aquifer and efficiency of injection. This project considers the use of pumping wells near major rivers known to be in connection with the aquifer to induce additional infiltration of surface water by steepening local gradients. The pumped water would be transferred by pipeline to areas within the regional cone of depression where it is then injected to enhance groundwater recharge. Groundwater flow modeling with zone budget analysis is used to evaluate the potential for net supply gains from induced infiltration at potential sites along major rivers in the region. The groundwater model will further evaluate the impact of the transfer and direct injection on regional water tables.

  20. Wasp venom injected into the prey's brain modulates thoracic identified monoaminergic neurons.

    PubMed

    Rosenberg, Lior Ann; Pflüger, Hans-Joachim; Wegener, Gerhard; Libersat, Frederic

    2006-02-05

    The wasp Ampulex compressa injects a cocktail of neurotoxins into the brain of its cockroach prey to induce an enduring change in the execution of locomotory behaviors. Our hypothesis is that the venom injected into the brain indirectly alters the activity of monoaminergic neurons, thus changing the levels of monoamines that tune the central synapses of locomotory circuits. The purpose of the present investigation was to establish whether the venom alters the descending control, from the brain, of octopaminergic neurons in the thorax. This question was approached by recording the activity of specific identified octopaminergic neurons after removing the input from the brain or after a wasp sting into the brain. We show that the activity of these neurons is altered in stung and "brainless" animals. The spontaneous firing rate of these neurons in stung and brainless animals is approximately 20% that in control animals. Furthermore, we show that an identified octopamine neuron responds more weakly both to sensory stimuli and to direct injection of current in all treated groups. The alteration in the activity of octopamine neurons is likely to be part of the mechanism by which the wasp induces a change in the behavioral state of its prey and also affects its metabolism by reducing the potent glycolytic activator fructose 2,6-bisphosphate in leg muscle. To our knowledge, this is the first direct evidence of a change in electrical activity of specific monoaminergic neurons that can be so closely associated with a venom-induced change in behavioral state of a prey animal.

  1. Percutaneous Direct Needle Puncture and Transcatheter N-butyl Cyanoacrylate Injection Techniques for the Embolization of Pseudoaneurysms and Aneurysms of Arteries Supplying the Hepato-pancreato-biliary System and Gastrointestinal Tract

    PubMed Central

    Yadav, Rajanikant R; Boruah, Deb K; Bhattacharyya, Vishwaroop; Prasad, Raghunandan; Kumar, Sheo; Saraswat, V A; Kapoor, V K; Saxena, Rajan

    2016-01-01

    Aims: The aim of this study was to evaluate the safety and clinical efficacy of percutaneous direct needle puncture and transcatheter N-butyl cyanoacrylate (NBCA) injection techniques for the embolization of pseudoaneurysms and aneurysms of arteries supplying the hepato-pancreato-biliary (HPB) system and gastrointestinal (GI) tract. Subjects and Methods: A hospital-based cross-sectional retrospective study was conducted, where the study group comprised 11 patients with pseudoaneurysms/aneurysms of arteries supplying the HPB system and GI tract presenting to a tertiary care center from January 2015 to June 2016. Four patients (36.4%) underwent percutaneous direct needle puncture of pseudoaneurysms with NBCA injection, 3 patients (27.3%) underwent transcatheter embolization with NBCA as sole embolic agent, and in 4 patients (36.4%), transcatheter NBCA injection was done along with coil embolization. Results: This retrospective study comprised 11 patients (8 males and 3 females) with mean age of 35.8 years ± 1.6 (standard deviation [SD]). The mean volume of NBCA: ethiodized oil (lipiodol) mixture injected by percutaneous direct needle puncture was 0.62 ml ± 0.25 (SD) (range = 0.5–1 ml), and by transcatheter injection, it was 0.62 ml ± 0.37 (SD) (range = 0.3–1.4 ml). Embolization with NBCA was technically and clinically successful in all patients (100%). No recurrence of bleeding or recurrence of pseudoaneurysm/aneurysm was noted in our study. Conclusions: Percutaneous direct needle puncture of visceral artery pseudoaneurysms and NBCA glue injection and transcatheter NBCA injection for embolization of visceral artery pseudoaneurysms and aneurysms are cost-effective techniques that can be used when coil embolization is not feasible or has failed. PMID:28123838

  2. Electric field induced spin-polarized current

    DOEpatents

    Murakami, Shuichi; Nagaosa, Naoto; Zhang, Shoucheng

    2006-05-02

    A device and a method for generating an electric-field-induced spin current are disclosed. A highly spin-polarized electric current is generated using a semiconductor structure and an applied electric field across the semiconductor structure. The semiconductor structure can be a hole-doped semiconductor having finite or zero bandgap or an undoped semiconductor of zero bandgap. In one embodiment, a device for injecting spin-polarized current into a current output terminal includes a semiconductor structure including first and second electrodes, along a first axis, receiving an applied electric field and a third electrode, along a direction perpendicular to the first axis, providing the spin-polarized current. The semiconductor structure includes a semiconductor material whose spin orbit coupling energy is greater than room temperature (300 Kelvin) times the Boltzmann constant. In one embodiment, the semiconductor structure is a hole-doped semiconductor structure, such as a p-type GaAs semiconductor layer.

  3. Intraoperative Transpedicular Onyx Injection to Reduce Vascularity of a Thoracic Hemangiopericytoma After Unsuccessful Preoperative Endovascular Embolization: a Technical Report.

    PubMed

    Mashaly, Hazem; Zhang, Zoe; Shaw, Andrew; Youssef, Patrick; Mendel, Ehud

    2018-02-01

    Hemangiopericytoma is a rare vascular tumor with central nervous system involvement representing only 1% of central nervous system tumors. They rarely affect the vertebral column. Complete surgical resection is the treatment of choice for hemangiopericytoma given their high rates of local recurrence. However, the high vascularity of such tumors with the risk of massive bleeding during surgery represents a significant challenge to surgeons. Therefore, preoperative endovascular embolization via the transarterial route has been advocated. In the current study, we present a case of a T12 hemangiopericytoma that was managed by a 2-stage surgical resection, with the use of intraoperative transpedicular onyx injection to reduce intraoperative blood loss following an unsuccessful trial of preoperative endovascular embolization. Preoperative endovascular embolization is not feasible in some cases due to the location of the segmental or radiculomedullary arteries in relation to tumor feeders and, rarely, small size of these arterial feeders. Percutaneous injection of onyx is an option. In this case report, we discuss direct intraoperative injection via a transpedicular route as a safe and effective method for decreasing the vascularity of some lesions and improving intraoperative blood loss. Copyright © 2017 by the Congress of Neurological Surgeons

  4. FAST TRACK COMMUNICATION: Spontaneous symmetry breaking in a bridge model fed by junctions

    NASA Astrophysics Data System (ADS)

    Popkov, Vladislav; Evans, Martin R.; Mukamel, David

    2008-10-01

    We introduce a class of 1D models mimicking a single-lane bridge with two junctions and two particle species driven in opposite directions. The model exhibits spontaneous symmetry breaking (SSB) for a range of injection/extraction rates. In this phase the steady-state currents of the two species are not equal. Moreover, there is a co-existence region in which the symmetry-broken phase co-exists with a symmetric phase. Along a path in which the extraction rate is varied, keeping the injection rate fixed and large, hysteresis takes place. The mean-field phase diagram is calculated and supporting Monte Carlo simulations are presented. One of the transition lines exhibits a kink, a feature which cannot exist in transition lines of equilibrium phase transitions.

  5. Accuracy of palpation-directed intra-articular glenohumeral injection confirmed by magnetic resonance arthrography.

    PubMed

    Powell, Scott E; Davis, Shane M; Lee, Emily H; Lee, Robert K; Sung, Ryan M; McGroder, Claire; Kouk, Shalen; Lee, Christopher S

    2015-02-01

    The aim of this study was to determine the accuracy of anatomic palpation-directed injections in the office setting. Two hundred twenty-six shoulders in 208 patients were studied using a 0.2-Tesla extremity scanner after the injection of gadolinium-diethylene triamine pentaacetic acid-saline. All patients were injected in a sterile fashion by a single board-certified shoulder surgeon using an anterior approach by palpating the rotator interval anterior to the acromioclavicular joint and angling the needle 45° lateral and 45° caudad. All injections, successful or otherwise, were single injections. Magnetic resonance (MR) arthrograms were retrospectively read by 2 musculoskeletal fellowship-trained, board certified radiologists to determine whether the injection was in the glenohumeral joint. Two hundred one of the 226 injections were successful (88.9%). Of the 25 unsuccessful injections, the contrast material extravasated out of the capsule in 5 cases and into the subscapularis tendon in 10 cases. The contrast material was injected into the subacromial space in 9 cases, into the rotator interval fat in 9 cases, and into extracapsular tissue in 6 cases. There was insufficient volume of contrast material in 10 cases. The accuracy rate was 88.9%. There were no complications. The palpation-directed rotator interval anterior approach technique for intra-articular glenohumeral MR arthrogram injections performed by a single surgeon was 88.9% accurate. Level IV, therapeutic case series. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  6. Short-Wavelength Light-Emitting Devices With Enhanced Hole Injection Currents

    DTIC Science & Technology

    2005-05-01

    hot-hole injector with appreciably enhancement of the injection current is proposed and developed to be integrated with commonly used vertical...structures of the emitting devices. Second, we develop the alternative design of UV-light sources on the base of lateral p+ - i - n+ superlattice structures...enhancement of the injection current is proposed and developed to be integrated with commonly used vertical structures of the emitting devices. Second

  7. Field-aligned currents and ion convection at high altitudes

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Reiff, P. H.

    1985-01-01

    Hot plasma observations from Dynamics Explorer 1 have been used to investigate solar-wind ion injection, Birkeland currents, and plasma convection at altitudes above 2 earth-radii in the morning sector. The results of the study, along with the antiparallel merging hypothesis, have been used to construct a By-dependent global convection model. A significant element of the model is the coexistence of three types of convection cells (merging cells, viscous cells, and lobe cells). As the IMF direction varies, the model accounts for the changing roles of viscous and merging processes and makes testable predictions about several magnetospheric phenomena, including the newly-observed theta aurora in the polar cap.

  8. Thermally Stratified Compression Ignition: A new advanced low temperature combustion mode with load flexibility

    DOE PAGES

    Lawler, Benjamin; Splitter, Derek; Szybist, James; ...

    2017-03-01

    We introduce a new advanced combustion mode, called Thermally Stratified Compression Ignition (TSCI), which uses direct water injection to control both the average temperature and the temperature distribution prior to ignition, thereby providing cycle-to-cycle control over the start and rate of heat release in Low Temperature Combustion (LTC). Experiments were conducted to fundamentally understand the effects of water injection on heat release in LTC. Our results show that water injection retards the start of combustion due to the latent heat of vaporization of the injected water. Furthermore, for start of water injection timings between 20 and 70 degrees before topmore » dead center, combustion is significantly elongated compared to without water injection. The 10–90% burn duration with 6.6 and 9.0 mg of water per cycle was 77% and 146% longer than without water injection, respectively. Forced thermal stratification result from a direct water injection which reduces the heat release rate by local evaporative cooling. Finally, the load limits with and without water injection were determined experimentally. Without water injection, the load range was 2.3–3.6 bar gross IMEP. By using water injection to control heat release, the load range in TSCI was 2.3–8.4 bar gross IMEP, which is a range expansion of over 350%. These results demonstrate that direct water injection can provide significant improvements to both controllability and the range of operability of LTC, thereby resolving the major challenges associated with HCCI.« less

  9. Thermally Stratified Compression Ignition: A new advanced low temperature combustion mode with load flexibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, Benjamin; Splitter, Derek; Szybist, James

    We introduce a new advanced combustion mode, called Thermally Stratified Compression Ignition (TSCI), which uses direct water injection to control both the average temperature and the temperature distribution prior to ignition, thereby providing cycle-to-cycle control over the start and rate of heat release in Low Temperature Combustion (LTC). Experiments were conducted to fundamentally understand the effects of water injection on heat release in LTC. Our results show that water injection retards the start of combustion due to the latent heat of vaporization of the injected water. Furthermore, for start of water injection timings between 20 and 70 degrees before topmore » dead center, combustion is significantly elongated compared to without water injection. The 10–90% burn duration with 6.6 and 9.0 mg of water per cycle was 77% and 146% longer than without water injection, respectively. Forced thermal stratification result from a direct water injection which reduces the heat release rate by local evaporative cooling. Finally, the load limits with and without water injection were determined experimentally. Without water injection, the load range was 2.3–3.6 bar gross IMEP. By using water injection to control heat release, the load range in TSCI was 2.3–8.4 bar gross IMEP, which is a range expansion of over 350%. These results demonstrate that direct water injection can provide significant improvements to both controllability and the range of operability of LTC, thereby resolving the major challenges associated with HCCI.« less

  10. Postprostatectomy urinary incontinence: a comparison of the cost of conservative versus surgical management.

    PubMed

    Brown, J A; Elliott, D S; Barrett, D M

    1998-05-01

    Post-radical prostatectomy stress incontinence occurs in up to 20% of patients. Postprostatectomy incontinence is initially treated with undergarments, pads, or drip collectors. Patients with persistent leakage are often treated with a transurethral bulking agent (Contigen) or placement of an artificial genitourinary sphincter (AGUS). We have compared the direct costs of each treatment at our institution over 10 years. The Mayo Clinic estimating office provided the Medicare and non-Medicare charges for patients receiving both collagen injection (outpatient) and AGUS placement (2-day hospitalization) during August 1995. The Mayo Store provided the current price of all undergarments, pads, and drip collectors carried. Two local grocery stores provided the cost of Depends undergarments. The following items were the least expensive carried at the Mayo Clinic Store: Entrust undergarments, Active Style pads, and Conveen drip collectors at $0.99, $0.52, $1.05 each, respectively. The average cost of Depends undergarments was $0.52 each. The cost of wearing 5 of the least expensive undergarments or pads per day for 10 years is $9497. The average estimated Medicare and non-Medicare cost for outpatient (general anesthesia) collagen injection is $4300 and $5625, respectively. The average Medicare and non-Medicare cost for AGUS placement is $15,400 and $20,300, respectively. Factoring in our current 22.4% reoperation rate, the average per patient Medicare and non-Medicare cost for AGUS placement is $18,850 and $24,847, respectively. The cost of the AGUS placement compares favorably with the cost of transurethral collagen injection (under general anesthesia) in patients requiring several (more than three) collagen injection treatments or requiring the continued use of undergarments after collagen injection. Whereas the cost of transurethral collagen injection, when effective, compares favorably with conservative treatment, AGUS placement is significantly more expensive than conservative management for almost all patients except the exceedingly rare patient wearing more than 9 undergarments or pads per day. When the psychosocial benefit of urinary continence is considered, however, transurethral injection of collagen or AGUS placement often becomes the preferred treatment.

  11. Pre-injection brine production for managing pressure in compartmentalized CO₂ storage reservoirs

    DOE PAGES

    Buscheck, Thomas A.; White, Joshua A.; Chen, Mingjie; ...

    2014-12-31

    We present a reservoir management approach for geologic CO₂ storage that combines CO₂ injection with brine extraction. In our approach, dual-mode wells are initially used to extract formation brine and subsequently used to inject CO₂. These wells can also be used to monitor the subsurface during pre-injection brine extraction so that key data is acquired and analyzed prior to CO₂ injection. The relationship between pressure drawdown during pre-injection brine extraction and pressure buildup during CO₂ injection directly informs reservoir managers about CO₂ storage capacity. These data facilitate proactive reservoir management, and thus reduce costs and risks. The brine may bemore » used directly as make-up brine for nearby reservoir operations; it can also be desalinated and/or treated for a variety of beneficial uses.« less

  12. Real-time ultrasound image classification for spine anesthesia using local directional Hadamard features.

    PubMed

    Pesteie, Mehran; Abolmaesumi, Purang; Ashab, Hussam Al-Deen; Lessoway, Victoria A; Massey, Simon; Gunka, Vit; Rohling, Robert N

    2015-06-01

    Injection therapy is a commonly used solution for back pain management. This procedure typically involves percutaneous insertion of a needle between or around the vertebrae, to deliver anesthetics near nerve bundles. Most frequently, spinal injections are performed either blindly using palpation or under the guidance of fluoroscopy or computed tomography. Recently, due to the drawbacks of the ionizing radiation of such imaging modalities, there has been a growing interest in using ultrasound imaging as an alternative. However, the complex spinal anatomy with different wave-like structures, affected by speckle noise, makes the accurate identification of the appropriate injection plane difficult. The aim of this study was to propose an automated system that can identify the optimal plane for epidural steroid injections and facet joint injections. A multi-scale and multi-directional feature extraction system to provide automated identification of the appropriate plane is proposed. Local Hadamard coefficients are obtained using the sequency-ordered Hadamard transform at multiple scales. Directional features are extracted from local coefficients which correspond to different regions in the ultrasound images. An artificial neural network is trained based on the local directional Hadamard features for classification. The proposed method yields distinctive features for classification which successfully classified 1032 images out of 1090 for epidural steroid injection and 990 images out of 1052 for facet joint injection. In order to validate the proposed method, a leave-one-out cross-validation was performed. The average classification accuracy for leave-one-out validation was 94 % for epidural and 90 % for facet joint targets. Also, the feature extraction time for the proposed method was 20 ms for a native 2D ultrasound image. A real-time machine learning system based on the local directional Hadamard features extracted by the sequency-ordered Hadamard transform for detecting the laminae and facet joints in ultrasound images has been proposed. The system has the potential to assist the anesthesiologists in quickly finding the target plane for epidural steroid injections and facet joint injections.

  13. Two-fluid dynamo relaxation and momentum transport induced by CHI on HIST

    NASA Astrophysics Data System (ADS)

    Nagata, Masayoshi; Hirono, Hidetoshi; Hanao, Takafumi; Hyobu, Takahiro; Ito, Kengo; Matsumoto, Keisuke; Nakayama, Takashi; Oki, Nobuharu; Kikuchi, Yusuke; Fukumoto, Naoyuki

    2013-10-01

    Non-inductive current drive by using Multi-pulsing coaxial helicity injection was studied on HIST. In the double-pulsing CHI experiment, we have examined two-fluid effects by reversing polarity of the bias poloidal coil current. In the ST magnetic configurations with the right-handed magnetic field (positive CHI), there are a diamagnetic structure in the open flux column region and a paramagnetic structure in the closed flux region. It is naturally understood that the direction of the poloidal magnetic field (toroidal current) is reversed in reversing the polarity of the bias flux from positive to negative. However, the poloidal current is surprisingly reversed in reversing the magnetic helicity polarity. The direction of the poloidal current is opposite in the each region. The toroidal flow is reversed, but a shear profile of the poloidal flow is not changed significantly. In this configuration, the diamagnetic structure appears in the closed flux region. Thus, not only Jt×Bp but also Jp×Bt force contributes on pressure balance leading to a higher beta. We are studying a more general helicity conservation that constrains the interaction between flows and magnetic fields and momentum transport in the two-fluid framework.

  14. Pressurized feed-injection spray-forming apparatus

    DOEpatents

    Berry, R.A.; Fincke, J.R.; McHugh, K.M.

    1995-08-29

    A spray apparatus and method are disclosed for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers. 22 figs.

  15. Pressurized feed-injection spray-forming apparatus

    DOEpatents

    Berry, Ray A.; Fincke, James R.; McHugh, Kevin M.

    1995-01-01

    A spray apparatus and method for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers.

  16. A Portal Vein Injection Model to Study Liver Metastasis of Breast Cancer.

    PubMed

    Goddard, Erica T; Fischer, Jacob; Schedin, Pepper

    2016-12-26

    Breast cancer is the leading cause of cancer-related mortality in women worldwide. Liver metastasis is involved in upwards of 30% of cases with breast cancer metastasis, and results in poor outcomes with median survival rates of only 4.8 - 15 months. Current rodent models of breast cancer metastasis, including primary tumor cell xenograft and spontaneous tumor models, rarely metastasize to the liver. Intracardiac and intrasplenic injection models do result in liver metastases, however these models can be confounded by concomitant secondary-site metastasis, or by compromised immunity due to removal of the spleen to avoid tumor growth at the injection site. To address the need for improved liver metastasis models, a murine portal vein injection method that delivers tumor cells firstly and directly to the liver was developed. This model delivers tumor cells to the liver without complications of concurrent metastases in other organs or removal of the spleen. The optimized portal vein protocol employs small injection volumes of 5 - 10 μl, ≥ 32 gauge needles, and hemostatic gauze at the injection site to control for blood loss. The portal vein injection approach in Balb/c female mice using three syngeneic mammary tumor lines of varying metastatic potential was tested; high-metastatic 4T1 cells, moderate-metastatic D2A1 cells, and low-metastatic D2.OR cells. Concentrations of ≤ 10,000 cells/injection results in a latency of ~ 20 - 40 days for development of liver metastases with the higher metastatic 4T1 and D2A1 lines, and > 55 days for the less aggressive D2.OR line. This model represents an important tool to study breast cancer metastasis to the liver, and may be applicable to other cancers that frequently metastasize to the liver including colorectal and pancreatic adenocarcinomas.

  17. Anterograde and retrograde tracing with high molecular weight biotinylated dextran amine through thalamocortical and corticothalamic pathways.

    PubMed

    Zhang, Wenjie; Xu, Dongsheng; Cui, Jingjing; Jing, Xianghong; Xu, Nenggui; Liu, Jianhua; Bai, Wanzhu

    2017-02-01

    Biotinylated dextran amine (BDA) has been used for neural pathway tracing in the central nervous system for many decades, in which high molecular weight BDA appeared to be transported predominantly in the anterograde direction and less in the retrograde direction. In the current study, we reexamined the properties of neural labeling with high molecular weight BDA through a reciprocal neural pathway between thalamus and somatosensory cortex. After injection of BDA into the ventral posteromedial nucleus of thalamus (VPM) in the rat, the BDA labeling was sequentially examined on somatosensory cortex at 3, 5, 7, 10, and 14 survival days. Both of anterogradely labeled axonal terminals and retrogradely labeled neuronal cell bodies were observed simultaneously on the somatosensory cortex. With the increasing of survival times after injection, morphological changes occurred on the labeled axonal arbors and neuronal dendrites, in which the high quality of BDA labeling appeared on the tenth survival day. These results indicate that high molecular weight BDA is not only a sensitive anterograde tracer but also an excellent retrograde marker to be used for tracing through thalamocortical and corticothalamic pathways. And the detailed structure of neural labeling with BDA similar to Golgi-like resolution can be obtained at optimal survival times of animals after the injection of high molecular weight BDA. © 2016 Wiley Periodicals, Inc.

  18. [Direct and indirect costs of luteinising hormone-releasing hormone analogues in the treatment of locally advanced or metastatic prostate cancer in Italy].

    PubMed

    Fadda, Valeria; Maratea, Dario

    2015-12-01

    When analyzing the use of luteinizing hormone-releasing hormone (LHRH) analogues for different clinical indications, current available evidence does not support a presumed drug class effect among the various LHRH in the treatment of prostate cancer. The following search key words were entered in the PubMed database and the NICE and FDA websites: “LHRH agonist AND prostatic cancer”, “androgen deprivation therapy”, “androgen suppression”, “buserelin”, “leuprorelin”, “goserelin”,“triptorelin”, “degarelix”. The direct costs included the following items: follow-up visits, diagnostic exams (e.g. prostate-specific antigen PSA) and drug costs. The indirect costs included working days lost by the patient. With intermittent therapy as a reference, leuprorelin injectable solution of 22,25 mg was associated with the lowest cost and degarelix with the highest cost. However, given the mandatory presence of a nurse for drug injection, the buserelin depot formulation was associated with the lowest cost. If the costs for hospital visits were added to drug costs, differences between the various therapeutic strategies were less remarkable. Our study showed how various factors (e.g. route of administration, frequency of administration, presence of a nurse for drug reconstitution and injection) should be taken into account by decision makers in addition to the price of drugs.

  19. Cystic Fibrosis Gene Encodes a cAMP-Dependent Chloride Channel in Heart

    NASA Astrophysics Data System (ADS)

    Hart, Padraig; Warth, John D.; Levesque, Paul C.; Collier, Mei Lin; Geary, Yvonne; Horowitz, Burton; Hume, Joseph R.

    1996-06-01

    cAMP-dependent chloride channels in heart contribute to autonomic regulation of action potential duration and membrane potential and have been inferred to be due to cardiac expression of the epithelial cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In this report, a cDNA from rabbit ventricle was isolated and sequenced, which encodes an exon 5 splice variant (exon 5-) of CFTR, with >90% identity to human CFTR cDNA present in epithelial cells. Expression of this cDNA in Xenopus oocytes gave rise to robust cAMP-activated chloride currents that were absent in control water-injected oocytes. Antisense oligodeoxynucleotides directed against CFTR significnatly reduced the density of cAMP-dependent chloride currents in acutely cultured myocytes, thereby establishing a direct functional link between cardiac expression of CFTR protein and an endogenous chloride channel in native cardiac myocytes.

  20. Design of a new nozzle for direct current plasma guns with improved spraying parameters

    NASA Astrophysics Data System (ADS)

    Jankovic, M.; Mostaghimi, J.; Pershin, V.

    2000-03-01

    A new design is proposed for direct current plasma spray gas-shroud attachments. It has curvilinearly shaped internal walls aimed toward elimination of the cold air entrainment, recorded for commercially available conical designs of the shrouded nozzle. The curvilinear nozzle design was tested; it proved to be capable of withstanding high plasma temperatures and enabled satisfactory particle injection. Parallel measurements with an enthalpy probe were performed on the jet emerging from two different nozzles. Also, corresponding calculations were made to predict the plasma flow parameters and the particle parameters. Adequate spray tests were performed by spraying iron-aluminum and MCrAlY coatings onto stainless steel substrates. Coating analyses were performed, and coating qualities, such as microstructure, open porosity, and adhesion strength, were determined. The results indicate that the coatings sprayed with a curvilinear nozzle exhibited lower porosity, higher adhesion strength, and an enhanced microstructure.

  1. Optical intensity dynamics in a five-emitter semiconductor array laser

    NASA Astrophysics Data System (ADS)

    Williams, Matthew O.; Kutz, J. Nathan

    2009-06-01

    The intensity dynamics of a five-emitter laser array subject to a linearly decreasing injection current are examined numerically. We have matched the results of the numerical model to an experimental AlGaAs quantum-dot array laser and have achieved the same robust oscillatory power output with a nearly π phase shift between emitters that was observed in experiments. Due to the linearly decreasing injection current, the output power of the waveguide decreases as a function of waveguide number. For injection currents ranging from 380 to 500 mA, the oscillatory behavior persists with only a slight change in phase difference. However, the fundamental frequency of oscillation increases with injection current, and higher harmonics as well as some fine structures are produced.

  2. Removing the current-limit of vertical organic field effect transistors

    NASA Astrophysics Data System (ADS)

    Sheleg, Gil; Greenman, Michael; Lussem, Bjorn; Tessler, Nir

    2017-11-01

    The reported Vertical Organic Field Effect Transistors (VOFETs) show either superior current and switching speeds or well-behaved transistor performance, especially saturation in the output characteristics. Through the study of the relationship between the device architecture or dimensions and the device performance, we find that achieving a saturation regime in the output characteristics requires that the device operates in the injection limited regime. In current structures, the existence of the injection limited regime depends on the source's injection barrier as well as on the buried semiconductor layer thickness. To overcome the injection limit imposed by the necessity of injection barrier, we suggest a new architecture to realize VOFETs. This architecture shows better gate control and is independent of the injection barrier at the source, thus allowing for several A cm-2 for a semiconductor having a mobility value of 0.1 cm2 V-1 s-1.

  3. Study of local currents in low dimension materials using complex injecting potentials

    NASA Astrophysics Data System (ADS)

    He, Shenglai; Covington, Cody; Varga, Kálmán

    2018-04-01

    A complex potential is constructed to inject electrons into the conduction band, mimicking electron currents in nanoscale systems. The injected electrons are time propagated until a steady state is reached. The local current density can then be calculated to show the path of the conducting electrons on an atomistic level. The method allows for the calculation of the current density vectors within the medium as a function of energy of the conducting electron. Using this method, we investigate the electron pathway of graphene nanoribbons in various structures, molecular junctions, and black phosphorus nanoribbons. By analyzing the current flow through the structures, we find strong dependence on the structural geometry and the energy of the injected electrons. This method may be of general use in the study of nano-electronic materials and interfaces.

  4. High risk behavior for HIV transmission among former injecting drug users: a survey from Indonesia.

    PubMed

    Iskandar, Shelly; Basar, Diba; Hidayat, Teddy; Siregar, Ike M P; Pinxten, Lucas; van Crevel, Reinout; Van der Ven, Andre J A M; De Jong, Cor A J

    2010-08-10

    Injecting drug use is an increasingly important cause of HIV transmission in most countries worldwide, especially in eastern Europe, South America, and east and southeast Asia. Among people actively injecting drugs, provision of clean needles and opioid substitution reduce HIV-transmission. However, former injecting drug users (fIDUs) are often overlooked as a high risk group for HIV transmission. We compared HIV risk behavior among current and former injecting drug users (IDUs) in Indonesia, which has a rapidly growing HIV-epidemic largely driven by injecting drug use. Current and former IDUs were recruited by respondent driven sampling in an urban setting in Java, and interviewed regarding drug use and HIV risk behavior using the European Addiction Severity Index and the Blood Borne Virus Transmission Questionnaire. Drug use and HIV transmission risk behavior were compared between current IDUs and former IDUs, using the Mann-Whitney and Pearson Chi-square test. Ninety-two out of 210 participants (44%) were self reported former IDUs. Risk behavior related to sex, tattooing or piercing was common among current as well as former IDUs, 13% of former IDUs were still exposed to contaminated injecting equipment. HIV-infection was high among former (66%) and current (60%) IDUs. Former IDUs may contribute significantly to the HIV-epidemic in Indonesia, and HIV-prevention should therefore also target this group, addressing sexual and other risk behavior.

  5. Investigation of beam- and wave-plasma interactions in spherical tokamak Globus-M

    NASA Astrophysics Data System (ADS)

    Gusev, V. K.; Aminov, R. M.; Berezutskiy, A. A.; Bulanin, V. V.; Chernyshev, F. V.; Chugunov, I. N.; Dech, A. V.; Dyachenko, V. V.; Ivanov, A. E.; Khitrov, S. A.; Khromov, N. A.; Kurskiev, G. S.; Larionov, M. M.; Melnik, A. D.; Minaev, V. B.; Mineev, A. B.; Mironov, M. I.; Miroshnikov, I. V.; Mukhin, E. E.; Novokhatsky, A. N.; Panasenkov, A. A.; Patrov, M. I.; Petrov, A. V.; Petrov, Yu. V.; Podushnikova, K. A.; Rozhansky, V. A.; Rozhdestvensky, V. V.; Sakharov, N. V.; Shevelev, A. E.; Senichenkov, I. Yu.; Shcherbinin, O. N.; Stepanov, A. Yu.; Tolstyakov, S. Yu.; Varfolomeev, V. I.; Voronin, A. V.; Yagnov, V. A.; Yashin, A. Yu.; Zhilin, E. G.

    2011-10-01

    The experimental and theoretical results obtained in the last two years on the interaction of neutral particle beams and high-frequency waves with a plasma using the spherical tokamak Globus-M are discussed. The experiments on the injection of low-energy proton beam of ~300 eV directed particle energy are performed with a plasma gun that produces a hydrogen plasma jet of density up to 3 × 1022 m-3 and a high velocity up to 250 km s-1. A moderate density rise (up to 30%) is achieved in the central plasma region without plasma disruption. Experiments on high-energy (up to 30 keV) neutral beam injection into the D-plasma are analysed. Modelling results on confinement of fast particles inside the plasma column that follows the neutral beam injection are discussed. The influence of the magnetic field on the fast particle losses is argued. A neutral beam injection regime with primary ion heating is obtained and discussed. The new regime with fast current ramp-up and early neutral beam injection shows electron temperature rise and formation of broad Te profiles until the q = 1 flux surface enters the plasma column. An energetic particle mode in the range of frequencies 5-30 kHz and toroidal Alfvén eigenmodes in the range 50-300 kHz are recorded in that regime simultaneously with the Te rise. The energetic particle mode and toroidal Alfvén eigenmodes behaviour are discussed. The toroidal Alfvén eigenmode spectrum appears in Globus-M as a narrow band corresponding to n = 1. The first experimental results on plasma start-up and noninductive current drive generation are presented. The experiments are carried out with antennae providing mostly poloidal slowing down of waves with a frequency of 920 MHz, which is higher than a lower hybrid one existing under the experimental conditions. The high current drive efficiency is shown to be high (of about 0.25 A W-1), and its mechanism is proposed. Some near future plans of the experiments are also discussed.

  6. Comparison of long-term voice outcomes after vocal fold augmentation using autologous fat injection by direct microlaryngoscopy versus office-based calcium hydroxylapatite injection.

    PubMed

    Zeleník, Karol; Walderová, Radana; Kučová, Hana; Jančatová, Debora; Komínek, Pavel

    2017-08-01

    The objective is to compare the long-term voice outcomes of vocal fold augmentation (VFA) using autologous fat injection via direct microlaryngoscopy versus office-based calcium hydroxylapatite (CaHA) injection. Patients with glottal insufficiency and a gap no greater than 3 mm caused by unilateral vocal fold paralysis or vocal fold atrophy were prospectively recruited to the study from September 2012 to September 2015. From September 2012 to May 2014, VFA was only performed using autologous fat via direct microlaryngoscopy under general anesthesia (N = 14). From May 2014 to September 2015, VFA was performed as an office-based procedure using a transoral approach to inject CaHA (N = 17). Videolaryngostroboscopic evaluation, subjective satisfaction with voice, voice handicap index (VHI), and maximal phonation time (MPT) were analyzed pre-injection and 12 months after VFA. A total of 31 patients were analyzed. One year after VFA, 67.8% of the patients were satisfied with their voice, with no significant difference between groups (P = 0.247). The mean improvement in VHI in the autologous fat group was 31.6 ± 16.82 versus 35 ± 27.24 in the CaHA group (P = 0.664). MPT improvement was also similar in the two groups: 5.5 ± 2.52 for the autologous fat group versus 6.0 ± 3.98 for the CaHA group (P = 0.823). Both autologous fat injection via direct microlaryngoscopy and office-based CaHA injection have good long-term results. There were no differences in the treatment results of the two procedures 1 year after injection.

  7. Teduglutide Injection

    MedlinePlus

    ... the medication should read the manufacturer's directions for mixing and injecting the medication before you use it ... Teduglutide must be used within 3 hours after mixing teduglutide powder with the diluent.You can inject ...

  8. Method for operating a spark-ignition, direct-injection internal combustion engine

    DOEpatents

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  9. Spin injection devices with high mobility 2DEG channels (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ciorga, Mariusz; Oltscher, Martin; Kuczmik, Thomas; Loher, Josef; Bayer, Andreas; Schuh, Dieter; Bougeard, Dominique; Weiss, Dieter

    2016-10-01

    Effective electrical spin injection into two-dimensional electron gas (2DEG) is a prerequisite for many new functionalities in spintronic device concepts, with the Datta-Das spin field effect transistor [1] being a primary example. Here we will discuss some of the results of our studies on spin injection devices with high mobility 2DEG confined in an inverted AlGaAs/GaAs heterojunction and a diluted ferromagnetic semiconductor (Ga,Mn)As employed as a source and a detector of spin-polarized carriers. Firstly we will show that nonlocal spin valve signal in such devices can significantly exceed the prediction of the standard model of spin injection based on spin drift-diffusion equations [2], what leads to conclusion that ballistic transport in the 2D region directly below the injector should be taken into account to fully describe the spin injection process [3]. Furthermore, we demonstrate also a large magnetoresistance (MR) signal of 20% measured in local configuration, i.e., with spin-polarized current flowing between two ferromagnetic contacts. To our knowledge, this is the highest value of MR observed so far in semiconductor channels. The work has been supported by Deutsche Forschungsgemeinschaft (DFG) through SFB689. [1] S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990) [2] M. Oltscher et al., Phys. Rev. Lett. 113, 236602 (2014) [3] K. Cheng and S. Zhang, Phys. Rev. B 92, 214402 (2015)

  10. Microbially Enhanced Oil Recovery by Sequential Injection of Light Hydrocarbon and Nitrate in Low- And High-Pressure Bioreactors.

    PubMed

    Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit

    2015-10-20

    Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment.

  11. High-quality electron beams from beam-driven plasma accelerators by wakefield-induced ionization injection.

    PubMed

    Martinez de la Ossa, A; Grebenyuk, J; Mehrling, T; Schaper, L; Osterhoff, J

    2013-12-13

    We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness bunches. This injection principle is explained by example of three-dimensional particle-in-cell calculations using the code OSIRIS. In these simulations a high-current-density electron-beam driver excites plasma waves in the blowout regime inside a fully ionized hydrogen plasma of density 5×10(17)cm-3. Within an embedded 100  μm long plasma column contaminated with neutral helium gas, the wakefields trigger ionization, trapping of a defined fraction of the released electrons, and subsequent acceleration. The hereby generated electron beam features a 1.5 kA peak current, 1.5  μm transverse normalized emittance, an uncorrelated energy spread of 0.3% on a GeV-energy scale, and few femtosecond bunch length.

  12. Electrical conductivity imaging using gradient B, decomposition algorithm in magnetic resonance electrical impedance tomography (MREIT).

    PubMed

    Park, Chunjae; Kwon, Ohin; Woo, Eung Je; Seo, Jin Keun

    2004-03-01

    In magnetic resonance electrical impedance tomography (MREIT), we try to visualize cross-sectional conductivity (or resistivity) images of a subject. We inject electrical currents into the subject through surface electrodes and measure the z component Bz of the induced internal magnetic flux density using an MRI scanner. Here, z is the direction of the main magnetic field of the MRI scanner. We formulate the conductivity image reconstruction problem in MREIT from a careful analysis of the relationship between the injection current and the induced magnetic flux density Bz. Based on the novel mathematical formulation, we propose the gradient Bz decomposition algorithm to reconstruct conductivity images. This new algorithm needs to differentiate Bz only once in contrast to the previously developed harmonic Bz algorithm where the numerical computation of (inverted delta)2Bz is required. The new algorithm, therefore, has the important advantage of much improved noise tolerance. Numerical simulations with added random noise of realistic amounts show the feasibility of the algorithm in practical applications and also its robustness against measurement noise.

  13. Visualization of the meridian of traditional Chinese medicine with electrical impedance tomography: An initial experience

    NASA Astrophysics Data System (ADS)

    Cao, Yanli; Lu, Xiaozuo; Wang, Xuemin

    2010-04-01

    The meridian is a concept central to traditional Chinese medical techniques such as acupuncture. There is no physically verifiable anatomical or histological basis for the existence of meridians. In Chinese medicine, the meridians are channels along which the energy of the psychological system is considered to flow. It has been proven that the resistance along the meridian channels is lower compared to other paths. Based on this knowledge, we proposed using electrical impedance tomography (EIT) to visualize the meridians of human being. A simplified three dimensional (3D) mathematical model of the forearm developed. Current was injected in the direction perpendicular to the cross-section where eight electrodes were equally placed around the surface of the forearm for the voltage measurements. The model was solved using Finite Element Method (FEM) and dynamic image was reconstructed using truncated singular value decomposition (TSVD) regularization method. The conductivity distributions were compared with different current injections, along the meridian channel and channels around respectively. We also conducted experiments on models and the meridians were shown in final reconstructed images.

  14. Optical arbitrary waveform generation based on multi-wavelength semiconductor fiber ring laser

    NASA Astrophysics Data System (ADS)

    Li, Peili; Ma, Xiaolu; Shi, Weihua; Xu, Enming

    2017-09-01

    A new scheme of generating optical arbitrary waveforms based on multi-wavelength semiconductor fiber ring laser (SFRL) is proposed. In this novel scheme, a wide and flat optical frequency comb (OFC) is provided directly by multi-wavelength SFRL, whose central frequency and comb spacing are tunable. OFC generation, de-multiplexing, amplitude and phase modulation, and multiplexing are implementing in an intensity and phase tunable comb filter, as induces the merits of high spectral coherence, satisfactory waveform control and low system loss. By using the mode couple theory and the transfer matrix method, the theoretical model of the scheme is established. The impacts of amplitude control, phase control, number of spectral line, and injection current of semiconductor optical amplifier (SOA) on the waveform similarity are studied using the theoretical model. The results show that, amplitude control and phase control error should be smaller than 1% and 0.64% respectively to achieve high similarity. The similarity of the waveform is improved with the increase of the number of spectral line. When the injection current of SOA is in a certain range, the optical arbitrary waveform reaches a high similarity.

  15. Effect of Injection Pressure of Infiltration Anesthesia to the Jawbone.

    PubMed

    Yoshida, Kenji; Tanaka, Eri; Kawaai, Hiroyoshi; Yamazaki, Shinya

    To obtain effective infiltration anesthesia in the jawbone, high concentrations of local anesthetic are needed. However, to reduce pain experienced by patients during local anesthetic administration, low-pressure injection is recommended for subperiosteal infiltration anesthesia. Currently, there are no studies regarding the effect of injection pressure on infiltration anesthesia, and a standard injection pressure has not been clearly determined. Hence, the effect of injection pressure of subperiosteal infiltration anesthesia on local anesthetic infiltration to the jawbone was considered by directly measuring lidocaine concentration in the jawbone. Japanese white male rabbits were used as test animals. After inducing general anesthesia with oxygen and sevoflurane, cannulation to the femoral artery was performed and arterial pressure was continuously recorded. Subperiosteal infiltration anesthesia was performed by injecting 0.5 mL of 2% lidocaine containing 1/80,000 adrenaline, and injection pressure was monitored by a pressure transducer for 40 seconds. After specified time intervals (10, 20, 30, 40, 50, and 60 minutes), jawbone and blood samples were collected, and the concentration of lidocaine at each time interval was measured. The mean injection pressure was divided into 4 groups (100 ± 50 mm Hg, 200 ± 50 mm Hg, 300 ± 50 mm Hg, and 400 ± 50 mm Hg), and comparison statistical analysis between these 4 groups was performed. No significant change in blood pressure during infiltration anesthesia was observed in any of the 4 groups. Lidocaine concentration in the blood and jawbone were highest 10 minutes after the infiltration anesthesia in all 4 groups and decreased thereafter. Lidocaine concentration in the jawbone increased as injection pressure increased, while serum lidocaine concentration was significantly lower. This suggests that when injection pressure of subperiosteal infiltration anesthesia is low, infiltration of local anesthetic to the jawbone may be reduced, while transfer to oral mucosa and blood may be increased.

  16. Effect of Injection Pressure of Infiltration Anesthesia to the Jawbone

    PubMed Central

    Yoshida, Kenji; Tanaka, Eri; Kawaai, Hiroyoshi; Yamazaki, Shinya

    2016-01-01

    To obtain effective infiltration anesthesia in the jawbone, high concentrations of local anesthetic are needed. However, to reduce pain experienced by patients during local anesthetic administration, low-pressure injection is recommended for subperiosteal infiltration anesthesia. Currently, there are no studies regarding the effect of injection pressure on infiltration anesthesia, and a standard injection pressure has not been clearly determined. Hence, the effect of injection pressure of subperiosteal infiltration anesthesia on local anesthetic infiltration to the jawbone was considered by directly measuring lidocaine concentration in the jawbone. Japanese white male rabbits were used as test animals. After inducing general anesthesia with oxygen and sevoflurane, cannulation to the femoral artery was performed and arterial pressure was continuously recorded. Subperiosteal infiltration anesthesia was performed by injecting 0.5 mL of 2% lidocaine containing 1/80,000 adrenaline, and injection pressure was monitored by a pressure transducer for 40 seconds. After specified time intervals (10, 20, 30, 40, 50, and 60 minutes), jawbone and blood samples were collected, and the concentration of lidocaine at each time interval was measured. The mean injection pressure was divided into 4 groups (100 ± 50 mm Hg, 200 ± 50 mm Hg, 300 ± 50 mm Hg, and 400 ± 50 mm Hg), and comparison statistical analysis between these 4 groups was performed. No significant change in blood pressure during infiltration anesthesia was observed in any of the 4 groups. Lidocaine concentration in the blood and jawbone were highest 10 minutes after the infiltration anesthesia in all 4 groups and decreased thereafter. Lidocaine concentration in the jawbone increased as injection pressure increased, while serum lidocaine concentration was significantly lower. This suggests that when injection pressure of subperiosteal infiltration anesthesia is low, infiltration of local anesthetic to the jawbone may be reduced, while transfer to oral mucosa and blood may be increased. PMID:27585416

  17. Physics of the current injection process during localized helicity injection

    NASA Astrophysics Data System (ADS)

    Hinson, Edward Thomas

    An impedance model has been developed for the arc-plasma cathode electron current source used in localized helicity injection tokamak startup. According to this model, a potential double layer (DL) is established between the high-density arc plasma (narc ˜ 1021 m-3) in the electron source, and the less-dense external tokamak edge plasma (nedge ˜ 10 18 m-3) into which current is injected. The DL launches an electron beam at the applied voltage with cross-sectional area close to that of the source aperture: Ainj ≈ 2 cm 2. The injected current, Iinj, increases with applied voltage, Vinj, according to the standard DL scaling, Iinj ˜ V(3/2/ inj), until the more restrictive of two limits to beam density nb arises, producing Iinj ˜ V(1/2/inj), a scaling with beam drift velocity. For low external tokamak edge density nedge, space-charge neutralization of the intense electron beam restricts the injected beam density to nb ˜ nedge. At high Jinj and sufficient edge density, the injected current is limited by expansion of the DL sheath, which leads to nb ˜ narc. Measurements of narc, Iinj , nedge, Vinj, support these predicted scalings, and suggest narc as a viable control actuator for the source impedance. Magnetic probe signals ≈ 300 degrees toroidally from the injection location are consistent with expectations for a gyrating, coherent electron beam with a compact areal cross-section. Technological development of the source has allowed an extension of the favorable Iinj ˜ V(1/2/inj) to higher power without electrical breakdown.

  18. Effect of injection current and temperature on signal strength in a laser diode optical feedback interferometer.

    PubMed

    Al Roumy, Jalal; Perchoux, Julien; Lim, Yah Leng; Taimre, Thomas; Rakić, Aleksandar D; Bosch, Thierry

    2015-01-10

    We present a simple analytical model that describes the injection current and temperature dependence of optical feedback interferometry signal strength for a single-mode laser diode. The model is derived from the Lang and Kobayashi rate equations, and is developed both for signals acquired from the monitoring photodiode (proportional to the variations in optical power) and for those obtained by amplification of the corresponding variations in laser voltage. The model shows that both the photodiode and the voltage signal strengths are dependent on the laser slope efficiency, which itself is a function of the injection current and the temperature. Moreover, the model predicts that the photodiode and voltage signal strengths depend differently on injection current and temperature. This important model prediction was proven experimentally for a near-infrared distributed feedback laser by measuring both types of signals over a wide range of injection currents and temperatures. Therefore, this simple model provides important insight into the radically different biasing strategies required to achieve optimal sensor sensitivity for both interferometric signal acquisition schemes.

  19. A biophysical model for defibrillation of cardiac tissue.

    PubMed Central

    Keener, J P; Panfilov, A V

    1996-01-01

    We propose a new model for electrical activity of cardiac tissue that incorporates the effects of cellular microstructure. As such, this model provides insight into the mechanism of direct stimulation and defibrillation of cardiac tissue after injection of large currents. To illustrate the usefulness of the model, numerical stimulations are used to show the difference between successful and unsuccessful defibrillation of large pieces of tissue. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 PMID:8874007

  20. 3D Electrical Resistivity Tomography and Mise-à-la-Masse Method as Tools for the Characterization of Vine Roots

    NASA Astrophysics Data System (ADS)

    Boaga, J.; Mary, B.; Peruzzo, L.; Schmutz, M.; Wu, Y.; Hubbard, S. S.; Cassiani, G.

    2017-12-01

    The interest on non-invasive geophysical monitoring of soil properties and root architecture is rapidly growing. Despite this, few case studies exist concerning vineyards, which are economically one of the leading sectors of agriculture. In this study, we integrate different geophysical methods in order to gain a better imaging of the vine root system, with the aim of quantifying root development, a key factor to understand roots-soil interaction and water balance. Our test site is a vineyard located in Bordeaux (France), where we adopted the Mise-a-la-Masse method (MALM) and micro-scale electrical resistivity tomography (ERT) on the same 3D electrode configuration. While ERT is a well-established technique to image changes in soil moisture content by root activity, MALM is a relatively new approach in this field of research. The idea is to inject current directly in the plant trunk and verify the resulting voltage distribution in the soil, as an effect of current distribution through the root system. In order to distinguish the root effect from other phenomena linked to the soil heterogeneities, we conducted and compared MALM measurements acquired through injecting current into the stem and into the soil near the stem. Moreover, the MALM data measured in the field were compared with numerical simulations to improve the confidence in the interpretation. Differences obtained between the stem and soil injection clearly validated the assumption that the whole root system is acting as a current pathway, thus highlighting the locations at depth where current is entering the soil from the fine roots. The simulation results indicated that the best fit is obtained through considering distributed sources with depth, reflecting a probable root zone area. The root location and volume estimated using this procedure are in agreement with vineyard experimental evidence. This work suggests the promising application of electrical methods to locate and monitor root systems. Further work is necessary to effectively integrate the geophysical and plant physiology information.

  1. Design and development of a direct injection system for cryogenic engines

    NASA Astrophysics Data System (ADS)

    Mutumba, Angela; Cheeseman, Kevin; Clarke, Henry; Wen, Dongsheng

    2018-04-01

    The cryogenic engine has received increasing attention due to its promising potential as a zero-emission engine. In this study, a new robust liquid nitrogen injection system was commissioned and set up to perform high-pressure injections into an open vessel. The system is used for quasi-steady flow tests used for the characterisation of the direct injection process for cryogenic engines. An electro-hydraulic valve actuator provides intricate control of the valve lift, with a minimum cycle time of 3 ms and a frequency of up to 20 Hz. With additional sub-cooling, liquid phase injections from 14 to 94 bar were achieved. Results showed an increase in the injected mass with the increase in pressure, and decrease in temperature. The injected mass was also observed to increases linearly with the valve lift. Better control of the injection process, minimises the number of variables, providing more comparable and repeatable sets of data. Implications of the results on the engine performance were also discussed.

  2. Ultra low injection angle fuel holes in a combustor fuel nozzle

    DOEpatents

    York, William David

    2012-10-23

    A fuel nozzle for a combustor includes a mixing passage through which fluid is directed toward a combustion area and a plurality of swirler vanes disposed in the mixing passage. Each swirler vane of the plurality of swirler vanes includes at least one fuel hole through which fuel enters the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes thereby decreasing a flameholding tendency of the fuel nozzle. A method of operating a fuel nozzle for a combustor includes flowing a fluid through a mixing passage past a plurality of swirler vanes and injecting a fuel into the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes.

  3. Over-injection and self-oscillations in an electron vacuum diode

    NASA Astrophysics Data System (ADS)

    Leopold, J. G.; Siman-Tov, M.; Goldman, A.; Krasik, Ya. E.

    2017-07-01

    We demonstrate a practical means by which one can inject more than the space-charge limiting current into a vacuum diode. This over-injection causes self-oscillations of the space-charge resulting in an electron beam current modulation at a fixed frequency, a reaction of the system to the Coulomb repulsive forces due to charge accumulation.

  4. Pure spin current manipulation in antiferromagnetically exchange coupled heterostructures

    NASA Astrophysics Data System (ADS)

    Avilés-Félix, L.; Butera, A.; González-Chávez, D. E.; Sommer, R. L.; Gómez, J. E.

    2018-03-01

    We present a model to describe the spin currents generated by ferromagnet/spacer/ferromagnet exchange coupled trilayer systems and heavy metal layers with strong spin-orbit coupling. By exploiting the magnitude of the exchange coupling (oscillatory RKKY-like coupling) and the spin-flop transition in the magnetization process, it has been possible to produce spin currents polarized in arbitrary directions. The spin-flop transition of the trilayer system originates pure spin currents whose polarization vector depends on the exchange field and the magnetization equilibrium angles. We also discuss a protocol to control the polarization sign of the pure spin current injected into the metallic layer by changing the initial conditions of magnetization of the ferromagnetic layers previously to the spin pumping and inverse spin Hall effect experiments. The small differences in the ferromagnetic layers lead to a change in the magnetization vector rotation that permits the control of the sign of the induced voltage components due to the inverse spin Hall effect. Our results can lead to important advances in hybrid spintronic devices with new functionalities, particularly, the ability to control microscopic parameters such as the polarization direction and the sign of the pure spin current through the variation of macroscopic parameters, such as the external magnetic field or the thickness of the spacer in antiferromagnetic exchange coupled systems.

  5. Experiments Using Local Helicity Injectors in the Lower Divertor Region as the Majority Current Drive in a Tokamak Plasma

    NASA Astrophysics Data System (ADS)

    Perry, Justin M.

    Local helicity injection (LHI) is a non-solenoidal current drive capable of achieving high-Ip tokamak startup with a relatively compact and non-invasive array of current injectors in the plasma scrape-off layer. The choice of injector location within the edge region is flexible, but has a profound influence on the nature of the current drive in LHI discharges. Past experiments on the Pegasus ST with injection on the low-field-side near the outboard midplane produced plasmas dominated by inductive drive resulting primarily from plasma geometry evolution over the discharge. Recent experiments with injection on the high-field- side in the lower divertor region produce plasmas dominated by helicity injection current drive, with relatively static plasma geometry, and thus negligible inductive drive. Plasma current up to 200 kA is driven with helicity injection as the dominant current drive using a pair of 4 cm2 area injectors sourcing 8 kA of total injected current. Steady sustainment with LHI current drive alone is demonstrated, with 100 kA sustained for 18 ms. Maximum achievable plasma current is found to scale approximately linearly with a plasma-geometry- normalized form of the effective loop voltage from LHI, Vnorm = AinjVinj/Rinj, where A inj is the total injector area, Vinj is the injector bias voltage, and Rinj is the major radius of the injectors. A newly-discovered MHD regime for LHI-driven plasmas is described, in which the large-amplitude n = 1 fluctuations at 20-50 kHz which are generally dominant during LHI are abruptly reduced by an order of magnitude on the outboard side. High frequency fluctuations ( f > 400 kHz) increase inside the plasma edge at the same time. This regime results in improved plasma current and pervasive changes to plasma behavior, and may suggest short wavelength turbulence as a current drive mechanism during LHI.

  6. Modeling of heat extraction from variably fractured porous media in Enhanced Geothermal Systems

    DOE PAGES

    Hadgu, Teklu; Kalinina, Elena Arkadievna; Lowry, Thomas Stephen

    2016-01-30

    Modeling of heat extraction in Enhanced Geothermal Systems is presented. The study builds on recent studies on the use of directional wells to improve heat transfer between doublet injection and production wells. The current study focuses on the influence of fracture orientation on production temperature in deep low permeability geothermal systems, and the effects of directional drilling and separation distance between boreholes on heat extraction. The modeling results indicate that fracture orientation with respect to the well-pair plane has significant influence on reservoir thermal drawdown. As a result, the vertical well doublet is impacted significantly more than the horizontal wellmore » doublet« less

  7. Microscopic models of non-radiative and high-current effects in LEDs: state of the art and future developments

    NASA Astrophysics Data System (ADS)

    Bertazzi, Francesco; Goano, Michele; Calciati, Marco; Zhou, Xiangyu; Ghione, Giovanni; Bellotti, Enrico

    2014-02-01

    Auger recombination is at the hearth of the debate on droop, the decline of the internal quantum efficiency at high injection levels. The theory of Auger recombination in quantum wells is reviewed. The proposed microscopic model is based on a full-Brillouin-zone description of the electronic structure obtained by nonlocal empirical pseudopotential calculations and the linear combination of bulk bands. The lack of momentum conservation along the confining direction in InGaN/GaN quantum wells enhances direct (i.e. phononless) Auger transitions, leading to Auger coefficients in the range of those predicted for phonon-dressed processes in bulk InGaN.

  8. Efg Crystal Growth Apparatus And Method

    DOEpatents

    Mackintosh, Brian H.; Ouellette, Marc

    2003-05-13

    An improved mechanical arrangement controls the introduction of silicon particles into an EFG (Edge-defined Film-fed Growth) crucible/die unit for melt replenishment during a crystal growth run. A feeder unit injects silicon particles upwardly through a center hub of the crucible/die unit and the mechanical arrangement intercepts the injected particles and directs them so that they drop into the melt in a selected region of the crucible and at velocity which reduces splashing, whereby to reduce the likelihood of interruption of the growth process due to formation of a solid mass of silicon on the center hub and adjoining components. The invention also comprises use of a Faraday ring to alter the ratio of the electrical currents flowing through primary and secondary induction heating coils that heat the crucible die unit and the mechanical arrangement.

  9. Intensity dynamics in a waveguide array laser

    NASA Astrophysics Data System (ADS)

    Feng, Mingming; Williams, Matthew O.; Kutz, J. Nathan; Silverman, Kevin L.; Mirin, Richard P.; Cundiff, Steven T.

    2011-02-01

    We consider experimentally and theoretically the optical field dynamics of a five-emitter laser array subject to a ramped injection current. We have achieved experimentally an array that produces a robust oscillatory power output with a nearly constant π phase shift between the oscillations from each waveguide. The output power also decreases linearly as a function of waveguide number. Those behaviors persisted for pump currents varying between 380 and 500 mA with only a slight change in phase. Of note is the fact that the fundamental frequency of oscillation increases with injection current, and higher harmonics are produced above a threshold current of approximately 380 mA. Experimental observations and theoretical predictions are in agreement. A low dimensional model was also developed and the impact of the nonuniform injection current studied. A nonuniform injection current is capable of shifting the bifurcations of the waveguide array providing a valuable method of array tuning without additional gain or structural alterations to the array.

  10. ANALYSIS OF VOLATILES AND SEMIVOLATILES BY DIRECT AQUEOUS INJECTION

    EPA Science Inventory

    Direct aqueous injection analysis (DAI) with gas chromatographic separation and ion trap mass spectral detection was used to analyze aqueous samples for g/L levels of 54 volatile and semivolatile compounds, and problematic non-purgeables and non-extractables. The method reduces ...

  11. Direct Low-Temperature Growth of Single-Crystalline Anatase TiO2 Nanorod Arrays on Transparent Conducting Oxide Substrates for Use in PbS Quantum-Dot Solar Cells.

    PubMed

    Chung, Hyun Suk; Han, Gill Sang; Park, So Yeon; Shin, Hee-Won; Ahn, Tae Kyu; Jeong, Sohee; Cho, In Sun; Jung, Hyun Suk

    2015-05-20

    We report on the direct growth of anatase TiO2 nanorod arrays (A-NRs) on transparent conducting oxide (TCO) substrates that can be directly applied to various photovoltaic devices via a seed layer mediated epitaxial growth using a facile low-temperature hydrothermal method. We found that the crystallinity of the seed layer and the addition of an amine functional group play crucial roles in the A-NR growth process. The A-NRs exhibit a pure anatase phase with a high crystallinity and preferred growth orientation in the [001] direction. Importantly, for depleted heterojunction solar cells (TiO2/PbS), the A-NRs improve both electron transport and injection properties, thereby largely increasing the short-circuit current density and doubling their efficiency compared to TiO2 nanoparticle-based solar cells.

  12. Investigating the origin of efficiency droop by profiling the voltage across the multi-quantum well of an operating light-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taewoong; Seong, Tae-Yeon; School of Materials Science and Engineering, Korea University, Seoul 136-713

    Efficiency droop is a phenomenon in which the efficiency of a light-emitting diode (LED) decreases with the increase in current density. To analyze efficiency droop, direct experimental observations on the energy conversion occurring inside the LED is required. Here, we present the measured voltage profiles on the cross section of an operating LED and analyze them with the cross-sectional temperature profiles obtained in a previous study under the same operation conditions. The measured voltage profiles suggest that with increases in the injection current density, electron depletion shifts from the multi-quantum well through an electron blocking layer to the p-GaN region.more » This is because electron leakage increases with increases in current density.« less

  13. Ultra-trace level determination of diquat and paraquat residues in surface and drinking water using ion-pair liquid chromatography with tandem mass spectrometry: a comparison of direct injection and solid-phase extraction methods.

    PubMed

    Oh, Jin-Aa; Lee, Jun-Bae; Lee, Soo-Hyung; Shin, Ho-Sang

    2014-10-01

    Direct injection and solid-phase extraction methods for the determination of diquat and paraquat in surface and drinking water were developed using liquid chromatography with tandem mass spectrometry. The signal intensities of analytes based on six ion-pairing reagents were compared with each other, and 12.5 mM nonafluoropentanoic acid was selected as the best suited amongst them. A clean-up method was developed using Oasis hydrophilic-lipophilic balance; this was compared to the direct injection method, with respect to limits of detection, interference, precision, and accuracy. Limits of quantification of diquat and paraquat were 0.03 and 0.01 μg/L using the direct injection method, and 0.002 and 0.001 μg/L using the hydrophilic-lipophilic balance method. When the hydrophilic-lipophilic balance method was used to analyze target compounds in 114 surface water and 30 drinking water samples, paraquat and diquat were detected within a concentration range of 0.001-0.12 and 0.002-0.038 μg/L in surface water, respectively. When the direct injection method was used to analyze target compounds in the same samples, the detected concentrations of paraquat and diquat were within 25% in samples being >0.015 μg/L using the hydrophilic-lipophilic balance method. The liquid chromatography with tandem mass spectrometry method using direct injection can thus be used for routine monitoring of paraquat and diquat in surface and drinking water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Collective properties of injection-induced earthquake sequences: 1. Model description and directivity bias

    NASA Astrophysics Data System (ADS)

    Dempsey, David; Suckale, Jenny

    2016-05-01

    Induced seismicity is of increasing concern for oil and gas, geothermal, and carbon sequestration operations, with several M > 5 events triggered in recent years. Modeling plays an important role in understanding the causes of this seismicity and in constraining seismic hazard. Here we study the collective properties of induced earthquake sequences and the physics underpinning them. In this first paper of a two-part series, we focus on the directivity ratio, which quantifies whether fault rupture is dominated by one (unilateral) or two (bilateral) propagating fronts. In a second paper, we focus on the spatiotemporal and magnitude-frequency distributions of induced seismicity. We develop a model that couples a fracture mechanics description of 1-D fault rupture with fractal stress heterogeneity and the evolving pore pressure distribution around an injection well that triggers earthquakes. The extent of fault rupture is calculated from the equations of motion for two tips of an expanding crack centered at the earthquake hypocenter. Under tectonic loading conditions, our model exhibits a preference for unilateral rupture and a normal distribution of hypocenter locations, two features that are consistent with seismological observations. On the other hand, catalogs of induced events when injection occurs directly onto a fault exhibit a bias toward ruptures that propagate toward the injection well. This bias is due to relatively favorable conditions for rupture that exist within the high-pressure plume. The strength of the directivity bias depends on a number of factors including the style of pressure buildup, the proximity of the fault to failure and event magnitude. For injection off a fault that triggers earthquakes, the modeled directivity bias is small and may be too weak for practical detection. For two hypothetical injection scenarios, we estimate the number of earthquake observations required to detect directivity bias.

  15. Injection characteristics study of high-pressure direct injector for Compressed Natural Gas (CNG) using experimental and analytical method

    NASA Astrophysics Data System (ADS)

    Taha, Z.; Rahim, MF Abdul; Mamat, R.

    2017-10-01

    The injection characteristics of direct injector affect the mixture formation and combustion processes. In addition, the injector is converted from gasoline operation for CNG application. Thus measurement of CNG direct injector mass flow rate was done by independently tested a single injector on a test bench. The first case investigated the effect of CNG injection pressure and the second case evaluate the effect of pulse-width of injection duration. An analytical model was also developed to predict the mass flow rate of the injector. The injector was operated in a choked condition in both the experiments and simulation studies. In case 1, it was shown that mass flow rate through the injector is affected by injection pressure linearly. Based on the tested injection pressure of 20 bar to 60 bar, the resultant mass flow rate are in the range of 0.4 g/s to 1.2 g/s which are met with theoretical flow rate required by the engine. However, in Case 2, it was demonstrated that the average mass flow rate at short injection durations is lower than recorded in Case 1. At injection pressure of 50 bar, the average mass flow rate for Case 2 and Case 1 are 0.7 g/s and 1.1 g/s respectively. Also, the measured mass flow rate at short injection duration showing a fluctuating data in the range of 0.2 g/s - 1.3 g/s without any noticeable trends. The injector model able to predict the trend of the mass flow rate at different injection pressure but unable to track the fluctuating trend at short injection duration.

  16. Magnetic helicity balance at Taylor relaxed states sustained by AC helicity injection

    NASA Astrophysics Data System (ADS)

    Hirota, Makoto; Morrison, Philip J.; Horton, Wendell; Hattori, Yuji

    2017-10-01

    Magnitudes of Taylor relaxed states that are sustained by AC magnetic helicity injection (also known as oscillating field current drive, OFCD) are investigated numerically in a cylindrical geometry. Compared with the amplitude of the oscillating magnetic field at the skin layer (which is normalized to 1), the strength of the axial guide field Bz 0 is shown to be an important parameter. The relaxation process seems to be active only when Bz 0 < 1 . Moreover, in the case of weak guide field Bz 0 < 0.2 , a helically-symmetric relaxed state is self-generated instead of the axisymmetric reversed-field pinch. As a theoretical model, the helicity balance is considered in a similar way to R. G. O'Neill et al., where the helicity injection rate is directly equated with the dissipation rate at the Taylor states. Then, the bifurcation to the helical Taylor state is predicted theoretically and the estimated magnitudes of the relaxed states reasonably agree with numerical results as far as Bz 0 < 1 . This work was supported by JSPS KAKENHI Grant Number 16K05627.

  17. Resveratrol Targets AKT and p53 in Glioblastoma and Glioblastoma Stem-like Cells to Suppress Growth and Infiltration

    PubMed Central

    Clark, Paul A.; Bhattacharya, Saswati; Elmayan, Ardem; Darjatmoko, Soesiawati R.; Thuro, Bradley A.; Yan, Michael B.; van Ginkel, Paul R.; Polans, Arthur S.; Kuo, John S.

    2016-01-01

    Object Glioblastoma multiforme (GBM) is an aggressive brain cancer with median survival of less than two years with current treatment. GBM exhibits extensive intra-tumor and inter-patient heterogeneity, suggesting that successful therapies should exert broad anti-cancer activities. Therefore, the natural non-toxic pleiotropic agent, resveratrol, was studied for anti-tumorigenic effects against GBM. Methods Resveratrol’s effects on cell proliferation, sphere-forming ability, and invasion were tested using multiple patient-derived GBM stem-like cell (GSC) lines and established U87 glioma cells, and changes in oncogenic AKT and tumor suppressive p53 were analyzed. Resveratrol was also tested in vivo against U87 glioma flank xenografts using multiple delivery methods, including direct tumor injection. Finally, resveratrol was delivered directly to brain tissue to determine toxicity and achievable drug concentrations in the brain parenchyma. Results Resveratrol significantly inhibited proliferation in U87 glioma and multiple patient-derived GSC lines, demonstrating similar inhibitory concentrations across these phenotypically heterogeneous lines. Resveratrol also inhibited the sphere-forming ability of GSCs, suggesting anti-stem cell effects. Additionally, resveratrol blocked U87 glioma and GSC invasion in an in vitro Matrigel transwell assay at doses similar to those mediating anti-proliferative effects. In U87 glioma cells and GSCs, resveratrol reduced AKT phosphorylation and induced p53 expression and activation that led to transcription of downstream p53 target genes. Resveratrol administration via oral gavage or ad libitum in the water supply significantly suppressed GBM xenograft growth; intra-tumor or peri-tumor resveratrol injection further suppressed growth and approximating tumor regression. Intracranial resveratrol injection resulted in 100-fold higher local drug concentration compared to intravenous delivery, and with no apparent toxicity. Conclusions Resveratrol potently inhibited GBM and GBM stem-like cell growth and infiltration, acting partially via AKT deactivation and p53 induction, and suppressed glioblastoma growth in vivo. The ability of resveratrol to modulate AKT and p53, as well as reportedly many other anti-tumorigenic pathways, is attractive for therapy against a genetically heterogeneous tumor such as GBM. Although resveratrol exhibits low bioavailability when administered orally or intravenously, novel delivery methods such as direct injection (i.e. convection enhanced delivery) could potentially be used to achieve and maintain therapeutic doses in brain. Resveratrol’s non-toxic nature and broad anti-GBM effects make it a compelling candidate to supplement current GBM therapies. PMID:27419830

  18. Relationship Between the Provision of Injection Services in Ambulatory Physician Offices and Prescribing Injectable Medicines.

    PubMed

    Yousefi, Naeimeh; Rashidian, Arash; Soleymani, Fatemeh; Kebriaeezade, Abbas

    2017-01-01

    Overuse of injections is a common problem in many low-income and middle income countries. While cultural factors and attitudes of both physicians and patients are important factors, physicians› financial intensives may play an important role in overprescribing of injections. This study was designed to assess the effects of providing injection- services in physicians› ambulatory offices on prescribing injectable medicines. This cross-sectional study was conducted in Tehran in 2012 -2013and included a random sample of general physicians, pediatricians and infectious disease specialists. We collected data on the provision of injection services in or in proximity of physician offices, and obtained data from physicians› prescriptions in the previous three-month period. We analyzed the data using ANOVA, Student›s t-test and linear regression methods. We obtained complete data from 465 of 600 sampled physicians. Overall 41.9% of prescriptions contained injectable medicines. 75% of physicians offered injection services in their offices. Male physicians and general physicians were more likely to offer the services, and more likely to prescribe injectables. We observed a clear linear relationship between the injection service working hours and the proportion of prescriptions containing injectables (p-value<0.001). Providing injection service in the office was directly linked with the proportion of prescriptions containing injectables. While provision of injection services may provide a direct financial benefit to physicians, it is unlikely to be able to substantially reduce injectable medicines› prescription without addressing the issue.

  19. The directional dependence of cometary magnetic energy density in the quasi-parallel and quasi-perpendicular regimes

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Gombosi, T. I.; Gary, S. P.; Winske, D.

    1991-01-01

    The direction of propagation of low frequency magnetic fluctuations generated by cometary ion pick-up is examined by means of 1D electromagnetic hybrid simulations. The newborn ions are injected at a constant rate, and the helicity and direction of propagation of magnetic fluctuations are explored for cometary ion injection angles of 0 and 90 deg relative to the solar wind magnetic field. The parameter eta represents the relative contribution of wave energy propagating in the direction away from the comet, parallel to the beam. For small (quasi-parallel) injection angles eta was found to be of order unity, while for larger (quasi-perpendicular) angles eta was found to be of order 0.5.

  20. Development of CNG direct injection (CNGDI) clean fuel system for extra power in small engine

    NASA Astrophysics Data System (ADS)

    Ali, Yusoff; Shamsudeen, Azhari; Abdullah, Shahrir; Mahmood, Wan Mohd Faizal Wan

    2012-06-01

    A new design of fuel system for CNG engine with direct injection (CNGDI) was developed for a demonstration project. The development of the fuel system was done on the engine with cylinder head modifications, for fuel injector and spark plug openings included in the new cylinder head. The piston was also redesigned for higher compression ratio. The fuel rails and the regulators are also designed for the direct injection system operating at higher pressure about 2.0 MPa. The control of the injection timing for the direct injectors are also controlled by the Electronic Control Unit specially designed for DI by another group project. The injectors are selected after testing with the various injection pressures and spray angles. For the best performance of the high-pressure system, selection is made from the tests on single cylinder research engine (SCRE). The components in the fuel system have to be of higher quality and complied with codes and standards to secure the safety of engine for high-pressure operation. The results of the CNGDI have shown that better power output is produced and better emissions were achieved compared to the aspirated CNG engine.

  1. SAPS/SAID revisited: A causal relation to the substorm current wedge

    NASA Astrophysics Data System (ADS)

    Mishin, Evgeny; Nishimura, Yukitoshi; Foster, John

    2017-08-01

    We present multispacecraft observations of enhanced flow/electric field channels in the inner magnetosphere and conjugate subauroral ionosphere, i.e., subauroral polarization streams (SAPS) near dusk and subauroral ion drifts (SAID) near midnight. The channels collocate with ring current (RC) injections lagging the onset of substorms by a few to ˜20 min, i.e., significantly shorter than the gradient-curvature drift time of tens of keV ions. The time lag is of the order of the propagation time of reconnection-injected hot plasma jets to the premidnight plasmasphere and the substorm current wedge (SCW) to dusk. The observations confirm and expand on the previous results on the SAID features that negate the paradigm of voltage and current generators. Fast-time duskside SAPS/RC injections appear intimately related to a two-loop circuit of the substorm current wedge (SCW2L). We suggest that the poleward electric field inherent in the SCW2L circuit, which demands closure of the Region 1 and Region 2 sense field-aligned currents via meridional currents, is the ultimate cause of fast RC injections and SAPS on the duskside.

  2. SAID/SAPS Revisited: A Causal Relation to the Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Mishin, E. V.

    2017-12-01

    We present multi-spacecraft observations of enhanced flow/electric field channels in the inner magnetosphere and conjugate subauroral ionosphere, i.e., subauroral polarization streams (SAPS) near dusk and subauroral ion drifts (SAID) near midnight. The channels collocate with ring current (RC) injections lagging the onset of substorms by a few to ˜20 minutes, i.e., significantly shorter than the gradient-curvature drift time of tens of keV ions. The time lag is of the order of the propagation time of reconnection-injected hot plasma jets to the premidnight plasmasphere and the substorm current wedge (SCW) to dusk. The observations confirm and expand on the previous results on the SAID features that negate the paradigm of voltage and current generators. Fast-time duskside SAPS/RC injections appear intimately related to a two-loop circuit of the substorm current wedge (SCW2L). We suggest that the poleward electric field inherent in the SCW2L circuit, which demands closure of the Region 1- and Region 2-sense field-aligned currents via meridional currents, is the ultimate cause of fast RC injections and SAPS on the duskside.

  3. On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luong, Minh Bau; Sankaran, Ramanan; Yu, Gwang Hyeon

    2017-06-09

    The ignition characteristics of lean primary reference fuel (PRF)/air/exhaust gas recirculation (EGR) mixture under reactivity-controlled compression ignition (RCCI) and direct duel fuel stratification (DDFS) conditions are investigated in this paper by 2-D direct numerical simulations (DNSs) with a 116-species reduced chemistry of the PRF oxidation. The 2-D DNSs of the DDFS combustion are performed by varying the injection timing of iso-octane (i-C 8H 18) with a pseudo-iso-octane (PC 8H 18) model together with a novel compression heating model to account for the compression heating and expansion cooling effects of the piston motion in an engine cylinder. The PC 8H 18more » model is newly developed to mimic the timing, duration, and cooling effects of the direct injection of i-C 8H 18 onto a premixed background charge of PRF/air/EGR mixture with composition inhomogeneities. It is found that the RCCI combustion exhibits a very high peak heat release rate (HRR) with a short combustion duration due to the predominance of the spontaneous ignition mode of combustion. However, the DDFS combustion has much lower peak HRR and longer combustion duration regardless of the fuel injection timing compared to those of the RCCI combustion, which is primarily attributed to the sequential injection of i-C 8H 18. It is also found that the ignition delay of the DDFS combustion features a non-monotonic behavior with increasing fuel-injection timing due to the different effect of fuel evaporation on the low-, intermediate-, and high-temperature chemistry of the PRF oxidation. The budget and Damköhler number analyses verify that although a mixed combustion mode of deflagration and spontaneous ignition exists during the early phase of the DDFS combustion, the spontaneous ignition becomes predominant during the main combustion, and hence, the spread-out of heat release rate in the DDFS combustion is mainly governed by the direct injection process of i-C 8H 18. Finally, a misfire is observed for the DDFS combustion when the direct injection of i-C 8H 18 occurs during the intermediate-temperature chemistry (ITC) regime between the first- and second-stage ignition. Finally, this is because the temperature drop induced by the direct injection of i-C 8H 18 impedes the main ITC reactions, and hence, the main combustion fails to occur.« less

  4. Symptomatic lumbosacral transitional vertebra: a review of the current literature and clinical outcomes following steroid injection or surgical intervention.

    PubMed

    Holm, Emil Kongsted; Bünger, Cody; Foldager, Casper Bindzus

    2017-01-01

    Bertolotti's syndrome (BS) refers to the possible association between the congenital malformation lumbosacral transitional vertebra (LSTV), and low back pain (LBP). Several treatments have been proposed including steroid injections, resections of the LSTV, laminectomy, and lumbar spinal fusion. The aim of this review was to compare the clinical outcomes in previous trials and case reports for these treatments in patients with LBP and LSTV. A PubMed search was conducted. We included English studies of patients diagnosed with LSTV treated with steroid injection, laminectomy, spinal fusion or resection of the transitional articulation. Of 272 articles reviewed 20 articles met the inclusion criteria. Their level of evidence were graded I-V and the clinical outcomes were evaluated. Only 1 study had high evidence level (II). The remainders were case series (level IV). Only 5 studies used validated clinical outcome measures. A total of 79 patients were reported: 31 received treatment with steroid injections, 33 were treated with surgical resection of the LSTV, 8 received lumbar spinal fusion, and 7 cases were treated with laminectomy. Surgical management seems to improve the patient's symptoms, especially patients diagnosed with "far out syndrome" treated with laminectomy. Clinical outcomes were more heterogenetic for patient's treated with steroid injections. The literature regarding BS is sparse and generally with low evidence. Non-surgical management (e.g., steroid injections) and surgical intervention could not directly be compared due to lack of standardization in clinical outcome. Generally, surgical management seems to improve patient's clinical outcome over time, whereas steroid injection only improves the patient's symptoms temporarily. Further studies with larger sample size and higher evidence are warranted for the clinical guidance in the treatment of BS. © The Authors, published by EDP Sciences, 2017.

  5. Symptomatic lumbosacral transitional vertebra: a review of the current literature and clinical outcomes following steroid injection or surgical intervention

    PubMed Central

    Holm, Emil Kongsted; Bünger, Cody; Foldager, Casper Bindzus

    2017-01-01

    Bertolotti’s syndrome (BS) refers to the possible association between the congenital malformation lumbosacral transitional vertebra (LSTV), and low back pain (LBP). Several treatments have been proposed including steroid injections, resections of the LSTV, laminectomy, and lumbar spinal fusion. The aim of this review was to compare the clinical outcomes in previous trials and case reports for these treatments in patients with LBP and LSTV. A PubMed search was conducted. We included English studies of patients diagnosed with LSTV treated with steroid injection, laminectomy, spinal fusion or resection of the transitional articulation. Of 272 articles reviewed 20 articles met the inclusion criteria. Their level of evidence were graded I–V and the clinical outcomes were evaluated. Only 1 study had high evidence level (II). The remainders were case series (level IV). Only 5 studies used validated clinical outcome measures. A total of 79 patients were reported: 31 received treatment with steroid injections, 33 were treated with surgical resection of the LSTV, 8 received lumbar spinal fusion, and 7 cases were treated with laminectomy. Surgical management seems to improve the patient’s symptoms, especially patients diagnosed with “far out syndrome” treated with laminectomy. Clinical outcomes were more heterogenetic for patient’s treated with steroid injections. The literature regarding BS is sparse and generally with low evidence. Non-surgical management (e.g., steroid injections) and surgical intervention could not directly be compared due to lack of standardization in clinical outcome. Generally, surgical management seems to improve patient’s clinical outcome over time, whereas steroid injection only improves the patient’s symptoms temporarily. Further studies with larger sample size and higher evidence are warranted for the clinical guidance in the treatment of BS. PMID:29243586

  6. Spin injection and transport in semiconductor and metal nanostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Lei

    In this thesis we investigate spin injection and transport in semiconductor and metal nanostructures. To overcome the limitation imposed by the low efficiency of spin injection and extraction and strict requirements for retention of spin polarization within the semiconductor, novel device structures with additional logic functionality and optimized device performance have been developed. Weak localization/antilocalization measurements and analysis are used to assess the influence of surface treatments on elastic, inelastic and spin-orbit scatterings during the electron transport within the two-dimensional electron layer at the InAs surface. Furthermore, we have used spin-valve and scanned probe microscopy measurements to investigate the influence of sulfur-based surface treatments and electrically insulating barrier layers on spin injection into, and spin transport within, the two-dimensional electron layer at the surface of p-type InAs. We also demonstrate and analyze a three-terminal, all-electrical spintronic switching device, combining charge current cancellation by appropriate device biasing and ballistic electron transport. The device yields a robust, electrically amplified spin-dependent current signal despite modest efficiency in electrical injection of spin-polarized electrons. Detailed analyses provide insight into the advantages of ballistic, as opposed to diffusive, transport in device operation, as well as scalability to smaller dimensions, and allow us to eliminate the possibility of phenomena unrelated to spin transport contributing to the observed device functionality. The influence of the device geometry on magnetoresistance of nanoscale spin-valve structures is also demonstrated and discussed. Shortcomings of the simplified one-dimensional spin diffusion model for spin valve are elucidated, with comparison of the thickness and the spin diffusion length in the nonmagnetic channel as the criterion for validity of the 1D model. Our work contributes directly to the realization of spin valve and spin transistor devices based on III-V semiconductors, and offers new opportunities to engineer the behavior of spintronic devices at the nanoscale.

  7. Non-Solenoidal Tokamak Startup via Inboard Local Helicity Injection on the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Perry, J. M.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Pachicano, J. L.; Reusch, J. A.; Rodriguez Sanchez, C.; Richner, N. J.; Schlossberg, D. J.

    2016-10-01

    Local helicity injection (LHI) is a non-solenoidal startup technique utilizing small injectors at the plasma edge to source current along helical magnetic field lines. Unstable injected current streams relax to a tokamak-like configuration with high toroidal current multiplication. Flexible placement of injectors permits tradeoffs between helicity injection rate, poloidal field induction, and magnetic geometry requirements for initial relaxation. Experiments using a new set of large-area injectors in the lower divertor explore the efficacy of high-field-side (HFS) injection. The increased area (4 cm2) current source is functional up to full Pegasus toroidal field (BT , inj = 0.23 T). However, relaxation to a tokamak state is increasingly frustrated for BT , inj > 0.15 T with uniform vacuum vertical field. Paths to relaxation at increased field include: manipulation of vacuum poloidal field geometry; increased injector current; and plasma initiation with outboard injectors, subsequently transitioning to divertor injector drive. During initial tests of HFS injectors, achieved Vinj was limited to 600 V by plasma-material interactions on the divertor plate, which may be mitigated by increasing injector elevation. In experiments with helicity injection as the dominant current drive Ip 0.13 MA has been attained, with T̲e > 100 eV and ne 1019 m-3. Extrapolation to full BT, longer pulse length, and Vinj 1 kV suggest Ip > 0.25 MA should be attainable in a plasma dominated by helicity drive. Work supported by US DOE Grant DE-FG02-96ER54375.

  8. Sector Tests of a Low-NO(sub x), Lean, Direct- Injection, Multipoint Integrated Module Combustor Concept Conducted

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.; Wey, Chang-Lie; Laing, Peter; Mansour, Adel

    2002-01-01

    The low-emissions combustor development described is directed toward advanced high pressure aircraft gas-turbine applications. The emphasis of this research is to reduce nitrogen oxides (NOx) at high-power conditions and to maintain carbon monoxide and unburned hydrocarbons at their current low levels at low power conditions. Low-NOx combustors can be classified into rich-burn and lean-burn concepts. Lean-burn combustors can be further classified into lean-premixed-prevaporized (LPP) and lean direct injection (LDI) concepts. In both concepts, all the combustor air, except for liner cooling flow, enters through the combustor dome so that the combustion occurs at the lowest possible flame temperature. The LPP concept has been shown to have the lowest NOx emissions, but for advanced high-pressure-ratio engines, the possibility of autoignition or flashback precludes its use. LDI differs from LPP in that the fuel is injected directly into the flame zone, and thus, it does not have the potential for autoignition or flashback and should have greater stability. However, since it is not premixed and prevaporized, good atomization is necessary and the fuel must be mixed quickly and uniformly so that flame temperatures are low and NOx formation levels are comparable to those of LPP. The LDI concept described is a multipoint fuel injection/multiburning zone concept. Each of the multiple fuel injectors has an air swirler associated with it to provide quick mixing and a small recirculation zone for burning. The multipoint fuel injection provides quick, uniform mixing and the small multiburning zones provide for reduced burning residence time, resulting in low NOx formation. An integrated-module approach was used for the construction where chemically etched laminates, diffusion bonded together, combine the fuel injectors, air swirlers, and fuel manifold into a single element. The multipoint concept combustor was demonstrated in a 15 sector test. The configuration tested had 36 fuel injectors and fuel-air mixers that replaced two fuel injectors in a conventional dual-annular combustor. During tests, inlet temperatures were up to 870 K and inlet pressures were up to 5400 kPa. A correlation was developed that related the NOx emissions with the inlet temperature, inlet pressure, fuel-air ratio, and pressure drop. At low-power conditions, fuel staging was used so that high combustion efficiency was obtained with only one-fourth of the fuel injectors flowing. The test facility had optical access, and visual images showed the flame to be very short, approximately 25 mm long.

  9. A Review of Injectable Polymeric Hydrogel Systems for Application in Bone Tissue Engineering.

    PubMed

    Kondiah, Pariksha J; Choonara, Yahya E; Kondiah, Pierre P D; Marimuthu, Thashree; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-11-21

    Biodegradable, stimuli-responsive polymers are essential platforms in the field of drug delivery and injectable biomaterials for application of bone tissue engineering. Various thermo-responsive hydrogels display water-based homogenous properties to encapsulate, manipulate and transfer its contents to the surrounding tissue, in the least invasive manner. The success of bioengineered injectable tissue modified delivery systems depends significantly on their chemical, physical and biological properties. Irrespective of shape and defect geometry, injectable therapy has an unparalleled advantage in which intricate therapy sites can be effortlessly targeted with minimally invasive procedures. Using material testing, it was found that properties of stimuli-responsive hydrogel systems enhance cellular responses and cell distribution at any site prior to the transitional phase leading to gelation. The substantially hydrated nature allows significant simulation of the extracellular matrix (ECM), due to its similar structural properties. Significant current research strategies have been identified and reported to date by various institutions, with particular attention to thermo-responsive hydrogel delivery systems, and their pertinent focus for bone tissue engineering. Research on future perspective studies which have been proposed for evaluation, have also been reported in this review, directing considerable attention to the modification of delivering natural and synthetic polymers, to improve their biocompatibility and mechanical properties.

  10. Blood Glucose Levels After Local Musculoskeletal Steroid Injections in Patients With Diabetes Mellitus: A Clinical Review.

    PubMed

    Waterbrook, Anna L; Balcik, Brenden J; Goshinska, Aaron John

    Diabetes mellitus (DM) has become an epidemic in the United States and is associated with increased risk of multiple comorbidities, including painful musculoskeletal conditions. A common treatment for many of these painful musculoskeletal conditions is local soft tissue and intra-articular corticosteroid injection (CSI). These local injections have the potential to cause elevated blood glucose levels (BGLs) and cause complications in patients with DM. Therefore, it was the objective of this investigation to review the currently available evidence that directly addresses the effects of local CSIs used for painful musculoskeletal conditions on BGL in patients with DM. PubMed, Google Scholar, EMBASE, CINAHL, and Cochrane Review databases were searched with a combination of the terms corticosteroid, glucocorticoid, steroid, injection, musculoskeletal, and diabetes. Search limits included the English language. Bibliographic references from these articles were also examined to identify pertinent literature. Clinical review. Level 3. Ten studies that met the inclusion criteria were reviewed. All these studies showed significant but transient increases in postinjection BGL after a single local CSI in patients with DM. There were no adverse reactions or complications reported. Single, local soft tissue and intra-articular musculoskeletal CSIs are most likely safe in patients with well-controlled DM.

  11. Analysis of selected antibiotics in surface freshwater and seawater using direct injection in liquid chromatography electrospray ionization tandem mass spectrometry.

    PubMed

    Bayen, Stéphane; Yi, Xinzhu; Segovia, Elvagris; Zhou, Zhi; Kelly, Barry C

    2014-04-18

    Emerging contaminants such as antibiotics have received recent attention as they have been detected in natural waters and health concerns over potential antibiotic resistance. With the purpose to investigate fast and high-throughput analysis, and eventually the continuous on-line analysis of emerging contaminants, this study presents results on the analysis of seven selected antibiotics (sulfadiazine, sulfamethazine, sulfamerazine, sulfamethoxazole, chloramphenicol, lincomycin, tylosin) in surface freshwater and seawater using direct injection of a small sample volume (20μL) in liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Notably, direct injection of seawater in the LC-ESI-MS/MS was made possible on account of the post-column switch on the system, which allows diversion of salt-containing solutions flushed out of the column to the waste. Mean recoveries based on the isotope dilution method average 95±14% and 96±28% amongst the compounds for spiked freshwater and seawater, respectively. Linearity across six spiking levels was assessed and the response was linear (r(2)>0.99) for all compounds. Direct injection concentrations were compared for real samples to those obtained with the conventional SPE-based analysis and both techniques concurs on the presence/absence and levels of the compounds in real samples. These results suggest direct injection is a reliable method to detect antibiotics in both freshwater and seawater. Method detection limits for the direct injection technique (37pg/L to 226ng/L in freshwater, and from 16pg/to 26ng/L in seawater) are sufficient for a number of environmental applications, for example the fast screening of water samples for ecological risk assessments. In the present study of real samples, this new method allowed for example the positive detection of some compounds (e.g. lincomycin) down to the sub ng/L range. The direct injection method appears to be relatively cheaper and faster, requires a smaller sample size, and is more robust to equipment cross-contamination as compared to the conventional SPE-based method. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Anisotropic charge transport in large single crystals of π-conjugated organic molecules.

    PubMed

    Hourani, Wael; Rahimi, Khosrow; Botiz, Ioan; Koch, Felix Peter Vinzenz; Reiter, Günter; Lienerth, Peter; Heiser, Thomas; Bubendorff, Jean-Luc; Simon, Laurent

    2014-05-07

    The electronic properties of organic semiconductors depend strongly on the nature of the molecules, their conjugation and conformation, their mutual distance and the orientation between adjacent molecules. Variations of intramolecular distances and conformation disturb the conjugation and perturb the delocalization of charges. As a result, the mobility considerably decreases compared to that of a covalently well-organized crystal. Here, we present electrical characterization of large single crystals made of the regioregular octamer of 3-hexyl-thiophene (3HT)8 using a conductive-atomic force microscope (C-AFM) in air. We find a large anisotropy in the conduction with charge mobility values depending on the crystallographic orientation of the single crystal. The smaller conduction is in the direction of π-π stacking (along the long axis of the single crystal) with a mobility value in the order of 10(-3) cm(2) V(-1) s(-1), and the larger one is along the molecular axis (in the direction normal to the single crystal surface) with a mobility value in the order of 0.5 cm(2) V(-1) s(-1). The measured current-voltage (I-V) curves showed that along the molecular axis, the current followed an exponential dependence corresponding to an injection mode. In the π-π stacking direction, the current exhibits a space charge limited current (SCLC) behavior, which allows us to estimate the charge carrier mobility.

  13. Effectiveness of Shield Termination Techniques Tested with TEM Cell and Bulk Current Injection

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Hare, Richard J.

    2009-01-01

    This paper presents experimental results of the effectiveness of various shield termination techniques. Each termination technique is evaluated by two independent noise injection methods; transverse electromagnetic (TEM) cell operated from 3 MHz 400 MHz, and bulk current injection (BCI) operated from 50 kHz 400 MHz. Both single carrier and broadband injection tests were investigated. Recommendations as to how to achieve the best shield transfer impedance (i.e. reduced coupled noise) are made based on the empirical data. Finally, the noise injection techniques themselves are indirectly evaluated by comparing the results obtained from the TEM Cell to those from BCI.

  14. Induced seismicity constraints on subsurface geological structure, Paradox Valley, Colorado

    NASA Astrophysics Data System (ADS)

    Block, Lisa V.; Wood, Christopher K.; Yeck, William L.; King, Vanessa M.

    2015-02-01

    Precise relative hypocentres of seismic events induced by long-term fluid injection at the Paradox Valley Unit (PVU) brine disposal well provide constraints on the subsurface geological structure and compliment information available from deep seismic reflection and well data. We use the 3-D spatial distribution of the hypocentres to refine the locations, strikes, and throws of subsurface faults interpre­ted previously from geophysical surveys and to infer the existence of previously unidentified subsurface faults. From distinct epicentre lineations and focal mechanism trends, we identify a set of conjugate fracture orientations consistent with shear-slip reactivation of late-Palaeozoic fractures over a widespread area, as well as an additional fracture orientation present only near the injection well. We propose simple Mohr-Coulomb fracture models to explain these observations. The observation that induced seismicity preferentially occurs along one of the identified conjugate fracture orientations can be explained by a rotation in the direction of the regional maximum compressive stress from the time when the fractures were formed to the present. Shear slip along the third fracture orientation observed near the injection well is inconsistent with the current regional stress field and suggests a local rotation of the horizontal stresses. The detailed subsurface model produced by this analysis provides important insights for anticipating spatial patterns of future induced seismicity and for evaluation of possible additional injection well sites that are likely to be seismically and hydrologically isolated from the current well. In addition, the interpreted fault patterns provide constraints for estimating the maximum magnitude earthquake that may be induced, and for building geomechanical models to simulate pore pressure diffusion, stress changes and earthquake triggering.

  15. Recent Advances in Alternating Current-Driven Organic Light-Emitting Devices.

    PubMed

    Pan, Yufeng; Xia, Yingdong; Zhang, Haijuan; Qiu, Jian; Zheng, Yiting; Chen, Yonghua; Huang, Wei

    2017-11-01

    Organic light-emitting devices (OLEDs), typically operated with constant-voltage or direct-current (DC) power sources, are candidates for next-generation solid-state lighting and displays, as they are light, thin, inexpensive, and flexible. However, researchers have focused mainly on the device itself (e.g., development of novel materials, design of the device structure, and optical outcoupling engineering), and little attention has been paid to the driving mode. Recently, an alternative concept to DC-driven OLEDs by directly driving devices using time-dependent voltages or alternating current (AC) has been explored. Here, the effects of different device structures of AC-driven OLEDs, for example, double-insulation, single-insulation, double-injection, and tandem structure, on the device performance are systematically investigated. The formation of excitons and the dielectric layer, which are important to achieve high-performance AC-driven OLEDs, are carefully considered. The importance of gaining further understanding of the fundamental properties of AC-driven OLEDs is then discussed, especially as they relate to device physics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High-speed directly modulated widely tunable two-section InGaAlAs DBR lasers.

    PubMed

    Zhou, Daibing; Liang, Song; Zhao, Lingjuan; Zhu, Hongliang; Wang, Wei

    2017-02-06

    We report widely tunable two-section distributed Bragg reflector (DBR) lasers, which have InGaAlAs multiple quantum wells (MQWs) as the gain material. By butt-jointing InGaAsP, which has a photoluminescence wavelength of 1.4 μm as the material of the DBR section, a wavelength tuning range of 12 nm can be obtained by current injection into the DBR section. The direct modulation bandwidth of the lasers is greater than 10 GHz over the entire wavelength tuning range up to 40°C. Compared with InGaAsP DBR lasers having the same structure, the InGaAlAs lasers have smaller variations in both the threshold current and slope efficiency with the temperature because of the better electron confinement in the InGaAlAs MQWs. Moreover, the DBR-current-induced decreases in the modulation bandwidth and side mode suppression ratio (SMSR) of the optical spectra are notably smaller for the InGaAlAs lasers than for the InGaAsP lasers.

  17. Immunofluorescent detection in the ovary of host antibodies against a secretory ferritin injected into female Haemaphysalis longicornis ticks.

    PubMed

    Galay, Remil Linggatong; Matsuo, Tomohide; Hernandez, Emmanuel Pacia; Talactac, Melbourne Rio; Kusakisako, Kodai; Umemiya-Shirafuji, Rika; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya

    2018-04-01

    Due to the continuous threat of ticks and tick-borne diseases to human and animal health worldwide, and the drawbacks of chemical acaricide application, many researchers are exploring vaccination as an alternative tick control method. Earlier studies have shown that host antibodies can circulate in the ticks, but it has not been confirmed whether these antibodies can be passed on to the eggs. We previously reported that ticks infesting rabbits immunized with a recombinant secretory ferritin of Haemaphysalis longicornis (HlFER2) had reduced egg production and hatching. Here we attempted to detect the presence of antibodies against HlFER2 in the ovary and eggs of female ticks through immunofluorescent visualization. Purified anti-HlFER2 antibodies or rabbit IgG for control was directly injected to engorged female H. longicornis. Ovaries and eggs after oviposition were collected and prepared for an indirect immunofluorescent antibody test. Positive fluorescence was detected in ovaries one day post-injection of anti-HlFER2 antibodies. Through silencing of Hlfer2 gene, we also determined whether the injected antibodies can specifically bind to native HlFER2. Immunofluorescence was observed in the oocytes of dsLuciferase control ticks injected with anti-HlFER2 antibodies, but not in the oocytes of Hlfer2-silenced ticks also injected with anti-HlFER2 antibodies. Our current findings suggest that host antibodies can be passed on to the oocytes, which is significant in formulating a vaccine that can disrupt tick reproduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Local Helicity Injection Systems for Non-solenoidal Startup in the PEGASUS Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Perry, J. M.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Redd, A. J.

    2013-10-01

    Local helicity injection is being developed in the PEGASUS Toroidal Experiment for non-solenoidal startup in spherical tokamaks. The effective loop voltage due to helicity injection scales with the area of the injectors, requiring the development of electron current injectors with areas much larger than the 2 cm2 plasma arc injectors used to date. Solid and gas-effused metallic electrodes were found to be unusable due to reduced injector area utilization from localized cathode spots and narrow operational regimes. An integrated array of 8 compact plasma arc sources is thus being developed for high current startup. It employs two monolithic power systems, for the plasma arc sources and the bias current extraction system. The array effectively eliminates impurity fueling from plasma-material interaction by incorporating a local scraper-limiter and conical-frustum bias electrodes to mitigate the effects of cathode spots. An energy balance model of helicity injection indicates that the resulting 20 cm2 of total injection area should provide sufficient current drive to reach 0.3 MA. At that level, helicity injection drive exceeds that from poloidal induction, which is the relevant operational regime for large-scale spherical tokamaks. Future placement of the injector array near an expanded boundary divertor region will test simultaneous optimization of helicity drive and the Taylor relaxation current limit. Work supported by US DOE Grant DE-FG02-96ER54375.

  19. Load flows and faults considering dc current injections

    NASA Technical Reports Server (NTRS)

    Kusic, G. L.; Beach, R. F.

    1991-01-01

    The authors present novel methods for incorporating current injection sources into dc power flow computations and determining network fault currents when electronic devices limit fault currents. Combinations of current and voltage sources into a single network are considered in a general formulation. An example of relay coordination is presented. The present study is pertinent to the development of the Space Station Freedom electrical generation, transmission, and distribution system.

  20. Overview of the Helicity Injected Torus (HIT) Program

    NASA Astrophysics Data System (ADS)

    Redd, A. J.; Jarboe, T. R.; Hamp, W. T.; Nelson, B. A.; O'Neill, R. G.; Sieck, P. E.; Smith, R. J.; Sutphin, G. L.; Wrobel, J. S.

    2007-06-01

    The Helicity Injected Torus with Steady Inductive Helicity Injection (HIT-SI) consists of a "bowtie"-shaped axisymmetric confinement region, with two half-torus helicity injectors mounted on each side of the axisymmetric flux conserver [Sieck et al, IEEE Trans. Plasma Sci., v.33, p.723 (2005); Jarboe, Fusion Technology, v.36, p.85 (1999)]. Current and flux are driven sinusoidally with time in each injector, with the goal of generating and sustaining an axisymmetric spheromak in the main confinement region. Improvements in machine conditioning have enabled systematic study of HIT-SI discharges with significant toroidal current ITOR, including cases in which this current ITOR switches sign one or more times during the discharge. Statistical studies of all HIT-SI discharges to date demonstrate a minimum injected power to form significant ITOR, and that the maximum ITOR scales approximately linearly with the total injected power.

  1. Injection-insensitive lateral divergence in broad-area diode lasers achieved by spatial current modulation

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Tong, Cunzhu; Wang, Lijie; Zeng, Yugang; Tian, Sicong; Shu, Shili; Zhang, Jian; Wang, Lijun

    2016-11-01

    High-power broad-area (BA) diode lasers often suffer from low beam quality, broad linewidth, and a widened slow-axis far field with increasing current. In this paper, a two-dimensional current-modulated structure is proposed and it is demonstrated that it can reduce not only the far-field sensitivity to the injection current but also the linewidth of the lasing spectra. Injection-insensitive lateral divergence was realized, and the beam parameter product (BPP) was improved by 36.5%. At the same time, the linewidth was decreased by about 45% without significant degradations of emission power and conversion efficiency.

  2. Oxygen Generating Biomaterials Preserve Skeletal Muscle Homeostasis under Hypoxic and Ischemic Conditions

    PubMed Central

    Ward, Catherine L.; Corona, Benjamin T.; Yoo, James J.; Harrison, Benjamin S.; Christ, George J.

    2013-01-01

    Provision of supplemental oxygen to maintain soft tissue viability acutely following trauma in which vascularization has been compromised would be beneficial for limb and tissue salvage. For this application, an oxygen generating biomaterial that may be injected directly into the soft tissue could provide an unprecedented treatment in the acute trauma setting. The purpose of the current investigation was to determine if sodium percarbonate (SPO), an oxygen generating biomaterial, is capable of maintaining resting skeletal muscle homeostasis under otherwise hypoxic conditions. In the current studies, a biologically and physiologically compatible range of SPO (1–2 mg/mL) was shown to: 1) improve the maintenance of contractility and attenuate the accumulation of HIF1α, depletion of intramuscular glycogen, and oxidative stress (lipid peroxidation) that occurred following ∼30 minutes of hypoxia in primarily resting (duty cycle = 0.2 s train/120 s contraction interval <0.002) rat extensor digitorum longus (EDL) muscles in vitro (95% N2–5% CO2, 37°C); 2) attenuate elevations of rat EDL muscle resting tension that occurred during contractile fatigue testing (3 bouts of 25 100 Hz tetanic contractions; duty cycle = 0.2 s/2 s = 0.1) under oxygenated conditions in vitro (95% O2–5% CO2, 37°C); and 3) improve the maintenance of contractility (in vivo) and prevent glycogen depletion in rat tibialis anterior (TA) muscle in a hindlimb ischemia model (i.e., ligation of the iliac artery). Additionally, injection of a commercially available lipid oxygen-carrying compound or the components (sodium bicarbonate and hydrogen peroxide) of 1 mg/mL SPO did not improve EDL muscle contractility under hypoxic conditions in vitro. Collectively, these findings demonstrate that a biological and physiological concentration of SPO (1–2 mg/mL) injected directly into rat skeletal muscle (EDL or TA muscles) can partially preserve resting skeletal muscle homeostasis under hypoxic conditions. PMID:23991116

  3. Results of the harmonics measurement program at the John F. Long photovoltaic house

    NASA Astrophysics Data System (ADS)

    Campen, G. L.

    1982-03-01

    Photovoltaic (PV) systems used in single-family dwellings require an inverter to act as an interface between the direct-current (dc) power output of the PV unit and the alternating-current (ac) power needed by house loads. A type of inverter known as line commutated injects harmonic currents on the ac side and requires large amounts of reactive power. Large numbers of such PV installations could lead to unacceptable levels of harmonic voltages on the utility system, and the need to increase the utility's deliver of reactive power could result in significant cost increases. The harmonics and power-factor effects are examined for a single PV installation using a line-commutated inverter. The magnitude and phase of various currents and voltages from the fundamental to the 13th harmonic were recorded both with and without the operation of the PV system.

  4. Optimal joule heating of the subsurface

    DOEpatents

    Berryman, James G.; Daily, William D.

    1994-01-01

    A method for simultaneously heating the subsurface and imaging the effects of the heating. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.

  5. Fluidized bed injection assembly for coal gasification

    DOEpatents

    Cherish, Peter; Salvador, Louis A.

    1981-01-01

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  6. Fuel-Air Injection Effects on Combustion in Cavity-Based Flameholders in a Supersonic Flow

    DTIC Science & Technology

    2005-03-01

    both fuel and air provided additional capability to tune the cavity such that a more stable decentralized flame results. The addition of air...Mark Gruber of AFRL/PRAS and Mr. Mark Hsu of Innovative Scientific Solutions Inc. for both the support and latitude provided to me in this endeavor...addition of direct air injection to cavity combustion. Direct injection of both fuel and air provided additional capability to tune the cavity such that a

  7. Coherent Control of Nanoscale Ballistic Currents in Transition Metal Dichalcogenide ReS2.

    PubMed

    Cui, Qiannan; Zhao, Hui

    2015-04-28

    Transition metal dichalcogenides are predicted to outperform traditional semiconductors in ballistic devices with nanoscale channel lengths. So far, experimental studies on charge transport in transition metal dichalcogenides are limited to the diffusive regime. Here we show, using ReS2 as an example, all-optical injection, detection, and coherent control of ballistic currents. By utilizing quantum interference between one-photon and two-photon interband transition pathways, ballistic currents are injected in ReS2 thin film samples by a pair of femtosecond laser pulses. We find that the current decays on an ultrafast time scale, resulting in an electron transport of only a fraction of one nanometer. Following the relaxation of the initially injected momentum, backward motion of the electrons for about 1 ps is observed, driven by the Coulomb force from the oppositely moved holes. We also show that the injected current can be controlled by the phase of the laser pulses. These results demonstrate a new platform to study ballistic transport of nonequilibrium carriers in transition metal dichalcogenides.

  8. Push-through direct injection NMR: an optimized automation method applied to metabolomics

    EPA Science Inventory

    There is a pressing need to increase the throughput of NMR analysis in fields such as metabolomics and drug discovery. Direct injection (DI) NMR automation is recognized to have the potential to meet this need due to its suitability for integration with the 96-well plate format. ...

  9. Sonographically guided deep plantar fascia injections: where does the injectate go?

    PubMed

    Maida, Eugene; Presley, James C; Murthy, Naveen; Pawlina, Wojciech; Smith, Jay

    2013-08-01

    To determine the distribution of sonographically guided deep plantar fascia injections in an unembalmed cadaveric model. A single experienced operator completed 10 sonographically guided deep plantar fascia injections in 10 unembalmed cadaveric specimens (5 right and 5 left) obtained from 6 donors (2 male and 4 female) aged 49 to 95 years (mean, 77.5 years) with a mean body mass index of 23.2 kg/m(2) (range, 18.4-26.3 kg/m(2)). A 12-3-MHz linear array transducer was used to direct a 22-gauge, 38-mm stainless steel needle deep to the plantar fascia at the anterior aspect of the calcaneus using an in-plane, medial-to-lateral approach. In each case, 1.5 mL of 50% diluted colored latex was injected deep to the plantar fascia. After a minimum of 72 hours, study coinvestigators dissected each specimen to assess injectate placement. All 10 injections accurately placed latex adjacent to the deep side of the plantar fascia at the anterior calcaneus. However, the flexor digitorum brevis (FDB) origin from the plantar fascia variably limited direct latex contact with the plantar fascia, and small amounts of latex interdigitated with the FDB origin in 90% (9 of 10). In all 10 specimens, latex also covered the traversing first branch of the lateral plantar nerve (FBLPN, ie, Baxter nerve) between the FDB and quadratus plantae muscles. No latex was found in the plantar fat pad or plantar fascia in any specimen. Sonographically guided deep plantar fascia injections reliably deliver latex deep to the plantar fascia while avoiding intrafascial injection. However, the extent of direct plantar fascia contact is variable due to the intervening FDB. On the contrary, the traversing FBLPN is reliably covered by the injection. Deep plantar fascia injections may have a role in the management of refractory plantar fasciitis, particularly following failed superficial perifascial or intrafascial injections, in cases of preferential deep plantar fascia involvement, or when entrapment/irritation of the distal FBLPN is suspected.

  10. Assessing Rates of Global Warming Emissions from Port- Fuel Injection and Gasoline Direct Injection Engines in Light-Duty Passenger Vehicles

    NASA Astrophysics Data System (ADS)

    Short, D.; , D., Vi; Durbin, T.; Karavalakis, G.; Asa-Awuku, A. A.

    2013-12-01

    Passenger vehicles are known emitters of climate warming pollutants. CO2 from automobile emissions are an anthropogenic greenhouse gas (GHG) and a large contributor to global warming. Worldwide, CO2 emissions from passenger vehicles are responsible for 11% of the total CO2 emissions inventory. Black Carbon (BC), another common vehicular emission, may be the second largest contributor to global warming (after CO2). Currently, 52% of BC emissions in the U.S are from the transportation sector, with ~10% originating from passenger vehicles. The share of pollutants from passenger gasoline vehicles is becoming larger due to the reduction of BC from diesel vehicles. Currently, the majority of gasoline passenger vehicles in the United States have port- fuel injection (PFI) engines. Gasoline direct injection (GDI) engines have increased fuel economy compared to the PFI engine. GDI vehicles are predicted to dominate the U.S. passenger vehicle market in the coming years. The method of gasoline injection into the combustion chamber is the primary difference between these two technologies, which can significantly impact primary emissions from light-duty vehicles (LDV). Our study will measure LDV climate warming emissions and assess the impact on climate due to the change in U.S vehicle technologies. Vehicles were tested on a light- duty chassis dynamometer for emissions of CO2, methane (CH4), and BC. These emissions were measured on F3ederal and California transient test cycles and at steady-state speeds. Vehicles used a gasoline blend of 10% by volume ethanol (E10). E10 fuel is now found in 95% of gasoline stations in the U.S. Data is presented from one GDI and one PFI vehicle. The 2012 Kia Optima utilizes GDI technology and has a large market share of the total GDI vehicles produced in the U.S. In addition, The 2012 Toyota Camry, equipped with a PFI engine, was the most popular vehicle model sold in the U.S. in 2012. Methane emissions were ~50% lower for the GDI technology. While BC emissions were 96% higher for the GDI technology. The GDI technology had a smaller effect on CO2 emissions with a 4% rise compared to the other emissions. Additional results will discuss the emission rates converted to reflect total yearly passenger vehicular emissions in the U.S. Overall, the results show increases of global warming emissions from GDI passenger vehicle technology.

  11. Validation of the kinetic-turbulent-neoclassical theory for edge intrinsic rotation in DIII-D

    NASA Astrophysics Data System (ADS)

    Ashourvan, Arash; Grierson, B. A.; Battaglia, D. J.; Haskey, S. R.; Stoltzfus-Dueck, T.

    2018-05-01

    In a recent kinetic model of edge main-ion (deuterium) toroidal velocity, intrinsic rotation results from neoclassical orbits in an inhomogeneous turbulent field [T. Stoltzfus-Dueck, Phys. Rev. Lett. 108, 065002 (2012)]. This model predicts a value for the toroidal velocity that is co-current for a typical inboard X-point plasma at the core-edge boundary (ρ ˜ 0.9). Using this model, the velocity prediction is tested on the DIII-D tokamak for a database of L-mode and H-mode plasmas with nominally low neutral beam torque, including both signs of plasma current. Values for the flux-surface-averaged main-ion rotation velocity in the database are obtained from the impurity carbon rotation by analytically calculating the main-ion—impurity neoclassical offset. The deuterium rotation obtained in this manner has been validated by direct main-ion measurements for a limited number of cases. Key theoretical parameters of ion temperature and turbulent scale length are varied across a wide range in an experimental database of discharges. Using a characteristic electron temperature scale length as a proxy for a turbulent scale length, the predicted main-ion rotation velocity has a general agreement with the experimental measurements for neutral beam injection (NBI) powers in the range PNBI < 4 MW. At higher NBI power, the experimental rotation is observed to saturate and even degrade compared to theory. TRANSP-NUBEAM simulations performed for the database show that for discharges with nominally balanced—but high powered—NBI, the net injected torque through the edge can exceed 1 Nm in the counter-current direction. The theory model has been extended to compute the rotation degradation from this counter-current NBI torque by solving a reduced momentum evolution equation for the edge and found the revised velocity prediction to be in agreement with experiment. Using the theory modeled—and now tested—velocity to predict the bulk plasma rotation opens up a path to more confidently projecting the confinement and stability in ITER.

  12. Slit injection device

    DOEpatents

    Alger, Terry W.; Schlitt, Leland G.; Bradley, Laird P.

    1976-06-15

    A laser cavity electron beam injection device provided with a single elongated slit window for passing a suitably shaped electron beam and means for varying the current density of the injected electron beam.

  13. Conversion of spin current into charge current in a topological insulator: Role of the interface

    NASA Astrophysics Data System (ADS)

    Dey, Rik; Prasad, Nitin; Register, Leonard F.; Banerjee, Sanjay K.

    2018-05-01

    Three-dimensional spin current density injected onto the surface of a topological insulator (TI) produces a two-dimensional charge current density on the surface of the TI, which is the so-called inverse Edelstein effect (IEE). The ratio of the surface charge current density on the TI to the spin current density injected across the interface defined as the IEE length was shown to be exactly equal to the mean free path in the TI determined to be independent of the electron transmission rate across the interface [Phys. Rev. B 94, 184423 (2016), 10.1103/PhysRevB.94.184423]. However, we find that the transmission rate across the interface gives a nonzero contribution to the transport relaxation rate in the TI as well as to the effective IEE relaxation rate (over and above any surface hybridization effects), and the IEE length is always less than the original mean free path in the TI without the interface. We show that both the IEE relaxation time and the transport relaxation time in the TI are modified by the interface transmission time. The correction becomes significant when the transmission time across the interface becomes comparable to or less than the original momentum scattering time in the TI. This correction is similar to experimental results in Rashba electron systems in which the IEE relaxation time was found shorter in the case of direct interface with metal in which the interface transmission rate will be much higher, compared to interfaces incorporating insulating oxides. Our results indicate the continued importance of the interface to obtain a better spin-to-charge current conversion and a limitation to the conversion efficiency due to the quality of the interface.

  14. Magnetic-Field-Tunable Superconducting Rectifier

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.

    2009-01-01

    Superconducting electronic components have been developed that provide current rectification that is tunable by design and with an externally applied magnetic field to the circuit component. The superconducting material used in the device is relatively free of pinning sites with its critical current determined by a geometric energy barrier to vortex entry. The ability of the vortices to move freely inside the device means this innovation does not suffer from magnetic hysteresis effects changing the state of the superconductor. The invention requires a superconductor geometry with opposite edges along the direction of current flow. In order for the critical current asymmetry effect to occur, the device must have different vortex nucleation conditions at opposite edges. Alternative embodiments producing the necessary conditions include edges being held at different temperatures, at different local magnetic fields, with different current-injection geometries, and structural differences between opposite edges causing changes in the size of the geometric energy barrier. An edge fabricated with indentations of the order of the coherence length will significantly lower the geometric energy barrier to vortex entry, meaning vortex passage across the device at lower currents causing resistive dissipation. The existing prototype is a two-terminal device consisting of a thin-film su - perconducting strip operating at a temperature below its superconducting transition temperature (Tc). Opposite ends of the strip are connected to electrical leads made of a higher Tc superconductor. The thin-film lithographic process provides an easy means to alter edge-structures, current-injection geo - metries, and magnetic-field conditions at the edges. The edge-field conditions can be altered by using local field(s) generated from dedicated higher Tc leads or even using the device s own higher Tc superconducting leads.

  15. Fabrication and characteristics of excellent current spreading GaN-based LED by using transparent electrode-insulator-semiconductor structure

    NASA Astrophysics Data System (ADS)

    Qi, Chenglin; Huang, Yang; Zhan, Teng; Wang, Qinjin; Yi, Xiaoyan; Liu, Zhiqiang

    2017-08-01

    GaN-based vertical light-emitting-diodes (V-LEDs) with an improved current injection pattern were fabricated and a novel current injection pattern of LEDs which consists of electrode-insulator-semiconductor (EIS) structure was proposed. The EIS structure was achieved by an insulator layer (20-nm Ta2O5) deposited between the p-GaN and the ITO layer. This kind of EIS structure works through a defect-assisted tunneling mechanism to realize current injection and obtains a uniform current distribution on the chip surface, thus greatly improving the current spreading ability of LEDs. The appearance of this novel current injection pattern of V-LEDs will subvert the impression of the conventional LEDs structure, including simplifying the chip manufacture technology and reducing the chip cost. Under a current density of 2, 5, 10, and 25 A/cm2, the luminous uniformity was better than conventional structure LEDs. The standard deviation of power density distribution in light distribution was 0.028, which was much smaller than that of conventional structure LEDs and illustrated a huge advantage on the current spreading ability of EIS-LEDs. Project supported by the Natural Science Foundation of China (Nos. 61306051, 61306050) and the National High Technology Program of China (No. 2014AA032606).

  16. Advanced stratified charge rotary aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  17. Wicket gate trailing-edge blowing: A method for improving off-design hydroturbine performance by adjusting the runner inlet swirl angle

    NASA Astrophysics Data System (ADS)

    Lewis, B. J.; Cimbala, J. M.; Wouden, A. M.

    2014-03-01

    At their best efficiency point (BEP), hydroturbines operate at very high efficiency. However, with the ever-increasing penetration of alternative electricity generation, it has become common to operate hydroturbines at off-design conditions in order to maintain stability in the electric power grid. This paper demonstrates a method for improving hydroturbine performance during off-design operation by injecting water through slots at the trailing edges of the wicket gates. The injected water causes a change in bulk flow direction at the inlet of the runner. This change in flow angle from the wicket gate trailing-edge jets provides the capability of independently varying the flow rate and swirl angle through the runner, which in current designs are both determined by the wicket gate opening angle. When properly tuned, altering the flow angle results in a significant improvement in turbine efficiency during off-design operation.

  18. Computer analysis of the negative differential resistance switching phenomenon of double-injection devices

    NASA Technical Reports Server (NTRS)

    Shieh, Tsay-Jiu

    1989-01-01

    By directly solving the semiconductor differential equations for the double-injection (DI) devices involving two interacting deep levels, the authors studied the negative differential resistance switching characteristic and its relationship with the device dimension, doping level, and dependence on the deep impurity profile. Computer simulation showed that although one can increase the threshold voltage by increasing the device length, the excessive holding voltage that would follow would put this device in a very limited application such as pulse power source. The excessive leakage current in the low conductance state also jeopardizes the attempt to use the device for any practical purpose. Unless there are new materials and deep impurities found that have a great differential hole and electron capture cross sections and a reasonable energy bandgap for low intrinsic carrier concentration, no big improvement in the fate of DI devices is expected in the near future.

  19. [Flow injection biamperometric analysis of isoniazid].

    PubMed

    Zhang, J C; Zhao, C; Song, J F

    2001-09-01

    To establish a simple, rapid, and accurate electrochemical method for on-line determination of isoniazid. Based on the flow injection biamperometry for irreversible couple system, and using two preanodized platinum electrodes with the applied potential difference of 0 V, the biamperometric method for the determination of isoniazid has been proposed by coupling the catalytic oxidation of isoniazid and the reduction of platinum oxide. Common excipients, inorganic ions, amino acids, vitamins and proteins do not interfere with the determination. Linear relationship between current and the concentration of isoniazid is obtained in the range of 1.0 x 10(-6)-1.0 x 10(-4) mol.L-1 (gamma = 0.998, n = 11). The RSD of 1.8% was obtained for 8 successive determinations of 1.0 x 10(-5) mol.L-1 isoniazid. The proposed method has been shown to be sensitive, selective, rapid (120 samples.h-1), and suitable for the on-line direct determination of isoniazid.

  20. Transient Response in a Dendritic Neuron Model for Current Injected at One Branch

    PubMed Central

    Rinzel, John; Rall, Wilfrid

    1974-01-01

    Mathematical expressions are obtained for the response function corresponding to an instantaneous pulse of current injected to a single dendritic branch in a branched dendritic neuron model. The theoretical model assumes passive membrane properties and the equivalent cylinder constraint on branch diameters. The response function when used in a convolution formula enables one to compute the voltage transient at any specified point in the dendritic tree for an arbitrary current injection at a given input location. A particular numerical example, for a brief current injection at a branch terminal, illustrates the attenuation and delay characteristics of the depolarization peak as it spreads throughout the neuron model. In contrast to the severe attenuation of voltage transients from branch input sites to the soma, the fraction of total input charge actually delivered to the soma and other trees is calculated to be about one-half. This fraction is independent of the input time course. Other numerical examples, which compare a branch terminal input site with a soma input site, demonstrate that, for a given transient current injection, the peak depolarization is not proportional to the input resistance at the injection site and, for a given synaptic conductance transient, the effective synaptic driving potential can be significantly reduced, resulting in less synaptic current flow and charge, for a branch input site. Also, for the synaptic case, the two inputs are compared on the basis of the excitatory post-synaptic potential (EPSP) seen at the soma and the total charge delivered to the soma. PMID:4424185

  1. An integrated system for synchronous culture of animal cells under controlled conditions.

    PubMed

    Mendoza-Pérez, Elena; Hernández, Vanessa; Palomares, Laura A; Serrato, José A

    2016-01-01

    The cell cycle has fundamental effects on cell cultures and their products. Tools to synchronize cultured cells allow the study of cellular physiology and metabolism at particular cell cycle phases. However, cells are most often arrested by methods that alter their homeostasis and are then cultivated in poorly controlled environments. Cell behavior could then be affected by the synchronization method and culture conditions used, and not just by the particular cell cycle phase under study. Moreover, only a few viable cells are recovered. Here, we designed an integrated system where a large number of cells from a controlled bioreactor culture is separated by centrifugal elutriation at high viabilities. In contrast to current elutriation methods, cells are injected directly from a bioreactor into an injection loop, allowing the introduction of a large number of cells into the separation chamber without stressful centrifugation. A low pulsation peristaltic pump increases the stability of the elutriation chamber. Using this approach, a large number of healthy cells at each cell cycle phase were obtained, allowing their direct inoculation into fully instrumented bioreactors. Hybridoma cells synchronized and cultured in this system behaved as expected for a synchronous culture.

  2. Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes

    NASA Technical Reports Server (NTRS)

    Sutton, F.; Paul, S. S.; Wang, X. Q.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K(+) current (I(Kin)) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K(+) current (I(Kout)). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I(Kout) was generated that displayed similar properties to I(Kout) observed from direct analysis of mesophyll cell protoplasts. I(Kout) expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K(+) channel expressed in guard cells, resulted in I(Kin) that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I(Kin) that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K(+) channels.

  3. Effect of toroidal field ripple on plasma rotation in JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Vries, P.; Salmi, A.; Parail, V.

    Dedicated experiments on TF ripple effects on the performance of tokamak plasmas have been carried out at JET. The TF ripple was found to have a profound effect on the plasma rotation. The central Mach number, M, defined as the ratio of the rotation velocity and the thermal velocity, was found to drop as a function of TF ripple amplitude ( ) from an average value of M = 0.40 0.55 for operations at the standard JET ripple of = 0.08% to M = 0.25 0.40 for = 0.5% and M = 0.1 0.3 for = 1%. TF ripple effectsmore » should be considered when estimating the plasma rotation in ITER. With standard co-current injection of neutral beam injection (NBI), plasmas were found to rotate in the co-current direction. However, for higher TF ripple amplitudes ( ~ 1%) an area of counter rotation developed at the edge of the plasma, while the core kept its co-rotation. The edge counter rotation was found to depend, besides on the TF ripple amplitude, on the edge temperature. The observed reduction of toroidal plasma rotation with increasing TF ripple could partly be explained by TF ripple induced losses of energetic ions, injected by NBI. However, the calculated torque due to these losses was insufficient to explain the observed counter rotation and its scaling with edge parameters. It is suggested that additional TF ripple induced losses of thermal ions contribute to this effect.« less

  4. Parametric investigation of secondary injection in post-chamber on combustion performance for hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Cai, Guobiao; Cao, Binbin; Zhu, Hao; Tian, Hui; Ma, Xuan

    2017-11-01

    The objective of this effort is to study the combustion performance of a hybrid rocket motor with the help of 3D steady-state numerical simulation, which applies 90% hydrogen peroxide as the oxidizer and hydroxyl-terminated polybutadiene as the fuel. A method of secondary oxidizer injection in post-chamber is introduced to investigate the flow field characteristics and combustion efficiency. The secondary injection medium is the mixed gas coming from liquid hydrogen peroxide catalytic decomposition. The secondary injectors are uniformly set along the circumferential direction of the post-chamber. The simulation results obtained by above model are verified by experimental data. Three influencing parameters are considered: secondary injection diameter, secondary injection angle and secondary injection numbers. Simulation results reveals that this design could improve the combustion efficiency with respect to the same motor without secondary injection. Besides, the secondary injection almost has no effect on the regression rate and fuel sueface temperature distribution. It is also presented that the oxidizer is injected by 8 secondary injectors with a diameter of 7-8 mm in the direction of 120°in post-chamber is identified as the optimized secondary injection pattern, through which combustion efficiency, specific impulse efficiency as well as utilization of propellants are all improved obviously.

  5. Outcomes of Direct Vision Internal Urethrotomy for Bulbar Urethral Strictures: Technique Modification with High Dose Triamcinolone Injection.

    PubMed

    Modh, Rishi; Cai, Peter Y; Sheffield, Alyssa; Yeung, Lawrence L

    2015-01-01

    Objective. To evaluate the recurrence rate of bulbar urethral strictures managed with cold knife direct vision internal urethrotomy and high dose corticosteroid injection. Methods. 28 patients with bulbar urethral strictures underwent direct vision internal urethrotomy with high dose triamcinolone injection into the periurethral tissue and were followed up for recurrence. Results. Our cohort had a mean age of 60 years and average stricture length of 1.85 cm, and 71% underwent multiple previous urethral stricture procedures with an average of 5.7 procedures each. Our technique modification of high dose corticosteroid injection had a recurrence rate of 29% at a mean follow-up of 20 months with a low rate of urinary tract infections. In patients who failed treatment, mean time to stricture recurrence was 7 months. Patients who were successfully treated had significantly better International Prostate Symptom Scores at 6, 9, and 12 months. There was no significant difference in maximum flow velocity on Uroflowmetry at last follow-up but there was significant difference in length of follow-up (p = 0.02). Conclusions. High dose corticosteroid injection at the time of direct vision internal urethrotomy is a safe and effective procedure to delay anatomical and symptomatic recurrence of bulbar urethral strictures, particularly in those who are poor candidates for urethroplasty.

  6. Transitions from injecting to non-injecting drug use: potential protection against HCV infection

    PubMed Central

    Des Jarlais, Don C.; McKnight, Courtney; Arasteh, Kamyar; Feelemyer, Jonathan; Perlman, David C.; Hagan, Holly; Cooper, Hannah L. F.

    2013-01-01

    Transitions from injecting to non-injecting drug use have been reported from many different areas, particularly in areas with large human immunodeficiency virus (HIV) epidemics. The extent to which such transitions actually protect against HIV and HCV has not been determined. A cross-sectional survey with HIV and hepatitis C (HCV) testing was conducted with 322 former injectors (persons who had injected illicit drugs but permanently transitioned to non-injecting use) and 801 current injectors recruited in New York City between 2007 and 2012. There were no differences in HIV prevalence, while HCV prevalence was significantly lower among former injectors compared to current injectors. Years injecting functioned as a mediating variable linking former injector status to lower HCV prevalence. Transitions have continued well beyond the reduction in the threat of AIDS to injectors in the city. New interventions to support transitions to non-injecting drug use should be developed and supported by both drug treatment and syringe exchange programs. PMID:24161262

  7. 40 CFR 148.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) HAZARDOUS WASTE INJECTION RESTRICTIONS General § 148.2 Definitions. Injection interval means that part of the injection zone in which the well is screened, or in which the waste is otherwise directly emplaced...

  8. Supercritical-fluid extraction and chromatography-mass spectrometry for analysis of mycotoxins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.D.; Udseth, H.R.

    1982-07-01

    The use of direct supercritical-fluid injection-mass spectrometry for the rapid analysis of mycotoxins of the tricothecene group is demonstrated. A solution containing diacetoxyscirpenol or T-2 toxin is injected into a fluid consisting primarily of pentane or carbon dioxide and is rapidly brought to supercritical conditions. Direct injection of the fluid stream into a chemical ionization source allows thermally labile compounds to be analyzed. Under these conditions trichothecene mass spectra showing significant (M + 1)/sup +/ ions and distinctive fragmentation patterns are obtained. Detection limits are in the subnanogram range. Direct analysis from complex substrates using selective supercritical-fluid extraction is proposed.more » 4 figures.« less

  9. Computational study of interfacial charge transfer complexes of 2-anthroic acid adsorbed on a titania nanocluster for direct injection solar cells

    NASA Astrophysics Data System (ADS)

    Manzhos, Sergei; Kotsis, Konstantinos

    2016-09-01

    Adsorption and light absorption properties of interfacial charge transfer complexes of 2-anthroic acid and titania, promising for direct-injection solar cells, are studied ab initio. The formation of interfacial charge transfer bands is observed. The intensity of visible absorption is relatively low, highlighting a key challenge facing direct injection cells. We show that the popular strategy of using a lower level of theory for geometry optimization followed by single point calculations of adsorption or optical properties introduces significant errors which have been underappreciated: by up to 3 eV in adsorption energies, by up to 5 times in light absorption intensity.

  10. Stator and Rotor Flux Based Deadbeat Direct Torque Control of Induction Machines

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Lorenz, Robert D.

    2001-01-01

    A new, deadbeat type of direct torque control is proposed, analyzed, and experimentally verified in this paper. The control is based on stator and rotor flux as state variables. This choice of state variables allows a graphical representation which is transparent and insightful. The graphical solution shows the effects of realistic considerations such as voltage and current limits. A position and speed sensorless implementation of the control, based on the self-sensing signal injection technique, is also demonstrated experimentally for low speed operation. The paper first develops the new, deadbeat DTC methodology and graphical representation of the new algorithm. It then evaluates feasibility via simulation and experimentally demonstrates performance of the new method with a laboratory prototype including the sensorless methods.

  11. Spintronic signatures of Klein tunneling in topological insulators

    NASA Astrophysics Data System (ADS)

    Xie, Yunkun; Tan, Yaohua; Ghosh, Avik W.

    2017-11-01

    Klein tunneling, the perfect transmission of normally incident Dirac electrons across a potential barrier, has been widely studied in graphene and explored to design switches, albeit indirectly. We show an alternative way to directly measure Klein tunneling for spin-momentum locked electrons crossing a PN junction along a three-dimensional topological insulator surface. In these topological insulator PN junctions (TIPNJs), the spin texture and momentum distribution of transmitted electrons can be measured electrically using a ferromagnetic probe for varying gate voltages and angles of current injection. Based on transport models across a TIPNJ, we show that the asymmetry in the potentiometric signal between PP and PN junctions and its overall angular dependence serve as a direct signature of Klein tunneling.

  12. Observation of runaway electrons by infrared camera in J-TEXT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, R. H.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Zhang, M.

    2016-11-15

    When the energy of confined runaway electrons approaches several tens of MeV, the runaway electrons can emit synchrotron radiation in the range of infrared wavelength. An infrared camera working in the wavelength of 3-5 μm has been developed to study the runaway electrons in the Joint Texas Experimental Tokamak (J-TEXT). The camera is located in the equatorial plane looking tangentially into the direction of electron approach. The runaway electron beam inside the plasma has been observed at the flattop phase. With a fast acquisition of the camera, the behavior of runaway electron beam has been observed directly during the runawaymore » current plateau following the massive gas injection triggered disruptions.« less

  13. Stator and Rotor Flux Based Deadbeat Direct Torque Control of Induction Machines

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Lorenz, Robert D.

    2003-01-01

    A new, deadbeat type of direct torque control is proposed, analyzed and experimentally verified in this paper. The control is based on stator and rotor flux as state variables. This choice of state variables allows a graphical representation which is transparent and insightful. The graphical solution shows the effects of realistic considerations such as voltage and current limits. A position and speed sensorless implementation of the control, based on the self-sensing signal injection technique, is also demonstrated experimentally for low speed operation. The paper first develops the new, deadbeat DTC methodology and graphical representation of the new algorithm. It then evaluates feasibility via simulation and experimentally demonstrates performance of the new method with a laboratory prototype including the sensorless methods.

  14. Stator and Rotor Flux Based Deadbeat Direct Torque Control of Induction Machines. Revision 1

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Lorenz, Robert D.

    2002-01-01

    A new, deadbeat type of direct torque control is proposed, analyzed, and experimentally verified in this paper. The control is based on stator and rotor flux as state variables. This choice of state variables allows a graphical representation which is transparent and insightful. The graphical solution shows the effects of realistic considerations such as voltage and current limits. A position and speed sensorless implementation of the control, based on the self-sensing signal injection technique, is also demonstrated experimentally for low speed operation. The paper first develops the new, deadbeat DTC methodology and graphical representation of the new algorithm. It then evaluates feasibility via simulation and experimentally demonstrates performance of the new method with a laboratory prototype including the sensorless methods.

  15. Optimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS)

    NASA Astrophysics Data System (ADS)

    Guler, Seyhmus; Dannhauer, Moritz; Erem, Burak; Macleod, Rob; Tucker, Don; Turovets, Sergei; Luu, Phan; Erdogmus, Deniz; Brooks, Dana H.

    2016-06-01

    Objective. Transcranial direct current stimulation (tDCS) aims to alter brain function non-invasively via electrodes placed on the scalp. Conventional tDCS uses two relatively large patch electrodes to deliver electrical current to the brain region of interest (ROI). Recent studies have shown that using dense arrays containing up to 512 smaller electrodes may increase the precision of targeting ROIs. However, this creates a need for methods to determine effective and safe stimulus patterns as the number of degrees of freedom is much higher with such arrays. Several approaches to this problem have appeared in the literature. In this paper, we describe a new method for calculating optimal electrode stimulus patterns for targeted and directional modulation in dense array tDCS which differs in some important aspects with methods reported to date. Approach. We optimize stimulus pattern of dense arrays with fixed electrode placement to maximize the current density in a particular direction in the ROI. We impose a flexible set of safety constraints on the current power in the brain, individual electrode currents, and total injected current, to protect subject safety. The proposed optimization problem is convex and thus efficiently solved using existing optimization software to find unique and globally optimal electrode stimulus patterns. Main results. Solutions for four anatomical ROIs based on a realistic head model are shown as exemplary results. To illustrate the differences between our approach and previously introduced methods, we compare our method with two of the other leading methods in the literature. We also report on extensive simulations that show the effect of the values chosen for each proposed safety constraint bound on the optimized stimulus patterns. Significance. The proposed optimization approach employs volume based ROIs, easily adapts to different sets of safety constraints, and takes negligible time to compute. An in-depth comparison study gives insight into the relationship between different objective criteria and optimized stimulus patterns. In addition, the analysis of the interaction between optimized stimulus patterns and safety constraint bounds suggests that more precise current localization in the ROI, with improved safety criterion, may be achieved by careful selection of the constraint bounds.

  16. Antigen injection (image)

    MedlinePlus

    Leprosy is caused by the organism Mycobacterium leprae . The leprosy test involves injection of an antigen just under ... if your body has a current or recent leprosy infection. The injection site is labeled and examined ...

  17. Effect of spin transfer torque on domain wall motion regimes in [Co/Ni] superlattice wires

    NASA Astrophysics Data System (ADS)

    Le Gall, S.; Vernier, N.; Montaigne, F.; Thiaville, A.; Sampaio, J.; Ravelosona, D.; Mangin, S.; Andrieu, S.; Hauet, T.

    2017-05-01

    The combined effect of magnetic field and current on domain wall motion is investigated in epitaxial [Co/Ni] microwires. Both thermally activated and flow regimes are found to be strongly affected by current. All experimental data can be understood by taking into account both adiabatic and nonadiabatic components of the spin transfer torque, the parameters of which are extracted. In the precessional flow regime, it is shown that the domain wall can move in the electron flow direction against a strong applied field, as previously observed. In addition, for a large range of applied magnetic field and injected current, a stochastic domain wall displacement after each pulse is observed. Two-dimensional micromagnetic simulations, including some disorder, show a random fluctuation of the domain wall position that qualitatively matches the experimental results.

  18. Research progress of infrared detecting and display integrated device based on infrared-visible up-conversion technology

    NASA Astrophysics Data System (ADS)

    Xu, Junfeng; Li, Weile; He, Bo; Wang, Haowei; Song, Yong; Yang, Shengyi; Ni, Guoqiang

    2018-01-01

    Infrared detecting and display device (IR-DDD) is a newly developed optical up-conversion device that integrates the light-emitting diode (LED) onto the infrared (IR) photo-detector, in order to convert IR light into the carriers photo-generated in detection materials and inject them into LED to emit visible light. This IR-DDD can achieve the direct up-conversion from IR ray to visible light, showing the considerable potential in night-vision application. This paper attempts a review of its working principle and current research progresses.

  19. Research keeps lead and zinc viable in high-tech markets

    NASA Astrophysics Data System (ADS)

    Cole, Jerome F.

    1989-08-01

    Lead and zinc have long enjoyed widespread use in a variety of applications. To insure growing markets for the future, however, new applications for these durable metals must be developed. Currently, projects are underway to determine the capabilities of lead for such high-technology uses as earthquake damping and nuclear waste containment. Zinc's capabilities are being developed further, too, particularly in the areas of direct injection die casting, composites and the improvement of coating properties. Other ongoing research initiatives are attempting to better determine the health and environmental influences of these metals.

  20. Spheromak Formation and Current Sustainment Using a Repetitively Pulsed Source

    NASA Astrophysics Data System (ADS)

    Woodruff, S.; Macnab, A. I. D.; Ziemba, T. M.; Miller, K. E.

    2009-06-01

    By repeated injection of magnetic helicity ( K = 2φψ) on time-scales short compared with the dissipation time (τinj << τ K ), it is possible to produce toroidal currents relevant to POP-level experiments. Here we discuss an effective injection rate, due to the expansion of a series of current sheets and their subsequent reconnection to form spheromaks and compression into a copper flux-conserving chamber. The benefits of repeated injection are that the usual limits to current amplification can be exceeded, and an efficient quasi-steady sustainment scenario is possible (within minimum impact on confinement). A new experiment designed to address the physics of pulsed formation and sustainment is described.

  1. On the nature of directed behavior to drug-associated light cues in rhesus monkeys (Macaca mulatta).

    PubMed

    Reilly, Mark P; Berndt, Sonja I; Woods, James H

    2016-11-01

    The present study investigated the role of drug-paired stimuli in controlling the behavior of rhesus monkeys. Systematic observations were made with nine monkeys who had a history of drug self-administration; they had been lever pressing to produce intravenous infusions of various drugs. These observations revealed that the stimulus light co-occurring with drug infusion produced robust and cue-directed behavior such as orienting, touching and biting. Experiment 1 showed that this light-directed behavior would occur in naïve monkeys exposed to a Pavlovian pairing procedure. Four monkeys were given response-independent injections of cocaine. In two monkeys, a red light preceded cocaine injections by 5 s, and a green light co-occurred with the 5-s cocaine injections. In the other two monkeys, the light presentations and cocaine injections occurred independently. Light-directed behavior occurred in all four monkeys within the first couple of trials and at high levels but decreased across sessions. The cocaine-paired stimulus maintained behavior longer and at higher levels than the uncorrelated stimuli. Furthermore, light-directed behavior was not maintained when cocaine was replaced with saline. Light-directed behavior did not occur in the absence of the lights. When these monkeys were subsequently trained to lever press for cocaine, light-directed behavior increased to levels higher than previously observed. Behavior directed towards drug-paired stimuli is robust, reliable and multiply determined; the mechanisms underlying this activity likely include Pavlovian conditioning, stimulus novelty, habituation and operant conditioning.

  2. Direct current microhollow cathode discharges on silicon devices operating in argon and helium

    NASA Astrophysics Data System (ADS)

    Michaud, R.; Felix, V.; Stolz, A.; Aubry, O.; Lefaucheux, P.; Dzikowski, S.; Schulz-von der Gathen, V.; Overzet, L. J.; Dussart, R.

    2018-02-01

    Microhollow cathode discharges have been produced on silicon platforms using processes usually used for MEMS fabrication. Microreactors consist of 100 or 150 μm-diameter cavities made from Ni and SiO2 film layers deposited on a silicon substrate. They were studied in the direct current operating mode in two different geometries: planar and cavity configuration. Currents in the order of 1 mA could be injected in microdischarges operating in different gases such as argon and helium at a working pressure between 130 and 1000 mbar. When silicon was used as a cathode, the microdischarge operation was very unstable in both geometry configurations. Strong current spikes were produced and the microreactor lifetime was quite short. We evidenced the fast formation of blisters at the silicon surface which are responsible for the production of these high current pulses. EDX analysis showed that these blisters are filled with argon and indicate that an implantation mechanism is at the origin of this surface modification. Reversing the polarity of the microdischarge makes the discharge operate stably without current spikes, but the discharge appearance is quite different from the one obtained in direct polarity with the silicon cathode. By coating the silicon cathode with a 500 nm-thick nickel layer, the microdischarge becomes very stable with a much longer lifetime. No current spikes are observed and the cathode surface remains quite smooth compared to the one obtained without coating. Finally, arrays of 76 and 576 microdischarges were successfully ignited and studied in argon. At a working pressure of 130 mbar, all microdischarges are simultaneously ignited whereas they ignite one by one at higher pressure.

  3. Optimal joule heating of the subsurface

    DOEpatents

    Berryman, J.G.; Daily, W.D.

    1994-07-05

    A method for simultaneously heating the subsurface and imaging the effects of the heating is disclosed. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.

  4. Dependences of contraction/expansion of stacking faults on temperature and current density in 4H-SiC p–i–n diodes

    NASA Astrophysics Data System (ADS)

    Okada, Aoi; Nishio, Johji; Iijima, Ryosuke; Ota, Chiharu; Goryu, Akihiro; Miyazato, Masaki; Ryo, Mina; Shinohe, Takashi; Miyajima, Masaaki; Kato, Tomohisa; Yonezawa, Yoshiyuki; Okumura, Hajime

    2018-06-01

    To investigate the mechanism of contraction/expansion behavior of Shockley stacking faults (SSFs) in 4H-SiC p–i–n diodes, the dependences of the SSF behavior on temperature and injection current density were investigated by electroluminescence image observation. We investigated the dependences of both triangle- and bar-shaped SSFs on the injection current density at four temperature levels. All SSFs in this study show similar temperature and injection current density dependences. We found that the expansion of SSFs at a high current density was converted to contraction at a certain value as the current decreased and that the value is temperature-dependent. It has been confirmed that SSF behavior, which was considered complex or peculiar, might be explained mainly by the energy change caused by SSFs.

  5. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    EPA Pesticide Factsheets

    LBNL, in consultation with the EPA, expanded upon a previous study by injecting directly into a 3D representation of a hypothetical fault zone located in the geologic units between the shale-gas reservoir and the drinking water aquifer.

  6. [Decentralization, AIDS, and harm reduction: the implementation of public policies in Rio de Janeiro, Brazil].

    PubMed

    Fonseca, Elize Massard da; Nunn, Amy; Souza-Junior, Paulo Borges; Bastos, Francisco Inácio; Ribeiro, José Mendes

    2007-09-01

    This paper assesses how decentralization of resources and initiatives by the Brazilian National SDT/AIDS Program has impacted the transfer of funds for programs to prevent HIV/AIDS among injecting drug users in Rio de Janeiro, Brazil (1999-2006). The effects of the decentralization policy on Rio de Janeiro's Syringe Exchange Programs (SEPs) are assessed in detail. Decentralization effectively took place in Rio de Janeiro in 2006, with the virtual elimination of any direct transfer from the Federal government. The elimination of direct transfers forced SEPs to seek alternative funding sources. The structure of local SEPs appears to be weak and has been further undermined by current funding constraints. Of 22 SEPs operating in 2002, only two are still operational in 2006, basically funded by the State Health Secretariat and one municipal government. The current discontinuity of SEP operations may favor the resurgence of AIDS in the IDU population. A more uniform, regulated decentralization process is thus needed.

  7. A novel needleless liquid jet injection methodology for improving direct cardiac gene delivery: An optimization of parameters, AAV mediated therapy and investigation of host responses in ischemic heart failure

    NASA Astrophysics Data System (ADS)

    Fargnoli, Anthony Samuel

    Heart disease remains the leading cause of mortality and morbidity worldwide, with 22 million new patients diagnosed annually. Essentially, all present therapies have significant cost burden to the healthcare system, yet fail to increase survival rates. One key employed strategy is the genetic reprogramming of cells to increase contractility via gene therapy, which has advanced to Phase IIb Clinical Trials for advanced heart failure patients. It has been argued that the most significant barrier preventing FDA approval are resolving problems with safe, efficient myocardial delivery, whereby direct injection in the infarct and remote tissue areas is not clinically feasible. Here, we aim to: (1) Improve direct cardiac gene delivery through the development of a novel liquid jet device approach (2) Compare the new method against traditional IM injection with two different vector constructions and evaluate outcome (3) Evaluate the host response resulting from both modes of direct cardiac injection, then advance a drug/gene combination with controlled release nanoparticle formulations.

  8. Where Does the Transplanted Fat is Located in the Gluteal Region? Research Letter.

    PubMed

    Ramos-Gallardo, Guillermo; Medina-Zamora, Pablo; Cardenas-Camarena, Lázaro; Orozco-Rentería, David; Duran-Vega, Héctor; Mota-Fonseca, Eduardo

    2017-12-29

    Liposuction is one of the most popular plastic surgery procedures. As in any surgery, there are risks and complications, especially when combined with fat injection. Case reports of fat embolism have been reported. A possible explanation is the puncture and tearing of gluteal vessels during the procedure, especially when a deep injection is planned. To identify the places where fat can be located after injection during a fat graft in the gluteus. An experimental study was done in which colorant was injected in four directions using four different quadrants of the gluteus. We Injected 10 cc six times following clock hands until 60 cc were injected, and the cutaneous flap and the muscles were then elevated. Our main purpose was to describe where the colorant went and if it was in contact with the vessels (superior and inferior gluteal vessels). In total, four gluteus muscles were injected and dissected. Injection in the lower lateral quadrant was mainly into the muscle, and colorant was observed in the hypogastric vessels. The injection in the upper quadrants stayed mainly in the subcutaneous tissue. During surgery, it is important to identify the location of the perforators and to avoid a deep injection, especially from the lower lateral quadrant to the superior medial quadrant (Q4 to Q1), as the probability of puncturing and injecting fat into the main vessels from this direction is higher.

  9. Comparison of carpal tunnel injection techniques: a cadaver study.

    PubMed

    Ozturk, Kahraman; Esenyel, Cem Zeki; Sonmez, Mesut; Esenyel, Meltem; Kahraman, Sinan; Senel, Berna

    2008-01-01

    The purpose of the study was to evaluate the accuracy of injections into the carpal tunnel using three different portals in cadavers, and to define safe guidelines. In this study, 150 wrists of 75 cadavers (54 male, 21 female) were included. To compare three injection sites, 50 wrists of 25 cadavers were used for each technique; we used 23 gauge needles, and acrylic dye. The first injection technique: the needle was inserted 1cm proximal to the wrist crease and directed distally by roughly 45 in an ulnar direction through the flexor carpi radialis tendon. The second injection technique: the needle was inserted into the carpal tunnel from a point just ulnar to the palmaris longus tendon and 1cm proximal to the wrist crease. The third injection technique: the needle was inserted just distal to the distal skin crease of the wrist in line with the fourth ray. The first injection technique gave the highest accuracy rate, and this was also the safest injection site. Median nerve injuries caused by injection was seen mostly with the second technique. Although a steroid injection may provide symptomatic relief in patients with carpal tunnel syndrome, the median nerve and other structures in the carpal tunnel are at risk of injury. Because of that, the injection should be given using the correct technique by physicians skilled in carpal tunnel surgery.

  10. A Portal Vein Injection Model to Study Liver Metastasis of Breast Cancer

    PubMed Central

    Goddard, Erica T.; Fischer, Jacob; Schedin, Pepper

    2016-01-01

    Breast cancer is the leading cause of cancer-related mortality in women worldwide. Liver metastasis is involved in upwards of 30% of cases with breast cancer metastasis, and results in poor outcomes with median survival rates of only 4.8 - 15 months. Current rodent models of breast cancer metastasis, including primary tumor cell xenograft and spontaneous tumor models, rarely metastasize to the liver. Intracardiac and intrasplenic injection models do result in liver metastases, however these models can be confounded by concomitant secondary-site metastasis, or by compromised immunity due to removal of the spleen to avoid tumor growth at the injection site. To address the need for improved liver metastasis models, a murine portal vein injection method that delivers tumor cells firstly and directly to the liver was developed. This model delivers tumor cells to the liver without complications of concurrent metastases in other organs or removal of the spleen. The optimized portal vein protocol employs small injection volumes of 5 - 10 μl, ≥ 32 gauge needles, and hemostatic gauze at the injection site to control for blood loss. The portal vein injection approach in Balb/c female mice using three syngeneic mammary tumor lines of varying metastatic potential was tested; high-metastatic 4T1 cells, moderate-metastatic D2A1 cells, and low-metastatic D2.OR cells. Concentrations of ≤ 10,000 cells/injection results in a latency of ~ 20 - 40 days for development of liver metastases with the higher metastatic 4T1 and D2A1 lines, and > 55 days for the less aggressive D2.OR line. This model represents an important tool to study breast cancer metastasis to the liver, and may be applicable to other cancers that frequently metastasize to the liver including colorectal and pancreatic adenocarcinomas. PMID:28060292

  11. Class I Underground Injection Control Program: Study of the Risks Associated with Class I Underground Injection Wells

    EPA Pesticide Factsheets

    The document provides describes the current Class I UIC program, the history of Class I injection, and studies of human health risks associated with Class I injection wells, which were conducted for past regulatory efforts and policy documentation.

  12. Non-solenoidal Startup with High-Field-Side Local Helicity Injection on the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Perry, J. M.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Pierren, C.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Reusch, J. A.; Weberski, J. D.

    2017-10-01

    Local Helicity Injection (LHI) is a non-solenoidal startup technique utilizing electron current injectors at the plasma edge to initiate a tokamak-like plasma at high Ip . Recent experiments on Pegasus explore the inherent tradeoffs between high-field-side (HFS) injection in the lower divertor region and low-field-side (LFS) injection at the outboard midplane. Trade-offs include the relative current drive contributions of HI and poloidal induction, and the magnetic geometry required for relaxation to a tokamak-like state. HFS injection using a set of two increased-area injectors (Ainj = 4 cm2, Vinj 1.5 kV, and Iinj 8 kA) in the lower divertor is demonstrated over the full range of toroidal field available on Pegasus (BT 0 <= 0.15 T). Increased PMI on both the injectors and the lower divertor plates was observed during HFS injection, and was substantively mitigated through optimization of injector geometry and placement of local limiters to reduce scrape-off density in the divertor region. Ip up to 200 kA is achieved with LHI as the dominant current drive, consistent with expectations from helicity balance. To date, experiments support Ip increasing linearly with helicity injection rate. The high normalized current (IN >= 10) attainable with LHI and the favorable stability of the ultra-low aspect ratio, low-li LHI-driven plasmas allow access to high βt-up to 100 % , as indicated by kinetically-constrained equilibrium reconstructions. Work supported by US DOE Grant DE-FG02-96ER54375.

  13. The Helicity Injected Torus (HIT) Program

    NASA Astrophysics Data System (ADS)

    Jarboe, T. R.; Gu, P.; Hamp, W.; Izzo, V.; Jewell, P.; Liptac, J.; McCollam, K. J.; Nelson, B. A.; Raman, R.; Redd, A. J.; Shumlak, U.; Sieck, P. E.; Smith, R. J.; Jain, K. K.; Nagata, M.; Uyama, T.

    2000-10-01

    The purpose of the Helicity Injected Torus (HIT) program is to develop current drive techniques for low-aspect-ratio toroidal plasmas. The present HIT-II spherical tokamak experiment is capable of both Coaxial Helicity Injection (CHI) and transformer action current drive. The HIT-II device itself is modestly sized (major radius R = 0.3 m, minor radius a = 0.2 m, with an on-axis magnetic field of up to Bo = 0.5 T), but has demonstrated toroidal plasma currents of up to 200 kA, using either CHI or transformer drive. An overview of ongoing research on HIT-II plasmas, including recent results, will be presented. An electron-locking model has been developed for helicity injection current drive; a description of this model will be presented, as well as comparisons to experimental results from the HIT and HIT-II devices. Empirical results from both the HIT program and past spheromak research, buttressed by theoretical developments, have led to the design of the upcoming HIT-SI (Helicity Injected Torus with Steady Inductive helicity injection) device (T.R. Jarboe, Fusion Technology 36, p. 85, 1999). HIT-SI will be able to form a high-beta spheromak, a low aspect ratio RFP or a spherical tokamak using constant inductive helicity injection. The HIT-SI design and construction progress will be presented.

  14. Patient preference for a new growth hormone injection device: results of an open-label study in Japanese pediatric patients.

    PubMed

    Kappelgaard, Anne-Marie; Mikkelsen, Søren; Knudsen, Thomas Kamp; Fuchs, Gitte Schøning

    2011-01-01

    Growth hormone deficiency (GHD) in children is treated with daily subcutaneous injections of GH. Poor adherence, resulting in suboptimal treatment outcomes, is common due to long-term treatment. Injection devices that are considered easy to use by patients or guardians could improve adherence. This study assessed the usability of the Norditropin FlexPro pen injector and NovoTwist needles (both Novo Nordisk A/S, Bagsvaerd, Denmark) in Japanese children and adolescents with GHD. This open-label, uncontrolled usability test included patients aged 6 to < or = 18 years with GHD currently receiving daily injections of GH with pen injectors. Patients performed repeated injections of test medium into a foam cushion. Patients or guardians completed a questionnaire on pen handling. A total of 73/74 patients (99%) rated Norditropin FlexPro easy to handle, reporting no technical complaints. In total, 60 (81%) preferred Norditropin FlexPro over their current device, with 12% preferring their current device and 7% not sure. Norditropin FlexPro was perceived as easy to use and reliable, and was well accepted and preferred over the current device for the administration of GH in children and adolescents. Patients were more confident that Norditropin FlexPro delivered the right dose compared with their current device.

  15. Independent variations of applied voltage and injection current for controlling the quantum-confined Stark effect in an InGaN/GaN quantum-well light-emitting diode.

    PubMed

    Chen, Horng-Shyang; Liu, Zhan Hui; Shih, Pei-Ying; Su, Chia-Ying; Chen, Chih-Yen; Lin, Chun-Han; Yao, Yu-Feng; Kiang, Yean-Woei; Yang, C C

    2014-04-07

    A reverse-biased voltage is applied to either device in the vertical configuration of two light-emitting diodes (LEDs) grown on patterned and flat Si (110) substrates with weak and strong quantum-confined Stark effects (QCSEs), respectively, in the InGaN/GaN quantum wells for independently controlling the applied voltage across and the injection current into the p-i-n junction in the lateral configuration of LED operation. The results show that more carrier supply is needed in the LED of weaker QCSE to produce a carrier screening effect for balancing the potential tilt in increasing the forward-biased voltage, when compared with the LED of stronger QCSE. The small spectral shift range in increasing injection current in the LED of weaker QCSE is attributed not only to the weaker QCSE, but also to its smaller device resistance such that a given increment of applied voltage leads to a larger increment of injection current. From a viewpoint of practical application in LED operation, by applying a reverse-biased voltage in the vertical configuration, the applied voltage and injection current in the lateral configuration can be independently controlled by adjusting the vertical voltage for keeping the emission spectral peak fixed.

  16. Methods, systems and apparatus for optimization of third harmonic current injection in a multi-phase machine

    DOEpatents

    Gallegos-Lopez, Gabriel

    2012-10-02

    Methods, system and apparatus are provided for increasing voltage utilization in a five-phase vector controlled machine drive system that employs third harmonic current injection to increase torque and power output by a five-phase machine. To do so, a fundamental current angle of a fundamental current vector is optimized for each particular torque-speed of operating point of the five-phase machine.

  17. Electrical filtering in gerbil isolated type I semicircular canal hair cells

    NASA Technical Reports Server (NTRS)

    Rennie, K. J.; Ricci, A. J.; Correia, M. J.

    1996-01-01

    1. Membrane potential responses of dissociated gerbil type I semicircular canal hair cells to current injections in whole cell current-clamp have been measured. The input resistance of type I cells was 21.4 +/- 14.3 (SD) M omega, (n = 25). Around the zero-current potential (Vz = -66.6 +/- 9.3 mV, n = 25), pulsed current injections (from approximately -200 to 750 pA) produced only small-amplitude, pulse-like changes in membrane potential. 2. Injecting constant current to hyperpolarize the membrane to around -100 mV resulted in a approximately 10-fold increase in membrane resistance. Current pulses superimposed on this constant hyperpolarization produced larger and more complex membrane potential changes. Depolarizing currents > or = 200 pA caused a rapid transient peak voltage before a plateau. 3. Membrane voltage was able to faithfully follow sine-wave current injections around Vz over the range 1-1,000 Hz with < 25% attenuation at 1 kHz. A previously described K conductance, IKI, which is active at Vz, produces the low input resistance and frequency response. This was confirmed by pharmacologically blocking IKI. This conductance, present in type I cells but not type II hair cells, would appear to confer on type I cells a lower gain, but a much broader bandwidth at Vz, than seen in type II cells.

  18. Terahertz-Frequency Spin Hall Auto-oscillator Based on a Canted Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Sulymenko, O. R.; Prokopenko, O. V.; Tiberkevich, V. S.; Slavin, A. N.; Ivanov, B. A.; Khymyn, R. S.

    2017-12-01

    We propose a design of a terahertz-frequency signal generator based on a layered structure consisting of a current-driven platinum (Pt) layer and a layer of an antiferromagnet (AFM) with easy-plane anisotropy, where the magnetization vectors of the AFM sublattices are canted inside the easy plane by the Dzyaloshinskii-Moriya interaction (DMI). The dc electric current flowing in the Pt layer creates due to the spin Hall effect, a perpendicular spin current that, being injected in the AFM layer, tilts the DMI-canted AFM sublattices out of the easy plane, thus exposing them to the action of a strong internal exchange magnetic field of the AFM. The sublattice magnetizations, along with the small net magnetization vector mDMI of the canted AFM, start to rotate about the hard anisotropy axis of the AFM with the terahertz frequency proportional to the injected spin current and the AFM exchange field. The rotation of the small net magnetization mDMI results in the terahertz-frequency dipolar radiation that can be directly received by an adjacent (e.g., dielectric) resonator. We demonstrate theoretically that the radiation frequencies in the range f =0.05 - 2 THz are possible at the experimentally reachable magnitudes of the driving current density, and we evaluate the power of the signal radiated into different types of resonators. This power increases with the increase of frequency f , and it can exceed 1 μ W at f ˜0.5 THz for a typical dielectric resonator of the electric permittivity ɛ ˜10 and a quality factor Q ˜750 .

  19. Marker retention in the cochlea following injections through the round window membrane

    PubMed Central

    Salt, Alec N.; Sirjani, Davud B.; Hartsock, Jared J.; Gill, Ruth M.; Plontke, Stefan K.

    2007-01-01

    Local delivery of drugs to the inner ear is increasingly being used in both clinical and experimental studies. Although direct injection of drugs into perilymph appears to be the most promising way of administering drugs quantitatively, no studies have yet demonstrated the pharmacokinetics in perilymph following direct injections. In this study, we have investigated the retention of substance in perilymph following a single injection into the basal turn of scala tympani (ST). The substance injected was a marker, trimethylphenylammonium (TMPA) that can be detected in low concentrations with ion-selective microelectrodes. Perilymph pharmacokinetics of TMPA was assessed using sequential apical sampling to obtain perilymph for analysis. The amount of TMPA retained in perilymph was compared for different injection and sampling protocols. TMPA concentrations measured in fluid samples were close to those predicted by simulations when the injection pipette was sealed into the bony wall of ST but were systematically lower when the injection pipette was inserted through the round window membrane (RWM). In the latter condition it was estimated that over 60% of the injected TMPA was lost due to leakage of perilymph around the injection pipette at a rate estimated to be 0.09 μL/min. The effects of leakage during and after injections through the RWM were dramatically reduced when the round window niche was filled with 1% sodium hyaluronate gel before penetrating the RWM with the injection pipette. The findings demonstrate that in order to perform quantitative drug injections into perilymph, even small rates of fluid leakage at the injection site must be controlled. PMID:17662546

  20. Injectable Anisotropic Nanocomposite Hydrogels Direct in Situ Growth and Alignment of Myotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De France, Kevin J.; Yager, Kevin G.; Chan, Katelyn J. W.

    Here, while injectable in situ cross-linking hydrogels have attracted increasing attention as minimally invasive tissue scaffolds and controlled delivery systems, their inherently disorganized and isotropic network structure limits their utility in engineering oriented biological tissues. Traditional methods to prepare anisotropic hydrogels are not easily translatable to injectable systems given the need for external equipment to direct anisotropic gel fabrication and/or the required use of temperatures or solvents incompatible with biological systems. Herein, we report a new class of injectable nanocomposite hydrogels based on hydrazone cross-linked poly(oligoethylene glycol methacrylate) and magnetically aligned cellulose nanocrystals (CNCs) capable of encapsulating skeletal muscle myoblastsmore » and promoting their differentiation into highly oriented myotubes in situ. CNC alignment occurs on the same time scale as network gelation and remains fixed after the removal of the magnetic field, enabling concurrent CNC orientation and hydrogel injection. The aligned hydrogels show mechanical and swelling profiles that can be rationally modulated by the degree of CNC alignment and can direct myotube alignment both in two- and three-dimensions following coinjection of the myoblasts with the gel precursor components. As such, these hydrogels represent a critical advancement in anisotropic biomimetic scaffolds that can be generated noninvasively in vivo following simple injection.« less

  1. Injectable Anisotropic Nanocomposite Hydrogels Direct in Situ Growth and Alignment of Myotubes

    DOE PAGES

    De France, Kevin J.; Yager, Kevin G.; Chan, Katelyn J. W.; ...

    2017-09-28

    Here, while injectable in situ cross-linking hydrogels have attracted increasing attention as minimally invasive tissue scaffolds and controlled delivery systems, their inherently disorganized and isotropic network structure limits their utility in engineering oriented biological tissues. Traditional methods to prepare anisotropic hydrogels are not easily translatable to injectable systems given the need for external equipment to direct anisotropic gel fabrication and/or the required use of temperatures or solvents incompatible with biological systems. Herein, we report a new class of injectable nanocomposite hydrogels based on hydrazone cross-linked poly(oligoethylene glycol methacrylate) and magnetically aligned cellulose nanocrystals (CNCs) capable of encapsulating skeletal muscle myoblastsmore » and promoting their differentiation into highly oriented myotubes in situ. CNC alignment occurs on the same time scale as network gelation and remains fixed after the removal of the magnetic field, enabling concurrent CNC orientation and hydrogel injection. The aligned hydrogels show mechanical and swelling profiles that can be rationally modulated by the degree of CNC alignment and can direct myotube alignment both in two- and three-dimensions following coinjection of the myoblasts with the gel precursor components. As such, these hydrogels represent a critical advancement in anisotropic biomimetic scaffolds that can be generated noninvasively in vivo following simple injection.« less

  2. High-power all-fiber ultra-low noise laser

    NASA Astrophysics Data System (ADS)

    Zhao, Jian; Guiraud, Germain; Pierre, Christophe; Floissat, Florian; Casanova, Alexis; Hreibi, Ali; Chaibi, Walid; Traynor, Nicholas; Boullet, Johan; Santarelli, Giorgio

    2018-06-01

    High-power ultra-low noise single-mode single-frequency lasers are in great demand for interferometric metrology. Robust, compact all-fiber lasers represent one of the most promising technologies to replace the current laser sources in use based on injection-locked ring resonators or multi-stage solid-state amplifiers. Here, a linearly polarized high-power ultra-low noise all-fiber laser is demonstrated at a power level of 100 W. Special care has been taken in the study of relative intensity noise (RIN) and its reduction. Using an optimized servo actuator to directly control the driving current of the pump laser diode, we obtain a large feedback bandwidth of up to 1.3 MHz. The RIN reaches - 160 dBc/Hz between 3 and 20 kHz.

  3. Positive Noise Cross Correlation in a Copper Pair Splitter.

    NASA Astrophysics Data System (ADS)

    Das, Anindya; Ronen, Yuval; Heiblum, Moty; Shtrikman, Hadas; Mahalu, Diana

    2012-02-01

    Entanglement is in heart of the Einstein-Podolsky-Rosen (EPR) paradox, in which non-locality is a fundamental property. Up to date spin entanglement of electrons had not been demonstrated. Here, we provide direct evidence of such entanglement by measuring: non-local positive current correlation and positive cross correlation among current fluctuations, both of separated electrons born by a Cooper-pair-beam-splitter. The realization of the splitter is provided by injecting current from an Al superconductor contact into two, single channel, pure InAs nanowires - each intercepted by a Coulomb blockaded quantum dot (QD). The QDs impedes strongly the flow of Cooper pairs allowing easy single electron transport. The passage of electron in one wire enables the simultaneous passage of the other in the neighboring wire. The splitting efficiency of the Cooper pairs (relative to Cooper pairs actual current) was found to be ˜ 40%. The positive cross-correlations in the currents and their fluctuations (shot noise) are fully consistent with entangled electrons produced by the beam splitter.

  4. Pain reduction and improvement of function following ultrasound-guided intra-articular injections of triamcinolone hexacetonide and hyaluronic acid in hip osteoarthritis.

    PubMed

    Araújo, J P; Silva, L; Andrade, R; Paços, M; Moreira, H; Migueis, N; Pereira, R; Sarmento, A; Pereira, H; Loureiro, N; Espregueira-Mendes, J

    2016-01-01

    The scientific literature has shown positive results regarding intra-articular injections of hyaluronic acid in osteoarthritic joints. When injecting in the hip joint, the guidance of ultrasound can provide higher injection accuracy and repeatability. However, due to the methodological limitations in the current available literature, its recommendation in the current practice is still controversial. This study shows that ultrasound-guided intra-articular injections of triamcinolone hexacetonide and hyaluronic acid can improve pain, function and quality of life in patients with symptomatic and radiographic hip osteoarthritis. In addition, the administration of triamcinolone hexacetonide and hyaluronic acid to the hip joint in these patients can delay the need for interventional surgery.

  5. Challenges to Safe Injection Practices in Ambulatory Care.

    PubMed

    Anderson, Laura; Weissburg, Benjamin; Rogers, Kelli; Musuuza, Jackson; Safdar, Nasia; Shirley, Daniel

    2017-05-01

    Most recent infection outbreaks caused by unsafe injection practices in the United States have occurred in ambulatory settings. We utilized direct observation and a survey to assess injection practices at 31 clinics. Improper vial use was observed at 13 clinics (41.9%). Pharmacy support and healthcare worker education may improve injection practices. Infect Control Hosp Epidemiol 2017;38:614-616.

  6. Risk Behaviors, Prevalence of HIV and Hepatitis C Virus Infection and Population Size of Current Injection Drug Users in a China-Myanmar Border City: Results from a Respondent-Driven Sampling Survey in 2012

    PubMed Central

    Li, Lei; Assanangkornchai, Sawitri; Duo, Lin; McNeil, Edward; Li, Jianhua

    2014-01-01

    Background Injection drug use has been the major cause of HIV/AIDS in China in the past two decades. We measured the prevalences of HIV and hepatitis C virus (HCV) prevalence and their associated risk factors among current injection drug users (IDUs) in Ruili city, a border region connecting China with Myanmar that has been undergoing serious drug use and HIV spread problems. An estimate of the number of current IDUs is also presented. Methods In 2012, Chinese IDUs who had injected within the past six months and aged ≥18 years were recruited using a respondent-driven sampling (RDS) technique. Participants underwent interviews and serological testing for HIV, HBV, HCV and syphilis. Logistic regression indentified factors associated with HIV and HCV infections. Multiplier method was used to obtain an estimate of the size of the current IDU population via combining available service data and findings from our survey. Results Among 370 IDUs recruited, the prevalence of HIV and HCV was 18.3% and 41.5%, respectively. 27.1% of participants had shared a needle/syringe in their lifetime. Consistent condom use rates were low among both regular (6.8%) and non-regular (30.4%) partners. Factors independently associated with being HIV positive included HCV infection, having a longer history of injection drug use and experience of needle/syringe sharing. Participants with HCV infection were more likely to be HIV positive, have injected more types of drugs, have shared other injection equipments and have unprotected sex with regular sex partners. The estimated number of current IDUs in Ruili city was 2,714 (95% CI: 1,617–5,846). Conclusions IDUs may continue to be a critical subpopulation for transmission of HIV and other infections in this region because of the increasing population and persistent high risk of injection and sexual behaviours. Developing innovative strategies that can improve accessibility of current harm reduction services and incorporate more comprehensive contents is urgently needed. PMID:25203256

  7. Heat transfer to a full-coverage film-cooled surface with 30 degree slant-hole injection

    NASA Technical Reports Server (NTRS)

    Crawford, M. E.; Kays, W. M.; Moffat, R. J.

    1976-01-01

    Heat transfer behavior was studied in a turbulent boundary layer with full coverage film cooling through an array of discrete holes and with injection 30 deg to the wall surface in the downstream direction. Stanton numbers were measured for a staggered hole pattern with pitch-to-diameter ratios of 5 and 10, an injection mass flux ratio range of 0.1 to 1.3, and a range of Reynolds number Re sub x of 150,000 to 5 million. Air was used as the working fluid, and the mainstream velocity varied from 9.8 to 34.2 m/sec (32 to 112 ft/sec). The data were taken for secondary injection temperature equal to the wall temperature and also equal to the mainstream temperature. The data may be used to obtain Stanton number as a continuous function of the injectant temperature by use of linear superposition theory. The heat transfer coefficient is defined on the basis of a mainstream-to-wall temperature difference. This definition permits direct comparison of performance between film cooling and transpiration cooling. A differential prediction method was developed to predict the film cooling data base. The method utilizes a two-dimensional boundary layer program with routines to model the injection process and turbulence augmentation. The program marches in the streamwise direction, and when a row of holes is encountered, it stops and injects fluid into the boundary layer. The turbulence level is modeled by algebraically augmenting the mixing length, with the augmentation keyed to a penetration distance for the injected fluid.

  8. Analgesic Effects of Duloxetine on Formalin-Induced Hyperalgesia and Its Underlying Mechanisms in the CeA

    PubMed Central

    Zhang, Lie; Yin, Jun-Bin; Hu, Wei; Zhao, Wen-Jun; Fan, Qing-Rong; Qiu, Zhi-Chun; He, Ming-Jie; Ding, Tan; Sun, Yan; Kaye, Alan D.; Wang, En-Ren

    2018-01-01

    In rodents, the amygdala has been proposed to serve as a key center for the nociceptive perception. Previous studies have shown that extracellular signal-regulated kinase (ERK) signaling cascade in the central nucleus of amygdala (CeA) played a functional role in inflammation-induced peripheral hypersensitivity. Duloxetine (DUL), a serotonin and noradrenaline reuptake inhibitor, produced analgesia on formalin-induced spontaneous pain behaviors. However, it is still unclear whether single DUL pretreatment influences formalin-induced hypersensitivity and what is the underlying mechanism. In the current study, we revealed that systemic pretreatment with DUL not only dose-dependently suppressed the spontaneous pain behaviors, but also relieved mechanical and thermal hypersensitivity induced by formalin hindpaw injection. Consistent with the analgesic effects of DUL on the pain behaviors, the expressions of Fos and pERK that were used to check the neuronal activities in the spinal cord and CeA were also dose-dependently reduced following DUL pretreatment. Meanwhile, no emotional aversive behaviors were observed at 24 h after formalin injection. The concentration of 5-HT in the CeA was correlated with the dose of DUL in a positive manner at 24 h after formalin injection. Direct injecting 5-HT into the CeA suppressed both the spontaneous pain behaviors and hyperalgesia induced by formalin injection. However, DUL did not have protective effects on the formalin-induced edema of hindpaw. In sum, the activation of CeA neurons may account for the transition from acute pain to long-term hyperalgesia after formalin injection. DUL may produce potent analgesic effects on the hyperalgesia and decrease the expressions of p-ERK through increasing the concentration of serotonin in the CeA. PMID:29692727

  9. Analgesic Effects of Duloxetine on Formalin-Induced Hyperalgesia and Its Underlying Mechanisms in the CeA.

    PubMed

    Zhang, Lie; Yin, Jun-Bin; Hu, Wei; Zhao, Wen-Jun; Fan, Qing-Rong; Qiu, Zhi-Chun; He, Ming-Jie; Ding, Tan; Sun, Yan; Kaye, Alan D; Wang, En-Ren

    2018-01-01

    In rodents, the amygdala has been proposed to serve as a key center for the nociceptive perception. Previous studies have shown that extracellular signal-regulated kinase (ERK) signaling cascade in the central nucleus of amygdala (CeA) played a functional role in inflammation-induced peripheral hypersensitivity. Duloxetine (DUL), a serotonin and noradrenaline reuptake inhibitor, produced analgesia on formalin-induced spontaneous pain behaviors. However, it is still unclear whether single DUL pretreatment influences formalin-induced hypersensitivity and what is the underlying mechanism. In the current study, we revealed that systemic pretreatment with DUL not only dose-dependently suppressed the spontaneous pain behaviors, but also relieved mechanical and thermal hypersensitivity induced by formalin hindpaw injection. Consistent with the analgesic effects of DUL on the pain behaviors, the expressions of Fos and pERK that were used to check the neuronal activities in the spinal cord and CeA were also dose-dependently reduced following DUL pretreatment. Meanwhile, no emotional aversive behaviors were observed at 24 h after formalin injection. The concentration of 5-HT in the CeA was correlated with the dose of DUL in a positive manner at 24 h after formalin injection. Direct injecting 5-HT into the CeA suppressed both the spontaneous pain behaviors and hyperalgesia induced by formalin injection. However, DUL did not have protective effects on the formalin-induced edema of hindpaw. In sum, the activation of CeA neurons may account for the transition from acute pain to long-term hyperalgesia after formalin injection. DUL may produce potent analgesic effects on the hyperalgesia and decrease the expressions of p-ERK through increasing the concentration of serotonin in the CeA.

  10. A contoured gap coaxial plasma gun with injected plasma armature.

    PubMed

    Witherspoon, F Douglas; Case, Andrew; Messer, Sarah J; Bomgardner, Richard; Phillips, Michael W; Brockington, Samuel; Elton, Raymond

    2009-08-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 microg of plasma with density above 10(17) cm(-3) to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 microg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  11. HCV treatment rates and sustained viral response among people who inject drugs in seven UK sites: real world results and modelling of treatment impact.

    PubMed

    Martin, N K; Foster, G R; Vilar, J; Ryder, S; Cramp, M E; Gordon, F; Dillon, J F; Craine, N; Busse, H; Clements, A; Hutchinson, S J; Ustianowski, A; Ramsay, M; Goldberg, D J; Irving, W; Hope, V; De Angelis, D; Lyons, M; Vickerman, P; Hickman, M

    2015-04-01

    Hepatitis C virus (HCV) antiviral treatment for people who inject drugs (PWID) could prevent onwards transmission and reduce chronic prevalence. We assessed current PWID treatment rates in seven UK settings and projected the potential impact of current and scaled-up treatment on HCV chronic prevalence. Data on number of PWID treated and sustained viral response rates (SVR) were collected from seven UK settings: Bristol (37-48% HCV chronic prevalence among PWID), East London (37-48%), Manchester (48-56%), Nottingham (37-44%), Plymouth (30-37%), Dundee (20-27%) and North Wales (27-33%). A model of HCV transmission among PWID projected the 10-year impact of (i) current treatment rates and SVR (ii) scale-up with interferon-free direct acting antivirals (IFN-free DAAs) with 90% SVR. Treatment rates varied from <5 to over 25 per 1000 PWID. Pooled intention-to-treat SVR for PWID were 45% genotypes 1/4 [95%CI 33-57%] and 61% genotypes 2/3 [95%CI 47-76%]. Projections of chronic HCV prevalence among PWID after 10 years of current levels of treatment overlapped substantially with current HCV prevalence estimates. Scaling-up treatment to 26/1000 PWID annually (achieved already in two sites) with IFN-free DAAs could achieve an observable absolute reduction in HCV chronic prevalence of at least 15% among PWID in all sites and greater than a halving in chronic HCV in Plymouth, Dundee and North Wales within a decade. Current treatment rates among PWID are unlikely to achieve observable reductions in HCV chronic prevalence over the next 10 years. Achievable scale-up, however, could lead to substantial reductions in HCV chronic prevalence. © 2014 The Authors Journal of Viral Hepatitis Published by John Wiley & Sons Ltd.

  12. HCV treatment rates and sustained viral response among people who inject drugs in seven UK sites: real world results and modelling of treatment impact

    PubMed Central

    Martin, N K; Foster, G R; Vilar, J; Ryder, S; E Cramp, M; Gordon, F; Dillon, J F; Craine, N; Busse, H; Clements, A; Hutchinson, S J; Ustianowski, A; Ramsay, M; Goldberg, D J; Irving, W; Hope, V; De Angelis, D; Lyons, M; Vickerman, P; Hickman, M

    2015-01-01

    Hepatitis C virus (HCV) antiviral treatment for people who inject drugs (PWID) could prevent onwards transmission and reduce chronic prevalence. We assessed current PWID treatment rates in seven UK settings and projected the potential impact of current and scaled-up treatment on HCV chronic prevalence. Data on number of PWID treated and sustained viral response rates (SVR) were collected from seven UK settings: Bristol (37–48% HCV chronic prevalence among PWID), East London (37–48%), Manchester (48–56%), Nottingham (37–44%), Plymouth (30–37%), Dundee (20–27%) and North Wales (27–33%). A model of HCV transmission among PWID projected the 10-year impact of (i) current treatment rates and SVR (ii) scale-up with interferon-free direct acting antivirals (IFN-free DAAs) with 90% SVR. Treatment rates varied from <5 to over 25 per 1000 PWID. Pooled intention-to-treat SVR for PWID were 45% genotypes 1/4 [95%CI 33–57%] and 61% genotypes 2/3 [95%CI 47–76%]. Projections of chronic HCV prevalence among PWID after 10 years of current levels of treatment overlapped substantially with current HCV prevalence estimates. Scaling-up treatment to 26/1000 PWID annually (achieved already in two sites) with IFN-free DAAs could achieve an observable absolute reduction in HCV chronic prevalence of at least 15% among PWID in all sites and greater than a halving in chronic HCV in Plymouth, Dundee and North Wales within a decade. Current treatment rates among PWID are unlikely to achieve observable reductions in HCV chronic prevalence over the next 10 years. Achievable scale-up, however, could lead to substantial reductions in HCV chronic prevalence. PMID:25288193

  13. Determination of rheogenic ion transport in rat proximal colon in vivo.

    PubMed

    Haag, K; Lübcke, R; Knauf, H; Berger, E; Gerok, W

    1985-01-01

    A direct clamping technique is demonstrated, which allows monitoring of rapid changes of the short-circuit current (Isc) and the specific transepithelial resistance (Rm) as well as measurement of ion fluxes under short-circuit conditions in vivo. Due to the cylindrical symmetry of the colon the intraluminal electrode was devised as a centrally fixed silver rod, by which radial current injection was achieved. The geometrical arrangement of the electrodes guaranteed zero potential difference (PD) along the whole axis of the colon segment. The Isc was determined to 3.3 +/- 0.7 mueq h-1 cm-2 and Rm equal to 121 +/- 5 omega cm2. These data obtained by direct short-circuiting agree well with our earlier Rm and Isc data based on cable analysis, where the Isc was calculated from the open-circuit PD and Rm. This is considered as evidence for the reliability of the two independent in vivo techniques. Their validity was confirmed by the expected effects of drugs acting on rheogenic ion transport. Both the indirect (via Rm) as well as the direct Isc determination may be used alternatively as required; one may serve to match the other. For larger tubular structures like the rat colon the direct clamping should be preferred as the standard procedure for the Isc determination in vivo.

  14. Tokamak startup using point-source dc helicity injection.

    PubMed

    Battaglia, D J; Bongard, M W; Fonck, R J; Redd, A J; Sontag, A C

    2009-06-05

    Startup of a 0.1 MA tokamak plasma is demonstrated on the ultralow aspect ratio Pegasus Toroidal Experiment using three localized, high-current density sources mounted near the outboard midplane. The injected open field current relaxes via helicity-conserving magnetic turbulence into a tokamaklike magnetic topology where the maximum sustained plasma current is determined by helicity balance and the requirements for magnetic relaxation.

  15. A charge carrier transport model for donor-acceptor blend layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Janine, E-mail: janine.fischer@iapp.de; Widmer, Johannes; Koerner, Christian

    2015-01-28

    Highly efficient organic solar cells typically comprise donor-acceptor blend layers facilitating effective splitting of excitons. However, the charge carrier mobility in the blends can be substantially smaller than in neat materials, hampering the device performance. Currently, available mobility models do not describe the transport in blend layers entirely. Here, we investigate hole transport in a model blend system consisting of the small molecule donor zinc phthalocyanine (ZnPc) and the acceptor fullerene C{sub 60} in different mixing ratios. The blend layer is sandwiched between p-doped organic injection layers, which prevent minority charge carrier injection and enable exploiting diffusion currents for themore » characterization of exponential tail states from a thickness variation of the blend layer using numerical drift-diffusion simulations. Trap-assisted recombination must be considered to correctly model the conductivity behavior of the devices, which are influenced by local electron currents in the active layer, even though the active layer is sandwiched in between p-doped contacts. We find that the density of deep tail states is largest in the devices with 1:1 mixing ratio (E{sub t} = 0.14 eV, N{sub t} = 1.2 × 10{sup 18 }cm{sup −3}) directing towards lattice disorder as the transport limiting process. A combined field and charge carrier density dependent mobility model are developed for this blend layer.« less

  16. Determination on the Coefficient of Thermal Expansion in High-Power InGaN-based Light-emitting Diodes by Optical Coherence Tomography.

    PubMed

    Lee, Ya-Ju; Chou, Chun-Yang; Huang, Chun-Ying; Yao, Yung-Chi; Haung, Yi-Kai; Tsai, Meng-Tsan

    2017-10-31

    The coefficient of thermal expansion (CTE) is a physical quantity that indicates the thermal expansion value of a material upon heating. For advanced thermal management, the accurate and immediate determination of the CTE of packaging materials is gaining importance because the demand for high-power lighting-emitting diodes (LEDs) is currently increasing. In this study, we used optical coherence tomography (OCT) to measure the CTE of an InGaN-based (λ = 450 nm) high-power LED encapsulated in polystyrene resin. The distances between individual interfaces of the OCT images were observed and recorded to derive the instantaneous CTE of the packaged LED under different injected currents. The LED junction temperature at different injected currents was established with the forward voltage method. Accordingly, the measured instantaneous CTE of polystyrene resin varied from 5.86 × 10 -5  °C -1 to 14.10 × 10 -5  °C -1 in the junction temperature range 25-225 °C and exhibited a uniform distribution in an OCT scanning area of 200 × 200 μm. Most importantly, this work validates the hypothesis that OCT can provide an alternative way to directly and nondestructively determine the spatially resolved CTE of the packaged LED device, which offers significant advantages over traditional CTE measurement techniques.

  17. Simulation of a Single-Element Lean-Direct Injection Combustor Using a Polyhedral Mesh Derived from Hanging-Node Elements

    NASA Technical Reports Server (NTRS)

    Wey, Thomas; Liu, Nan-Suey

    2013-01-01

    This paper summarizes the procedures of generating a polyhedral mesh derived from hanging-node elements as well as presents sample results from its application to the numerical solution of a single element lean direct injection (LDI) combustor using an open-source version of the National Combustion Code (NCC).

  18. THE DEVELOPMENT OF IODINE BASED IMPINGER SOLUTIONS FOR THE EFFICIENT CAPTURE OF HG USING DIRECT INJECTION NEBULIZATION - INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY ANALYSIS

    EPA Science Inventory

    Inductively coupled plasma mass spectrometry (ICP/MS) with direct injection nebulization (DIN) was used to evaluate novel impinger solution compositions capable of capturing elemental mercury (Hgo) in EPA Method 5 type sampling. An iodine based impinger solutoin proved to be ver...

  19. Intratumoral Injection of 188Re labeled Cationic Polyethylenimine Conjugates: A Preliminary Report

    PubMed Central

    Kim, Eun-Mi; Heo, Young-Jun; Moon, Hyung-Bae; Bom, Hee-Seung; Kim, Chang-Guhn

    2004-01-01

    188Re(Rhenium) is easily obtained from an in-house 188W/188Re generator that is similar to the current 99Mo/99mTc generator, making it very convenient for clinical use. This characteristic makes this radionuclide a promising candidate as a therapeutic agent. Polyethylenimine (PEI) is a cationic polymer and has been used as a gene delivery vector. Positively charged materials interact with cellular blood components, vascular endothelium, and plasma proteins. In this study, the authors investigated whether intratumoral injection of 188Re labeled transferrin (Tf)-PEI conjugates exert the effect of radionuclide therapy against the tumor cells. When the diameters of the Ramos lymphoma (human Burkitt's lymphoma) xenografted tumors reached approximately 1 cm, 3 kinds of 188Re bound compounds (HYNIC-PEI-Tf, HYNIC-PEI, 188Re perrhenate) were injected directly into the tumors. There were increases in the retention of 188Re inside the tumor when PEI was incorporated with 188Re compared to the use of free 188Re. The 188Re HYNIC-Tf-PEI showed the most retention inside the tumor (retention rate=approximately 97%). H&E stain of isolated tumor tissues showed that 188Re labeled HYNIC-PEI-Tf caused extensive tumor necrosis. These results support 188Re HYNIC-PEI-Tf as being a useful radiopharmaceutical agent to treat tumors when delievered by intratumoral injection. PMID:15483337

  20. The Effect of tDCS on Cognition and Neurologic Recovery of Rats with Alzheimer's Disease.

    PubMed

    Yu, Seong Hun; Park, Seong Doo; Sim, Ki Chel

    2014-02-01

    [Purpose] This study examined the effect of the application of transcranial direct current stimulation (tDCS) on neurologic recovery and cognitive function of rats with Alzheimer-like dementia induced by scopolamine injections. [Subjects] To create a cognition dysfunction model, intraperitoneal injection of scopolamine was given to Sprague-Dawley rats that subsequently received tDCS for 4 weeks. [Methods] Changes in motor behavior were evaluated by conducting an open field test. Acetylcholine content in the cerebral cortex and hippocampus was examined for a biochemical assessment. [Results] With respect to changes in motor behavior, group II showed the most meaningful difference after scopolamine injection, followed by group III. In the biochemical assessment, the results of the examination of acetylcholine content in the tissue of the cerebral cortex and the hippocampus on the 14th and 28th days, respectively, showed the most significant increase in group II, followed by group III. [Conclusion] The above findings confirm that tDCS application after the onset of cognitive dysfunction caused by Alzheimer's disease leads to a positive effect on motor behavior and biochemical changes, and this effect is maintained over a specific period of time.

  1. A comparative study of the reduction of silver and gold salts in water by a cathodic microplasma electrode

    NASA Astrophysics Data System (ADS)

    De Vos, Caroline; Baneton, Joffrey; Witzke, Megan; Dille, Jean; Godet, Stéphane; Gordon, Michael J.; Mohan Sankaran, R.; Reniers, François

    2017-03-01

    A comparative study of the reduction of aqueous silver (Ag) and gold (Au) salts to colloidal Ag and Au nanoparticles, respectively, by a gaseous, cathodic, atmospheric-pressure microplasma electrode is presented. The resulting nanoparticles (NPs) were characterized by ultraviolet-visible (UV-vis) absorption spectroscopy and transmission electron microscopy (TEM), and the aqueous solution composition before and after experiments was determined by ionic conductivity, electrochemical potential, and/or UV-vis absorption measurements. TEM showed that Ag and Au NPs were spherical and non-agglomerated when synthesized in the presence of a stabilizer, polyvinyl alcohol. The charge injected by the plasma was correlated to the maximum intensity in the absorbance spectra which in turn depends on the nanoparticle concentration. Separately, the charge injected was correlated to the metal cation concentration. Ag and Au reduction rates were found to be directly proportional to the charge injected, independent of plasma current and process time. Differences in the mechanism for Ag and Au reduction were also observed, and solution species generated by the plasma and their role in the reduction process (e.g. H2O2, electrons) is discussed.

  2. Interspecies chimera between primate embryonic stem cells and mouse embryos: Monkey ESCs engraft into mouse embryos, but not post-implantation fetuses

    PubMed Central

    Simerly, Calvin; McFarland, Dave; Castro, Carlos; Lin, Chih-Cheng; Redinger, Carrie; Jacoby, Ethan; Mich-Basso, Jocelyn; Orwig, Kyle; Mills, Parker; Ahrens, Eric; Navara, Chris; Schatten, Gerald

    2016-01-01

    Unequivocal evidence for pluripotency in which embryonic stem cells contribute to chimeric offspring has yet to be demonstrated in human or nonhuman primates (NHPs). Here, rhesus and baboons ESCs were investigated in interspecific mouse chimera generated by aggregation or blastocyst injection. Aggregation chimera produced mouse blastocysts with GFP-nhpESCs at the inner cell mass (ICM), and embryo transfers (ETs) generated dimly-fluorescencing abnormal fetuses. Direct injection of GFP-nhpESCs into blastocysts produced normal non-GFP-fluorescencing fetuses. Injected chimera showed >70% loss of GFP-nhpESCs after 21 h culture. Outgrowths of all chimeric blastocysts established distinct but separate mouse- and NHP-ESC colonies. Extensive endogenous autofluorescence compromised anti-GFP detection and PCR analysis did not detect nhpESCs in fetuses. NhpESCs localize to the ICM in chimera and generate pregnancies. Because primate ESCs do not engraft post-implantation, and also because endogenous autofluorescence results in misleading positive signals, interspecific chimera assays for pluripotency with primate stem cells is unreliable with the currently available ESCs. Testing primate ESCs reprogrammed into even more naïve states in these inter-specific chimera assays will be an important future endeavor. PMID:21543277

  3. Integration of On-Chip Peristaltic Pumps and Injection Valves with Microchip Electrophoresis and Electrochemical Detection

    PubMed Central

    Bowen, Amanda L; Martin, R. Scott

    2010-01-01

    A microfluidic approach that integrates peristaltic pumping from an on-chip reservoir with injection valves, microchip electrophoresis and electrochemical detection is described. Fabrication and operation of both the peristaltic pumps and injection valves were optimized to ensure efficient pumping and discrete injections. The final device uses the peristaltic pumps to continuously direct sample from a reservoir containing a mixture of analytes to injection valves that are coupled with microchip electrophoresis and amperometric detection. The separation and direct detection of dopamine and norepinephrine were possible with this approach and the utility of the device was demonstrated by monitoring the stimulated release of these neurotransmitters from a layer of cells introduced into the microchip. It is also shown that this pumping/reservoir approach can be expanded to multiple reservoirs and pumps, where one reservoir can be addressed individually or multiple reservoirs sampled simultaneously. PMID:20665914

  4. An experimental and theoretical study of the dark current and x-ray sensitivity of amorphous selenium x-ray photoconductors

    NASA Astrophysics Data System (ADS)

    Frey, Joel Brandon

    Recently, the world of diagnostic radiography has seen the integration of digital flat panel x-ray image detectors into x-ray imaging systems, replacing analog film screens. These flat panel x-ray imagers (FPXIs) have been shown to produce high quality x-ray images and provide many advantages that are inherent to a fully digital technology. Direct conversion FPXIs based on a photoconductive layer of stabilized amorphous selenium (a-Se) have been commercialized and have proven particularly effective in the field of mammography. In the operation of these detectors, incident x-ray photons are converted directly to charge carriers in the a-Se layer and drifted to electrodes on either side of the layer by a large applied field (10 V/microm). The applied field causes a dark current to flow which is not due to the incident radiation and this becomes a source of noise which can reduce the dynamic range of the detector. The level of dark current in commercialized detectors has been reduced by the deposition of thin n- and p- type blocking layers between the electrodes and the bulk of the a-Se. Despite recent research into the dark current in metal/a-Se/metal sandwich structures, much is still unknown about the true cause and nature of this phenomenon. The work in this Ph.D. thesis describes an experimental and theoretical study of the dark current in these structures. Experiments have been performed on five separate sets of a-Se samples which approximate the photoconductive layer in an FPXI. The dark current has been measured as a function of time, sample structure, applied field, sample thickness and contact metal used. This work has conclusively shown that the dark current is almost entirely due to the injection of charge carriers from the contacts and the contribution of Poole-Frenkel enhanced bulk thermal generation is negligible. There is also evidence that while the dark current is initially controlled by the injection of holes from the positive contact, several minutes after the application of the bias, the dark current due to hole injection may decay to the point where the electron current becomes significant and even dominant. These conclusions are supported by numerical calculations of the dark current transients which have been calibrated to match experimental results. Work detailed in this Ph.D. thesis also focuses on Monte Carlo modeling of the x-ray sensitivity of a-Se FPXIs. The higher the x-ray sensitivity of a detector, the lower the radiation dose required to acquire an acceptable image. FPXIs can experience a decrease in the x-ray sensitivity of the photoconductive layer with accumulating exposure, leading to a phenomenon known as "ghosting". Modeling this decrease in sensitivity can uncover the reasons behind it. The Monte Carlo model described in this thesis is a continuation of a previous model which now considers the effects of the n- and p-like blocking layers and the flow of dark current between x-ray exposures. The simulation results explain how deep trapping of photogenerated charge carriers, and the resulting effect on the electric field distribution, contribute to sensitivity loss. The model has shown excellent agreement with experimental data and has accurately predicted a sensitivity recovery once exposure has ceased which is due to primarily to the relaxation of metastable x-ray-induced carrier trap states.

  5. Effect of suppressor current intensity on the determination of glyphosate and aminomethylphosphonic acid by suppressed conductivity ion chromatography.

    PubMed

    Dimitrakopoulos, Ioannis K; Thomaidis, Nikolaos S; Megoulas, Nikolaos C; Koupparis, Michael A

    2010-05-28

    This paper presents the application of ion chromatography with electrolytic eluent generation and mobile phase suppression for the direct conductimetric detection of glyphosate and its degradation product aminomethylphosphonic acid (AMPA). The compounds were separated on a Dionex AS18 anion exchange column with a 12-40 mM KOH step gradient from 9 to 9.5 min. The effect of the suppressor current intensity on the electrostatic interaction of these amphoteric compounds with the suppressor cation exchange membranes was evaluated. A suppressor current gradient technique was proposed for the limitation of peak broadening and baseline noise, in order to improve method sensitivity and detectability. It was observed that residual sample carbonates co-eluted with AMPA when a large injection loop was installed for the low level determination of both compounds in natural waters. For this reason, glyphosate was isocratically eluted using 33 mM KOH in order to decrease analysis time within 10 min and a column clean up step using 100 mM KOH was used to ensure retention time reproducibility. The developed method was applied to the analysis of drinking and natural water and it was further successfully applied to orange samples with slight modifications. Instrumental LOD for glyphosate was 0.24 microg/L, while method LOD was 0.54 microg/L for spring waters and 0.01 mg/kg for oranges using a 1000 microL direct loop injection of the sample. Intra-day and inter-day precision (as %RSD) for water samples was 4.6% and 12% at a spiking level of 2 microg/L, and the recovery ranged from 64% to 88% depending on sample conductivity. For orange samples, the inter-day precision was 1.4% at a spiking level of 4.4 mg/kg, while overall recovery was 103%. The developed method is direct, fast, sensitive and relatively inexpensive, and could be used as an ideal fast screening tool for the monitoring of glyphosate residues in water and fruit samples. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Can Steady Magnetospheric Convection Events Inject Plasma into the Ring Current?

    NASA Astrophysics Data System (ADS)

    Lemon, C.; Chen, M. W.; Guild, T. B.

    2009-12-01

    Steady Magnetospheric Convection (SMC) events are characterized by several-hour periods of enhanced convection that are devoid of substorm signatures. There has long been a debate about whether substorms are necessary to inject plasma into the ring current, or whether enhanced convection is sufficient. If ring current injections occur during SMC intervals, this would suggest that substorms are unnecessary. We use a combination of simulations and data observations to examine this topic. Our simulation model computes the energy-dependent plasma drift in a self-consistent electric and magnetic field, which allows us to accurately model the transport of plasma from the plasma sheet (where the plasma pressure is much larger than the magnetic pressure) into the inner magnetosphere (where plasma pressure is much less than the magnetic pressure). In regions where the two pressures are comparable (i.e. the inner plasma sheet), feedback between the plasma and magnetic field is critical for accurately modeling the physical evolution of the system. Our previous work has suggested that entropy losses in the plasma sheet (such as caused by substorms) may be necessary to inject a ring current. However, it is not yet clear whether other small-scale processes (e.g. bursty bulk flows) can provide sufficient entropy loss in the plasma sheet to allow for the penetration of plasma into the ring current. We combine our simulation results with data observations in order to better understand the physical processes required to inject a ring current.

  7. Corticosteroid and platelet-rich plasma injection therapy in tennis elbow (lateral epicondylalgia): a survey of current U.K. specialist practice and a call for clinical guidelines.

    PubMed

    Titchener, Andrew G; Booker, Simon J; Bhamber, Nivraj S; Tambe, Amol A; Clark, David I

    2015-11-01

    Tennis elbow is a common condition with a variety of treatment options, but little is known about which of these options specialists choose most commonly. Corticosteroid injections in tennis elbow may reduce pain in the short-term but delay long-term recovery. We have undertaken a UK-wide survey of upper limb specialists to assess current practice. Cross-sectional electronic survey of current members of the British Elbow and Shoulder Society (BESS) and the British Society for Surgery of the Hand (BSSH). 271 of 1047 eligible members responded (25.9%); consultant surgeons constituted the largest group (232/271, 85%). 131 respondents (48%) use corticosteroid injections as their first-line treatment for tennis elbow. 206 respondents (77%) believed that corticosteroid injections are not potentially harmful in the treatment of tennis elbow, while 31 (11%) did not use them in their current practice. In light of recent evidence of the potential harmful effects of corticosteroid therapy, 136 (50%) had not changed their practice while 108 (40.1%) had reduced or discontinued their use. 43 respondents (16%) reported having used platelet-rich plasma injections. Recent high-quality evidence that corticosteroids may delay recovery in tennis elbow appears to have had a limited effect on current practice. Treatment is not uniform among specialists and a proportion of them use platelet-rich plasma injections. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Regulation of the epithelial Na+ channel by membrane tension.

    PubMed

    Awayda, M S; Subramanyam, M

    1998-08-01

    The sensitivity of alphabetagamma rat epithelial Na+ channel (rENaC) to osmotically or mechanically induced changes of membrane tension was investigated in the Xenopus oocyte expression system, using both dual electrode voltage clamp and cell-attached patch clamp methodologies. ENaC whole-cell currents were insensitive to mechanical cell swelling caused by direct injection of 90 or 180 nl of 100-mM KCl. Similarly, ENaC whole-cell currents were insensitive to osmotic cell swelling caused by a 33% decrease of bathing solution osmolarity. The lack of an effect of cell swelling on ENaC was independent of the status of the actin cytoskeleton, as ENaC remained insensitive to osmotic and mechanical cell swelling in oocytes pretreated with cytochalasin B for 2-5 h. This apparent insensitivity of ENaC to increased cell volume and changes of membrane tension was also observed at the single channel level in membrane patches subjected to negative or positive pressures of 5 or 10 in. of water. However, and contrary to the lack of an effect of cell swelling, ENaC currents were inhibited by cell shrinking. A 45-min incubation in a 260-mosmol solution (a 25% increase of solution osmolarity) caused a decrease of ENaC currents (at -100 mV) from -3.42 +/- 0.34 to -2.02 +/- 0.23 microA (n = 6). This decrease of current with cell shrinking was completely blocked by pretreatment of oocytes with cytochalasin B, indicating that these changes of current are not likely related to a direct effect of cell shrinking. We conclude that alpha beta gamma rENaC is not directly mechanosensitive when expressed in a system that can produce a channel with identical properties to those found in native epithelia.

  9. Efficient spin-current injection in single-molecule magnet junctions

    NASA Astrophysics Data System (ADS)

    Xie, Haiqing; Xu, Fuming; Jiao, Hujun; Wang, Qiang; Liang, J.-Q.

    2018-01-01

    We study theoretically spin transport through a single-molecule magnet (SMM) in the sequential and cotunneling regimes, where the SMM is weakly coupled to one ferromagnetic and one normal-metallic leads. By a master-equation approach, it is found that the spin polarization injected from the ferromagnetic lead is amplified and highly polarized spin-current can be generated, due to the exchange coupling between the transport electron and the anisotropic spin of the SMM. Moreover, the spin-current polarization can be tuned by the gate or bias voltage, and thus an efficient spin injection device based on the SMM is proposed in molecular spintronics.

  10. Derivation of dynamo current drive in a closed-current volume and stable current sustainment in the HIT-SI experiment

    NASA Astrophysics Data System (ADS)

    Hossack, A. C.; Sutherland, D. A.; Jarboe, T. R.

    2017-02-01

    A derivation is given showing that the current inside a closed-current volume can be sustained against resistive dissipation by appropriately phased magnetic perturbations. Imposed-dynamo current drive theory is used to predict the toroidal current evolution in the helicity injected torus with steady inductive helicity injection (HIT-SI) experiment as a function of magnetic fluctuations at the edge. Analysis of magnetic fields from a HIT-SI discharge shows that the injector-imposed fluctuations are sufficient to sustain the measured toroidal current without instabilities whereas the small, plasma-generated magnetic fluctuations are not sufficiently large to sustain the current.

  11. Flame Tube NOx Emissions Using a Lean-Direct-Wall-Injection Combustor Concept

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.; Wey, Changlie; Choi, Kyung J.

    2001-01-01

    A low-NOx emissions combustor concept has been demonstrated in flame tube tests. A lean-direct injection concept was used where the fuel is injected directly into the flame zone and the overall fuel-air mixture is lean. In this concept the air is swirled upstream of a venturi section and the fuel is injected radially inward into the air stream from the throat section using a plain-orifice injector. Configurations have two-, four-, or six-wall fuel injectors and in some cases fuel is also injected from an axially located simplex pressure atomizer. Various orifice sizes of the plain-orifice injector were evaluated for the effect on NOx. Test conditions were inlet temperatures up to 8 1 OK, inlet pressures up to 2760 kPa, and flame temperatures up to 2100 K. A correlation is developed relating the NOx emissions to inlet temperature, inlet pressure, fuel-air ratio and pressure drop. Assuming that 15 percent of the combustion air would be used for liner cooling and using an advanced engine cycle, for the best configuration, the NOx emissions using the correlation is estimated to be <75 percent of the 1996 ICAO standard.

  12. Method to make accurate concentration and isotopic measurements for small gas samples

    NASA Astrophysics Data System (ADS)

    Palmer, M. R.; Wahl, E.; Cunningham, K. L.

    2013-12-01

    Carbon isotopic ratio measurements of CO2 and CH4 provide valuable insight into carbon cycle processes. However, many of these studies, like soil gas, soil flux, and water head space experiments, provide very small gas sample volumes, too small for direct measurement by current constant-flow Cavity Ring-Down (CRDS) isotopic analyzers. Previously, we addressed this issue by developing a sample introduction module which enabled the isotopic ratio measurement of 40ml samples or smaller. However, the system, called the Small Sample Isotope Module (SSIM), does dilute the sample during the delivery with inert carrier gas which causes a ~5% reduction in concentration. The isotopic ratio measurements are not affected by this small dilution, but researchers are naturally interested accurate concentration measurements. We present the accuracy and precision of a new method of using this delivery module which we call 'double injection.' Two portions of the 40ml of the sample (20ml each) are introduced to the analyzer, the first injection of which flushes out the diluting gas and the second injection is measured. The accuracy of this new method is demonstrated by comparing the concentration and isotopic ratio measurements for a gas sampled directly and that same gas measured through the SSIM. The data show that the CO2 concentration measurements were the same within instrument precision. The isotopic ratio precision (1σ) of repeated measurements was 0.16 permil for CO2 and 1.15 permil for CH4 at ambient concentrations. This new method provides a significant enhancement in the information provided by small samples.

  13. Potential geographic "hotspots" for drug-injection related transmission of HIV and HCV and for initiation into injecting drug use in New York City, 2011-2015, with implications for the current opioid epidemic in the US.

    PubMed

    Des Jarlais, D C; Cooper, H L F; Arasteh, K; Feelemyer, J; McKnight, C; Ross, Z

    2018-01-01

    We identified potential geographic "hotspots" for drug-injecting transmission of HIV and hepatitis C virus (HCV) among persons who inject drugs (PWID) in New York City. The HIV epidemic among PWID is currently in an "end of the epidemic" stage, while HCV is in a continuing, high prevalence (> 50%) stage. We recruited 910 PWID entering Mount Sinai Beth Israel substance use treatment programs from 2011-2015. Structured interviews and HIV/ HCV testing were conducted. Residential ZIP codes were used as geographic units of analysis. Potential "hotspots" for HIV and HCV transmission were defined as 1) having relatively large numbers of PWID 2) having 2 or more HIV (or HCV) seropositive PWID reporting transmission risk-passing on used syringes to others, and 3) having 2 or more HIV (or HCV) seronegative PWID reporting acquisition risk-injecting with previously used needles/syringes. Hotspots for injecting drug use initiation were defined as ZIP codes with 5 or more persons who began injecting within the previous 6 years. Among PWID, 96% injected heroin, 81% male, 34% White, 15% African-American, 47% Latinx, mean age 40 (SD = 10), 7% HIV seropositive, 62% HCV seropositive. Participants resided in 234 ZIP codes. No ZIP codes were identified as potential hotspots due to small numbers of HIV seropositive PWID reporting transmission risk. Four ZIP codes were identified as potential hotspots for HCV transmission. 12 ZIP codes identified as hotspots for injecting drug use initiation. For HIV, the lack of potential hotspots is further validation of widespread effectiveness of efforts to reduce injecting-related HIV transmission. Injecting-related HIV transmission is likely to be a rare, random event. HCV prevention efforts should include focus on potential hotspots for transmission and on hotspots for initiation into injecting drug use. We consider application of methods for the current opioid epidemic in the US.

  14. DMA shared byte counters in a parallel computer

    DOEpatents

    Chen, Dong; Gara, Alan G.; Heidelberger, Philip; Vranas, Pavlos

    2010-04-06

    A parallel computer system is constructed as a network of interconnected compute nodes. Each of the compute nodes includes at least one processor, a memory and a DMA engine. The DMA engine includes a processor interface for interfacing with the at least one processor, DMA logic, a memory interface for interfacing with the memory, a DMA network interface for interfacing with the network, injection and reception byte counters, injection and reception FIFO metadata, and status registers and control registers. The injection FIFOs maintain memory locations of the injection FIFO metadata memory locations including its current head and tail, and the reception FIFOs maintain the reception FIFO metadata memory locations including its current head and tail. The injection byte counters and reception byte counters may be shared between messages.

  15. A Novel Method for Determining the Gas Transfer Velocity of Carbon Dioxide in Streams

    NASA Astrophysics Data System (ADS)

    McDowell, M. J.; Johnson, M. S.

    2016-12-01

    Characterization of the global carbon cycle relies on the accurate quantification of carbon fluxes into and out of natural and human-dominated ecosystems. Among these fluxes, carbon dioxide (CO2) evasion from surface water has received increasing attention in recent years. However, limitations of current methods, including determination of the gas transfer velocity (k), compromise our ability to evaluate the significance of CO2 fluxes between freshwater systems and the atmosphere. We developed an automated method to determine gas transfer velocities of CO2 (kCO2), and tested it under a range of flow conditions for a first-order stream of a headwater catchment in southwestern British Columbia, Canada. Our method uses continuous in situ measurements of CO2 concentrations using two non-dispersive infrared (NDIR) sensors enclosed in water impermeable, gas permeable membranes (Johnson et al., 2010) downstream from a gas diffuser. CO2 was injected into the stream at regular intervals via a compressed gas tank connected to the diffuser. CO2 injections were controlled by a datalogger at fixed time intervals and in response to storm-induced changes in streamflow. Following the injection, differences in CO2 concentrations at known distances downstream from the diffuser relative to pre-injection baseline levels allowed us to calculate kCO2. Here we present relationships between kCO2 and hydro-geomorphologic (flow velocity, streambed slope, stream width, stream depth), atmospheric (wind speed and direction), and water quality (stream temperature, pH, electrical conductivity) variables. This method has advantages of being automatable and field-deployable, and it does not require supplemental gas chromatography, as is the case for propane injections typically used to determine k. The dataset presented suggests the potential role of this method to further elucidate the role that CO2 fluxes from headwater streams play in the global carbon cycle. Johnson, M. S., Billett, M. F., Dinsmore, K. J., Wallin, M., Dyson, K. E., & Jassal, R. S. (2010). Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems—method and applications. Ecohydrology, 3(1), 68-78. http://doi.org/10.1002/eco.95

  16. Theory and Modeling of Petawatt Laser Pulse Propagation in Low Density Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadwick, Bradley A.; Kalmykov, S. Y.

    Report describing accomplishments in all-optical control of self-injection in laser-plasma accelerators and in developing advanced numerical models of laser-plasma interactions. All-optical approaches to controlling electron self-injection and beam formation in laser-plasma accelerators (LPAs) were explored. It was demonstrated that control over the laser pulse evolution is the key ingredient in the generation of low-background, low-phase-space-volume electron beams. To this end, preserving a smooth laser pulse envelope throughout the acceleration process can be achieved through tuning the phase and amplitude of the incident pulse. A negative frequency chirp compensates the frequency red-shift accumulated due to wake excitation, preventing evolution of themore » pulse into a relativistic optical shock. This reduces the ponderomotive force exerted on quiescent plasma electrons, suppressing expansion of the bubble and continuous injection of background electrons, thereby reducing the charge in the low-energy tail by an order of magnitude. Slowly raising the density in the pulse propagation direction locks electrons in the accelerating phase, boosting their energy, keeping continuous injection at a low level, tripling the brightness of the quasi-monoenergetic component. Additionally, propagating the negatively chirped pulse in a plasma channel suppresses diffraction of the pulse leading edge, further reducing continuous injection. As a side effect, oscillations of the pulse tail may be enhanced, leading to production of low-background, polychromatic electron beams. Such beams, consisting of quasi-monoenergetic components with controllable energy and energy separation, may be useful as drivers of polychromatic x-rays based on Thomson backscattering. These all-optical methods of electron beam quality control are critically important for the development of future compact, high-repetition-rate, GeV-scale LPA using 10 TW-class, ultra-high bandwidth pulses and mm-scale, dense plasmas. These results emphasize that investment into new pulse amplification techniques allowing for ultrahigh frequency bandwidth is as important for the design of future LPA as are the current efforts directed to increasing the pulse energy.« less

  17. Trap-assisted hole injection and quantum efficiency enhancement in poly(9,9' dioctylfluorene-alt-benzothiadiazole) polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Seeley, Alexander J. A. B.; Friend, Richard H.; Kim, Ji-Seon; Burroughes, Jeremy H.

    2004-12-01

    We report a reversible many-fold quantum efficiency enhancement during electrical driving of polymer light-emitting diodes (LEDs) containing poly(9,9' dioctylfluorene-alt-benzothiadiazole) (F8BT), developing over several minutes or hours at low applied bias and recovering on similar time scales after driving. This phenomenon is observed only in devices containing F8BT as an emissive layer in pure or blended form, regardless of anode and cathode choices and even in the absence of a poly(styrene-sulphonate)-doped poly(3,4-ethylene-dioxythiophene) (PEDOT:PSS) layer. We report detailed investigations using a standardized device structure containing PEDOT:PSS and a calcium cathode. Direct measurements of trapped charge recovered from the device after driving significantly exceed the unipolar limit, and thermally activated relaxation suggests a maximum trap depth around 0.6eV. Neither photoluminescence nor electroluminescence spectra reveal any change in the bulk optoelectronic properties of the emissive polymer nor any new emissive species. During the quantum efficiency (QE) enhancement process, the bulk conduction of the device increases. Reverse bias treatment of the device significantly reinforces the QE enhancement. Based on these observations, we propose a simple model in which interfacial dipoles are generated by trapped holes near the anode combining with injected electrons, to produce a narrow tunneling barrier for easy hole injection. The new injection pathway leads to a higher hole current density and thus a better charge injection balance. This produces the relatively high quantum efficiency observed in all F8BT LEDs.

  18. A method for automatically optimizing medical devices for treating heart failure: designing polymeric injection patterns.

    PubMed

    Wenk, Jonathan F; Wall, Samuel T; Peterson, Robert C; Helgerson, Sam L; Sabbah, Hani N; Burger, Mike; Stander, Nielen; Ratcliffe, Mark B; Guccione, Julius M

    2009-12-01

    Heart failure continues to present a significant medical and economic burden throughout the developed world. Novel treatments involving the injection of polymeric materials into the myocardium of the failing left ventricle (LV) are currently being developed, which may reduce elevated myofiber stresses during the cardiac cycle and act to retard the progression of heart failure. A finite element (FE) simulation-based method was developed in this study that can automatically optimize the injection pattern of the polymeric "inclusions" according to a specific objective function, using commercially available software tools. The FE preprocessor TRUEGRID((R)) was used to create a parametric axisymmetric LV mesh matched to experimentally measured end-diastole and end-systole metrics from dogs with coronary microembolization-induced heart failure. Passive and active myocardial material properties were defined by a pseudo-elastic-strain energy function and a time-varying elastance model of active contraction, respectively, that were implemented in the FE software LS-DYNA. The companion optimization software LS-OPT was used to communicate directly with TRUEGRID((R)) to determine FE model parameters, such as defining the injection pattern and inclusion characteristics. The optimization resulted in an intuitive optimal injection pattern (i.e., the one with the greatest number of inclusions) when the objective function was weighted to minimize mean end-diastolic and end-systolic myofiber stress and ignore LV stroke volume. In contrast, the optimization resulted in a nonintuitive optimal pattern (i.e., 3 inclusions longitudinallyx6 inclusions circumferentially) when both myofiber stress and stroke volume were incorporated into the objective function with different weights.

  19. Electrochemical immunoassay on a microfluidic device with sequential injection and flushing functions.

    PubMed

    Nashida, Norihiro; Satoh, Wataru; Fukuda, Junji; Suzuki, Hiroaki

    2007-06-15

    An integrated microfluidic device with injecting, flushing, and sensing functions was realized using valves that operate based on direct electrowetting. The device consisted of two substrates: a glass substrate with driving and sensing electrodes and a poly(dimethylsiloxane) (PDMS) substrate. Microfluidic transport was achieved using the spontaneous movement of solutions in hydrophilic flow channels formed with a dry-film photoresist layer. The injection and flushing of solutions were controlled by gold working electrodes, which functioned as valves. The valves were formed either in the channels or in a through-hole in the glass substrate. To demonstrate the system's applicability to an immunoassay, the detection of immobilized antigens was performed as a partial simulation of a sandwich immunoassay. Human alpha-fetoprotein (AFP) or an anti-human AFP antibody was immobilized on a platinum working electrode in the chamber using a plasma-polymerized film (PPF). By applying a potential to the injection valves, necessary solutions were injected one by one through the channels into a reaction chamber at the center of the chip and incubated for reasonable periods of time. The solutions were then flushed through the flushing valve and absorbed in a filter paper placed under the device. After incubation with the corresponding antibodies labeled with glucose oxidase (GOD), electrochemical detection was conducted. In both cases, the obtained current depended on the amount of immobilized antigen. The calibration curves were sigmoidal, and the detection limit was 0.1 ng. The developed microfluidic system could potentially be a fundamental component for a micro immunoassay of the next generation.

  20. Pulsed electromagnetic gas accelleration. [incorporation of hollow cathode in plasma discharge and suitability determination of MPD discharge as plasmadynamic laser source

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.

    1973-01-01

    Direct measurement with thermocouples of the power deposited in the anode of a multi-megawatt magnetoplasmadynamic discharge has shown the fractional anode power to decrease from 50% at 200 kW to 10% at 20 MW. Using local measurements of current density, electric potential, and electron temperature, the traditional model for heat conduction to the anode is found to be inadequate. Other experiments in which the voltage-current characteristics and exhaust velocities of MPD arcs using Plexiglas and boron nitride chamber insulators and various mass injection configurations show that ablation can affect nominal accelerator operation in several distinct ways. The incorporation of a hollow cathode in a 7 kA plasma discharge has shown that a stable current attachment can be realized in the cavity without the aid of cathode heaters, keeper electrodes, or emissive coatings.

  1. Coupled Mechanical and Thermal Modeling of Frictional Melt Injection to Constrain Physical Conditions of the Earthquake Source Region

    NASA Astrophysics Data System (ADS)

    Sawyer, W.; Resor, P. G.

    2016-12-01

    Pseudotachylyte, a fault rock formed through coseismic frictional melting, provides an important record of coseismic mechanics. In particular, injection veins formed at a high angle to the fault surface have been used to estimate rupture directivity, velocity, pulse length, stress and strength drop, as well as slip weakening distance and wall rock stiffness. These studies, however, have generally treated injection vein formation as a purely elastic process and have assumed that processes of melt generation, transport, and solidification have little influence on the final vein geometry. Using a modified analytical approximation of injection vein formation based on a dike intrusion model we find that the timescales of quenching and flow propagation are similar for a composite set of injection veins compiled from the Asbestos Mountain Fault, USA (Rowe et al., 2012), Gole Larghe Fault Zone, Italy (Griffith et al., 2012) and the Fort Foster Brittle Zone. This indicates a complex, dynamic process whose behavior is not fully captured by the current approach. To assess the applicability of the simplifying assumptions of the dike model when applied to injection veins we employ a finite-element time-dependent model of injection vein formation. This model couples elastic deformation of the wall rock with the fluid dynamics and heat transfer of the frictional melt. The final geometry of many injection veins is unaffected by the inclusion of these processes. However, some injection veins are found to be flow limited, with a final geometry reflecting cooling of the vein before it reaches an elastic equilibrium with the wall rock. In these cases, numerical results are significantly different from the dike model, and two basic assumptions of the dike model, self-similar growth and a uniform pressure gradient, are shown to be false. Additionally, we apply the finite-element model to provide two new constraints on the Fort Foster coseismic environment: a lower limit on the initial melt temperature of 1400 *C, and either significant coseismic wall rock softening or high transient tensile stress.

  2. At the Borders, on the Edge: Use of Injected Methamphetamine in Tijuana and Ciudad Juarez, Mexico

    PubMed Central

    Ramos, Rebeca; Brouwer, Kimberly C.; Firestone-Cruz, Michelle; Pollini, Robin A.; Strathdee, Steffanie A.; Fraga, Miguel A.; Patterson, Thomas L.

    2009-01-01

    Injection drug use is of increasing concern along the US–Mexico border where Tijuana and Ciudad (Cd.) Juarez are located. Methamphetamine has long been manufactured and trafficked through Mexico, with low rates of use within Mexico. With methamphetamine use now considered epidemic in the United States, and with associated individual and community harms such as HIV, STDs, domestic violence and crime, there is concern that rates of methamphetamine in the Northwestern border regions of Mexico may be rising. We conducted a qualitative study to explore the context of injection drug use in Tijuana and Cd. Juarez and included questions about methamphetamine. Guided in-depth interviews were conducted with 10 male and 10 female injection drug users (IDUs) in Tijuana and 15 male and 8 female IDUs in Cd. Juarez (total N = 43). Topics included types of drug used, injection settings, access to sterile needles and environmental influences. Interviews were taped, transcribed verbatim and translated. Content analysis was conducted to identify themes. The median age of injectors in both cities was 30. Methamphetamine was injected, either alone or in combination with other drugs by injectors in both Tijuana (85%) and Cd. Juarez (17%) in the 6 months previous to interview. Several important themes emerged with respect to methamphetamine use in both cities. IDUs in both cities considered methamphetamine to be widely used in Tijuana and infrequently used in Cd. Juarez, while the converse was true for cocaine. In both cities, stimulant (either cocaine or methamphetamine) use was widespread, with 85% in Tijuana and 83% in Cd. Juarez reporting current use of a stimulant, most often used in combination with heroin. Some injectors reported knowledge of local manufacturing and one had direct experience in making methamphetamine; some cross-border use and trafficking was reported. Injectors reported concerns or experience with serious health effects of methamphetamine such as abscesses or tuberculosis. Our study suggests that injected methamphetamine is entrenched in Tijuana and that Cd. Juarez may experience a methamphetamine outbreak in the future. Robust targeted interventions for both injected and non-injected methamphetamine should be a public health priority in both cities. PMID:17516170

  3. Pharmacy practice and injection use in community pharmacies in Pokhara city, Western Nepal.

    PubMed

    Gyawali, Sudesh; Rathore, Devendra Singh; Adhikari, Kishor; Shankar, Pathiyil Ravi; K C, Vikash Kumar; Basnet, Suyog

    2014-04-28

    Community pharmacies in Nepal serve as the first point of contact for the public with the health care system and provide many services, including administering injections. However, there is a general lack of documented information on pharmacy practice and injection use in these pharmacies. This study aims to provide information about pharmacy practice in terms of service and drug information sources, and injection use, including the disposal of used injection equipment. A mixed method, cross-sectional study was conducted in 54 community pharmacies in Pokhara city. Data was collected using a pre-tested, semi-structured questionnaire, and also by the direct observation of pharmacy premises. Interviews with pharmacy supervisors (proprietors) were also conducted to obtain additional information about certain points. Interviews were carried out with 54 pharmacy supervisors/proprietors (47 males and 7 females) with a mean age and experience of 35.54 and 11.73 years, respectively. Approximately a half of the studied premises were operated by legally recognized pharmaceutical personnel, while the remainder was run by people who did not have the legal authority to operate pharmacies independently. About a quarter of pharmacies were providing services such as the administration of injections, wound dressing, and laboratory and consultation services in addition to medicine dispensing and counseling services. The 'Current Index of Medical Specialties' was the most commonly used source for drug information. Almost two-thirds of patients visiting the pharmacies were dispensed medicines without a prescription. Tetanus Toxoid, Depot-Medroxy Progesterone Acetate, and Diclofenac were the most commonly-used/administered injections. Most of the generated waste (including sharps) was disposed of in a municipal dump without adhering to the proper procedures for the disposal of hazardous waste. Community pharmacies in Pokhara offer a wide range of services including, but not limited to, drug dispensing, counseling, dressing of wounds, and administering injections. However, the lack of qualified staff and adequate infrastructure may be compromising the quality of the services offered. Therefore, the health authorities should take the necessary measures to upgrade the qualifications of the personnel and to improve the infrastructure for the sake of good pharmacy practice and the safer use of injections.

  4. At the borders, on the edge: use of injected methamphetamine in Tijuana and Ciudad Juarez, Mexico.

    PubMed

    Case, Patricia; Patricia, Case; Ramos, Rebeca; Brouwer, Kimberly C; Firestone-Cruz, Michelle; Pollini, Robin A; Fraga, Miguel A; Patterson, Thomas L; Strathdee, Steffanie A

    2008-02-01

    Injection drug use is of increasing concern along the US-Mexico border where Tijuana and Ciudad (Cd.) Juarez are located. Methamphetamine has long been manufactured and trafficked through Mexico, with low rates of use within Mexico. With methamphetamine use now considered epidemic in the United States, and with associated individual and community harms such as HIV, STDs, domestic violence and crime, there is concern that rates of methamphetamine in the Northwestern border regions of Mexico may be rising. We conducted a qualitative study to explore the context of injection drug use in Tijuana and Cd. Juarez and included questions about methamphetamine. Guided in-depth interviews were conducted with 10 male and 10 female injection drug users (IDUs) in Tijuana and 15 male and 8 female IDUs in Cd. Juarez (total N = 43). Topics included types of drug used, injection settings, access to sterile needles and environmental influences. Interviews were taped, transcribed verbatim and translated. Content analysis was conducted to identify themes. The median age of injectors in both cities was 30. Methamphetamine was injected, either alone or in combination with other drugs by injectors in both Tijuana (85%) and Cd. Juarez (17%) in the 6 months previous to interview. Several important themes emerged with respect to methamphetamine use in both cities. IDUs in both cities considered methamphetamine to be widely used in Tijuana and infrequently used in Cd. Juarez, while the converse was true for cocaine. In both cities, stimulant (either cocaine or methamphetamine) use was widespread, with 85% in Tijuana and 83% in Cd. Juarez reporting current use of a stimulant, most often used in combination with heroin. Some injectors reported knowledge of local manufacturing and one had direct experience in making methamphetamine; some cross-border use and trafficking was reported. Injectors reported concerns or experience with serious health effects of methamphetamine such as abscesses or tuberculosis. Our study suggests that injected methamphetamine is entrenched in Tijuana and that Cd. Juarez may experience a methamphetamine outbreak in the future. Robust targeted interventions for both injected and non-injected methamphetamine should be a public health priority in both cities.

  5. Factors associated with pathways toward concurrent sex work and injection drug use among female sex workers who inject drugs in northern Mexico.

    PubMed

    Morris, Meghan D; Lemus, Hector; Wagner, Karla D; Martinez, Gustavo; Lozada, Remedios; Gómez, Rangel María Gudelia; Strathdee, Steffanie A

    2013-01-01

    To identify factors associated with time to initiation of (i) sex work prior to injecting drugs initiation; (ii) injection drug use prior to sex work initiation; and (iii) concurrent sex work and injection drug use (i.e. initiated at the same age) among female sex workers who currently inject drugs (FSW-IDU). Parametric survival analysis of baseline data for time to initiation event. Tijuana and Ciudad Juarez situated on the Mexico-US border. A total of 557 FSW-IDUs aged ≥18 years. Interview-administered surveys assessing context of sex work and injection drug use initiation. Nearly half (n = 258) initiated sex work prior to beginning to inject, a third (n = 163) initiated injection first and a quarter (n = 136) initiated both sex work and injection drug use concurrently. Low education and living in Ciudad Juarez accelerated time to sex work initiation. Being from a southern Mexican state and initiating drug use with inhalants delayed the time to first injection drug use. Having an intimate partner encourage entry into sex work and first injecting drugs to deal with depression accelerated time to initiating sex work and injection concurrently. Early physical abuse accelerated time to initiating sex work and injection, and substantially accelerated time to initiation of both behaviors concurrently. Among female sex workers who currently inject drugs in two Mexican-US border cities, nearly half appear to initiate sex work prior to beginning to inject, nearly one-third initiate injection drug use before beginning sex work and one-quarter initiate both behaviors concurrently. Predictors of these three trajectories differ, and this provides possible modifiable targets for prevention. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.

  6. Factors associated with pathways toward concurrent sex work and injection drug use among female sex workers who inject drugs in Northern Mexico

    PubMed Central

    Morris, Meghan D.; Lemus, Hector; Wagner, Karla D.; Martinez, Gustavo; Lozada, Remedios; Gómez, Rangel María Gudelia; Strathdee, Steffanie A.

    2012-01-01

    Aims To identify factors associated with time to initiation of (1) sex work prior to injecting drugs, (2) injection drug use, and (3) concurrent sex work and injection drug use (i.e., initiated at the same age) among female sex workers who currently inject drugs (FSW-IDU). Design Parametric survival analysis of baseline data for time to initiation event. Setting Tijuana and Ciudad Juarez situated on the Mexico-U.S. border. Participants 575 FSW-IDUs aged ≥18. Measurements Interview-administered surveys assessing context of sex work and injection drug use initiation. Findings Nearly half (n=256) initiated sex work prior to beginning to inject, a third (n=163) initiated injection first, and a quarter (n=136) initiated both sex work and injection drug use concurrently. Low education and living in Ciudad Juarez accelerated time to sex work initiation. Being from a southern Mexican state and initiating drug use with inhalants delayed the time to first injection drug use. Having an intimate partner encourage entry into sex work and first injecting drugs to deal with depression accelerated time to initiating sex work and injection concurrently. Early physical abuse accelerated time to initiating sex work and injection, and substantially accelerated time to initiation of both behaviors concurrently. Conclusions Among female sex workers who currently inject drugs in two Mexican-US border cities, nearly half appear to initiate sex work prior to beginning to inject, nearly one third initiate injection drug use before beginning sex work, and one quarter initiate both behaviors concurrently. Predictors of these three trajectories differ, and this provides possible modifiable targets for prevention. PMID:22775475

  7. Gaseous Emissions Results from a Three-Cup Flametube Test of a Third-Generation Swirl-Venturi Lean Direct Injection Combustion Concept

    NASA Technical Reports Server (NTRS)

    Tacina, Kathleen M.; Podboy, Derek P.; Lee, Phil; Dam, Bidhan

    2017-01-01

    This paper summarizes the development of lean direct injection (LDI) combustor technology at, or in collaboration with, the NASA Glenn Research Center. These configurations differ mainly in fuel-air mixing strategy. The paper reviews the NOx performance and operability characteristics of multiple LDI configurations tested at NASA Glenn.

  8. Vertical-Deformation, Water-Level, Microgravity, Geodetic, Water-Chemistry, and Flow-Rate Data Collected During Injection, Storage, and Recovery Tests at Lancaster, Antelope Valley, California, September 1995 Through September 1998

    DTIC Science & Technology

    2002-01-01

    63 Tiltmeter Network...71 34. Map showing locations of tiltmeters used to monitor the magnitude and direction of ground tilting associated with direct well injection...during cycle 2 at Lancaster, Antelope Valley, California .............................. 72 35. Photograph showing typical tiltmeter installation for

  9. Flex-Fuel Two-Stroke Snowmobile: Development of a Flex-Fuel, Two-Stroke, Direct-Injection Snowmobile for Use in the Clean Snowmobile Challenge and National Parks

    DOT National Transportation Integrated Search

    2009-09-01

    The University of Idaho's entry into the 2009 SAE Clean Snowmobile Challenge (CSC) was a semi-direct-injection (SDI) two-stroke powered REV-XP snowmobile modified to use flex fuel. The flex fuel engine produces stock engine power on any blend of etha...

  10. Transcranial direct current stimulation transiently increases the blood-brain barrier solute permeability in vivo

    NASA Astrophysics Data System (ADS)

    Shin, Da Wi; Khadka, Niranjan; Fan, Jie; Bikson, Marom; Fu, Bingmei M.

    2016-03-01

    Transcranial Direct Current Stimulation (tDCS) is a non-invasive electrical stimulation technique investigated for a broad range of medical and performance indications. Whereas prior studies have focused exclusively on direct neuron polarization, our hypothesis is that tDCS directly modulates endothelial cells leading to transient changes in blood-brain-barrier (BBB) permeability (P) that are highly meaningful for neuronal activity. For this, we developed state-of-the-art imaging and animal models to quantify P to various sized solutes after tDCS treatment. tDCS was administered using a constant current stimulator to deliver a 1mA current to the right frontal cortex of rat (approximately 2 mm posterior to bregma and 2 mm right to sagittal suture) to obtain similar physiological outcome as that in the human tDCS application studies. Sodium fluorescein (MW=376), or FITC-dextrans (20K and 70K), in 1% BSA mammalian Ringer was injected into the rat (SD, 250-300g) cerebral circulation via the ipsilateral carotid artery by a syringe pump at a constant rate of ~3 ml/min. To determine P, multiphoton microscopy with 800-850 nm wavelength laser was applied to take the images from the region of interest (ROI) with proper microvessels, which are 100-200 micron below the pia mater. It shows that the relative increase in P is about 8-fold for small solute, sodium fluorescein, ~35-fold for both intermediate sized (Dex-20k) and large (Dex-70k) solutes, 10 min after 20 min tDCS pretreatment. All of the increased permeability returns to the control after 20 min post treatment. The results confirmed our hypothesis.

  11. Transient neurologic deficit after spinal anesthesia: local anesthetic maldistribution with pencil point needles?

    PubMed

    Beardsley, D; Holman, S; Gantt, R; Robinson, R A; Lindsey, J; Bazaral, M; Stewart, S F; Stevens, R A

    1995-08-01

    Recent reports of transient neurologic deficits have raised concern about the potential toxicity of single-dose spinal 5% lidocaine in 7.5% dextrose. Two cases of volunteers who experienced minor local sensory deficits after slow (60 s) injections of 2 mL 5% lidocaine via Whitacre needles are described. One case was a result of a double injection because of a "failed" block. It seemed possible that the neurologic deficit in these cases resulted from neurotoxicity associated with maldistribution of local anesthetic. Using an in vitro spinal model, we investigated drug distribution resulting from injections through side-port spinal needles to determine whether the use of these needles could result in high local concentrations of hyperbaric solutions. A spinal canal model was fabricated using human magnetic resonance measurements. The model was placed in a surgical supine position and filled with lactated Ringer's solution to simulate the specific gravity of cerebral spinal fluid at 22 degrees C. A hyperbaric solution of phthalocyanine blue dye and dextrose (SG 1.042), simulating the anesthetic, was injected through three different needles (27-gauge 4 11/16-in. Whitacre, 25-gauge 3 1/2-in. Whitacre, 25-gauge 3 1/2-in. Quincke). Triplicate injections were done at rapid (2 mL/10 s) and slow (2 mL/60 s) rates, with needle side ports oriented in a sacral and cephalad direction. At slow rates of injection, using 27- or 25-gauge sacrally directed Whitacre needles, injections showed evidence of maldistribution with extrapolated peak sacral lidocaine concentrations reaching 2.0%. In contrast, distribution after slow injection through sacrally directed Quincke needles was uniform.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Delivering direct acting antiviral therapy for hepatitis C to highly marginalised and current drug injecting populations in a targeted primary health care setting.

    PubMed

    Read, Phillip; Lothian, Rebecca; Chronister, Karen; Gilliver, Rosie; Kearley, John; Dore, Gregory J; van Beek, Ingrid

    2017-09-01

    The Kirketon Road Centre (KRC) is a community-based public health facility in Sydney, Australia, that provides healthcare to people who inject drugs (PWID), including hepatitis C virus (HCV) treatment. From March 2016, the Australian Government has provided access to direct-acting antivirals (DAA) for adults with chronic HCV, without liver disease stage or drug and alcohol use restrictions. The aim of this study was to report DAA treatment outcomes among highly marginalised PWID treated at KRC. All individuals initiating DAA treatment at KRC and due for sustained virological response (SVR12) testing by end 2016 were included. Demographic, drug use behaviour, clinical parameters, adherence support and HCV treatment outcomes, including SVR12 were recorded. Factors associated with SVR12, loss-to-follow-up (LTFU) and delayed SVR12 testing (>SVR16) were assessed by multivariate analysis. SVR12 was assessed by intention-to-treat (ITT) and modified ITT, the latter excluding individuals with an end-of-treatment response (ETR) but no SVR12 assessment, or who postponed their SVR12 date due to treatment interruption. A total of 72 individuals commencing DAAs were included, of whom 67% were male, 30% homeless, and 32% Aboriginal. All had a lifetime history of injecting drug use, with 75% having injected within the last six months, and 44% injecting at least weekly; 25% were also enrolled in opioid substitution therapy. Twenty-five (35%) individuals elected to receive an enhanced adherence-support package. Fifty-nine of 72 (82%) individuals due for SVR12 attended for testing, of whom 59/59 (100%) achieved SVR, providing an ITT SVR of 82%. A further six individuals had undetectable HCV RNA at ETR, but no SVR12 assessment, and one interrupted treatment, providing a mITT SVR of 91%. Homelessness was associated with delayed SVR12 testing (OR 24.9 95%CI 2.9-212.8, p=0.003). There was no association between LTFU and frequency of drug injection, last drug injected, or planned treatment duration. This study confirms that PWID can be successfully treated for HCV in a real-world setting using an integrated primary health care model. It also demonstrates feasibility to upscale DAA therapy in high-risk PWID populations, with potential individual and population-level public health benefits. Enhanced efforts are required to optimise post-treatment follow-up. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Selective etching of injection molded zirconia-toughened alumina: Towards osseointegrated and antibacterial ceramic implants.

    PubMed

    Flamant, Quentin; Caravaca, Carlos; Meille, Sylvain; Gremillard, Laurent; Chevalier, Jérôme; Biotteau-Deheuvels, Katia; Kuntz, Meinhard; Chandrawati, Rona; Herrmann, Inge K; Spicer, Christopher D; Stevens, Molly M; Anglada, Marc

    2016-12-01

    Due to their outstanding mechanical properties and excellent biocompatibility, zirconia-toughened alumina (ZTA) ceramics have become the gold standard in orthopedics for the fabrication of ceramic bearing components over the last decade. However, ZTA is bioinert, which hampers its implantation in direct contact with bone. Furthermore, periprosthetic joint infections are now the leading cause of failure for joint arthroplasty prostheses. To address both issues, an improved surface design is required: a controlled micro- and nano-roughness can promote osseointegration and limit bacterial adhesion whereas surface porosity allows loading and delivery of antibacterial compounds. In this work, we developed an integrated strategy aiming to provide both osseointegrative and antibacterial properties to ZTA surfaces. The micro-topography was controlled by injection molding. Meanwhile a novel process involving the selective dissolution of zirconia (selective etching) was used to produce nano-roughness and interconnected nanoporosity. Potential utilization of the porosity for loading and delivery of antibiotic molecules was demonstrated, and the impact of selective etching on mechanical properties and hydrothermal stability was shown to be limited. The combination of injection molding and selective etching thus appears promising for fabricating a new generation of ZTA components implantable in direct contact with bone. Zirconia-toughened alumina (ZTA) is the current gold standard for the fabrication of orthopedic ceramic components. In the present work, we propose an innovative strategy to provide both osseointegrative and antibacterial properties to ZTA surfaces: we demonstrate that injection molding allows a flexible design of surface micro-topography and can be combined with selective etching, a novel process that induces nano-roughness and surface interconnected porosity without the need for coating, avoiding reliability issues. These surface modifications have the potential to improve osseointegration. Furthermore, our results show that the porosity can be used for drug delivery and suggest that the etched surface could reduce bacterial adhesion. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System.

    PubMed

    Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui

    2016-01-20

    To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input-output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy.

  15. Testing the Paleolithic-human-warfare hypothesis of blood-injection phobia in the Baltimore ECA Follow-up Study--towards a more etiologically-based conceptualization for DSM-V.

    PubMed

    Bracha, H Stefan; Bienvenu, O Joseph; Eaton, William W

    2007-01-01

    The research agenda for the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) has emphasized the need for a more etiologically-based classification system, especially for stress-induced and fear-circuitry disorders. Testable hypotheses based on threats to survival during particular segments of the human era of evolutionary adaptedness (EEA) may be useful in developing a brain-evolution-based classification for the wide spectrum of disorders ranging from disorders which are mostly overconsolidationally such as PTSD, to fear-circuitry disorders which are mostly innate such as specific phobias. The recently presented Paleolithic-human-warfare hypothesis posits that blood-injection phobia can be traced to a "survival (fitness) enhancing" trait, which evolved in some females of reproductive-age during the millennia of intergroup warfare in the Paleolithic EEA. The study presented here tests the key a priori prediction of this hypothesis-that current blood-injection phobia will have higher prevalence in reproductive-age women than in post-menopausal women. The Diagnostic Interview Schedule (version III-R), which included a section on blood and injection phobia, was administered to 1920 subjects in the Baltimore ECA Follow-up Study. Data on BII phobia was available on 1724 subjects (1078 women and 646 males). The prevalence of current blood-injection phobia was 3.3% in women aged 27-49 and 1.1% in women over age 50 (OR 3.05, 95% CI 1.20-7.73). [The corresponding figures for males were 0.8% and 0.7% (OR 1.19, 95% CI 0.20-7.14)]. This epidemiological study provides one source of support for the Paleolithic-human-warfare (Paleolithic-threat) hypothesis regarding the evolutionary (distal) etiology of bloodletting-related phobia, and may contribute to a more brain-evolution-based re-conceptualization and classification of this fear circuitry-related trait for the DSM-V. In addition, the finding reported here may also stimulate new research directions on more proximal mechanisms which can lead to the development of evidence-based psychopharmacological preventive interventions for this common and sometimes disabling fear-circuitry disorder.

  16. Hepatitis Infection in the Treatment of Opioid Dependence and Abuse

    PubMed Central

    Kresina, Thomas F; Sylvestre, Diana; Seeff, Leonard; Litwin, Alain H; Hoffman, Kenneth; Lubran, Robert; Clark, H Westley

    2008-01-01

    Many new and existing cases of viral hepatitis infections are related to injection drug use. Transmission of these infections can result directly from the use of injection equipment that is contaminated with blood containing the hepatitis B or C virus or through sexual contact with an infected individual. In the latter case, drug use can indirectly contribute to hepatitis transmission through the dis-inhibited at-risk behavior, that is, unprotected sex with an infected partner. Individuals who inject drugs are at-risk for infection from different hepatitis viruses, hepatitis A, B, or C. Those with chronic hepatitis B virus infection also face additional risk should they become co-infected with hepatitis D virus. Protection from the transmission of hepatitis viruses A and B is best achieved by vaccination. For those with a history of or who currently inject drugs, the medical management of viral hepatitis infection comprising screening, testing, counseling and providing care and treatment is evolving. Components of the medical management of hepatitis infection, for persons considering, initiating, or receiving pharmacologic therapy for opioid addiction include: testing for hepatitis B and C infections; education and counseling regarding at-risk behavior and hepatitis transmission, acute and chronic hepatitis infection, liver disease and its care and treatment; vaccination against hepatitis A and B infection; and integrative primary care as part of the comprehensive treatment approach for recovery from opioid abuse and dependence. In addition, participation in a peer support group as part of integrated medical care enhances treatment outcomes. Liver disease is highly prevalent in patient populations seeking recovery from opioid addiction or who are currently receiving pharmacotherapy for opioid addiction. Pharmacotherapy for opioid addiction is not a contraindication to evaluation, care, or treatment of liver disease due to hepatitis virus infection. Successful pharmacotherapy for opioid addiction stabilizes patients and improves patient compliance to care and treatment regimens as well as promotes good patient outcomes. Implementation and integration of effective hepatitis prevention programs, care programs, and treatment regimens in concert with the pharmacological therapy of opioid addiction can reduce the public health burdens of hepatitis and injection drug use. PMID:25977607

  17. Current Drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulconer, D.W

    2004-03-15

    Certain devices aimed at magnetic confinement of thermonuclear plasma rely on the steady flow of an electric current in the plasma. In view of the dominant place it occupies in both the world magnetic-confinement fusion effort and the author's own activity, the tokamak toroidal configuration is selected as prototype for discussing the question of how such a current can be maintained. Tokamaks require a stationary toroidal plasma current, this being traditionally provided by a pulsed magnetic induction which drives the plasma ring as the secondary of a transformer. Since this mechanism is essentially transient, and steady-state fusion reactor operation hasmore » manifold advantages, significant effort is now devoted to developing alternate steady-state means of generating toroidal current. These methods are classed under the global heading of 'noninductive current drive' or simply 'current drive', generally, though not exclusively, employing the injection of waves and/or toroidally directed particle beams. In what follows we highlight the physical mechanisms underlying surprisingly various approaches to driving current in a tokamak, downplaying a number of practical and technical issues. When a significant data base exists for a given method, its experimental current drive efficiency and future prospects are detailed.« less

  18. Transfer impedance measurements of the space shuttle Solid Rocket Motor (SRM) joints, wire meshes and a carbon graphite motor case

    NASA Technical Reports Server (NTRS)

    Papazian, Peter B.; Perala, Rodney A.; Curry, John D.; Lankford, Alan B.; Keller, J. David

    1988-01-01

    Using three different current injection methods and a simple voltage probe, transfer impedances for Solid Rocket Motor (SRM) joints, wire meshes, aluminum foil, Thorstrand and a graphite composite motor case were measured. In all cases, the surface current distribution for the particular current injection device was calculated analytically or by finite difference methods. The results of these calculations were used to generate a geometric factor which was the ratio of total injected current to surface current density. The results were validated in several ways. For wire mesh measurements, results showed good agreement with calculated results for a 14 by 18 Al screen. SRM joint impedances were independently verified. The filiment wound case measurement results were validated only to the extent that their curve shape agrees with the expected form of transfer impedance for a homogeneous slab excited by a plane wave source.

  19. Dark current in multilayer stabilized amorphous selenium based photoconductive x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, Joel B.; Belev, George; Kasap, Safa O.

    2012-07-01

    We report on experimental results which show that the dark current in n-i-p structured, amorphous selenium films is independent of i-layer thickness in samples with consistently thick blocking layers. We have observed, however, a strong dependence on the n-layer thickness and positive contact metal chosen. These results indicate that the dominant source of the dark current is carrier injection from the contacts and any contribution from carriers thermally generated in the bulk of the photoconductive layer is negligible. This conclusion is supported by a description of the dark current transients at different applied fields by a model which assumes onlymore » carrier emission over a Schottky barrier. This model also predicts that while hole injection is initially dominant, some time after the application of the bias, electron injection may become the dominant source of dark current.« less

  20. The role of satellite directional wave spectra for the improvement of the ocean-waves coupling

    NASA Astrophysics Data System (ADS)

    Aouf, Lotfi; Hauser, Danièle; Chapron, Bertrand

    2017-04-01

    Swell waves are well captured by the Synthetic Aperture Radar (SAR) which provides the directional wave spectra for waves roughly larger than 200 m. Since the launch of sentinel-1A and 1B SAR directional wave spectra are available to improve the swell wave forecasting and the coupling processes at the air-sea interface. Moreover next year CFOSAT mission will provide directional wave spectra for waves with wavelengths comprised between 70 to 500 m. This study aims to evaluate the assimilation of SAR and synthetic CFOSAT wave spectra on the coupling between the wave model MFWAM and the ocean model NEMO. Three coupling processes as described in Breivik et al. (2014) of Stokes-Coriolis forcing, the ocean side stress and the turbulence injected by the wave breaking in the ocean mixed layer have been used. a coupling run is performed with and without assimilation of directional wave spectra. the impact of SAR wave data on key parameters such as surface sea temperature, currents and salinity is investigated. Particular attention is carried out for ocean areas with swell dominant wave climate.

  1. Thermal quench mitigation and current quench control by injection of mixed species shattered pellets in DIII-D

    DOE PAGES

    Shiraki, D.; Commaux, N.; Baylor, L. R.; ...

    2016-06-27

    Injection of large shattered pellets composed of variable quantities of the main ion species (deuterium) and high-Z impurities (neon) in the DIII-D tokamak demonstrate control of thermal quench (TQ) and current quench (CQ) properties in mitigated disruptions. As the pellet composition is varied, TQ radiation fractions increase continuously with the quantity of radiating impurity in the pellet, with a corresponding decrease in divertor heating. Post-TQ plasma resistivities increase as a result of the higher radiation fraction, allowing control of current decay timescales based on the pellet composition. Magnetic reconstructions during the CQ show that control of the current decay ratemore » allows continuous variation of the minimum safety factor during the vertically unstable disruption, reducing the halo current fraction and resulting vessel displacement. Both TQ and CQ characteristics are observed to saturate at relatively low quantities of neon, indicating that effective mitigation of disruption loads by shattered pellet injection (SPI) can be achieved with modest impurity quantities, within injection quantities anticipated for ITER. In conclusion, this mixed species SPI technique provides apossible approach for tuning disruption properties to remain within the limited ranges allowed in the ITER design.« less

  2. Numerical Analysis of the Temperature Impact on Performance of GaN-Based 460-nm Light-Emitting Diode.

    PubMed

    Tawfik, Wael Z; Lee, June Key

    2018-03-01

    The influence of temperature on the characteristics of a GaN-based 460-nm light-emitting diode (LED) prepared on sapphire substrate was simulated using the SiLENSe and SpeCLED software programs. High temperatures impose negative effects on the performance of GaN-based LEDs. As the temperature increases, electrons acquire higher thermal energies, and therefore LEDs may suffer more from high-current loss mechanisms, which in turn causes a reduction in the radiative recombination rate in the active region. The internal quantum efficiency was reduced by about 24% at a current density of 35 A/cm2, and the electroluminescence spectral peak wavelength was redshifted. The LED operated at 260 K and exhibited its highest light output power of ~317.5 mW at a maximum injection current of 350 mA, compared to 212.2 mW for an LED operated at 400 K. However, increasing temperature does not cause a droop in efficiency under high injection conditions. The peak efficiency at 1 mA of injection current decreases more rapidly by ~15% with increasing temperature from 260 to 400 K than the efficiency at high injection current of 350 mA by ~11%.

  3. Thermal quench mitigation and current quench control by injection of mixed species shattered pellets in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiraki, D.; Commaux, N.; Baylor, L. R.

    Injection of large shattered pellets composed of variable quantities of the main ion species (deuterium) and high-Z impurities (neon) in the DIII-D tokamak demonstrate control of thermal quench (TQ) and current quench (CQ) properties in mitigated disruptions. As the pellet composition is varied, TQ radiation fractions increase continuously with the quantity of radiating impurity in the pellet, with a corresponding decrease in divertor heating. Post-TQ plasma resistivities increase as a result of the higher radiation fraction, allowing control of current decay timescales based on the pellet composition. Magnetic reconstructions during the CQ show that control of the current decay ratemore » allows continuous variation of the minimum safety factor during the vertically unstable disruption, reducing the halo current fraction and resulting vessel displacement. Both TQ and CQ characteristics are observed to saturate at relatively low quantities of neon, indicating that effective mitigation of disruption loads by shattered pellet injection (SPI) can be achieved with modest impurity quantities, within injection quantities anticipated for ITER. In conclusion, this mixed species SPI technique provides apossible approach for tuning disruption properties to remain within the limited ranges allowed in the ITER design.« less

  4. Thermal quench mitigation and current quench control by injection of mixed species shattered pellets in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiraki, D.; Commaux, N.; Baylor, L. R.

    Injection of large shattered pellets composed of variable quantities of the main ion species (deuterium) and high-Z impurities (neon) in the DIII-D tokamak demonstrates control of thermal quench (TQ) and current quench (CQ) properties in mitigated disruptions. As the pellet composition is varied, TQ radiation fractions increase continuously with the quantity of radiating impurity in the pellet, with a corresponding decrease in divertor heating. Post-TQ plasma resistivities increase as a result of the higher radiation fraction, allowing control of current decay timescales based on the pellet composition. Magnetic reconstructions during the CQ show that control of the current decay ratemore » allows continuous variation of the minimum safety factor during the vertically unstable disruption, reducing the halo current fraction and resulting vessel displacement. Both TQ and CQ characteristics are observed to saturate at relatively low quantities of neon, indicating that effective mitigation of disruption loads by shattered pellet injection (SPI) can be achieved with modest impurity quantities, within injection quantities anticipated for ITER. This mixed species SPI technique provides a possible approach for tuning disruption properties to remain within the limited ranges allowed in the ITER design.« less

  5. Frequency-tunable superconducting resonators via nonlinear kinetic inductance

    NASA Astrophysics Data System (ADS)

    Vissers, M. R.; Hubmayr, J.; Sandberg, M.; Chaudhuri, S.; Bockstiegel, C.; Gao, J.

    2015-08-01

    We have designed, fabricated, and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injecting a DC through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Qi > 180 000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition, it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.

  6. Transport of a high brightness proton beam through the Munich tandem accelerator

    NASA Astrophysics Data System (ADS)

    Moser, M.; Greubel, C.; Carli, W.; Peeper, K.; Reichart, P.; Urban, B.; Vallentin, T.; Dollinger, G.

    2015-04-01

    Basic requirement for ion microprobes with sub-μm beam focus is a high brightness beam to fill the small phase space usually accepted by the ion microprobe with enough ion current for the desired application. We performed beam transport simulations to optimize beam brightness transported through the Munich tandem accelerator. This was done under the constraint of a maximum ion current of 10 μA that is allowed to be injected due to radiation safety regulations and beam power constrains. The main influence of the stripper foil in conjunction with intrinsic astigmatism in the beam transport on beam brightness is discussed. The calculations show possibilities for brightness enhancement by using astigmatism corrections and asymmetric filling of the phase space volume in the x- and y-direction.

  7. Direct EIT reconstructions of complex admittivities on a chest-shaped domain in 2-D.

    PubMed

    Hamilton, Sarah J; Mueller, Jennifer L

    2013-04-01

    Electrical impedance tomography (EIT) is a medical imaging technique in which current is applied on electrodes on the surface of the body, the resulting voltage is measured, and an inverse problem is solved to recover the conductivity and/or permittivity in the interior. Images are then formed from the reconstructed conductivity and permittivity distributions. In the 2-D geometry, EIT is clinically useful for chest imaging. In this work, an implementation of a D-bar method for complex admittivities on a general 2-D domain is presented. In particular, reconstructions are computed on a chest-shaped domain for several realistic phantoms including a simulated pneumothorax, hyperinflation, and pleural effusion. The method demonstrates robustness in the presence of noise. Reconstructions from trigonometric and pairwise current injection patterns are included.

  8. Progress and issues for high-speed vertical cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Lear, Kevin L.; Al-Omari, Ahmad N.

    2007-02-01

    Extrinsic electrical, thermal, and optical issues rather than intrinsic factors currently constrain the maximum bandwidth of directly modulated vertical cavity surface emitting lasers (VCSELs). Intrinsic limits based on resonance frequency, damping, and K-factor analysis are summarized. Previous reports are used to compare parasitic circuit values and electrical 3dB bandwidths and thermal resistances. A correlation between multimode operation and junction heating with bandwidth saturation is presented. The extrinsic factors motivate modified bottom-emitting structures with no electrical pads, small mesas, copper plated heatsinks, and uniform current injection. Selected results on high speed quantum well and quantum dot VCSELs at 850 nm, 980 nm, and 1070 nm are reviewed including small-signal 3dB frequencies up to 21.5 GHz and bit rates up to 30 Gb/s.

  9. 830-nm Polarization Controlled Lasing of InGaAs Quantum Wire Vertical-Cavity Surface-Emitting Lasers Grown on (775)B GaAs Substrates by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Higuchi, Yu; Osaki, Shinji; Sasahata, Yoshifumi; Kitada, Takahiro; Shimomura, Satoshi; Ogura, Mutsuo; Hiyamizu, Satoshi

    2007-02-01

    We report the first demonstration of room temperature (RT) current injection lasing of vertical-cavity surface-emitting lasers (VCSELs), with self-organized InGaAs/(GaAs)6(AlAs)1 quantum wires (QWRs) in their active region, grown on (775)B-oriented GaAs substrates by molecular beam epitaxy. A (775)B InGaAs QWR-VCSEL with an aperture diameter of 4 μm lased at a wavelength of 829.7 nm and a threshold current of 0.7 mA at RT. The light output was linearly polarized in the direction parallel to the QWRs due to optical anisotropy of the self-organized (775)B InGaAs QWRs.

  10. Decreased Odds of Injection Risk Behavior Associated With Direct Versus Indirect Use of Syringe Exchange: Evidence From Two California Cities.

    PubMed

    Behrends, Czarina N; Li, Chin-Shang; Gibson, David R

    2017-07-29

    While there is substantial evidence that syringe exchange programs (SEPs) are effective in preventing HIV among people who inject drugs (PWID), nearly all the evidence comes from PWID who obtain syringes from an SEP directly. Much less is known about the benefits of secondary exchange to PWID who get syringes indirectly from friends or acquaintances who visit an SEP for them. We evaluated the effectiveness of direct versus indirect syringe exchange in reducing HIV-related high-risk injecting behavior among PWID in two separate studies conducted in Sacramento and San Jose, California, cities with quite different syringe exchange models. In both studies associations between direct and indirect syringe exchange and self-reported risk behavior were examined with multivariable logistic regression models. Study 1 assessed effects of a "satellite" home-delivery syringe exchange in Sacramento, while Study 2 evaluated a conventional fixed-site exchange in San Jose. Multivariable analyses revealed 95% and 69% reductions, respectively, in high-risk injection associated with direct use of the SEPs in Sacramento and San Jose, and a 46% reduction associated with indirect use of the SEP in Sacramento. Conclusions/Importance: The very large effect of direct SEP use in Sacramento was likely due in part to home delivery of sterile syringes. While more modest effects were associated with indirect use, such use nevertheless is valuable in reducing the risk of HIV transmission of PWID who are unable or unwilling to visit a syringe exchange.

  11. Current injection and transport in polyfluorene

    NASA Astrophysics Data System (ADS)

    Yang, Chieh-Kai; Yang, Chia-Ming; Liao, Hua-Hsien; Horng, Sheng-Fu; Meng, Hsin-Fei

    2007-08-01

    A comprehensive numerical model is established for the electrical processes in a sandwich organic semiconductor device with high carrier injection barrier. The charge injection at the anode interface with 0.8eV energy barrier is dominated by the hopping among the gap states of the semiconductor caused by disorders. The Ohmic behavior at low voltage is demonstrated to be not due to the background doping but the filaments formed by conductive clusters. In bipolar devices with low work function cathode it is shown that near the anode the electron traps significantly enhance hole injection through Fowler-Nordheim tunneling, resulting in rapid increases of the hole carrier and current in comparison with the hole-only devices.

  12. Plasma Sheet Injections into the Inner Magnetosphere: Two-way Coupled OpenGGCM-RCM model results

    NASA Astrophysics Data System (ADS)

    Raeder, J.; Cramer, W. D.; Toffoletto, F.; Gilson, M. L.; Hu, B.

    2017-12-01

    Plasma sheet injections associated with low flux tube entropy bubbles have been found to be the primary means of mass transport from the plasma sheet to the inner magnetosphere. A two-way coupled global magnetosphere-ring current model, where the magnetosphere is modeled by the OpenGGCM MHD model and the ring current is modeled by the Rice Convection Model (RCM), is used to determine the frequency of association of bubbles with injections and inward plasma transport, as well as typical injection characteristics. Multiple geomagnetic storms and quiet periods are simulated to track and characterize inward flow behavior. Dependence on geomagnetic activity levels or drivers is also examined.

  13. Development of Advanced Low Emission Injectors and High-Bandwidth Fuel Flow Modulation Valves

    NASA Technical Reports Server (NTRS)

    Mansour, Adel

    2015-01-01

    Parker Hannifin Corporation developed the 3-Zone fuel nozzle for NASA's Environmentally Responsible Aviation Program to meet NASAs target of 75 LTO NOx reduction from CAEP6 regulation. The nozzle concept was envisioned as a drop-in replacement for currently used fuel nozzle stem, and is built up from laminates to provide energetic mixing suitable for lean direct injection mode at high combustor pressure. A high frequency fuel valve was also developed to provide fuel modulation for the pilot injector. Final testing result shows the LTO NOx level falling just shy of NASAs goal at 31.

  14. Si based GeSn light emitter: mid-infrared devices in Si photonics

    NASA Astrophysics Data System (ADS)

    Yu, S. Q.; Ghetmiri, S. A.; Du, W.; Margetis, J.; Zhou, Y.; Mosleh, A.; Al-Kabi, S.; Nazzal, A.; Sun, G.; Soref, R. A.; Tolle, J.; Li, B.; Naseem, H. A.

    2015-02-01

    Ge1-xSnx/Ge thin films and Ge/Ge1-xSnx/Ge n-i-p double heterostructure (DHS) have been grown using commercially available reduced pressure chemical vapor deposition (RPCVD) reactor. The Sn compositional material and optical characteristics have been investigated. A direct bandgap GeSn material has been identified with Sn composition of 10%. The GeSn DHS samples were fabricated into LED devices. Room temperature electroluminescence spectra were studied. A maximum emission power of 28mW was obtained with 10% Sn LED under the injection current density of 800 A/cm2.

  15. Devascularization of Head and Neck Paragangliomas by Direct Percutaneous Embolization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozyer, Umut, E-mail: umut_ozyer@yahoo.com; Harman, Ali; Yildirim, Erkan

    2010-10-15

    Preoperative transarterial embolization of head and neck paragangliomas using particulate agents has proven beneficial for decreasing intraoperative blood loss. However, the procedure is often incomplete owing to extensive vascular structure and arteriovenous shunts. We report our experience with embolization of these lesions by means of direct puncture and intratumoral injection of n-butyl cyanoacrylate (NBCA) or Onyx. Ten patients aged 32-82 years who were referred for preoperative embolization of seven carotid body tumors and three jugular paragangliomas were retrospectively analyzed. Intratumoral injections were primarily performed in four cases with multiple small-caliber arterial feeders and adjunctive to transarterial embolization in six casesmore » with incomplete devascularization. Punctures were performed under ultrasound and injections were performed under roadmap fluoroscopic guidance. Detailed angiographies were performed before and after embolization procedures. Control angiograms showed complete or near-complete devascularization in all tumors. Three tumors with multiple small-caliber arterial feeders were treated with primary NBCA injections. One tumor necessitated transarterial embolization after primary injection of Onyx. Six tumors showed regional vascularization from the vasa vasorum or small-caliber branches of the external carotid artery following the transarterial approach. These regions were embolized with NBCA injections. No technical or clinical complications related to embolization procedures occurred. All except one of the tumors were surgically removed following embolization. In conclusion, preoperative devascularization with percutaneous direct injection of NBCA or Onyx is feasible, safe, and effective in head and neck paragangliomas with multiple small-caliber arterial feeders and in cases of incomplete devascularization following transarterial embolization.« less

  16. Analysis of the Electrohydrodynamic Flow in a Symmetric System of Electrodes by the Method of Dynamic Current-Voltage Characteristics

    NASA Astrophysics Data System (ADS)

    Stishkov, Yu. K.; Zakir'yanova, R. E.

    2018-04-01

    We have solved the problem of injection-type through electrohydrodynamic (EHD) flow in a closed channel. We have considered a model of a liquid with four types of ions. It is shown that a through EHD flow without internal vortices in the electrode gap is formed for the ratio 2 : 1 of the initial injection current from the electrodes in the channel. The structure of the flow in different parts of the channel and the integral characteristics of the flow have been analyzed. It is shown that for a quadratic function of injection at the electrodes, the current-voltage characteristic of the flow is also quadratic.

  17. Application of gamma ray spectrometric measurements and VLF-EM data for tracing vein type uranium mineralization

    NASA Astrophysics Data System (ADS)

    Gaafar, Ibrahim

    2015-12-01

    This study is an attempt to use the gamma ray spectrometric measurements and VLF-EM data to identify the subsurface structure and map uranium mineralization along El Sela shear zone, South Eastern Desert of Egypt. Many injections more or less mineralized with uranium and associated with alteration processes were recorded in El Sela shear zone. As results from previous works, the emplacement of these injections is structurally controlled and well defined by large shear zones striking in an ENE-WSW direction and crosscut by NW-SE to NNW-SSE fault sets. VLF method has been applied to map the structure and the presence of radioactive minerals that have been delineated by the detection of high uranium mineralization. The electromagnetic survey was carried out to detect the presence of shallow and deep conductive zones that cross the granites along ENE-WSW fracturing directions and to map its spatial distribution. The survey comprised seventy N-S spectrometry and VLF-EM profiles with 20 m separation. The resulted data were displayed as composite maps for K, eU and eTh as well as VLF-Fraser map. Twelve profiles with 100 m separation were selected for detailed description. The VLF-EM data were interpreted qualitatively as well as quantitatively using the Fraser and the Karous-Hjelt filters. Fraser filtered data and relative current density pseudo-sections indicate the presence of shallow and deep conductive zones that cross the granites along ENE-WSW shearing directions. High uranium concentrations found just above the higher apparent current-density zones that coincide with El-Sela shear zone indicate a positive relation between conductivity and uranium minerals occurrence. This enables to infer that the anomalies detected by VLF-EM data are due to the highly conductive shear zone enriched with uranium mineralization extending for more than 80 m.

  18. Validation of Kinetic-Turbulent-Neoclassical Theory for Edge Intrinsic Rotation in DIII-D Plasmas

    NASA Astrophysics Data System (ADS)

    Ashourvan, Arash

    2017-10-01

    Recent experiments on DIII-D with low-torque neutral beam injection (NBI) have provided a validation of a new model of momentum generation in a wide range of conditions spanning L- and H-mode with direct ion and electron heating. A challenge in predicting the bulk rotation profile for ITER has been to capture the physics of momentum transport near the separatrix and steep gradient region. A recent theory has presented a model for edge momentum transport which predicts the value and direction of the main-ion intrinsic velocity at the pedestal-top, generated by the passing orbits in the inhomogeneous turbulent field. In this study, this model-predicted velocity is tested on DIII-D for a database of 44 low-torque NBI discharges comprised of bothL- and H-mode plasmas. For moderate NBI powers (PNBI<4 MW), model prediction agrees well with the experiments for both L- and H-mode. At higher NBI power the experimental rotation is observed to saturate and even degrade compared to theory. TRANSP-NUBEAM simulations performed for the database show that for discharges with nominally balanced - but high powered - NBI, the net injected torque through the edge can exceed 1 N.m in the counter-current direction. The theory model has been extended to compute the rotation degradation from this counter-current NBI torque by solving a reduced momentum evolution equation for the edge and found the revised velocity prediction to be in agreement with experiment. Projecting to the ITER baseline scenario, this model predicts a value for the pedestal-top rotation (ρ 0.9) comparable to 4 kRad/s. Using the theory modeled - and now tested - velocity to predict the bulk plasma rotation opens up a path to more confidently projecting the confinement and stability in ITER. Supported by the US DOE under DE-AC02-09CH11466 and DE-FC02-04ER54698.

  19. Intrinsic Dawn-Dusk Asymmetry of Magnetotail Thin Current Sheet

    NASA Astrophysics Data System (ADS)

    Lu, S.; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A.

    2017-12-01

    Magnetic reconnection and its related phenomena (flux ropes, dipolarization fronts, bursty bulk flows, particle injections, etc.) occur more frequently on the duskside in the Earth's magnetotail. Magnetohydrodynamic simulations attributed the asymmetry to the nonuniform ionospheric conductance through global scale magnetosphere-ionosphere interaction. Hybrid simulations, on the other hand, found an alternative responsible mechanism: the Hall effect in the magnetotail thin current sheet, but left an open question: What is the physical origin of the asymmetric Hall effect? The answer could be the temperature difference on the two sides and/or the dawn-dusk transportation of magnetic flux and plasmas. In this work, we use 3-D particle-in-cell simulations to further explore the magnetotail dawn-dusk asymmetry. The magnetotail equilibrium contains a dipole magnetic field and a current sheet region. The simulation is driven by a symmetric and localized (in the y direction) high-latitude electric field, under which the current sheet thins with a decrease of Bz. During the same time, a dawn-dusk asymmetry is formed intrinsically in the thin current sheet, with a smaller Bz, a stronger Hall effect (indicated by the Hall electric field Ez), and a stronger cross-tail current jy on the duskside. The deep origin of the asymmetry is also shown to be dominated by the dawnward E×B drift of magnetic flux and plasmas. A direct consequence of this intrinsic dawn-dusk asymmetry is that it favors magnetotail reconnection and related phenomena to preferentially occur on the duskside.

  20. Feasibility of Selective Catheter-Directed Coronary Computed Tomography Angiography Using Ultralow-Dose Intracoronary Contrast Injection in a Swine Model.

    PubMed

    Hong, Youngtaek; Shin, Sanghoon; Park, Hyung-Bok; Lee, Byoung Kwon; Arsanjani, Reza; ó Hartaigh, Bríain; Ha, Seongmin; Jang, Yeonggul; Jeon, Byunghwan; Jung, Sunghee; Park, Se-Il; Sung, Ji Min; Shim, Hackjoon; Chang, Hyuk-Jae

    2015-07-01

    Selective catheter-directed intracoronary contrast injected coronary computed tomography angiography (selective CCTA) has recently been introduced for on-site evaluation of coronary artery disease during coronary artery catheterization. In this study, we aimed to develop a feasible protocol for selective CCTA using ultralow-dose contrast medium as compared with conventional intravenous CCTA (IV CCTA). A novel combined system incorporating coronary angiography and a 320-detector row computed tomographic scanner was used to study 4 swine (35-40 kg) under animal institutional review board approval. A selective CCTA scan was simultaneously performed with an injection of 13.13 mgI/mL of modulated contrast medium at multiple different injection rates including 2, 3, and 4 mL/s and different total injection volumes of either 20 or 30 mL. Intravenous CCTA was performed with 60 mL of contrast medium, followed by 30 mL of saline chaser at 5 mL/s. Coronary mean and peak intensity, transluminal attenuation gradient, as well as 3-dimensional maximum intensity projections were obtained. Attenuation values (mean ± standard error, in Hounsfield units [HUs]) of selective CCTA for the left anterior descending (LAD) and right coronary artery (RCA) using the various combinations of injection rates and total injection volumes were as follows: 20 mL at 2 mL/s (LAD, 270.3 ± 20.4 HU; RCA, 322.6 ± 7.4 HU), 20 mL at 3 mL/s (LAD, 262.9 ± 20.4 HU; RCA, 264.7 ± 7.4 HU), 30 mL at 3 mL/s (LAD, 276.8 ± 20.4 HU; RCA, 274.0 ± 7.4 HU), 20 mL at 4 mL/s (LAD, 268.0 ± 20.4 HU; RCA, 277.7 ± 7.4 HU), and 30 mL at 4 mL/s (LAD, 251.3 ± 20.4 HU; RCA, 334.7 ± 7.4 HU). The representative protocol of the selective CCTA studies produced results within the optimal enhancement range (approximately 250-350 HU) for all segments, and comparison of transluminal attenuation gradient data with selective CCTA and IV CCTA studies demonstrated that the former method was more homogenous (-1.5245 and -1.7558 for LAD as well as 0.0459 and 0.0799 for RCA, respectively). Notably, the volume of iodine contrast medium used for selective CCTA was reported to be 1.09% (0.2 g) of IV CCTA (24 g). The current findings demonstrate the feasibility of selective CCTA using ultralow-dose intracoronary contrast injection. This technique may provide additional means of coronary evaluation in patients who may require strategic planning before a procedure using a combined modality system.

  1. Upregulation of cystathionine-β-synthetase expression contributes to inflammatory pain in rat temporomandibular joint

    PubMed Central

    2014-01-01

    Background Hydrogen sulfide (H2S), an endogenous gaseotransmitter/modulator, is becoming appreciated that it may be involved in a wide variety of processes including inflammation and nociception. However, the role for H2S in nociceptive processing in trigeminal ganglion (TG) neuron remains unknown. The aim of this study was designed to investigate whether endogenous H2S synthesizing enzyme cystathionine-β-synthetase (CBS) plays a role in inflammatory pain in temporomandibular joint (TMJ). Methods TMJ inflammatory pain was induced by injection of complete Freund’s adjuvant (CFA) into TMJ of adult male rats. Von Frey filaments were used to examine pain behavioral responses in rats following injection of CFA or normal saline (NS). Whole cell patch clamp recordings were employed on acutely isolated TG neurons from rats 2 days after CFA injection. Western blot analysis was carried out to measure protein expression in TGs. Results Injection of CFA into TMJ produced a time dependent hyperalgesia as evidenced by reduced escape threshold in rats responding to VFF stimulation. The reduced escape threshold was partially reversed by injection of O-(Carboxymethyl) hydroxylamine hemihydrochloride (AOAA), an inhibitor for CBS, in a dose-dependent manner. CFA injection led to a marked upregulation of CBS expression when compared with age-matched controls. CFA injection enhanced neuronal excitability as evidenced by depolarization of resting membrane potentials, reduction in rheobase, and an increase in number of action potentials evoked by 2 and 3 times rheobase current stimulation and by a ramp current stimulation of TG neurons innervating the TMJ area. CFA injection also led to a reduction of IK but not IA current density of TG neurons. Application of AOAA in TMJ area reduced the production of H2S in TGs and reversed the enhanced neural hyperexcitability and increased the IK currents of TG neurons. Conclusion These data together with our previous report indicate that endogenous H2S generating enzyme CBS plays an important role in TMJ inflammation, which is likely mediated by inhibition of IK currents, thus identifying a specific molecular mechanism underlying pain and sensitization in TMJ inflammation. PMID:24490955

  2. Blindness following cosmetic injections of the face.

    PubMed

    Lazzeri, Davide; Agostini, Tommaso; Figus, Michele; Nardi, Marco; Pantaloni, Marcello; Lazzeri, Stefano

    2012-04-01

    Complications following facial cosmetic injections have recently heightened awareness of the possibility of iatrogenic blindness. The authors conducted a systematic review of the available literature to provide the best evidence for the prevention and treatment of this serious eye injury. The authors included in the study only the cases in which blindness was a direct consequence of a cosmetic injection procedure of the face. Twenty-nine articles describing 32 patients were identified. In 15 patients, blindness occurred after injections of adipose tissue; in the other 17, it followed injections of various materials, including corticosteroids, paraffin, silicone oil, bovine collagen, polymethylmethacrylate, hyaluronic acid, and calcium hydroxyapatite. Some precautions may minimize the risk of embolization of filler into the ophthalmic artery following facial cosmetic injections. Intravascular placement of the needle or cannula should be demonstrated by aspiration before injection and should be further prevented by application of local vasoconstrictor. Needles, syringes, and cannulas of small size should be preferred to larger ones and be replaced with blunt flexible needles and microcannulas when possible. Low-pressure injections with the release of the least amount of substance possible should be considered safer than bolus injections. The total volume of filler injected during the entire treatment session should be limited, and injections into pretraumatized tissues should be avoided. Actually, no safe, feasible, and reliable treatment exists for iatrogenic retinal embolism. Nonetheless, therapy should theoretically be directed to lowering intraocular pressure to dislodge the embolus into more peripheral vessels of the retinal circulation, increasing retinal perfusion and oxygen delivery to hypoxic tissues. Risk, V.

  3. Use of Adaptive Injection Strategies to Increase the Full Load Limit of RCCI Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Reed; Ickes, Andrew; Wallner, Thomas

    2015-01-01

    Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection of a higher reactivity fuel, otherwise known as Reactivity Controlled Compression Ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13Lmore » multi-cylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and direct injection of diesel fuel. Engine testing was conducted at an engine speed of 1200 RPM over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection quantity was reduced to keep peak cylinder pressure and maximum pressure rise rate under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar BMEP with a peak brake thermal efficiency of 47.6%.« less

  4. Magnetic proximity control of spin currents and giant spin accumulation in graphene

    NASA Astrophysics Data System (ADS)

    Singh, Simranjeet

    Two dimensional (2D) materials provide a unique platform to explore the full potential of magnetic proximity driven phenomena. We will present the experimental study showing the strong modulation of spin currents in graphene layers by controlling the direction of the exchange field due to the ferromagnetic-insulator (FMI) magnetization in graphene/FMI heterostructures. Owing to clean interfaces, a strong magnetic exchange coupling leads to the experimental observation of complete spin modulation at low externally applied magnetic fields in short graphene channels. We also discover that the graphene spin current can be fully dephased by randomly fluctuating exchange fields. This is manifested as an unusually strong temperature dependence of the non-local spin signals in graphene, which is due to spin relaxation by thermally-induced transverse fluctuations of the FMI magnetization. Additionally, it has been a challenge to grow a smooth, robust and pin-hole free tunnel barriers on graphene, which can withstand large current densities for efficient electrical spin injection. We have experimentally demonstrated giant spin accumulation in graphene lateral spin valves employing SrO tunnel barriers. Nonlocal spin signals, as large as 2 mV, are observed in graphene lateral spin valves at room temperature. This high spin accumulations observed using SrO tunnel barriers puts graphene on the roadmap for exploring the possibility of achieving a non-local magnetization switching due to the spin torque from electrically injected spins. Financial support from ONR (No. N00014-14-1-0350), NSF (No. DMR-1310661), and C-SPIN, one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.

  5. Visualizing Simulated Electrical Fields from Electroencephalography and Transcranial Electric Brain Stimulation: A Comparative Evaluation

    PubMed Central

    Eichelbaum, Sebastian; Dannhauer, Moritz; Hlawitschka, Mario; Brooks, Dana; Knösche, Thomas R.; Scheuermann, Gerik

    2014-01-01

    Electrical activity of neuronal populations is a crucial aspect of brain activity. This activity is not measured directly but recorded as electrical potential changes using head surface electrodes (electroencephalogram - EEG). Head surface electrodes can also be deployed to inject electrical currents in order to modulate brain activity (transcranial electric stimulation techniques) for therapeutic and neuroscientific purposes. In electroencephalography and noninvasive electric brain stimulation, electrical fields mediate between electrical signal sources and regions of interest (ROI). These fields can be very complicated in structure, and are influenced in a complex way by the conductivity profile of the human head. Visualization techniques play a central role to grasp the nature of those fields because such techniques allow for an effective conveyance of complex data and enable quick qualitative and quantitative assessments. The examination of volume conduction effects of particular head model parameterizations (e.g., skull thickness and layering), of brain anomalies (e.g., holes in the skull, tumors), location and extent of active brain areas (e.g., high concentrations of current densities) and around current injecting electrodes can be investigated using visualization. Here, we evaluate a number of widely used visualization techniques, based on either the potential distribution or on the current-flow. In particular, we focus on the extractability of quantitative and qualitative information from the obtained images, their effective integration of anatomical context information, and their interaction. We present illustrative examples from clinically and neuroscientifically relevant cases and discuss the pros and cons of the various visualization techniques. PMID:24821532

  6. National Combustion Code Validated Against Lean Direct Injection Flow Field Data

    NASA Technical Reports Server (NTRS)

    Iannetti, Anthony C.

    2003-01-01

    Most combustion processes have, in some way or another, a recirculating flow field. This recirculation stabilizes the reaction zone, or flame, but an unnecessarily large recirculation zone can result in high nitrogen oxide (NOx) values for combustion systems. The size of this recirculation zone is crucial to the performance of state-of-the-art, low-emissions hardware. If this is a large-scale combustion process, the flow field will probably be turbulent and, therefore, three-dimensional. This research dealt primarily with flow fields resulting from lean direct injection (LDI) concepts, as described in Research & Technology 2001. LDI is a concept that depends heavily on the design of the swirler. The LDI concept has the potential to reduce NOx values from 50 to 70 percent of current values, with good flame stability characteristics. It is cost effective and (hopefully) beneficial to do most of the design work for an LDI swirler using computer-aided design (CAD) and computer-aided engineering (CAE) tools. Computational fluid dynamics (CFD) codes are CAE tools that can calculate three-dimensional flows in complex geometries. However, CFD codes are only beginning to correctly calculate the flow fields for complex devices, and the related combustion models usually remove a large portion of the flow physics.

  7. A Design Methodology for Rapid Implementation of Active Control Systems Across Lean Direct Injection Combustor Platforms

    NASA Technical Reports Server (NTRS)

    Baumann, William T.; Saunders, William R.; Vandsburger, Uri; Saus, Joseph (Technical Monitor)

    2003-01-01

    The VACCG team is comprised of engineers at Virginia Tech who specialize in the subject areas of combustion physics, chemical kinetics, dynamics and controls, and signal processing. Currently, the team's work on this NRA research grant is designed to determine key factors that influence combustion control performance through a blend of theoretical and experimental investigations targeting design and demonstration of active control for three different combustors. To validiate the accuracy of conclusions about control effectiveness, a sequence of experimental verifications on increasingly complex lean, direct injection combustors is underway. During the work period January 1, 2002 through October 15, 2002, work has focused on two different laboratory-scale combustors that allow access for a wide variety of measurements. As the grant work proceeds, one key goal will be to obtain certain knowledge about a particular combustor process using a minimum of sophisticated measurements, due to the practical limitations of measurements on full-scale combustors. In the second year, results obtained in the first year will be validated on test combustors to be identified in the first quarter of that year. In the third year, it is proposed to validate the results at more realistic pressure and power levels by utilizing the facilities at the Glenn Research Center.

  8. Surgical versus injection treatment for injection-confirmed chronic sacroiliac joint pain

    PubMed Central

    Spiker, William Ryan; Lawrence, Brandon D.; Raich, Annie L.; Skelly, Andrea C.; Brodke, Darrel S.

    2012-01-01

    Study design: Systematic review. Study rationale: Chronic sacroiliac joint pain (CSJP) is a common clinical entity with highly controversial treatment options. A recent systematic review compared surgery with denervation, but the current systematic review compares outcomes of surgical intervention with therapeutic injection for the treatment of CSJP and serves as the next step for evaluating current evidence on the comparative effectiveness of treatments for non-traumatic sacroiliac joint pain. Objective or clinical question: In adult patients with injection-confirmed CSJP, does surgical treatment lead to better outcomes and fewer complications than injection therapy? Methods: A systematic review of the English-language literature was undertaken for articles published between 1970 and June 2012. Electronic databases and reference lists of key articles were searched to identify studies evaluating surgery or injection treatment for injection-confirmed CSJP. Studies involving traumatic onset or non-injection–confirmed CSJP were excluded. Two independent reviewers assessed the level of evidence quality using the grading of recommendations assessment, development and evaluation (GRADE) system, and disagreements were resolved by consensus. Results: We identified twelve articles (seven surgical and five injection treatment) meeting our inclusion criteria. Regardless of the type of treatment, most studies reported over 40% improvement in pain as measured by Visual Analog Scale or Numeric rating Scale score. Regardless of the type of treatment, most studies reported over 20% improvement in functionality. Most complications were reported in the surgical studies. Conclusion: Surgical fusion and therapeutic injections can likely provide pain relief, improve quality of life, and improve work status. The comparative effectiveness of these interventions cannot be evaluated with the current literature. PMID:23526911

  9. Current profile redistribution driven by neutral beam injection in a reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Parke, E.; Anderson, J. K.; Brower, D. L.; Den Hartog, D. J.; Ding, W. X.; Johnson, C. A.; Lin, L.

    2016-05-01

    Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm with neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q0 by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].

  10. Unconventional Hydrocarbon Development Hazards Within the Central United States. Report 1: Overview and Potential Risk to Infrastructure

    DTIC Science & Technology

    2015-08-01

    of the injection purpose, i.e., secondary oil and gas recovery, disposal of waste fluids, geothermal energy, and/or UHP hydraulic fracturing...activities such as reservoir impoundment, mining, wastewater injection, geothermal systems and CO2 capture have been linked directly to induced...activities, e.g., deep fluid injection, geothermal injection, and/or UHP wells, that critically affect deep lithologies and alter the existing mechanical

  11. Public Data Set: Initiation and Sustainment of Tokamak Plasmas with Local Helicity Injection as the Majority Current Drive

    DOE Data Explorer

    Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609); Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Pachicano, Jessica L. [University of Wisconsin-Madison] (ORCID:0000000207255693); Pierren, Christopher [University of Wisconsin-Madison] (ORCID:0000000228289825); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Rhodes, Alexander T. [University of Wisconsin-Madison] (ORCID:0000000280735714); Richner, Nathan J. [University of Wisconsin-Madison] (ORCID:0000000155443915); Rodriguez Sanchez, Cuauhtemoc [University of Wisconsin-Madison] (ORCID:0000000334712586); Schaefer, Carolyn E. [University of Wisconsin-Madison] (ORCID:0000000248848727); Weberski, Justin D. [University of Wisconsin-Madison] (ORCID:0000000256267914)

    2018-05-22

    This public data set contains openly-documented, machine readable digital research data corresponding to figures published in J.M. Perry et al., 'Initiation and Sustainment of Tokamak Plasmas with Local Helicity Injection as the Majority Current Drive,' accepted for publication in Nuclear Fusion.

  12. Electrical resistance tomography using steel cased boreholes as electrodes

    DOEpatents

    Daily, W.D.; Ramirez, A.L.

    1999-06-22

    An electrical resistance tomography method is described which uses steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constrain the models. 2 figs.

  13. Electrical resistance tomography using steel cased boreholes as electrodes

    DOEpatents

    Daily, William D.; Ramirez, Abelardo L.

    1999-01-01

    An electrical resistance tomography method using steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constain the models.

  14. Drain current enhancement induced by hole injection from gate of 600-V-class normally off gate injection transistor under high temperature conditions up to 200 °C

    NASA Astrophysics Data System (ADS)

    Ishii, Hajime; Ueno, Hiroaki; Ueda, Tetsuzo; Endoh, Tetsuo

    2018-06-01

    In this paper, the current–voltage (I–V) characteristics of a 600-V-class normally off GaN gate injection transistor (GIT) from 25 to 200 °C are analyzed, and it is revealed that the drain current of the GIT increases during high-temperature operation. It is found that the maximum drain current (I dmax) of the GIT is 86% higher than that of a conventional 600-V-class normally off GaN metal insulator semiconductor hetero-FET (MIS-HFET) at 150 °C, whereas the GIT obtains 56% I dmax even at 200 °C. Moreover, the mechanism of the drain current increase of the GIT is clarified by examining the relationship between the temperature dependence of the I–V characteristics of the GIT and the gate hole injection effect determined from the shift of the second transconductance (g m) peak of the g m–V g characteristic. From the above, the GIT is a promising device with enough drivability for future power switching applications even under high-temperature conditions.

  15. Expanding Non-solenoidal Startup with Local Helicity Injection to Increased Toroidal Field and Helicity Injection Rate

    NASA Astrophysics Data System (ADS)

    Perry, J. M.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Reusch, J. A.; Schlossberg, D. J.; Winz, G. R.

    2015-11-01

    Local helicity injection (LHI) is a non-solenoidal startup technique under development on the Pegasus ST. Plasma currents up to 0.18 MA have been initiated by LHI in conjunction with poloidal field induction. A 0-D power balance model has been developed to predict plasma current evolution by balancing helicity input against resistive dissipation. The model is being validated against a set of experimental measurements and magnetic reconstructions with radically varied plasma geometric evolutions. Outstanding physics issues with LHI startup are the scalings of confinement and MHD activity with helicity injection rate and toroidal field strength, as well as injector behavior at high field. Preliminary results from the newly-installed Thomson scattering system suggest core temperatures of a few hundred eV during LHI startup. Measurements are being expanded to multiple spatial points for ongoing confinement studies. A set of larger-area injectors is being installed in the lower divertor region, where increased toroidal field will provide a helicity injection rate over 3 times that of outboard injectors. In this regime helicity injection will be the dominant current drive. Experiments with divertor injectors will permit experimental differentiation of several possible confinement models, and demonstrate the feasibility of LHI startup at high field. Work supported by US DOE grant DE-FG02-96ER54375.

  16. HVDC Ground Electrodes - a Source of Geophysical Data

    NASA Astrophysics Data System (ADS)

    Freire, P. F.; Pereira, S. Y.

    2015-12-01

    The HVDC electrode is a component of a High Voltage Direct Current energy transmission system, and is designed to inject into the ground continuous currents up to 3500 A. The typical HVDC ground electrode is a ring of vertical conductors, 1 km wide, buried a few tens of meters.The design of a HVDC electrode is based on extensive geological, geotechnical and geophysical surveys. Geophysical data are usually electrical (VES) and electromagnetic (TEM/MT) acquisitions, for the modeling of the shallow, near-surface and deep layers of the crust. This survey aims, first, the electrode site selection, and then, at the selected site, this data is combined into a single apparent resistivity curve, which is inverted, allowing for the determination of the layered geoelectric crust model. The injection of electrical continuous current in the electrode is then simulated, with the geoelectric crust model, for the determination of the soil surface potential profile (which is usually asymmetric for different directions, due to non-1D geoelectric models).For the commissioning of a HVDC electrode, field measurements are done, such as electrode grounding resistance, soil surface potentials and metal-to-soil potentials at specific structures (buried pipelines, for instance).The geophysical data acquired during the design phase is a set of data completely independent from the electrical data acquired during the electrode commissioning phase, and both are correlated by the geoelectric model. It happens, therefore, that the geoelectric model can be calibrated based on the electrical data, with the correction of static shifts and other adjustments.This paper suggests that the commissioning of HVDC systems should be associated to a research & development program, with a university or foundation. The idea is to enjoy the opportunity of a more complete field survey, with the acquisition of a wide set of data for a better geological characterization of the area where the electrode was built.

  17. PSR Injection Line Upgrade

    NASA Astrophysics Data System (ADS)

    Blind, Barbara; Jason, Andrew J.

    1997-05-01

    We describe the new injection line to be implemented for the Los Alamos Proton Storage Ring in the change from a two-step process to direct H- injection. While obeying all geometrical constraints imposed by the existing structures, the new line has properties not found in the present injection line. In particular, it features decoupled transverse phase spaces downstream of the skew bend and a high degree of tunability of the beam at the injection foil. A comprehensive set of error studies has dictated the component tolerances imposed and has indicated the expected performance of the system.

  18. Bulk Current Injection Testing of Cable Noise Reduction Techniques, 50 kHz to 400 MHz

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Hare, Richard J.; Singh, Manisha

    2009-01-01

    This paper presents empirical results of cable noise reduction techniques as demonstrated using bulk current injection (BCI) techniques with radiated fields from 50 kHz - 400 MHz. It is a follow up to the two-part paper series presented at the Asia Pacific EMC Conference that focused on TEM cell signal injection. This paper discusses the effects of cable types, shield connections, and chassis connections on cable noise. For each topic, well established theories are compared with data from a real-world physical system.

  19. Development of an efficient fractionation method for the preparative separation of sesquiterpenoids from Tussilago farfara by counter-current chromatography.

    PubMed

    Song, Kwangho; Lee, Kyoung Jin; Kim, Yeong Shik

    2017-03-17

    A novel application of counter-current chromatography (CCC) to enrich plant extracts using direct and continuous injection (CCC-DCI) was developed to fractionate sesquiterpenoids from the buds of Tussilago farfara L. In this study, an n-hexane-acetonitrile-water (HAcW) solvent system was separately pumped into the CCC column, and an extraction solution (45% acetonitrile) was directly and continuously injected into the CCC column. Since the extraction solution was used as a mobile phase in this method, solvent consumption could be greatly reduced. To enrich the extraction solution (315.9g/5.4L), only 4.2L water, 4.6L acetonitrile, and 1.2L n-hexane were used, including the extraction step. Finally, 6.8g of a sesquiterpenoid-enriched (STE) fraction was obtained from the crude extract (315.9g) of Tussilago farfara (1kg) in a single CCC run with a separation time of 8.5h. The sample injection capacity of CCC-DCI was greater than 300g; this amount of sample could not be handled in conventional CCC or other fractionation methods with the same column volume. Moreover, three major sesquiterpenoids (1: tussilagone, 2: 14-acetoxy-7β-(3'-ethyl cis-crotonoyloxy)-1α-(2'-methylburyryloxy)-notonipetranone, and 3: 7β-(3'-ethyl cis-crotonoyloxy)-1α-(2'-methylburyryloxy)-3, 14-dehydro-Z-notonipetranone) were purified from the STE fraction by CCC, and their chemical structures were elucidated by 1 H NMR and 13 C NMR. A quantification study was conducted, and the contents of compounds 1-3 in the CCC-DCI fraction were higher than those of conventional multi-step fractionations performed in series: solvent partitioning and open column chromatography. Furthermore, the average CCC-DCI recoveries were 96.1% (1), 96.9% (2), and 94.6% (3), whereas the open column chromatography recoveries were 77.7% (1), 66.5% (2), and 58.4% (3). The developed method demonstrates that CCC is a useful technique for enriching target components from natural products. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. MREIT experiments with 200 µA injected currents: a feasibility study using two reconstruction algorithms, SMM and harmonic B(Z).

    PubMed

    Arpinar, V E; Hamamura, M J; Degirmenci, E; Muftuler, L T

    2012-07-07

    Magnetic resonance electrical impedance tomography (MREIT) is a technique that produces images of conductivity in tissues and phantoms. In this technique, electrical currents are applied to an object and the resulting magnetic flux density is measured using magnetic resonance imaging (MRI) and the conductivity distribution is reconstructed using these MRI data. Currently, the technique is used in research environments, primarily studying phantoms and animals. In order to translate MREIT to clinical applications, strict safety standards need to be established, especially for safe current limits. However, there are currently no standards for safe current limits specific to MREIT. Until such standards are established, human MREIT applications need to conform to existing electrical safety standards in medical instrumentation, such as IEC601. This protocol limits patient auxiliary currents to 100 µA for low frequencies. However, published MREIT studies have utilized currents 10-400 times larger than this limit, bringing into question whether the clinical applications of MREIT are attainable under current standards. In this study, we investigated the feasibility of MREIT to accurately reconstruct the relative conductivity of a simple agarose phantom using 200 µA total injected current and tested the performance of two MREIT reconstruction algorithms. These reconstruction algorithms used are the iterative sensitivity matrix method (SMM) by Ider and Birgul (1998 Elektrik 6 215-25) with Tikhonov regularization and the harmonic B(Z) proposed by Oh et al (2003 Magn. Reason. Med. 50 875-8). The reconstruction techniques were tested at both 200 µA and 5 mA injected currents to investigate their noise sensitivity at low and high current conditions. It should be noted that 200 µA total injected current into a cylindrical phantom generates only 14.7 µA current in imaging slice. Similarly, 5 mA total injected current results in 367 µA in imaging slice. Total acquisition time for 200 µA and 5 mA experiments was about 1 h and 8.5 min, respectively. The results demonstrate that conductivity imaging is possible at low currents using the suggested imaging parameters and reconstructing the images using iterative SMM with Tikhonov regularization, which appears to be more tolerant to noisy data than harmonic B(Z).

  1. Intra-lymph node injection of biodegradable polymer particles.

    PubMed

    Andorko, James I; Tostanoski, Lisa H; Solano, Eduardo; Mukhamedova, Maryam; Jewell, Christopher M

    2014-01-02

    Generation of adaptive immune response relies on efficient drainage or trafficking of antigen to lymph nodes for processing and presentation of these foreign molecules to T and B lymphocytes. Lymph nodes have thus become critical targets for new vaccines and immunotherapies. A recent strategy for targeting these tissues is direct lymph node injection of soluble vaccine components, and clinical trials involving this technique have been promising. Several biomaterial strategies have also been investigated to improve lymph node targeting, for example, tuning particle size for optimal drainage of biomaterial vaccine particles. In this paper we present a new method that combines direct lymph node injection with biodegradable polymer particles that can be laden with antigen, adjuvant, or other vaccine components. In this method polymeric microparticles or nanoparticles are synthesized by a modified double emulsion protocol incorporating lipid stabilizers. Particle properties (e.g. size, cargo loading) are confirmed by laser diffraction and fluorescent microscopy, respectively. Mouse lymph nodes are then identified by peripheral injection of a nontoxic tracer dye that allows visualization of the target injection site and subsequent deposition of polymer particles in lymph nodes. This technique allows direct control over the doses and combinations of biomaterials and vaccine components delivered to lymph nodes and could be harnessed in the development of new biomaterial-based vaccines.

  2. Memory modulation across neural systems: intra-amygdala glucose reverses deficits caused by intraseptal morphine on a spatial task but not on an aversive task.

    PubMed

    McNay, E C; Gold, P E

    1998-05-15

    Based largely on dissociations of the effects of different lesions on learning and memory, memories for different attributes appear to be organized in independent neural systems. Results obtained with direct injections of drugs into one brain region at a time support a similar conclusion. The present experiments investigated the effects of simultaneous pharmacological manipulation of two neural systems, the amygdala and the septohippocampal system, to examine possible interactions of memory modulation across systems. Morphine injected into the medial septum impaired memory both for avoidance training and during spontaneous alternation. When glucose was concomitantly administered to the amygdala, glucose reversed the morphine-induced deficits in memory during alternation but not for avoidance training. These results suggest that the amygdala is involved in modulation of spatial memory processes and that direct injections of memory-modulating drugs into the amygdala do not always modulate memory for aversive events. These findings are contrary to predictions from the findings of lesion studies and of studies using direct injections of drugs into single brain areas. Thus, the independence of neural systems responsible for processing different classes of memory is less clear than implied by studies using lesions or injections of drugs into single brain areas.

  3. Dependence of electron peak current on hollow cathode dimensions and seed electron energy in a pseudospark discharge

    NASA Astrophysics Data System (ADS)

    Cetiner, S. O.; Stoltz, P.; Messmer, P.; Cambier, J.-L.

    2008-01-01

    The prebreakdown and breakdown phases of a pseudospark discharge are investigated using the two-dimensional kinetic plasma simulation code OOPIC™ PRO. Trends in the peak electron current at the anode are presented as function of the hollow cathode dimensions and mean seed injection velocities at the cavity back wall. The plasma generation process by ionizing collisions is examined, showing the effect on supplying the electrons that determine the density of the beam. The mean seed velocities used here are varied between the velocity corresponding to the energy of peak ionization cross section, 15 times this value and no mean velocity (i.e., electrons injected with a temperature of 2.5eV). The reliance of the discharge characteristics on the penetrating electric field is shown to decrease as the mean seed injection velocity increases because of its ability to generate a surplus plasma independent of the virtual anode. As a result, the peak current increases with the hollow cathode dimensions for the largest average injection velocity, while for the smallest value it increases with the area of penetration of the electric field in the hollow cathode interior. Additionally, for a given geometry an increase in the peak current with the surplus plasma generated is observed. For the largest seed injection velocity used a dependence of the magnitude of the peak current on the ratio of the hole thickness and hollow cathode depth to the hole height is demonstrated. This means similar trends of the peak current are generated when the geometry is resized. Although the present study uses argon only, the variation in the discharge dependencies with the seed injection energy relative to the ionization threshold is expected to apply independently of the gas type. Secondary electrons due to electron and ion impact are shown to be important only for the largest impact areas and discharge development times of the study.

  4. STUDIES ON THE PATHOGENESIS OF FEVER

    PubMed Central

    King, M. Kenton; Wood, W. Barry

    1958-01-01

    By means of a method designed to compare the febrile responses produced by intracarotid and intravenous injections, the endogenous pyrogen, which is contained in leucocytic exudates and is present in the serum of rabbits 2 hours after intravenous injections of typhoid vaccine, has been shown to act directly upon the thermoregulatory centers of the brain. In contrast, the exogenous bacterial pyrogen present in serum obtained 5 minutes after vaccine injections was found to act by a different and less direct mechanism. These observations add strong support to the original hypothesis that endogenous pyrogen, presumably derived from polymorphonuclear leucocytes, is an essential factor in the pathogenesis of endotoxin fever. PMID:13491763

  5. Direct link of a mid-infrared QCL to a frequency comb by optical injection.

    PubMed

    Borri, S; Galli, I; Cappelli, F; Bismuto, A; Bartalini, S; Cancio, P; Giusfredi, G; Mazzotti, D; Faist, J; De Natale, P

    2012-03-15

    A narrow-linewidth comb-linked nonlinear source is used as master radiation to injection lock a room-temperature mid-infrared quantum cascade laser (QCL). This process leads to a direct lock of the QCL to the optical frequency comb, providing the unique features of narrow linewidth, absolute frequency, higher output power, and wide mode-hop-free tunability. The QCL reproduces the injected radiation within more than 94%, with a reduction of the frequency-noise spectral density by 3 to 4 orders of magnitude up to about 100 kHz, and a linewidth narrowing from a few MHz to 20 kHz.

  6. Characterization of Swirl-Venturi Lean Direct Injection Designs for Aviation Gas-Turbine Combustion

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.

    2013-01-01

    Injector geometry, physical mixing, chemical processes, and engine cycle conditions together govern performance, operability and emission characteristics of aviation gas-turbine combustion systems. The present investigation explores swirl-venturi lean direct injection combustor fundamentals, characterizing the influence of key geometric injector parameters on reacting flow physics and emission production trends. In this computational study, a design space exploration was performed using a parameterized swirl-venturi lean direct injector model. From the parametric geometry, 20 three-element lean direct injection combustor sectors were produced and simulated using steady-state, Reynolds-averaged Navier-Stokes reacting computations. Species concentrations were solved directly using a reduced 18-step reaction mechanism for Jet-A. Turbulence closure was obtained using a nonlinear ?-e model. Results demonstrate sensitivities of the geometric perturbations on axially averaged flow field responses. Output variables include axial velocity, turbulent kinetic energy, static temperature, fuel patternation and minor species mass fractions. Significant trends have been reduced to surrogate model approximations, intended to guide future injector design trade studies and advance aviation gas-turbine combustion research.

  7. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOEpatents

    Vail, III, William B.

    1993-01-01

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  8. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOEpatents

    Vail, W.B. III.

    1993-02-16

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  9. Application of Coaxial Ion Gun for Film Generation and Ion Implantation

    NASA Astrophysics Data System (ADS)

    Takatsu, Mikio; Asai, Tomohiko; Kurumi, Satoshi; Suzuki, Kaoru; Hirose, Hideharu; Masutani, Shigeyuki

    A magnetized coaxial plasma gun (MCPG) is here utilized for deposition on high-melting-point metals. MCPGs have hitherto been studied mostly in the context of nuclear fusion research, for particle and magnetic helicity injection and spheromak formation. During spheromak formation, the electrode materials are ionized and mixed into the plasmoid. In this study, this ablation process by gun-current sputtering is enhanced for metallic thin-film generation. In the proposed system geometry, only ionized materials are electromagnetically accelerated by the self-Lorentz force, with ionized operating gas as a magnetized thermal plasmoid, contributing to the thin-film deposition. This reduces the impurity and non-uniformity of the deposited thin-film. Furthermore, as the ions are accelerated in a parallel direction to the injection axis, vertical implantation of the ions into the substrate surface is achieved. To test a potential application of the developed system, experiments were conducted involving the formation of a buffer layer on hard ceramics, for use in dental materials.

  10. Estimating the change of porosity in the saturated zone during air sparging.

    PubMed

    Tsai, Yih-jin; Kuo, Yu-chia; Chen, Tsu-chi; Chou, Feng-chih

    2006-01-01

    Air sparging is a remedial method for groundwater. The remedial region is similar to the air flow region in the saturated zone. If soil particles are transported during air sparging, the porosity distributions in the saturated zone change, which may alter the flow path of the air. To understand better the particle movement, this study performed a sandbox test to estimate the soil porosity change during air sparging. A clear fracture was formed and the phenomenon of particle movement was observed when the air injection was started. The moved sand filled the porous around the fracture and the reparked sand filled the fracture, reducing the porosity around the fracture. The results obtained from the photographs of the sandbox, the current measurements and the direct sand sample measurements were close to each other and are credible. Therefore, air injection during air sparging causes sand particle movement of sand, altering the characteristic of the sand matrix and the air distribution.

  11. Arterial and venous embolization: Declotting of dialysis shunts by direct injection of streptokinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeit, R.M.

    1986-06-01

    During the past 33 months, thrombolysis of 79 clotted hemodialysis shunts was attempted by injecting small quantities of dilute streptokinase solution directly into the clotted shunt, followed by massage of the clot. Embolization of clot fragments in six of 79 cases (7.6%) was demonstrated angiographically. In four of the six cases embolization involved the brachial artery or its branches. In one case embolization involved an arm vein, and in one case embolization involved both the bracial artery and axillary vein. All patients remained asymptomatic, and repeat angiographic study, usually performed the following day, showed resolution of the emboli in fourmore » of five cases. The incidence of embolization in direct-injection thrombolysis reported in this study appears to be comparable to that reported in studies using the streptokinase infusion technique.« less

  12. A Compact Torus Fusion Reactor Utilizing a Continuously Generated Strings of CT's. The CT String Reactor, CTSR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, C W; Reisman, D B; McLean, H S

    2007-05-30

    A fusion reactor is described in which a moving string of mutually repelling compact toruses (alternating helicity, unidirectional Btheta) is generated by repetitive injection using a magnetized coaxial gun driven by continuous gun current with alternating poloidal field. An injected CT relaxes to a minimum magnetic energy equilibrium, moves into a compression cone, and enters a conducting cylinder where the plasma is heated to fusion-producing temperature. The CT then passes into a blanketed region where fusion energy is produced and, on emergence from the fusion region, the CT undergoes controlled expansion in an exit cone where an alternating poloidal fieldmore » opens the flux surfaces to directly recover the CT magnetic energy as current which is returned to the formation gun. The CT String Reactor (CTSTR) reactor satisfies all the necessary MHD stability requirements and is based on extrapolation of experimentally achieved formation, stability, and plasma confinement. It is supported by extensive 2D, MHD calculations. CTSTR employs minimal external fields supplied by normal conductors, and can produce high fusion power density with uniform wall loading. The geometric simplicity of CTSTR acts to minimize initial and maintenance costs, including periodic replacement of the reactor first wall.« less

  13. Oxygen Evolution Activity of Co-Ni Nanochain Alloys: Promotion by Electron Injection.

    PubMed

    Yuan, Xiaotao; Riaz, Muhammad Sohail; Wang, Xin; Dong, Chenlong; Zhang, Zhe; Huang, Fuqiang

    2018-03-12

    Metal alloy nanoparticles have shown promising applications in electrocatalysis. However, the nanoparticles usually suffer from limited charge-transfer efficiency, which can be solved by preparing one-dimensional materials. Herein, Co-Ni alloy nanochains are prepared by a direct-current arc-discharge method. The nanochains, comprised of mutually coupled uniform nanospheres, can range up to several micrometers in size. When the alloy is exposed to air or under the electro-oxidation process, a metal-metal-oxide heterostructure is obtained. The alloy can inject electrons into the oxide, which makes it more suitable for electrocatalysis. The composition of the samples can be changed by varying the ratio of Ni/Co (i.e., Co, Co 7 Ni 3 , Co 5 Ni 5 , Co 3 Ni 7 , Ni) in the synthesis process. The nanochains show good oxygen evolution performance that correlates with the Ni/Co ratio. Co 7 Ni 3 demonstrates optimal activity with an onset point of 1.50 V vs. reversible hydrogen electrode (RHE) and overpotential of 350 mV at 10 mA cm -2 . The alloy nanochains also show excellent durability with 95.0 % current retention after a long-term test for 12 h. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. 2D temperature field measurement in a direct-injection engine using LIF technology

    NASA Astrophysics Data System (ADS)

    Liu, Yongfeng; Tian, Hongsen; Yang, Jianwei; Sun, Jianmin; Zhu, Aihua

    2011-12-01

    A new multi-spectral detection strategy for temperature laser- induced- fluorescence (LIF) 2-D imaging measurements is reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  15. Effect of Fuel Properties on Injection Characteristics of Four Different Diesel Injection Systems.

    DTIC Science & Technology

    1985-12-01

    Effects on Combustion in Direct Injection Diesel Engines," SAE Technical Paper Series, No. 850108, International Congress and Exposi - tion, Detroit, MI...NIEMEYER) I AMXSY-CR 1 DEFENSE STANDARDIZATION OFFICE ABE SYNR R ATTN DR MILER 1 ABERDEEN PROVING GROUND MDATTN: DR S ILLE I 10-06 . 2 1005-5006 5203

  16. Revisiting ocean carbon sequestration by direct injection: a global carbon budget perspective

    NASA Astrophysics Data System (ADS)

    Reith, Fabian; Keller, David P.; Oschlies, Andreas

    2016-11-01

    In this study we look beyond the previously studied effects of oceanic CO2 injections on atmospheric and oceanic reservoirs and also account for carbon cycle and climate feedbacks between the atmosphere and the terrestrial biosphere. Considering these additional feedbacks is important since backfluxes from the terrestrial biosphere to the atmosphere in response to reducing atmospheric CO2 can further offset the targeted reduction. To quantify these dynamics we use an Earth system model of intermediate complexity to simulate direct injection of CO2 into the deep ocean as a means of emissions mitigation during a high CO2 emission scenario. In three sets of experiments with different injection depths, we simulate a 100-year injection period of a total of 70 GtC and follow global carbon cycle dynamics over another 900 years. In additional parameter perturbation runs, we varied the default terrestrial photosynthesis CO2 fertilization parameterization by ±50 % in order to test the sensitivity of this uncertain carbon cycle feedback to the targeted atmospheric carbon reduction through direct CO2 injections. Simulated seawater chemistry changes and marine carbon storage effectiveness are similar to previous studies. As expected, by the end of the injection period avoided emissions fall short of the targeted 70 GtC by 16-30 % as a result of carbon cycle feedbacks and backfluxes in both land and ocean reservoirs. The target emissions reduction in the parameter perturbation simulations is about 0.2 and 2 % more at the end of the injection period and about 9 % less to 1 % more at the end of the simulations when compared to the unperturbed injection runs. An unexpected feature is the effect of the model's internal variability of deep-water formation in the Southern Ocean, which, in some model runs, causes additional oceanic carbon uptake after injection termination relative to a control run without injection and therefore with slightly different atmospheric CO2 and climate. These results of a model that has very low internal climate variability illustrate that the attribution of carbon fluxes and accounting for injected CO2 may be very challenging in the real climate system with its much larger internal variability.

  17. Calcium-calmodulin-dependent kinase II modulates Kv4.2 channel expression and upregulates neuronal A-type potassium currents.

    PubMed

    Varga, Andrew W; Yuan, Li-Lian; Anderson, Anne E; Schrader, Laura A; Wu, Gang-Yi; Gatchel, Jennifer R; Johnston, Daniel; Sweatt, J David

    2004-04-07

    Calcium-calmodulin-dependent kinase II (CaMKII) has a long history of involvement in synaptic plasticity, yet little focus has been given to potassium channels as CaMKII targets despite their importance in repolarizing EPSPs and action potentials and regulating neuronal membrane excitability. We now show that Kv4.2 acts as a substrate for CaMKII in vitro and have identified CaMKII phosphorylation sites as Ser438 and Ser459. To test whether CaMKII phosphorylation of Kv4.2 affects channel biophysics, we expressed wild-type or mutant Kv4.2 and the K(+) channel interacting protein, KChIP3, with or without a constitutively active form of CaMKII in Xenopus oocytes and measured the voltage dependence of activation and inactivation in each of these conditions. CaMKII phosphorylation had no effect on channel biophysical properties. However, we found that levels of Kv4.2 protein are increased with CaMKII phosphorylation in transfected COS cells, an effect attributable to direct channel phosphorylation based on site-directed mutagenesis studies. We also obtained corroborating physiological data showing increased surface A-type channel expression as revealed by increases in peak K(+) current amplitudes with CaMKII phosphorylation. Furthermore, endogenous A-currents in hippocampal pyramidal neurons were increased in amplitude after introduction of constitutively active CaMKII, which results in a decrease in neuronal excitability in response to current injections. Thus CaMKII can directly modulate neuronal excitability by increasing cell-surface expression of A-type K(+) channels.

  18. Luminescence evolution from alumina ceramic surface before flashover under direct and alternating current voltage in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng

    2016-06-15

    The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under amore » higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.« less

  19. Luminescence evolution from alumina ceramic surface before flashover under direct and alternating current voltage in vacuum

    NASA Astrophysics Data System (ADS)

    Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng; Mu, Hai-Bao; Zhang, Guan-Jun; Li, Feng; Wang, Meng

    2016-06-01

    The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under a higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.

  20. Imaging enhancement of malignancy by cyclophosphamide: surprising chemotherapy opposite effects

    NASA Astrophysics Data System (ADS)

    Yamauchi, Kensuke; Yang, Meng; Hayashi, Katsuhiro; Jiang, Ping; Xu, Mingxu; Yamamoto, Norio; Tsuchiya, Hiroyuki; Tomita, Katsuro; Moossa, A. R.; Bouvet, Michael; Hoffman, Robert M.

    2008-02-01

    Although side effects of cancer chemotherapy are well known, "opposite effects" of chemotherapy which enhance the malignancy of the treated cancer are not well understood. We have observed a number of steps of malignancy that are enhanced by chemotherapy pre-treatment of mice before transplantation of human tumor cells. The induction of intravascular proliferation, extravasation, and colony formation by cancer cells, critical steps of metastasis was enhanced by pretreatment of host mice with the commonly-used chemotherapy drug cyclophosphamide. Cyclophosphamide appears to interfere with a host process that inhibits intravascular proliferation, extravasation, and extravascular colony formation by at least some tumor cells. Cyclophosphamide does not directly affect the cancer cells since cyclophosphamide has been cleared by the time the cancer cells were injected. Without cyclophosphamide pretreatment, human colon cancer cells died quickly after injection in the portal vein of nude mice. Extensive clasmocytosis (destruction of the cytoplasm) of the cancer cells occurred within 6 hours. The number of apoptotic cells rapidly increased within the portal vein within 12 hours of injection. However, when the host mice were pretreated with cyclophosphamide, the cancer cells survived and formed colonies in the liver after portal vein injection. These results suggest that a cyclophosphamide-sensitive host cellular system attacked the cancer cells. This review describes an important unexpected "opposite effects" of chemotherapy that enhances critical steps in malignancy rather than inhibiting them, suggesting that certain current approaches to cancer chemotherapy should be modified.

Top