Sample records for direct current thermal

  1. Molecular wires acting as quantum heat ratchets.

    PubMed

    Zhan, Fei; Li, Nianbei; Kohler, Sigmund; Hänggi, Peter

    2009-12-01

    We explore heat transfer in molecular junctions between two leads in the absence of a finite net thermal bias. The application of an unbiased time-periodic temperature modulation of the leads entails a dynamical breaking of reflection symmetry, such that a directed heat current may emerge (ratchet effect). In particular, we consider two cases of adiabatically slow driving, namely, (i) periodic temperature modulation of only one lead and (ii) temperature modulation of both leads with an ac driving that contains a second harmonic, thus, generating harmonic mixing. Both scenarios yield sizable directed heat currents, which should be detectable with present techniques. Adding a static thermal bias allows one to compute the heat current-thermal load characteristics, which includes the ratchet effect of negative thermal bias with positive-valued heat flow against the thermal bias, up to the thermal stop load. The ratchet heat flow in turn generates also an electric current. An applied electric stop voltage, yielding effective zero electric current flow, then mimics a solely heat-ratchet-induced thermopower ("ratchet Seebeck effect"), although no net thermal bias is acting. Moreover, we find that the relative phase between the two harmonics in scenario (ii) enables steering the net heat current into a direction of choice.

  2. Solid state rapid thermocycling

    DOEpatents

    Beer, Neil Reginald; Spadaccini, Christopher

    2014-05-13

    The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

  3. Power Generation from a Radiative Thermal Source Using a Large-Area Infrared Rectenna

    NASA Astrophysics Data System (ADS)

    Shank, Joshua; Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Howell, Stephen; Peters, David W.; Davids, Paul S.

    2018-05-01

    Electrical power generation from a moderate-temperature thermal source by means of direct conversion of infrared radiation is important and highly desirable for energy harvesting from waste heat and micropower applications. Here, we demonstrate direct rectified power generation from an unbiased large-area nanoantenna-coupled tunnel diode rectifier called a rectenna. Using a vacuum radiometric measurement technique with irradiation from a temperature-stabilized thermal source, a generated power density of 8 nW /cm2 is observed at a source temperature of 450 °C for the unbiased rectenna across an optimized load resistance. The optimized load resistance for the peak power generation for each temperature coincides with the tunnel diode resistance at zero bias and corresponds to the impedance matching condition for a rectifying antenna. Current-voltage measurements of a thermally illuminated large-area rectenna show current zero crossing shifts into the second quadrant indicating rectification. Photon-assisted tunneling in the unbiased rectenna is modeled as the mechanism for the large short-circuit photocurrents observed where the photon energy serves as an effective bias across the tunnel junction. The measured current and voltage across the load resistor as a function of the thermal source temperature represents direct current electrical power generation.

  4. Direct detection of spin Nernst effect in platinum

    NASA Astrophysics Data System (ADS)

    Bose, A.; Bhuktare, S.; Singh, H.; Dutta, S.; Achanta, V. G.; Tulapurkar, A. A.

    2018-04-01

    Generation of spin current lies at the heart of spintronic research. The spin Hall effect and the spin Seebeck effect have drawn considerable attention in the last few years to create pure spin current by heavy metals and ferromagnets, respectively. In this work, we show the direct evidence of heat current to spin current conversion in non-magnetic Platinum by the spin Nernst effect (SNE) at room temperature. This is the thermal analogue of the spin Hall effect in non-magnets. We have shown that the 8 K/μm thermal gradient in Pt can lead to the generation of pure spin current density of the order of 108 A/m2 by virtue of SNE. This opens up an additional possibility to couple the relativistic spin-orbit interaction with the thermal gradient for spintronic applications.

  5. Quantitative separation of the anisotropic magnetothermopower and planar Nernst effect by the rotation of an in-plane thermal gradient

    NASA Astrophysics Data System (ADS)

    Reimer, Oliver; Meier, Daniel; Bovender, Michel; Helmich, Lars; Dreessen, Jan-Oliver; Krieft, Jan; Shestakov, Anatoly S.; Back, Christian H.; Schmalhorst, Jan-Michael; Hütten, Andreas; Reiss, Günter; Kuschel, Timo

    2017-01-01

    A thermal gradient as the driving force for spin currents plays a key role in spin caloritronics. In this field the spin Seebeck effect (SSE) is of major interest and was investigated in terms of in-plane thermal gradients inducing perpendicular spin currents (transverse SSE) and out-of-plane thermal gradients generating parallel spin currents (longitudinal SSE). Up to now all spincaloric experiments employ a spatially fixed thermal gradient. Thus, anisotropic measurements with respect to well defined crystallographic directions were not possible. Here we introduce a new experiment that allows not only the in-plane rotation of the external magnetic field, but also the rotation of an in-plane thermal gradient controlled by optical temperature detection. As a consequence, the anisotropic magnetothermopower and the planar Nernst effect in a permalloy thin film can be measured simultaneously. Thus, the angular dependence of the magnetothermopower with respect to the magnetization direction reveals a phase shift, that allows the quantitative separation of the thermopower, the anisotropic magnetothermopower and the planar Nernst effect.

  6. Directed Thermal Diffusions through Metamaterial Source Illusion with Homogeneous Natural Media

    PubMed Central

    Xu, Guoqiang; Zhang, Haochun; Jin, Liang

    2018-01-01

    Owing to the utilization of transformation optics, many significant research and development achievements have expanded the applications of illusion devices into thermal fields. However, most of the current studies on relevant thermal illusions used to reshape the thermal fields are dependent of certain pre-designed geometric profiles with complicated conductivity configurations. In this paper, we propose a methodology for designing a new class of thermal source illusion devices for achieving directed thermal diffusions with natural homogeneous media. The employments of the space rotations in the linear transformation processes allow the directed thermal diffusions to be independent of the geometric profiles, and the utilization of natural homogeneous media improve the feasibility. Four schemes, with fewer types of homogeneous media filling the functional regions, are demonstrated in transient states. The expected performances are observed in each scheme. The related performance are analyzed by comparing the thermal distribution characteristics and the illusion effectiveness on the measured lines. The findings obtained in this paper see applications in the development of directed diffusions with minimal thermal loss, used in novel “multi-beam” thermal generation, thermal lenses, solar receivers, and waveguide. PMID:29671833

  7. Electrically insulated MLI and thermal anchor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiya, Koji; Furukawa, Masato; Murakami, Haruyuki

    2014-01-29

    The thermal shield of JT-60SA is kept at 80 K and will use the multilayer insulation (MLI) to reduce radiation heat load to the superconducting coils at 4.4 K from the cryostat at 300 K. Due to plasma pulse operation, the MLI is affected by eddy current in toroidal direction. The MLI is designed to suppress the current by electrically insulating every 20 degree in the toroidal direction by covering the MLI with polyimide films. In this paper, two kinds of designs for the MLI system are proposed, focusing on a way to overlap the layers. A boil-off calorimeter methodmore » and temperature measurement has been performed to determine the thermal performance of the MLI system. The design of the electrical insulated thermal anchor between the toroidal field (TF) coil and the thermal shield is also explained.« less

  8. Significantly High Thermal Rectification in an Asymmetric Polymer Molecule Driven by Diffusive versus Ballistic Transport.

    PubMed

    Ma, Hao; Tian, Zhiting

    2018-01-10

    Tapered bottlebrush polymers have novel nanoscale polymer architecture. Using nonequilibrium molecular dynamics simulations, we showed that these polymers have the unique ability to generate thermal rectification in a single polymer molecule and offer an exceptional platform for unveiling different heat conduction regimes. In sharp contrast to all other reported asymmetric nanostructures, we observed that the heat current from the wide end to the narrow end (the forward direction) in tapered bottlebrush polymers is smaller than that in the opposite direction (the backward direction). We found that a more disordered to less disordered structural transition within tapered bottlebrush polymers is essential for generating nonlinearity in heat conduction for thermal rectification. Moreover, the thermal rectification ratio increased with device length, reaching as high as ∼70% with a device length of 28.5 nm. This large thermal rectification with strong length dependence uncovered an unprecedented phenomenon-diffusive thermal transport in the forward direction and ballistic thermal transport in the backward direction. This is the first observation of radically different transport mechanisms when heat flow direction changes in the same system. The fundamentally new knowledge gained from this study can guide exciting research into nanoscale organic thermal diodes.

  9. Spin-dependent Seebeck Effect, Thermal Colossal Magnetoresistance and Negative Differential Thermoelectric Resistance in Zigzag Silicene Nanoribbon Heterojunciton.

    PubMed

    Fu, Hua-Hua; Wu, Dan-Dan; Zhang, Zu-Quan; Gu, Lei

    2015-05-22

    Spin-dependent Seebeck effect (SDSE) is one of hot topics in spin caloritronics, which examine the relationships between spin and heat transport in materials. Meanwhile, it is still a huge challenge to obtain thermally induced spin current nearly without thermal electron current. Here, we construct a hydrogen-terminated zigzag silicene nanoribbon heterojunction, and find that by applying a temperature difference between the source and the drain, spin-up and spin-down currents are generated and flow in opposite directions with nearly equal magnitudes, indicating that the thermal spin current dominates the carrier transport while the thermal electron current is much suppressed. By modulating the temperature, a pure thermal spin current can be achieved. Moreover, a thermoelectric rectifier and a negative differential thermoelectric resistance can be obtained in the thermal electron current. Through the analysis of the spin-dependent transport characteristics, a phase diagram containing various spin caloritronic phenomena is provided. In addition, a thermal magnetoresistance, which can reach infinity, is also obtained. Our results put forward an effective route to obtain a spin caloritronic material which can be applied in future low-power-consumption technology.

  10. Hybrid indirect/direct contactor for thermal management of counter-current processes

    DOEpatents

    Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel

    2018-03-20

    The invention relates to contactors suitable for use, for example, in manufacturing and chemical refinement processes. In an aspect is a hybrid indirect/direct contactor for thermal management of counter-current processes, the contactor comprising a vertical reactor column, an array of interconnected heat transfer tubes within the reactor column, and a plurality of stream path diverters, wherein the tubes and diverters are configured to block all straight-line paths from the top to bottom ends of the reactor column.

  11. Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review

    PubMed Central

    Chamsa-ard, Wisut; Brundavanam, Sridevi; Fung, Chun Che; Fawcett, Derek; Poinern, Gerrard

    2017-01-01

    The global demand for energy is increasing and the detrimental consequences of rising greenhouse gas emissions, global warming and environmental degradation present major challenges. Solar energy offers a clean and viable renewable energy source with the potential to alleviate the detrimental consequences normally associated with fossil fuel-based energy generation. However, there are two inherent problems associated with conventional solar thermal energy conversion systems. The first involves low thermal conductivity values of heat transfer fluids, and the second involves the poor optical properties of many absorbers and their coating. Hence, there is an imperative need to improve both thermal and optical properties of current solar conversion systems. Direct solar thermal absorption collectors incorporating a nanofluid offers the opportunity to achieve significant improvements in both optical and thermal performance. Since nanofluids offer much greater heat absorbing and heat transfer properties compared to traditional working fluids. The review summarizes current research in this innovative field. It discusses direct solar absorber collectors and methods for improving their performance. This is followed by a discussion of the various types of nanofluids available and the synthesis techniques used to manufacture them. In closing, a brief discussion of nanofluid property modelling is also presented. PMID:28561802

  12. Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review.

    PubMed

    Chamsa-Ard, Wisut; Brundavanam, Sridevi; Fung, Chun Che; Fawcett, Derek; Poinern, Gerrard

    2017-05-31

    The global demand for energy is increasing and the detrimental consequences of rising greenhouse gas emissions, global warming and environmental degradation present major challenges. Solar energy offers a clean and viable renewable energy source with the potential to alleviate the detrimental consequences normally associated with fossil fuel-based energy generation. However, there are two inherent problems associated with conventional solar thermal energy conversion systems. The first involves low thermal conductivity values of heat transfer fluids, and the second involves the poor optical properties of many absorbers and their coating. Hence, there is an imperative need to improve both thermal and optical properties of current solar conversion systems. Direct solar thermal absorption collectors incorporating a nanofluid offers the opportunity to achieve significant improvements in both optical and thermal performance. Since nanofluids offer much greater heat absorbing and heat transfer properties compared to traditional working fluids. The review summarizes current research in this innovative field. It discusses direct solar absorber collectors and methods for improving their performance. This is followed by a discussion of the various types of nanofluids available and the synthesis techniques used to manufacture them. In closing, a brief discussion of nanofluid property modelling is also presented.

  13. Thermally induced magnonic spin current, thermomagnonic torques, and domain-wall dynamics in the presence of Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Wang, X.-G.; Chotorlishvili, L.; Guo, G.-H.; Sukhov, A.; Dugaev, V.; Barnaś, J.; Berakdar, J.

    2016-09-01

    Thermally activated domain-wall (DW) motion in magnetic insulators has been considered theoretically, with a particular focus on the role of Dzyaloshinskii-Moriya interaction (DMI) and thermomagnonic torques. The thermally assisted DW motion is a consequence of the magnonic spin current due to the applied thermal bias. In addition to the exchange magnonic spin current and the exchange adiabatic and the entropic spin transfer torques, we also consider the DMI-induced magnonic spin current, thermomagnonic DMI fieldlike torque, and the DMI entropic torque. Analytical estimations are supported by numerical calculations. We found that the DMI has a substantial influence on the size and the geometry of DWs, and that the DWs become oriented parallel to the long axis of the nanostrip. Increasing the temperature smoothes the DWs. Moreover, the thermally induced magnonic current generates a torque on the DWs, which is responsible for their motion. From our analysis it follows that for a large enough DMI the influence of DMI-induced fieldlike torque is much stronger than that of the DMI and the exchange entropic torques. By manipulating the strength of the DMI constant, one can control the speed of the DW motion, and the direction of the DW motion can be switched, as well. We also found that DMI not only contributes to the total magnonic current, but also it modifies the exchange magnonic spin current, and this modification depends on the orientation of the steady-state magnetization. The observed phenomenon can be utilized in spin caloritronics devices, for example in the DMI based thermal diodes. By switching the magnetization direction, one can rectify the total magnonic spin current.

  14. Non-volatile, solid state bistable electrical switch

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor)

    1994-01-01

    A bistable switching element is made of a material whose electrical resistance reversibly decreases in response to intercalation by positive ions. Flow of positive ions between the bistable switching element and a positive ion source is controlled by means of an electrical potential applied across a thermal switching element. The material of the thermal switching element generates heat in response to electrical current flow therethrough, which in turn causes the material to undergo a thermal phase transition from a high electrical resistance state to a low electrical resistance state as the temperature increases above a predetermined value. Application of the electrical potential in one direction renders the thermal switching element conductive to pass electron current out of the ion source. This causes positive ions to flow from the source into the bistable switching element and intercalate the same to produce a non-volatile, low resistance logic state. Application of the electrical potential in the opposite direction causes reverse current flow which de-intercalates the bistable logic switching element and produces a high resistance logic state.

  15. Switching of the Spin-Density-Wave in CeCoIn5 probed by Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Kim, Duk Y.; Lin, Shi-Zeng; Weickert, Franziska; Bauer, Eric D.; Ronning, Filip; Thompson, Joe D.; Movshovich, Roman

    Unconventional superconductor CeCoIn5 orders magnetically in a spin-density-wave (SDW) in the low-temperature and high-field corner of the superconducting phase. Recent neutron scattering experiment revealed that the single-domain SDW's ordering vector Q depends strongly on the direction of the magnetic field, switching sharply as the field is rotated through the anti-nodal direction. This switching may be manifestation of a pair-density-wave (PDW) p-wave order parameter, which develops in addition to the well-established d-wave order parameter due to the SDW formation. We have investigated the hypersensitivity of the magnetic domain with a thermal conductivity measurement. The heat current (J) was applied along the [110] direction such that the Q vector is either perpendicular or parallel to J, depending on the magnetic field direction. A discontinuous change of the thermal conductivity was observed when the magnetic field is rotated around the [100] direction within 0 . 2° . The thermal conductivity with the Q parallel to the heat current (J ∥Q) is approximately 15% lager than that with the Q perpendicular to the heat current (J ⊥Q). This result is consistent with additional gapping of the nodal quasiparticle by the p-wave PDW coupled to SDW. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.

  16. Quantum Thermal Transistor.

    PubMed

    Joulain, Karl; Drevillon, Jérémie; Ezzahri, Younès; Ordonez-Miranda, Jose

    2016-05-20

    We demonstrate that a thermal transistor can be made up with a quantum system of three interacting subsystems, coupled to a thermal reservoir each. This thermal transistor is analogous to an electronic bipolar one with the ability to control the thermal currents at the collector and at the emitter with the imposed thermal current at the base. This is achieved by determining the heat fluxes by means of the strong-coupling formalism. For the case of three interacting spins, in which one of them is coupled to the other two, that are not directly coupled, it is shown that high amplification can be obtained in a wide range of energy parameters and temperatures. The proposed quantum transistor could, in principle, be used to develop devices such as a thermal modulator and a thermal amplifier in nanosystems.

  17. Quantifying entrainment in pyroclastic density currents from the Tungurahua eruption, Ecuador: Integrating field proxies with numerical simulations

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Dufek, J.; Mothes, P. A.

    2016-07-01

    The entrainment of air into pyroclastic density currents (PDCs) impacts the dynamics and thermal history of these highly mobile currents. However, direct measurement of entrainment in PDCs is hampered due to hazardous conditions and opaqueness of these flows. We combine three-dimensional multiphase Eulerian-Eulerian-Lagrangian calculations with proxies of thermal conditions preserved in deposits to quantify air entrainment in PDCs at Tungurahua volcano, Ecuador. We conclude that small-volume PDCs develop a particle concentration gradient that results in disparate thermal characteristics for the concentrated bed load (>600 to ~800 K) and the overlying dilute suspended load (~300-600 K). The dilute suspended load has effective entrainment coefficients 2-3 times larger than the bed load. This investigation reveals a dichotomy in entrainment and thermal history between two regions in the current and provides a mechanism to interpret the depositional thermal characteristics of small-volume but frequently occurring PDCs.

  18. Digital control of a direct current converter for a hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Hernandez, Juan Manuel

    The nonlinear feedback loops permitting the large signal control of pulse width modulators in direct current converters are discussed. A digital feedback loop on a converter controlling the coupling of a direct current machine is described. It is used in the propulsion of a hybrid vehicle (thermal-electric) with regenerative braking. The protection of the power switches is also studied. An active protection of the MOST bipolar transistor association is proposed.

  19. Defect Related Dark Currents in III-V MWIR nBn Detectors

    DTIC Science & Technology

    2014-01-01

    theory indicates a thermal activation energy of half the bandgap, and a direct proportionality between dark current density and defect density. 2.2...density due to defects maintains a full bandgap thermal activation energy , and is proportional to the square root of the defect density. Although neutral...photodiodes, and cooling is more efficient in reducing nBn’s dark current due to the full bandgap activation energy . Downloaded From: http

  20. Heat transport in oscillator chains with long-range interactions coupled to thermal reservoirs.

    PubMed

    Iubini, Stefano; Di Cintio, Pierfrancesco; Lepri, Stefano; Livi, Roberto; Casetti, Lapo

    2018-03-01

    We investigate thermal conduction in arrays of long-range interacting rotors and Fermi-Pasta-Ulam (FPU) oscillators coupled to two reservoirs at different temperatures. The strength of the interaction between two lattice sites decays as a power α of the inverse of their distance. We point out the necessity of distinguishing between energy flows towards or from the reservoirs and those within the system. We show that energy flow between the reservoirs occurs via a direct transfer induced by long-range couplings and a diffusive process through the chain. To this aim, we introduce a decomposition of the steady-state heat current that explicitly accounts for such direct transfer of energy between the reservoir. For 0≤α<1, the direct transfer term dominates, meaning that the system can be effectively described as a set of oscillators each interacting with the thermal baths. Also, the heat current exchanged with the reservoirs depends on the size of the thermalized regions: In the case in which such size is proportional to the system size N, the stationary current is independent on N. For α>1, heat transport mostly occurs through diffusion along the chain: For the rotors transport is normal, while for FPU the data are compatible with an anomalous diffusion, possibly with an α-dependent characteristic exponent.

  1. Heat transport in oscillator chains with long-range interactions coupled to thermal reservoirs

    NASA Astrophysics Data System (ADS)

    Iubini, Stefano; Di Cintio, Pierfrancesco; Lepri, Stefano; Livi, Roberto; Casetti, Lapo

    2018-03-01

    We investigate thermal conduction in arrays of long-range interacting rotors and Fermi-Pasta-Ulam (FPU) oscillators coupled to two reservoirs at different temperatures. The strength of the interaction between two lattice sites decays as a power α of the inverse of their distance. We point out the necessity of distinguishing between energy flows towards or from the reservoirs and those within the system. We show that energy flow between the reservoirs occurs via a direct transfer induced by long-range couplings and a diffusive process through the chain. To this aim, we introduce a decomposition of the steady-state heat current that explicitly accounts for such direct transfer of energy between the reservoir. For 0 ≤α <1 , the direct transfer term dominates, meaning that the system can be effectively described as a set of oscillators each interacting with the thermal baths. Also, the heat current exchanged with the reservoirs depends on the size of the thermalized regions: In the case in which such size is proportional to the system size N , the stationary current is independent on N . For α >1 , heat transport mostly occurs through diffusion along the chain: For the rotors transport is normal, while for FPU the data are compatible with an anomalous diffusion, possibly with an α -dependent characteristic exponent.

  2. The Alkali Metal Thermal-To-Electric Converter for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Ryan, M.

    1999-01-01

    AMTEC, the Alkali Metal Thermal to Electric Converter, is a direct thermal to electric energy conversion device; it has been demostrated to perform at high power densities, with open circuit voltages in single electrochemical cells up to 1.6 V and current desities up to 2.0 A/cm(sup 2).

  3. Optimal trajectory planning for a UAV glider using atmospheric thermals

    NASA Astrophysics Data System (ADS)

    Kagabo, Wilson B.

    An Unmanned Aerial Vehicle Glider (UAV glider) uses atmospheric energy in its different forms to remain aloft for extended flight durations. This UAV glider's aim is to extract atmospheric thermal energy and use it to supplement its battery energy usage and increase the mission period. Given an infrared camera identified atmospheric thermal of known strength and location; current wind speed and direction; current battery level; altitude and location of the UAV glider; and estimating the expected altitude gain from the thermal, is it possible to make an energy-efficient based motivation to fly to an atmospheric thermal so as to achieve UAV glider extended flight time? For this work, an infrared thermal camera aboard the UAV glider takes continuous forward-looking ground images of "hot spots". Through image processing a candidate atmospheric thermal strength and location is estimated. An Intelligent Decision Model incorporates this information with the current UAV glider status and weather conditions to provide an energy-based recommendation to modify the flight path of the UAV glider. Research, development, and simulation of the Intelligent Decision Model is the primary focus of this work. Three models are developed: (1) Battery Usage Model, (2) Intelligent Decision Model, and (3) Altitude Gain Model. The Battery Usage Model comes from the candidate flight trajectory, wind speed & direction and aircraft dynamic model. Intelligent Decision Model uses a fuzzy logic based approach. The Altitude Gain Model requires the strength and size of the thermal and is found a priori.

  4. Thermal barrier coatings for aircraft engines: History and directions

    NASA Technical Reports Server (NTRS)

    Miller, R. A.

    1995-01-01

    Thin thermal barrier coatings for protecting aircraft turbine section airfoils are examined. The discussion focuses on those advances that led first to their use for component life extension and more recently as an integral part of airfoil design. It is noted that development has been driven by laboratory rig and furnace testing corroborated by engine testing and engine field experience. The technology has also been supported by performance modeling to demonstrate benefits and life modeling for mission analysis. Factors which have led to the selection of the current state-of-the-art plasma sprayed and physical vapor deposited zirconia-yttria/MCrAlY TBC's is emphasized in addition to observations fundamentally related to their behavior. Current directions in research into thermal barrier coatings and recent progress at NASA is also noted.

  5. A review of passive thermal management of LED module

    NASA Astrophysics Data System (ADS)

    Huaiyu, Ye; Koh, Sau; van Zeijl, Henk; Gielen, A. W. J.; Guoqi, Zhang

    2011-01-01

    Recently, the high-brightness LEDs have begun to be designed for illumination application. The increased electrical currents used to drive LEDs lead to thermal issues. Thermal management for LED module is a key design parameter as high operation temperature directly affects their maximum light output, quality, reliability and life time. In this review, only passive thermal solutions used on LED module will be studied. Moreover, new thermal interface materials and passive thermal solutions applied on electronic equipments are discussed which have high potential to enhance the thermal performance of LED Module.

  6. Reliability of Next Generation Power Electronics Packaging Under Concurrent Vibration, Thermal and High Power Loads

    DTIC Science & Technology

    2008-02-01

    combined thermal g effect and initial current field. The model is implemented using Abaqus user element subroutine and verified against the experimental...Finite Element Formulation The proposed model is implemented with ABAQUS general purpose finite element program using thermal -displacement analysis...option. ABAQUS and other commercially available finite element codes do not have the capability to solve general electromigration problem directly. Thermal

  7. Directions of flow of the water-bearing stratum in Friuli (NE Italy)

    NASA Astrophysics Data System (ADS)

    Cucchi, F.; Affatato, A.; Andrian, L.; Devoto, S.; Mereu, A.; Oberti, S.; Piano, C.; Rondi, V.; Zini, L.

    2003-04-01

    Flow directions of the water -- bearing stratum were executed with a Thermal Flowmeter in the Northern Friuli Plain. This type of instrument used is made up by a heater, a compass and various sensors of temperature. It is connected to an outside computer. It measures the induced thermal currents and identifies the direction and the intensity of the flow. The Thermal Flowmeter can be used in wells of little diameter and for big depths. The campaign of measures, about a hundred, confirms the general correspondence between the directions of the flows obtained from the water table and those measured through the Flowmeter in the permeable bodies with primary permeability. Different flow directions compared to the general picture were noticed in the conglomerate bodies, because of a secondary permeability. Direction changes are also noticed for the heterogeneity of the sediments which constitute the aquifer to big and to little scale.

  8. Thermal rectification in thin films driven by gradient grain microstructure

    NASA Astrophysics Data System (ADS)

    Cheng, Zhe; Foley, Brian M.; Bougher, Thomas; Yates, Luke; Cola, Baratunde A.; Graham, Samuel

    2018-03-01

    As one of the basic components of phononics, thermal rectifiers transmit heat current asymmetrically similar to electronic rectifiers in microelectronics. Heat can be conducted through them easily in one direction while being blocked in the other direction. In this work, we report a thermal rectifier that is driven by the gradient grain structure and the inherent gradient in thermal properties as found in these materials. To demonstrate their thermal rectification properties, we build a spectral thermal conductivity model with complete phonon dispersion relationships using the thermophysical properties of chemical vapor deposited (CVD) diamond films which possess gradient grain microstructures. To explain the observed significant thermal rectification, the temperature and thermal conductivity distribution are studied. Additionally, the effects of temperature bias and film thickness are discussed, which shed light on tuning the thermal rectification based on the gradient microstructures. Our results show that the columnar grain microstructure makes CVD materials unique candidates for mesoscale thermal rectifiers without a sharp temperature change.

  9. Analysis and Countermeasure Study on DC Bias of Main Transformer in a City

    NASA Astrophysics Data System (ADS)

    Wang, PengChao; Wang, Hongtao; Song, Xinpu; Gu, Jun; Liu, yong; Wu, weili

    2017-07-01

    According to the December 2015 Guohua Beijing thermal power transformer DC magnetic bias phenomenon, the monitoring data of 24 hours of direct current is analyzed. We find that the maximum DC current is up to 25 and is about 30s for the trend cycle, on this basis, then, of the geomagnetic storm HVDC and subway operation causes comparison of the mechanism, and make a comprehensive analysis of the thermal power plant’s geographical location, surrounding environment and electrical contact etc.. The results show that the main reason for the DC bias of Guohua thermal power transformer is the operation of the subway, and the change of the DC bias current is periodic. Finally, of Guohua thermal power transformer DC magnetic bias control method is studied, the simulation results show that the method of using neutral point with small resistance or capacitance can effectively inhibit the main transformer neutral point current.

  10. Survey of Current and Next Generation Space Power Technologies

    DTIC Science & Technology

    2006-06-26

    different thermodynamic cycles, such as the Brayton, Rankine, and Stirling cycles, alkali metal thermal electric converters ( AMTEC ) and thermionic...efficiencies @ 1700K. The primary issue with this system is the integration of the converter technology into the nuclear reactor core. AMTEC (static...Alkali metal thermal to electric converters ( AMTECs ) are thermally powered electrochemical concentration cells that convert heat energy directly to DC

  11. Thermal conductivity of Ho2Ti2O7 along the [111] direction.

    PubMed

    Toews, W H; Zhang, Songtian S; Ross, K A; Dabkowska, H A; Gaulin, B D; Hill, R W

    2013-05-24

    Thermal transport measurements have been made on the spin-ice material Ho(2)Ti(2)O(7) in an applied magnetic field with both the heat current and the field parallel to the [111] direction for temperatures from 50 mK to 1.2 K. A large magnetic field >6 T is applied to suppress the magnetic contribution to the thermal conductivity in order to extract the lattice conductivity. The low field thermal conductivity thus reveals a magnetic field dependent contribution to the conductivity which both transfers heat and scatters phonons. We interpret these magnetic excitations as monopolelike excitations and describe their behavior via existing Debye-Hückel theory.

  12. Texturing of high T(sub c) superconducting polycrystalline fibers/wires by laser-driven directional solidification in an thermal gradient

    NASA Technical Reports Server (NTRS)

    Varshney, Usha; Eichelberger, B. Davis, III

    1995-01-01

    This paper summarizes the technique of laser-driven directional solidification in a controlled thermal gradient of yttria stabilized zirconia core coated Y-Ba-Cu-O materials to produce textured high T(sub c) superconducting polycrystalline fibers/wires with improved critical current densities in the extended range of magnetic fields at temperatures greater than 77 K. The approach involves laser heating to minimize phase segregation by heating very rapidly through the two-phase incongruent melt region to the single phase melt region and directionally solidifying in a controlled thermal gradient to achieve highly textured grains in the fiber axis direction. The technique offers a higher grain growth rate and a lower thermal budget compared with a conventional thermal gradient and is amenable as a continuous process for improving the J(sub c) of high T(sub c) superconducting polycrystalline fibers/wires. The technique has the advantage of suppressing weak-link behavior by orientation of crystals, formation of dense structures with enhanced connectivity, formation of fewer and cleaner grain boundaries, and minimization of phase segregation in the incongruent melt region.

  13. Resonances in the Field-Angle-Resolved Thermal Conductivity of CeCoIn 5

    DOE PAGES

    Kim, Duk Y.; Lin, Shi -Zeng; Weickert, Franziska; ...

    2017-05-12

    Here, the thermal conductivity measurement in a rotating magnetic field is a powerful probe of the structure of the superconducting energy gap. We present high-precision measurements of the low-temperature thermal conductivity in the unconventional heavy-fermion superconductor CeCoIn 5, with the heat current J along the nodal [110] direction of its d x2–y2 order parameter and the magnetic field up to 7 T rotating in the ab plane. In contrast to the smooth oscillations found previously for J∥[100], we observe a sharp resonancelike peak in the thermal conductivity when the magnetic field is also in the [110] direction, parallel to themore » heat current. We explain this peak qualitatively via a model of the heat transport in a d-wave superconductor. In addition, we observe two smaller but also very sharp peaks in the thermal conductivity for the field directions at angles Θ≈±33° with respect to J. The origin of the observed resonances at Θ≈±33° at present defies theoretical explanation. The challenge of uncovering their source will dictate exploring theoretically more complex models, which might include, e.g., fine details of the Fermi surface, Andreev bound vortex core states, a secondary superconducting order parameter, and the existence of gaps in spin and charge excitations.« less

  14. Resonances in the Field-Angle-Resolved Thermal Conductivity of CeCoIn 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Duk Y.; Lin, Shi -Zeng; Weickert, Franziska

    Here, the thermal conductivity measurement in a rotating magnetic field is a powerful probe of the structure of the superconducting energy gap. We present high-precision measurements of the low-temperature thermal conductivity in the unconventional heavy-fermion superconductor CeCoIn 5, with the heat current J along the nodal [110] direction of its d x2–y2 order parameter and the magnetic field up to 7 T rotating in the ab plane. In contrast to the smooth oscillations found previously for J∥[100], we observe a sharp resonancelike peak in the thermal conductivity when the magnetic field is also in the [110] direction, parallel to themore » heat current. We explain this peak qualitatively via a model of the heat transport in a d-wave superconductor. In addition, we observe two smaller but also very sharp peaks in the thermal conductivity for the field directions at angles Θ≈±33° with respect to J. The origin of the observed resonances at Θ≈±33° at present defies theoretical explanation. The challenge of uncovering their source will dictate exploring theoretically more complex models, which might include, e.g., fine details of the Fermi surface, Andreev bound vortex core states, a secondary superconducting order parameter, and the existence of gaps in spin and charge excitations.« less

  15. An International Round-Robin Study, Part II: Thermal Diffusivity, Specific Heat and Thermal Conductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsin; Porter, Wallace D; Bottner, Harold

    2013-01-01

    For bulk thermoelectrics, figure-of-merit, ZT, still needs to improve from the current value of 1.0 - 1.5 to above 2 to be competitive to other alternative technologies. In recent years, the most significant improvements in ZT were mainly due to successful reduction of thermal conductivity. However, thermal conductivity cannot be measured directly at high temperatures. The combined measurements of thermal diffusivity and specific heat and density are required. It has been shown that thermal conductivity is the property with the greatest uncertainty and has a direct influence on the accuracy of the figure of merit. The International Energy Agency (IEA)more » group under the implementing agreement for Advanced Materials for Transportation (AMT) has conducted two international round-robins since 2009. This paper is Part II of the international round-robin testing of transport properties of bulk bismuth telluride. The main focuses in Part II are on thermal diffusivity, specific heat and thermal conductivity.« less

  16. Thermoelectric Measurements of Magnetic Nanostructures Using Thermal Isolation Platforms

    NASA Astrophysics Data System (ADS)

    Avery, A. D.; Sultan, R.; Bassett, D.; Pufall, M. R.; Zink, B. L.

    2010-03-01

    The effective design of next-generation memory storage and logic devices based on spin necessitates a thorough understanding of transport properties of their potential components. Although electrical transport in magnetic materials is well-understood, thermal transport is historically difficult to measure. Using micromachined thermal isolation structures, we make direct measurements of thermal and electrical transport in these systems. Our technique offers a method for accurately measuring films and other low-dimensional geometries from the microscale down to the nano regime. We will present in-plane thermal conductivity, resistivity, and thermopower results, as well as direct comparisons with the Wiedemann-Franz law for films of various thicknesses and preparation techniques. We will also present the extension of our technique to explore an evaporated multilayer film. Finally, we discuss the application of our method to examining the fundamental physics underlying thermoelectric effects, such as thermally driven spin currents, to further the emerging sub-field of spin caloritronics.

  17. The performance of adobe and other thermal mass materials in residential buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, D.

    1986-01-01

    This paper reviews the history and current status of thermal mass research, and national, state, and local codes with respect to thermal mass; and offers specific recommendations on how best to use thermal mass for energy efficiency and comfort. Much of the material comes directly from the Southwest Thermal Mass Study (SWTMS), an experimental research study on the thermal performance of adobe conducted at Tesuque Pueblo, New Mexico, in the early 1980s. The focus is primarily on residential construction, although the theory and most of the recommendations apply to small commercial buildings as well.

  18. Feasibility of using interstitial ultrasound for intradiscal thermal therapy: a study in human cadaver lumbar discs

    NASA Astrophysics Data System (ADS)

    Nau, William H.; Diederich, Chris J.; Shu, Richard

    2005-06-01

    Application of heat in the spine using resistive wire heating devices is currently being used clinically for minimally invasive treatment of discogenic low back pain. In this study, interstitial ultrasound was evaluated for the potential to heat intradiscal tissue more precisely by directing energy towards the posterior annular wall while avoiding vertebral bodies. Two single-element directional applicator design configurations were tested: a 1.5 mm OD direct-coupled (DC) applicator which can be implanted directly within the disc, and a catheter-cooled (CC) applicator which is inserted in a 2.4 mm OD catheter with integrated water cooling and implanted within the disc. The transducers were sectored to produce 90° spatial heating patterns for directional control. Both applicator configurations were evaluated in four human cadaver lumbar disc motion segments. Two heating protocols were employed in this study in which the temperature measured 5 mm away from the applicator was controlled to either T = 52 °C, or T > 70 °C for the treatment period. These temperatures (thermal doses) are representative of those required for thermal necrosis of in-growing nociceptor nerve fibres and disc cellularity alone, or with coagulation and restructuring of annular collagen in the high-temperature case. Steady-state temperature maps, and thermal doses (t43) were used to assess the thermal treatments. Results from these studies demonstrated the capability of controlling temperature distributions within selected regions of the disc and annular wall using interstitial ultrasound, with minimal vertebral end-plate heating. While directional heating was demonstrated with both applicator designs, the CC configuration had greater directional heating capabilities and offered better temperature control than the DC configuration, particularly during the high-temperature protocol. Further, ultrasound energy was capable of penetrating within the highly attenuating disc tissue to produce more extensive radial thermal penetration, lower maximum intradiscal temperature, and shorter treatment times than can be achieved with current clinical intradiscal heating technology. Thus, interstitial ultrasound offers potential as a more precise and faster heating modality for the clinical management of low back pain.

  19. Electropneumatic rheostat regulates high current

    NASA Technical Reports Server (NTRS)

    Haacker, J. F.; Jedlicka, J. R.; Wagoner, C. B.

    1965-01-01

    Electropneumatic rheostat maintains a constant direct current in each of several high-power parallel loads, of variable resistance, across a single source. It provides current regulation at any preset value by dissipating the proper amount of energy thermally, and uses a column of mercury to vary the effective length of a resistance element.

  20. A design tool for direct and non-stochastic calculations of near-field radiative transfer in complex structures: The NF-RT-FDTD algorithm

    NASA Astrophysics Data System (ADS)

    Didari, Azadeh; Pinar Mengüç, M.

    2017-08-01

    Advances in nanotechnology and nanophotonics are inextricably linked with the need for reliable computational algorithms to be adapted as design tools for the development of new concepts in energy harvesting, radiative cooling, nanolithography and nano-scale manufacturing, among others. In this paper, we provide an outline for such a computational tool, named NF-RT-FDTD, to determine the near-field radiative transfer between structured surfaces using Finite Difference Time Domain method. NF-RT-FDTD is a direct and non-stochastic algorithm, which accounts for the statistical nature of the thermal radiation and is easily applicable to any arbitrary geometry at thermal equilibrium. We present a review of the fundamental relations for far- and near-field radiative transfer between different geometries with nano-scale surface and volumetric features and gaps, and then we discuss the details of the NF-RT-FDTD formulation, its application to sample geometries and outline its future expansion to more complex geometries. In addition, we briefly discuss some of the recent numerical works for direct and indirect calculations of near-field thermal radiation transfer, including Scattering Matrix method, Finite Difference Time Domain method (FDTD), Wiener Chaos Expansion, Fluctuating Surface Current (FSC), Fluctuating Volume Current (FVC) and Thermal Discrete Dipole Approximations (TDDA).

  1. Effect of groove width of modified current collector on internal short circuit of abused lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Shi, Yang; Noelle, Daniel J.; Le, Anh V.; Qiao, Yu

    2017-10-01

    In a lithium-ion battery (LIB), mechanical abuse often leads to internal short circuits (ISC) that trigger thermal runaway. We investigated a thermal-runaway mitigation (TRM) technique using a modified current collector. By generating surface grooves on the current collector, the area of electrodes directly involved in ISC could be largely reduced, which decreased the ISC current. The TRM mechanism took effect immediately after the LIB was damaged. The testing data indicate that the groove width is a critical factor. With optimized groove width, this technique may enable robust and multifunctional design of LIB cells for large-scale energy-storage units.

  2. Coronal plasmas on the sun and nearby stars

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.

    1986-01-01

    The current understanding of the quiescent, or non-flaring, microwave emission from solar active regions is summarized. The thermal radiation mechanisms that account for most of the quiescent emission is reviewed, while it is also pointed out that current-amplified magnetic fields or non-thermal radiation may be required in some instances. The 20 cm radiation of coronal loops and the thermal cyclotron lines that accurately specify their magnetic field strength are discussed. The 20 cm and X ray emission of the coronal plasma are then compared. The coronae of nearby stars is next discussed, where coherent radiation processes seem to prevail. Some thoughts toward directions for future exploration are given.

  3. Spectral, thermal and optical-electrical properties of the layer-by-layer deposited thin film of nano Zn(II)-8-hydroxy-5-nitrosoquinolate complex.

    PubMed

    Haggag, Sawsan M S; Farag, A A M; Abdelrafea, Mohamed

    2013-06-01

    Zinc(II)-8-hydroxy-5-nitrosoquinolate, [Zn(II)-(HNOQ)2], was synthesized and assembled as a deposited thin film of nano-metal complex by a rapid, direct, simple and efficient procedure based on layer-by-layer chemical deposition technique. Stoichiometric identification and structural characterization of [Zn(II)-(HNOQ)2] were confirmed by electron impact mass spectrometry (EI-MS) and Fourier Transform infrared spectroscopy (FT-IR). Surface morphology was studied by using a scanning electron microscope imaging (SEM) and the particle size was found to be in the range of 23-49 nm. Thermal stability of [Zn(II)-(HNOQ)2] was studied and the thermal parameters were evaluated using thermal gravimetric analysis (TGA). The current density-voltage measurements showed that the current flow is dominated by a space charge limited and influenced by traps under high bias. The optical properties of [Zn(II)-(HNOQ)2] thin films were found to exhibit two direct allowed transitions at 2.4 and 1.0 eV, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Shear deformation-induced anisotropic thermal conductivity of graphene.

    PubMed

    Cui, Liu; Shi, Sanqiang; Wei, Gaosheng; Du, Xiaoze

    2018-01-03

    Graphene-based materials exhibit intriguing phononic and thermal properties. In this paper, we have investigated the heat conductance in graphene sheets under shear-strain-induced wrinkling deformation, using equilibrium molecular dynamics simulations. A significant orientation dependence of the thermal conductivity of graphene wrinkles (GWs) is observed. The directional dependence of the thermal conductivity of GWs stems from the anisotropy of phonon group velocities as revealed by the G-band broadening of the phonon density of states (DOS), the anisotropy of thermal resistance as evidenced by the G-band peak mismatch of the phonon DOS, and the anisotropy of phonon relaxation times as a direct result of the double-exponential-fitting of the heat current autocorrelation function. By analyzing the relative contributions of different lattice vibrations to the heat flux, we have shown that the contributions of different lattice vibrations to the heat flux of GWs are sensitive to the heat flux direction, which further indicates the orientation-dependent thermal conductivity of GWs. Moreover, we have found that, in the strain range of 0-0.1, the anisotropy ratio of GWs increases monotonously with increasing shear strain. This is induced by the change in the number of wrinkles, which is more influential in the direction perpendicular to the wrinkle texture. The findings elucidated here emphasize the utility of wrinkle engineering for manipulation of nanoscale heat transport, which offers opportunities for the development of thermal channeling devices.

  5. Direct Electricity from Heat: A Solution to Assist Aircraft Power Demands

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2010-01-01

    A thermionic device produces an electrical current with the application of a thermal gradient whereby the temperature at one electrode provides enough thermal energy to eject electrons. The system is totally predicated on the thermal gradient and the work function of the electrode collector relative to the emitter electrode. Combined with a standard thermoelectric device high efficiencies may result, capable of providing electrical energy from the waste heat of gas turbine engines.

  6. Frequency-dependent failure mechanisms of nanocrystalline gold interconnect lines under general alternating current

    NASA Astrophysics Data System (ADS)

    Luo, X. M.; Zhang, B.; Zhang, G. P.

    2014-09-01

    Thermal fatigue failure of metallization interconnect lines subjected to alternating currents (AC) is becoming a severe threat to the long-term reliability of micro/nanodevices with increasing electrical current density/power. Here, thermal fatigue failure behaviors and damage mechanisms of nanocrystalline Au interconnect lines on the silicon glass substrate have been investigated by applying general alternating currents (the pure alternating current coupled with a direct current (DC) component) with different frequencies ranging from 0.05 Hz to 5 kHz. We observed both thermal fatigue damages caused by Joule heating-induced cyclic strain/stress and electromigration (EM) damages caused by the DC component. Besides, the damage formation showed a strong electrically-thermally-mechanically coupled effect and frequency dependence. At lower frequencies, thermal fatigue damages were dominant and the main damage forms were grain coarsening with grain boundary (GB) cracking/voiding and grain thinning. At higher frequencies, EM damages took over and the main damage forms were GB cracking/voiding of smaller grains and hillocks. Furthermore, the healing effect of the reversing current was considered to elucidate damage mechanisms of the nanocrystalline Au lines generated by the general AC. Lastly, a modified model was proposed to predict the lifetime of the nanocrystalline metal interconnect lines, i.e., that was a competing drift velocity-based approach based on the threshold time required for reverse diffusion/healing to occur.

  7. The SERI solar energy storage program

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-01-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  8. Current and anticipated use of thermal-hydraulic codes for BWR transient and accident analyses in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Kenji; Ebata, Shigeo

    1997-07-01

    This paper summarizes the current and anticipated use of the thermal-hydraulic and neutronic codes for the BWR transient and accident analyses in Japan. The codes may be categorized into the licensing codes and the best estimate codes for the BWR transient and accident analyses. Most of the licensing codes have been originally developed by General Electric. Some codes have been updated based on the technical knowledge obtained in the thermal hydraulic study in Japan, and according to the BWR design changes. The best estimates codes have been used to support the licensing calculations and to obtain the phenomenological understanding ofmore » the thermal hydraulic phenomena during a BWR transient or accident. The best estimate codes can be also applied to a design study for a next generation BWR to which the current licensing model may not be directly applied. In order to rationalize the margin included in the current BWR design and develop a next generation reactor with appropriate design margin, it will be required to improve the accuracy of the thermal-hydraulic and neutronic model. In addition, regarding the current best estimate codes, the improvement in the user interface and the numerics will be needed.« less

  9. Spin Seebeck Effect and Thermal Colossal Magnetoresistance in Graphene Nanoribbon Heterojunction

    PubMed Central

    Ni, Yun; Yao, Kailun; Fu, Huahua; Gao, Guoying; Zhu, Sicong; Wang, Shuling

    2013-01-01

    Spin caloritronics devices are very important for future development of low-power-consumption technology. We propose a new spin caloritronics device based on zigzag graphene nanoribbon (ZGNR), which is a heterojunction consisting of single-hydrogen-terminated ZGNR (ZGNR-H) and double-hydrogen-terminated ZGNR (ZGNR-H2). We predict that spin-up and spin-down currents flowing in opposite directions can be induced by temperature difference instead of external electrical bias. The thermal spin-up current is considerably large and greatly improved compared with previous work in graphene. Moreover, the thermal colossal magnetoresistance is obtained in our research, which could be used to fabricate highly-efficient spin caloritronics MR devices. PMID:23459307

  10. Modeling of Optical Waveguide Poling and Thermally Stimulated Discharge (TSD) Charge and Current Densities for Guest/Host Electro Optic Polymers

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Ashley, Paul R.; Abushagur, Mustafa

    2004-01-01

    A charge density and current density model of a waveguide system has been developed to explore the effects of electric field electrode poling. An optical waveguide may be modeled during poling by considering the dielectric charge distribution, polarization charge distribution, and conduction charge generated by the poling field. These charge distributions are the source of poling current densities. The model shows that boundary charge current density and polarization current density are the major source of currents measured during poling and thermally stimulated discharge These charge distributions provide insight into the poling mechanisms and are directly related to E(sub A), and, alpha(sub r). Initial comparisons with experimental data show excellent correlation to the model results.

  11. Microbial fuel cells: Running on gas

    NASA Astrophysics Data System (ADS)

    Ren, Zhiyong Jason

    2017-06-01

    Methane is an abundant energy source that is used for power generation in thermal power plants via combustion, but direct conversion to electricity in fuel cells remains challenging. Now, a microbial fuel cell is demonstrated to efficiently convert methane directly to current by careful selection of a consortium of microorganisms.

  12. Directly deposited current collecting grids for alkali metal thermal-to-electric converter electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, M.A.; Jeffries-Nakamura, B.; Williams, R.M.

    1995-12-01

    Current collection in porous thin film electrodes on solid electrolytes has been improved by using thick film grids to decrease sheet and contact resistance in RhW and PtW electrodes. The grids are directly deposited on the solid electrolyte either by sputter- or photodeposition and the electrode deposited over the grid. Comparison of the performance of electrodes having such underlying grids with that of electrodes without such grids has shown performance, as measured by current or power produced, to be improved by 10--30% in electrodes with grids.

  13. Directly Deposited Current Collecting Grids for Alkali Metal Thermal-to-Electric Converter Electrodes

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Jeffries-Nakamura, B.; Williams, R. M.; Underwood, M. L.; OConnor, D.; Kikkert, S.

    1995-01-01

    Current collection in porous thin film electrodes on solid electrolytes has been improved by using thick film grids to decrease sheet and contact resistance in RhW and PtW electrodes. The grids are directly deposited on the solid electrolyte either by sputter- or photodeposition, and the electrode deposited over the grid. Comparison of the performance of electrodes having such underlying grids with that of electrodes without such grids has shown performance, as measured by current or power produced, to be improved by 10-30% in electrodes with grids.

  14. Current observations offshore Punta Tuna, Puerto Rico, 21 June-7 December 1980. Part A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, D.; Leavitt, K.; Whitney, A.

    1981-08-01

    An oceanographic measurement program was conducted in the vicinity of a proposed ocean thermal energy conversion (OTEC) site about 20 km offshore of Punta Tuna, Puerto Rico. As part of the program, a mooring consisting of five current meters was maintained between 21 June and 7 December, 1980. The current data collected are summarized according to frequency of occurrence within 5 cm/sec speed and 15/sup 0/ direction intervals. Sums and percentages of total occurrence are given for each speed and direction class, along with mean speed, extreme speeds, mean component speeds, and standard deviations. Hourly averages of current speed, truemore » direction, current vector, temperature, and pressure are plotted as a function of time. On 13 December, 1980, a current meter array was deployed at the Punta Tuna site and recovered on May 16, 1981. The processed current data from this current meter array are described. (LEW)« less

  15. Thermoelectric and morphological effects of Peltier pulsing on directional solidification of eutectic Bi-Mn

    NASA Technical Reports Server (NTRS)

    Silberstein, R. P.; Larson, D. J., Jr.; Dressler, B.

    1984-01-01

    Extensive in situ thermal measurements using Peltier Interface Demarcation (PID) during directional solidification of eutectic Bi/MnBi were carried out. Observations indicate that significant thermal transients occur throughout the sample as a result of the Peltier pulsing. The contributions of the Peltier, Thomson, and Joule heats were separated and studied as a function of pulse intensity and polarity. The Joule and the combined Peltier and Thomson thermal contributions were determined as a function of time during and after the current pulses, close to the solid/liquid interface. Variations of the Bi/MnBi particle morphology clearly reveal the interface shape, changes in interface velocity, meltback, and temporary loss of cooperative growth, as a result of the pulsing.

  16. Rectification of electronic heat current by a hybrid thermal diode.

    PubMed

    Martínez-Pérez, Maria José; Fornieri, Antonio; Giazotto, Francesco

    2015-04-01

    Thermal diodes--devices that allow heat to flow preferentially in one direction--are one of the key tools for the implementation of solid-state thermal circuits. These would find application in many fields of nanoscience, including cooling, energy harvesting, thermal isolation, radiation detection and quantum information, or in emerging fields such as phononics and coherent caloritronics. However, both in terms of phononic and electronic heat conduction (the latter being the focus of this work), their experimental realization remains very challenging. A highly efficient thermal diode should provide a difference of at least one order of magnitude between the heat current transmitted in the forward temperature (T) bias configuration (Jfw) and that generated with T-bias reversal (Jrev), leading to ℛ = Jfw/Jrev ≫ 1 or ≪ 1. So far, ℛ ≈ 1.07-1.4 has been reported in phononic devices, and ℛ ≈ 1.1 has been obtained with a quantum-dot electronic thermal rectifier at cryogenic temperatures. Here, we show that unprecedentedly high ratios of ℛ ≈ 140 can be achieved in a hybrid device combining normal metals tunnel-coupled to superconductors. Our approach provides a high-performance realization of a thermal diode for electronic heat current that could be successfully implemented in true low-temperature solid-state thermal circuits.

  17. Nonthermal electrons in the thick-target reverse-current model for hard X-ray bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Litvinenko, Iu. E.; Somov, B. V.

    1991-02-01

    The behavior of the accelerated electrons escaping from a high-temperature source of primary energy in a solar flare is investigated. The direct current of fast electrons is supposed to be balanced by the reverse current of thermal electrons in the ambient colder plasma inside flare loops. The self-consistent kinetic problem is formulated, and the reverse-current electric field and the fast electron distribution function are found from its solution. The X-ray bremsstrahlung polarization is then calculated from the distribution function. The difference of results from those in the case of thermal runaway electrons (Diakonov and Somov, 1988) is discussed. The solutions with and without an account taken of the effect of a reverse-current electric field are also compared.

  18. 0-π phase-controllable thermal Josephson junction

    NASA Astrophysics Data System (ADS)

    Fornieri, Antonio; Timossi, Giuliano; Virtanen, Pauli; Solinas, Paolo; Giazotto, Francesco

    2017-05-01

    Two superconductors coupled by a weak link support an equilibrium Josephson electrical current that depends on the phase difference ϕ between the superconducting condensates. Yet, when a temperature gradient is imposed across the junction, the Josephson effect manifests itself through a coherent component of the heat current that flows opposite to the thermal gradient for |ϕ| < π/2 (refs 2-4). The direction of both the Josephson charge and heat currents can be inverted by adding a π shift to ϕ. In the static electrical case, this effect has been obtained in a few systems, for example via a ferromagnetic coupling or a non-equilibrium distribution in the weak link. These structures opened new possibilities for superconducting quantum logic and ultralow-power superconducting computers. Here, we report the first experimental realization of a thermal Josephson junction whose phase bias can be controlled from 0 to π. This is obtained thanks to a superconducting quantum interferometer that allows full control of the direction of the coherent energy transfer through the junction. This possibility, in conjunction with the completely superconducting nature of our system, provides temperature modulations with an unprecedented amplitude of ∼100 mK and transfer coefficients exceeding 1 K per flux quantum at 25 mK. Then, this quantum structure represents a fundamental step towards the realization of caloritronic logic components such as thermal transistors, switches and memory devices. These elements, combined with heat interferometers and diodes, would complete the thermal conversion of the most important phase-coherent electronic devices and benefit cryogenic microcircuits requiring energy management, such as quantum computing architectures and radiation sensors.

  19. NASA/Goddard Thermal Technology Overview 2014

    NASA Technical Reports Server (NTRS)

    Butler, Daniel; Swanson, Theodore D.

    2014-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the Technology Development Program at NASA. While funding for basic technology development is still scarce, significant efforts are being made in direct support of flight programs. New technology development continues to be driven by the needs of future missions, and applications of these technologies to current Goddard programs will be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program, the Small Business Innovative Research (SBIR) program, and the NASA Engineering and Safety Center (NESC), are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, development of high electrical conductivity coatings, and various other research activities. New Technology program underway at NASA, although funding is limited center dot NASA/GSFC's primary mission of science satellite development is healthy and vibrant, although new missions are scarce - now have people on overhead working new missions and proposals center dot Future mission applications promise to be thermally challenging center dot Direct technology funding is still very restricted - Projects are the best source for direct application of technology - SBIR thermal subtopic resurrected in FY 14 - Limited Technology development underway via IRAD, NESC, other sources - Administrator pushing to revive technology and educational programs at NASA - new HQ directorate established

  20. Low-Cost Radiator for Fission Power Thermal Control

    NASA Technical Reports Server (NTRS)

    Maxwell, Taylor; Tarau, Calin; Anderson, William; Hartenstine, John; Stern, Theodore; Walmsley, Nicholas; Briggs, Maxwell

    2014-01-01

    NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar surface power applications. The systems are envisioned in the 10 to 100kW(sub e) range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kW(sub e) non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water. By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POC(TradeMark) foam saddles, aluminum honeycomb, and a second facesheet. A two-heat pipe radiator prototype, based on the single facesheet direct-bond concept, was fabricated and tested to verify the ability of the direct-bond joint to withstand coefficient of thermal expansion (CTE) induced stresses during thermal cycling. The thermal gradients along the bonds were measured before and after thermal cycle tests to determine if the performance degraded. Overall, the results indicated that the initial uniformity of the adhesive was poor along one of the heat pipes. However, both direct bond joints showed no measureable amount of degradation after being thermally cycled at both moderate and aggressive conditions.

  1. Observation of the Spin Nernst Effect in Platinum

    NASA Astrophysics Data System (ADS)

    Goennenwein, Sebastian

    Thermoelectric effects - arising from the interplay between thermal and charge transport phenomena - have been extensively studied and are considered well established. Upon taking into account the spin degree of freedom, however, qualitatively new phenomena arise. A prototype example for these so-called magneto-thermoelectric or spin-caloritronic effects is the spin Seebeck effect, in which a thermal gradient drives a pure spin current. In contrast to their thermoelectric counterparts, not all the spin-caloritronic effects predicted from theory have yet been observed in experiment. One of these `missing' phenomena is the spin Nernst effect, in which a thermal gradient gives rise to a transverse pure spin current. We have observed the spin Nernst effect in yttrium iron garnet/platinum (YIG/Pt) thin film bilayers. Upon applying a thermal gradient within the YIG/Pt bilayer plane, a pure spin current flows in the direction orthogonal to the thermal drive. We detect this spin current as a thermopower voltage, generated via magnetization-orientation dependent spin transfer into the adjacent YIG layer. Our data shows that the spin Nernst and the spin Hall effect in in Pt have different sign, but comparable magnitude, in agreement with first-principles calculations. Financial support via Deutsche Forschungsgemeinschaft Priority Programme SPP 1538 Spin-Caloric Transport is gratefully acknowledged.

  2. Analysis on the correlation between temperature and discharge characteristic of cloud-to-ground lightning discharge plasma with multiple return strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu Haiyan; Chang Zhengshi; Yuan Ping

    2011-01-15

    The spectra of cloud-to-ground lightning with multiple return strokes have been obtained by using a slitless spectrograph on the Chinese Tibet plateau. Combining the spectra with synchronous electrical information, the correlation among spectral properties, channel temperatures and discharge characteristics, and thermal effects of current is discussed for the first time. The results show that the channel plasma temperature varies significantly from stroke to stroke within a given flash, and the total intensity of spectra is directly proportional to the amplitude of electric field change. Moreover, the positive correlation has been confirmed between the channel plasma temperature and the thermal effectmore » which shows the effect of the electric current accumulation. It is inferred that the total intensity of the spectra should be directly proportional to the intensity of discharge current, and channel temperature is correlated positively with the energy transmission in one return stroke.« less

  3. An Effective Electrical Resonance-Based Method to Detect Delamination in Thermal Barrier Coating

    NASA Astrophysics Data System (ADS)

    Kim, Jong Min; Park, Jae-Ha; Lee, Ho Girl; Kim, Hak-Joon; Song, Sung-Jin; Seok, Chang-Sung; Lee, Young-Ze

    2017-12-01

    This research proposes a simple yet highly sensitive method based on electrical resonance of an eddy-current probe to detect delamination of thermal barrier coating (TBC). This method can directly measure the mechanical characteristics of TBC compared to conventional ultrasonic testing and infrared thermography methods. The electrical resonance-based method can detect the delamination of TBC from the metallic bond coat by shifting the electrical impedance of eddy current testing (ECT) probe coupling with degraded TBC, and, due to this shift, the resonant frequencies near the peak impedance of ECT probe revealed high sensitivity to the delamination. In order to verify the performance of the proposed method, a simple experiment is performed with degraded TBC specimens by thermal cyclic exposure. Consequently, the delamination with growth of thermally grown oxide in a TBC system is experimentally identified. Additionally, the results are in good agreement with the results obtained from ultrasonic C-scanning.

  4. An Effective Electrical Resonance-Based Method to Detect Delamination in Thermal Barrier Coating

    NASA Astrophysics Data System (ADS)

    Kim, Jong Min; Park, Jae-Ha; Lee, Ho Girl; Kim, Hak-Joon; Song, Sung-Jin; Seok, Chang-Sung; Lee, Young-Ze

    2018-02-01

    This research proposes a simple yet highly sensitive method based on electrical resonance of an eddy-current probe to detect delamination of thermal barrier coating (TBC). This method can directly measure the mechanical characteristics of TBC compared to conventional ultrasonic testing and infrared thermography methods. The electrical resonance-based method can detect the delamination of TBC from the metallic bond coat by shifting the electrical impedance of eddy current testing (ECT) probe coupling with degraded TBC, and, due to this shift, the resonant frequencies near the peak impedance of ECT probe revealed high sensitivity to the delamination. In order to verify the performance of the proposed method, a simple experiment is performed with degraded TBC specimens by thermal cyclic exposure. Consequently, the delamination with growth of thermally grown oxide in a TBC system is experimentally identified. Additionally, the results are in good agreement with the results obtained from ultrasonic C-scanning.

  5. Single-electron thermal noise

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Katsuhiko; Ono, Yukinori; Fujiwara, Akira

    2014-07-01

    We report the observation of thermal noise in the motion of single electrons in an ultimately small dynamic random access memory (DRAM). The nanometer-scale transistors that compose the DRAM resolve the thermal noise in single-electron motion. A complete set of fundamental tests conducted on this single-electron thermal noise shows that the noise perfectly follows all the aspects predicted by statistical mechanics, which include the occupation probability, the law of equipartition, a detailed balance, and the law of kT/C. In addition, the counting statistics on the directional motion (i.e., the current) of the single-electron thermal noise indicate that the individual electron motion follows the Poisson process, as it does in shot noise.

  6. Single-electron thermal noise.

    PubMed

    Nishiguchi, Katsuhiko; Ono, Yukinori; Fujiwara, Akira

    2014-07-11

    We report the observation of thermal noise in the motion of single electrons in an ultimately small dynamic random access memory (DRAM). The nanometer-scale transistors that compose the DRAM resolve the thermal noise in single-electron motion. A complete set of fundamental tests conducted on this single-electron thermal noise shows that the noise perfectly follows all the aspects predicted by statistical mechanics, which include the occupation probability, the law of equipartition, a detailed balance, and the law of kT/C. In addition, the counting statistics on the directional motion (i.e., the current) of the single-electron thermal noise indicate that the individual electron motion follows the Poisson process, as it does in shot noise.

  7. A three-dimensional architecture of vertically aligned multilayer graphene facilitates heat dissipation across joint solid surfaces

    NASA Astrophysics Data System (ADS)

    Liang, Qizhen; Yao, Xuxia; Wang, Wei; Wong, C. P.

    2012-02-01

    Low operation temperature and efficient heat dissipation are important for device life and speed in current electronic and photonic technologies. Being ultra-high thermally conductive, graphene is a promising material candidate for heat dissipation improvement in devices. In the application, graphene is expected to be vertically stacked between contact solid surfaces in order to facilitate efficient heat dissipation and reduced interfacial thermal resistance across contact solid surfaces. However, as an ultra-thin membrane-like material, graphene is susceptible to Van der Waals forces and usually tends to be recumbent on substrates. Thereby, direct growth of vertically aligned free-standing graphene on solid substrates in large scale is difficult and rarely available in current studies, bringing significant barriers in graphene's application as thermal conductive media between joint solid surfaces. In this work, a three-dimensional vertically aligned multi-layer graphene architecture is constructed between contacted Silicon/Silicon surfaces with pure Indium as a metallic medium. Significantly higher equivalent thermal conductivity and lower contact thermal resistance of vertically aligned multilayer graphene are obtained, compared with those of their recumbent counterpart. This finding provides knowledge of vertically aligned graphene architectures, which may not only facilitate current demanding thermal management but also promote graphene's widespread applications such as electrodes for energy storage devices, polymeric anisotropic conductive adhesives, etc.

  8. Spatial profile of thermoelectric effects during Peltier pulsing in Bi and Bi/MnBi eutectic

    NASA Technical Reports Server (NTRS)

    Silberstein, R. P.; Larson, D. J., Jr.

    1987-01-01

    The spatial profile of the thermal transients that occur during and following the current pulsing associated with Peltier Interface Demarcation during directional solidification is studied. Results for pure Bi are presented in detail and compared with corresponding results for the Bi/MnBi eutectic. Significant thermal transients occur throughout the sample that can be accounted for by the Peltier effect, the Thomson effect, and Joule heating. These effects are separated and their behavior is studied as a function of time, current density, and position with respect to the solid/liquid interface.

  9. Microelectromechanical (MEM) thermal actuator

    DOEpatents

    Garcia, Ernest J [Albuquerque, NM; Fulcher, Clay W. G. [Sandia Park, NM

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  10. Ceramic thermal barrier coatings for commercial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Meier, Susan Manning; Gupta, Dinesh K.; Sheffler, Keith D.

    1991-01-01

    The paper provides an overview of the short history, current status, and future prospects of ceramic thermal barrier coatings for gas turbine engines. Particular attention is given to plasma-sprayed and electron beam-physical vapor deposited yttria-stabilized (7 wt pct Y2O3) zirconia systems. Recent advances include improvements in the spallation life of thermal barrier coatings, improved bond coat composition and spraying techniques, and improved component design. The discussion also covers field experience, life prediction modeling, and future directions in ceramic coatings in relation to gas turbine engine design.

  11. Direct synthesis of Cu{sub 2}O-RGO nanocomposite on Cu foil by thermal evaporation method and its field emission study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansode, Sanjeewani; Khare, Ruchita; Harpale, Kashmira

    2015-06-24

    In this work, a facile one step thermal evaporation method for deposition of Cu{sub 2}O nanoparticles on RGO sheets to form Cu{sub 2}O-RGO nanocomposite is discussed. To the best of our knowledge, this is the first report on Cu{sub 2}O-RGO nanocomposite, directly grown on Cu foil by a simple thermal evaporation route. The as –prepared nanocomposite exhibits well dispersed Cu{sub 2}O nanoparticles distributed all over the graphene sheet. Field emission properties of the nanocomposite were investigated at a base pressure of 1*10{sup −8} torr. The turn on field, required to draw emission current density of 0.1µA/cm2, was found to bemore » 3.8V/µm with a maximum emission current density of 80 µA/cm2 at an applied field of 6.8 V/µm. Moreover, the nanocomposite shows fairly good emission stability without significant degradation of emission current. The FE results seem to be encouraging, indicative of potential candidature of the Cu{sub 2}O-RGO nanocomposite emitter as an electron source for practical applications in vacuum nanoelectronic devices.« less

  12. Graphene surface plasmons mediated thermal radiation

    NASA Astrophysics Data System (ADS)

    Li, Jiayu; Liu, Baoan; Shen, Sheng

    2018-02-01

    A graphene nanostructure can simultaneously serve as a plasmonic optical resonator and a thermal emitter when thermally heated up. The unique electronic and optical properties of graphene have rendered tremendous potential in the active manipulation of light and the microscopic energy transport in nanostructures. Here we show that the thermally pumped surface plasmonic modes along graphene nanoribbons could dramatically modulate their thermal emission spectra in both near- and far-fields. Based on the fluctuating surface current method implemented by the resistive boundary method, we directly calculate the thermal emission spectrum from single graphene ribbons and vertically paired graphene ribbons. Furthermore, we demonstrate that both the near- and far-field thermal emission from graphene nanostructures can be optimized by tuning the chemical potential of doped graphene. The general guideline to maximize the thermal emission is illustrated by the our recently developed theory on resonant thermal emitters modulated by quasi-normal modes.

  13. Thermal emission from large area chemical vapor deposited graphene devices

    NASA Astrophysics Data System (ADS)

    Luxmoore, I. J.; Adlem, C.; Poole, T.; Lawton, L. M.; Mahlmeister, N. H.; Nash, G. R.

    2013-09-01

    The spatial variation of thermal emission from large area graphene grown by chemical vapor deposition, transferred onto SiO2/Si substrates and fabricated into field effect transistor structures, has been investigated using infra-red microscopy. A peak in thermal emission occurs, the position of which can be altered by reversal of the current direction. The experimental results are compared with a one dimensional finite element model, which accounts for Joule heating and electrostatic effects, and it is found that the thermal emission is governed by the charge distribution in the graphene and maximum Joule heating occurs at the point of minimum charge density.

  14. Thermal Effects Modeling Developed for Smart Structures

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    1998-01-01

    Applying smart materials in aeropropulsion systems may improve the performance of aircraft engines through a variety of vibration, noise, and shape-control applications. To facilitate the experimental characterization of these smart structures, researchers have been focusing on developing analytical models to account for the coupled mechanical, electrical, and thermal response of these materials. One focus of current research efforts has been directed toward incorporating a comprehensive thermal analysis modeling capability. Typically, temperature affects the behavior of smart materials by three distinct mechanisms: Induction of thermal strains because of coefficient of thermal expansion mismatch 1. Pyroelectric effects on the piezoelectric elements; 2. Temperature-dependent changes in material properties; and 3. Previous analytical models only investigated the first two thermal effects mechanisms. However, since the material properties of piezoelectric materials generally vary greatly with temperature (see the graph), incorporating temperature-dependent material properties will significantly affect the structural deflections, sensory voltages, and stresses. Thus, the current analytical model captures thermal effects arising from all three mechanisms through thermopiezoelectric constitutive equations. These constitutive equations were incorporated into a layerwise laminate theory with the inherent capability to model both the active and sensory response of smart structures in thermal environments. Corresponding finite element equations were formulated and implemented for both the beam and plate elements to provide a comprehensive thermal effects modeling capability.

  15. NASA Goddard Thermal Technology Overview 2018

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2018-01-01

    This presentation summarizes the current plans and efforts at NASA/Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently submitted NASA budget will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology Implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of thermal control coatings, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  16. DARPA Emerging Technologies

    DTIC Science & Technology

    2016-01-01

    development requires wind tunnels and ranges that do not currently exist. Furthermore, continued technology matura- tion is needed for thermal management...designed with conceptual design engine model (at existing technology level), or existing propul- sion system, or modified propulsion system (e.g...internal cameras reading gauges and dials and switch positions , directly tapping into current or future avion- ics service buses and integrating

  17. Analysis on energy consumption index system of thermal power plant

    NASA Astrophysics Data System (ADS)

    Qian, J. B.; Zhang, N.; Li, H. F.

    2017-05-01

    Currently, the increasingly tense situation in the context of resources, energy conservation is a realistic choice to ease the energy constraint contradictions, reduce energy consumption thermal power plants has become an inevitable development direction. And combined with computer network technology to build thermal power “small index” to monitor and optimize the management system, the power plant is the application of information technology and to meet the power requirements of the product market competition. This paper, first described the research status of thermal power saving theory, then attempted to establish the small index system and build “small index” monitoring and optimization management system in thermal power plant. Finally elaborated key issues in the field of small thermal power plant technical and economic indicators to be further studied and resolved.

  18. Controlled propulsion and separation of helical particles at the nanoscale.

    PubMed

    Alcanzare, Maria Michiko T; Thakore, Vaibhav; Ollila, Santtu T T; Karttunen, Mikko; Ala-Nissila, Tapio

    2017-03-15

    Controlling the motion of nano and microscale objects in a fluid environment is a key factor in designing optimized tiny machines that perform mechanical tasks such as transport of drugs or genetic material in cells, fluid mixing to accelerate chemical reactions, and cargo transport in microfluidic chips. Directed motion is made possible by the coupled translational and rotational motion of asymmetric particles. A current challenge in achieving directed and controlled motion at the nanoscale lies in overcoming random Brownian motion due to thermal fluctuations in the fluid. We use a hybrid lattice-Boltzmann molecular dynamics method with full hydrodynamic interactions and thermal fluctuations to demonstrate that controlled propulsion of individual nanohelices in an aqueous environment is possible. We optimize the propulsion velocity and the efficiency of externally driven nanohelices. We quantify the importance of the thermal effects on the directed motion by calculating the Péclet number for various shapes, number of turns and pitch lengths of the helices. Consistent with the experimental microscale separation of chiral objects, our results indicate that in the presence of thermal fluctuations at Péclet numbers >10, chiral particles follow the direction of propagation according to its handedness and the direction of the applied torque making separation of chiral particles possible at the nanoscale. Our results provide criteria for the design and control of helical machines at the nanoscale.

  19. Solar Pumped High Power Solid State Laser for Space Applications

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.

    2004-01-01

    Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.

  20. Biomass-directed synthesis of 20 g high-quality boron nitride nanosheets for thermoconductive polymeric composites.

    PubMed

    Wang, Xue-Bin; Weng, Qunhong; Wang, Xi; Li, Xia; Zhang, Jun; Liu, Fei; Jiang, Xiang-Fen; Guo, Hongxuan; Xu, Ningsheng; Golberg, Dmitri; Bando, Yoshio

    2014-09-23

    Electrically insulating boron nitride (BN) nanosheets possess thermal conductivity similar to and thermal and chemical stabilities superior to those of electrically conductive graphenes. Currently the production and application of BN nanosheets are rather limited due to the complexity of the BN binary compound growth, as opposed to massive graphene production. Here we have developed the original strategy "biomass-directed on-site synthesis" toward mass production of high-crystal-quality BN nanosheets. The strikingly effective, reliable, and high-throughput (dozens of grams) synthesis is directed by diverse biomass sources through the carbothermal reduction of gaseous boron oxide species. The produced BN nanosheets are single crystalline, laterally large, and atomically thin. Additionally, they assemble themselves into the same macroscopic shapes peculiar to original biomasses. The nanosheets are further utilized for making thermoconductive and electrically insulating epoxy/BN composites with a 14-fold increase in thermal conductivity, which are envisaged to be particularly valuable for future high-performance electronic packaging materials.

  1. Assessment of structural, thermal, and mechanical properties of portlandite through molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajilar, Shahin, E-mail: shajilar@iastate.edu; Shafei, Behrouz, E-mail: shafei@iastate.edu

    The structural, thermal, and mechanical properties of portlandite, the primary solid phase of ordinary hydrated cement paste, are investigated using the molecular dynamics method. To understand the effects of temperature on the structural properties of portlandite, the coefficients of thermal expansion of portlandite are determined in the current study and validated with what reported from the experimental tests. The atomic structure of portlandite equilibrated at various temperatures is then subjected to uniaxial tensile strains in the three orthogonal directions and the stress-strain curves are developed. Based on the obtained results, the effect of the direction of straining on the mechanicalmore » properties of portlandite is investigated in detail. Structural damage analysis is performed to reveal the failure mechanisms in different directions. The energies of the fractured surfaces are calculated in different directions and compared to those of the ideal surfaces available in the literature. The key mechanical properties, including tensile strength, Young's modulus, and fracture strain, are extracted from the stress-strain curves. The sensitivity of the obtained mechanical properties to temperature and strain rate is then explored in a systematic way. This leads to valuable information on how the structural and mechanical properties of portlandite are affected under various exposure conditions and loading rates. - Graphical abstract: Fracture mechanism of portlandite under uniaxial strain in the z-direction. - Highlights: • The structural, thermal, and mechanical properties of portlandite are investigated. • The coefficients of thermal expansion are determined. • The stress-strain relationships are studied in three orthogonal directions. • The effects of temperature and strain rate on mechanical properties are examined. • The plastic energy required for fracture in the crystalline structure is reported.« less

  2. Nanoplasmon-enabled macroscopic thermal management

    PubMed Central

    Jonsson, Gustav Edman; Miljkovic, Vladimir; Dmitriev, Alexandre

    2014-01-01

    In numerous applications of energy harvesting via transformation of light into heat the focus recently shifted towards highly absorptive nanoplasmonic materials. It is currently established that noble metals-based absorptive plasmonic platforms deliver significant light-capturing capability and can be viewed as super-absorbers of optical radiation. Naturally, approaches to the direct experimental probing of macroscopic temperature increase resulting from these absorbers are welcomed. Here we derive a general quantitative method of characterizing heat-generating properties of optically absorptive layers via macroscopic thermal imaging. We further monitor macroscopic areas that are homogeneously heated by several degrees with nanostructures that occupy a mere 8% of the surface, leaving it essentially transparent and evidencing significant heat generation capability of nanoplasmon-enabled light capture. This has a direct bearing to a large number of applications where thermal management is crucial. PMID:24870613

  3. Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons.

    PubMed

    Liu, Qing-Bo; Wu, Dan-Dan; Fu, Hua-Hua

    2017-10-11

    By using the first-principle calculations combined with the non-equilibrium Green's function approach, we have studied spin caloritronic properties of graphene nanoribbons (GNRs) with different edge defects. The theoretical results show that the edge-defected GNRs with sawtooth shapes can exhibit spin-dependent currents with opposite flowing directions by applying temperature gradients, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). The edge defects bring about two opposite effects on the thermal spin currents: the enhancement of the symmetry of thermal spin-dependent currents, which contributes to the realization of pure thermal spin currents, and the decreasing of the spin thermoelectric conversion efficiency of the devices. It is fortunate that applying a gate voltage is an efficient route to optimize these two opposite spin thermoelectric properties towards realistic device applications. Moreover, due to the existence of spin-splitting band gaps, the edge-defected GNRs can be designed as spin-dependent Seebeck diodes and rectifiers, indicating that the edge-defected GNRs are potential candidates for room-temperature spin caloritronic devices.

  4. Thermally driven electrokinetic energy conversion with liquid water microjets

    DOE PAGES

    Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; ...

    2015-11-01

    One goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.

  5. Thermally driven electrokinetic energy conversion with liquid water microjets

    NASA Astrophysics Data System (ADS)

    Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; Saykally, Richard J.

    2015-11-01

    A goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.

  6. Effect of anisotropic thermal transport on the resistive plasma response to resonant magnetic perturbation field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xue; Liu, Yueqiang; Gao, Zhe

    Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) at slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. Furthermore, this physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, resultedmore » from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. These modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.« less

  7. Effect of anisotropic thermal transport on the resistive plasma response to resonant magnetic perturbation field

    DOE PAGES

    Bai, Xue; Liu, Yueqiang; Gao, Zhe

    2017-09-21

    Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) at slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. Furthermore, this physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, resultedmore » from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. These modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.« less

  8. Effect of anisotropic thermal transport on the resistive plasma response to resonant magnetic perturbation field

    NASA Astrophysics Data System (ADS)

    Bai, Xue; Liu, Yueqiang; Gao, Zhe

    2017-10-01

    Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) in a slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. This physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, which resulted from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement, and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. Modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.

  9. Niobium flex cable for low temperature high density interconnects

    NASA Astrophysics Data System (ADS)

    van Weers, H. J.; Kunkel, G.; Lindeman, M. A.; Leeman, M.

    2013-05-01

    This work describes the fabrication and characterization of a Niobium on polyimide flex cable suitable for sub-Kelvin temperatures. The processing used can be extended to high density interconnects and allows for direct integration with printed circuit boards. Several key parameters such as RRR, Tc, current carrying capability at 4 K and thermal conductivity in the range from 0.15 to 10 K have been measured. The average Tc was found to be 8.9 K, with a minimum of 8.3 K. Several samples allowed for more than 50 mA current at 4 K while remaining in the superconducting state. The thermal conductivity for this flex design is dominated by the polyimide, in our case Pyralin PI-2611, and is in good agreement with published thermal conductivity data for a polyimide called Upilex R. Registered trademark of Ube Industries, Japan.

  10. Enhancement of anodic current attributed to oxygen evolution on α-Fe2O3 electrode by microwave oscillating electric field

    PubMed Central

    Kishimoto, Fuminao; Matsuhisa, Masayuki; Kawamura, Shinichiro; Fujii, Satoshi; Tsubaki, Shuntaro; Maitani, Masato M.; Suzuki, Eiichi; Wada, Yuji

    2016-01-01

    Various microwave effects on chemical reactions have been observed, reported and compared to those carried out under conventional heating. These effects are classified into thermal effects, which arise from the temperature rise caused by microwaves, and non-thermal effects, which are attributed to interactions between substances and the oscillating electromagnetic fields of microwaves. However, there have been no direct or intrinsic demonstrations of the non-thermal effects based on physical insights. Here we demonstrate the microwave enhancement of oxidation current of water to generate dioxygen with using an α-Fe2O3 electrode induced by pulsed microwave irradiation under constantly applied potential. The rectangular waves of current density under pulsed microwave irradiation were observed, in other words the oxidation current of water was increased instantaneously at the moment of the introduction of microwaves, and stayed stably at the plateau under continuous microwave irradiation. The microwave enhancement was observed only for the α-Fe2O3 electrode with the specific surface electronic structure evaluated by electrochemical impedance spectroscopy. This discovery provides a firm evidence of the microwave special non-thermal effect on the electron transfer reactions caused by interaction of oscillating microwaves and irradiated samples. PMID:27739529

  11. VO2-based radiative thermal transistor with a semi-transparent base

    NASA Astrophysics Data System (ADS)

    Prod'homme, Hugo; Ordonez-Miranda, Jose; Ezzahri, Younès; Drévillon, Jérémie; Joulain, Karl

    2018-05-01

    We study a radiative thermal transistor analogous to an electronic one made of a VO2 base placed between two silica semi-infinite plates playing the roles of the transistor collector and emitter. The fact that VO2 exhibits an insulator to metal transition is exploited to modulate and/or amplify heat fluxes between the emitter and the collector, by applying a thermal current on the VO2 base. We extend the work of precedent studies considering the case where the base can be semi-transparent so that heat can be exchanged directly between the collector and the emitter. Both near and far field cases are considered leading to 4 typical regimes resulting from the fact that the emitter-base and base-collector separation distances can be larger or smaller than the thermal wavelength for a VO2 layer opaque or semi-transparent. Thermal currents variations with the base temperatures are calculated and analyzed. It is found that the transistor can operate in an amplification mode as already stated in [1] or in a switching mode as seen in [2]. An optimum configuration for the base thickness and separation distance maximizing the thermal transistor modulation factor is found.

  12. Boron nitride solid state neutron detector

    DOEpatents

    Doty, F. Patrick

    2004-04-27

    The present invention describes an apparatus useful for detecting neutrons, and particularly for detecting thermal neutrons, while remaining insensitive to gamma radiation. Neutrons are detected by direct measurement of current pulses produced by an interaction of the neutrons with hexagonal pyrolytic boron nitride.

  13. High improvement in trap level density and direct current breakdown strength of block polypropylene by doping with a β-nucleating agent

    NASA Astrophysics Data System (ADS)

    Zhang, Chong; Zha, Jun-Wei; Yan, Hong-Da; Li, Wei-Kang; Dang, Zhi-Min

    2018-02-01

    Polypropylene is one kind of eco-friendly insulating material, which has attracted more attention for use in high voltage direct current (HVDC) insulation due to the long-distance transmission, low loss, and recyclability. In this work, the morphology and thermal and electrical properties of the block polypropylene with various β-nucleating agent (β-NA) contents were investigated. The relative fraction of the β-crystal can reach 64.7% after adding 0.05 wt. % β-NA. The β-NA also greatly reduced the melting point and improved the crystallization temperature. The electrical property results showed that the alternating and direct current breakdown strength and conduction current were obviously improved. In addition, space charge accumulation was significantly suppressed by introducing the β-NA. This work provides an attractive strategy of design and fabrication of polypropylene for HVDC application.

  14. Thermal Writing 1987

    NASA Astrophysics Data System (ADS)

    Peckham, Robert F.

    1987-04-01

    The creating of intelligent marks on a substrate by means of thermal energy has been in use for thousands of years, e.g., branding of livestock and burning images onto wood. During the past 30 years, this type of imaging has been significantly refined. Recent advances allow the creation of color images, 16 shades of gray and letter quality printing on white substrates. Permanent images are now being written with direct thermal processes. The foregoing make thermal writing very attractive for numerous applications. The general technology of how thermal writing is accomplished today, its applications, and why society should use thermal writing are the topics of this paper. To attempt to cover in great technical detail all of the current advancements in thermal writing is beyond our scope here. What is intended is the proposition that THERMAL WRITING is a superior form of creating images on paper substrates for Society's on demand hard copy requirements. First let's look at how thermal writing is being accomplished with today's technologies.

  15. Thermal energy storage for solar power generation - State of the art

    NASA Astrophysics Data System (ADS)

    Shukla, K. N.

    1981-12-01

    High temperature storage for applications in solar-thermal electric systems is considered. Noting that thermal storage is in either the form of latent, sensible or chemically stored heat, sensible heat storage is stressed as the most developed of the thermal storage technologies, spanning direct heating of a storage medium from 120-1250 C. Current methods involve solids, packed beds, fluidized beds, liquids, hot water, organic liquids, and inorganic liquids and molten salts. Latent heat storage comprises phase-change materials that move from solid to liquid with addition of heat and liquid to solid with the removal of heat. Metals or inorganic salts are candidates, and the energy balances are outlined. Finally, chemical heat storage is examined, showing possible high energy densities through catalytic, thermal dissociation reactions.

  16. Investigating kleptothermy: a reptile-seabird association with thermal benefits.

    PubMed

    Corkery, Ilse; Bell, Ben D; Nelson, Nicola J

    2014-01-01

    Studies on interspecific interactions between vertebrates based on thermal benefits are poorly represented in the literature. Ecologists know little about a category of thermoregulation termed kleptothermy. We provide evidence that a close association between a medium-sized reptile (tuatara, Sphenodon punctatus) and a small seabird (fairy prion, Pachyptila turtur) enables the reptile to maintain higher-than-average body temperatures. This is the first multiyear data set to reveal that the presence of an endotherm within a burrow has direct, transferable thermal benefits to an ectotherm. It is possible that such positive interspecific interactions may alleviate thermal stress across the range of a single species. Currently, we know little about the evolutionary consequences of such interactions, and future work should focus on whether these thermal benefits increase fitness through increased growth rates or reproductive output.

  17. The physical foundation of the reconnection electric field

    NASA Astrophysics Data System (ADS)

    Hesse, M.; Liu, Y.-H.; Chen, L.-J.; Bessho, N.; Wang, S.; Burch, J. L.; Moretto, T.; Norgren, C.; Genestreti, K. J.; Phan, T. D.; Tenfjord, P.

    2018-03-01

    Magnetic reconnection is a key charged particle transport and energy conversion process in environments ranging from astrophysical systems to laboratory plasmas [Yamada et al., Rev. Mod. Phys. 82, 603-664 (2010)]. Magnetic reconnection facilitates plasma transport by establishing new connections of magnetic flux tubes, and it converts, often explosively, energy stored in the magnetic field to kinetic energy of charged particles [J. L. Burch and J. F. Drake, Am. Sci. 97, 392-299 (2009)]. The intensity of the magnetic reconnection process is measured by the reconnection electric field, which regulates the rate of flux tube connectivity changes. The change of magnetic connectivity occurs in the current layer of the diffusion zone, where the plasma transport is decoupled from the transport of magnetic flux. Here we report on computer simulations and analytic theory to provide a self-consistent understanding of the role of the reconnection electric field, which extends substantially beyond the simple change of magnetic connections. Rather, we find that the reconnection electric field is essential to maintain the current density in the diffusion region, which would otherwise be dissipated by a set of processes. Natural candidates for current dissipation are the average convection of current carriers away from the reconnection region by the outflow of accelerated particles, or the average rotation of the current density by the magnetic field reversal in the vicinity. Instead, we show here that the current dissipation is the result of thermal effects, underlying the statistical interaction of current-carrying particles with the adjacent magnetic field. We find that this interaction serves to redirect the directed acceleration of the reconnection electric field to thermal motion. This thermalization manifests itself in form of quasi-viscous terms in the thermal energy balance of the current layer. This collisionless viscosity, found in the pressure evolution equation, dominates near the x-line. These quasi-viscous terms act to increase the average thermal energy. Our predictions regarding current and thermal energy balance are readily amenable to exploration in the laboratory or by satellite missions, in particular, by NASA's Magnetospheric Multiscale mission.

  18. Progress in space power technology

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Randolph, L. P.; Hudson, W. R.

    1980-01-01

    The National Aeronautics and Space Administration's Space Power Research and Technology Program has the objective of providing the technology base for future space power systems. The current technology program which consists of photovoltaic energy conversion, chemical energy conversion and storage, thermal-to-electric conversion, power systems management and distribution, and advanced energetics is discussed. In each area highlights, current programs, and near-term directions will be presented.

  19. The TIMS Data User's Workshop

    NASA Technical Reports Server (NTRS)

    Kahle, Anne B. (Editor); Abbott, Elsa (Editor)

    1986-01-01

    A workshop was held to bring together all users of data from NASA's airborne Thermal Infrared Multispectral Scanner (TIMS). The purpose was to allow users to compare results, data processing algorithms, and problems encountered; to update the users on the latest instrument changes and idiosyncracies, including distribution of the TIMS investigation guide; to inform the users of the wide range of problems that are currently being tackled by other TIMS investigators; to explore ways to expand the user community; to discuss current areas where more basic research is required; and to discuss the future directions of NASA's thermal infrared remote sensing programs. Also discussed were: geology, land use, archeology; and data processing and noise research.

  20. The Electrical and Thermal Conductivity of Woven Pristine and Intercalated Graphite Fiber-Polymer Composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Vandenburg, Yvonne Yoder; Berkebile, Steven; Stueben, Heather; Balagadde, Frederick

    2002-01-01

    A series of woven fabric laminar composite plates and narrow strips were fabricated from a variety of pitch-based pristine and bromine intercalated graphite fibers in an attempt to determine the influence of the weave on the electrical and thermal conduction. It was found generally that these materials can be treated as if they are homogeneous plates. The rule of mixtures describes the resistivity of the composite fairly well if it is realized that only the component of the fibers normal to the equipotential surface will conduct current. When the composite is narrow with respect to the fiber weave, however, there is a marked angular dependence of the resistance which was well modeled by assuming that the current follows only along the fibers (and not across them in a transverse direction), and that the contact resistance among the fibers in the composite is negligible. The thermal conductivity of composites made from less conductive fibers more closely followed the rule of mixtures than that of the high conductivity fibers, though this is thought to be an artifact of the measurement technique. Electrical and thermal anisotropy could be induced in a particular region of the structure by weaving together high and low conductivity fibers in different directions, though this must be done throughout all of the layers of the structure as interlaminar conduction precludes having only the top layer carry the anisotropy. The anisotropy in the thermal conductivity is considerably less than either that predicted by the rule of mixtures or the electrical resistivity.

  1. High voltage space plasma interactions. [charging the solar power satellites

    NASA Technical Reports Server (NTRS)

    Mccoy, J. E.

    1980-01-01

    Two primary problems resulted from plasma interactions; one of concern to operations in geosynchronous orbit (GEO), the other in low orbits (LEO). The two problems are not the same. Spacecraft charging has become widely recognized as a problem, particularly for communications satellites operating in GEO. The very thin thermal plasmas at GEO are insufficient to bleed off voltage buildups due to higher energy charged particle radiation collected on outer surfaces. Resulting differential charging/discharging causes electrical transients, spurious command signals and possible direct overload damage. An extensive NASA/Air Force program has been underway for several years to address this problem. At lower altitudes, the denser plasmas of the plasmasphere/ionosphere provide sufficient thermal current to limit such charging to a few volts or less. Unfortunately, these thermal plasma currents which solve the GEO spacecraft charging problem can become large enough to cause just the opposite problem in LEO.

  2. Development of a bidirectional ring thermal actuator

    NASA Astrophysics Data System (ADS)

    Stevenson, Mathew; Yang, Peng; Lai, Yongjun; Mechefske, Chris

    2007-10-01

    A new planar micro electrothermal actuator capable of bidirectional rotation is presented. The ring thermal actuator has a wheel-like geometry with eight arms connecting an outer ring to a central hub. Thermal expansion of the arms results in a rotation of the outer ring about its center. An analytical model is developed for the electrothermal and thermal-mechanical aspects of the actuator's operation. Finite element analysis is used to validate the analytic study. The actuator has been fabricated using the multi-user MEMS process and experimental displacement results are compared with model predictions. Experiments show a possible displacement of 7.4 µm in each direction. Also, by switching the current between the arms it is possible to achieve an oscillating motion.

  3. Modeling Thermal Noise From Crystalline Coatings For Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration

    2017-01-01

    In 2015, Advanced LIGO made the first direct detection of gravitational waves. The sensitivity of current and future ground-based gravitational-wave detectors is limited by thermal noise in each detector's test mass substrate and coating. This noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. I will present results from a new code that numerically models thermal noise for different crystalline mirror coatings. The thermal noise in crystalline mirror coatings could be significantly lower but is challenging to model analytically. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. Specifically, I will show results for a crystal coating on an amorphous substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.

  4. Laser assisted deposition

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1983-01-01

    Applications of laser-based processing techniques to solar cell metallization are discussed. Laser-assisted thermal or photolytic maskless deposition from organometallic vapors or solutions may provide a viable alternative to photovoltaic metallization systems currently in use. High power, defocused excimer lasers may be used in conjunction with masks as an alternative to direct laser writing to provide higher throughput. Repeated pulsing with excimer lasers may eliminate the need for secondary plating techniques for metal film buildup. A comparison between the thermal and photochemical deposition processes is made.

  5. Theory of many-body radiative heat transfer without the constraint of reciprocity

    NASA Astrophysics Data System (ADS)

    Zhu, Linxiao; Guo, Yu; Fan, Shanhui

    2018-03-01

    Using a self-consistent scattered field approach based on fluctuational electrodynamics, we develop compact formulas for radiative heat transfer in many-body systems without the constraint of reciprocity. The formulas allow for efficient numerical calculation for a system consisting of a large number of bodies, and are in principle exact. As a demonstration, for a nonreciprocal many-body system, we investigate persistent heat current at thermal equilibrium and directional heat transfer when the system is away from thermal equilibrium.

  6. Fiber-Reinforced Superalloys For Rocket Engines

    NASA Technical Reports Server (NTRS)

    Lewis, Jack R.; Yuen, Jim L.; Petrasek, Donald W.; Stephens, Joseph R.

    1990-01-01

    Report discusses experimental studies of fiber-reinforced superalloy (FRS) composite materials for use in turbine blades in rocket engines. Intended to withstand extreme conditions of high temperature, thermal shock, atmospheres containing hydrogen, high cycle fatigue loading, and thermal fatigue, which tax capabilities of even most-advanced current blade material - directionally-solidified, hafnium-modified MAR M-246 {MAR M-246 (Hf) (DS)}. FRS composites attractive combination of properties for use in turbopump blades of advanced rocket engines at temperatures from 870 to 1,100 degrees C.

  7. Structurally compliant rocket engine combustion chamber: Experimental and analytical validation

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Arya, Vinod K.; Kazaroff, John M.; Halford, Gary R.

    1994-01-01

    A new, structurally compliant rocket engine combustion chamber design has been validated through analysis and experiment. Subscale, tubular channel chambers have been cyclically tested and analytically evaluated. Cyclic lives were determined to have a potential for 1000 percent increase over those of rectangular channel designs, the current state of the art. Greater structural compliance in the circumferential direction gave rise to lower thermal strains during hot firing, resulting in lower thermal strain ratcheting and longer predicted fatigue lives. Thermal, structural, and durability analyses of the combustion chamber design, involving cyclic temperatures, strains, and low-cycle fatigue lives, have corroborated the experimental observations.

  8. Evolution of the construction and performances in accordance to the applications of non-thermal plasma reactors

    NASA Astrophysics Data System (ADS)

    Hnatiuc, B.; Brisset, J. L.; Astanei, D.; Ursache, M.; Mares, M.; Hnatiuc, E.; Felea, C.

    2016-12-01

    This paper aims to present the evolution of the construction and performances of non-thermal plasma reactors, identifying specific requirements for various known applications, setting out quality indicators that would allow on the one hand comparing devices that use different kinds of electrical discharges but also their rigorous classification by identification of criteria in order to choose the correct cold plasma reactors for a specific application. It briefly comments the post-discharge effect but also the current dilemma on non-thermal plasma direct treatments versus indirect treatments, using plasma activated water (PAW) or plasma activated medium (PAM), promising in cancer treatment.

  9. Spin Seebeck effect and thermal colossal magnetoresistance in Christmas-tree silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Gao, Xiu-Jin; Zhao, Peng; Chen, Gang

    2018-05-01

    Based on the density functional theory and nonequilibrium Green's function method, we investigate the electronic structures and thermal spin transport properties of Christmas-tree silicene nanoribbons (CSiNRs). The results show that CSiNRs have ferromagnetic ground state with high Curie temperature far above the room temperature. Obvious spin Seebeck effect with spin-up and spin-down currents flowing in opposite directions by a temperature gradient can be observed in these systems. Furthermore, a thermal colossal magnetoresistance up to 109% can be realized by tuning the external magnetic field. The results show that CSiNRs hold great potential in designing spin caloritronic devices.

  10. Analysis of wallboard containing a phase change material

    NASA Astrophysics Data System (ADS)

    Tomlinson, J. J.; Heberle, D. P.

    Phase change materials (PCMs) used on the interior of buildings hold the promise for improved thermal performance by reducing the energy requirements for space conditioning and by improving thermal comfort by reducing temperature swings inside the building. Efforts are underway to develop a gypsum wallboard containing a hydrocarbon PCM. With a phase change temperature in the room temperature range, the PCM wallboard adds substantially to the thermal mass of the building while serving the same architectural function as conventional wallboard. To determine the thermal and economic performance of this PCM wallboard, the Transient Systems Simulation Program (TRNSYS) was modified to accommodate walls that are covered with PCM plasterboard, and to apportion the direct beam solar radiation to interior surfaces of a building. The modified code was used to simulate the performance of conventional and direct-gain passive solar residential-sized buildings with and without PCM wallboard. Space heating energy savings were determined as a function of PCM wallboard characteristics. Thermal comfort improvements in buildings containing the PCM were qualified in terms of energy savings. The report concludes with a present worth economic analysis of these energy savings and arrives at system costs and economic payback based on current costs of PCMs under study for the wallboard application.

  11. Thermal batteries: A technology review and future directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guidotti, R.A.

    Thermally activated (``thermal``) batteries have been used for ordnance applications (e.g., proximity fuzes) since World War II and, subsequent to that, in nuclear weapons. This technology was developed by the Germans as a power source for their V2 rockets. It was obtained by the Allies by interrogation of captured German scientists after the war. The technology developed rapidly from the initial primitive systems used by the Germans to one based on Ca/CaCrO{sub 4}. This system was used very successfully into the late 1970s, when it was replaced by the Li-alloy/FeS{sub 2} electrochemical system. This paper describes the predominant electrochemical couplesmore » that have been used in thermal batteries over the years. Major emphasis is placed on the chemistry and electrochemistry of the Ca/CaCrO{sub 4} and Li-alloy/FeS{sub 2} systems. The reason for this is to give the reader a better appreciation for the advances in thermal-battery technology for which these two systems are directly responsible. Improvements to date in the current Li-alloy/FeS{sub 2} and related systems are discussed and areas for possible future research and development involving anodes, cathodes, electrolytes, and insulations are outlined. New areas where thermal-battery technology has potential applications are also examined.« less

  12. Thermal neutral format based on the step technology

    NASA Technical Reports Server (NTRS)

    Almazan, P. Planas; Legal, J. L.

    1995-01-01

    The exchange of models is one of the most serious problems currently encountered in the practice of spacecraft thermal analysis. Essentially, the problem originates in the diversity of computing environments that are used across different sites, and the consequent proliferation of native tool formats. Furthermore, increasing pressure to reduce the development's life cycle time has originated a growing interest in the so-called spacecraft concurrent engineering. In this context, the realization of the interdependencies between different disciplines and the proper communication between them become critical issues. The use of a neutral format represents a step forward in addressing these problems. Such a means of communication is adopted by consensus. A neutral format is not directly tied to any specific tool and it is kept under stringent change control. Currently, most of the groups promoting exchange formats are contributing with their experience to STEP, the Standard for Exchange of Product Model Data, which is being developed under the auspices of the International Standards Organization (ISO 10303). This paper presents the different efforts made in Europe to provide the spacecraft thermal analysis community with a Thermal Neutral Format (TNF) based on STEP. Following an introduction with some background information, the paper presents the characteristics of the STEP standard. Later, the first efforts to produce a STEP Spacecraft Thermal Application Protocol are described. Finally, the paper presents the currently harmonized European activities that follow up and extend earlier work on the area.

  13. DART-MS analysis of inorganic explosives using high temperature thermal desorption†‡

    PubMed Central

    Sisco, Edward; Staymates, Matthew; Gillen, Greg

    2018-01-01

    An ambient mass spectrometry (MS) platform coupling resistive Joule heating thermal desorption (JHTD) and direct analysis in real time (DART) was implemented for the analysis of inorganic nitrite, nitrate, chlorate, and perchlorate salts. The resistive heating component generated discrete and rapid heating ramps and elevated temperatures, up to approximately 400 °C s−1 and 750 °C, by passing a few amperes of DC current through a nichrome wire. JHTD enhanced the utility and capabilities of traditional DART-MS for the trace detection of previously difficult to detect inorganic compounds. A partial factorial design of experiments (DOE) was implemented for the systematic evaluation of five system parameters. A base set of conditions for JHTD-DART-MS was derived from this evaluation, demonstrating sensitive detection of a range of inorganic oxidizer salts, down to single nanogram levels. DOE also identified JHTD filament current and in-source collision induced dissociation (CID) energy as inducing the greatest effect on system response. Tuning of JHTD current provided a method for controlling the relative degrees of thermal desorption and thermal decomposition. Furthermore, in-source CID provided manipulation of adduct and cluster fragmentation, optimizing the detection of molecular anion species. Finally, the differential thermal desorption nature of the JHTD-DART platform demonstrated efficient desorption and detection of organic and inorganic explosive mixtures, with each desorbing at its respective optimal temperature. PMID:29651308

  14. Thermal Cycling Behavior of Thermal Barrier Coatings with MCrAlY Bond Coat Irradiated by High-Current Pulsed Electron Beam.

    PubMed

    Cai, Jie; Lv, Peng; Guan, Qingfeng; Xu, Xiaojing; Lu, Jinzhong; Wang, Zhiping; Han, Zhiyong

    2016-11-30

    Microstructural modifications of a thermally sprayed MCrAlY bond coat subjected to high-current pulsed electron beam (HCPEB) and their relationships with thermal cycling behavior of thermal barrier coatings (TBCs) were investigated. Microstructural observations revealed that the rough surface of air plasma spraying (APS) samples was significantly remelted and replaced by many interconnected bulged nodules after HCPEB irradiation. Meanwhile, the parallel columnar grains with growth direction perpendicular to the coating surface were observed inside these bulged nodules. Substantial Y-rich Al 2 O 3 bubbles and varieties of nanocrystallines were distributed evenly on the top of the modified layer. A physical model was proposed to describe the evaporation-condensation mechanism taking place at the irradiated surface for generating such surface morphologies. The results of thermal cycling test showed that HCPEB-TBCs presented higher thermal cycling resistance, the spalling area of which after 200 cycles accounted for only 1% of its total area, while it was about 34% for APS-TBCs. The resulting failure mode, i.e., in particular, a mixed delamination crack path, was shown and discussed. The irradiated effects including compact remelted surface, abundant nanoparticles, refined columnar grains, Y-rich alumina bubbles, and deformation structures contributed to the formation of a stable, continuous, slow-growing, and uniform thermally grown oxide with strong adherent ability. It appeared to be responsible for releasing stress and changing the cracking paths, and ultimately greatly improving the thermal cycling behavior of HCPEB-TBCs.

  15. Performance Testing of Thermal Cutting Systems for Sweet Pepper Harvesting Robot in Greenhouse Horticulture

    NASA Astrophysics Data System (ADS)

    Bachche, Shivaji; Oka, Koichi

    2013-03-01

    This paper proposes design of end-effector and prototype of thermal cutting system for harvesting sweet peppers. The design consists of two parallel gripper bars mounted on a frame connected by specially designed notch plate and operated by servo motor. Based on voltage and current, two different types of thermal cutting system prototypes; electric arc and temperature arc respectively were developed and tested for performance. In electric arc, a special electric device was developed to obtain high voltage to perform cutting operation. At higher voltage, electrodes generate thermal arc which helps to cut stem of sweet pepper. In temperature arc, nichrome wire was mounted between two electrodes and current was provided directly to electrodes which results in generation of high temperature arc between two electrodes that help to perform cutting operation. In both prototypes, diameters of basic elements were varied and the effect of this variation on cutting operation was investigated. The temperature arc thermal system was found significantly suitable for cutting operation than electric arc thermal system. In temperature arc thermal cutting system, 0.5 mm nichrome wire shows significant results by accomplishing harvesting operation in 1.5 seconds. Also, thermal cutting system found suitable to increase shelf life of fruits by avoiding virus and fungal transformation during cutting process and sealing the fruit stem. The harvested sweet peppers by thermal cutting system can be preserved at normal room temperature for more than 15 days without any contamination.

  16. Concepts for autonomous flight control for a balloon on Mars

    NASA Technical Reports Server (NTRS)

    Heinsheimer, Thomas F.; Friend, Robyn C.; Siegel, Neil G.

    1988-01-01

    Balloons operating as airborne rovers have been suggested as ideal candidates for early exploration of the Martian surface. An international study team composed of scientists from the U.S.S.R., France, and the U.S.A. is planning the launching in 1994 of a balloon system to fly on Mars. The current likely design is a dual thermal/gas balloon that consists of a gas balloon suspended above a solar-heated thermal balloon. At night, the thermal balloon provides no lift, and the balloon system drifts just above the Martian surface; the lift of the gas balloon is just sufficient to prevent the science payload from hitting the ground. During the day, the balloon system flies at an altitude of 4 to 5 kilometers, rising due to the added lift provided by the thermal balloon. Over the course of a single Martian day, there may be winds in several directions, and in fact it can be expected that there will be winds simultaneously in different directions at different altitudes. Therefore, a balloon system capable of controlling its own altitude, via an autonomous flight control system, can take advantage of these different winds to control its direction, thereby greatly increasing both its mission utility and its longevity.

  17. The direct detection of boosted dark matter at high energies and PeV events at IceCube

    DOE PAGES

    Bhattacharya, A.; Gandhi, R.; Gupta, A.

    2015-03-13

    We study the possibility of detecting dark matter directly via a small but energetic component that is allowed within present-day constraints. Drawing closely upon the fact that neutral current neutrino nucleon interactions are indistinguishable from DM-nucleon interactions at low energies, we extend this feature to high energies for a small, non-thermal but highly energetic population of DM particle χ, created via the decay of a significantly more massive and long-lived non-thermal relic Φ, which forms the bulk of DM. If χ interacts with nucleons, its cross-section, like the neutrino-nucleus coherent cross-section, can rise sharply with energy leading to deep inelasticmore » scattering, similar to neutral current neutrino-nucleon interactions at high energies. Thus, its direct detection may be possible via cascades in very large neutrino detectors. As a specific example, we apply this notion to the recently reported three ultra-high energy PeV cascade events clustered around 1 – 2 PeV at IceCube (IC). We discuss the features which may help discriminate this scenario from one in which only astrophysical neutrinos constitute the event sample in detectors like IC.« less

  18. Development and thermal management of 10 kW CW, direct diode laser source

    NASA Astrophysics Data System (ADS)

    Zhu, Hongbo; Hao, Mingming; Zhang, Jianwei; Ji, Wenyu; Lin, Xingchen; Zhang, Jinsheng; Ning, Yongqiang

    2016-01-01

    We report on the development of direct diode laser source with high-power and high reliability. The laser source was realized by the polarization and wavelength combination of four diode laser stacks. When at the operating current of 122 A, the source was capable of producing 10,120 W output while maintaining 46% electro-optical conversion efficiency. The maximum temperature on the lens was decreased from 442.2 K to 320 K by utilizing an efficient thermal dissipation structure, and the corresponding maximum von Mises stress was reduced from 75.4 MPa to 14 MPa. In addition, a reliability test demonstrated that our laser source was reliable and potential in the applications of laser cladding and heat treatment.

  19. In situ electron microscopy studies of electromechanical behavior in metals at the nanoscale using a novel microdevice-based system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Wonmo, E-mail: wonmo.kang.ctr.ks@nrl.navy.mil; Beniam, Iyoel; Qidwai, Siddiq M.

    Electrically assisted deformation (EAD) is an emerging technique to enhance formability of metals by applying an electric current through them. Despite its increasing importance in manufacturing applications, there is still an unresolved debate on the nature of the fundamental deformation mechanisms underlying EAD, mainly between electroplasticity (non-thermal effects) and resistive heating (thermal effects). This status is due to two critical challenges: (1) a lack of experimental techniques to directly observe fundamental mechanisms of material deformation during EAD, and (2) intrinsic coupling between electric current and Joule heating giving rise to unwanted thermally activated mechanisms. To overcome these challenges, we havemore » developed a microdevice-based electromechanical testing system (MEMTS) to characterize nanoscale metal specimens in transmission electron microscopy (TEM). Our studies reveal that MEMTS eliminates the effect of Joule heating on material deformation, a critical advantage over macroscopic experiments, owing to its unique scale. For example, a negligible change in temperature (<0.02 °C) is predicted at ∼3500 A/mm{sup 2}. Utilizing the attractive features of MEMTS, we have directly investigated potential electron-dislocation interactions in single crystal copper (SCC) specimens that are simultaneously subjected to uniaxial loading and electric current density up to 5000 A/mm{sup 2}. Our in situ TEM studies indicate that for SCC, electroplasticity does not play a key role as no differences in dislocation activities, such as depinning and movement, are observed.« less

  20. New bimetallic EMF cell shows promise in direct energy conversion

    NASA Technical Reports Server (NTRS)

    Hesson, J. C.; Shimotake, H.

    1968-01-01

    Concentration cell, based upon a thermally regenerative cell principle, produces electrical energy from any large heat source. This experimental bimetallic EMF cell uses a sodium-bismuth alloy cathode and a pure liquid sodium anode. The cell exhibits reliability, corrosion resistance, and high current density performance.

  1. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V.

    PubMed

    Grotberg, John; Hamlekhan, Azhang; Butt, Arman; Patel, Sweetu; Royhman, Dmitry; Shokuhfar, Tolou; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T

    2016-02-01

    The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Thermal imitators with single directional invisibility

    NASA Astrophysics Data System (ADS)

    Wang, Ruizhe; Xu, Liujun; Huang, Jiping

    2017-12-01

    Thermal metamaterials have been intensively studied during the past years to achieve the long-standing dream of invisibility, illusion, and other inconceivable thermal phenomena. However, many thermal metamaterials can only exhibit omnidirectional thermal response, which take on the distinct feature of geometrical isotropy. In this work, we theoretically design and experimentally fabricate a pair of thermal imitators by applying geometrical anisotropy provided by elliptical/ellipsoidal particles and layered structures. This pair of thermal imitators possesses thermal invisibility in one direction, while having thermal opacity in other directions. This work may open a gate in designing direction-dependent thermal metamaterials.

  3. Phonon Mapping in Flowing Equilibrium

    NASA Astrophysics Data System (ADS)

    Ruff, J. P. C.

    2015-03-01

    When a material conducts heat, a modification of the phonon population occurs. The equilibrium Bose-Einstein distribution is perturbed towards flowing-equilibrium, for which the distribution function is not analytically known. Here I argue that the altered phonon population can be efficiently mapped over broad regions of reciprocal space, via diffuse x-ray scattering or time-of-flight neutron scattering, while a thermal gradient is applied across a single crystal sample. When compared to traditional transport measurements, this technique offers a superior, information-rich new perspective on lattice thermal conductivity, wherein the band and momentum dependences of the phonon thermal current are directly resolved. The proposed method is benchmarked using x-ray thermal diffuse scattering measurements of single crystal diamond under transport conditions. CHESS is supported by the NSF & NIH/NIGMS via NSF Award DMR-1332208.

  4. ADVANCED INSULATIONS FOR REFRIGERATOR/FREEZERS: THE POTENTIAL FOR NEW SHELL DESIGNS INCORPORATING POLYMER BARRIER CONSTRUCTION

    EPA Science Inventory

    The report examines domestic refrigerator/freezer (R/F) design alternatives which may offer greater increase in thermal performance than is possible with panel/foam composites. (NOTE: Current efforts to design and build R/Fs with high performance insulation technology are directe...

  5. Measuring Joule heating and strain induced by electrical current with Moire interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Bicheng; Basaran, Cemal

    2011-04-01

    This study proposes a new method to locate and measure the temperature of the hot spots caused by Joule Heating by measuring the free thermal expansion in-plane strain. It is demonstrated that the hotspot caused by the Joule heating in a thin metal film/plate structure can be measured by Phase shifting Moire interferometry with continuous wavelet transform (PSMI/CWT) at the microscopic scale. A demonstration on a copper film is conducted to verify the theory under different current densities. A correlation between the current density and strain in two orthogonal directions (one in the direction of the current flow) is proposed.more » The method can also be used for the measurement of the Joule heating in the microscopic solid structures in the electronic packaging devices. It is shown that a linear relationship exists between current density squared and normal strains.« less

  6. Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell.

    PubMed

    Hu, Renchong; Cola, Baratunde A; Haram, Nanda; Barisci, Joseph N; Lee, Sergey; Stoughton, Stephanie; Wallace, Gordon; Too, Chee; Thomas, Michael; Gestos, Adrian; Cruz, Marilou E Dela; Ferraris, John P; Zakhidov, Anvar A; Baughman, Ray H

    2010-03-10

    Low efficiencies and costly electrode materials have limited harvesting of thermal energy as electrical energy using thermo-electrochemical cells (or "thermocells"). We demonstrate thermocells, in practical configurations (from coin cells to cells that can be wrapped around exhaust pipes), that harvest low-grade thermal energy using relatively inexpensive carbon multiwalled nanotube (MWNT) electrodes. These electrodes provide high electrochemically accessible surface areas and fast redox-mediated electron transfer, which significantly enhances thermocell current generation capacity and overall efficiency. Thermocell efficiency is further improved by directly synthesizing MWNTs as vertical forests that reduce electrical and thermal resistance at electrode/substrate junctions. The efficiency of thermocells with MWNT electrodes is shown to be as high as 1.4% of Carnot efficiency, which is 3-fold higher than for previously demonstrated thermocells. With the cost of MWNTs decreasing, MWNT-based thermocells may become commercially viable for harvesting low-grade thermal energy.

  7. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions (Invited paper)

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  8. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  9. Induced charging of shuttle orbiter by high electron-beam currents

    NASA Technical Reports Server (NTRS)

    Liemohn, H. B.

    1977-01-01

    Emission of high-current electron beams that was proposed for some Spacelab payloads required substantial return currents to the orbiter skin in order to neutralize the beam charge. Since the outer skin of the vehicle was covered with approximately 1200 sq m of thermal insulation which has the dielectric quality of air and an electrical conductivity that was estimated by NASA at 10 to the -9 power to 10 to the -10 power mhos/m, considerable transient charging and local potential differences were anticipated across the insulation. The theory for induced charging of spacecraft due to operation of electron guns was only developed for spherical metal vehicles and constant emission currents, which were not directly applicable to the orbiter situation. Field-aligned collection of electron return current from the ambient ionosphere at orbiter altitudes provides up to approximately 150 mA on the conducting surfaces and approximately 2.4 A on the dielectric thermal insulation. Local ionization of the neutral atmosphere by energetic electron bombardment or electrical breakdown may provide somewhat more return current.

  10. In operando neutron diffraction study of the temperature and current rate-dependent phase evolution of LiFePO4 in a commercial battery

    NASA Astrophysics Data System (ADS)

    Sharma, N.; Yu, D. H.; Zhu, Y.; Wu, Y.; Peterson, V. K.

    2017-02-01

    In operando NPD data of electrodes in lithium-ion batteries reveal unusual LiFePO4 phase evolution after the application of a thermal step and at high current. At low current under ambient conditions the LiFePO4 to FePO4 two-phase reaction occurs during the charge process, however, following a thermal step and at higher current this reaction appears at the end of charge and continues into the next electrochemical step. The same behavior is observed for the FePO4 to LiFePO4 transition, occurring at the end of discharge and continuing into the following electrochemical step. This suggests that the bulk (or the majority of the) electrode transformation is dependent on the battery's history, current, or temperature. Such information concerning the non-equilibrium evolution of an electrode allows a direct link between the electrode's functional mechanism that underpins lithium-ion battery behavior and the real-life operating conditions of the battery, such as variable temperature and current, to be made.

  11. Numerical analysis of modified Central Solenoid insert design

    DOE PAGES

    Khodak, Andrei; Martovetsky, Nicolai; Smirnov, Aleksandre; ...

    2015-06-21

    The United States ITER Project Office (USIPO) is responsible for fabrication of the Central Solenoid (CS) for ITER project. The ITER machine is currently under construction by seven parties in Cadarache, France. The CS Insert (CSI) project should provide a verification of the conductor performance in relevant conditions of temperature, field, currents and mechanical strain. The US IPO designed the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at JAEA, Naka. To validate the modified design we performed three-dimensional numerical simulations using coupled solver for simultaneous structural, thermal and electromagnetic analysis. Thermal and electromagneticmore » simulations supported structural calculations providing necessary loads and strains. According to current analysis design of the modified coil satisfies ITER magnet structural design criteria for the following conditions: (1) room temperature, no current, (2) temperature 4K, no current, (3) temperature 4K, current 60 kA direct charge, and (4) temperature 4K, current 60 kA reverse charge. Fatigue life assessment analysis is performed for the alternating conditions of: temperature 4K, no current, and temperature 4K, current 45 kA direct charge. Results of fatigue analysis show that parts of the coil assembly can be qualified for up to 1 million cycles. Distributions of the Current Sharing Temperature (TCS) in the superconductor were obtained from numerical results using parameterization of the critical surface in the form similar to that proposed for ITER. Lastly, special ADPL scripts were developed for ANSYS allowing one-dimensional representation of TCS along the cable, as well as three-dimensional fields of TCS in superconductor material. Published by Elsevier B.V.« less

  12. Self-consistent study of local and nonlocal magnetoresistance in a YIG/Pt bilayer

    NASA Astrophysics Data System (ADS)

    Wang, Xi-guang; Zhou, Zhen-wei; Nie, Yao-zhuang; Xia, Qing-lin; Guo, Guang-hua

    2018-03-01

    We present a self-consistent study of the local spin Hall magnetoresistance (SMR) and nonlocal magnon-mediated magnetoresistance (MMR) in a heavy-metal/magnetic-insulator heterostructure at finite temperature. We find that the thermal fluctuation of magnetization significantly affects the SMR. It appears unidirectional with respect to the direction of electrical current (or magnetization). The unidirectionality of SMR originates from the asymmetry of creation or annihilation of thermal magnons induced by the spin Hall torque. Also, a self-consistent model can well describe the features of MMR.

  13. Proceedings, 15th Annual Meeting, Aquatic Plant Control Research Planning and Operations Review, held 17-20 November 1980, Savannah, Georgia.

    DTIC Science & Technology

    1981-10-01

    transmitter/ receiver (the AGNAV guidance system), a TI - 59 programmable calculator with a TI PC-1O0 thermal printer and direct current (DC) to alternating...the TI - 59 programmable calculator mounted on the TI PC-100 thermal printer and the 12-v DC to 120-v AC inverter. Power for both the mobile and...dropped, the new A2 B2 distances are keyed into the calculator, and * Magnetic cards, readable on a TI - 59 programmable calculator , with all programs

  14. Analysis of wallboard containing a phase change material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomlinson, J.J.; Heberle, D.P.

    1990-01-01

    Phase change materials (PCMs) used on the interior of buildings hold the promise for improved thermal performance by reducing the energy requirements for space conditioning and by improving thermal comfort by reducing temperature swings inside the building. Efforts are underway to develop a gypsum wallboard containing a hydrocarbon PCM. With a phase change temperature in the room temperature range, the PCM wallboard adds substantially to the thermal mass of the building while serving the same architectural function as conventional wallboard. To determine the thermal and economic performance of this PCM wallboard, the Transient Systems Simulation Program (TRNSYS) was modified tomore » accommodate walls that are covered with PCM plasterboard, nd to apportion the direct beam solar radiation to interior surfaces of a building. The modified code was used to simulate the performance of conventional and direct-gain passive solar residential-sized buildings with and without PCM wallboard. Space heating energy savings were determined as a function of PCM wallboard characteristics. Thermal comfort improvements in buildings containing the PCM were qualified in terms of energy savings. The report concludes with a present worth economic analysis of these energy savings and arrives at system costs and economic payback based on current costs of PCMs under study for the wallboard application. 5 refs., 4 figs., 4 tabs.« less

  15. INSTRUMENTS AND METHODS OF INVESTIGATION: Experimental investigation of the thermal properties of carbon at high temperatures and moderate pressures

    NASA Astrophysics Data System (ADS)

    Asinovskii, Erik I.; Kirillin, Alexander V.; Kostanovskii, Alexander V.

    2002-08-01

    A consistent procedure for plotting the carbon melting and boiling coexistence curves based on published data and the authors' experimental results is proposed. The parameters of a triple point are predicted to differ markedly from the currently accepted values: pt approx1 bar and Tt approx 4000 K. Two types of experimental facilities were used, with laser heating of samples in one and direct ohmic heating in the other. The existence of a carbyne region (a stable linear polymer consisting of carbon atoms) in the carbon phase diagram is discussed. Results on the direct solid-phase graphite - carbyne transition are presented, and this is shown to occur under certain conditions in the form of a thermal explosion.

  16. Thermal management of VECSELs by front surface direct liquid cooling

    NASA Astrophysics Data System (ADS)

    Smyth, Conor J. C.; Mirkhanov, Shamil; Quarterman, Adrian H.; Wilcox, Keith G.

    2016-03-01

    Efficient thermal management is vital for VECSELs, affecting the output power and several aspects of performance of the device. Presently there exist two distinct methods of effective thermal management which both possess their merits and disadvantages. Substrate removal of the VECSEL gain chip has proved a successful method in devices emitting at a wavelength near 1μm. However for other wavelengths the substrate removal technique has proved less effective primarily due to the thermal impedance of the distributed Bragg reflectors. The second method of thermal management involves the use of crystalline heat spreaders bonded to the gain chip surface. Although this is an effective thermal management scheme, the disadvantages are additional loss and the etalon effect that filters the gain spectrum, making mode locking more difficult and normally resulting in multiple peaks in the spectrum. There are considerable disadvantages associated with both methods attributed to heatspreader cost and sample processing. It is for these reasons that a proposed alternative, front surface liquid cooling, has been investigated in this project. Direct liquid cooling involves flowing a temperature-controlled liquid over the sample's surface. In this project COMSOL was used to model surface liquid cooling of a VECSEL sample in order to investigate and compare its potential thermal management with current standard thermal management techniques. Based on modelling, experiments were carried out in order to evaluate the performance of the technique. While modelling suggests that this is potentially a mid-performance low cost alternative to existing techniques, experimental measurements to date do not reflect the performance predicted from modelling.

  17. Thermal noise calculation method for precise estimation of the signal-to-noise ratio of ultra-low-field MRI with an atomic magnetometer.

    PubMed

    Yamashita, Tatsuya; Oida, Takenori; Hamada, Shoji; Kobayashi, Tetsuo

    2012-02-01

    In recent years, there has been considerable interest in developing an ultra-low-field magnetic resonance imaging (ULF-MRI) system using an optically pumped atomic magnetometer (OPAM). However, a precise estimation of the signal-to-noise ratio (SNR) of ULF-MRI has not been carried out. Conventionally, to calculate the SNR of an MR image, thermal noise, also called Nyquist noise, has been estimated by considering a resistor that is electrically equivalent to a biological-conductive sample and is connected in series to a pickup coil. However, this method has major limitations in that the receiver has to be a coil and that it cannot be applied directly to a system using OPAM. In this paper, we propose a method to estimate the thermal noise of an MRI system using OPAM. We calculate the thermal noise from the variance of the magnetic sensor output produced by current-dipole moments that simulate thermally fluctuating current sources in a biological sample. We assume that the random magnitude of the current dipole in each volume element of the biological sample is described by the Maxwell-Boltzmann distribution. The sensor output produced by each current-dipole moment is calculated either by an analytical formula or a numerical method based on the boundary element method. We validate the proposed method by comparing our results with those obtained by conventional methods that consider resistors connected in series to a pickup coil using single-layered sphere, multi-layered sphere, and realistic head models. Finally, we apply the proposed method to the ULF-MRI model using OPAM as the receiver with multi-layered sphere and realistic head models and estimate their SNR. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2001-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  19. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  20. Solar Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  1. Enhanced quench propagation in 2G-HTS coils co-wound with stainless steel or anodised aluminium tapes

    NASA Astrophysics Data System (ADS)

    Núñez-Chico, A. B.; Martínez, E.; Angurel, L. A.; Navarro, R.

    2016-08-01

    Early quench detection and thermal stability of superconducting coils are of great relevance for practical applications. Magnets made with second generation high temperature superconducting (2G-HTS) tapes present low quench propagation velocities and therefore slow voltage development and high local temperature rises, which may cause irreversible damage. Since quench propagation depends on the anisotropy of the thermal conductivity, this may be used to achieve an improvement of the thermal stability and robustness of 2G-HTS coils. On pancake type coils, the thermal conductivity along the tapes (coil’s azimuthal direction) is mostly fixed by the 2G-HTS tape characteristics, so that the reduction of anisotropy relies on the improvement of the radial thermal conductivity, which depends on the used materials between superconducting tapes, as well as on the winding and impregnation processes. In this contribution, we have explored two possibilities for such anisotropy reduction: by using anodised aluminium or stainless steel tapes co-wound with the 2G-HTS tapes. For all the analysed coils, critical current distribution, minimum quench energy values and both tangential and radial quench propagation velocities at different temperatures and currents are reported and compared with the results of similar coils co-wound with polyimide (Kapton®) tapes.

  2. Superconducting Quantum Interference Devices for the Detection of Magnetic Flux and Application to Airborne High Frequency Direction Finding

    DTIC Science & Technology

    2015-03-26

    junction [29]. • The Resistively-Shunted- Junction (RSJ) Model • The Tunnel - Junction -Microscopic (TJM) Model • The Nonlinear...Resistive (RSJN) Model These circuit representations describe the junction using a parallel configuration of a resistor, noise current source, and a...solution for the Josephson junction IVP model equation for the noise -free case, in = 0. The thermal noise current is set to zero to exclude noise

  3. Microwave enhanced electroanalysis of formulations: processes in micellar media at glassy carbon and at platinum electrodes.

    PubMed

    Ghanem, Mohamed A; Compton, Richard G; Coles, Barry A; Canals, Antonio; Marken, Frank

    2005-10-01

    The direct electroanalysis of complex formulations containing alpha-tocopherol (vitamin E) is possible in micellar solution and employing microwave-enhanced voltammetry. In the presence of microwave radiation substantial heating and current enhancement effects have been observed at 330 microm diameter glassy carbon electrodes placed into a micellar aqueous solution and both hydrophilic and highly hydrophobic redox systems are detected. For the water soluble Fe(CN)(6)(3-/4-) redox system in micellar aqueous solutions of 0.1 M NaCl and 0.1 M sodium dodecylsulfate (SDS) at low to intermediate microwave power, thermal effects and convection effects are observed. At higher microwave power, thermal cavitation is induced and dominates the mass transport at the electrode surface. For the micelle-soluble redox systems tert-butylferrocene and 2,5-di-tert-butyl-1,4-benzoquinone, strong and concentration dependent current responses are observed only in the presence of microwave radiation. For the oxidation of micelle-soluble alpha-tocopherol current responses at glassy carbon electrodes are affected by adsorption and desorption processes whereas at platinum electrodes, analytical limiting currents are obtained over a wide range of alpha-tocopherol concentrations. However, for the determination of alpha-tocopherol in a commercial formulation interference from proteins is observed at platinum electrodes and direct measurements are possible only over a limited concentration range and at glassy carbon electrodes.

  4. Biosafety and containment plan & design for direct sampling of operating effluent decontamination tanks

    USDA-ARS?s Scientific Manuscript database

    Currently, Southeast Poultry Research Laboratory (SEPRL) uses an effluent decontamination system (EDS) that serves as an enhancement, or extra barrier for biocontainment. Wastewater effluent from (A)BSL-3E and (A)BSL-2E laboratories is collected in tanks for thermal inactivation (180°F for 30 minut...

  5. Control of plasma properties in a short direct-current glow discharge with active boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, S. F.; Demidov, V. I., E-mail: vladimir.demidov@mail.wvu.edu; West Virginia University, Morgantown, West Virginia 26506

    2016-02-15

    To demonstrate controlling electron/metastable density ratio and electron temperature by applying negative voltages to the active (conducting) discharge wall in a low-pressure plasma with nonlocal electron energy distribution function, modeling has been performed in a short (lacking the positive-column region) direct-current glow discharge with a cold cathode. The applied negative voltage can modify the trapping of the low-energy part of the energetic electrons that are emitted from the cathode sheath and that arise from the atomic and molecular processes in the plasma within the device volume. These electrons are responsible for heating the slow, thermal electrons, while production of slowmore » electrons (ions) and metastable atoms is mostly due to the energetic electrons with higher energies. Increasing electron temperature results in increasing decay rate of slow, thermal electrons (ions), while decay rate of metastable atoms and production rates of slow electrons (ions) and metastable atoms practically are unchanged. The result is in the variation of electron/metastable density ratio and electron temperature with the variation of the wall negative voltage.« less

  6. Progress and issues for high-speed vertical cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Lear, Kevin L.; Al-Omari, Ahmad N.

    2007-02-01

    Extrinsic electrical, thermal, and optical issues rather than intrinsic factors currently constrain the maximum bandwidth of directly modulated vertical cavity surface emitting lasers (VCSELs). Intrinsic limits based on resonance frequency, damping, and K-factor analysis are summarized. Previous reports are used to compare parasitic circuit values and electrical 3dB bandwidths and thermal resistances. A correlation between multimode operation and junction heating with bandwidth saturation is presented. The extrinsic factors motivate modified bottom-emitting structures with no electrical pads, small mesas, copper plated heatsinks, and uniform current injection. Selected results on high speed quantum well and quantum dot VCSELs at 850 nm, 980 nm, and 1070 nm are reviewed including small-signal 3dB frequencies up to 21.5 GHz and bit rates up to 30 Gb/s.

  7. Status of the Magma Energy Project

    NASA Astrophysics Data System (ADS)

    Dunn, J. C.

    The current magma energy project is assessing the engineering feasibility of extracting thermal energy directly from crustal magma bodies. The estimated size of the U.S. resource (50,000 to 500,000 quads) suggests a considerable potential impact on future power generation. In a previous seven-year study, we concluded that there are no insurmountable barriers that would invalidate the magma energy concept. Several concepts for drilling, energy extraction, and materials survivability were successfully demonstrated in Kilauea Iki lava lake, Hawaii. The present program is addressing the engineering design problems associated with accessing magma bodies and extracting thermal energy for power generation. The normal stages for development of a geothermal resource are being investigated: exploration, drilling and completions, production, and surface power plant design. Current status of the engineering program and future plans are described.

  8. Thermally induced spin-dependent current based on Zigzag Germanene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Majidi, Danial; Faez, Rahim

    2017-02-01

    In this paper, using first principle calculation and non-equilibrium Green's function, the thermally induced spin current in Hydrogen terminated Zigzag-edge Germanene Nanoribbon (ZGeNR-H) is investigated. In this model, because of the difference between the source and the drain temperature of ZGeNR device, the spin up and spin down currents flow in the opposite direction with two different threshold temperatures (Tth). Hence, a pure spin polarized current which belongs to spin down is obtained. It is shown that, for temperatures above the threshold temperature spin down current increases with the increasing temperature up to 75 K and then decreases. But spin up current rises steadily and in the high temperature we can obtain polarized spin up current. In addition, we show an acceptable spin current around the room temperature for ZGeNR. The transmission peaks in ZGeNR which are closer to the Fermi level rather than Zigzag Graphene Nanoribbon (ZGNRS) which causes ZGeNR to have spin current at higher temperatures. Finally, it is indicated that by tuning the back gate voltage, the spin current can be completely modulated and polarized. Simulation results verify the Zigzag Germanene Nanoribbon as a promising candidate for spin caloritronics devices, which can be applied in future low power consumption technology.

  9. NASA Goddard Thermal Technology Overview 2017

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2017-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently enacted FY 17 NASA budget, which includes a sizeable increase, will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology Implementation on current flight programs will be reviewed, and the recent push for CubeSat mission development will also be addressed. Many of these technologies also have broad applicability to DOD (Dept. of Defense), DOE (Dept. of the Environment), and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  10. NASA Goddard Thermal Technology Overview 2016

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2016-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently enacted FY 16 NASA budget, which includes a sizeable increase, will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  11. Strain effects on the anisotropic thermal transport in crystalline polyethylene

    NASA Astrophysics Data System (ADS)

    He, Jixiong; Kim, Kyunghoon; Wang, Yangchao; Liu, Jun

    2018-01-01

    Thermal transport in the axial direction of polymers has been extensively studied, while the strain effect on the thermal conductivity, especially in the radial direction, remains unknown. In this work, we calculated the thermal conductivity in the radial direction of a crystalline polyethylene model and simulated the uniaxial strain effect on the thermal conductivity tensor by molecular dynamics simulations. We found a strong size effect of the thermal transport in the radial direction and estimated that the phonon mean free path can be much larger than the prediction from the classic kinetic theory. We also found that the thermal conductivity in the axial direction increases dramatically with strain, while the thermal conductivity in the radial direction decreases with uniaxial strain. We attribute the reduction of thermal conductivity in the radial direction to the decreases in inter-chain van der Waals forces with strains. The facts that the chains in the crystalline polyethylene became stiffer and more ordered along the chain direction could be the reasons for the increasing thermal conductivity in the axial direction during stretching. Besides, we observed longer phonon lifetime in acoustic branches and higher group velocity in optical branches after uniaxial stretching. Our work provides fundamental understandings on the phonon transport in crystalline polymers, the structure-property relationship in crystalline polymers, and the strain effect in highly anisotropic materials.

  12. Determination on the Coefficient of Thermal Expansion in High-Power InGaN-based Light-emitting Diodes by Optical Coherence Tomography.

    PubMed

    Lee, Ya-Ju; Chou, Chun-Yang; Huang, Chun-Ying; Yao, Yung-Chi; Haung, Yi-Kai; Tsai, Meng-Tsan

    2017-10-31

    The coefficient of thermal expansion (CTE) is a physical quantity that indicates the thermal expansion value of a material upon heating. For advanced thermal management, the accurate and immediate determination of the CTE of packaging materials is gaining importance because the demand for high-power lighting-emitting diodes (LEDs) is currently increasing. In this study, we used optical coherence tomography (OCT) to measure the CTE of an InGaN-based (λ = 450 nm) high-power LED encapsulated in polystyrene resin. The distances between individual interfaces of the OCT images were observed and recorded to derive the instantaneous CTE of the packaged LED under different injected currents. The LED junction temperature at different injected currents was established with the forward voltage method. Accordingly, the measured instantaneous CTE of polystyrene resin varied from 5.86 × 10 -5  °C -1 to 14.10 × 10 -5  °C -1 in the junction temperature range 25-225 °C and exhibited a uniform distribution in an OCT scanning area of 200 × 200 μm. Most importantly, this work validates the hypothesis that OCT can provide an alternative way to directly and nondestructively determine the spatially resolved CTE of the packaged LED device, which offers significant advantages over traditional CTE measurement techniques.

  13. A thermal sensor and switch based on a plasma polymer/ZnO suspended nanobelt bimorph structure

    NASA Astrophysics Data System (ADS)

    He, -Hau, Jr.; Singamaneni, Srikanth; Ho, Chih H.; Lin, Yen-Hsi; McConney, Michael E.; Tsukruk, Vladimir V.

    2009-02-01

    The combination of design and subsequent fabrication of organic/inorganic nanostructures creates an effective way to combine the favorable traits of both to achieve a desired device performance. We demonstrate a miniature electrical read-out, and a sensitive temperature sensor/switch, based on a ZnO nanobelt/plasma-polymerized benzonitrile bimorph structure. A new read-out technique based on the change in the electric current flowing through the bimorph and the contact pad has been employed, replacing the conventional cumbersome piezoresistive method or tedious optical alignment. The thermal sensor demonstrated here has great prospects for thermal switching and triggered detection owing to the relative ease in the fabrication of arrays and the direct electrical read-out.

  14. Integration of design, structural, thermal and optical analysis: And user's guide for structural-to-optical translator (PATCOD)

    NASA Technical Reports Server (NTRS)

    Amundsen, R. M.; Feldhaus, W. S.; Little, A. D.; Mitchum, M. V.

    1995-01-01

    Electronic integration of design and analysis processes was achieved and refined at Langley Research Center (LaRC) during the development of an optical bench for a laser-based aerospace experiment. Mechanical design has been integrated with thermal, structural and optical analyses. Electronic import of the model geometry eliminates the repetitive steps of geometry input to develop each analysis model, leading to faster and more accurate analyses. Guidelines for integrated model development are given. This integrated analysis process has been built around software that was already in use by designers and analysis at LaRC. The process as currently implemented used Pro/Engineer for design, Pro/Manufacturing for fabrication, PATRAN for solid modeling, NASTRAN for structural analysis, SINDA-85 and P/Thermal for thermal analysis, and Code V for optical analysis. Currently, the only analysis model to be built manually is the Code V model; all others can be imported for the Pro/E geometry. The translator from PATRAN results to Code V optical analysis (PATCOD) was developed and tested at LaRC. Directions for use of the translator or other models are given.

  15. Spectral-optical-electrical-thermal properties of deposited thin films of nano-sized calcium(II)-8-hydroxy-5,7-dinitroquinolate complex.

    PubMed

    Farag, A A M; Haggag, Sawsan M S; Mahmoud, Mohamed E

    2011-11-01

    Spectral-optical-electrical-thermal properties of deposited thin films of nano-sized calcium(II)-8-hydroxy-5,7-dinitroquinolate complex, Ca[((NO(2))(2)-8HQ)(2)], were explored, studied and evaluated in this work. Thin films of Ca[((NO(2))(2)-8HQ)(2)] were assembled by using a direct, simple and efficient layer-by-layer (LBL) chemical deposition technique. The optical properties of thin films were investigated by using spectrophotometric measurements of transmittance and reflectance at normal incidence in the wavelength range 200-2500 nm. The refractive index, n, and the absorption index, k, of Ca[((NO(2))(2)-8HQ)(2)] films were determined from the measured transmittance and reflectance. The real and imaginary dielectric constants were also determined. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals a direct allowed transition with band gaps of 1.1 eV and 2.4 eV for the optical and transport energy gaps, respectively. The current-voltage characteristics of Ca[((NO(2))(2)-8HQ)(2)] showed a trap-charge limited conduction in determining the current at the intermediate and high bias regimes. Graphical representation of the current-voltage characteristics yields three distinct linear parts indicating the existence of three conduction mechanisms. Structural characterization and identification were confirmed by using Fourier transform infrared spectroscopy (FT-IR). Scanning electron microscopy (SEM) was also used to image the surface morphology of the deposited nano-sized metal complex and such study revealed a high homogeneity in surface spherical particle distribution with average particles size in the range 20-40 nm. Thermal gravimetric analysis (TGA) was also studied for [(NO(2))(2)-8HQ] and Ca[((NO(2))(2)-8HQ)(2)] to evaluate and confirm the thermal stability characteristics incorporated into the synthesized nano-sized Ca[((NO(2))(2)-8HQ)(2)] complex. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Nano-Localized Thermal Analysis and Mapping of Surface and Sub-Surface Thermal Properties Using Scanning Thermal Microscopy (SThM).

    PubMed

    Pereira, Maria J; Amaral, Joao S; Silva, Nuno J O; Amaral, Vitor S

    2016-12-01

    Determining and acting on thermo-physical properties at the nanoscale is essential for understanding/managing heat distribution in micro/nanostructured materials and miniaturized devices. Adequate thermal nano-characterization techniques are required to address thermal issues compromising device performance. Scanning thermal microscopy (SThM) is a probing and acting technique based on atomic force microscopy using a nano-probe designed to act as a thermometer and resistive heater, achieving high spatial resolution. Enabling direct observation and mapping of thermal properties such as thermal conductivity, SThM is becoming a powerful tool with a critical role in several fields, from material science to device thermal management. We present an overview of the different thermal probes, followed by the contribution of SThM in three currently significant research topics. First, in thermal conductivity contrast studies of graphene monolayers deposited on different substrates, SThM proves itself a reliable technique to clarify the intriguing thermal properties of graphene, which is considered an important contributor to improve the performance of downscaled devices and materials. Second, SThM's ability to perform sub-surface imaging is highlighted by thermal conductivity contrast analysis of polymeric composites. Finally, an approach to induce and study local structural transitions in ferromagnetic shape memory alloy Ni-Mn-Ga thin films using localized nano-thermal analysis is presented.

  17. Effect of various electrokinetic treatment regimes on solids surface properties and thermal behavior of oil sediments.

    PubMed

    Kariminezhad, Esmaeel; Elektorowicz, Maria

    2018-04-10

    The electrokinetic process has shown its ability to separate the different material phases. However, not much is known about the effect of the electric fields on the surface properties of solids in the oil sediments and their behavior under different electrical regimes. In this study, the effect of four different types of electrical current on the surface properties of oil sediments was investigated, namely constant direct current (CDC), pulsed direct current (PDC), incremental direct current (IDC) and decremental direct current (DDC). X-ray photoelectron spectroscopy (XPS) analyses showed a decrease in the concentration of carbon from 99% in centrifuged samples to 63% on the surface of the solids in the PDC-treated oil sediment. Wettability alteration and contact angle studies showed an enhance in hydrophilicity of the solids following electrokinetic treatment. A significant change in carbon and oxygen-containing functionalities at the surface solids of the DDC-treated sediment was also observed. Thermogravimetric analyses (TGA) confirmed the ability of electrokinetic treatment in separating the phases by shifting the thermogram profiles towards lower temperatures. The findings showed that the electrokinetic process exerts its effect by altering the surface properties of the sediment solids and destabilizing water-in-oil emulsions to facilitate phase separation of this complex waste. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Modelling and control of a diffusion/LPCVD furnace

    NASA Astrophysics Data System (ADS)

    Dewaard, H.; Dekoning, W. L.

    1988-12-01

    Heat transfer inside a cylindrical resistance diffusion/Low Pressure Chemical Vapor Deposition (LPCVD) furnace is studied with the aim of developing an improved temperature controller. A model of the thermal behavior is derived, which covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. Currently used temperature controllers are shown to be highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the LQG (linear quadratic Gaussian) type is proposed which features direct wafer temperature control. Some simulation results are given.

  19. Utilization of low temperatures in electrical machines

    NASA Astrophysics Data System (ADS)

    Kwasniewska-Jankowicz, L.; Mirski, Z.

    1983-09-01

    The dimensions of conventional and superconducting direct and alternating current generators are compared and the advantages of using superconducting magnets are examined. The critical temperature, critical current, and critical magnetic field intensity of superconductors in an induction winding are discussed as well as the mechanical properties needed for bending connectors at small radii. Investigations of cryogenic cooling, cryostats, thermal insulation and rotary seals are reported as well as results of studies of the mechanical properties of austenitic Cr-Ni steels, welded joints and plastics for insulation.

  20. LDEF data correlation to existing NASA debris environment models

    NASA Technical Reports Server (NTRS)

    Atkinson, Dale R.; Allbrooks, Martha K.; Watts, Alan J.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) was recovered in January 1990, following 5.75 years exposure of about 130 sq. m to low-Earth orbit. About 25 sq. m of this surface area was aluminum 6061 T-6 exposed in every direction. In addition, about 17 sq. m of Scheldahl G411500 silver-Teflon thermal control blankets were exposed in 9 of the 12 directions. Since the LDEF was gravity gradient stabilized and did not rotate, the directional dependence of the flux can be easily distinguished. During the disintegration of the LDEF, all impact features larger than 0.5 mm into aluminum were documented for diameters and locations. In addition, the diameters and locations of all impact features larger than 0.3 mm into Scheldahl G411500 thermal control blankets were also documented. This data, along with additional information collected from LDEF materials will be compared with current meteoroid and debris models. This comparison will provide a validation of the models and will identify discrepancies between the models and the data.

  1. Pulsed Laser Techniques to Determine Lattice and Radiative Thermal Conductivity of Deep Planetary Materials at Extreme Pressure-Temperature Conditions

    NASA Astrophysics Data System (ADS)

    Lobanov, S.; Goncharov, A. F.; Holtgrewe, N.; Konopkova, Z.; McWilliams, R. S.

    2017-12-01

    Thermal conductivity of deep planetary materials determines the planetary heat transport mode and properties (e.g. magnetic field) and can be used to decipher the planetary thermal history. Due to the lack of direct measurements of the lattice and radiative conductivity of the relevant materials at the planetary conditions, the current geodynamical models use theoretical calculations and extrapolations of the available experimental data. Here we describe our pulsed laser techniques that enable direct measurements of the lattice and radiative lattice conductivity of the Earth's mantle and core materials and also of noble gases and simple molecules present in the interiors of giant planets (e.g. hydrogen). Flash heating laser techniques working in a pump-probe mode that include time resolved two-side radiative and thermoreflection temperature probes employ various laser and photo-detector configurations, which provide a measure of the thermal fluxes propagating through the samples confined in the diamond anvil cell cavity. A supercontinuum ultra-bright broadband laser source empower accurate measurements of the optical properties of planetary materials used to extract the radiative conductivity. Finite element calculations serve to extract the temperature and pressure dependent thermal conductivity and temperature gradients across the sample. We report thermal conductivity measurements of the Earth's minerals (postperovskite, bridgmanite, ferropericlase) and their assemblies (pyrolite) and core materials (Fe and alloys with Si and O) at the realistic deep Earth's pressure temperature conditions. We thank J.-F.Lin, M. Murakami, J. Badro for contributing to this work.

  2. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose

    PubMed Central

    Li, Tian; Song, Jianwei; Zhao, Xinpeng; Yang, Zhi; Pastel, Glenn; Xu, Shaomao; Jia, Chao; Dai, Jiaqi; Chen, Chaoji; Gong, Amy; Jiang, Feng; Yao, Yonggang; Fan, Tianzhu; Yang, Bao; Wågberg, Lars; Yang, Ronggui; Hu, Liangbing

    2018-01-01

    There has been a growing interest in thermal management materials due to the prevailing energy challenges and unfulfilled needs for thermal insulation applications. We demonstrate the exceptional thermal management capabilities of a large-scale, hierarchal alignment of cellulose nanofibrils directly fabricated from wood, hereafter referred to as nanowood. Nanowood exhibits anisotropic thermal properties with an extremely low thermal conductivity of 0.03 W/m·K in the transverse direction (perpendicular to the nanofibrils) and approximately two times higher thermal conductivity of 0.06 W/m·K in the axial direction due to the hierarchically aligned nanofibrils within the highly porous backbone. The anisotropy of the thermal conductivity enables efficient thermal dissipation along the axial direction, thereby preventing local overheating on the illuminated side while yielding improved thermal insulation along the backside that cannot be obtained with isotropic thermal insulators. The nanowood also shows a low emissivity of <5% over the solar spectrum with the ability to effectively reflect solar thermal energy. Moreover, the nanowood is lightweight yet strong, owing to the effective bonding between the aligned cellulose nanofibrils with a high compressive strength of 13 MPa in the axial direction and 20 MPa in the transverse direction at 75% strain, which exceeds other thermal insulation materials, such as silica and polymer aerogels, Styrofoam, and wool. The excellent thermal management, abundance, biodegradability, high mechanical strength, low mass density, and manufacturing scalability of the nanowood make this material highly attractive for practical thermal insulation applications. PMID:29536048

  3. Overview of thermal barrier coatings in diesel engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, Thomas M.

    1995-01-01

    An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel engine applications through rig tests, structural analysis modeling, nondestructive evaluation, and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Although much conflicting literature now exists regarding the impact of thermal barrier coatings on engine performance and fuel consumption, the changes in fuel consumption appear to be less than a few percent and can be negative for state-of-the-art diesel engines. The ability of the thermal barrier coating to improve fuel economy tends to be dependent on a number of factors including the fuel injection system, combustion chamber design, and the initial engine fuel economy. Limited investigations on state-of-the-art diesel engines have indicated that the surface connected porosity and coating surface roughness may influence engine fuel economy. Current research efforts on thermal barrier coatings are primarily directed at reducing in-cylinder heat rejection, thermal fatigue protection of underlying metal surfaces and a possible reduction in diesel engine emissions. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components.

  4. Structural-dependent thermal conductivity of aluminium nitride produced by reactive direct current magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belkerk, B. E.; Soussou, A.; Carette, M.

    This Letter reports the thermal conductivity of aluminium nitride (AlN) thin-films deposited by reactive DC magnetron sputtering on single-crystal silicon substrates (100) with varying plasma and magnetic conditions achieving different crystalline qualities. The thermal conductivity of the films was measured at room temperature with the transient hot-strip technique for film thicknesses ranging from 100 nm to 4000 nm. The thermal conductivity was found to increase with the thickness depending on the synthesis conditions and film microstructure. The conductivity in the bulk region of the films, so-called intrinsic conductivity, and the boundary resistance were in the range [120-210] W m{sup -1}more » K{sup -1} and [2-30 Multiplication-Sign 10{sup -9}] K m{sup 2} W{sup -1}, respectively, in good agreement with microstructures analysed by x-ray diffraction, high-resolution-scanning-electron-microscopy, and transmission-electron-microscopy.« less

  5. Thermal mechanisms responsible for the irreversible degradation of superconductivity in commercial superconductors

    NASA Astrophysics Data System (ADS)

    Romanovskii, V. R.

    2017-08-01

    Conditions for the irreversible propagation of thermal instabilities in commercial superconductors subjected to intense and soft cooling have been formulated. An analysis has been conducted using two types of the superconductor's I-V characteristics, i.e., an ideal I-V characteristic, which assumes a step superconducting-to-normal transition, and a continuous I-V characteristic, which is described by a power law. The propagation rate of thermal instabilities along the superconducting composite has been determined. Calculations have been made for both subcritical and supercritical values of the current. It has been shown that they propagate along a commercial superconductor in the form of a switching wave. In rapidly cooled commercial superconductors, the steady-state rate of thermal instability propagation in the longitudinal direction can only be positive because there is no region of steady stabilization. It has been proved that, in the case of thermal instability irreversible propagation, the rise in the commercial superconductor temperature is similar to diffusion processes that occur in explosive chain reactions.

  6. Comparative performance study of smart structure for thermal microactuators

    NASA Astrophysics Data System (ADS)

    Yahya, Zulkarnain; Johar, Muhammad Akmal

    2017-04-01

    Thermal microactuator is one of earliest types of microactuators. Typical thermal actuators are in the form of Bimorph and Chevron structures. A bimorph thermal actuator has a complex movement direction, in arc motion and thus it is not feasible in the most MEMS designs. While Chevron actuator has a tendency to produce an off-plane movement which lead to low precision in lateral movement. A new thermal actuator design in the form of serpentine structures shows promising feature to have better performances in terms of more predictive lateral movement with smaller off-plane displacement. In MEMS chip design, areas play a critical role as it will impact with the cost of the final product. In this study, four different structures of thermal actuator were simulated using ANSYS v15. Three different set of area sizes which are 240 µm x 1000 µm, 240 µm x 1500 µm and 240 µm x 2000 µm have been analyzed. All four structures were named as Serpentine01, Serpentine02, Bimorph and Chevron. The data with regards to temperature produced by the structure and z-axis directional deformation were collected and analyzed. This paper reported the investigation result of comparison between these three types of thermal actuator structures design with a given area. From all of the result obtained, it is shown that the area 240 µm x 1500 µm showed a well balance performance in term of huge deformations and low power consumption. The Serpentine01 structure produced 16.7 µm deformation at 4mA of current. The results shows the potential of Serpentine01 structure as a new candidate for thermal microactuator for MEMS applications.

  7. Ocean currents modify the coupling between climate change and biogeographical shifts.

    PubMed

    García Molinos, J; Burrows, M T; Poloczanska, E S

    2017-05-02

    Biogeographical shifts are a ubiquitous global response to climate change. However, observed shifts across taxa and geographical locations are highly variable and only partially attributable to climatic conditions. Such variable outcomes result from the interaction between local climatic changes and other abiotic and biotic factors operating across species ranges. Among them, external directional forces such as ocean and air currents influence the dispersal of nearly all marine and many terrestrial organisms. Here, using a global meta-dataset of observed range shifts of marine species, we show that incorporating directional agreement between flow and climate significantly increases the proportion of explained variance. We propose a simple metric that measures the degrees of directional agreement of ocean (or air) currents with thermal gradients and considers the effects of directional forces in predictions of climate-driven range shifts. Ocean flows are found to both facilitate and hinder shifts depending on their directional agreement with spatial gradients of temperature. Further, effects are shaped by the locations of shifts in the range (trailing, leading or centroid) and taxonomic identity of species. These results support the global effects of climatic changes on distribution shifts and stress the importance of framing climate expectations in reference to other non-climatic interacting factors.

  8. Controlling heat and particle currents in nanodevices by quantum observation

    NASA Astrophysics Data System (ADS)

    Biele, Robert; Rodríguez-Rosario, César A.; Frauenheim, Thomas; Rubio, Angel

    2017-07-01

    We demonstrate that in a standard thermo-electric nanodevice the current and heat flows are not only dictated by the temperature and potential gradient, but also by the external action of a local quantum observer that controls the coherence of the device. Depending on how and where the observation takes place, the direction of heat and particle currents can be independently controlled. In fact, we show that the current and heat flow in a quantum material can go against the natural temperature and voltage gradients. Dynamical quantum observation offers new possibilities for the control of quantum transport far beyond classical thermal reservoirs. Through the concept of local projections, we illustrate how we can create and directionality control the injection of currents (electronic and heat) in nanodevices. This scheme provides novel strategies to construct quantum devices with application in thermoelectrics, spintronic injection, phononics, and sensing among others. In particular, highly efficient and selective spin injection might be achieved by local spin projection techniques.

  9. Performance of a 100 kW class applied field MPD thruster

    NASA Technical Reports Server (NTRS)

    Mantenieks, Maris A.; Sovey, James S.; Myers, Roger M.; Haag, Thomas W.; Raitano, Paul; Parkes, James E.

    1989-01-01

    Performance of a 100 kW, applied field magnetoplasmadynamic (MPD) thruster was evaluated and sensitivities of discharge characteristics to arc current, mass flow rate, and applied magnetic field were investigated. Thermal efficiencies as high as 60 percent, thrust efficiencies up to 21 percent, and specific impulses of up to 1150 s were attained with argon propellant. Thrust levels up to 2.5 N were directly measured with an inverted pendulum thrust stand at discharge input powers up to 57 kW. It was observed that thrust increased monotonically with the product of arc current and magnet current.

  10. Ultrasound-directed robotic system for thermal ablation of liver tumors: a preliminary report

    NASA Astrophysics Data System (ADS)

    Zheng, Jian; Tian, Jie; Dai, Yakang; Zhang, Xing; Dong, Di; Xu, Min

    2010-03-01

    Thermal ablation has been proved safe and effective as the treatment for liver tumors that are not suitable for resection. Currently, manually performed thermal ablation is greatly dependent on the surgeon's acupuncture manipulation against hand tremor. Besides that, inaccurate or inappropriate placement of the applicator will also directly decrease the final treatment effect. In order to reduce the influence of hand tremor, and provide an accurate and appropriate guidance for a better treatment, we develop an ultrasound-directed robotic system for thermal ablation of liver tumors. In this paper, we will give a brief preliminary report of our system. Especially, three innovative techniques are proposed to solve the critical problems in our system: accurate ultrasound calibration when met with artifacts, realtime reconstruction with visualization using Graphic Processing Unit (GPU) acceleration and 2D-3D ultrasound image registration. To reduce the error of point extraction with artifacts, we propose a novel point extraction method by minimizing an error function which is defined based on the geometric property of our N-fiducial phantom. Then realtime reconstruction with visualization using GPU acceleration is provided for fast 3D ultrasound volume acquisition with dynamic display of reconstruction progress. After that, coarse 2D-3D ultrasound image registration is performed based on landmark points correspondences, followed by accurate 2D-3D ultrasound image registration based on Euclidean distance transform (EDT). The effectiveness of our proposed techniques is demonstrated in phantom experiments.

  11. Spin caloric effects in antiferromagnets assisted by an external spin current

    NASA Astrophysics Data System (ADS)

    Gomonay, O.; Yamamoto, Kei; Sinova, Jairo

    2018-07-01

    Searching for novel spin caloric effects in antiferromagnets, we study the properties of thermally activated magnons in the presence of an external spin current and temperature gradient. We predict the spin Peltier effect—generation of a heat flux by spin accumulation—in an antiferromagnetic insulator with cubic or uniaxial magnetic symmetry. This effect is related to the spin-current induced splitting of the relaxation times of the magnons with the opposite spin direction. We show that the Peltier effect can trigger antiferromagnetic domain wall motion with a force whose value grows with the temperature of a sample. At a temperature larger than the energy of the low-frequency magnons, this force is much larger than the force caused by direct spin transfer between the spin current and the domain wall. We also demonstrate that the external spin current can induce the magnon spin Seebeck effect. The corresponding Seebeck coefficient is controlled by the current density. These spin-current assisted caloric effects open new ways for the manipulation of the magnetic states in antiferromagnets.

  12. Micro-architecture embedding ultra-thin interlayer to bond diamond and silicon via direct fusion

    NASA Astrophysics Data System (ADS)

    Kim, Jong Cheol; Kim, Jongsik; Xin, Yan; Lee, Jinhyung; Kim, Young-Gyun; Subhash, Ghatu; Singh, Rajiv K.; Arjunan, Arul C.; Lee, Haigun

    2018-05-01

    The continuous demand on miniaturized electronic circuits bearing high power density illuminates the need to modify the silicon-on-insulator-based chip architecture. This is because of the low thermal conductivity of the few hundred nanometer-thick insulator present between the silicon substrate and active layers. The thick insulator is notorious for releasing the heat generated from the active layers during the operation of devices, leading to degradation in their performance and thus reducing their lifetime. To avoid the heat accumulation, we propose a method to fabricate the silicon-on-diamond (SOD) microstructure featured by an exceptionally thin silicon oxycarbide interlayer (˜3 nm). While exploiting the diamond as an insulator, we employ spark plasma sintering to render the silicon directly fused to the diamond. Notably, this process can manufacture the SOD microarchitecture via a simple/rapid way and incorporates the ultra-thin interlayer for minute thermal resistance. The method invented herein expects to minimize the thermal interfacial resistance of the devices and is thus deemed as a breakthrough appealing to the current chip industry.

  13. Controlling Heat Transport and Flow Structures in Thermal Turbulence Using Ratchet Surfaces

    NASA Astrophysics Data System (ADS)

    Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef; Sun, Chao

    2018-01-01

    In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchetlike roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the large scale circulation roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through a quantitative analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. The current work has important implications for passive and active flow control in engineering, biofluid dynamics, and geophysical flows.

  14. Thermal conductivity of cross-linked polyethylene from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Xiong, Xue; Yang, Ming; Liu, Changlin; Li, Xiaobo; Tang, Dawei

    2017-07-01

    The thermal conductivity of cross-linked bulk polyethylene is studied using molecular dynamics simulation. The atomic structure of the cross-linked polyethylene (PEX) is generated through simulated bond formation using LAMMPS. The thermal conductivity of PEX is studied with different degrees of crosslinking, chain length, and tensile strain. Generally, the thermal conductivity increases with the increasing degree of crosslinking. When the length of the primitive chain increases, the thermal conductivity increases linearly. When the polymer is stretched along one direction, the thermal conductivity increases in the stretched direction and decreases in the direction perpendicular to it. However, the thermal conductivity varies slightly when the polymer is stretched in three directions simultaneously.

  15. Looking for the WIMP next door

    NASA Astrophysics Data System (ADS)

    Evans, Jared A.; Gori, Stefania; Shelton, Jessie

    2018-02-01

    We comprehensively study experimental constraints and prospects for a class of minimal hidden sector dark matter (DM) models, highlighting how the cosmological history of these models informs the experimental signals. We study simple `secluded' models, where the DM freezes out into unstable dark mediator states, and consider the minimal cosmic history of this dark sector, where coupling of the dark mediator to the SM was sufficient to keep the two sectors in thermal equilibrium at early times. In the well-motivated case where the dark mediators couple to the Standard Model (SM) via renormalizable interactions, the requirement of thermal equilibrium provides a minimal, UV-insensitive, and predictive cosmology for hidden sector dark matter. We call DM that freezes out of a dark radiation bath in thermal equilibrium with the SM a WIMP next door, and demonstrate that the parameter space for such WIMPs next door is sharply defined, bounded, and in large part potentially accessible. This parameter space, and the corresponding signals, depend on the leading interaction between the SM and the dark mediator; we establish it for both Higgs and vector portal interactions. In particular, there is a cosmological lower bound on the portal coupling strength necessary to thermalize the two sectors in the early universe. We determine this thermalization floor as a function of equilibration temperature for the first time. We demonstrate that direct detection experiments are currently probing this cosmological lower bound in some regions of parameter space, while indirect detection signals and terrestrial searches for the mediator cut further into the viable parameter space. We present regions of interest for both direct detection and dark mediator searches, including motivated parameter space for the direct detection of sub-GeV DM.

  16. DC to DC Converter Testing for Space Applications: Use of EMI Filters and Thermal Range of Operation

    NASA Technical Reports Server (NTRS)

    Leon, Rosa

    2008-01-01

    Several tests were performed on Interpoint and International Rectifier (IR) direct current (DC) to DC converters to evaluate potential performance and reliability issues in space use of DC to DC converters and to determine if the use of electromagnetic interference (EMI) filters mitigates concerns observed during previous tests. Test findings reported here include those done up until September - October 2008. Tests performed include efficiency, regulation, cross-regulation, power consumption with inhibit on, load transient response, synchronization, and turn-on tests. Some of the test results presented here span the thermal range -55 C to 125 C. Lower range was extended to -120 C in some tested converters. Determination of failure root cause in DC/DC converters that failed at thermal extremes is also included.

  17. Local probing of thermal energy transfer and conversion processes in VO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Menges, Fabian

    Nanostructures of strongly correlated materials, such as metal-insulator transition (MIT) oxides, enable unusual coupling of charge and heat transport. Hence, they provide an interesting pathway to the development of non-linear thermal devices for active heat flux control. Here, we will report the characterization of local thermal non-equilibrium processes in vanadium dioxide (VO2) thin films and single-crystalline nanobeams. Using a scanning thermal microscope and calorimetric MEMS platforms, we studied the MIT triggered by electrical currents, electrical fields, near-field thermal radiation and thermal conduction. Based on out recently introduced scanning probe thermometry method, which enables direct imaging of local Joule and Peltier effects, we quantified self-heating processes in VO2 memristors using the tip of a resistively heated scanning probe both as local sensor and nanoscopic heat source. Finally, we will report on recent approaches to build radiative thermal switches and oscillators using VO2 nanostructures. We quantified variations of near-field radiative thermal transport between silicon dioxide and VO2 down to nanoscopic gap sizes, and will discuss its implications for the development of phonon polariton based radiative thermal devices. Funding of the Swiss Federal Office of Energy under Grant Agreement No. SI/501093-01 is gratefully acknowledged.

  18. Curved Thermopiezoelectric Shell Structures Modeled by Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    2000-01-01

    "Smart" structures composed of piezoelectric materials may significantly improve the performance of aeropropulsion systems through a variety of vibration, noise, and shape-control applications. The development of analytical models for piezoelectric smart structures is an ongoing, in-house activity at the NASA Glenn Research Center at Lewis Field focused toward the experimental characterization of these materials. Research efforts have been directed toward developing analytical models that account for the coupled mechanical, electrical, and thermal response of piezoelectric composite materials. Current work revolves around implementing thermal effects into a curvilinear-shell finite element code. This enhances capabilities to analyze curved structures and to account for coupling effects arising from thermal effects and the curved geometry. The current analytical model implements a unique mixed multi-field laminate theory to improve computational efficiency without sacrificing accuracy. The mechanics can model both the sensory and active behavior of piezoelectric composite shell structures. Finite element equations are being implemented for an eight-node curvilinear shell element, and numerical studies are being conducted to demonstrate capabilities to model the response of curved piezoelectric composite structures (see the figure).

  19. Sputter crater formation in the case of microsecond pulsed glow discharge in a Grimm-type source. Comparison of direct current and radio frequency modes

    NASA Astrophysics Data System (ADS)

    Efimova, Varvara; Hoffmann, Volker; Eckert, Jürgen

    2012-10-01

    Depth profiling with pulsed glow discharge is a promising technique. The application of pulsed voltage for sputtering reduces the sputtering rate and thermal stress and hereby improves the analysis of thin layered and thermally fragile samples. However pulsed glow discharge is not well studied and this limits its practical use. The current work deals with the questions which usually arise when the pulsed mode is applied: Which duty cycle, frequency and pulse length must be chosen to get the optimal sputtering rate and crater shape? Are the well-known sputtering effects of the continuous mode valid also for the pulsed regime? Is there any difference between dc and rf pulsing in terms of sputtering? It is found that the pulse length is a crucial parameter for the crater shape and thermal effects. Sputtering with pulsed dc and rf modes is found to be similar. The observed sputtering effects at various pulsing parameters helped to interpret and optimize the depth resolution of GD OES depth profiles.

  20. Expert Meeting Report: Cladding Attachment Over Exterior Insulation (BSC Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment overmore » exterior insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explore these topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help inform design standards and criteria.« less

  1. Expert Meeting Report: Cladding Attachment Over Exterior Insulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, P.

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on thestructure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exteriormore » insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explorethese topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help informdesign standards and criteria.« less

  2. Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2003-01-01

    This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.

  3. Thermoelectric Device Fabrication Using Thermal Spray and Laser Micromachining

    NASA Astrophysics Data System (ADS)

    Tewolde, Mahder; Fu, Gaosheng; Hwang, David J.; Zuo, Lei; Sampath, Sanjay; Longtin, Jon P.

    2016-02-01

    Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are used in many engineering applications such as vehicle and industrial waste-heat recovery systems to provide electrical power, improve operating efficiency and reduce costs. State-of-art TEG manufacturing is based on prefabricated materials and a labor-intensive process involving soldering, epoxy bonding, and mechanical clamping for assembly. This reduces their durability and raises costs. Additive manufacturing technologies, such as thermal spray, present opportunities to overcome these challenges. In this work, TEGs have been fabricated for the first time using thermal spray technology and laser micromachining. The TEGs are fabricated directly onto engineering component surfaces. First, current fabrication techniques of TEGs are presented. Next, the steps required to fabricate a thermal spray-based TEG module, including the formation of the metallic interconnect layers and the thermoelectric legs are presented. A technique for bridging the air gap between two adjacent thermoelectric elements for the top layer using a sacrificial filler material is also demonstrated. A flat 50.8 mm × 50.8 mm TEG module is fabricated using this method and its performance is experimentally characterized and found to be in agreement with expected values of open-circuit voltage based on the materials used.

  4. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Ramana G.

    2013-10-23

    The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222ºC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reducemore » the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the go/no-go goals stipulated by the DOE for this project. Energy densities of all salt mixtures were higher than that of the current solar salt. The salt mixtures costs have been estimated and TES system costs for a 2 tank, direct approach have been estimated for each of these materials. All estimated costs are significantly below the baseline system that used solar salt. These lower melt point salts offer significantly higher energy density per volume than solar salt – and therefore attractively smaller inventory and equipment costs. Moreover, a new TES system geometry has been recommended A variety of approaches were evaluated to use the low melting point molten salt. Two novel changes are recommended that 1) use the salt as a HTF through the solar trough field, and 2) use the salt to not only create steam but also to preheat the condensed feedwater for Rankine cycle. The two changes enable the powerblock to operate at 500°C, rather than the current 400°C obtainable using oil as the HTF. Secondly, the use of salt to preheat the feedwater eliminates the need to extract steam from the low pressure turbine for that purpose. Together, these changes result in a dramatic 63% reduction required for 6 hour salt inventory, a 72% reduction in storage volume, and a 24% reduction in steam flow rate in the power block. Round trip efficiency for the Case 5 - 2 tank “direct” system is estimated at >97%, with only small losses from time under storage and heat exchange, and meeting RFP goals. This attractive efficiency is available because the major heat loss experienced in a 2 tank “indirect” system - losses by transferring the thermal energy from oil HTF to the salt storage material and back to oil to run the steam generator at night - is not present for the 2 tank direct system. The higher heat capacity values for both LMP and HMP systems enable larger storage capacities for concentrating solar power.« less

  5. Effective Thermal Property Estimation of Unitary Pebble Beds Based on a CFD-DEM Coupled Method for a Fusion Blanket

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Chen, Youhua; Huang, Kai; Liu, Songlin

    2015-12-01

    Lithium ceramic pebble beds have been considered in the solid blanket design for fusion reactors. To characterize the fusion solid blanket thermal performance, studies of the effective thermal properties, i.e. the effective thermal conductivity and heat transfer coefficient, of the pebble beds are necessary. In this paper, a 3D computational fluid dynamics discrete element method (CFD-DEM) coupled numerical model was proposed to simulate heat transfer and thereby estimate the effective thermal properties. The DEM was applied to produce a geometric topology of a prototypical blanket pebble bed by directly simulating the contact state of each individual particle using basic interaction laws. Based on this geometric topology, a CFD model was built to analyze the temperature distribution and obtain the effective thermal properties. The current numerical model was shown to be in good agreement with the existing experimental data for effective thermal conductivity available in the literature. supported by National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2015GB108002, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  6. Thermal management for high-capacity large format Li-ion batteries

    DOEpatents

    Wang, Hsin; Kepler, Keith Douglas; Pannala, Sreekanth; Allu, Srikanth

    2017-05-30

    A lithium ion battery includes a cathode in electrical and thermal connection with a cathode current collector. The cathode current collector has an electrode tab. A separator is provided. An anode is in electrical and thermal connection with an anode current collector. The anode current collector has an electrode tab. At least one of the cathode current collector and the anode current collector comprises a thermal tab for heat transfer with the at least one current collector. The thermal tab is separated from the electrode tab. A method of operating a battery is also disclosed.

  7. Novel gradient-diameter magnetic nanowire arrays with unconventional magnetic anisotropy behaviors.

    PubMed

    Wang, Jing; Zuo, Zhili; Huang, Liang; Warsi, Muhammad Asif; Xiao, John Q; Hu, Jun

    2018-06-21

    Fe-Co-Ni gradient-diameter magnetic nanowire arrays were fabricated via direct-current electrodeposition into a tapered anodic aluminium oxide template. In contrast to the magnetic behaviors of uniform-diameter nanowire arrays, these arrays exhibited tailorable magnetic anisotropy that can be used to switch magnetic nanowires easily and unconventional temperature-dependent coercivity with much better thermal stability.

  8. An experimental study on the thermal characteristics and heating effect of arc-fault from Cu core in residential electrical wiring fires

    PubMed Central

    Du, Jian-Hua; Zeng, Yi; Pan, Leng; Zhang, Ren-Cheng

    2017-01-01

    The characteristics of a series direct current (DC) arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc. PMID:28797055

  9. An experimental study on the thermal characteristics and heating effect of arc-fault from Cu core in residential electrical wiring fires.

    PubMed

    Du, Jian-Hua; Tu, Ran; Zeng, Yi; Pan, Leng; Zhang, Ren-Cheng

    2017-01-01

    The characteristics of a series direct current (DC) arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc.

  10. Biotic and abiotic characterization of bioanodes formed on oxidized carbon electrodes as a basis to predict their performance.

    PubMed

    Cercado, Bibiana; Cházaro-Ruiz, Luis Felipe; Ruiz, Vianey; López-Prieto, Israel de Jesús; Buitrón, Germán; Razo-Flores, Elías

    2013-12-15

    Bioelectrochemical systems (BESs) are based on the catalytic activity of biofilm on electrodes, or the so-called bioelectrodes, to produce electricity and other valuable products. In order to increase bioanode performance, diverse electrode materials and modification methods have been implemented; however, the factors directly affecting performance are yet unclear. In this work carbon cloth electrodes were modified by thermal, chemical, and electrochemical oxidation to enhance oxygenated surface groups, to modify the electrode texture, and consequently the electron transfer rate and biofilm adhesion. The oxidized electrodes were physically, chemically, and electrochemically characterized, then bioanodes were formed at +0.1 V vs. Ag/AgCl using domestic wastewater amended with acetate. The bioanode performance was evaluated according to the current and charge generated. The efficacy of the treatments were in the order Thermal>Electrochemical>Untreated>Chemical oxidation. The maximum current observed with untreated electrode was 0.152±0.026 mA (380±92 mA m(-2)), and it was increased by 78% and 28% with thermal and electrochemical oxidized electrodes, respectively. Moreover, the volatile solids correlated significantly with the maximum current obtained, and the electrode texture was revealed as a critical factor for increasing the bioanode performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Lower Hybrid Wave Induced SOL Emissivity Variation at High Density on the Alcator C-Mod Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faust, I.; Terry, J. L.; Reinke, M. L.

    Lower Hybrid Current Drive (LHCD) in the Alcator C-Mod tokamak provides current profile control for the generation of Advanced Tokamak (AT) plasmas. Non-thermal electron bremsstrahlung emission decreases dramatically at n-bar{sub e}>1{center_dot}10{sup 20}[m{sup -3}] for diverted discharges, indicating low current drive efficiency. It is suggested that Scrape-Off-Layer (SOL) collisional absorption of LH waves is the cause for the absence of non-thermal electrons at high density. VUV and visible spectroscopy in the SOL provide direct information on collision excitation processes. Deuterium Balmer-, Lyman- and He-I transition emission measurements were used for initial characterization of SOL electron-neutral collisional absorption. Data from Helium andmore » Deuterium LHCD discharges were characterized by an overall increase in the emissivity as well as an outward radial shift in the emissivity profile with increasing plasma density and applied LHCD power. High-temperature, high-field (T{sub e} = 5keV,B{sub t} = 8T) helium discharges at high density display increased non-thermal signatures as well as reduced SOL emissivity. Variations in emissivity due to LHCD were seen in SOL regions not magnetically connected to the LH Launcher, indicating global SOL effects due to LHCD.« less

  12. Simplified welding distortion analysis for fillet welding using composite shell elements

    NASA Astrophysics Data System (ADS)

    Kim, Mingyu; Kang, Minseok; Chung, Hyun

    2015-09-01

    This paper presents the simplified welding distortion analysis method to predict the welding deformation of both plate and stiffener in fillet welds. Currently, the methods based on equivalent thermal strain like Strain as Direct Boundary (SDB) has been widely used due to effective prediction of welding deformation. Regarding the fillet welding, however, those methods cannot represent deformation of both members at once since the temperature degree of freedom is shared at the intersection nodes in both members. In this paper, we propose new approach to simulate deformation of both members. The method can simulate fillet weld deformations by employing composite shell element and using different thermal expansion coefficients according to thickness direction with fixed temperature at intersection nodes. For verification purpose, we compare of result from experiments, 3D thermo elastic plastic analysis, SDB method and proposed method. Compared of experiments results, the proposed method can effectively predict welding deformation for fillet welds.

  13. Lightning Strike Ablation Damage Influence Factors Analysis of Carbon Fiber/Epoxy Composite Based on Coupled Electrical-Thermal Simulation

    NASA Astrophysics Data System (ADS)

    Yin, J. J.; Chang, F.; Li, S. L.; Yao, X. L.; Sun, J. R.; Xiao, Y.

    2017-10-01

    According to the mathematical analysis model constructed on the basis of energy-balance relationship in lightning strike, and accompany with the simplified calculation strategy of composite resin pyrolysis degree dependent electrical conductivity, an effective three dimensional thermal-electrical coupling analysis finite element model of composite laminate suffered from lightning current was established based on ABAQUS, to elucidate the effects of lighting current waveform parameters and thermal/electrical properties of composite laminate on the extent of ablation damage. Simulated predictions agree well with the composite lightning strike directed effect experimental data, illustrating the potential accuracy of the constructed model. The analytical results revealed that extent of composite lightning strike ablation damage can be characterized by action integral validly, there exist remarkable power function relationships between action integral and visual damage area, projected damage area, maximum damage depth and damage volume of ablation damage, and enhancing the electrical conductivity and specific heat of composite, ablation damage will be descended obviously, power function relationships also exist between electrical conductivity, specific heat and ablation damage, however, the impact of thermal conductivity on the extent of ablation damage is not notable. The conclusions obtained provide some guidance for composite anti-lightning strike structure-function integration design.

  14. Modeling and control of diffusion and low-pressure chemical vapor deposition furnaces

    NASA Astrophysics Data System (ADS)

    De Waard, H.; De Koning, W. L.

    1990-03-01

    In this paper a study is made of the heat transfer inside cylindrical resistance diffusion and low-pressure chemical vapor deposition furnaces, aimed at developing an improved temperature controller. A model of the thermal behavior is derived which also covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. It is shown that currently used temperature controllers are highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the linear-quadratic-Gaussian type is proposed which features direct wafer temperature control. Some simulation results are given.

  15. Modification of the magnetization dynamics of a NiFe nanodot due to thermal spin injection

    NASA Astrophysics Data System (ADS)

    Asam, Nagarjuna; Yamanoi, Kazuto; Kimura, Takashi

    2018-06-01

    An array of NiFe nanodots has been prepared on a Cu/CoFeAl film. Since a thermal spin current is expected to be excited owing to a large spin-dependent Seebeck coefficient for the CoFeAl, we investigate the magnetization dynamics of the NiFe dots under the temperature gradient along the vertical direction. By using vector network analyzer measurements, we have demonstrated that the temperature gradient produces modulations of the frequency of ferromagnetic resonance and the linewidth of the resonance spectra. The observed parabolic dependences are well explained by the damping-like and field-like components of spin transfer torque.

  16. A 16-ch module for thermal neutron detection using ZnS:6LiF scintillator with embedded WLS fibers coupled to SiPMs and its dedicated readout electronics

    NASA Astrophysics Data System (ADS)

    Mosset, J.-B.; Stoykov, A.; Greuter, U.; Gromov, A.; Hildebrandt, M.; Panzner, T.; Schlumpf, N.

    2017-02-01

    A scalable 16-ch thermal neutron detection system has been developed in the framework of the upgrade of a neutron diffractometer. The detector is based on a ZnS:6LiF scintillator with embedded WLS fibers which are read out with SiPMs. In this paper, we present the 16-ch module, the dedicated readout electronics, a direct comparison between the performance of the diffractometer obtained with the current 3He detector and with the 16-ch detection module, and the channel-to-channel uniformity.

  17. Multiple thermal transitions and anisotropic thermal expansions of vertically aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ya'akobovitz, Assaf

    2016-10-01

    Vertically aligned carbon nanotubes (VA-CNTs) hold the potential to play an instrumental role in a wide variety of applications in micro- and nano-devices and composites. However, their successful large-scale implementation in engineering systems requires a thorough understanding of their material properties, including their thermal behavior, which was the focus of the current study. Thus, the thermal expansion of as-grown VA-CNT microstructures was investigated while increasing the temperature from room temperature to 800 °C and then cooling it down. First thermal transition was observed at 191 ± 68 °C during heating, and an additional thermal transition was observed at 523 ± 138 °C during heating and at similar temperatures during cooling. Each thermal transition was characterized by a significant change in the coefficient of thermal expansion (CTE), which can be related to a morphological change in the VA-CNT microstructures. Measurements of the CTEs in the lateral directions revealed differences in the lateral thermal behaviors of the top, middle, and bottom portions of the VA-CNT microstructures, again indicating that their morphology dominates their thermal characteristics. A hysteretic behavior was observed, as the measured values of CTEs were altered due to the applied thermal loads and the height of the microstructures was slightly higher compared to its initial value. These findings provide an insight into the anisotropic thermal behavior of VA-CNT microstructures and shed light on the relationship between their morphology and thermal behavior.

  18. Secular obliquity variations for Ceres

    NASA Astrophysics Data System (ADS)

    Bills, Bruce; Scott, Bryan R.; Nimmo, Francis

    2016-10-01

    We have constructed secular variation models for the orbit and spin poles of the asteroid (1) Ceres, and used them to examine how the obliquity, or angular separation between spin and orbit poles, varies over a time span of several million years. The current obliquity is 4.3 degrees, which means that there are some regions near the poles which do not receive any direct Sunlight. The Dawn mission has provided an improved estimate of the spin pole orientation, and of the low degree gravity field. That allows us to estimate the rate at which the spin pole precesses about the instantaneous orbit pole.The orbit of Ceres is secularly perturbed by the planets, with Jupiter's influence dominating. The current inclination of the orbit plane, relative to the ecliptic, is 10.6 degrees. However, it varies between 7.27 and 11.78 degrees, with dominant periods of 22.1 and 39.6 kyr. The spin pole precession rate parameter has a period of 205 kyr, with current uncertainty of 3%, dominated by uncertainty in the mean moment of inertia of Ceres.The obliquity varies, with a dominant period of 24.5 kyr, with maximum values near 26 degrees, and minimum values somewhat less than the present value. Ceres is currently near to a minimum of its secular obliquity variations.The near-surface thermal environment thus has at least 3 important time scales: diurnal (9.07 hours), annual (4.60 years), and obliquity cycle (24.5 kyr). The annual thermal wave likely only penetrates a few meters, but the much long thermal wave associated with the obliquity cycle has a skin depth larger by a factor of 70 or so, depending upon thermal properties in the subsurface.

  19. Study on the influence of three-grid assembly thermal deformation on breakdown times and an ion extraction process

    NASA Astrophysics Data System (ADS)

    Mingming, SUN; Yanhui, JIA; Yongjie, HUANG; Juntai, YANG; Xiaodong, WEN; Meng, WANG

    2018-04-01

    In order to study the influence of three-grid assembly thermal deformation caused by heat accumulation on breakdown times and an ion extraction process, a hot gap test and a breakdown time test are carried out to obtain thermal deformation of the grids when the thruster is in 5 kW operation mode. Meanwhile, the fluid simulation method and particle-in-cell-Monte Carlo collision (PIC-MCC) method are adopted to simulate the ion extraction process according to the previous test results. The numerical calculation results are verified by the ion thruster performance test. The results show that after about 1.2 h operation, the hot gap between the screen grid and the accelerator grid reduce to 0.25–0.3 mm, while the hot gap between the accelerator grid and the decelerator grid increase from 1 mm to about 1.4 mm when the grids reach thermal equilibrium, and the hot gap is almost unchanged. In addition, the breakdown times experiment shows that 0.26 mm is the minimal safe hot gap for the grid assembly as the breakdown times improves significantly when the gap is smaller than this value. Fluid simulation results show that the plasma density of the screen grid is in the range 6 × 1017–6 × 1018 m13 and displays a parabolic characteristic, while the electron temperature gradually increases along the axial direction. The PIC-MCC results show that the current falling of an ion beam through a single aperture is significant. Meanwhile, the intercepted current of the accelerator grid and the decelerator grid both increase with the change in the hot gap. The ion beam current has optimal perveance status without thermal deformation, and the intercepted current of the accelerator grid and the decelerator grid are 3.65 mA and 6.26 mA, respectively. Furthermore, under the effect of thermal deformation, the ion beam current has over-perveance status, and the intercepted current of the accelerator grid and the decelerator grid are 10.46 mA and 18.24 mA, respectively. Performance test results indicate that the breakdown times increase obviously. The intercepted current of the accelerator grid and the decelerator grid increases to 13 mA and 16.5 mA, respectively, due to the change in the hot gap after 1.5 h operation. The numerical calculation results are well consistent with performance test results, and the error comes mainly from the test uncertainty of the hot gap.

  20. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    NASA Astrophysics Data System (ADS)

    Reynolds, Quinn G.

    2017-02-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  1. Correspondence behavior of classical and quantum dissipative directed transport via thermal noise.

    PubMed

    Carlo, Gabriel G; Ermann, Leonardo; Rivas, Alejandro M F; Spina, María E

    2016-04-01

    We systematically study several classical-quantum correspondence properties of the dissipative modified kicked rotator, a paradigmatic ratchet model. We explore the behavior of the asymptotic currents for finite ℏ_{eff} values in a wide range of the parameter space. We find that the correspondence between the classical currents with thermal noise providing fluctuations of size ℏ_{eff} and the quantum ones without it is very good in general with the exception of specific regions. We systematically consider the spectra of the corresponding classical Perron-Frobenius operators and quantum superoperators. By means of an average distance between the classical and quantum sets of eigenvalues we find that the correspondence is unexpectedly quite uniform. This apparent contradiction is solved with the help of the Weyl-Wigner distributions of the equilibrium eigenvectors, which reveal the key role of quantum effects by showing surviving coherences in the asymptotic states.

  2. Anisotropic thermal transport property of defect-free GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Wenjing; Zhou, Zhongyuan, E-mail: zyzhou@seu.edu.cn, E-mail: zywei@seu.edu.cn; Wei, Zhiyong, E-mail: zyzhou@seu.edu.cn, E-mail: zywei@seu.edu.cn

    2016-06-15

    Non-equilibrium molecular dynamics (MD) simulation is performed to calculate the thermal conductivity of defect-free GaN along three high-symmetry directions. It is found that the thermal conductivity along [001] direction is about 25% higher than that along [100] or [120] direction. The calculated phonon dispersion relation and iso-energy surface from lattice dynamics show that the difference of the sound speeds among the three high-symmetry directions is quite small for the same mode. However, the variation of phonon irradiation with direction is qualitatively consistent with that of the calculated thermal conductivity. Our results indicate that the anisotropic thermal conductivity may partly resultmore » from the phonons in the low-symmetry region of the first Brillouin zone due to phonon focus effects, even though the elastic properties along the three high-symmetry directions are nearly isotropic. Thus, the phonon irradiation is able to better describe the property of thermal conductivity as compared to the commonly used phonon dispersion relation. The present investigations uncover the physical origin of the anisotropic thermal conductivity in defect-free GaN, which would provide an important guide for optimizing the thermal management of GaN-based device.« less

  3. Room-temperature coupling between electrical current and nuclear spins in OLEDs

    NASA Astrophysics Data System (ADS)

    Malissa, H.; Kavand, M.; Waters, D. P.; van Schooten, K. J.; Burn, P. L.; Vardeny, Z. V.; Saam, B.; Lupton, J. M.; Boehme, C.

    2014-09-01

    The effects of external magnetic fields on the electrical conductivity of organic semiconductors have been attributed to hyperfine coupling of the spins of the charge carriers and hydrogen nuclei. We studied this coupling directly by implementation of pulsed electrically detected nuclear magnetic resonance spectroscopy in organic light-emitting diodes (OLEDs). The data revealed a fingerprint of the isotope (protium or deuterium) involved in the coherent spin precession observed in spin-echo envelope modulation. Furthermore, resonant control of the electric current by nuclear spin orientation was achieved with radiofrequency pulses in a double-resonance scheme, implying current control on energy scales one-millionth the magnitude of the thermal energy.

  4. An Internal Thermal Environment Model of an Aluminized Solid Rocket Motor with Experimental Validation

    NASA Technical Reports Server (NTRS)

    Martin, Heath T.

    2015-01-01

    Due to the severity of the internal solid rocket motor (SRM) environment, very few direct measurements of that environment exist; therefore, the appearance of such data provides a unique opportunity to assess current thermal/fluid modeling capabilities. As part of a previous study of SRM internal insulation performance, the internal thermal environment of a laboratory-scale SRM featuring aluminized propellant was characterized with two types of custom heat-flux calorimeters: one that measured the total heat flux to a graphite slab within the SRM chamber and another that measured the thermal radiation flux. Therefore, in the current study, a thermal/fluid model of this lab-scale SRM was constructed using ANSYS Fluent to predict not only the flow field structure within the SRM and the convective heat transfer to the interior walls, but also the resulting dispersion of alumina droplets and the radiative heat transfer to the interior walls. The dispersion of alumina droplets within the SRM chamber was determined by employing the Lagrangian discrete phase model that was fully coupled to the Eulerian gas-phase flow. The P1-approximation was engaged to model the radiative heat transfer through the SRM chamber where the radiative contributions of the gas phase were ignored and the aggregate radiative properties of the alumina dispersion were computed from the radiative properties of its individual constituent droplets, which were sourced from literature. The convective and radiative heat fluxes computed from the thermal/fluid model were then compared with those measured in the lab-scale SRM test firings and the modeling approach evaluated.

  5. Measurements of Thermal Conductivity of Superfluid Helium Near its Transition Temperature T(sub lambda) in a 2D Confinement

    NASA Technical Reports Server (NTRS)

    Jerebets, Sergei

    2004-01-01

    We report our recent experiments on thermal conductivity measurements of superfluid He-4 near its phase transition in a two-dimensional (2D) confinement under saturated vapor pressure. A 2D confinement is created by 2-mm- and 1-mm-thick glass capillary plates, consisting of densely populated parallel microchannels with cross-sections of 5 x 50 and 1 x 10 microns, correspondingly. A heat current (2 < Q < 400 nW/sq cm) was applied along the channels long direction. High-resolution measurements were provided by DC SQUID-based high-resolution paramagnetic salt thermometers (HRTs) with a nanokelvin resolution. We might find that thermal conductivity of confined helium is finite at the bulk superfluid transition temperature. Our 2D results will be compared with those in a bulk and 1D confinement.

  6. Microplasma Processed Ultrathin Boron Nitride Nanosheets for Polymer Nanocomposites with Enhanced Thermal Transport Performance.

    PubMed

    Zhang, Ri-Chao; Sun, Dan; Lu, Ai; Askari, Sadegh; Macias-Montero, Manuel; Joseph, Paul; Dixon, Dorian; Ostrikov, Kostya; Maguire, Paul; Mariotti, Davide

    2016-06-01

    This Research Article reports on the enhancement of the thermal transport properties of nanocomposite materials containing hexagonal boron nitride in poly(vinyl alcohol) through room-temperature atmospheric pressure direct-current microplasma processing. Results show that the microplasma treatment leads to exfoliation of the hexagonal boron nitride in isopropyl alcohol, reducing the number of stacks from >30 to a few or single layers. The thermal diffusivity of the resulting nanocomposites reaches 8.5 mm(2) s(-1), 50 times greater than blank poly(vinyl alcohol) and twice that of nanocomposites containing nonplasma treated boron nitride nanosheets. From TEM analysis, we observe much less aggregation of the nanosheets after plasma processing along with indications of an amorphous carbon interfacial layer, which may contribute to stable dispersion of boron nitride nanosheets in the resulting plasma treated colloids.

  7. The thermal stability of sodium beta'-Alumina solid electrolyte ceramic in AMTEC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Roger M.; Ryan, Margaret A.; Homer, Margie L.

    1999-01-22

    A critical component of alkali metal thermal-to electric converter (AMTEC) devices for long duration space missions is the beta'-alumina solid electrolyte ceramic (BASE), for which there exists no substitute. The temperature and environmental conditions under which BASE remains stable control operational parameters of AMTEC devices. We have used mass loss experiments in vacuum to 1573K to characterize the kinetics of BASE decomposition, and conductivity and exchange current measurements in sodium vapor filled exposure cells to 1223K to investigate changes in the BASE which affect its ionic conductivity. There is no clear evidence of direct thermal decomposition of BASE below 1273K,more » although limited soda loss may occur. Reactive metals such as Mn or Cr can react with BASE at temperatures at least as low as 1223K.« less

  8. Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene.

    PubMed

    Crossno, Jesse; Shi, Jing K; Wang, Ke; Liu, Xiaomeng; Harzheim, Achim; Lucas, Andrew; Sachdev, Subir; Kim, Philip; Taniguchi, Takashi; Watanabe, Kenji; Ohki, Thomas A; Fong, Kin Chung

    2016-03-04

    Interactions between particles in quantum many-body systems can lead to collective behavior described by hydrodynamics. One such system is the electron-hole plasma in graphene near the charge-neutrality point, which can form a strongly coupled Dirac fluid. This charge-neutral plasma of quasi-relativistic fermions is expected to exhibit a substantial enhancement of the thermal conductivity, thanks to decoupling of charge and heat currents within hydrodynamics. Employing high-sensitivity Johnson noise thermometry, we report an order of magnitude increase in the thermal conductivity and the breakdown of the Wiedemann-Franz law in the thermally populated charge-neutral plasma in graphene. This result is a signature of the Dirac fluid and constitutes direct evidence of collective motion in a quantum electronic fluid. Copyright © 2016, American Association for the Advancement of Science.

  9. Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression.

    PubMed

    Zhang, Mingji; Or, Siu Wing

    2018-02-14

    A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65-12.55 mV/A in the frequency range of 10 Hz-170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0-20 A, and a high common-mode noise rejection rate of 17-28 dB from multisource noises.

  10. Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression

    PubMed Central

    2018-01-01

    A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65–12.55 mV/A in the frequency range of 10 Hz–170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0–20 A, and a high common-mode noise rejection rate of 17–28 dB from multisource noises. PMID:29443920

  11. Thermal property tuning in aligned carbon nanotube films and random entangled carbon nanotube films by ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Chen, Di; Wang, Xuemei

    2015-10-12

    Ion irradiation effects on thermal property changes are compared between aligned carbon nanotube (A-CNT) films and randomly entangled carbon nanotube (R-CNT) films. After H, C, and Fe ion irradiation, a focusing ion beam with sub-mm diameter is used as a heating source, and an infrared signal is recorded to extract thermal conductivity. Ion irradiation decreases thermal conductivity of A-CNT films, but increases that of R-CNT films. We explain the opposite trends by the fact that neighboring CNT bundles are loosely bonded in A-CNT films, which makes it difficult to create inter-tube linkage/bonding upon ion irradiation. In a comparison, in R-CNTmore » films, which have dense tube networking, carbon displacements are easily trapped between touching tubes and act as inter-tube linkage to promote off-axial phonon transport. The enhancement overcomes the phonon transport loss due to phonon-defect scattering along the axial direction. A model is established to explain the dependence of thermal conductivity changes on ion irradiation parameters including ion species, energies, and current.« less

  12. Fully Scalable Porous Metal Electrospray Propulsion

    DTIC Science & Technology

    2012-03-20

    particular emphasis on the variation of specific impulse for multi-modal propulsion is currently carried out by MIT and the Busek Company under an...Beam profile distributions in the negative (left) and positive (center) modes as visualized directly thorough a multi-channel plate and phosphor...screen. These profiles are parabolic (right) indicating the non-thermal character of these type of ion beams. Microscopic Image of pattern imprinted on Si

  13. 3D Thermal and Electrochemical Model for Spirally Wound Large Format Lithium-ion Batteries (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, K. J.; Kim, G. H.; Smith, K.

    In many commercial cells, long tabs at both cell sides, leading to uniform potentials along the spiral direction of wound jelly rolls, are rarely seen because of their high manufacturing cost. More often, several metal strips are welded at discrete locations along both current collector foils. With this design, the difference of electrical potentials is easily built up along current collectors in the spiral direction. Hence, the design features of the tabs, such as number, location and size, can be crucial factors for spiral-shaped battery cells. This paper presents a Li-ion battery cell model having a 3-dimensional spiral mesh involvingmore » a wound jellyroll structure. Further results and analysis will be given regarding impacts of tab location, number, and size.« less

  14. Photo-thermal nanosystems for diseased cell treatment

    NASA Astrophysics Data System (ADS)

    Raeesi, Vahid

    The prevalence of cancer and infectious disease demands for development of more effective treatment technologies. Current standard chemo- and radiotherapy for cancer offer only relative therapeutic efficacy at the cost of significant side-effects. On the other hand, resistance of microbes to current antibiotics has raised serious concern in public health sectors such as hospitals. Thermal therapy is an alternative technique that employs high temperatures to treat diseased cells via direct and indirect heat effects. Owing to its nature, this technique can offer enhanced therapeutic efficacy in local diseased regions via either mono- or combinatorial platforms and very minimal side-effects. However, existing bulk heating systems are limited in providing selective and controlled temperature rise in the desired region at tissue/cellular scales. This compromises the therapeutic efficacy of the treatment and increases the risk of off-target heating in healthy tissues. In this thesis, we propose the use of heat-generating nanoparticles to precisely target heat into small regions and study how they can be applied in cancer and bacteria treatment. Our model nanoparticle system generates heat by light stimulation. Different nanosystems based on this particle are developed and their thermal effects on therapeutic distribution are explored at tumor tissue and cellular scales. In addition, the thermal effect of these nanoparticles is utilized to overcome microbial resistance. By mechanistic understanding of nanoparticle thermal effects at different length scales, this research helps to rationalize proper design and development of heat- generating nanomedicine for cancer and microbial treatments.

  15. Diffraction phase microscopy imaging and multi-physics modeling of the nanoscale thermal expansion of a suspended resistor.

    PubMed

    Wang, Xiaozhen; Lu, Tianjian; Yu, Xin; Jin, Jian-Ming; Goddard, Lynford L

    2017-07-04

    We studied the nanoscale thermal expansion of a suspended resistor both theoretically and experimentally and obtained consistent results. In the theoretical analysis, we used a three-dimensional coupled electrical-thermal-mechanical simulation and obtained the temperature and displacement field of the suspended resistor under a direct current (DC) input voltage. In the experiment, we recorded a sequence of images of the axial thermal expansion of the central bridge region of the suspended resistor at a rate of 1.8 frames/s by using epi-illumination diffraction phase microscopy (epi-DPM). This method accurately measured nanometer level relative height changes of the resistor in a temporally and spatially resolved manner. Upon application of a 2 V step in voltage, the resistor exhibited a steady-state increase in resistance of 1.14 Ω and in relative height of 3.5 nm, which agreed reasonably well with the predicted values of 1.08 Ω and 4.4 nm, respectively.

  16. Evidence of thermal transport anisotropy in stable glasses of vapor deposited organic molecules

    NASA Astrophysics Data System (ADS)

    Ràfols-Ribé, Joan; Dettori, Riccardo; Ferrando-Villalba, Pablo; Gonzalez-Silveira, Marta; Abad, Llibertat; Lopeandía, Aitor F.; Colombo, Luciano; Rodríguez-Viejo, Javier

    2018-03-01

    Vapor deposited organic glasses are currently in use in many optoelectronic devices. Their operation temperature is limited by the glass transition temperature of the organic layers and thermal management strategies become increasingly important to improve the lifetime of the device. Here we report the unusual finding that molecular orientation heavily influences heat flow propagation in glassy films of small molecule organic semiconductors. The thermal conductivity of vapor deposited thin-film semiconductor glasses is anisotropic and controlled by the deposition temperature. We compare our data with extensive molecular dynamics simulations to disentangle the role of density and molecular orientation on heat propagation. Simulations do support the view that thermal transport along the backbone of the organic molecule is strongly preferred with respect to the perpendicular direction. This is due to the anisotropy of the molecular interaction strength that limits the transport of atomic vibrations. This approach could be used in future developments to implement small molecule glassy films in thermoelectric or other organic electronic devices.

  17. A review of second law techniques applicable to basic thermal science research

    NASA Astrophysics Data System (ADS)

    Drost, M. Kevin; Zamorski, Joseph R.

    1988-11-01

    This paper reports the results of a review of second law analysis techniques which can contribute to basic research in the thermal sciences. The review demonstrated that second law analysis has a role in basic thermal science research. Unlike traditional techniques, second law analysis accurately identifies the sources and location of thermodynamic losses. This allows the development of innovative solutions to thermal science problems by directing research to the key technical issues. Two classes of second law techniques were identified as being particularly useful. First, system and component investigations can provide information of the source and nature of irreversibilities on a macroscopic scale. This information will help to identify new research topics and will support the evaluation of current research efforts. Second, the differential approach can provide information on the causes and spatial and temporal distribution of local irreversibilities. This information enhances the understanding of fluid mechanics, thermodynamics, and heat and mass transfer, and may suggest innovative methods for reducing irreversibilities.

  18. Effect of notch depth of modified current collector on internal-short-circuit mitigation for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Noelle, Daniel J.; Shi, Yang; Le, Anh V.; Qiao, Yu

    2018-01-01

    Formation of internal short circuit (ISC) may result in catastrophic thermal runaway of lithium-ion battery (LIB). Among LIB cell components, direct contact between cathode and anode current collectors is most critical to the ISC behavior, yet is still relatively uninvestigated. In the current study, we analyze the effect of heterogeneity of current collector on the temperature increase of LIB cells subjected to mechanical abuse. The cathode current collector is modified by surface notches, so that it becomes effectively brittle and the ISC site can be isolated. Results from impact tests on LIB cells with modified current collectors suggest that their temperature increase can be negligible. The critical parameters include the failure strain and the failure work of modified current collector, both of which are related to the notch depth.

  19. Rapid fluctuations in flow and water-column properties in Asan Bay, Guam: implications for selective resilience of coral reefs in warming seas

    USGS Publications Warehouse

    Storlazzi, Curt D.; Field, Michael E.; Cheriton, Olivia M.; Presto, M.K.; Logan, J.B.

    2013-01-01

    Hydrodynamics and water-column properties were investigated off west-central Guam from July 2007 through January 2008. Rapid fluctuations, on time scales of 10s of min, in currents, temperature, salinity, and acoustic backscatter were observed to occur on sub-diurnal frequencies along more than 2 km of the fore reef but not at the reef crest. During periods characterized by higher sea-surface temperatures (SSTs), weaker wind forcing, smaller ocean surface waves, and greater thermal stratification, rapid decreases in temperature and concurrent rapid increases in salinity and acoustic backscatter coincided with onshore-directed near-bed currents and offshore-directed near-surface currents. During the study, these cool-water events, on average, lasted 2.3 h and decreased the water temperature 0.57 °C, increased the salinity 0.25 PSU, and were two orders of magnitude more prevalent during the summer season than the winter. During the summer season when the average satellite-derived SST anomaly was +0.63 °C, these cooling events, on average, lowered the temperature 1.14 °C along the fore reef but only 0.11 °C along the reef crest. The rapid shifts appear to be the result of internal tidal bores pumping cooler, more saline, higher-backscatter oceanic water from depths >50 m over cross-shore distances of 100 s of m into the warmer, less saline waters at depths of 20 m and shallower. Such internal bores appear to have the potential to buffer shallow coral reefs from predicted increases in SSTs by bringing cool, offshore water to shallow coral environments. These cooling internal bores may also provide additional benefits to offset stress such as supplying food to thermally stressed corals, reducing stress due to ultraviolet radiation and/or low salinity, and delivering coral larvae from deeper reefs not impacted by surface thermal stress. Thus, the presence of internal bores might be an important factor locally in the resilience of select coral reefs facing increased thermal stress.

  20. Rapid fluctuations in flow and water-column properties in Asan Bay, Guam: implications for selective resilience of coral reefs in warming seas

    NASA Astrophysics Data System (ADS)

    Storlazzi, C. D.; Field, M. E.; Cheriton, O. M.; Presto, M. K.; Logan, J. B.

    2013-12-01

    Hydrodynamics and water-column properties were investigated off west-central Guam from July 2007 through January 2008. Rapid fluctuations, on time scales of 10s of min, in currents, temperature, salinity, and acoustic backscatter were observed to occur on sub-diurnal frequencies along more than 2 km of the fore reef but not at the reef crest. During periods characterized by higher sea-surface temperatures (SSTs), weaker wind forcing, smaller ocean surface waves, and greater thermal stratification, rapid decreases in temperature and concurrent rapid increases in salinity and acoustic backscatter coincided with onshore-directed near-bed currents and offshore-directed near-surface currents. During the study, these cool-water events, on average, lasted 2.3 h and decreased the water temperature 0.57 °C, increased the salinity 0.25 PSU, and were two orders of magnitude more prevalent during the summer season than the winter. During the summer season when the average satellite-derived SST anomaly was +0.63 °C, these cooling events, on average, lowered the temperature 1.14 °C along the fore reef but only 0.11 °C along the reef crest. The rapid shifts appear to be the result of internal tidal bores pumping cooler, more saline, higher-backscatter oceanic water from depths >50 m over cross-shore distances of 100 s of m into the warmer, less saline waters at depths of 20 m and shallower. Such internal bores appear to have the potential to buffer shallow coral reefs from predicted increases in SSTs by bringing cool, offshore water to shallow coral environments. These cooling internal bores may also provide additional benefits to offset stress such as supplying food to thermally stressed corals, reducing stress due to ultraviolet radiation and/or low salinity, and delivering coral larvae from deeper reefs not impacted by surface thermal stress. Thus, the presence of internal bores might be an important factor locally in the resilience of select coral reefs facing increased thermal stress.

  1. Successive ion layer adsorption and reaction (SILAR) technique synthesis of Al(III)-8-hydroxy-5-nitrosoquinolate nano-sized thin films: characterization and factors optimization.

    PubMed

    Haggag, Sawsan M S; Farag, A A M; Abdel Refea, M

    2013-02-01

    Nano Al(III)-8-hydroxy-5-nitrosoquinolate [Al(III)-(HNOQ)(3)] thin films were synthesized by the rapid, direct, simple and efficient successive ion layer adsorption and reaction (SILAR) technique. Thin film formation optimized factors were evaluated. Stoichiometry and structure were confirmed by elemental analysis and FT-IR. The particle size (27-71 nm) was determined using scanning electron microscope (SEM). Thermal stability and thermal parameters were determined by thermal gravimetric analysis (TGA). Optical properties were investigated using spectrophotometric measurements of transmittance and reflectance at normal incidence. Refractive index, n, and absorption index, k, were determined. Spectral behavior of the absorption coefficient in the intrinsic absorption region revealed a direct allowed transition with 2.45 eV band gap. The current-voltage (I-V) characteristics of [Al(III)-(HNOQ)(3)]/p-Si heterojunction was measured at room temperature. The forward and reverse I-V characteristics were analyzed. The calculated zero-bias barrier height (Φ(b)) and ideality factor (n) showed strong bias dependence. Energy distribution of interface states (N(ss)) was obtained. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Characterization of Contact and Bulk Thermal Resistance of Laminations for Electric Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousineau, Emily; Bennion, Kevin; Devoto, Douglas

    Thermal management for electric motors is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric-drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform. As thermal management improves, there will be a direct trade-off among motor performance, efficiency, cost, and the sizing of electric motors to operate within the thermal constraints. During the development of thermal finite element analysis models and computational fluid dynamics models for electric motors, it was found that there was a lackmore » of open literature detailing the thermal properties of key materials common in electric motors that are significant in terms of heat removal. The lack of available literature, coupled with the strong interest from industry in the passive-stack thermal measurement results, led to experiments to characterize the thermal contact resistance between motor laminations. We examined four lamination materials, including the commonly used 26 gauge and 29 gauge M19 materials, the HF10 and Arnon 7 materials. These latter two materials are thinner and reduce eddy currents responsible for core losses. We measured the thermal conductivity of the lamination materials and the thermal contact resistance between laminations in a stack, as well as investigated factors affecting contact resistance between laminations such as the contact pressure and surface finish. Lamination property data will be provided and we also develop a model to estimate the through-stack thermal conductivity for materials beyond those that were directly tested in this work. For example, at a clamping pressure of 138 kPa, the 29 gauge M19 material has a through-stack thermal conductivity of 1.68 W/m-K, and the contact resistance between laminations was measured to be 193 mm^2-K/W. The measured bulk thermal conductivity for the M19 29 gauge material is 21.0 W/m-K. Density and specific heat were measured to be 7450 kg/m^3 and 463 J/kg-K, respectively. These results are helping, and will continue to help engineers and researchers in the design and development of motors.« less

  3. Anisotropy in thermal conductivity of graphite flakes–SiC{sub p}/matrix composites: Implications in heat sinking design for thermal management applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina, J.M., E-mail: jmmj@ua.es; Departamento de Física Aplicada, Universidad de Alicante, Ap. 99, E-03080 Alicante; Departamento de Química Inorgánica, Universidad de Alicante, Ap. 99, | E-03080 Alicante

    2015-11-15

    Within the frame of heat dissipation for electronics, a very interesting family of anisotropic composite materials, fabricated by liquid infiltration of a matrix into preforms of oriented graphite flakes and SiC particles, has been recently proposed. Aiming to investigate the implications of the inherent anisotropy of these composites on their thermal conductivity, and hence on their potential applications, materials with matrices of Al–12 wt.% Si alloy and epoxy polymer have been fabricated. Samples have been cut at a variable angle with respect to the flakes plane and thermal conductivity has been measured by means of two standard techniques, namely, steadymore » state technique and laser flash method. Experimental results are presented and discussed in terms of current models, from which important technological implications for heat sinking design can be derived. - Highlights: • Anisotropy in thermal conductivity of graphite flakes-based composites is evaluated. • Samples are cut in a direction forming a variable angle with the oriented flakes. • For angles 0° and 90°, thermal conductivity does not depend on sample geometry. • For intermediate angles, thermal conductivity strongly depends on sample geometry. • “Thin” samples must be thicker than 600 μm, “thick” samples must be encapsulated.« less

  4. High Thermal Conductivity Polymer Matrix Composites (PMC) for Advanced Space Radiators

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Bowman, Cheryl; Beach, Duane

    2007-01-01

    High temperature polymer matrix composites (PMC) reinforced with high thermal conductivity (approx. 1000 W/mK) pitch-based carbon fibers are evaluated for a facesheet/fin structure of large space radiator systems. Significant weight reductions along with improved thermal performance, structural integrity and space durability toward its metallic counterparts were envisioned. Candidate commercial resin systems including Cyanate Esters, BMIs, and polyimide were selected based on thermal capabilities and processability. PMC laminates were designed to match the thermal expansion coefficient of various metal heat pipes or tubes. Large, but thin composite panels were successfully fabricated after optimizing cure conditions. Space durability of PMC with potential degradation mechanisms was assessed by simulated thermal aging tests in high vacuum, 1-3 x 10(exp -6) torr, at three temperatures, 227 C, 277 C, and 316 C for up to one year. Nanocomposites with vapor-grown carbon nano-fibers and exfoliated graphite flakes were attempted to improve thermal conductivity (TC) and microcracking resistance. Good quality nanocomposites were fabricated and evaluated for TC and durability including radiation resistance. TC was measured in both in-plan and thru-the-thickness directions, and the effects of microcracks on TC are also being evaluated. This paper will discuss the systematic experimental approaches, various performance-durability evaluations, and current subcomponent design and fabrication/manufacturing efforts.

  5. Thermally-induced voltage alteration for analysis of microelectromechanical devices

    DOEpatents

    Walraven, Jeremy A.; Cole, Jr., Edward I.

    2002-01-01

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing a microelectromechanical (MEM) device with or without on-board integrated circuitry. One embodiment of the TIVA apparatus uses constant-current biasing of the MEM device while scanning a focused laser beam over electrically-active members therein to produce localized heating which alters the power demand of the MEM device and thereby changes the voltage of the constant-current source. This changing voltage of the constant-current source can be measured and used in combination with the position of the focused and scanned laser beam to generate an image of any short-circuit defects in the MEM device (e.g. due to stiction or fabrication defects). In another embodiment of the TIVA apparatus, an image can be generated directly from a thermoelectric potential produced by localized laser heating at the location of any short-circuit defects in the MEM device, without any need for supplying power to the MEM device. The TIVA apparatus can be formed, in part, from a scanning optical microscope, and has applications for qualification testing or failure analysis of MEM devices.

  6. Electron acceleration in the Solar corona - 3D PiC code simulations of guide field reconnection

    NASA Astrophysics Data System (ADS)

    Alejandro Munoz Sepulveda, Patricio

    2017-04-01

    The efficient electron acceleration in the solar corona detected by means of hard X-ray emission is still not well understood. Magnetic reconnection through current sheets is one of the proposed production mechanisms of non-thermal electrons in solar flares. Previous works in this direction were based mostly on test particle calculations or 2D fully-kinetic PiC simulations. We have now studied the consequences of self-generated current-aligned instabilities on the electron acceleration mechanisms by 3D magnetic reconnection. For this sake, we carried out 3D Particle-in-Cell (PiC) code numerical simulations of force free reconnecting current sheets, appropriate for the description of the solar coronal plasmas. We find an efficient electron energization, evidenced by the formation of a non-thermal power-law tail with a hard spectral index smaller than -2 in the electron energy distribution function. We discuss and compare the influence of the parallel electric field versus the curvature and gradient drifts in the guiding-center approximation on the overall acceleration, and their dependence on different plasma parameters.

  7. OAST space power technology program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.

    1978-01-01

    The current research and technology (R and T) base program is first described, then special attention is directed toward outlining a new system technology specifically oriented toward providing the utility power plant technology base for semi-permanent earth orbital facilities expected to be needed in the middle to late 1980's. The R and T program involves five areas of research: (1) photovoltaic energy conversion; (2) chemical energy conversion and storage; (3) thermal-to-electric conversion; (4) environment interactions; and (5) power systems management and distribution. The general objectives and planned direction of efforts in each of these areas is summarized.

  8. Experimental investigation of a nanofluid absorber employed in a low-profile, concentrated solar thermal collector

    NASA Astrophysics Data System (ADS)

    Li, Qiyuan; Zheng, Cheng; Mesgari, Sara; Hewakuruppu, Yasitha L.; Hjerrild, Natasha; Crisostomo, Felipe; Morrison, Karl; Woffenden, Albert; Rosengarten, Gary; Scott, Jason A.; Taylor, Robert A.

    2015-12-01

    Recent studies [1-3] have demonstrated that nanotechnology, in the form of nanoparticles suspended in water and organic liquids, can be employed to enhance solar collection via direct volumetric absorbers. However, current nanofluid solar collector experimental studies are either relevant to low-temperature flat plate solar collectors (<100 °C) [4] or higher temperature (>100 °C) indoor laboratory-scale concentrating solar collectors [1, 5]. Moreover, many of these studies involve in thermal properties of nanofluid (such as thermal conductivity) enhancement in solar collectors by using conventional selective coated steel/copper tube receivers [6], and no full-scale concentrating collector has been tested at outdoor condition by employing nanofluid absorber [2, 6]. Thus, there is a need of experimental researches to evaluate the exact performance of full-scale concentrating solar collector by employing nanofluids absorber at outdoor condition. As reported previously [7-9], a low profile (<10 cm height) solar thermal concentrating collector was designed and analysed which can potentially supply thermal energy in the 100-250 °C range (an application currently met by gas and electricity). The present study focuses on the design and experimental investigation of a nanofluid absorber employed in this newly designed collector. The nanofluid absorber consists of glass tubes used to contain chemically functionalized multi-walled carbon nanotubes (MWCNTs) dispersed in DI water. MWCNTs (average diameter of 6-13 nm and average length of 2.5-20 μm) were functionalized by potassium persulfate as an oxidant. The nanofluids were prepared with a MCWNT concentration of 50 +/- 0.1 mg/L to form a balance between solar absorption depth and viscosity (e.g. pumping power). Moreover, experimentally comparison of the thermal efficiency between two receivers (a black chrome-coated copper tube versus a MWCNT nanofluid contained within a glass tubetube) is investigated. Thermal experimentation reveals that while the collector efficiency reduced from 73% to 54% when operating temperature increased from ambient to 80 °C by employing a MWCNT nanofluid receiver, the efficiency decreased from 85% to 68% with same operating temperature range by employing black chrome-coated copper tube receiver. This difference can mainly be explained by the reflection optical loss off and higher thermal emission heat loss the front surface of the glass tube, yielding a 90% of transmittance to the MWCNT fluid and a 0.9 emissivity of glass pipe. Overall, an experimental investigation of the performance of a low profile solar collector with a direct volumetric absorber and conventional surface absorber is presented. In order to bring nanotechnology into industrial and commercial heating applications,

  9. Stability of mixed time integration schemes for transient thermal analysis

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Lin, J. I.

    1982-01-01

    A current research topic in coupled-field problems is the development of effective transient algorithms that permit different time integration methods with different time steps to be used simultaneously in various regions of the problems. The implicit-explicit approach seems to be very successful in structural, fluid, and fluid-structure problems. This paper summarizes this research direction. A family of mixed time integration schemes, with the capabilities mentioned above, is also introduced for transient thermal analysis. A stability analysis and the computer implementation of this technique are also presented. In particular, it is shown that the mixed time implicit-explicit methods provide a natural framework for the further development of efficient, clean, modularized computer codes.

  10. Graphene devices based on laser scribing technology

    NASA Astrophysics Data System (ADS)

    Qiao, Yan-Cong; Wei, Yu-Hong; Pang, Yu; Li, Yu-Xing; Wang, Dan-Yang; Li, Yu-Tao; Deng, Ning-Qin; Wang, Xue-Feng; Zhang, Hai-Nan; Wang, Qian; Yang, Zhen; Tao, Lu-Qi; Tian, He; Yang, Yi; Ren, Tian-Ling

    2018-04-01

    Graphene with excellent electronic, thermal, optical, and mechanical properties has great potential applications. The current devices based on graphene grown by micromechanical exfoliation, chemical vapor deposition (CVD), and thermal decomposition of silicon carbide are still expensive and inefficient. Laser scribing technology, a low-cost and time-efficient method of fabricating graphene, is introduced in this review. The patterning of graphene can be directly performed on solid and flexible substrates. Therefore, many novel devices such as strain sensors, acoustic devices, memory devices based on laser scribing graphene are fabricated. The outlook and challenges of laser scribing technology have also been discussed. Laser scribing may be a potential way of fabricating wearable and integrated graphene systems in the future.

  11. Direct formation of InN-codoped p-ZnO/n-GaN heterojunction diode by solgel spin-coating scheme.

    PubMed

    Huang, Chun-Ying; Lee, Ya-Ju; Lin, Tai-Yuan; Chang, Shao-Lun; Lian, Jan-Tian; Lin, Hsiu-Mei; Chen, Nie-Chuan; Yang, Ying-Jay

    2014-02-15

    In this work p-ZnO/n-GaN heterojunction diodes were directly formed on the Si substrate by a combination of cost-effective solgel spin-coating and thermal annealing treatment. Spin-coated n-ZnO films on InN/GaN/Si wafers were converted to p-type polarity after thermal treatment of proper annealing durations. X-ray diffraction (XRD) analysis reveals that InN-codoped ZnO films have grown as the standard hexagonal wurtzite structure with a preferential orientation in the (002) direction. The intensity of the (002) peak decreases for a further extended annealing duration, indicating the greater incorporation of dopants, also confirmed by x-ray photoelectron spectroscopy and low-temperature photoluminescence. Hall and resistivity measurements validate that our p-type ZnO film has a high carrier concentration of 3.73×10¹⁷ cm⁻³, a high mobility of 210 cm²/Vs, and a low resistivity of 0.079 Ωcm. As a result, the proposed p-ZnO/n-GaN heterojunction diode displays a well-behaving current rectification of a typical p-n junction, and the measured current versus voltage (I-V) characteristic is hence well described by the modified Shockley equation. The research on the fabrication of p-ZnO/n-GaN heterojunctions shown here generates useful advances in the production of cost-effective ZnO-based optoelectronic devices.

  12. Simulations of thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model

    NASA Astrophysics Data System (ADS)

    Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg

    2017-11-01

    Operating a liquid-metal battery produces Ohmic losses in the electrolyte layer that separates both metal electrodes. As a consequence, temperature gradients establish which potentially cause thermal convection since density and interfacial tension depend on the local temperature. In our numerical investigations, we considered three plane, immiscible layers governed by the Navier-Stokes-Boussinesq equations held at a constant temperature of 500°C at the bottom and top. A homogeneous current is applied that leads to a preferential heating of the mid electrolyte layer. We chose a typical material combination of Li separated by LiCl-KCl (a molten salt) from Pb-Bi for which we analyzed the linear stability of pure thermal conduction and performed three-dimensional direct-numerical simulations by a pseudospectral method probing different: electrolyte layer heights, overall heights, and current densities. Four instability mechanisms are identified, which are partly coupled to each other: buoyant convection in the upper electrode, buoyant convection in the molten salt layer, and Marangoni convection at both interfaces between molten salt and electrode. The global turbulent heat transfer follows scaling predictions for internally heated buoyant convection. Financial support by the Deutsche Forschungsgemeinschaft under Grant No. KO 5515/1-1 is gratefully acknowledged.

  13. Impacts of climate warming on terrestrial ectotherms across latitude.

    PubMed

    Deutsch, Curtis A; Tewksbury, Joshua J; Huey, Raymond B; Sheldon, Kimberly S; Ghalambor, Cameron K; Haak, David C; Martin, Paul R

    2008-05-06

    The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest.

  14. Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge

    NASA Astrophysics Data System (ADS)

    Jin, Liu; Yongguang, Chen; Zhiliang, Tan; Jie, Yang; Xijun, Zhang; Zhenxing, Wang

    2011-10-01

    Electrostatic discharge (ESD) phenomena involve both electrical and thermal effects, and a direct electrostatic discharge to an electronic device is one of the most severe threats to component reliability. Therefore, the electrical and thermal stability of multifinger microwave bipolar transistors (BJTs) under ESD conditions has been investigated theoretically and experimentally. 100 samples have been tested for multiple pulses until a failure occurred. Meanwhile, the distributions of electric field, current density and lattice temperature have also been analyzed by use of the two-dimensional device simulation tool Medici. There is a good agreement between the simulated results and failure analysis. In the case of a thermal couple, the avalanche current distribution in the fingers is in general spatially unstable and results in the formation of current crowding effects and crystal defects. The experimental results indicate that a collector-base junction is more sensitive to ESD than an emitter-base junction based on the special device structure. When the ESD level increased to 1.3 kV, the collector-base junction has been burnt out first. The analysis has also demonstrated that ESD failures occur generally by upsetting the breakdown voltage of the dielectric or overheating of the aluminum-silicon eutectic. In addition, fatigue phenomena are observed during ESD testing, with devices that still function after repeated low-intensity ESDs but whose performances have been severely degraded.

  15. Manipulating the Flow of Thermal Noise in Quantum Devices

    NASA Astrophysics Data System (ADS)

    Barzanjeh, Shabir; Aquilina, Matteo; Xuereb, André

    2018-02-01

    There has been significant interest recently in using complex quantum systems to create effective nonreciprocal dynamics. Proposals have been put forward for the realization of artificial magnetic fields for photons and phonons; experimental progress is fast making these proposals a reality. Much work has concentrated on the use of such systems for controlling the flow of signals, e.g., to create isolators or directional amplifiers for optical signals. In this Letter, we build on this work but move in a different direction. We develop the theory of and discuss a potential realization for the controllable flow of thermal noise in quantum systems. We demonstrate theoretically that the unidirectional flow of thermal noise is possible within quantum cascaded systems. Viewing an optomechanical platform as a cascaded system we show here that one can ultimately control the direction of the flow of thermal noise. By appropriately engineering the mechanical resonator, which acts as an artificial reservoir, the flow of thermal noise can be constrained to a desired direction, yielding a thermal rectifier. The proposed quantum thermal noise rectifier could potentially be used to develop devices such as a thermal modulator, a thermal router, and a thermal amplifier for nanoelectronic devices and superconducting circuits.

  16. Manipulating the Flow of Thermal Noise in Quantum Devices.

    PubMed

    Barzanjeh, Shabir; Aquilina, Matteo; Xuereb, André

    2018-02-09

    There has been significant interest recently in using complex quantum systems to create effective nonreciprocal dynamics. Proposals have been put forward for the realization of artificial magnetic fields for photons and phonons; experimental progress is fast making these proposals a reality. Much work has concentrated on the use of such systems for controlling the flow of signals, e.g., to create isolators or directional amplifiers for optical signals. In this Letter, we build on this work but move in a different direction. We develop the theory of and discuss a potential realization for the controllable flow of thermal noise in quantum systems. We demonstrate theoretically that the unidirectional flow of thermal noise is possible within quantum cascaded systems. Viewing an optomechanical platform as a cascaded system we show here that one can ultimately control the direction of the flow of thermal noise. By appropriately engineering the mechanical resonator, which acts as an artificial reservoir, the flow of thermal noise can be constrained to a desired direction, yielding a thermal rectifier. The proposed quantum thermal noise rectifier could potentially be used to develop devices such as a thermal modulator, a thermal router, and a thermal amplifier for nanoelectronic devices and superconducting circuits.

  17. Synchronous infrared imaging methods to characterize thermal properties of materials

    NASA Astrophysics Data System (ADS)

    Ouyang, Zhong

    1999-11-01

    A fundamental thermal property of a material is its thermal conductivity. The current state-of-the art for measurement of thermal conductivity is inadequate, especially in the case of composite materials. This dissertation addresses the need for a rapid and accurate measurement of thermal conductivity that can provide values for three orthogonal directions in a single measurement. The theoretical approach is based on three-dimensional thermal wave propagation and scattering treatments that have been developed earlier at Wayne State University. The experimental approach makes use of a state-of-the-art focal-plane-array infrared camera, which is used to follow the time- and spatial-progression of the planar heat pulse on both surfaces of the slab. The method has been used to determine the thermal diffusivity of six pure elemental single crystal materials (Cu, Ti, Bi, Al, Ag, Pb). The results are in good agreement (better than 1%) with the diffusivities calculated from the handbook. The diffusivities of some alloys and unidirectional graphite-fiber-reinforced-polymer composite also are determined by this method. As a byproduct of one of the experimental approaches measuring the IR radiation from the heated surface, direct evidence is obtained for the presence of a thermal wave "echo". The theory and confirming measurements in this dissertation represent its first clear confirmation. A second experimental method which is studied in this dissertation, and which may be used to characterize thermal properties of materials, is that of lock-in thermal wave imaging. In this technique, pioneered earlier at Wayne State University, a periodic heat source is applied to the surface of the material, and synchronous, phase-sensitive detection of the IR radiation from that surface is used to determine the effects of thermal wave propagation to subsurface features, and the effects of reflected thermal waves from those features on the observed IR radiation from the surface. The rationale for re-visiting this technique is the availability of the focal-plane-array IR camera, with its "snapshot" capability, its high spatial resolution, and its high pixel rate. A lock-in imaging method is developed for use with this camera, which can be used at frequencies that considerably exceed the maximum frame rate, with illustrative applications to characterize the thermal properties of printed circuits and electronic packages.

  18. Technology Insertion for Recapitalization of Legacy Systems

    DTIC Science & Technology

    2017-09-28

    Inspection Two methods of thermal wave inspection were investigated. In one method, an electric current was run through the torsion bar to heat the...Material Properties and the Controlled Shot Peening of Turbine Blades ". Metal Behaviour and Surface Engineering, IIIT-lnternational I 989 18 Richard...the presence of a singularity, direct control of the mesh size was used to set the element dimensions over several runs of the analysis. The element

  19. Electrical power system WP-04

    NASA Astrophysics Data System (ADS)

    Nored, Donald L.

    Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.

  20. Electrical power system WP-04

    NASA Technical Reports Server (NTRS)

    Nored, Donald L.

    1990-01-01

    Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.

  1. The NASA Space Power Technology Program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Hudson, W. R.; Randolph, L. P.

    1979-01-01

    This paper discusses the National Aeronautics and Space Administration's (NASA) Space Power Technology Program which is aimed at providing the needed technology for NASA's future missions. The technology program is subdivided into five areas: (1) photovoltaic energy conversion; (2) chemical energy conversion and storage; (3) thermal to electric conversion; (4) power system management and distribution, and (5) advanced energetics. Recent accomplishments, current status, and future directions are presented for each area.

  2. YBCO microbolometer operating below Tc - A modelization based on critical current-temperature dependence

    NASA Astrophysics Data System (ADS)

    Robbes, D.; Langlois, P.; Dolabdjian, C.; Bloyet, D.; Hamet, J. F.; Murray, H.

    1993-03-01

    Using careful measurements of the I-V curve of a YBCO thin-film microbridge under light irradiation at 780 nm and temperature close to 77 K, it is shown that the critical current versus temperature dependence is a good thermometer for estimating bolometric effects in the film. A novel dynamic voltage bias is introduced which directly gives the device current responsitivity and greatly reduces risks of thermal runaway. Detectivity is very low but it is predicted that a noise equivalent temperature of less than 10 exp -7 K/sq rt Hz would be achievable in a wide temperature range (10-80 K), which is an improvement over thermometry at the resistive transition.

  3. Thermal transport in strongly correlated multilayered nanostructures

    NASA Astrophysics Data System (ADS)

    Freericks, James; Zlatic, Veljko

    2006-03-01

    The formalism for thermal transport in strongly correlated multilayered nanostructures is developed. We employ inhomogeneous dynamical mean-field theory and the Kubo formula to derive relevant thermal transport coefficients, which take the form of matrices with respect to the planar indices. We show how to define the local versions of the current and heat current operators so that heat-current correlation functions can be easily evaluated via the Jonson-Mahan theorem. Thermal transport in nanostructures is complicated by the fact that the thermal current need not be conserved through the device, and a given experimental set-up determines both how the thermal current can change through the device and how the steady-state temperature profile can be determined. Formulae to analyze classic experiments such as the Peltier and Seebeck effects, the thermal conductivity, and for running a thermoelectric cooler or power generator are also discussed.

  4. Writing and deleting single magnetic skyrmions.

    PubMed

    Romming, Niklas; Hanneken, Christian; Menzel, Matthias; Bickel, Jessica E; Wolter, Boris; von Bergmann, Kirsten; Kubetzka, André; Wiesendanger, Roland

    2013-08-09

    Topologically nontrivial spin textures have recently been investigated for spintronic applications. Here, we report on an ultrathin magnetic film in which individual skyrmions can be written and deleted in a controlled fashion with local spin-polarized currents from a scanning tunneling microscope. An external magnetic field is used to tune the energy landscape, and the temperature is adjusted to prevent thermally activated switching between topologically distinct states. Switching rate and direction can then be controlled by the parameters used for current injection. The creation and annihilation of individual magnetic skyrmions demonstrates the potential for topological charge in future information-storage concepts.

  5. Thermal ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism.

    PubMed

    Duan, Ya-Qi; Liang, Ping

    2013-05-01

    Many studies have been conducted on splenic thermal ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism. In this article, we review the evolution and current status of radiofrequency and microwave ablation in the treatment of spleen diseases. All publications from 1990 to 2011 on radiofrequency and microwave ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism were retrieved by searching PubMed. Thermal ablation in the spleen for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism can preserve part of the spleen and maintain splenic immunologic function. Thermal ablation for assisting hemostasis in partial splenectomy minimizes blood loss during operation. Thermal ablation for spleen trauma reduces the number of splenectomy and the amount of blood transfusion. Thermal ablation for splenic metastasis is minimally invasive and can be done under the guidance of an ultrasound, which helps shorten the recovery time. Thermal ablation for hypersplenism increases platelet (PLT) and white blood cell (WBC) counts and improves liver function. It also helps to maintain splenic immunologic function and even improves splenic immunologic function in the short-term. In conclusion, thermal ablative approaches are promising for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism. In order to improve therapeutic effects, directions for future studies may include standardized therapeutic indications, prolonged observation periods and enlarged sample sizes.

  6. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si

    NASA Astrophysics Data System (ADS)

    Sun, Yi; Zhou, Kun; Sun, Qian; Liu, Jianping; Feng, Meixin; Li, Zengcheng; Zhou, Yu; Zhang, Liqun; Li, Deyao; Zhang, Shuming; Ikeda, Masao; Liu, Sheng; Yang, Hui

    2016-09-01

    Silicon photonics would greatly benefit from efficient, visible on-chip light sources that are electrically driven at room temperature. To fully utilize the benefits of large-scale, low-cost manufacturing foundries, it is highly desirable to grow direct bandgap III-V semiconductor lasers directly on Si. Here, we report the demonstration of a blue-violet (413 nm) InGaN-based laser diode grown directly on Si that operates under continuous-wave current injection at room temperature, with a threshold current density of 4.7 kA cm-2. The heteroepitaxial growth of GaN on Si is confronted with a large mismatch in both the lattice constant and the coefficient of thermal expansion, often resulting in a high density of defects and even microcrack networks. By inserting an Al-composition step-graded AlN/AlGaN multilayer buffer between the Si and GaN, we have not only successfully eliminated crack formation, but also effectively reduced the dislocation density. The result is the realization of a blue-violet InGaN-based laser on Si.

  7. Solutions for the diurnally forced advection-diffusion equation to estimate bulk fluid velocity and diffusivity in streambeds from temperature time series

    NASA Astrophysics Data System (ADS)

    Luce, C.; Tonina, D.; Gariglio, F. P.; Applebee, R.

    2012-12-01

    Differences in the diurnal variations of temperature at different depths in streambed sediments are commonly used for estimating vertical fluxes of water in the streambed. We applied spatial and temporal rescaling of the advection-diffusion equation to derive two new relationships that greatly extend the kinds of information that can be derived from streambed temperature measurements. The first equation provides a direct estimate of the Peclet number from the amplitude decay and phase delay information. The analytical equation is explicit (e.g. no numerical root-finding is necessary), and invertable. The thermal front velocity can be estimated from the Peclet number when the thermal diffusivity is known. The second equation allows for an independent estimate of the thermal diffusivity directly from the amplitude decay and phase delay information. Several improvements are available with the new information. The first equation uses a ratio of the amplitude decay and phase delay information; thus Peclet number calculations are independent of depth. The explicit form also makes it somewhat faster and easier to calculate estimates from a large number of sensors or multiple positions along one sensor. Where current practice requires a priori estimation of streambed thermal diffusivity, the new approach allows an independent calculation, improving precision of estimates. Furthermore, when many measurements are made over space and time, expectations of the spatial correlation and temporal invariance of thermal diffusivity are valuable for validation of measurements. Finally, the closed-form explicit solution allows for direct calculation of propagation of uncertainties in error measurements and parameter estimates, providing insight about error expectations for sensors placed at different depths in different environments as a function of surface temperature variation amplitudes. The improvements are expected to increase the utility of temperature measurement methods for studying groundwater-surface water interactions across space and time scales. We discuss the theoretical implications of the new solutions supported by examples with data for illustration and validation.

  8. Stochastic processes in gravitropism.

    PubMed

    Meroz, Yasmine; Bastien, Renaud

    2014-01-01

    In this short review we focus on the role of noise in gravitropism of plants - the reorientation of plants according to the direction of gravity. We briefly introduce the conventional picture of static gravisensing in cells specialized in sensing. This model hinges on the sedimentation of statoliths (high in density and mass relative to other organelles) to the lowest part of the sensing cell. We then present experimental observations that cannot currently be understood within this framework. Lastly we introduce some current alternative models and directions that attempt to incorporate and interpret these experimental observations, including: (i) dynamic sensing, where gravisensing is suggested to be enhanced by stochastic events due to thermal and mechanical noise. These events both effectively lower the threshold of response, and lead to small-distance sedimentation, allowing amplification, and integration of the signal. (ii) The role of the cytoskeleton in signal-to-noise modulation and (iii) in signal transduction. In closing, we discuss directions that seem to either not have been explored, or that are still poorly understood.

  9. Directly measuring of thermal pulse transfer in one-dimensional highly aligned carbon nanotubes

    PubMed Central

    Zhang, Guang; Liu, Changhong; Fan, Shoushan

    2013-01-01

    Using a simple and precise instrument system, we directly measured the thermo-physical properties of one-dimensional highly aligned carbon nanotubes (CNTs). A kind of CNT-based macroscopic materials named super aligned carbon nanotube (SACNT) buckypapers was measured in our experiment. We defined a new one-dimensional parameter, the “thermal transfer speed” to characterize the thermal damping mechanisms in the SACNT buckypapers. Our results indicated that the SACNT buckypapers with different densities have obviously different thermal transfer speeds. Furthermore, we found that the thermal transfer speed of high-density SACNT buckypapers may have an obvious damping factor along the CNTs aligned direction. The anisotropic thermal diffusivities of SACNT buckypapers could be calculated by the thermal transfer speeds. The thermal diffusivities obviously increase as the buckypaper-density increases. For parallel SACNT buckypapers, the thermal diffusivity could be as high as 562.2 ± 55.4 mm2/s. The thermal conductivities of these SACNT buckypapers were also calculated by the equation k = Cpαρ. PMID:23989589

  10. Directly measuring of thermal pulse transfer in one-dimensional highly aligned carbon nanotubes.

    PubMed

    Zhang, Guang; Liu, Changhong; Fan, Shoushan

    2013-01-01

    Using a simple and precise instrument system, we directly measured the thermo-physical properties of one-dimensional highly aligned carbon nanotubes (CNTs). A kind of CNT-based macroscopic materials named super aligned carbon nanotube (SACNT) buckypapers was measured in our experiment. We defined a new one-dimensional parameter, the "thermal transfer speed" to characterize the thermal damping mechanisms in the SACNT buckypapers. Our results indicated that the SACNT buckypapers with different densities have obviously different thermal transfer speeds. Furthermore, we found that the thermal transfer speed of high-density SACNT buckypapers may have an obvious damping factor along the CNTs aligned direction. The anisotropic thermal diffusivities of SACNT buckypapers could be calculated by the thermal transfer speeds. The thermal diffusivities obviously increase as the buckypaper-density increases. For parallel SACNT buckypapers, the thermal diffusivity could be as high as 562.2 ± 55.4 mm(2)/s. The thermal conductivities of these SACNT buckypapers were also calculated by the equation k = Cpαρ.

  11. Vapor feed direct methanol fuel cells with passive thermal-fluids management system

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Faghri, Amir

    The present paper describes a novel technology that can be used to manage methanol and water in miniature direct methanol fuel cells (DMFCs) without the need for a complex micro-fluidics subsystem. At the core of this new technology is a unique passive fuel delivery system that allows for fuel delivery at an adjustable rate from a reservoir to the anode. Furthermore, the fuel cell is designed for both passive water management and effective carbon dioxide removal. The innovative thermal management mechanism is the key for effective operation of the fuel cell system. The vapor feed DMFC reached a power density of 16.5 mW cm -2 at current density of 60 mA cm -2. A series of fuel cell prototypes in the 0.5 W range have been successfully developed. The prototypes have demonstrated long-term stable operation, easy fuel delivery control and are scalable to larger power systems. A two-cell stack has successfully operated for 6 months with negligible degradation.

  12. Structural, optical, and improved field-emission properties of tetrapod-shaped Sn-doped ZnO nanostructures synthesized via thermal evaporation.

    PubMed

    Zhou, Xiongtu; Lin, Tihang; Liu, Yuhui; Wu, Chaoxing; Zeng, Xiangyao; Jiang, Dong; Zhang, Yong-ai; Guo, Tailiang

    2013-10-23

    High-quality tetrapod-shaped Sn-doped ZnO (T-SZO) nanostructures have been successfully synthesized via the thermal evaporation of mixed Zn and Sn powder. The effects of the Sn dopant on the morphology, microstructure, optical, and field-emission (FE) properties of T-SZO were investigated. It was found that the growth direction of the legs of T-SZO is parallel to the [0001] crystal c-axis direction and that the incorporation of Sn in the ZnO matrix increases the aspect ratio of the tetrapods, leads to blue shift in the UV region, and considerably improves the FE performance. The results also show that tetrapod cathodes with around a 0.84 atom % Sn dosage have the best FE properties, with a turn-on field of 1.95 V/μm, a current density of 950 μA/cm2 at a field of 4.5 V/μm, and a field-enhancement factor as high as 9556.

  13. Nanophotonic force microscopy: characterizing particle-surface interactions using near-field photonics.

    PubMed

    Schein, Perry; Kang, Pilgyu; O'Dell, Dakota; Erickson, David

    2015-02-11

    Direct measurements of particle-surface interactions are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions. Current techniques are limited in their ability to measure pico-Newton scale interaction forces on submicrometer particles due to signal detection limits and thermal noise. Here we present a new technique for making measurements in this regime, which we refer to as nanophotonic force microscopy. Using a photonic crystal resonator, we generate a strongly localized region of exponentially decaying, near-field light that allows us to confine small particles close to a surface. From the statistical distribution of the light intensity scattered by the particle we are able to map out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. As shown in this Letter, our technique is not limited by thermal noise, and therefore, we are able to resolve interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.

  14. Numerical Assessment of the Diagnostic Capabilities of the Instrumented Calorimeter for SPIDER (STRIKE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalla Palma, M.; Pasqualotto, R.; Rizzolo, A.

    An important feature of the ITER project is represented by additional heating via injection of neutral beams from accelerated negative ions. To study and optimise their production, the SPIDER test facility is under construction in Padova, with the aim of testing beam characteristics and to verify the source proper operation.STRIKE (Short-Time Retractable Instrumented Kalorimeter Experiment) is a diagnostic to characterise the SPIDER negative ion beam during short operation (several seconds). During long pulse operations, STRIKE is parked off-beam in the vacuum vessel. The most important measurements are beam uniformity, beamlet divergence and stripping losses. STRIKE is directly exposed to themore » beam and is formed of 16 tiles, one for each beamlet groups. The measurements are provided by thermal cameras, current sensors, thermocouples and electrostatic sensors. This paper presents the investigation of the influence on the response of STRIKE of: thermal characteristics of the tile material, exposure angle, features of some dedicated diagnostics. The uniformity of the beam will be studied by measurements of the current flowing through each tile and by thermal cameras. Simulations show that it will be possible to verify experimentally whether the beam meets the ITER requirement about the maximum allowed beam non-uniformity (below {+-}10%). In the simulations also the influence of the beam halo has been included; the effect of off-perveance conditions has been studied. To estimate the beamlet divergence, STRIKE can be moved along the beam direction at two different distances from the accelerator. The optimal positions have been defined taking into account design constraints. The effect of stripping on the comparison between currents and heat loads has been assessed; this will allow to obtain an experimental estimate of stripping. Electrostatic simulations have provided the suitable tile biasing voltage in order to reabsorb secondary particles into the same tile as the one where they were emitted from.« less

  15. Development of Solid State Thermal Sensors for Aeroshell TPS Flight Applications

    NASA Technical Reports Server (NTRS)

    Martinez, Ed; Oishi, Tomo; Gorbonov, Sergey

    2005-01-01

    In-situ Thermal Protection System (TPS) sensors are required to provide verification by traceability of TPS performance and sizing tools. Traceability will lead to higher fidelity design tools, which in turn will lead to lower design safety margins, and decreased heatshield mass. Decreasing TPS mass will enable certain missions that are not otherwise feasible, and directly increase science payload. NASA Ames is currently developing two flight measurements as essential to advancing the state of TPS traceability for material modeling and aerothermal simulation: heat flux and surface recession (for ablators). The heat flux gage is applicable to both ablators and non-ablators and is therefore the more generalized sensor concept of the two with wider applicability to mission scenarios. This paper describes the continuing development of a thermal microsensor capable of surface and in-depth temperature and heat flux measurements for TPS materials appropriate to Titan, Neptune, and Mars aerocapture, and direct entry. The thermal sensor is a monolithic solid state device composed of thick film platinum RTD on an alumina substrate. Choice of materials and critical dimensions are used to tailor gage response, determined during calibration activities, to specific (forebody vs. aftbody) heating environments. Current design has maximum operating temperature of 1500K, and allowable constant heat flux of q=28.7 W/cm(sup 2), and time constants between 0.05 and 0.2 seconds. The catalytic and radiative response of these heat flux gages can also be changed through the use of appropriate coatings. By using several co-located gages with various surface coatings, data can be obtained to isolate surface heat flux components due to radiation, catalycity and convection. Selectivity to radiative heat flux is a useful feature even for an in-depth gage, as radiative transport may be a significant heat transport mechanism for porous TPS materials in Titan aerocapture.

  16. Investigation on quench initiation and propagation characteristics of GdBCO coil co-wound with a stainless steel tape as turn-to-turn metallic insulation.

    PubMed

    Kim, Y G; Song, J B; Choi, Y H; Yang, D G; Kim, S G; Lee, H G

    2016-11-01

    This paper investigates the quench initiation and propagation characteristics of a metallic insulation (MI) coil by conducting thermal quench tests for a GdBCO single-pancake coil co-wound with a stainless steel tape as the turn-to-turn MI. The test results confirmed that the MI coil exhibited superior thermal and electrical stabilities compared to the conventional coils co-wound with organic insulation material because the operating current could flow along the radial direction due to the existence of a turn-to-turn contact when a local hot spot was generated. The results of the quench test at a heater current (I h ) of 12, 13, and 14 A indicate that the MI coil possesses a self-protecting characteristic resulting from the "current bypass" through the turn-to-turn contact. However, the test coil was not self-protecting at I h = 15 A because the Joule heat energy generated by the radial current flow was not completely dissipated due to the characteristic resistance of the metallic insulation tape and the non-superconducting materials, including the substrate, stabilizer, and buffer layers within the high-temperature superconductor (HTS) tape. Even though the MI coil possesses superior thermal and electrical stability relative to those of conventional HTS coils co-wound with an organic material as turn-to-turn insulation, it is essential to consider the critical role of the Joule heat energy resulting from the operating current and stored magnetic energy as well as the characteristic resistances in order to further develop self-protective 2G HTS magnets.

  17. Climate change, extinction risks, and reproduction of terrestrial vertebrates.

    PubMed

    Carey, Cynthia

    2014-01-01

    This review includes a broad, but superficial, summary of our understanding about current and future climate changes, the predictions about how these changes will likely affect the risks of extinction of organisms, and how current climate changes are already affecting reproduction in terrestrial vertebrates. Many organisms have become extinct in the last century, but habitat destruction, disease and man-made factors other than climate change have been implicated as the causal factor in almost all of these. Reproduction is certain to be negatively impacted in all vertebrate groups for a variety of reasons, such as direct thermal and hydric effects on mortality of embryos, mismatches between optimal availability of food supplies, frequently determined by temperature, and reproductive capacities, sometimes determined by rigid factors such as photoperiod, and disappearance of appropriate foraging opportunities, such as melting sea ice. The numbers of studies documenting correlations between climate changes and biological phenomena are rapidly increasing, but more direct information about the consequences of these changes for species survival and ecosystem health is needed than is currently available.

  18. Reduction of conductance mismatch in Fe/Al2O3/MoS2 system by tunneling-barrier thickness control

    NASA Astrophysics Data System (ADS)

    Hayakawa, Naoki; Muneta, Iriya; Ohashi, Takumi; Matsuura, Kentaro; Shimizu, Jun’ichi; Kakushima, Kuniyuki; Tsutsui, Kazuo; Wakabayashi, Hitoshi

    2018-04-01

    Molybdenum disulfide (MoS2) among two-dimensional semiconductor films is promising for spintronic devices because it has a longer spin-relaxation time with contrasting spin splitting than silicon. However, it is difficult to fabricate integrated circuits by the widely used exfoliation method. Here, we investigate the contact characteristics in the Fe/Al2O3/sputtered-MoS2 system with various thicknesses of the Al2O3 film. Current density increases with increasing thickness up to 2.5 nm because of both thermally-assisted and direct tunneling currents. On the other hand, it decreases with increasing thickness over 2.5 nm limited by direct tunneling currents. These results suggest that the Schottky barrier width can be controlled by changing thicknesses of the Al2O3 film, as supported by calculations. The reduction of conductance mismatch with this technique can lead to highly efficient spin injection from iron into the MoS2 film.

  19. 26th Space Simulation Conference Proceedings. Environmental Testing: The Path Forward

    NASA Technical Reports Server (NTRS)

    Packard, Edward A.

    2010-01-01

    Topics covered include: A Multifunctional Space Environment Simulation Facility for Accelerated Spacecraft Materials Testing; Exposure of Spacecraft Surface Coatings in a Simulated GEO Radiation Environment; Gravity-Offloading System for Large-Displacement Ground Testing of Spacecraft Mechanisms; Microscopic Shutters Controlled by cRIO in Sounding Rocket; Application of a Physics-Based Stabilization Criterion to Flight System Thermal Testing; Upgrade of a Thermal Vacuum Chamber for 20 Kelvin Operations; A New Approach to Improve the Uniformity of Solar Simulator; A Perfect Space Simulation Storm; A Planetary Environmental Simulator/Test Facility; Collimation Mirror Segment Refurbishment inside ESA s Large Space; Space Simulation of the CBERS 3 and 4 Satellite Thermal Model in the New Brazilian 6x8m Thermal Vacuum Chamber; The Certification of Environmental Chambers for Testing Flight Hardware; Space Systems Environmental Test Facility Database (SSETFD), Website Development Status; Wallops Flight Facility: Current and Future Test Capabilities for Suborbital and Orbital Projects; Force Limited Vibration Testing of JWST NIRSpec Instrument Using Strain Gages; Investigation of Acoustic Field Uniformity in Direct Field Acoustic Testing; Recent Developments in Direct Field Acoustic Testing; Assembly, Integration and Test Centre in Malaysia: Integration between Building Construction Works and Equipment Installation; Complex Ground Support Equipment for Satellite Thermal Vacuum Test; Effect of Charging Electron Exposure on 1064nm Transmission through Bare Sapphire Optics and SiO2 over HfO2 AR-Coated Sapphire Optics; Environmental Testing Activities and Capabilities for Turkish Space Industry; Integrated Circuit Reliability Simulation in Space Environments; Micrometeoroid Impacts and Optical Scatter in Space Environment; Overcoming Unintended Consequences of Ambient Pressure Thermal Cycling Environmental Tests; Performance and Functionality Improvements to Next Generation Thermal Vacuum Control System; Robotic Lunar Lander Development Project: Three-Dimensional Dynamic Stability Testing and Analysis; Thermal Physical Properties of Thermal Coatings for Spacecraft in Wide Range of Environmental Conditions: Experimental and Theoretical Study; Molecular Contamination Generated in Thermal Vacuum Chambers; Preventing Cross Contamination of Hardware in Thermal Vacuum Chambers; Towards Validation of Particulate Transport Code; Updated Trends in Materials' Outgassing Technology; Electrical Power and Data Acquisition Setup for the CBER 3 and 4 Satellite TBT; Method of Obtaining High Resolution Intrinsic Wire Boom Damping Parameters for Multi-Body Dynamics Simulations; and Thermal Vacuum Testing with Scalable Software Developed In-House.

  20. Nano-engineered Multiwall Carbon Nanotube-copper Composite Thermal Interface Material for Efficient Heat Conduction

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Sims, Gerard; Li, Jun; Meyyappa, M.; Yang, Cary Y.

    2005-01-01

    Efforts in integrated circuit (IC) packaging technologies have recently been focused on management of increasing heat density associated with high frequency and high density circuit designs. While current flip-chip package designs can accommodate relatively high amounts of heat density, new materials need to be developed to manage thermal effects of next-generation integrated circuits. Multiwall carbon nanotubes (MWNT) have been shown to significantly enhance thermal conduction in the axial direction and thus can be considered to be a candidate for future thermal interface materials by facilitating efficient thermal transport. This work focuses on fabrication and characterization of a robust MWNT-copper composite material as an element in IC package designs. We show that using vertically aligned MWNT arrays reduces interfacial thermal resistance by increasing conduction surface area, and furthermore, the embedded copper acts as a lateral heat spreader to efficiently disperse heat, a necessary function for packaging materials. In addition, we demonstrate reusability of the material, and the absence of residue on the contacting material, both novel features of the MWNT-copper composite that are not found in most state-of-the-art thermal interface materials. Electrochemical methods such as metal deposition and etch are discussed for the creation of the MWNT-Cu composite, detailing issues and observations with using such methods. We show that precise engineering of the composite surface affects the ability of this material to act as an efficient thermal interface material. A thermal contact resistance measurement has been designed to obtain a value of thermal contact resistance for a variety of different thermal contact materials.

  1. Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers

    NASA Astrophysics Data System (ADS)

    Takeda, Koji; Sato, Tomonari; Shinya, Akihiko; Nozaki, Kengo; Kobayashi, Wataru; Taniyama, Hideaki; Notomi, Masaya; Hasebe, Koichi; Kakitsuka, Takaaki; Matsuo, Shinji

    2013-07-01

    A low operating energy is needed for nanocavity lasers designed for on-chip photonic network applications. On-chip nanocavity lasers must be driven by current because they act as light sources driven by electronic circuits. Here, we report the high-speed direct modulation of a lambda-scale embedded active region photonic-crystal (LEAP) laser that holds three records for any type of laser operated at room temperature: a low threshold current of 4.8 µA, a modulation current efficiency of 2.0 GHz µA-0.5 and an operating energy of 4.4 fJ bit-1. Five major technologies make this performance possible: a compact buried heterostructure, a photonic-crystal nanocavity, a lateral p-n junction realized by ion implantation and thermal diffusion, an InAlAs sacrificial layer and current-blocking trenches. We believe that an output power of 2.17 µW and an operating energy of 4.4 fJ bit-1 will enable us to realize on-chip photonic networks in combination with the recently developed highly sensitive receivers.

  2. Temporal and Spatial Variability of the Ras Al-Hadd Jet/Front in the Northwest Arabian Sea

    NASA Astrophysics Data System (ADS)

    Al Shaqsi, Hilal Mohamed Said

    Thirteen years of 1.1 km resolution daily satellites remote sensing sea surface temperature datasets (2002-2014), sea surface winds, sea surface height, Argo floats, daily three-hour interval wind datasets, and hourly records of oceanography physical parameters from mooring current meters were processed and analyzed to investigate the dynamics, temporal and spatial variability of the Ras Al-Hadd Jet off the northwest Arabian Sea. Cayula and Cornillon single image edge detection algorithm was used to detect these thermal fronts. The Ras Al-Hadd thermal front was found to have two seasonal peaks. The first peak occurred during the intensified southwest monsoon period (July/August), while the second peak was clearly observed during the transitional period or the Post-Southwest monsoon (September-October). Interannual and intraseasonal variability showed the occurrence of the Ras Al-Hadd thermal fronts in the northwest Arabian Sea. The southwest monsoon winds, the Somalia Current, the East Arabian Current, and the warmer high salinity waters from the Sea of Oman are the main factors influencing the creation of the Ras Al-Hadd Jet. Based on direct observations, current velocity in the Cape Ras Al-Hadd Jet exceeded 120 cms-1, and the wind speed was over 12 ms-1 during the southwest monsoon seasons. The mean width and the mean length of the Jet were approximately 40 km and 260 km, respectively. Neither the winter monsoon, nor the Pre-Southwest monsoon seasons showed signs of the Ras Al-Hadd Jet or fronts in the northwest Arabian Sea.

  3. Superconducting-magnetic heterostructures: a method of decreasing AC losses and improving critical current density in multifilamentary conductors

    NASA Astrophysics Data System (ADS)

    Glowacki, B. A.; Majoros, M.

    2009-06-01

    Magnetic materials can help to improve the performance of practical superconductors on the macroscale/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces AC losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa2Cu3O7 and (Pb,Bi)2Sr2Ca2Cu3O9 conductors, and buffer layers have to be used. In contrast, in MgB2 conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On one hand, magnetic materials reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties.

  4. Orientations of dendritic growth during solidification

    NASA Astrophysics Data System (ADS)

    Lee, Dong Nyung

    2017-03-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  5. The Tethered Balloon Current Generator - A space shuttle-tethered subsatellite for plasma studies and power generation

    NASA Technical Reports Server (NTRS)

    Williamson, P. R.; Banks, P. M.

    1976-01-01

    The objectives of the Tethered Balloon Current Generator experiment are to: (1) generate relatively large regions of thermalized, field-aligned currents, (2) produce controlled-amplitude Alfven waves, (3) study current-driven electrostatic plasma instabilities, and (4) generate substantial amounts of power or propulsion through the MHD interaction. A large balloon (a diameter of about 30 m) will be deployed with a conducting surface above the space shuttle at a distance of about 10 km. For a generally eastward directed orbit at an altitude near 400 km, the balloon, connected to the shuttle by a conducting wire, will be positive with respect to the shuttle, enabling it to collect electrons. At the same time, the shuttle will collect positive ions and, upon command, emit an electron beam to vary current flow in the system.

  6. Concentrating Solar Power Projects - Archimede | Concentrating Solar Power

    Science.gov Websites

    as the heat-transfer fluid. A 2-tank direct system will provide 8 hours of thermal storage. Status % Thermal Storage Storage Type: 2-tank direct Storage Capacity: 8 hour(s) Thermal Storage Description: Total of 1,580 tons of molten salt. 60% sodium nitrate, 40% potassium nitrate. Capacity 100 MWh (thermal

  7. Role of thermal heating on the voltage induced insulator-metal transition in VO2.

    PubMed

    Zimmers, A; Aigouy, L; Mortier, M; Sharoni, A; Wang, Siming; West, K G; Ramirez, J G; Schuller, Ivan K

    2013-02-01

    We show that the main mechanism for the dc voltage or dc current induced insulator-metal transition in vanadium dioxide VO(2) is due to local Joule heating and not a purely electronic effect. This "tour de force" experiment was accomplished by using the fluorescence spectra of rare-earth doped micron sized particles as local temperature sensors. As the insulator-metal transition is induced by a dc voltage or dc current, the local temperature reaches the transition temperature indicating that Joule heating plays a predominant role. This has critical implications for the understanding of the dc voltage or dc current induced insulator-metal transition and has a direct impact on applications which use dc voltage or dc current to externally drive the transition.

  8. Remote Joule heating by a carbon nanotube.

    PubMed

    Baloch, Kamal H; Voskanian, Norvik; Bronsgeest, Merijntje; Cumings, John

    2012-04-08

    Minimizing Joule heating remains an important goal in the design of electronic devices. The prevailing model of Joule heating relies on a simple semiclassical picture in which electrons collide with the atoms of a conductor, generating heat locally and only in regions of non-zero current density, and this model has been supported by most experiments. Recently, however, it has been predicted that electric currents in graphene and carbon nanotubes can couple to the vibrational modes of a neighbouring material, heating it remotely. Here, we use in situ electron thermal microscopy to detect the remote Joule heating of a silicon nitride substrate by a single multiwalled carbon nanotube. At least 84% of the electrical power supplied to the nanotube is dissipated directly into the substrate, rather than in the nanotube itself. Although it has different physical origins, this phenomenon is reminiscent of induction heating or microwave dielectric heating. Such an ability to dissipate waste energy remotely could lead to improved thermal management in electronic devices.

  9. Remote Joule heating by a carbon nanotube

    NASA Astrophysics Data System (ADS)

    Baloch, Kamal H.; Voskanian, Norvik; Bronsgeest, Merijntje; Cumings, John

    2012-05-01

    Minimizing Joule heating remains an important goal in the design of electronic devices. The prevailing model of Joule heating relies on a simple semiclassical picture in which electrons collide with the atoms of a conductor, generating heat locally and only in regions of non-zero current density, and this model has been supported by most experiments. Recently, however, it has been predicted that electric currents in graphene and carbon nanotubes can couple to the vibrational modes of a neighbouring material, heating it remotely. Here, we use in situ electron thermal microscopy to detect the remote Joule heating of a silicon nitride substrate by a single multiwalled carbon nanotube. At least 84% of the electrical power supplied to the nanotube is dissipated directly into the substrate, rather than in the nanotube itself. Although it has different physical origins, this phenomenon is reminiscent of induction heating or microwave dielectric heating. Such an ability to dissipate waste energy remotely could lead to improved thermal management in electronic devices.

  10. Isothermal life prediction of composite lamina using a damage mechanics approach

    NASA Technical Reports Server (NTRS)

    Abuelfoutouh, Nader M.; Verrilli, Michael J.; Halford, Gary R.

    1989-01-01

    A method for predicting isothermal plastic fatigue life of a composite lamina is presented in which both fibers and matrix are isotropic materials. In general, the fatigue resistances of the matrix, fibers, and interfacial material must be known in order to predict composite fatigue life. Composite fatigue life is predicted using only the matrix fatigue resistance due to inelasticity micromechanisms. The effect of the fiber orientation on loading direction is accounted for while predicting composite life. The application is currently limited to isothermal cases where the internal thermal stresses that might arise from thermal strain mismatch between fibers and matrix are negligible. The theory is formulated to predict the fatigue life of a composite lamina under either load or strain control. It is applied currently to predict the life of tungsten-copper composite lamina at 260 C under tension-tension load control. The calculated life of the lamina is in good agreement with available composite low cycle fatigue data.

  11. Surge current and electron swarm tunnel tests of thermal blanket and ground strap materials

    NASA Technical Reports Server (NTRS)

    Hoffmaster, D. K.; Inouye, G. T.; Sellen, J. M., Jr.

    1977-01-01

    The results are described of a series of current conduction tests with a thermal control blanket to which grounding straps have been attached. The material and the ground strap attachment procedure are described. The current conduction tests consisted of a surge current examination of the ground strap and a dilute flow, energetic electron deposition and transport through the bulk of the insulating film of this thermal blanket material. Both of these test procedures were used previously with thermal control blanket materials.

  12. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine

    PubMed Central

    Kim, Tae-Hee; Choi, Sooseok; Park, Dong-Wha

    2016-01-01

    Gallium nitride (GaN) nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC) non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO3)3∙xH2O) was used as a raw material and NH3 gas was used as a nitridation source. Additionally, melamine (C3H6N6) powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga2O3). Argon thermal plasma was applied to synthesize GaN nanopowder. The synthesized GaN nanopowder by thermal plasma has low crystallinity and purity. It was improved to relatively high crystallinity and purity by annealing. The crystallinity is enhanced by the thermal treatment and the purity was increased by the elimination of residual C3H6N6. The combined process of thermal plasma and annealing was appropriate for synthesizing crystalline GaN nanopowder. The annealing process after the plasma synthesis of GaN nanopowder eliminated residual contamination and enhanced the crystallinity of GaN nanopowder. As a result, crystalline GaN nanopowder which has an average particle size of 30 nm was synthesized by the combination of thermal plasma treatment and annealing. PMID:28344295

  13. A System for Measurement of Convection Aboard Space Station

    NASA Technical Reports Server (NTRS)

    Bogatyrev, Gennady P.; Gorbunov, Aleksei V; Putin, Gennady F.; Ivanov, Alexander I.; Nikitin, Sergei A.; Polezhaev, Vadim I.

    1996-01-01

    A simple device for direct measurement of buoyancy driven fluid flows in a low-gravity environment is proposed. A system connecting spacecraft accelerometers data and results of thermal convection in enclosure measurements and numerical simulations is developed. This system will permit also to evaluate the low frequency microacceleration component. The goal of the paper is to present objectives and current results of ground-based experimental and numerical modeling of this convection detector.

  14. Thermotronics: Towards Nanocircuits to Manage Radiative Heat Flux

    NASA Astrophysics Data System (ADS)

    Ben-Abdallah, Philippe; Biehs, Svend-Age

    2017-02-01

    The control of electric currents in solids is at the origin of the modern electronics revolution that has driven our daily life since the second half of 20th century. Surprisingly, to date, there is no thermal analogue for a control of heat flux. Here, we summarise the very last developments carried out in this direction to control heat exchanges by radiation both in near and far-field in complex architecture networks.

  15. Thermionic emission and tunneling at carbon nanotube-organic semiconductor interface.

    PubMed

    Sarker, Biddut K; Khondaker, Saiful I

    2012-06-26

    We study the charge carrier injection mechanism across the carbon nanotube (CNT)-organic semiconductor interface using a densely aligned carbon nanotube array as electrode and pentacene as organic semiconductor. The current density-voltage (J-V) characteristics measured at different temperatures show a transition from a thermal emission mechanism at high temperature (above 200 K) to a tunneling mechanism at low temperature (below 200 K). A barrier height of ∼0.16 eV is calculated from the thermal emission regime, which is much lower compared to the metal/pentacene devices. At low temperatures, the J-V curves exhibit a direct tunneling mechanism at low bias, corresponding to a trapezoidal barrier, while at high bias the mechanism is well described by Fowler-Nordheim tunneling, which corresponds to a triangular barrier. A transition from direct tunneling to Fowler-Nordheim tunneling further signifies a small injection barrier at the CNT/pentacene interface. Our results presented here are the first direct experimental evidence of low charge carrier injection barrier between CNT electrodes and an organic semiconductor and are a significant step forward in realizing the overall goal of using CNT electrodes in organic electronics.

  16. Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment

    PubMed Central

    Yang, Chuan; Xu, Wenchen; Guo, Bin; Shan, Debin; Zhang, Jian

    2016-01-01

    In order to investigate the methods to heal fatigue cracks in metals, tubular specimens of 1045 steel with axial and radial fatigue cracks were treated under the eddy current. The optical microscope was employed to examine the change of fatigue cracks of specimens before and after the eddy current treatment. The results show that the fatigue cracks along the axial direction of the specimen could be healed effectively in the fatigue crack initiation zone and the crack tip zone under the eddy current treatment, and the healing could occur within a very short time. The voltage breakdown and the transient thermal compressive stress caused by the detouring of eddy current around the fatigue crack were the main factors contributing to the healing in the fatigue crack initiation zone and the crack tip zone, respectively. Eddy current treatment may be a novel and effective method for crack healing. PMID:28773761

  17. Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment.

    PubMed

    Yang, Chuan; Xu, Wenchen; Guo, Bin; Shan, Debin; Zhang, Jian

    2016-07-29

    In order to investigate the methods to heal fatigue cracks in metals, tubular specimens of 1045 steel with axial and radial fatigue cracks were treated under the eddy current. The optical microscope was employed to examine the change of fatigue cracks of specimens before and after the eddy current treatment. The results show that the fatigue cracks along the axial direction of the specimen could be healed effectively in the fatigue crack initiation zone and the crack tip zone under the eddy current treatment, and the healing could occur within a very short time. The voltage breakdown and the transient thermal compressive stress caused by the detouring of eddy current around the fatigue crack were the main factors contributing to the healing in the fatigue crack initiation zone and the crack tip zone, respectively. Eddy current treatment may be a novel and effective method for crack healing.

  18. Compact, Lightweight Electromagnetic Pump for Liquid Metal

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Palzin, Kurt

    2010-01-01

    A proposed direct-current electromagnetic pump for circulating a molten alkali metal alloy would be smaller and lighter and would demand less input power, relative to currently available pumps of this type. (Molten alkali metals are used as heat-transfer fluids in high-temperature stages of some nuclear reactors.) The principle of operation of this or any such pump involves exploitation of the electrical conductivity of the molten metal: An electric current is made to pass through the liquid metal along an axis perpendicular to the longitudinal axis of the flow channel, and a magnetic field perpendicular to both the longitudinal axis and the electric current is superimposed on the flowchannel region containing the electric current. The interaction between the electric current and the magnetic field produces the pumping force along the longitudinal axis. The advantages of the proposed pump over other such pumps would accrue from design features that address overlapping thermal and magnetic issues.

  19. Swap intensified WDR CMOS module for I2/LWIR fusion

    NASA Astrophysics Data System (ADS)

    Ni, Yang; Noguier, Vincent

    2015-05-01

    The combination of high resolution visible-near-infrared low light sensor and moderate resolution uncooled thermal sensor provides an efficient way for multi-task night vision. Tremendous progress has been made on uncooled thermal sensors (a-Si, VOx, etc.). It's possible to make a miniature uncooled thermal camera module in a tiny 1cm3 cube with <1W power consumption. For silicon based solid-state low light CCD/CMOS sensors have observed also a constant progress in terms of readout noise, dark current, resolution and frame rate. In contrast to thermal sensing which is intrinsic day&night operational, the silicon based solid-state sensors are not yet capable to do the night vision performance required by defense and critical surveillance applications. Readout noise, dark current are 2 major obstacles. The low dynamic range at high sensitivity mode of silicon sensors is also an important limiting factor, which leads to recognition failure due to local or global saturations & blooming. In this context, the image intensifier based solution is still attractive for the following reasons: 1) high gain and ultra-low dark current; 2) wide dynamic range and 3) ultra-low power consumption. With high electron gain and ultra low dark current of image intensifier, the only requirement on the silicon image pickup device are resolution, dynamic range and power consumption. In this paper, we present a SWAP intensified Wide Dynamic Range CMOS module for night vision applications, especially for I2/LWIR fusion. This module is based on a dedicated CMOS image sensor using solar-cell mode photodiode logarithmic pixel design which covers a huge dynamic range (> 140dB) without saturation and blooming. The ultra-wide dynamic range image from this new generation logarithmic sensor can be used directly without any image processing and provide an instant light accommodation. The complete module is slightly bigger than a simple ANVIS format I2 tube with <500mW power consumption.

  20. Thermal feature extraction of servers in a datacenter using thermal image registration

    NASA Astrophysics Data System (ADS)

    Liu, Hang; Ran, Jian; Xie, Ting; Gao, Shan

    2017-09-01

    Thermal cameras provide fine-grained thermal information that enhances monitoring and enables automatic thermal management in large datacenters. Recent approaches employing mobile robots or thermal camera networks can already identify the physical locations of hot spots. Other distribution information used to optimize datacenter management can also be obtained automatically using pattern recognition technology. However, most of the features extracted from thermal images, such as shape and gradient, may be affected by changes in the position and direction of the thermal camera. This paper presents a method for extracting the thermal features of a hot spot or a server in a container datacenter. First, thermal and visual images are registered based on textural characteristics extracted from images acquired in datacenters. Then, the thermal distribution of each server is standardized. The features of a hot spot or server extracted from the standard distribution can reduce the impact of camera position and direction. The results of experiments show that image registration is efficient for aligning the corresponding visual and thermal images in the datacenter, and the standardization procedure reduces the impacts of camera position and direction on hot spot or server features.

  1. A review on battery thermal management in electric vehicle application

    NASA Astrophysics Data System (ADS)

    Xia, Guodong; Cao, Lei; Bi, Guanglong

    2017-11-01

    The global issues of energy crisis and air pollution have offered a great opportunity to develop electric vehicles. However, so far, cycle life of power battery, environment adaptability, driving range and charging time seems far to compare with the level of traditional vehicles with internal combustion engine. Effective battery thermal management (BTM) is absolutely essential to relieve this situation. This paper reviews the existing literature from two levels that are cell level and battery module level. For single battery, specific attention is paid to three important processes which are heat generation, heat transport, and heat dissipation. For large format cell, multi-scale multi-dimensional coupled models have been developed. This will facilitate the investigation on factors, such as local irreversible heat generation, thermal resistance, current distribution, etc., that account for intrinsic temperature gradients existing in cell. For battery module based on air and liquid cooling, series, series-parallel and parallel cooling configurations are discussed. Liquid cooling strategies, especially direct liquid cooling strategies, are reviewed and they may advance the battery thermal management system to a new generation.

  2. Analysis of Percent On-Cell Reformation of Methane in SOFC Stacks: Thermal, Electrical and Stress Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recknagle, Kurtis P.; Yokuda, Satoru T.; Jarboe, Daniel T.

    2006-04-07

    This report summarizes a parametric analysis performed to determine the effect of varying the percent on-cell reformation (OCR) of methane on the thermal and electrical performance for a generic, planar solid oxide fuel cell (SOFC) stack design. OCR of methane can be beneficial to an SOFC stack because the reaction (steam-methane reformation) is endothermic and can remove excess heat generated by the electrochemical reactions directly from the cell. The heat removed is proportional to the amount of methane reformed on the cell. Methane can be partially pre-reformed externally, then supplied to the stack, where rapid reaction kinetics on the anodemore » ensures complete conversion. Thus, the thermal load varies with methane concentration entering the stack, as does the coupled scalar distributions, including the temperature and electrical current density. The endotherm due to the reformation reaction can cause a temperature depression on the anode near the fuel inlet, resulting in large thermal gradients. This effect depends on factors that include methane concentration, local temperature, and stack geometry.« less

  3. Solar thermoelectricity via advanced latent heat storage

    NASA Astrophysics Data System (ADS)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  4. Thermal decay of rhodopsin: role of hydrogen bonds in thermal isomerization of 11-cis retinal in the binding site and hydrolysis of protonated Schiff base.

    PubMed

    Liu, Jian; Liu, Monica Yun; Nguyen, Jennifer B; Bhagat, Aditi; Mooney, Victoria; Yan, Elsa C Y

    2009-07-01

    Although thermal stability of the G protein-coupled receptor rhodopsin is directly related to its extremely low dark noise level and has recently generated considerable interest, the chemistry behind the thermal decay process of rhodopsin has remained unclear. Using UV-vis spectroscopy and HPLC analysis, we have demonstrated that the thermal decay of rhodopsin involves both hydrolysis of the protonated Schiff base and thermal isomerization of 11-cis to all-trans retinal. Examining the unfolding of rhodopsin by circular dichroism spectroscopy and measuring the rate of thermal isomerization of 11-cis retinal in solution, we conclude that the observed thermal isomerization of 11-cis to all-trans retinal happens when 11-cis retinal is in the binding pocket of rhodopsin. Furthermore, we demonstrate that solvent deuterium isotope effects are involved in the thermal decay process by decreasing the rates of thermal isomerization and hydrolysis, suggesting that the rate-determining step of these processes involves breaking hydrogen bonds. These results provide insight into understanding the critical role of an extensive hydrogen-bonding network on stabilizing the inactive state of rhodopsin and contribute to our current understanding of the low dark noise level of rhodopsin, which enables this specialized protein to function as an extremely sensitive biological light detector. Because similar hydrogen-bonding networks have also been suggested by structural analysis of two other GPCRs, beta1 and beta2 adrenergic receptors, our results could reveal a general role of hydrogen bonds in facilitating GPCR function.

  5. Influence of processing factors on the physical metallurgy of LENS deposited 316L stainless steel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Nancy Y. C.; Yee, Joshua Keng; Zheng, Baolong

    2015-12-01

    Directed energy deposition (DED) is a type of additive manufacturing (AM) process; Laser Engineered Net Shaping (LENS) is a commercial DED process. We are developing LENS technology for printing 316L stainless steel components for structural applications. It is widely known that material properties of AM components are process dependent, attributed to different molten metal incorporation and thermal transport mechanisms. This investigation focuses on process-structure-property relationships for LENS deposits for enabling the process development and optimization to control material property. We observed interactions among powder melting, directional molten metal flow, and the molten metal solidification. The resultant LENS induced microstructure foundmore » to be dictated by the process-related characteristics, i.e., interpass boundaries from multi-layer deposition, molten metal flow lines, and solidification dendrite cells. Each characteristic bears the signature of the unique localized thermal history during deposition. Correlation observed between localized thermal transport, resultant microstructure, and its subsequent impact on the mechanical behavior of the current 316L is discussed. We also discuss how the structures of interpass boundaries are susceptible to localized recrystallization, grain growth and/or defect formation, and therefore, heterogeneous mechanical properties due to the adverse presence of unmelted powder inclusions.« less

  6. Pulse thermal processing of functional materials using directed plasma arc

    DOEpatents

    Ott, Ronald D [Knoxville, TN; Blue, Craig A [Knoxville, TN; Dudney, Nancy J [Knoxville, TN; Harper, David C [Kingston, TN

    2007-05-22

    A method of thermally processing a material includes exposing the material to at least one pulse of infrared light emitted from a directed plasma arc to thermally process the material, the pulse having a duration of no more than 10 s.

  7. In Situ Determination of Thermal Profiles during Czochralski Silicon Crystal Growth by an Eddy Current Technique.

    NASA Astrophysics Data System (ADS)

    Choe, Kwang Su.

    An eddy current testing method was developed to continuously monitor crystal growth process and determine thermal profiles in situ during Czochralski silicon crystal growth. The work was motivated by the need to improve the quality of the crystal by controlling thermal gradients and annealing history over the growth cycle. The experimental concept is to monitor intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. The experiments were performed in a resistance-heated Czochralski puller with a 203 mm (8 inch) diameter crucible containing 6.5 kg melt. The silicon crystals being grown were about 80 mm in diameter and monitored by an encircling sensor operating at three different test frequencies (86, 53 and 19 kHz). A one-dimensional analytical solution was employed to translate the detected signals into electrical conductivities. In terms of experiments, the effects of changes in growth condition, which is defined by crystal and crucible rotation rates, crucible position, pull rate, and hot-zone configuration, were investigated. Under a given steady-state condition, the thermal profile was usually stable over the entire length of crystal growth. The profile shifted significantly, however, when the crucible rotation rate was kept too high. As a direct evidence to the effects of melt flow on heat transfer process, a thermal gradient minimum was observed about the crystal/crucible rotation combination of 20/-10 rpm cw. The thermal gradient reduction was still most pronounced when the pull rate or the radiant heat loss to the environment was decreased: a nearly flat axial thermal gradient was achieved when either the pull rate was halved or the height of the exposed crucible wall was effectively doubled. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5 ^{rm o}C/mm. Regardless of growth condition, the three-frequency data revealed radial thermal gradients much larger than what were predicted by existing theoretical models. This discrepancy seems to indicate that optical effects, which are neglected in theoretical modeling, play a major role in the internal heat transfer of the crystal.

  8. Weather Driven Renewable Energy Analysis, Modeling New Technologies

    NASA Astrophysics Data System (ADS)

    Paine, J.; Clack, C.; Picciano, P.; Terry, L.

    2015-12-01

    Carbon emission reduction is essential to hampering anthropogenic climate change. While there are several methods to broach carbon reductions, the National Energy with Weather System (NEWS) model focuses on limiting electrical generation emissions by way of a national high-voltage direct-current transmission that takes advantage of the strengths of different regions in terms of variable sources of energy. Specifically, we focus upon modeling concentrating solar power (CSP) as another source to contribute to the electric grid. Power tower solar fields are optimized taking into account high spatial and temporal resolution, 13km and hourly, numerical weather prediction model data gathered by NOAA from the years of 2006-2008. Importantly, the optimization of these CSP power plants takes into consideration factors that decrease the optical efficiency of the heliostats reflecting solar irradiance. For example, cosine efficiency, atmospheric attenuation, and shadowing are shown here; however, it should be noted that they are not the only limiting factors. While solar photovoltaic plants can be combined for similar efficiency to the power tower and currently at a lower cost, they do not have a cost-effective capability to provide electricity when there are interruptions in solar irradiance. Power towers rely on a heat transfer fluid, which can be used for thermal storage changing the cost efficiency of this energy source. Thermal storage increases the electric stability that many other renewable energy sources lack, and thus, the ability to choose between direct electric conversion and thermal storage is discussed. The figure shown is a test model of a CSP plant made up of heliostats. The colors show the optical efficiency of each heliostat at a single time of the day.

  9. The effects of transcranial direct current stimulation on conscious perception of sensory inputs from hand palm and dorsum.

    PubMed

    Westgeest, Annette; Morales, Merche; Cabib, Christopher; Valls-Sole, Josep

    2014-12-01

    Conscious perception of sensory signals depends in part on stimulus salience, relevance and topography. Letting aside differences at skin receptor level and afferent fibres, it is the CNS that makes a contextual selection of relevant sensory inputs. We hypothesized that subjective awareness (AW) of the time at which a sensory stimulus is perceived, a cortical function, may be differently modified by cortical stimulation, according to site and type of the stimulus. In 24 healthy volunteers, we examined the effects of transcranial direct current stimulation (tDCS) on the assessment of AW to heat pain or weak electrical stimuli applied to either the hand palm or dorsum. We also recorded the vertex-evoked potentials to the same stimuli. The assessment was done before, during and after cathodal or anodal tDCS over the parietal cortex contralateral to the hand receiving the stimuli. At baseline, AW to thermal stimuli was significantly longer for palm than for dorsum (P < 0.01), while no differences between stimulation sites were observed for the electrical stimuli. Both cathodal and anodal tDCS caused a significant shortening of AW to thermal stimuli in the palm but not in the dorsum, and no effects on AW to electrical stimuli. Longer AW in the palm than in the dorsum may be attributable to differences in skin thickness. However, the selectivity of the effects of tDCS on AW to thermal stimulation of the glabrous skin reflects the specificity of CNS processing for site and type of sensory inputs. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Imaging Spatial Variations in the Dissipation and Transport of Thermal Energy within Individual Silicon Nanowires Using Ultrafast Microscopy.

    PubMed

    Cating, Emma E M; Pinion, Christopher W; Van Goethem, Erika M; Gabriel, Michelle M; Cahoon, James F; Papanikolas, John M

    2016-01-13

    Thermal management is an important consideration for most nanoelectronic devices, and an understanding of the thermal conductivity of individual device components is critical for the design of thermally efficient systems. However, it can be difficult to directly probe local changes in thermal conductivity within a nanoscale system. Here, we utilize the time-resolved and diffraction-limited imaging capabilities of ultrafast pump-probe microscopy to determine, in a contact-free configuration, the local thermal conductivity in individual Si nanowires (NWs). By suspending single NWs across microfabricated trenches in a quartz substrate, the properties of the same NW both on and off the substrate are directly compared. We find the substrate has no effect on the recombination lifetime or diffusion length of photogenerated charge carriers; however, it significantly impacts the thermal relaxation properties of the NW. In substrate-supported regions, thermal energy deposited into the lattice by the ultrafast laser pulse dissipates within ∼10 ns through thermal diffusion and coupling to the substrate. In suspended regions, the thermal energy persists for over 100 ns, and we directly image the time-resolved spatial motion of the thermal signal. Quantitative analysis of the transient images permits direct determination of the NW's local thermal conductivity, which we find to be a factor of ∼4 smaller than in bulk Si. Our results point to the strong potential of pump-probe microscopy to be used as an all-optical method to quantify the effects of localized environment and morphology on the thermal transport characteristics of individual nanostructured components.

  11. Ion Traps at the Sun: Implications for Elemental Fractionation

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory D.; Musset, Sophie; Bommier, Véronique; Glesener, Lindsay

    2018-04-01

    Why the tenuous solar outer atmosphere, or corona, is much hotter than the underlying layers remains one of the greatest challenges for solar modeling. Detailed diagnostics of the coronal thermal structure come from extreme ultraviolet (EUV) emission. The EUV emission is produced by heavy ions in various ionization states and depends on the amount of these ions and on plasma temperature and density. Any nonuniformity of the elemental distribution in space or variability in time affects thermal diagnostics of the corona. Here we theoretically predict ionized chemical element concentrations in some areas of the solar atmosphere, where the electric current is directed upward. We then detect these areas observationally, by comparing the electric current density with the EUV brightness in an active region. We found a significant excess in EUV brightness in the areas with positive current density rather than negative. Therefore, we report the observational discovery of substantial concentrations of heavy ions in current-carrying magnetic flux tubes, which might have important implications for the elemental fractionation in the solar corona known as the first ionization potential effect. We call such areas of heavy ion concentration the “ion traps.” These traps hold enhanced ion levels until they are disrupted by a flare, whether large or small.

  12. Highly directional thermal emitter

    DOEpatents

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  13. An experimental and theoretical study of the thermal decomposition of C 4H 6 isomers

    DOE PAGES

    Lockhart, James P. A.; Goldsmith, C. Franklin; Randazzo, John B.; ...

    2017-04-25

    The chemistry of small unsaturated hydrocarbons, such as 1,3–butadiene (1,3–C 4H 6), 1,2–butadiene (1,2–C 4H 6), 2–butyne (2–C 4H 6) and 1–butyne (1–C 4H 6), is of central importance to the modeling of combustion systems. These species are important intermediates in combustion processes, and yet their high-temperature chemistry remains poorly understood, with various dissociation and isomerization pathways proposed in the literature. Here we investigate the thermal decompositions of 1,3–C 4H 6, 1,2–C 4H 6, 2–C 4H 6 and 1–C 4H 6 inside a diaphragmless shock tube, at post shock total pressures of 26–261 Torr and temperatures ranging from 1428–2354 K,more » using laser schlieren densitometry. The experimental work has been complemented by high-level ab initio calculations, which collectively provide strong evidence that formally direct dissociation is the major channel for pyrolysis of 1,3–C 4H 6 and 2–C 4H 6; these paths have not been previously reported but are critical to reconciling the current work and disparate literature reports. The reaction mechanism presented here simulates the current experiments and experimental data from the literature very well. As a result, pressure and temperature dependent rate coefficients are given for the isomerization, formally direct and direct dissociation paths.« less

  14. An experimental and theoretical study of the thermal decomposition of C 4H 6 isomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockhart, James P. A.; Goldsmith, C. Franklin; Randazzo, John B.

    The chemistry of small unsaturated hydrocarbons, such as 1,3–butadiene (1,3–C 4H 6), 1,2–butadiene (1,2–C 4H 6), 2–butyne (2–C 4H 6) and 1–butyne (1–C 4H 6), is of central importance to the modeling of combustion systems. These species are important intermediates in combustion processes, and yet their high-temperature chemistry remains poorly understood, with various dissociation and isomerization pathways proposed in the literature. Here we investigate the thermal decompositions of 1,3–C 4H 6, 1,2–C 4H 6, 2–C 4H 6 and 1–C 4H 6 inside a diaphragmless shock tube, at post shock total pressures of 26–261 Torr and temperatures ranging from 1428–2354 K,more » using laser schlieren densitometry. The experimental work has been complemented by high-level ab initio calculations, which collectively provide strong evidence that formally direct dissociation is the major channel for pyrolysis of 1,3–C 4H 6 and 2–C 4H 6; these paths have not been previously reported but are critical to reconciling the current work and disparate literature reports. The reaction mechanism presented here simulates the current experiments and experimental data from the literature very well. As a result, pressure and temperature dependent rate coefficients are given for the isomerization, formally direct and direct dissociation paths.« less

  15. Thermoelectric Generation Using Counter-Flows of Ideal Fluids

    NASA Astrophysics Data System (ADS)

    Meng, Xiangning; Lu, Baiyi; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2017-08-01

    Thermoelectric (TE) performance of a three-dimensional (3-D) TE module is examined by exposing it between a pair of counter-flows of ideal fluids. The ideal fluids are thermal sources of TE module flow in the opposite direction at the same flow rate and generate temperature differences on the hot and cold surfaces due to their different temperatures at the channel inlet. TE performance caused by different inlet temperatures of thermal fluids are numerically analyzed by using the finite-volume method on 3-D meshed physical models and then compared with those using a constant boundary temperature. The results show that voltage and current of the TE module increase gradually from a beginning moment to a steady flow and reach a stable value. The stable values increase with inlet temperature of the hot fluid when the inlet temperature of cold fluid is fixed. However, the time to get to the stable values is almost consistent for all the temperature differences. Moreover, the trend of TE performance using a fluid flow boundary is similar to that of using a constant boundary temperature. Furthermore, 3-D contours of fluid pressure, temperature, enthalpy, electromotive force, current density and heat flux are exhibited in order to clarify the influence of counter-flows of ideal fluids on TE generation. The current density and heat flux homogeneously distribute on an entire TE module, thus indicating that the counter-flows of thermal fluids have high potential to bring about fine performance for TE modules.

  16. Influence of magnetic materials on the transport properties of superconducting composite conductors

    NASA Astrophysics Data System (ADS)

    Glowacki, B. A.; Majoros, M.; Campbell, A. M.; Hopkins, S. C.; Rutter, N. A.; Kozlowski, G.; Peterson, T. L.

    2009-03-01

    Magnetic materials can help to improve the performance of practical superconductors on the macro/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces ac losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa2Cu3O7 and (Pb,Bi)2Sr2Ca2Cu3O9 conductors, and buffer layers have to be used. In contrast, in MgB2 conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On the one hand, magnetic components reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause the destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties.

  17. QWIP technology for both military and civilian applications

    NASA Astrophysics Data System (ADS)

    Gunapala, Sarath D.; Kukkonen, Carl A.; Sirangelo, Mark N.; McQuiston, Barbara K.; Chehayeb, Riad; Kaufmann, M.

    2001-10-01

    Advanced thermal imaging infrared cameras have been a cost effective and reliable method to obtain the temperature of objects. Quantum Well Infrared Photodetector (QWIP) based thermal imaging systems have advanced the state-of-the-art and are the most sensitive commercially available thermal systems. QWIP Technologies LLC, under exclusive agreement with Caltech University, is currently manufacturing the QWIP-ChipTM, a 320 X 256 element, bound-to-quasibound QWIP FPA. The camera performance falls within the long-wave IR band, spectrally peaked at 8.5 μm. The camera is equipped with a 32-bit floating-point digital signal processor combined with multi- tasking software, delivering a digital acquisition resolution of 12-bits using nominal power consumption of less than 50 Watts. With a variety of video interface options, remote control capability via an RS-232 connection, and an integrated control driver circuit to support motorized zoom and focus- compatible lenses, this camera design has excellent application in both the military and commercial sector. In the area of remote sensing, high-performance QWIP systems can be used for high-resolution, target recognition as part of a new system of airborne platforms (including UAVs). Such systems also have direct application in law enforcement, surveillance, industrial monitoring and road hazard detection systems. This presentation will cover the current performance of the commercial QWIP cameras, conceptual platform systems and advanced image processing for use in both military remote sensing and civilian applications currently being developed in road hazard monitoring.

  18. Differential and directional effects of perfusion on electrical and thermal conductivities in liver.

    PubMed

    Podhajsky, Ronald J; Yi, Ming; Mahajan, Roop L

    2009-01-01

    Two different measurement probes--an electrical probe and a thermal conductivity probe--were designed, fabricated, calibrated, and used in experimental studies on a pig liver model that was designed to control perfusion rates. These probes were fabricated by photolithography and mounted in 1.5-mm diameter catheters. We measured the local impedance and thermal conductivity, respectively, of the artificially perfused liver at different flow rates and, by rotating the probes, in different directions. The results show that both the local electrical conductivity and the thermal conductivity varied location to location, that thermal conductivity increased with decreased distance to large blood vessels, and that significant directional differences exist in both electrical and thermal conductivities. Measurements at different perfusion rates demonstrated that both the local electrical and local thermal conductivities increased linearly with the square root of perfusion rate. These correlations may be of great value to many energy-based biomedical applications.

  19. Strategies towards an optimized use of the shallow geothermal potential

    NASA Astrophysics Data System (ADS)

    Schelenz, S.; Firmbach, L.; Kalbacher, T.; Goerke, U.; Kolditz, O.; Dietrich, P.; Vienken, T.

    2013-12-01

    Thermal use of the shallow subsurface for heat generation, cooling and thermal energy storage is increasingly gaining importance in reconsideration of future energy supplies, e.g. in the course of German energy transition, with application shifting from isolated to intensive use. The planning and dimensioning of (geo-)thermal applications is strongly influenced by the availability of exploration data. Hence, reliable site-specific dimensioning of systems for the thermal use of the shallow subsurface will contribute to an increase in resource efficiency, cost reduction during installation and operation, as well as reduction of environmental impacts and prevention of resource over-exploitation. Despite large cumulative investments that are being made for the utilization of the shallow thermal potential, thermal energy is in many cases exploited without prior on-site exploration and investigation of the local geothermal potential, due to the lack of adequate and cost-efficient exploration techniques. We will present new strategies for an optimized utilization of urban thermal potential, showcased at a currently developed residential neighborhood with high demand for shallow geothermal applications, based on a) enhanced site characterization and b) simulation of different site specific application scenarios. For enhanced site characterization, surface geophysics and vertical high resolution direct push-profiling were combined for reliable determination of aquifer structure and aquifer parameterization. Based on the site characterization, different site specific geothermal application scenarios, including different system types and system configurations, were simulated using OpenGeoSys to guarantee an environmental and economic sustainable thermal use of the shallow subsurface.

  20. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube.

    PubMed

    Jung, Haejong; Yu, Seunggun; Bae, Nam-Seok; Cho, Suk Man; Kim, Richard Hahnkee; Cho, Sung Hwan; Hwang, Ihn; Jeong, Beomjin; Ryu, Ji Su; Hwang, Junyeon; Hong, Soon Man; Koo, Chong Min; Park, Cheolmin

    2015-07-22

    Design of materials to be heat-conductive in a preferred direction is a crucial issue for efficient heat dissipation in systems using stacked devices. Here, we demonstrate a facile route to fabricate polymer composites with directional thermal conduction. Our method is based on control of the orientation of fillers with anisotropic heat conduction. Melt-compression of solution-cast poly(vinylidene fluoride) (PVDF) and graphene nanoflake (GNF) films in an L-shape kinked tube yielded a lightweight polymer composite with the surface normal of GNF preferentially aligned perpendicular to the melt-flow direction, giving rise to a directional thermal conductivity of approximately 10 W/mK at 25 vol % with an anisotropic thermal conduction ratio greater than six. The high directional thermal conduction was attributed to the two-dimensional planar shape of GNFs readily adaptable to the molten polymer flow, compared with highly entangled carbon nanotubes and three-dimensional graphite fillers. Furthermore, our composite with its density of approximately 1.5 g/cm(3) was mechanically stable, and its thermal performance was successfully preserved above 100 °C even after multiple heating and cooling cycles. The results indicate that the methodology using an L-shape kinked tube is a new way to achieve polymer composites with highly anisotropic thermal conduction.

  1. Mechanical properties and eddy current testing of thermally aged Z3CN20.09M cast duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Liu, Tonghua; Wang, Wei; Qiang, Wenjiang; Shu, Guogang

    2018-04-01

    To study the thermal aging embrittlement of Z3CN20.09M duplex stainless steel produced in China, accelerated thermal aging experiments were carried out at 380 °C up to 9000 h. Microhardness measurements, Charpy impact and eddy current tests were performed on aged samples to characterize their thermal aging embrittlement. The results showed that the signal amplitude of eddy current decreased with the increase in aging time. Two quantitative correlations of the eddy current signal amplitude with both the Charpy impact energy, and the Vickers microhardness of the ferrite phase are obtained. The study showed that eddy current testing could be used to non-destructively evaluate the thermal aging embrittlement of cast duplex stainless steels.

  2. Dissipation and particle energization in moderate to low beta turbulent plasma via PIC simulations

    NASA Astrophysics Data System (ADS)

    Makwana, Kirit; Li, Hui; Guo, Fan; Li, Xiaocan

    2017-05-01

    We simulate decaying turbulence in electron-positron pair plasmas using a fully-kinetic particle-in-cell (PIC) code. We run two simulations with moderate-to-low plasma β (the ratio of thermal pressure to magnetic pressure). The energy decay rate is found to be similar in both cases. The perpendicular wave-number spectrum of magnetic energy shows a slope between {k}\\perp -1.3 and {k}\\perp -1.1, where the perpendicular (⊥) and parallel (∥) directions are defined with respect to the magnetic field. The particle kinetic energy distribution function shows the formation of a non-thermal feature in the case of lower plasma β, with a slope close to E-1. The correlation between thin turbulent current sheets and Ohmic heating by the dot product of electric field (E) and current density (J) is investigated. Heating by the parallel E∥ · J∥ term dominates the perpendicular E⊥ · J⊥ term. Regions of strong E∥ · J∥ are spatially well-correlated with regions of intense current sheets, which also appear correlated with regions of strong E∥ in the low β simulation, suggesting an important role of magnetic reconnection in the dissipation of low β plasma turbulence.

  3. New materials for thermal energy storage in concentrated solar power plants

    NASA Astrophysics Data System (ADS)

    Guerreiro, Luis; Collares-Pereira, Manuel

    2016-05-01

    Solar Thermal Electricity (STE) is an important alternative to PV electricity production, not only because it is getting more cost competitive with the continuous growth in installed capacity, engineering and associated innovations, but also, because of its unique dispatch ability advantage as a result of the already well established 2-tank energy storage using molten salts (MS). In recent years, research has been performed, on direct MS systems, to which features like modularity and combinations with other (solid) thermal storage materials are considered with the goal of achieving lower investment cost. Several alternative materials and systems have been studied. In this research, storage materials were identified with thermo-physical data being presented for different rocks (e.g. quartzite), super concrete, and other appropriate solid materials. Among the new materials being proposed like rocks from old quarries, an interesting option is the incorporation of solid waste material from old mines belonging to the Iberian Pyritic Belt. These are currently handled as byproducts of past mine activity, and can potentially constitute an environmental hazard due to their chemical (metal) content. This paper presents these materials, as part of a broad study to improve the current concept of solar energy storage for STE plants, and additionally presents a potentially valuable solution for environmental protection related to re-use of mining waste.

  4. Impacts of climate warming on terrestrial ectotherms across latitude

    PubMed Central

    Deutsch, Curtis A.; Tewksbury, Joshua J.; Huey, Raymond B.; Sheldon, Kimberly S.; Ghalambor, Cameron K.; Haak, David C.; Martin, Paul R.

    2008-01-01

    The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest. PMID:18458348

  5. Effects of Orbital Evolution on Lunar Ice Stability

    NASA Astrophysics Data System (ADS)

    Siegler, M. A.; Bills, B. G.; Paige, D. A.

    2010-12-01

    Permanently shadowed regions of the Moon have complex thermal histories that influence their ability to act as traps for water ice. Though many areas are now cold enough that surface water ice would be stable from sublimation losses for billions of years, this has not always been the case. Here we examine the effects of the long term orbital and rotational evolution of the Moon on polar thermal history, volatile stability and mobility. Using data from the Diviner Lunar Radiometer, aboard the Lunar Reconnaissance Orbiter, we validate models of the current temperature in the lunar polar region. This model includes the effects of topography, scattering, re-radiation, and regolith thermal properties. Then, integrating the effects of tidal torques backward from the present, we reconstruct past orbital and rotational states and use them as input to the thermal model to estimate the thermal environment of the distant lunar past. The rate of tidal evolution of the lunar orbit is quite uncertain, thus use orbital semimajor axis as independent variable, rather than time, in the reconstruction. The orbital integration results in a high obliquity period which occurred when the Moon was at about half its present distance from the Earth. This period, which caused half a year of direct sunlight on the polar region, is due to a transition between two Cassini States, spin-orbit configurations resulting from internal dissipation within the Moon. Since this event, the tilt of the Moon (with respect to the ecliptic) has slowly decreased to the current 1.54 degree. Prior to this transition, due to the relatively small Earth-Moon distance, large amplitude variations in the inclination of the orbital plain were also important. We examine the stability of polar volatiles in response to the evolving lunar orbit, and apply simple models to describe when in the Moon’s history supplied volatiles would have been most likely to be buried by thermal diffusion. When temperatures are much below 95K, ice delivered to the lunar surface is immobile in terms of thermal diffusion. Unless buried on relatively short time scales, most of the current polar environments are currently too cold to efficiently drive ice downward along thermal gradients and protect it from other surface loss processes. In the past, these same locations went through “ice trap” periods, where they were warm enough that supplied volatiles might have been buried by on short time scales, but cold enough that they would not be lost quickly, supplying the subsurface with volatiles that could still be stable today. The Cassini state transition was so warm that ice would either have been driven out into space, or possibly deep into the lunar subsurface. If a present lunar cold trap is ice bearing, that ice is likely to be representative of these “ice trap” periods and have little to do with the early Moon. As each current cold trap had a period where it was most efficient at thermal ice burial, the location of current ground ice on the Moon might also constrain the obliquity and time at which it was deposited. The presence of ice in a specific crater may imply either an increase in water flux or large comet impact during that period.

  6. 53rd Annual Fuze Conference - Next Generation Fuzing - Maximum Advantage for the Warfighter

    DTIC Science & Technology

    2009-05-21

    Time Engineering AB 3:00 pm BREAK 3:20 pm Advances In Thermal Batteries For Fuzing David E. Harney, Advanced Thermal Batteries , Inc...Currently teaming and collaborating with Advanced Thermal Batteries • and Omnitek Partners to develop an improved thermal battery. • Current

  7. HEAT.PRO - THERMAL IMBALANCE FORCE SIMULATION AND ANALYSIS USING PDE2D

    NASA Technical Reports Server (NTRS)

    Vigue, Y.

    1994-01-01

    HEAT.PRO calculates the thermal imbalance force resulting from satellite surface heating. The heated body of a satellite re-radiates energy at a rate that is proportional to its temperature, losing the energy in the form of photons. By conservation of momentum, this momentum flux out of the body creates a reaction force against the radiation surface, and the net thermal force can be observed as a small perturbation that affects long term orbital behavior of the satellite. HEAT.PRO calculates this thermal imbalance force and then determines its effects on satellite orbits, especially where the Earth's shadowing of an orbiting satellite causes periodic changes in the spacecraft's thermal environment. HEAT.PRO implements a finite element method routine called PDE2D which incorporates material properties to determine the solar panel surface temperatures. The nodal temperatures are computed at specified time steps and are used to determine the magnitude and direction of the thermal force on the spacecraft. These calculations are based on the solar panel orientation and satellite's position with respect to the earth and sun. It is necessary to have accurate, current knowledge of surface emissivity, thermal conductivity, heat capacity, and material density. These parameters, which may change due to degradation of materials in the environment of space, influence the nodal temperatures that are computed and thus the thermal force calculations. HEAT.PRO was written in FORTRAN 77 for Cray series computers running UNICOS. The source code contains directives for and is used as input to the required partial differential equation solver, PDE2D. HEAT.PRO is available on a 9-track 1600 BPI magnetic tape in UNIX tar format (standard distribution medium) or a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in Macintosh Microsoft Word format is included on the distribution tape. HEAT.PRO was developed in 1991. Cray and UNICOS are registered trademarks of Cray Research, Inc. UNIX is a trademark of AT&T Bell Laboratories. PDE2D is available from Granville Sewell, Mathematics Dept., University of Texas at El Paso, El Paso, Texas 79968.

  8. Thermal transistor behavior of a harmonic chain

    NASA Astrophysics Data System (ADS)

    Kim, Sangrak

    2017-09-01

    Thermal transistor behavior of a harmonic chain with three heat reservoirs is explicitly analyzed. Temperature profile and heat currents of the rather general system are formulated and then heat currents for the simplest system are exactly calculated. The matrix connecting the three temperatures of the reservoirs and those of the particles comprises a stochastic matrix. The ratios R 1 and R 2 between heat currents, characterizing thermal signals can be expressed in terms of two external variables and two material parameters. It is shown that the ratios R 1 and R 2 can have wide range of real values. The thermal system shows a thermal transistor behavior such as the amplification of heat current by appropriately controlling the two variables and two parameters. We explicitly demonstrate the characteristics and mechanisms of thermal transistor with the simplest model.

  9. High electric field conduction in low-alkali boroaluminosilicate glass

    NASA Astrophysics Data System (ADS)

    Dash, Priyanka; Yuan, Mengxue; Gao, Jun; Furman, Eugene; Lanagan, Michael T.

    2018-02-01

    Electrical conduction in silica-based glasses under a low electric field is dominated by high mobility ions such as sodium, and there is a transition from ionic transport to electronic transport as the electric field exceeds 108 V/m at low temperatures. Electrical conduction under a high electric field was investigated in thin low-alkali boroaluminosilicate glass samples, showing nonlinear conduction with the current density scaling approximately with E1/2, where E is the electric field. In addition, thermally stimulated depolarization current (TSDC) characterization was carried out on room-temperature electrically poled glass samples, and an anomalous discharging current flowing in the same direction as the charging current was observed. High electric field conduction and TSDC results led to the conclusion that Poole-Frenkel based electronic transport occurs in the mobile-cation-depleted region adjacent to the anode, and accounts for the observed anomalous current.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haugen, Carl C.; Forget, Benoit; Smith, Kord S.

    Most high performance computing systems being deployed currently and envisioned for the future are based on making use of heavy parallelism across many computational nodes and many concurrent cores. These types of heavily parallel systems often have relatively little memory per core but large amounts of computing capability. This places a significant constraint on how data storage is handled in many Monte Carlo codes. This is made even more significant in fully coupled multiphysics simulations, which requires simulations of many physical phenomena be carried out concurrently on individual processing nodes, which further reduces the amount of memory available for storagemore » of Monte Carlo data. As such, there has been a move towards on-the-fly nuclear data generation to reduce memory requirements associated with interpolation between pre-generated large nuclear data tables for a selection of system temperatures. Methods have been previously developed and implemented in MIT’s OpenMC Monte Carlo code for both the resolved resonance regime and the unresolved resonance regime, but are currently absent for the thermal energy regime. While there are many components involved in generating a thermal neutron scattering cross section on-the-fly, this work will focus on a proposed method for determining the energy and direction of a neutron after a thermal incoherent inelastic scattering event. This work proposes a rejection sampling based method using the thermal scattering kernel to determine the correct outgoing energy and angle. The goal of this project is to be able to treat the full S (a, ß) kernel for graphite, to assist in high fidelity simulations of the TREAT reactor at Idaho National Laboratory. The method is, however, sufficiently general to be applicable in other thermal scattering materials, and can be initially validated with the continuous analytic free gas model.« less

  11. Mixed Waste Focus Area alternative oxidation technologies development and demonstration program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borduin, L.C.; Fewell, T.; Gombert, D.

    1998-07-01

    The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. The impetus for this support derives from regulatory and political hurdles frequently encountered by traditional thermal techniques, primarily incinerators. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. Whether thermal or nonthermal, the processes have the potential advantages of relatively low-volume gaseous emissions, generation of few or no dioxin/furan compounds, and operation at low enough temperatures that metals (except mercury) and most radionuclides are not volatilized. Technology developmentmore » and demonstration are needed to confirm and realize the potential of AOTs and to compare them on an equal basis with their fully demonstrated thermal counterparts. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site, and direct chemical oxidation at Lawrence Livermore National Laboratory. All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory, and team reforming, a commercial process being supported by Department of Energy. Related technologies include two low-flow, secondary oxidation processes (Phoenix and Thermatrix units) that have been tested at MSE, Inc., in Butte, Montana. Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented.« less

  12. Directional Thermal Emission and Absorption from Surface Microstructures in Metalized Plastics

    DTIC Science & Technology

    2013-09-01

    conductive surfaces for directional emission is presented. First, key accomplishments in exploiting surface plasmons for coherent thermal emission from...than as an absorbing coating . In the 2005 design proposed by Lee et al., thermally excited surface waves at a silicon carbide to photonic crystal stack...sufficiently to significantly effect the film durability and thermal conductivity , the profile of the cavity begins to change shape. Although a case

  13. Interfacial thermal resistance and thermal rectification in carbon nanotube film-copper systems.

    PubMed

    Duan, Zheng; Liu, Danyang; Zhang, Guang; Li, Qingwei; Liu, Changhong; Fan, Shoushan

    2017-03-02

    Thermal rectification occurring at interfaces is an important research area, which contains deep fundamental physics and has extensive application prospects. In general, the measurement of interfacial thermal rectification is based on measuring interfacial thermal resistance (ITR). However, ITRs measured via conventional methods cannot avoid extra thermal resistance asymmetry due to the contact between the sample and the thermometer. In this study, we employed a non-contact infrared thermal imager to monitor the temperature of super-aligned carbon nanotube (CNT) films and obtain the ITRs between the CNT films and copper. The ITRs along the CNT-copper direction and the reverse direction are in the ranges of 2.2-3.6 cm 2 K W -1 and 9.6-11.9 cm 2 K W -1 , respectively. The obvious difference in the ITRs of the two directions shows a significant thermal rectification effect, and the rectifying coefficient ranges between 0.57 and 0.68. The remarkable rectification factor is extremely promising for the manufacture of thermal transistors with a copper/CNT/copper structure and further thermal logic devices. Moreover, our method could be extended to other 2-dimensional materials, such as graphene and MoS 2 , for further explorations.

  14. Thermal management and light extraction in multi-chip and high-voltage LEDs by cup-shaped copper heat spreader technology

    NASA Astrophysics Data System (ADS)

    Horng, Ray-Hua; Hu, Hung-Lieh; Tang, Li-Shen; Ou, Sin-Liang

    2013-03-01

    For LEDs with original structure and copper heat spreader, the highest surface temperatures of 3×3 array LEDs modules were 52.6 and 42.67 °C (with 1050 mA injection current), while the highest surface temperatures of 4×4 array LEDs modules were 58.55 and 48.85 °C (with 1400 mA injection current), respectively. As the 5×5 array LEDs modules with original structure and copper heat spreader were fabricated, the highest surface temperatures at 1750 mA injection current were 68.51 and 56.73 °C, respectively. The thermal resistance of optimal LEDs array module with copper heat spreader on heat sink using compound solder is reduced obviously. On the other hand, the output powers of 3×3, 4×4 and 5×5 array LEDs modules with original structure were 3621.7, 6346.3 and 9760.4 mW at injection currents of 1050, 1400 and 1750 mA, respectively. Meanwhile, the output powers of these samples with copper heat spreader can be improved to 4098.5, 7150.3 and 10919.6 mW, respectively. The optical and thermal characteristics of array LEDs module have been improved significantly using the cup-shaped copper structure. Furthermore, various types of epoxy-packaged LEDs with cup-shaped structure were also fabricated. It is found that the light extraction efficiency of LED with semicircle package has 55% improvement as compared to that of LED with flat package. The cup-shaped copper structure was contacted directly with sapphire to enhance heat dissipation. In addition to efficient heat dissipation, the light extraction of the lateral emitting in high-power LEDs can be improved.

  15. US energy for the rest of the century, 1984 edition

    NASA Astrophysics Data System (ADS)

    Gustaferro, J. F.

    1984-07-01

    The U.S. energy consumption and supply for two years 1983 and 2000 is presented. In 1983 the United States consumed about 70.5 quadrillion British thermal units of energy. A U.S. energy consumption of about 84 quadrillion British thermal units in the year 2000 is projected. The 84 quadrillion British thermal units consists of 13 million barrels per day of petroleum, 18 trillion cubic feet of natural gas and 3.5 trillion kilowatt hours of electricity. Coal production is projected at 1,405 million tons which includes exports. The data presented in the 1984 forecast over the spectrum of U.S. energy requirements and focus on the end use of energy operational purposes, e.g., highway transportation, space heating, lighting, and construction. Data on fuel consumption by types and energy content for 1983 and as projected for the year 2000 is provided. End users of energy in the United States currently spend $441 billion annually for energy. This includes direct taxes.

  16. Theory of Radiation Transfer in Neutron Star Atmospheres

    NASA Technical Reports Server (NTRS)

    Zavlin, Vyacheslav

    2006-01-01

    The possibility for direct investigation of thermal emission from isolated neutron stars opened about a quarter of century ago with the launch of the first X-ray observatories Einstein and EXOSAT stimulated developing models of the neutron star surface radiation which began at the end of 80's. Confronting observational data with theoretical models of thermal emission allows one to infer the surface temperatures, magnetic fields, chemical composition, and neutron star masses and radii. This information, supplemented with the model equations of state and neutron star cooling models, provides an opportunity to understand the fundamental properties of the superdense matter in the stars' interiors. Almost all available models are based on the assumption that thermal radiation emitted by a neutron star is formed in the superficial star's layers--atmosphere. The neutron star atmospheres are very different from those of usual stars due to the immense gravity and huge magnetic fields. In this presentation we review the current status of the neutron star atmosphere modeling, present most important results, discuss problems and possible future developments.

  17. Orbitally-driven giant phonon anharmonicity in SnSe

    DOE PAGES

    Li, Chen W.; Hong, Jiawang; May, Andrew F.; ...

    2015-10-19

    We understand that elementary excitations and their couplings in condensed matter systems is critical to develop better energy-conversion devices. In thermoelectric materials, the heat-to-electricity conversion efficiency is directly improved by suppressing the propagation of phonon quasiparticles responsible for macroscopic thermal transport. The material with the current record for thermoelectric conversion efficiency, SnSe, achieves an ultra-low thermal conductivity, but the mechanism enabling this strong phonon scattering remains largely unknown. Using inelastic neutron scattering measurements and first-principles simulations, we mapped the four-dimensional phonon dispersion surfaces of SnSe, and revealed the origin of ionic-potential anharmonicity responsible for the unique properties of SnSe. Wemore » show that the giant phonon scattering arises from an unstable electronic structure, with orbital interactions leading to a ferroelectric-like lattice instability. Our results provide a microscopic picture connecting electronic structure and phonon anharmonicity in SnSe, and offers precious insights on how electron-phonon and phononphonon interactions may lead to the realization of ultra-low thermal conductivity.« less

  18. Orbitally driven giant phonon anharmonicity in SnSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C. W.; Hong, J.; May, A. F.

    Understanding elementary excitations and their couplings in condensed matter systems is critical for developing better energy-conversion devices. In thermoelectric materials, the heat-to-electricity conversion efficiency is directly improved by suppressing the propagation of phonon quasiparticles responsible for macroscopic thermal transport. The current record material for thermoelectric conversion efficiency, SnSe, has an ultralow thermal conductivity, but the mechanism behind the strong phonon scattering remains largely unknown. From inelastic neutron scattering measurements and first-principles simulations, we mapped the four-dimensional phonon dispersion surfaces of SnSe, and found the origin of the ionic-potential anharmonicity responsible for the unique properties of SnSe. We show that themore » giant phonon scattering arises from an unstable electronic structure, with orbital interactions leading to a ferroelectric-like lattice instability. The present results provide a microscopic picture connecting electronic structure and phonon anharmonicity in SnSe, and offers new insights on how electron–phonon and phonon–phonon interactions may lead to the realization of ultralow thermal conductivity.« less

  19. The channel radius and energy of cloud-to-ground lightning discharge plasma with multiple return strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xuejuan; Yuan, Ping; Cen, Jianyong

    2014-03-15

    Using the spectra of a cloud-to-ground (CG) lightning flash with multiple return strokes and combining with the synchronous radiated electrical field information, the linear charge density, the channel radius, the energy per unit length, the thermal energy, and the energy of dissociation and ionization in discharge channel are calculated with the aid of an electrodynamic model of lightning. The conclusion that the initial radius of discharge channel is determined by the duration of the discharge current is confirmed. Moreover, the correlativity of several parameters has been analyzed first. The results indicate that the total intensity of spectra is positive correlatedmore » to the channel initial radius. The ionization and thermal energies have a linear relationship, and the dissociation energy is correlated positively to the ionization and thermal energies, the energy per unit length is in direct proportion to the square of initial radius in different strokes of one CG lightning.« less

  20. Residual Strain in PCBs with Cu-Plated Holes

    NASA Astrophysics Data System (ADS)

    Rudajevova, A.; Dušek, K.

    2017-12-01

    The residual strain in pure printed circuit boards (PCBs) and PCBs with Cu-plated holes has been obtained by measurement of the temperature dependence of their dilatational characteristics in the x, y, and z directions up to 240°C. Shrinkage in all directions was observed for all samples of both materials in the first thermal cycle. No permanent length changes were observed in the second or subsequent thermal cycles. The residual strain was determined from the difference in relative elongation between the first and second thermal cycles. Relaxation of residual strain occurred only in the first thermal cycle, as a thermally activated process. The highest value of relaxed residual strain was found in the z direction for both materials. Relaxation of residual strain in the z direction of the pure PCB occurred only in the negative strain range, whereas relaxation of the PCB with Cu-plated holes occurred in both the positive and negative strain ranges. The relaxation of the positive strain in the PCB with Cu-plated holes in the z direction implies that this part of the PCB was under pressure during its preparation. This relaxation is a consequence of the high coefficient of thermal expansion of PCB laminate in this direction, which can also lead to cracks in Cu holes when the material is heated above the glass-transition temperature.

  1. The structure and properties of pulsed dc magnetron sputtered nanocrystalline TiN films for electrodes of alkali metal thermal-to-electric conversion systems.

    PubMed

    Chun, Sung-Yong

    2013-03-01

    Titanium nitride films used as an important electrode material for the design of alkali metal thermal-to-electric conversion (AMTEC) system have been prepared using dc (direct current) and asymmetric-bipolar pulsed dc magnetron sputtering. The pulse frequency and the duty cycle were varied from 5 to 50 kHz and 50 to 95%, respectively. The deposition rate, grain size and resistivity of pulsed dc sputtered films were decreased when the pulse frequency increased, while the nano hardness of titanium nitride films increased. We present in detail coatings (e.g., deposition rate, grain size, prefer-orientation, resistivity and hardness). Our studies show that titanium nitride coatings with superior properties can be prepared using asymmetric-bipolar pulsed dc sputtering.

  2. First-principles simulations of heat transport

    NASA Astrophysics Data System (ADS)

    Puligheddu, Marcello; Gygi, Francois; Galli, Giulia

    2017-11-01

    Advances in understanding heat transport in solids were recently reported by both experiment and theory. However an efficient and predictive quantum simulation framework to investigate thermal properties of solids, with the same complexity as classical simulations, has not yet been developed. Here we present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at close to equilibrium conditions, which only requires calculations of first-principles trajectories and atomic forces, thus avoiding direct computation of heat currents and energy densities. In addition the method requires much shorter sequential simulation times than ordinary molecular dynamics techniques, making it applicable within density functional theory. We discuss results for a representative oxide, MgO, at different temperatures and for ordered and nanostructured morphologies, showing the performance of the method in different conditions.

  3. Comparison of Direct Solar Energy to Resistance Heating for Carbothermal Reduction of Regolith

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.; Gustafson, Robert J.

    2011-01-01

    A comparison of two methods of delivering thermal energy to regolith for the carbo thermal reduction process has been performed. The comparison concludes that electrical resistance heating is superior to direct solar energy via solar concentrators for the following reasons: (1) the resistance heating method can process approximately 12 times as much regolith using the same amount of thermal energy as the direct solar energy method because of superior thermal insulation; (2) the resistance heating method is more adaptable to nearer-term robotic exploration precursor missions because it does not require a solar concentrator system; (3) crucible-based methods are more easily adapted to separation of iron metal and glass by-products than direct solar energy because the melt can be poured directly after processing instead of being remelted; and (4) even with projected improvements in the mass of solar concentrators, projected photovoltaic system masses are expected to be even lower.

  4. User's Manual: Thermal Radiation Analysis System TRASYS 2

    NASA Technical Reports Server (NTRS)

    Jensen, C. L.

    1981-01-01

    A digital computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems is presented. When used in conjunction with a generalized thermal analysis program such as the systems improved numerical differencing analyzer program, any thermal problem that can be expressed in terms of a lumped parameter R-C thermal network can be solved. The function of TRASYS is twofold. It provides: (a) Internode radiation interchange data; and (b) Incident and absorbed heat rate data from environmental radiant heat sources. Data of both types is provided in a format directly usable by the thermal analyzer programs. The system allows the user to write his own executive or driver program which organizes and directs the program library routines toward solution of each specific problem in the most expeditious manner. The user also may write his own output routines, thus the system data output can directly interface with any thermal analyzer using the R-C network concept.

  5. Thermal Conductivity of Polyimide/Carbon Nanofiller Blends

    NASA Technical Reports Server (NTRS)

    Delozier, D. M.; Watson, K. A.; Ghose, S.; Working, D. C.; Connell, J. W.; Smith, J. G.; Sun, Y. P.; Lin, Y.

    2006-01-01

    Ultem(TM) was mixed with three different carbon-based nanofillers in efforts to increase the thermal conductivity of the polymer. After initial mixing, the nanocomposites were extruded or processed via the Laboratory Mixing Molder (LMM) process. High resolution scanning electron microscopy (HRSEM) revealed significant alignment of the nanofillers in the extruded samples. Thermal conductivity measurements were made both in the direction and perpendicular to the direction of alignment of nanofillers as well as for unaligned samples. It was found that the largest improvement in thermal conductivity was achieved in the case of aligned samples when the measurement was performed in the direction of alignment. Unaligned samples also showed a significant improvement in thermal conductivity and may be useful in applications when it is not possible to align the nanofiller. However the improvements in thermal conductivity did not approach those expected based on a rule of mixtures. This is likely due to poor phonon transfer through the matrix.

  6. Quantum thermal diode based on two interacting spinlike systems under different excitations.

    PubMed

    Ordonez-Miranda, Jose; Ezzahri, Younès; Joulain, Karl

    2017-02-01

    We demonstrate that two interacting spinlike systems characterized by different excitation frequencies and coupled to a thermal bath each, can be used as a quantum thermal diode capable of efficiently rectifying the heat current. This is done by deriving analytical expressions for both the heat current and rectification factor of the diode, based on the solution of a master equation for the density matrix. Higher rectification factors are obtained for lower heat currents, whose magnitude takes their maximum values for a given interaction coupling proportional to the temperature of the hotter thermal bath. It is shown that the rectification ability of the diode increases with the excitation frequencies difference, which drives the asymmetry of the heat current, when the temperatures of the thermal baths are inverted. Furthermore, explicit conditions for the optimization of the rectification factor and heat current are explicitly found.

  7. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Blaze, Gina M.

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Systems (LMSS), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science and exploration missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. The ASRG will utilize two Advanced Stirling Convertors (ASC) to convert thermal energy from a radioisotope heat source to electricity. NASA GRC has initiated several experiments to demonstrate the functionality of the ASC, including: in-air extended operation, thermal vacuum extended operation, and ASRG simulation for mobile applications. The in-air and thermal vacuum test articles are intended to provide convertor performance data over an extended operating time. These test articles mimic some features of the ASRG without the requirement of low system mass. Operation in thermal vacuum adds the element of simulating deep space. This test article is being used to gather convertor performance and thermal data in a relevant environment. The ASRG simulator was designed to incorporate a minimum amount of support equipment, allowing integration onto devices powered directly by the convertors, such as a rover. This paper discusses the design, fabrication, and implementation of these experiments.

  8. The effects of solar radiation and black body re-radiation on thermal comfort.

    PubMed

    Hodder, Simon; Parsons, Ken

    2008-04-01

    When the sun shines on people in enclosed spaces, such as in buildings or vehicles, it directly affects thermal comfort. There is also an indirect effect as surrounding surfaces are heated exposing a person to re-radiation. This laboratory study investigated the effects of long wave re-radiation on thermal comfort, individually and when combined with direct solar radiation. Nine male participants (26.0 +/- 4.7 years) took part in three experimental sessions where they were exposed to radiation from a hot black panel heated to 100 degrees C; direct simulated solar radiation of 600 Wm(-2) and the combined simulated solar radiation and black panel radiation. Exposures were for 30 min, during which subjective responses and mean skin temperatures were recorded. The results showed that, at a surface temperature of 100 degrees C (close to maximum in practice), radiation from the flat black panel provided thermal discomfort but that this was relatively small when compared with the effects of direct solar radiation. It was concluded that re-radiation, from a dashboard in a vehicle, for example, will not have a major direct influence on thermal comfort and that existing models of thermal comfort do not require a specific modification. These results showed that, for the conditions investigated, the addition of re-radiation from internal components has an effect on thermal sensation when combined with direct solar radiation. However, it is not considered that it will be a major factor in a real world situation. This is because, in practice, dashboards are unlikely to maintain very high surface temperatures in vehicles without an unacceptably high air temperature. This study quantifies the contribution of short- and long-wave radiation to thermal comfort. The results will aid vehicle designers to have a better understanding of the complex radiation environment. These include direct radiation from the sun as well as re-radiation from the dashboard and other internal surfaces.

  9. Optimal cure cycle design for autoclave processing of thick composites laminates: A feasibility study

    NASA Technical Reports Server (NTRS)

    Hou, Jean W.

    1985-01-01

    The thermal analysis and the calculation of thermal sensitivity of a cure cycle in autoclave processing of thick composite laminates were studied. A finite element program for the thermal analysis and design derivatives calculation for temperature distribution and the degree of cure was developed and verified. It was found that the direct differentiation was the best approach for the thermal design sensitivity analysis. In addition, the approach of the direct differentiation provided time histories of design derivatives which are of great value to the cure cycle designers. The approach of direct differentiation is to be used for further study, i.e., the optimal cycle design.

  10. Nanophotonic force microscopy: Characterizing particle–surface interactions using near-field photonics

    DOE PAGES

    Schein, Perry; Kang, Pilgyu; O’Dell, Dakota; ...

    2015-01-27

    Direct measurements of particle–surface interactions are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions. Current techniques are limited in their ability to measure pico-Newton scale interaction forces on submicrometer particles due to signal detection limits and thermal noise. In this paper, we present a new technique for making measurements in this regime, which we refer to as nanophotonic force microscopy. Using a photonic crystal resonator, we generate a strongly localized region of exponentially decaying, near-field light that allows us to confine small particles close to a surface. From the statistical distribution of the light intensity scatteredmore » by the particle we are able to map out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. Finally, as shown in this Letter, our technique is not limited by thermal noise, and therefore, we are able to resolve interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.« less

  11. Effects of thermal blooming on systems comprised of tiled subapertures

    NASA Astrophysics Data System (ADS)

    Leakeas, Charles L.; Bartell, Richard J.; Krizo, Matthew J.; Fiorino, Steven T.; Cusumano, Salvatore J.; Whiteley, Matthew R.

    2010-04-01

    Laser weapon systems comprise of tiled subapertures are rapidly emerging in the directed energy community. The Air Force Institute of Technology Center for Directed Energy (AFIT/CDE), under sponsorship of the HEL Joint Technology Office has developed performance models of such laser weapon system configurations consisting of tiled arrays of both slab and fiber subapertures. These performance models are based on results of detailed waveoptics analyses conducted using WaveTrain. Previous performance model versions developed in this effort represent system characteristics such as subaperture shape, aperture fill factor, subaperture intensity profile, subaperture placement in the primary aperture, subaperture mutual coherence (piston), subaperture differential jitter (tilt), and beam quality wave-front error associated with each subaperture. The current work is a prerequisite for the development of robust performance models for turbulence and thermal blooming effects for tiled systems. Emphasis is placed on low altitude tactical scenarios. The enhanced performance model developed will be added to AFIT/CDE's HELEEOS parametric one-on-one engagement level model via the Scaling for High Energy Laser and Relay Engagement (SHaRE) toolbox.

  12. Modeling of heat extraction from variably fractured porous media in Enhanced Geothermal Systems

    DOE PAGES

    Hadgu, Teklu; Kalinina, Elena Arkadievna; Lowry, Thomas Stephen

    2016-01-30

    Modeling of heat extraction in Enhanced Geothermal Systems is presented. The study builds on recent studies on the use of directional wells to improve heat transfer between doublet injection and production wells. The current study focuses on the influence of fracture orientation on production temperature in deep low permeability geothermal systems, and the effects of directional drilling and separation distance between boreholes on heat extraction. The modeling results indicate that fracture orientation with respect to the well-pair plane has significant influence on reservoir thermal drawdown. As a result, the vertical well doublet is impacted significantly more than the horizontal wellmore » doublet« less

  13. Evaluation of high temperature capacitor dielectrics

    NASA Astrophysics Data System (ADS)

    Hammoud, Ahmad N.; Myers, Ira T.

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  14. Evaluation of high temperature capacitor dielectrics

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  15. Electric Motor Thermal Management R&D. Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, Kevin

    With the push to reduce component volumes, lower costs, and reduce weight without sacrificing performance or reliability, the challenges associated with thermal management increase for power electronics and electric motors. Thermal management for electric motors will become more important as the automotive industry continues the transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform, and as thermal management improves, there will be a direct trade-off between motor performance, efficiency, cost, and the sizingmore » of electric motors to operate within the thermal constraints. The goal of this research project is to support broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management. Work in FY15 focused on two areas related to motor thermal management: passive thermal performance and active convective cooling. Passive thermal performance emphasized the thermal impact of materials and thermal interfaces among materials within an assembled motor. The research tasks supported the publication of test methods and data for thermal contact resistances and direction-dependent thermal conductivity within an electric motor. Active convective cooling focused on measuring convective heat-transfer coefficients using automatic transmission fluid (ATF). Data for average convective heat transfer coefficients for direct impingement of ATF jets was published. Also, experimental hardware for mapping local-scale and stator-scale convective heat transfer coefficients for ATF jet impingement were developed.« less

  16. WIMP dark matter candidates and searches-current status and future prospects.

    PubMed

    Roszkowski, Leszek; Sessolo, Enrico Maria; Trojanowski, Sebastian

    2018-06-01

    We review several current aspects of dark matter theory and experiment. We overview the present experimental status, which includes current bounds and recent claims and hints of a possible signal in a wide range of experiments: direct detection in underground laboratories, gamma-ray, cosmic ray, x-ray, neutrino telescopes, and the LHC. We briefly review several possible particle candidates for a weakly interactive massive particle (WIMP) and dark matter that have recently been considered in the literature. We pay particular attention to the lightest neutralino of supersymmetry as it remains the best motivated candidate for dark matter and also shows excellent detection prospects. Finally we briefly review some alternative scenarios that can considerably alter properties and prospects for the detection of dark matter obtained within the standard thermal WIMP paradigm.

  17. WIMP dark matter candidates and searches—current status and future prospects

    NASA Astrophysics Data System (ADS)

    Roszkowski, Leszek; Sessolo, Enrico Maria; Trojanowski, Sebastian

    2018-06-01

    We review several current aspects of dark matter theory and experiment. We overview the present experimental status, which includes current bounds and recent claims and hints of a possible signal in a wide range of experiments: direct detection in underground laboratories, gamma-ray, cosmic ray, x-ray, neutrino telescopes, and the LHC. We briefly review several possible particle candidates for a weakly interactive massive particle (WIMP) and dark matter that have recently been considered in the literature. We pay particular attention to the lightest neutralino of supersymmetry as it remains the best motivated candidate for dark matter and also shows excellent detection prospects. Finally we briefly review some alternative scenarios that can considerably alter properties and prospects for the detection of dark matter obtained within the standard thermal WIMP paradigm.

  18. Thermal management and performance evaluation of a dual bi-directional, soft-switched IGBT-based inverter for the 1st autonomous microgrid power system in Taiwan under various operating conditions

    NASA Astrophysics Data System (ADS)

    Chang, Tien-Chan; Fuh, Yiin-Kuen; Lu, Hong-Yi; Tu, Sheng-Xun

    2016-06-01

    The thermal management of the inverter system is of great importance since very high voltage/current will be switched intermittently and/or continuously and high temperature is excruciably detrimental to the service life of electronics, especially for the switching devices such as insulated gate bipolar transistor (IGBT). In this study, a newly developed dual bi-directional IGBT-based inverter in conjunction with autonomous microgrid system is investigated with particular focus on the thermal management and performance evaluation under various operation conditions. Locally enhanced heat transfer approach such as oblique orientation and heat dissipating materials are experimentally investigated. The studied inverter system is initially packaged by a galvanized steel plate (size 62 × 48 × 18 cm) and the switching power is set in the range of 0.5-3 kW. The module is operated at the switching and pulse frequencies of 60 Hz and 20 kHz, respectively. The adoption of heat dissipating material in either paste or film form had experimentally shown to possess the flexibility tailoring heat transfer performance locally. Experimental studies of heat dissipating film with various hotspot scenarios showed that the temperature difference can be appreciably reduced as much as 13.1 and 15.4 °C, respectively with facilitation of one- and two-layers of heat dissipating film. From the measurement results, the measured peak temperature is highly dominated by the thickness of heat dissipating film, showing the dominance of thickness-dependent thermal resistance and resultant heat accumulation phenomena.

  19. Manipulation of heat-diffusion channel in laser thermal lithography.

    PubMed

    Wei, Jingsong; Wang, Yang; Wu, Yiqun

    2014-12-29

    Laser thermal lithography is a good alternative method for forming small pattern feature size by taking advantage of the structural-change threshold effect of thermal lithography materials. In this work, the heat-diffusion channels of laser thermal lithography are first analyzed, and then we propose to manipulate the heat-diffusion channels by inserting thermal conduction layers in between channels. Heat-flow direction can be changed from the in-plane to the out-of-plane of the thermal lithography layer, which causes the size of the structural-change threshold region to become much smaller than the focused laser spot itself; thus, nanoscale marks can be obtained. Samples designated as "glass substrate/thermal conduction layer/thermal lithography layer (100 nm)/thermal conduction layer" are designed and prepared. Chalcogenide phase-change materials are used as thermal lithography layer, and Si is used as thermal conduction layer to manipulate heat-diffusion channels. Laser thermal lithography experiments are conducted on a home-made high-speed rotation direct laser writing setup with 488 nm laser wavelength and 0.90 numerical aperture of converging lens. The writing marks with 50-60 nm size are successfully obtained. The mark size is only about 1/13 of the focused laser spot, which is far smaller than that of the light diffraction limit spot of the direct laser writing setup. This work is useful for nanoscale fabrication and lithography by exploiting the far-field focusing light system.

  20. Impacts of Thermal Atomic Layer-Deposited AlN Passivation Layer on GaN-on-Si High Electron Mobility Transistors.

    PubMed

    Zhao, Sheng-Xun; Liu, Xiao-Yong; Zhang, Lin-Qing; Huang, Hong-Fan; Shi, Jin-Shan; Wang, Peng-Fei

    2016-12-01

    Thermal atomic layer deposition (ALD)-grown AlN passivation layer is applied on AlGaN/GaN-on-Si HEMT, and the impacts on drive current and leakage current are investigated. The thermal ALD-grown 30-nm amorphous AlN results in a suppressed off-state leakage; however, its drive current is unchanged. It was also observed by nano-beam diffraction method that thermal ALD-amorphous AlN layer barely enhanced the polarization. On the other hand, the plasma-enhanced chemical vapor deposition (PECVD)-deposited SiN layer enhanced the polarization and resulted in an improved drive current. The capacitance-voltage (C-V) measurement also indicates that thermal ALD passivation results in a better interface quality compared with the SiN passivation.

  1. On the Direct Detection of Dark Matter Annihilation

    DOE PAGES

    Cherry, John Francis Jr.; Frandsen, Mads T.; Shoemaker, Ian M.

    2015-06-12

    We investigate the direct detection phenomenology of a class of dark matter (DM) models in which DM does not directly interact with nuclei, but rather, the products of its annihilation do. When these annihilation products are very light compared to the DM mass, the scattering in direct detection experiments is controlled by relativistic kinematics. This results in a distinctive recoil spectrum, a nonstandard and/or even absent annual modulation, and the ability to probe DM masses as low as a ~ 10 MeV. Here, we use current LUX data to show that experimental sensitivity to thermal relic annihilation cross sections hasmore » already been reached in a class of models. Moreover, the compatibility of dark matter direct detection experiments can be compared directly in E min space without making assumptions about DM astrophysics, mass, or scattering form factors. Lastly, when DM has direct couplings to nuclei, the limit from annihilation to relativistic particlesin the Sun can be stronger than that of conventional nonrelativistic direct detection by more than 3 orders of magnitude for masses in a 2–7 GeV window.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    RF Kristensen; JF Beausang; DM DePoy

    Frequency selective surfaces (FSS) effectively filter electromagnetic radiation in the microwave band (1 mm to 100 mm). Interest exists in extending this technology to the near infrared (1 {micro}m to 10 {micro}m) for use as a filter of thermal radiation in thermophotovoltaic (TPV) direct energy conversion. This paper assesses the ability of FSS to meet the strict spectral performance requirements of a TPV system. Inherent parasitic absorption, which is the result of the induced currents in the FSS metallization, is identified as a significant obstacle to achieving high spectral performance.

  3. Progress in the planar CPn SOFC system design verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elangovan, S.; Hartvigsen, J.; Khandkar, A.

    1996-04-01

    SOFCo is developing a high efficiency, modular and scaleable planar SOFC module termed the CPn design. This design has been verified in a 1.4 kW module test operated directly on pipeline natural gas. The design features multistage oxidation of fuel wherein the fuel is consumed incrementally over several stages. High efficiency is achieved by uniform current density distribution per stage, which lowers the stack resistance. Additional benefits include thermal regulation and compactness. Test results from stack modules operating in pipeline natural gas are presented.

  4. Modular Aquatic Simulation System 1D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-04-19

    MASS1 simulates open channel hydrodynamics and transport in branched channel networks, using cross-section averaged forms of the continuity, momentum, and convection diffusion equations. Thermal energy transport (temperature), including meteorological influences is supported. The thermodynamics of total dissolved gas (TDG) can be directly simulated. MASS1 has been developed over the last 20 years. It is currently being used on DOE projects that require MASS1 to beopen source. Hence, the authors would like to distribute MASS1 in source form.

  5. Methods for slow axis beam quality improvement of high power broad area diode lasers

    NASA Astrophysics Data System (ADS)

    An, Haiyan; Xiong, Yihan; Jiang, Ching-Long J.; Schmidt, Berthold; Treusch, Georg

    2014-03-01

    For high brightness direct diode laser systems, it is of fundamental importance to improve the slow axis beam quality of the incorporated laser diodes regardless what beam combining technology is applied. To further advance our products in terms of increased brightness at a high power level, we must optimize the slow axis beam quality despite the far field blooming at high current levels. The later is caused predominantly by the built-in index step in combination with the thermal lens effect. Most of the methods for beam quality improvements reported in publications sacrifice the device efficiency and reliable output power. In order to improve the beam quality as well as maintain the efficiency and reliable output power, we investigated methods of influencing local heat generation to reduce the thermal gradient across the slow axis direction, optimizing the built-in index step and discriminating high order modes. Based on our findings, we have combined different methods in our new device design. Subsequently, the beam parameter product (BPP) of a 10% fill factor bar has improved by approximately 30% at 7 W/emitter without efficiency penalty. This technology has enabled fiber coupled high brightness multi-kilowatt direct diode laser systems. In this paper, we will elaborate on the methods used as well as the results achieved.

  6. Direct Room Temperature Welding and Chemical Protection of Silver Nanowire Thin Films for High Performance Transparent Conductors.

    PubMed

    Ge, Yongjie; Duan, Xidong; Zhang, Meng; Mei, Lin; Hu, Jiawen; Hu, Wei; Duan, Xiangfeng

    2018-01-10

    Silver nanowire (Ag-NW) thin films have emerged as a promising next-generation transparent electrode. However, the current Ag-NW thin films are often plagued by high NW-NW contact resistance and poor long-term stability, which can be largely attributed to the ill-defined polyvinylpyrrolidone (PVP) surface ligands and nonideal Ag-PVP-Ag contact at NW-NW junctions. Herein, we report a room temperature direct welding and chemical protection strategy to greatly improve the conductivity and stability of the Ag-NW thin films. Specifically, we use a sodium borohydride (NaBH 4 ) treatment process to thoroughly remove the PVP ligands and produce a clean Ag-Ag interface that allows direct welding of NW-NW junctions at room temperature, thus greatly improving the conductivity of the Ag-NW films, outperforming those obtained by thermal or plasmonic thermal treatment. We further show that, by decorating the as-formed Ag-NW thin film with a dense, hydrophobic dodecanethiol layer, the stability of the Ag-NW film can be greatly improved by 150-times compared with that of PVP-wrapped ones. Our studies demonstrate that a proper surface ligand design can effectively improve the conductivity and stability of Ag-NW thin films, marking an important step toward their applications in electronic and optoelectronic devices.

  7. Fabrication And Evaluation Of Sic/Sic Tubes With Various Fiber Architectures

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.; Fox, D. S.

    2003-01-01

    SiC/SiC composites are excellent material candidates for high temperature applications where the performance requirements are high strength, high creep-rupture resistance, high environmental durability, and high thermal conductivity. In the past, the NASA UEET program has demonstrated fabrication of high-performance SiC/SiC flat panels reinforced by Sylramic-iBN SiC fibers. Currently NASA UEET is scaling up this SiC/SiC system by fabrication of more complex shaped components using the same fiber type. This paper reports the effects of various fiber architectures on the processing, mechanical, and durability behavior of small-diameter 0.5" ID SiC/SiC tubes, which are potential sub-elements for leading edges and cooling channels in turbine vanes and blades. Nine different fiber architectures were utilized for construction of seamless tube preforms, from simple 2D jelly-rolling to complex braiding, pin-weaving, filament-winding and 3D orthogonal weaving with approximately 5% fibers in the thru-thickness direction. Using the BN interphase and Sic matrix processing steps established for the flat panels, SiC/SiC tubes were fabricated with wall thicknesses of approximately 60 mils and total fiber fractions of approximately 35%. The "D" split ring tests for hoop tensile properties, micro-structural examinations for relationship between fiber architecture formation and matrix infiltration, and the low-pressure burner rig tests for the high temperature durability under thru-thickness thermal gradient were conducted. The better matrix infiltration and higher hoop strength were achieved using the tri-axial braided and the three-float pin woven SiC/SiC tubes. In general, it needs not only higher hoop direction fibers but also axial direction fibers for the higher hoop strength and the better infiltration, respectively. These results are analyzed to offer general guidelines for selecting fiber pre-form architectures and SiC/SiC processes that maximize tube hoop strength, thru-thickness thermal conductivity, and burner-rig durability under a high thermal gradient.

  8. Diverse anisotropy of phonon transport in two-dimensional group IV-VI compounds: A comparative study

    NASA Astrophysics Data System (ADS)

    Qin, Guangzhao; Qin, Zhenzhen; Fang, Wu-Zhang; Zhang, Li-Chuan; Yue, Sheng-Ying; Yan, Qing-Bo; Hu, Ming; Su, Gang

    2016-05-01

    New classes of two-dimensional (2D) materials beyond graphene, including layered and non-layered, and their heterostructures, are currently attracting increasing interest due to their promising applications in nanoelectronics, optoelectronics and clean energy, where thermal transport is a fundamental physical parameter. In this paper, we systematically investigated the phonon transport properties of the 2D orthorhombic group IV-VI compounds of GeS, GeSe, SnS and SnSe by solving the Boltzmann transport equation (BTE) based on first-principles calculations. Despite their similar puckered (hinge-like) structure along the armchair direction as phosphorene, the four monolayer compounds possess diverse anisotropic properties in many aspects, such as phonon group velocity, Young's modulus and lattice thermal conductivity (κ), etc. Especially, the κ along the zigzag and armchair directions of monolayer GeS shows the strongest anisotropy while monolayer SnS and SnSe show almost isotropy in phonon transport. The origin of the diverse anisotropy is fully studied and the underlying mechanism is discussed in details. With limited size, the κ could be effectively lowered, and the anisotropy could be effectively modulated by nanostructuring, which would extend the applications to nanoscale thermoelectrics and thermal management. Our study offers fundamental understanding of the anisotropic phonon transport properties of 2D materials, and would be of significance for further study, modulation and applications in emerging technologies.

  9. Monte Carlo Modeling of Non-Local Electron Conduction in High Energy Density Plasmas

    NASA Astrophysics Data System (ADS)

    Chenhall, Jeffrey John

    The implicit SNB (iSNB) non-local multigroup thermal electron conduction method of Schurtz et. al. [Phys. Plasmas 7, 4238 (2000)] and Cao et. al. [Phys. Plasmas 22, 082308 (2015)] is adapted into an electron thermal transport Monte Carlo (ETTMC) transport method to better model higher order angular and long mean free path non-local effects. The ETTMC model is used to simulate the electron thermal transport within inertial confinement fusion (ICF) type problems. The new model aims to improve upon the currently used iSNB, in particular by using finite particle ranges in comparison to the exponential solution of a diffusion method and by improved higher order angular modeling. The new method has been implemented in the 1D LILAC and 2D DRACO multiphysics production codes developed by the University of Rochester Laboratory for Laser Energetics. The ETTMC model is compared to iSNB for several direct drive ICF type simulations: Omega shot 60303 a shock timing experiment, Omega shot 59529 a shock timing experiment, Omega shot 68951 a cryogenic target implosion and a NIF polar direct drive phase plate design. Overall, the ETTMC method performs at least as well as the iSNB method and predicts lower preheating ahead of the shock fronts. This research was supported by University of Rochester Laboratory for Laser Energetics, Sandia National Laboratories and the University of Wisconsin-Madison Foundation.

  10. Prostate thermal therapy with catheter-based ultrasound devices and MR thermal monitoring

    NASA Astrophysics Data System (ADS)

    Diederich, Chris J.; Nau, Will H.; Kinsey, Adam; Ross, Tony; Wootton, Jeff; Juang, Titania; Butts-Pauly, Kim; Ricke, Viola; Liu, Erin H.; Chen, Jing; Bouley, Donna M.; Van den Bosch, Maurice; Sommer, Graham

    2007-02-01

    Four types of transurethral applicators were devised for thermal ablation of prostate combined with MR thermal monitoring: sectored tubular transducer devices with directional heating patterns; planar and curvilinear devices with narrow heating patterns; and multi-sectored tubular devices capable of dynamic angular control without applicator movement. These devices are integrated with a 4 mm delivery catheter, incorporate an inflatable cooling balloon (10 mm OD) for positioning within the prostate and capable of rotation via an MR-compatible motor. Interstitial devices (2.4 mm OD) have been developed for percutaneous implantation with directional or dynamic angular control. In vivo experiments in canine prostate under MR temperature imaging were used to evaluate the heating technology and develop treatment control strategies. MR thermal imaging in a 0.5 T interventional MRI was used to monitor temperature and thermal dose in multiple slices through the target volume. Sectored tubular, planar, and curvilinear transurethral devices produce directional coagulation zones, extending 15-20 mm radial distance to the outer prostate capsule. Sequential rotation and modulated dwell time can conform thermal ablation to selected regions. Multi-sectored transurethral applicators can dynamically control the angular heating profile and target large regions of the gland in short treatment times without applicator manipulation. Interstitial implants with directional devices can be used to effectively ablate the posterior peripheral zone of the gland while protecting the rectum. The MR derived 52 °C and lethal thermal dose contours (t 43=240 min) allowed for real-time control of the applicators and effectively defined the extent of thermal damage. Catheter-based ultrasound devices, combined with MR thermal monitoring, can produce relatively fast and precise thermal ablation of prostate, with potential for treatment of cancer or BPH.

  11. Novel metallic alloys as phase change materials for heat storage in direct steam generation applications

    NASA Astrophysics Data System (ADS)

    Nieto-Maestre, J.; Iparraguirre-Torres, I.; Velasco, Z. Amondarain; Kaltzakorta, I.; Zubieta, M. Merchan

    2016-05-01

    Concentrating Solar Power (CSP) is one of the key electricity production renewable energy technologies with a clear distinguishing advantage: the possibility to store the heat generated during the sunny periods, turning it into a dispatchable technology. Current CSP Plants use an intermediate Heat Transfer Fluid (HTF), thermal oil or inorganic salt, to transfer heat from the Solar Field (SF) either to the heat exchanger (HX) unit to produce high pressure steam that can be leaded to a turbine for electricity production, or to the Thermal Energy Storage (TES) system. In recent years, a novel CSP technology is attracting great interest: Direct Steam Generation (DSG). The direct use of water/steam as HTF would lead to lower investment costs for CSP Plants by the suppression of the HX unit. Moreover, water is more environmentally friendly than thermal oils or salts, not flammable and compatible with container materials (pipes, tanks). However, this technology also has some important challenges, being one of the major the need for optimized TES systems. In DSG, from the exergy point of view, optimized TES systems based on two sensible heat TES systems (for preheating of water and superheating vapour) and a latent heat TES system for the evaporation of water (around the 70% of energy) is the preferred solution. This concept has been extensively tested [1, 2, 3] using mainly NaNO3 as latent heat storage medium. Its interesting melting temperature (Tm) of 306°C, considering a driving temperature difference of 10°C, means TES charging steam conditions of 107 bar at 316°C and discharging conditions of 81bar at 296°C. The average value for the heat of fusion (ΔHf) of NaNO3 from literature data is 178 J/g [4]. The main disadvantage of inorganic salts is their very low thermal conductivity (0.5 W/m.K) requiring sophisticated heat exchanging designs. The use of high thermal conductivity eutectic metal alloys has been recently proposed [5, 6, 7] as a feasible alternative. Tms of these proposed eutectic alloys are too high for currently available DSG solar fields, for instance the Mg49-Zn51 alloy melts at 342°C requiring saturated steam pressures above 160 bar to charge the TES unit. Being aware of this, novel eutectic metallic alloys have been designed reducing the Tms to the range between 285°C and 330°C (79bar and 145bar of charging steam pressure respectively) with ΔHfs between 150 and 170 J/g, and thus achieving metallic Phase Change Materials (PCM) suitable for the available DSG technologies.

  12. Alternative oxidation technologies for organic mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borduin, L.C.; Fewell, T.

    1998-07-01

    The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site (SRS), and direct chemical oxidation at Lawrence Livermore National Laboratory (LLNL). All three technologies are at advanced stages of development ormore » are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory (LBNL), and steam reforming, a commercial process being supported by the Department of Energy (DOE). Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented.« less

  13. Thermoelectric unipolar spin battery in a suspended carbon nanotube.

    PubMed

    Cao, Zhan; Fang, Tie-Feng; He, Wan-Xiu; Luo, Hong-Gang

    2017-04-26

    A quantum dot formed in a suspended carbon nanotube exposed to an external magnetic field is predicted to act as a thermoelectric unipolar spin battery which generates pure spin current. The built-in spin flip mechanism is a consequence of the spin-vibration interaction resulting from the interplay between the intrinsic spin-orbit coupling and the vibrational modes of the suspended carbon nanotube. On the other hand, utilizing thermoelectric effect, the temperature difference between the electron and the thermal bath to which the vibrational modes are coupled provides the driving force. We find that both magnitude and direction of the generated pure spin current are dependent on the strength of spin-vibration interaction, the sublevel configuration in dot, the temperatures of electron and thermal bath, and the tunneling rate between the dot and the pole. Moreover, in the linear response regime, the kinetic coefficient is non-monotonic in the temperature T and it reaches its maximum when [Formula: see text] is about one phonon energy. The existence of a strong intradot Coulomb interaction is irrelevant for our spin battery, provided that high-order cotunneling processes are suppressed.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Aladsair J.; Viswanathan, Vilayanur V.; Stephenson, David E.

    A robust performance-based cost model is developed for all-vanadium, iron-vanadium and iron chromium redox flow batteries. Systems aspects such as shunt current losses, pumping losses and thermal management are accounted for. The objective function, set to minimize system cost, allows determination of stack design and operating parameters such as current density, flow rate and depth of discharge (DOD). Component costs obtained from vendors are used to calculate system costs for various time frames. A 2 kW stack data was used to estimate unit energy costs and compared with model estimates for the same size electrodes. The tool has been sharedmore » with the redox flow battery community to both validate their stack data and guide future direction.« less

  15. Implementation and Simulation Results using Autonomous Aerobraking Development Software

    NASA Technical Reports Server (NTRS)

    Maddock, Robert W.; DwyerCianciolo, Alicia M.; Bowes, Angela; Prince, Jill L. H.; Powell, Richard W.

    2011-01-01

    An Autonomous Aerobraking software system is currently under development with support from the NASA Engineering and Safety Center (NESC) that would move typically ground-based operations functions to onboard an aerobraking spacecraft, reducing mission risk and mission cost. The suite of software that will enable autonomous aerobraking is the Autonomous Aerobraking Development Software (AADS) and consists of an ephemeris model, onboard atmosphere estimator, temperature and loads prediction, and a maneuver calculation. The software calculates the maneuver time, magnitude and direction commands to maintain the spacecraft periapsis parameters within design structural load and/or thermal constraints. The AADS is currently tested in simulations at Mars, with plans to also evaluate feasibility and performance at Venus and Titan.

  16. Signal and Noise in FET-Nanopore Devices.

    PubMed

    Parkin, William M; Drndić, Marija

    2018-02-23

    The combination of a nanopore with a local field-effect transistor (FET-nanopore), like a nanoribbon, nanotube, or nanowire, in order to sense single molecules translocating through the pore is promising for DNA sequencing at megahertz bandwidths. Previously, it was experimentally determined that the detection mechanism was due to local potential fluctuations that arise when an analyte enters a nanopore and constricts ion flow through it, rather than the theoretically proposed mechanism of direct charge coupling between the DNA and nanowire. However, there has been little discussion on the experimentally observed detection mechanism and its relation to the operation of real devices. We model the intrinsic signal and noise in such an FET-nanopore device and compare the results to the ionic current signal. The physical dimensions of DNA molecules limit the change in gate voltage on the FET to below 40 mV. We discuss the low-frequency flicker noise (<10 kHz), medium-frequency thermal noise (<100 kHz), and high-frequency capacitive noise (>100 kHz) in FET-nanopore devices. At bandwidths dominated by thermal noise, the signal-to-noise ratio in FET-nanopore devices is lower than in the ionic current signal. At high frequencies, where noise due to parasitic capacitances in the amplifier and chip is the dominant source of noise in ionic current measurements, high-transconductance FET-nanopore devices can outperform ionic current measurements.

  17. Limits to solar power conversion efficiency with applications to quantum and thermal systems

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1983-01-01

    An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.

  18. Micro-chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane

    NASA Astrophysics Data System (ADS)

    Taton, G.; Lagrange, D.; Conedera, V.; Renaud, L.; Rossi, C.

    2013-10-01

    We have developed a new nanothermite based polymeric electro-thermal initiator for non-contact ignition of a propellant. A reactive Al/CuO multilayer nanothermite resides on a 100 µm thick SU-8/PET (polyethyleneterephtalate) membrane to insulate the reactive layer from the silicon bulk substrate. When current is supplied to the initiator, the chemical reaction Al+CuO occurs and sparkles are spread to a distance of several millimeters. A micro-manufacturing process for fabricating the initiator is presented and the electrical behaviors of the ignition elements are also investigated. The characteristics of the initiator made on a 100 µm thick SU-8/PET membrane were compared to two bulk electro-thermal initiators: one on a silicon and one on a Pyrex substrate. The PET devices give 100% of Al/CuO ignition success for an electrical current >250 mA. Glass based reactive initiators give 100% of Al/CuO ignition success for an electrical current >500 mA. Reactive initiators directly on silicon cannot initiate even with a 4 A current. At low currents (<1 A), the initiation time is two orders of magnitude longer for Pyrex initiator compared to those obtained for PET initiator technology. We also observed that, the Al/CuO thermite film on PET membrane reacts within 1 ms (sparkles duration) whereas it reacts within 4 ms on Pyrex. The thermite reaction is 40 times greater in intensity using the PET substrate in comparison to Pyrex.

  19. Temperature Diffusion Distribution of Electric Wire Deteriorated by Overcurrent

    NASA Astrophysics Data System (ADS)

    Choi, Chung-Seog; Kim, Hyang-Kon; Kim, Dong-Woo; Lee, Ki-Yeon

    This study presents thermal diffusion distribution of the electric wires when overcurrent is supplied to copper wires. And then, this study intends to provide a basis of knowledge for analyzing the causes of electric accidents through hybrid technology. In the thermal image distribution analysis of the electric wire to which fusing current was supplied, it was found that less heat was accumulated in the thin wires because of easier heat dispersion, while more heat was accumulated in the thicker wires. The 3-dimensional thermal image analysis showed that heat distribution was concentrated at the center of the wire and the inclination of heat distribution was steep in the thicker wires. When 81A was supplied to 1.6mm copper wire for 500 seconds, the surface temperature of wire was maximum 46.68°C and minimum 30.87°C. It revealed the initial characteristics of insulation deterioration that generates white smoke without external deformation. In the analysis with stereoscopic microscope, the surface turned dark brown and rough with the increase of fusing current. Also, it was known that exfoliation occurred when wire melted down with 2 times the fusing current. With the increase of current, we found the number of primary arms of the dendrite structure to be increased and those of the secondary and tertiary arms to be decreased. Also, when the overcurrent reached twice the fusing current, it was found that columnar composition, observed in the cross sectional structure of molten wire, appeared and formed regular directivity. As described above, we could present the burning pattern and change in characteristics of insulation and conductor quantitatively. And we could not only minimize the analysis error by combining the information but also present the scientific basis in the analysis of causes of electric accidents, mediation of disputes on product liability concerning the electric products.

  20. Convection currents enhancement of the spring constant in optical tweezers

    NASA Astrophysics Data System (ADS)

    Zenteno-Hernández, J. A.; Gómez-Vieyra, A.; Torres-Hurtado, S. A.; Ramirez-San-Juan, J. C.; Ramos-García, R.

    2016-09-01

    In this work we demonstrate the increasing of the trap stiffness (spring constant) constant of an optical trap of particles suspended in water by laser-induced convection currents. These currents are the result of thermal gradients created by a light absorption in a thin layer of hydrogenated amorphous silicon (a:Si-H) deposited at the bottom of cell. Since convection currents (and therefore drag forces) are symmetric around the beam focus particles trapped by the beam are further contained. Around the focus the drag force is directed upwards and partially compensated by radiation pressure depending on the laser power increasing the stiffness of the optical trapping increases significatively so a particle trapped could dragged (by moving the translation stage leaving the beam fixed) at velocities as high as 90μm/s without escaping the trap, whereas with no a:Si-H film, the particle escapes from the trap at lower velocities (30μm/s).

  1. Room temperature thermal conductivity measurements of neat MOF-5 compacts with high pressure hydrogen and helium

    DOE PAGES

    Semelsberger, Troy Allen; Veenstra, Mike; Dixon, Craig

    2016-02-09

    Metal-organic frameworks (MOFs) are a highly porous crystalline material with potential in various applications including on-board vehicle hydrogen storage for fuel cell vehicles. The thermal conductivity of MOFs is an important parameter in the design and ultimate performance of an on-board hydrogen storage system. However, in-situ thermal conductivity measurements have not been previously reported. The present study reports room temperature thermal conductivity and thermal diffusivity measurements performed on neat MOF-5 cylindrical compacts (ρ = 0.4 g/mL) as a function of pressure (0.27–90 bar) and gas type (hydrogen and helium). The transient plane source technique was used to measure both themore » non-directional thermal properties (isotropic method) and the directional thermal properties (anisotropic method). High pressure measurements were made using our in-house built low-temperature, high pressure thermal conductivity sample cell. The intrinsic thermal properties of neat MOF-5 measured under vacuum were—Isotropic: k isotropic = 0.1319 W/m K, α isotropic = 0.4165 mm 2/s; Anisotropic: k axial = 0.1477 W/m K, k radial = 0.1218 W/m K, α axial = 0.5096 mm 2/s, and α radial = 0.4232 mm 2/s. The apparent thermal properties of neat MOF-5 increased with increasing hydrogen and helium pressure, with the largest increase occurring in the narrow pressure range of 0–10 bar and then monotonically asymptoting with increasing pressures up to around 90 bar. On average, a greater than two-fold enhancement in the apparent thermal properties was observed with neat MOF-5 in the presence of helium and hydrogen compared to the intrinsic values of neat MOF-5 measured under vacuum. The apparent thermal properties of neat MOF-5 measured with hydrogen were higher than those measured with helium, which were directly related to the gas-specific thermal properties of helium and hydrogen. Neat MOF-5 exhibited a small degree of anisotropy under all conditions measured with thermal conductivities and diffusivities in the axial direction being higher than those in the radial direction. As a result, the low temperature specific heat capacities of neat MOF-5 were also measured and reported for the temperature range of 93–313 K (–180–40 °C).« less

  2. Room temperature thermal conductivity measurements of neat MOF-5 compacts with high pressure hydrogen and helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semelsberger, Troy Allen; Veenstra, Mike; Dixon, Craig

    Metal-organic frameworks (MOFs) are a highly porous crystalline material with potential in various applications including on-board vehicle hydrogen storage for fuel cell vehicles. The thermal conductivity of MOFs is an important parameter in the design and ultimate performance of an on-board hydrogen storage system. However, in-situ thermal conductivity measurements have not been previously reported. The present study reports room temperature thermal conductivity and thermal diffusivity measurements performed on neat MOF-5 cylindrical compacts (ρ = 0.4 g/mL) as a function of pressure (0.27–90 bar) and gas type (hydrogen and helium). The transient plane source technique was used to measure both themore » non-directional thermal properties (isotropic method) and the directional thermal properties (anisotropic method). High pressure measurements were made using our in-house built low-temperature, high pressure thermal conductivity sample cell. The intrinsic thermal properties of neat MOF-5 measured under vacuum were—Isotropic: k isotropic = 0.1319 W/m K, α isotropic = 0.4165 mm 2/s; Anisotropic: k axial = 0.1477 W/m K, k radial = 0.1218 W/m K, α axial = 0.5096 mm 2/s, and α radial = 0.4232 mm 2/s. The apparent thermal properties of neat MOF-5 increased with increasing hydrogen and helium pressure, with the largest increase occurring in the narrow pressure range of 0–10 bar and then monotonically asymptoting with increasing pressures up to around 90 bar. On average, a greater than two-fold enhancement in the apparent thermal properties was observed with neat MOF-5 in the presence of helium and hydrogen compared to the intrinsic values of neat MOF-5 measured under vacuum. The apparent thermal properties of neat MOF-5 measured with hydrogen were higher than those measured with helium, which were directly related to the gas-specific thermal properties of helium and hydrogen. Neat MOF-5 exhibited a small degree of anisotropy under all conditions measured with thermal conductivities and diffusivities in the axial direction being higher than those in the radial direction. As a result, the low temperature specific heat capacities of neat MOF-5 were also measured and reported for the temperature range of 93–313 K (–180–40 °C).« less

  3. Substrate thermal conductivity controls the ability to manufacture microstructures via laser-induced direct write

    NASA Astrophysics Data System (ADS)

    Tomko, John A.; Olson, David H.; Braun, Jeffrey L.; Kelliher, Andrew P.; Kaehr, Bryan; Hopkins, Patrick E.

    2018-01-01

    In controlling the thermal properties of the surrounding environment, we provide insight into the underlying mechanisms driving the widely used laser direct write method for additive manufacturing. We find that the onset of silver nitrate reduction for the formation of direct write structures directly corresponds to the calculated steady-state temperature rises associated with both continuous wave and high-repetition rate, ultrafast pulsed laser systems. Furthermore, varying the geometry of the heat affected zone, which is controllable based on in-plane thermal diffusion in the substrate, and laser power, allows for control of the written geometries without any prior substrate preparation. These findings allow for the advance of rapid manufacturing of micro- and nanoscale structures with minimal material constraints through consideration of the laser-controllable thermal transport in ionic liquid/substrate media.

  4. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    NASA Astrophysics Data System (ADS)

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-01

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal .conditions.

  5. Research and Technology

    NASA Image and Video Library

    1998-01-09

    The Direct Gain Solar Thermal Engine was designed with no moving parts. The concept of Solar Thermal Propulsion Research uses focused solar energy from an inflatable concentrator (a giant magnifying glass) to heat a propellant (hydrogen) and allows thermal expansion through the nozzle for low thrust without chemical combustion. Energy limitations and propellant weight associated with traditional combustion engines are non-existant with this concept. The Direct Gain Solar Thermal Engine would be used for moving from a lower orbit to an upper synchronous orbit.

  6. Mars 2020 Entry, Descent, and Landing Instrumentation 2 (MEDLI2) Sensor Suite

    NASA Technical Reports Server (NTRS)

    Hwang, Helen; Wright, Henry; Kuhl, Chris; Schoenenberger, Mark; White, Todd; Karlgaard, Chris; Mahzari, Milad; Oishi, Tomo; Pennington, Steve; Trombetta, Nick; hide

    2017-01-01

    The Mars 2020 Entry, Descent, and Landing Instrumentation 2 (MEDLI2) sensor suite seeks to address the aerodynamic, aerothermodynamic, and thermal protection system (TPS) performance issues during atmospheric entry, descent, and landing of the Mars 2020 mission. Based on the highly successful instrumentation suite that flew on Mars Science Laboratory (MEDLI), the new sensor suite expands on the types of measurements and also seeks to answer questions not fully addressed by the previous mission. Sensor Package: MEDLI2 consists of 7 pressure transducers, 17 thermal plugs, 2 heat flux sensors, and one radiometer. The sensors are distributed across both the heatshield and backshell, unlike MEDLI (the first sensor suite), which was located solely on the heat-shield. The sensors will measure supersonic pressure on the forebody, a pressure measurement on the aftbody, near-surface and in-depth temperatures in the heatshield and backshell TPS materials, direct total heat flux on the aftbody, and direct radiative heating on the aftbody. Instrument Development: The supersonic pressure transducers, the direct heat flux sensors, and the radiometer all were tested during the development phase. The status of these sensors, including the piezo-resistive pressure sensors, will be presented. The current plans for qualification and calibration for all of the sensors will also be discussed. Post-Flight Data Analysis: Similar to MEDLI, the estimated flight trajectory will be reconstructed from the data. The aerodynamic parameters that will be reconstructed will be the axial force coefficient, freestream Mach number, base pressure, atmospheric density, and winds. The aerothermal quantities that will be determined are the heatshield and backshell aero-heating, turbulence transition across the heatshield, and TPS in-depth performance of PICA. By directly measuring the radiative and total heat fluxes on the back-shell, the convective portion of the heat flux will be estimated. The status of the current tools to perform the post-flight data analysis will be presented, along with plans for model improvements.

  7. A dc non-thermal atmospheric-pressure plasma microjet

    NASA Astrophysics Data System (ADS)

    Zhu, WeiDong; Lopez, Jose L.

    2012-06-01

    A direct current (dc), non-thermal, atmospheric-pressure plasma microjet is generated with helium/oxygen gas mixture as working gas. The electrical property is characterized as a function of the oxygen concentration and show distinctive regions of operation. Side-on images of the jet were taken to analyze the mode of operation as well as the jet length. A self-pulsed mode is observed before the transition of the discharge to normal glow mode. Optical emission spectroscopy is employed from both end-on and side-on along the jet to analyze the reactive species generated in the plasma. Line emissions from atomic oxygen (at 777.4 nm) and helium (at 706.5 nm) were studied with respect to the oxygen volume percentage in the working gas, flow rate and discharge current. Optical emission intensities of Cu and OH are found to depend heavily on the oxygen concentration in the working gas. Ozone concentration measured in a semi-confined zone in front of the plasma jet is found to be from tens to ˜120 ppm. The results presented here demonstrate potential pathways for the adjustment and tuning of various plasma parameters such as reactive species selectivity and quantities or even ultraviolet emission intensities manipulation in an atmospheric-pressure non-thermal plasma source. The possibilities of fine tuning these plasma species allows for enhanced applications in health and medical related areas.

  8. Using the NASTRAN Thermal Analyzer to simulate a flight scientific instrument package

    NASA Technical Reports Server (NTRS)

    Lee, H.-P.; Jackson, C. E., Jr.

    1974-01-01

    The NASTRAN Thermal Analyzer has proven to be a unique and useful tool for thermal analyses involving large and complex structures where small, thermally induced deformations are critical. Among its major advantages are direct grid point-to-grid point compatibility with large structural models; plots of the model that may be generated for both conduction and boundary elements; versatility of applying transient thermal loads especially to repeat orbital cycles; on-line printer plotting of temperatures and rate of temperature changes as a function of time; and direct matrix input to solve linear differential equations on-line. These features provide a flexibility far beyond that available in most finite-difference thermal analysis computer programs.

  9. Incorporating population-level variation in thermal performance into predictions of geographic range shifts.

    PubMed

    Angert, Amy L; Sheth, Seema N; Paul, John R

    2011-11-01

    Determining how species' geographic ranges are governed by current climates and how they will respond to rapid climatic change poses a major biological challenge. Geographic ranges are often spatially fragmented and composed of genetically differentiated populations that are locally adapted to different thermal regimes. Tradeoffs between different aspects of thermal performance, such as between tolerance to high temperature and tolerance to low temperature or between maximal performance and breadth of performance, suggest that the performance of a given population will be a subset of that of the species. Therefore, species-level projections of distribution might overestimate the species' ability to persist at any given location. However, current approaches to modeling distributions often do not consider variation among populations. Here, we estimated genetically-based differences in thermal performance curves for growth among 12 populations of the scarlet monkeyflower, Mimulus cardinalis, a perennial herb of western North America. We inferred the maximum relative growth rate (RGR(max)), temperature optimum (T(opt)), and temperature breadth (T(breadth)) for each population. We used these data to test for tradeoffs in thermal performance, generate mechanistic population-level projections of distribution under current and future climates, and examine how variation in aspects of thermal performance influences forecasts of range shifts. Populations differed significantly in RGR(max) and had variable, but overlapping, estimates of T(opt) and T(breadth). T(opt) declined with latitude and increased with temperature of origin, consistent with tradeoffs between performances at low temperatures versus those at high temperatures. Further, T(breadth) was negatively related to RGR(max), as expected for a specialist-generalist tradeoff. Parameters of the thermal performance curve influenced properties of projected distributions. For both current and future climates, T(opt) was negatively related to latitudinal position, while T(breadth) was positively related to projected range size. The magnitude and direction of range shifts also varied with T(opt) and T(breadth), but sometimes in unexpected ways. For example, the fraction of habitat remaining suitable increased with T(opt) but decreased with T(breadth). Northern limits of all populations were projected to shift north, but the magnitude of shift decreased with T(opt) and increased with T(breadth). Median latitude was projected to shift north for populations with high T(breadth) and low T(opt), but south for populations with low T(breadth) and high T(opt). Distributions inferred by integrating population-level projections did not differ from a species-level projection that ignored variation among populations. However, the species-level approach masked the potential array of divergent responses by populations that might lead to genotypic sorting within the species' range. Thermal performance tradeoffs among populations within the species' range had important, but sometimes counterintuitive, effects on projected responses to climatic change. © The Author 2011. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.

  10. Design of a cryogenic system for a 20m direct current superconducting MgB2 and YBCO power cable

    NASA Astrophysics Data System (ADS)

    Cheadle, Michael J.; Bromberg, Leslie; Jiang, Xiaohua; Glowacki, Bartek; Zeng, Rong; Minervini, Joseph; Brisson, John

    2014-01-01

    The Massachusetts Institute of Technology, the University of Cambridge in the United Kingdom, and Tsinghua University in Beijing, China, are collaborating to design, construct, and test a 20 m, direct current, superconducting MgB2 and YBCO power cable. The cable will be installed in the State Key Laboratory of Power Systems at Tsinghua University in Beijing beginning in 2013. In a previous paper [1], the cryogenic system was briefly discussed, focusing on the cryogenic issues for the superconducting cable. The current paper provides a detailed discussion of the design, construction, and assembly of the cryogenic system and its components. The two-stage system operates at nominally 80 K and 20 K with the primary cryogen being helium gas. The secondary cryogen, liquid nitrogen, is used to cool the warm stage of binary current leads. The helium gas provides cooling to both warm and cold stages of the rigid cryostat housing the MgB2 and YBCO conductors, as well as the terminations of the superconductors at the end of the current leads. A single cryofan drives the helium gas in both stages, which are thermally isolated with a high effectiveness recuperator. Refrigeration for the helium circuit is provided by a Sumitomo RDK415 cryocooler. This paper focuses on the design, construction, and assembly of the cryostat, the recuperator, and the current leads with associated superconducting cable terminations.

  11. Dissipation and particle energization in moderate to low beta turbulent plasma via PIC simulations

    DOE PAGES

    Makwana, Kirit; Li, Hui; Guo, Fan; ...

    2017-05-30

    Here, we simulate decaying turbulence in electron-positron pair plasmas using a fully-kinetic particle-in-cell (PIC) code. We run two simulations with moderate-to-low plasma β (the ratio of thermal pressure to magnetic pressure). The energy decay rate is found to be similar in both cases. The perpendicular wave-number spectrum of magnetic energy shows a slope betweenmore » $${k}_{\\perp }^{-1.3}$$ and $${k}_{\\perp }^{-1.1}$$, where the perpendicular (⊥) and parallel (∥) directions are defined with respect to the magnetic field. The particle kinetic energy distribution function shows the formation of a non-thermal feature in the case of lower plasma β, with a slope close to E-1. The correlation between thin turbulent current sheets and Ohmic heating by the dot product of electric field (E) and current density (J) is investigated. By heating the parallel E∥ centerdot J∥ term dominates the perpendicular E⊥ centerdot J⊥ term. Regions of strong E∥ centerdot J∥ are spatially well-correlated with regions of intense current sheets, which also appear correlated with regions of strong E∥ in the low β simulation, suggesting an important role of magnetic reconnection in the dissipation of low β plasma turbulence.« less

  12. Hollow cathode heater development for the Space Station plasma contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1993-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater design. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Three heaters have been tested to date using direct current power supplies. Performance testing was conducted to determine input current and power requirements for achieving activation and ignition temperatures, single unit operational repeatability, and unit-to-unit operational repeatability. Comparisons of performance testing data at the ignition input current level for the three heaters show the unit-to-unit repeatability of input power and tube temperature near the cathode tip to be within 3.5 W and 44 degrees C, respectively. Cyclic testing was then conducted to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Two additional heaters were subsequently fabricated and have completed 3178 cycles to date in an on-going test.

  13. Dissipation and particle energization in moderate to low beta turbulent plasma via PIC simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makwana, Kirit; Li, Hui; Guo, Fan

    Here, we simulate decaying turbulence in electron-positron pair plasmas using a fully-kinetic particle-in-cell (PIC) code. We run two simulations with moderate-to-low plasma β (the ratio of thermal pressure to magnetic pressure). The energy decay rate is found to be similar in both cases. The perpendicular wave-number spectrum of magnetic energy shows a slope betweenmore » $${k}_{\\perp }^{-1.3}$$ and $${k}_{\\perp }^{-1.1}$$, where the perpendicular (⊥) and parallel (∥) directions are defined with respect to the magnetic field. The particle kinetic energy distribution function shows the formation of a non-thermal feature in the case of lower plasma β, with a slope close to E-1. The correlation between thin turbulent current sheets and Ohmic heating by the dot product of electric field (E) and current density (J) is investigated. By heating the parallel E∥ centerdot J∥ term dominates the perpendicular E⊥ centerdot J⊥ term. Regions of strong E∥ centerdot J∥ are spatially well-correlated with regions of intense current sheets, which also appear correlated with regions of strong E∥ in the low β simulation, suggesting an important role of magnetic reconnection in the dissipation of low β plasma turbulence.« less

  14. Thermal diffusivity measurement of GaAs/AlGaAs thin-film structures

    NASA Astrophysics Data System (ADS)

    Chen, G.; Tien, C. L.; Wu, X.; Smith, J. S.

    1994-05-01

    This work develops a new measurement technique that determines the thermal diffusivity of thin films in both parallel and perpendicular directions, and presents experimental results on the thermal diffusivity of GaAs/AlGaAs-based thin-film structures. In the experiment, a modulated laser source heats up the sample and a fast-response temperature sensor patterned directly on the sample picks up the thermal response. From the phase delay between the heating source and the temperature sensor, the thermal diffusivity in either the parallel or perpendicular direction is obtained depending on the experimental configuration. The experiment is performed on a molecular-beam-epitaxy grown vertical-cavity surface-emitting laser (VCSEL) structure. The substrates of the samples are etched away to eliminate the effects of the interface between the film and the substrate. The results show that the thermal diffusivity of the VCSEL structure is 5-7 times smaller than that of its corresponding bulk media. The experiments also provide evidence on the anisotropy of thermal diffusivity caused solely by the effects of interfaces and boundaries of thin films.

  15. Nanoscale Graphene Disk: A Natural Functionally Graded Material–How is Fourier’s Law Violated along Radius Direction of 2D Disk

    PubMed Central

    Yang, Nuo; Hu, Shiqian; Ma, Dengke; Lu, Tingyu; Li, Baowen

    2015-01-01

    In this Paper, we investigate numerically and analytically the thermal conductivity of nanoscale graphene disks (NGDs), and discussed the possibility to realize functionally graded material (FGM) with only one material, NGDs. Different from previous studies on divergence/non-diffusive of thermal conductivity in nano-structures with different size, we found a novel non-homogeneous (graded) thermal conductivity along the radius direction in a single nano-disk structure. We found that, instead of a constant value, the NGD has a graded thermal conductivity along the radius direction. That is, Fourier’s law of heat conduction is not valid in two dimensional graphene disk structures Moreover, we show the dependent of NGDs’ thermal conductivity on radius and temperature. Our study might inspire experimentalists to develop NGD based versatile FGMs, improve understanding of the heat removal of hot spots on chips, and enhance thermoelectric energy conversion efficiency by two dimensional disk with a graded thermal conductivity. PMID:26443206

  16. Nanoscale Graphene Disk: A Natural Functionally Graded Material-How is Fourier's Law Violated along Radius Direction of 2D Disk.

    PubMed

    Yang, Nuo; Hu, Shiqian; Ma, Dengke; Lu, Tingyu; Li, Baowen

    2015-10-07

    In this Paper, we investigate numerically and analytically the thermal conductivity of nanoscale graphene disks (NGDs), and discussed the possibility to realize functionally graded material (FGM) with only one material, NGDs. Different from previous studies on divergence/non-diffusive of thermal conductivity in nano-structures with different size, we found a novel non-homogeneous (graded) thermal conductivity along the radius direction in a single nano-disk structure. We found that, instead of a constant value, the NGD has a graded thermal conductivity along the radius direction. That is, Fourier's law of heat conduction is not valid in two dimensional graphene disk structures Moreover, we show the dependent of NGDs' thermal conductivity on radius and temperature. Our study might inspire experimentalists to develop NGD based versatile FGMs, improve understanding of the heat removal of hot spots on chips, and enhance thermoelectric energy conversion efficiency by two dimensional disk with a graded thermal conductivity.

  17. The effects of solar radiation on thermal comfort.

    PubMed

    Hodder, Simon G; Parsons, Ken

    2007-01-01

    The aim of this study was to investigate the relationship between simulated solar radiation and thermal comfort. Three studies investigated the effects of (1) the intensity of direct simulated solar radiation, (2) spectral content of simulated solar radiation and (3) glazing type on human thermal sensation responses. Eight male subjects were exposed in each of the three studies. In Study 1, subjects were exposed to four levels of simulated solar radiation: 0, 200, 400 and 600 Wm(-2). In Study 2, subjects were exposed to simulated solar radiation with four different spectral contents, each with a total intensity of 400 Wm(-2) on the subject. In Study 3, subjects were exposed through glass to radiation caused by 1,000 Wm(-2) of simulated solar radiation on the exterior surface of four different glazing types. The environment was otherwise thermally neutral where there was no direct radiation, predicted mean vote (PMV)=0+/-0.5, [International Standards Organisation (ISO) standard 7730]. Ratings of thermal sensation, comfort, stickiness and preference and measures of mean skin temperature (t(sk)) were taken. Increase in the total intensity of simulated solar radiation rather than the specific wavelength of the radiation is the critical factor affecting thermal comfort. Thermal sensation votes showed that there was a sensation scale increase of 1 scale unit for each increase of direct radiation of around 200 Wm(-2). The specific spectral content of the radiation has no direct effect on thermal sensation. The results contribute to models for determining the effects of solar radiation on thermal comfort in vehicles, buildings and outdoors.

  18. Development of a direct push based in-situ thermal conductivity measurement system

    NASA Astrophysics Data System (ADS)

    Chirla, Marian Andrei; Vienken, Thomas; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    Heat pump systems are commonly utilized in Europe, for the exploitation of the shallow geothermal potential. To guarantee a sustainable use of the geothermal heat pump systems by saving resources and minimizing potential negative impacts induced by temperature changes within soil and groundwater, new geothermal exploration methods and tools are required. The knowledge of the underground thermal properties is a necessity for a correct and optimum design of borehole heat exchangers. The most important parameter that indicates the performance of the systems is thermal conductivity of the ground. Mapping the spatial variability of thermal conductivity, with high resolution in the shallow subsurface for geothermal purposes, requires a high degree of technical effort to procure adequate samples for thermal analysis. A collection of such samples from the soil can disturb sample structure, so great care must be taken during collection to avoid this. Factors such as transportation and sample storage can also influence measurement results. The use of technologies like Thermal Response Test (TRT) require complex mechanical and electrical systems for convective heat transport in the subsurface and longer monitoring times, often three days. Finally, by using thermal response tests, often only one integral value is obtained for the entire coupled subsurface with the borehole heat exchanger. The common thermal conductivity measurement systems (thermal analyzers) can perform vertical thermal conductivity logs only with the aid of sample procurement, or by integration into a drilling system. However, thermal conductivity measurements using direct push with this type of probes are not possible, due to physical and mechanical limitations. Applying vertical forces using direct push technology, in order to penetrate the shallow subsurface, can damage the probe and the sensors systems. The aim of this study is to develop a new, robust thermal conductivity measurement probe, for direct push based approaches, called Thermal Conductivity Profiler (TCP), that operates based on the principles of a hollow cylindrical geometry heat source. To determinate thermal conductivity in situ, the transient temperature at the middle of the probe and electrical power dissipation is measured. At the same time, this work presents laboratory results obtained when this novel hollow cylindrical probe system was tested on different materials for calibration. By using the hollow cylindrical probe, the thermal conductivity results have an error of less than 2.5% error for solid samples (Teflon, Agar jelly, and Nylatron). These findings are useful to achieve a proper thermal energy balance in the shallow subsurface by using direct push technology and TCP. By providing information of layers with high thermal conductivity, suitable for thermal storage capability, can be used determine borehole heat exchanger design and, therefore, determine geothermal heat pump architecture.

  19. Solution accuracies of finite element reentry heat transfer and thermal stress analyses of Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1988-01-01

    Accuracies of solutions (structural temperatures and thermal stresses) obtained from different thermal and structural FEMs set up for the Space Shuttle Orbiter (SSO) are compared and discussed. For studying the effect of element size on the solution accuracies of heat-transfer and thermal-stress analyses of the SSO, five SPAR thermal models and five NASTRAN structural models were set up for wing midspan bay 3. The structural temperature distribution over the wing skin (lower and upper) surface of one bay was dome shaped and induced more severe thermal stresses in the chordwise direction than in the spanwise direction. The induced thermal stresses were extremely sensitive to slight variation in structural temperature distributions. Both internal convention and internal radiation were found to have equal effects on the SSO.

  20. On-line thermal dependence study of the main solar cell electrical photoconversion parameters using low thermal emission lamps.

    PubMed

    Gallardo, J J; Navas, J; Alcántara, R; Fernández-Lorenzo, C; Aguilar, T; Martín-Calleja, J

    2012-06-01

    This paper presents a non-conventional methodology and an instrumental system to measure the effect of temperature on the photovoltaic properties of solar cells. The system enables the direct measurement of the evolution of open-circuit voltage and short-circuit current intensity in relation to a continuously decreasing temperature. The system uses a high-intensity white light-emitting diode light source with low emissions of radiation in the infrared region of the electromagnetic spectrum, resulting in a reduced heating of the photovoltaic devices by the irradiation source itself. To check the goodness of the system and the methodology designed, several measurements were performed with monocrystalline silicon solar cells, dye-sensitized solar cells, and thin-film amorphous silicon solar cells, showing similar tendencies to those reported in the literature.

  1. Electro-thermal battery model identification for automotive applications

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Yurkovich, S.; Guezennec, Y.; Yurkovich, B. J.

    This paper describes a model identification procedure for identifying an electro-thermal model of lithium ion batteries used in automotive applications. The dynamic model structure adopted is based on an equivalent circuit model whose parameters are scheduled on the state-of-charge, temperature, and current direction. Linear spline functions are used as the functional form for the parametric dependence. The model identified in this way is valid inside a large range of temperatures and state-of-charge, so that the resulting model can be used for automotive applications such as on-board estimation of the state-of-charge and state-of-health. The model coefficients are identified using a multiple step genetic algorithm based optimization procedure designed for large scale optimization problems. The validity of the procedure is demonstrated experimentally for an A123 lithium ion iron-phosphate battery.

  2. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyzer (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, Douglas W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current C development and cutting edge research. The Thermal Evolved Gas Analyzer (MGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil.

  3. Thermal research of infrared sight thermoelectric cooler control circuit under temperature environment

    NASA Astrophysics Data System (ADS)

    Gao, Youtang; Ding, Huan; Xue, Xiao; Xu, Yuan; Chang, Benkang

    2010-10-01

    Testing device TST-05B, which is suitable for adaptability test of semiconductor devices, electronic products and other military equipment under the condition of the surrounding air temperature rapidly changing, is used here for temperature shock test.Thermal stability technology of thermoelectric cooler control circuit infrared sight under temperature shock is studied in this paper. Model parameters and geometry is configured for ADI devices (ADN8830), welding material and PCB which are used in system. Thermoelectric cooler control circuit packaged by CSP32 distribution are simulated and analyzed by thermal shock and waveform through engineering finite element analysis software ANSYYS. Because solders of the whole model have much stronger stress along X direction than that of other directions, initial stress constraints along X direction are primarily considered when the partial model of single solder is imposed by thermal load. When absolute thermal loads stresses of diagonal nodes with maximum strains are separated from the whole model, interpolation is processed according to thermal loads circulation. Plastic strains and thermal stresses of nodes in both sides of partial model are obtained. The analysis results indicates that with thermal load circulation, maximum forces of each circulation along X direction are increasingly enlarged and with the accumulation of plastic strains of danger point, at the same time structural deformation and the location of maximum equivalent plastic strain in the solder joints at the first and eighth, the composition will become invalid in the end.

  4. Effect of microscopic modeling of skin in electrical and thermal analysis of transcranial direct current stimulation

    NASA Astrophysics Data System (ADS)

    Gomez-Tames, Jose; Sugiyama, Yukiya; Laakso, Ilkka; Tanaka, Satoshi; Koyama, Soichiro; Sadato, Norihiro; Hirata, Akimasa

    2016-12-01

    Transcranial direct current stimulation (tDCS) is a neuromodulation scheme where a small current is delivered to the brain via two electrodes attached to the scalp. The electrode design is an important topic, not only as regards efficacy, but also from a safety perspective, as tDCS may be related to skin lesions that are sometimes observed after stimulation. Previous computational models of tDCS have omitted the effects of microscopic structures in the skin, and the different soak conditions of the electrodes, and model validation has been limited. In this study, multiphysics and multiscale analysis are proposed to demonstrate the importance of microscopic modeling of the skin, in order to clarify the effects of the internal electric field, and to examine temperature elevation around the electrodes. This novel microscopic model of the skin layer took into consideration the effect of saline/water penetration in hair follicles and sweat ducts on the field distribution around the electrodes. The temperature elevation in the skin was then computed by solving the bioheat equation. Also, a multiscale model was introduced to account for macroscopic and microscopic tissues of the head and skin, which was validated by measurement of the head resistance during tDCS. As a result, the electric field in the microscopic model of the skin was less localized when the follicles/ducts were filled with saline instead of hair or tap water. Temperature elevation was also lessened with saline, in comparison with other substances. Saline, which may penetrate the hair follicles and sweat ducts, suppressed the field concentration around the electrodes. For conventional magnitudes of current injection, and a head resistance of less than 10 kΩ, the temperature elevation in the skin when using saline-soaked electrodes was low, less than 0.1 °C, and unlikely to cause adverse thermal effects.

  5. Significantly Enhanced Dielectric Performances and High Thermal Conductivity in Poly(vinylidene fluoride)-Based Composites Enabled by SiC@SiO2 Core-Shell Whiskers Alignment.

    PubMed

    He, Dalong; Wang, Yao; Song, Silong; Liu, Song; Deng, Yuan

    2017-12-27

    Design of composites with ordered fillers arrangement results in anisotropic performances with greatly enhanced properties along a specific direction, which is a powerful tool to optimize physical properties of composites. Well-aligned core-shell SiC@SiO 2 whiskers in poly(vinylidene fluoride) (PVDF) matrix has been achieved via a modified spinning approach. Because of the high aspect ratio of SiC whiskers, strong anisotropy and significant enhancement in dielectric constant were observed with permittivity 854 along the parallel direction versus 71 along the perpendicular direction at 20 vol % SiC@SiO 2 loading, while little increase in dielectric loss was found due to the highly insulating SiO 2 shell. The anisotropic dielectric behavior of the composite is perfectly understood macroscopically to have originated from anisotropic intensity of interfacial polarization based on an equivalent circuit model of two parallel RC circuits connected in series. Furthermore, finite element simulations on the three-dimensional distribution of local electric field, polarization, and leakage current density in oriented SiC@SiO 2 /PVDF composites under different applied electrical field directions unambiguously revealed that aligned core-shell SiC@SiO 2 whiskers with a high aspect ratio significantly improved dielectric performances. Importantly, the thermal conductivity of the composite was synchronously enhanced over 7 times as compared to that of PVDF matrix along the parallel direction at 20 vol % SiC@SiO 2 whiskers loading. This study highlights an effective strategy to achieve excellent comprehensive properties for high-k dielectrics.

  6. Effects of Electrical Current and External Stress on the Electromigration of Intermetallic Compounds Between the Flip-Chip Solder and Copper Substrate

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Jhen; Lee, Yue-Lin; Wu, Ti-Yuan; Chen, Tzu-Ching; Hsu, Chih-Hui; Lin, Ming-Tzer

    2018-01-01

    This study investigated the effects of electric current and external stress on electromigration of intermetallic compounds (IMC) between solder and copper substrate. Different samples were tested under three different sets of conditions: (1) thermal aging only, (2) thermal aging with electric current ,where resistivity changes were measured using four-point probe measurements, (3) thermal aging with electric current and external stress provided using a four-point bending apparatus. The micro-structural changes in the samples were observed. The results were closely examined; particularly the coupling effect of electric current and external stress to elucidate the electromigration mechanism, as well as the formation of IMC in the samples. For thermal-aging-only samples, the IMC growth mechanism was controlled by grain boundary diffusion. Meanwhile, for thermal aging and applied electric current samples, the IMC growth mechanism was dominated by volume diffusion and interface reaction. Lastly, the IMC growth mechanism in the electric current and external stress group was dominated by grain boundary diffusion with grain growth. The results reveal that the external stress/strain and electric current play a significant role in the electromigration of copper-tin IMC. The samples exposed to tensile stress have reduced electromigration, while those subjected under compressive stress have enhanced electromigration.

  7. Thermal energy and charge currents in multi-terminal nanorings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Tobias; Konrad-Zuse-Zentrum für Informationstechnik Berlin, 14195 Berlin; Kreisbeck, Christoph

    2016-06-15

    We study in experiment and theory thermal energy and charge transfer close to the quantum limit in a ballistic nanodevice, consisting of multiply connected one-dimensional electron waveguides. The fabricated device is based on an AlGaAs/GaAs heterostructure and is covered by a global top-gate to steer the thermal energy and charge transfer in the presence of a temperature gradient, which is established by a heating current. The estimate of the heat transfer by means of thermal noise measurements shows the device acting as a switch for charge and thermal energy transfer. The wave-packet simulations are based on the multi-terminal Landauer-Büttiker approachmore » and confirm the experimental finding of a mode-dependent redistribution of the thermal energy current, if a scatterer breaks the device symmetry.« less

  8. Fiber Bragg grating temperature sensors in a 6.5-MW generator exciter bridge and the development and simulation of its thermal model.

    PubMed

    de Morais Sousa, Kleiton; Probst, Werner; Bortolotti, Fernando; Martelli, Cicero; da Silva, Jean Carlos Cardozo

    2014-09-05

    This work reports the thermal modeling and characterization of a thyristor. The thyristor is used in a 6.5-MW generator excitation bridge. Temperature measurements are performed using fiber Bragg grating (FBG) sensors. These sensors have the benefits of being totally passive and immune to electromagnetic interference and also multiplexed in a single fiber. The thyristor thermal model consists of a second order equivalent electric circuit, and its power losses lead to an increase in temperature, while the losses are calculated on the basis of the excitation current in the generator. Six multiplexed FBGs are used to measure temperature and are embedded to avoid the effect of the strain sensitivity. The presented results show a relationship between field current and temperature oscillation and prove that this current can be used to determine the thermal model of a thyristor. The thermal model simulation presents an error of 1.5 °C, while the FBG used allows for the determination of the thermal behavior and the field current dependence. Since the temperature is a function of the field current, the corresponding simulation can be used to estimate the temperature in the thyristors.

  9. Fiber Bragg Grating Temperature Sensors in a 6.5-MW Generator Exciter Bridge and the Development and Simulation of Its Thermal Model

    PubMed Central

    de Morais Sousa, Kleiton; Probst, Werner; Bortolotti, Fernando; Martelli, Cicero; da Silva, Jean Carlos Cardozo

    2014-01-01

    This work reports the thermal modeling and characterization of a thyristor. The thyristor is used in a 6.5-MW generator excitation bridge. Temperature measurements are performed using fiber Bragg grating (FBG) sensors. These sensors have the benefits of being totally passive and immune to electromagnetic interference and also multiplexed in a single fiber. The thyristor thermal model consists of a second order equivalent electric circuit, and its power losses lead to an increase in temperature, while the losses are calculated on the basis of the excitation current in the generator. Six multiplexed FBGs are used to measure temperature and are embedded to avoid the effect of the strain sensitivity. The presented results show a relationship between field current and temperature oscillation and prove that this current can be used to determine the thermal model of a thyristor. The thermal model simulation presents an error of 1.5 °C, while the FBG used allows for the determination of the thermal behavior and the field current dependence. Since the temperature is a function of the field current, the corresponding simulation can be used to estimate the temperature in the thyristors. PMID:25198007

  10. Substrate thermal conductivity controls the ability to manufacture microstructures via laser-induced direct write

    DOE PAGES

    Tomko, John A.; Olson, David H.; Braun, Jeffrey L.; ...

    2018-01-30

    In controlling the thermal properties of the surrounding environment, we provide insight into the underlying mechanisms driving the widely used laser direct write method for additive manufacturing. In this study, we find that the onset of silver nitrate reduction for the formation of direct write structures directly corresponds to the calculated steady-state temperature rises associated with both continuous wave and high-repetition rate, ultrafast pulsed laser systems. Furthermore, varying the geometry of the heat affected zone, which is controllable based on in-plane thermal diffusion in the substrate, and laser power, allows for control of the written geometries without any prior substratemore » preparation. In conclusion, these findings allow for the advance of rapid manufacturing of micro- and nanoscale structures with minimal material constraints through consideration of the laser-controllable thermal transport in ionic liquid/substrate media.« less

  11. Substrate thermal conductivity controls the ability to manufacture microstructures via laser-induced direct write

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomko, John A.; Olson, David H.; Braun, Jeffrey L.

    In controlling the thermal properties of the surrounding environment, we provide insight into the underlying mechanisms driving the widely used laser direct write method for additive manufacturing. In this study, we find that the onset of silver nitrate reduction for the formation of direct write structures directly corresponds to the calculated steady-state temperature rises associated with both continuous wave and high-repetition rate, ultrafast pulsed laser systems. Furthermore, varying the geometry of the heat affected zone, which is controllable based on in-plane thermal diffusion in the substrate, and laser power, allows for control of the written geometries without any prior substratemore » preparation. In conclusion, these findings allow for the advance of rapid manufacturing of micro- and nanoscale structures with minimal material constraints through consideration of the laser-controllable thermal transport in ionic liquid/substrate media.« less

  12. 30 CFR 1206.356 - How do I calculate royalty or fees due on geothermal resources I use for direct use purposes?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... energy source will be based on the amount of thermal energy that would otherwise be used by the direct use facility in place of the geothermal resource. That amount of thermal energy (in Btu) displaced by... frequency of computing and accumulating the amount of thermal energy displaced will be determined and...

  13. 30 CFR 1206.356 - How do I calculate royalty or fees due on geothermal resources I use for direct use purposes?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... energy source will be based on the amount of thermal energy that would otherwise be used by the direct use facility in place of the geothermal resource. That amount of thermal energy (in Btu) displaced by... frequency of computing and accumulating the amount of thermal energy displaced will be determined and...

  14. 30 CFR 1206.356 - How do I calculate royalty or fees due on geothermal resources I use for direct use purposes?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... energy source will be based on the amount of thermal energy that would otherwise be used by the direct use facility in place of the geothermal resource. That amount of thermal energy (in Btu) displaced by... frequency of computing and accumulating the amount of thermal energy displaced will be determined and...

  15. Systems Analysis of GPS Electrical Power System Redesign

    DTIC Science & Technology

    1995-12-01

    Table 8 - System Efficiencies & Multipliers for Solar Direct Model (12:102; 15:864) Component Efficiency AMTEC 0.180 Receiver and Thermal Energy Storage...and low temperatures of the working fluid. Extreme high and low temperatures provide a greater efficiency , but require extensive thermal control and...direct conversion category. The Alkali Metal Thermal -to-Electric Converter ( AMTEC ) shows mass and cost savings due to efficiencies significantly higher

  16. Study of tunneling transport in Si-based tunnel field-effect transistors with ON current enhancement utilizing isoelectronic trap

    NASA Astrophysics Data System (ADS)

    Mori, Takahiro; Morita, Yukinori; Miyata, Noriyuki; Migita, Shinji; Fukuda, Koichi; Mizubayashi, Wataru; Masahara, Meishoku; Yasuda, Tetsuji; Ota, Hiroyuki

    2015-02-01

    The temperature dependence of the tunneling transport characteristics of Si diodes with an isoelectronic impurity has been investigated in order to clarify the mechanism of the ON-current enhancement in Si-based tunnel field-effect transistors (TFETs) utilizing an isoelectronic trap (IET). The Al-N complex impurity was utilized for IET formation. We observed three types of tunneling current components in the diodes: indirect band-to-band tunneling (BTBT), trap-assisted tunneling (TAT), and thermally inactive tunneling. The indirect BTBT and TAT current components can be distinguished with the plot described in this paper. The thermally inactive tunneling current probably originated from tunneling consisting of two paths: tunneling between the valence band and the IET trap and tunneling between the IET trap and the conduction band. The probability of thermally inactive tunneling with the Al-N IET state is higher than the others. Utilization of the thermally inactive tunneling current has a significant effect in enhancing the driving current of Si-based TFETs.

  17. Effect of spin transfer torque on domain wall motion regimes in [Co/Ni] superlattice wires

    NASA Astrophysics Data System (ADS)

    Le Gall, S.; Vernier, N.; Montaigne, F.; Thiaville, A.; Sampaio, J.; Ravelosona, D.; Mangin, S.; Andrieu, S.; Hauet, T.

    2017-05-01

    The combined effect of magnetic field and current on domain wall motion is investigated in epitaxial [Co/Ni] microwires. Both thermally activated and flow regimes are found to be strongly affected by current. All experimental data can be understood by taking into account both adiabatic and nonadiabatic components of the spin transfer torque, the parameters of which are extracted. In the precessional flow regime, it is shown that the domain wall can move in the electron flow direction against a strong applied field, as previously observed. In addition, for a large range of applied magnetic field and injected current, a stochastic domain wall displacement after each pulse is observed. Two-dimensional micromagnetic simulations, including some disorder, show a random fluctuation of the domain wall position that qualitatively matches the experimental results.

  18. Pulsed plasmoid electric propulsion

    NASA Technical Reports Server (NTRS)

    Bourque, Robert F.; Parks, Paul B.; Tamano, Teruo

    1990-01-01

    A method of electric propulsion is explored where plasmoids such as spheromaks and field reversed configurations (FRC) are formed and then allowed to expand down a diverging conducting shell. The plasmoids contain a toroidal electric current that provides both heating and a confining magnetic field. They are free to translate because there are no externally supplied magnetic fields that would restrict motion. Image currents in the diverging conducting shell keep the plasmoids from contacting the wall. Because these currents translate relative to the wall, losses due to magnetic flux diffusion into the wall are minimized. During the expansion of the plasma in the diverging cone, both the inductive and thermal plasma energy are converted to directed kinetic energy producing thrust. Specific impulses can be in the 4000 to 20000 sec range with thrusts from 0.1 to 1000 Newtons, depending on available power.

  19. Graphite fiber/copper matrix composites for space power heat pipe fin applications

    NASA Astrophysics Data System (ADS)

    McDanels, David L.; Baker, Karl W.; Ellis, David L.

    1991-01-01

    High specific thermal conductivity (thermal conductivity divided by density) is a major design criterion for minimizing system mass for space power systems. For nuclear source power systems, graphite fiber reinforced copper matrix (Gr/Cu) composites offer good potential as a radiator fin material operating at service temperatures above 500 K. Specific thermal conductivity in the longitudinal direction is better than beryllium and almost twice that of copper. The high specific thermal conductivity of Gr/Cu offers the potential of reducing radiator mass by as much as 30 percent. Gr/Cu composites also offer the designer a range of available properties for various missions and applications. The properties of Gr/Cu are highly anisotropic. Longitudinal elastic modulus is comparable to beryllium and about three times that of copper. Thermal expansion in the longitudinal direction is near zero, while it exceeds that of copper in the transverse direction.

  20. Processing eutectics in space

    NASA Technical Reports Server (NTRS)

    Douglas, F. C.; Galasso, F. S.

    1974-01-01

    Experimental work is reported which was directed toward obtaining interface shape control while a numerical thermal analysis program was being made operational. An experimental system was developed in which the solid-liquid interface in a directionally solidified aluminum-nickel eutectic could be made either concave to the melt or convex to the melt. This experimental system provides control over the solid-liquid interface shape and can be used to study the effect of such control on the microstructure. The SINDA thermal analysis program, obtained from Marshall Space Flight Center, was used to evaluate experimental directional solidification systems for the aluminum-nickel and the aluminum-copper eutectics. This program was applied to a three-dimensional ingot, and was used to calculate the thermal profiles in axisymmetric heat flow. The results show that solid-liquid interface shape control can be attained with physically realizable thermal configurations and the magnitudes of the required thermal inputs were indicated.

  1. Thermal characterizations of a large-format lithium ion cell focused on high current discharges

    NASA Astrophysics Data System (ADS)

    Veth, C.; Dragicevic, D.; Merten, C.

    2014-12-01

    The thermal behavior of a large-format lithium ion cell has been investigated during measurements on cell and battery level. High current discharges up to 300 A are the main topic of this study. This paper demonstrates that the temperature response to high current loads provides the possibility to investigate internal cell parameters and their inhomogeneity. In order to identify thermal response caused by internal cell processes, the heat input due to contact resistances has been minimized. The differences between the thermal footprint of a cell during cell and battery measurements are being addressed. The study presented here focuses on the investigation of thermal hot and cold spots as well as temperature gradients in a 50 Ah pouch cell. Furthermore, it is demonstrated that the difference between charge and discharge can have significant influence on the thermal behavior of lithium ion cells. Moreover, the miscellaneous thermal characteristics of differently aged lithium ion cells highlight the possibility of an ex-situ non-destructive post-mortem-analysis, providing the possibility of a qualitative and quantitative characterization of inhomogeneous cell-aging. These investigations also generate excellent data for the validation and parameterization of electro-thermal cell models, predicting the distribution of temperature, current, potential, SOC and SOH inside large-format cells.

  2. Thermal infrared data analyses of Meteor Crater, Arizona: Implications for Mars spaceborne data from the Thermal Emission Imaging System

    NASA Astrophysics Data System (ADS)

    Wright, Shawn P.; Ramsey, Michael S.

    2006-02-01

    Thermal infrared (TIR) data from the Earth-orbiting Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument are used to identify the lithologic distribution of the Meteor Crater ejecta blanket. Thermal emission laboratory spectra were obtained for collected samples, and spectral deconvolution was performed on ASTER emissivity data using both image and sample end-members. Comparison of the spaceborne ASTER data to the airborne Thermal Infrared Multispectral Scanner (TIMS) data was used to validate the ASTER end-member analyses. The ASTER image end-member analysis agrees well with past studies considering the effects of resolution degradation. The work at Meteor Crater has direct bearing on the interpretation of Thermal Emission Imaging System (THEMIS) data currently being returned from Mars. ASTER and THEMIS have similar spatial and spectral resolutions, and Meteor Crater serves as an analog for similar-sized impact sites on Mars. These small impact craters have not been studied in detail owing to the low spatial resolution of past orbiting TIR instruments. Using the same methodology as that applied to Meteor Crater, THEMIS TIR data of a provisionally named Winslow Crater (~1 km) impact crater in Syrtis Major are analyzed. The crater rim and ejecta blanket were found to contain larger block sizes and a lower albedo than the surrounding ejecta-free plain, indicating a young impact age. The composition of the rim, ejecta, and surrounding plain is determined to be dominated by basalt; however, potential stratigraphy has also been identified. Results of this work could be extended to future investigations using THEMIS data.

  3. Current and anticipated uses of thermal-hydraulic codes in NFI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuda, K.; Takayasu, M.

    1997-07-01

    This paper presents the thermal-hydraulic codes currently used in NFI for the LWR fuel development and licensing application including transient and design basis accident analyses of LWR plants. The current status of the codes are described in the context of code capability, modeling feature, and experience of code application related to the fuel development and licensing. Finally, the anticipated use of the future thermal-hydraulic code in NFI is briefly given.

  4. Thermal conductivity and thermal expansion of graphite fiber/copper matrix composites

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Mcdanels, David L.

    1991-01-01

    The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.

  5. Thermal conductivity and thermal expansion of graphite fiber-reinforced copper matrix composites

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Mcdanels, David L.

    1993-01-01

    The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.

  6. Thermal conductivity anisotropy in nanostructures and nanostructured materials

    NASA Astrophysics Data System (ADS)

    Termentzidis, Konstantinos

    2018-03-01

    Thermal conductivity anisotropy is a subject for both fundamental and application interests. The anisotropy can be induced either by van der Waals forces in bulk systems or by nanostructuration. Here, we will examine four cases in which thermal anisotropy has been observed: (i) Si/Ge superlattices which exhibit higher thermal anisotropy between in-plane and cross-plane directions for the case of smooth interfaces, (ii) amorphous/crystalline superlattices with much higher anisotropy than the crystalline/crystalline superlattices and which can reach a factor of six when the amorphous fraction increases, (iii) the impact of the density of edge and screw dislocations on the thermal anisotropy of defected GaN, and (iv) the influence of the growth direction of Bi2Te3 nanowires on thermal conductivity.

  7. Reverse Current Characteristics of InP Gunn Diodes for W-Band Waveguide Applications.

    PubMed

    Kim, Hyun-Seok; Heo, Jun-Woo; Chol, Seok-Gyu; Ko, Dong-Sik; Rhee, Jin-Koo

    2015-07-01

    InP is considered as the most promising material for millimeter-wave laser-diode applications owing to its superior noise performance and wide operating frequency range of 75-110 GHz. In this study, we demonstrate the fabrication of InP Gunn diodes with a current-limiting structure using rapid thermal annealing to modulate the potential height formed between an n-type InP active layer and a cathode contact. We also explore the reverse current characteristics of the InP Gunn diodes. Experimental results indicate a maximum anode current and an oscillation frequency of 200 mA and 93.53 GHz, respectively. The current-voltage characteristics are modeled by considering the Schottky and ohmic contacts, work function variations, negative differential resistance (NDR), and tunneling effect. Although no direct indication of the NDR is observed, the simulation results match the measured data well. The modeling results show that the NDR effect is always present but is masked because of electron emission across the shallow Schottky barrier.

  8. Predicted and observed directional dependence of meteoroid/debris impacts on LDEF thermal blankets

    NASA Technical Reports Server (NTRS)

    Drolshagen, Gerhard

    1993-01-01

    The number of impacts from meteoroids and space debris particles to the various LDEF rows is calculated using ESABASE/DEBRIS, a 3-D numerical analysis tool. It is based on recent reference environment flux models and includes geometrical and directional effects. A comparison of model predictions and actual observations is made for penetrations of the thermal blankets which covered the UHCR experiment. The thermal blankets were located on all LDEF rows, except 3, 9, and 12. Because of their uniform composition and thickness, these blankets allow a direct analysis of the directional dependence of impacts and provide a test case for the latest meteoroid and debris flux models.

  9. Present and future thermal environments available to Sharp-tailed Grouse in an intact grassland.

    PubMed

    Raynor, Edward J; Powell, Larkin A; Schacht, Walter H

    2018-01-01

    Better understanding animal ecology in terms of thermal habitat use has become a focus of ecological studies, in large part due to the predicted temperature increases associated with global climate change. To further our knowledge on how ground-nesting endotherms respond to thermal landscapes, we examined the thermal ecology of Sharp-tailed Grouse (Tympanuchus phasianellus) during the nesting period. We measured site-specific iButton temperatures (TiB) and vegetation characteristics at nest sites, nearby random sites, and landscape sites to assess thermal patterns at scales relevant to nesting birds. We asked if microhabitat vegetation characteristics at nest sites matched the characteristics that directed macrohabitat nest-site selection. Grouse selected sites sheltered by dense vegetation for nesting that moderated TiB on average up to 2.7°C more than available landscape sites. Successful nests were positioned in a way that reduced exposure to thermal extremes by as much as 4°C relative to failed nests with an overall mean daytime difference (±SE) of 0.4 ±0.03°C. We found that macrohabitat nest-site selection was guided by dense vegetation cover and minimal bare ground as also seen at the microhabitat scale. Global climate projections for 2080 suggest that TiB at nest sites may approach temperatures currently avoided on the landscape, emphasizing a need for future conservation plans that acknowledge fine-scale thermal space in climate change scenarios. These data show that features of grassland landscapes can buffer organisms from unfavorable microclimatic conditions and highlight how thermal heterogeneity at the individual-level can drive decisions guiding nest site selection.

  10. Present and future thermal environments available to Sharp-tailed Grouse in an intact grassland

    PubMed Central

    Powell, Larkin A.; Schacht, Walter H.

    2018-01-01

    Better understanding animal ecology in terms of thermal habitat use has become a focus of ecological studies, in large part due to the predicted temperature increases associated with global climate change. To further our knowledge on how ground-nesting endotherms respond to thermal landscapes, we examined the thermal ecology of Sharp-tailed Grouse (Tympanuchus phasianellus) during the nesting period. We measured site-specific iButton temperatures (TiB) and vegetation characteristics at nest sites, nearby random sites, and landscape sites to assess thermal patterns at scales relevant to nesting birds. We asked if microhabitat vegetation characteristics at nest sites matched the characteristics that directed macrohabitat nest-site selection. Grouse selected sites sheltered by dense vegetation for nesting that moderated TiB on average up to 2.7°C more than available landscape sites. Successful nests were positioned in a way that reduced exposure to thermal extremes by as much as 4°C relative to failed nests with an overall mean daytime difference (±SE) of 0.4 ±0.03°C. We found that macrohabitat nest-site selection was guided by dense vegetation cover and minimal bare ground as also seen at the microhabitat scale. Global climate projections for 2080 suggest that TiB at nest sites may approach temperatures currently avoided on the landscape, emphasizing a need for future conservation plans that acknowledge fine-scale thermal space in climate change scenarios. These data show that features of grassland landscapes can buffer organisms from unfavorable microclimatic conditions and highlight how thermal heterogeneity at the individual-level can drive decisions guiding nest site selection. PMID:29415080

  11. Directed Self-Assembly of Polystyrene- b -poly(propylene carbonate) on Chemical Patterns via Thermal Annealing for Next Generation Lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Guan-Wen; Wu, Guang-Peng; Chen, Xuanxuan

    2017-01-23

    Directed self-assembly (DSA) of block copolymers (BCPs) combines advantages of conventional photolithography and polymeric materials and shows competence in semiconductors and data storage applications. Driven by the more integrated, much smaller and higher performance of the electronics, however, the industry standard polystyrene-block-poly(methyl methacrylate) (PS-b-PMM.A) in DSA strategy cannot meet the rapid development of lithography technology because its intrinsic limited Flory-Huggins interaction parameter (chi). Despite hundreds of block copolymers have been developed, these BCPs systems are usually subject to a trade-off between high chi and thermal treatment, resulting in incompatibility with the current nanomanufacturing fab processes. Here we discover that polystyrene-b-poly(propylenemore » carbonate) (PS-b-PPC) is well qualified to fill key positions on DSA strategy for the next-generation lithography. The estimated chi-value for PS-b-PPC is 0.079, that is, two times greater than PS-b-PMMA (chi = 0.029 at 150 degrees C), while processing the ability to form perpendicular sub-10 nm morphologies (cylinder and lamellae) via the industry preferred thermal-treatment. DSA of lamellae forming PS-b-PPC on chemoepitaxial density multiplication demonstrates successful sub-10 nm long-range order features on large-area patterning for nanofabrication. Pattern transfer to the silicon substrate through industrial sequential infiltration synthesis is also implemented successfully. Compared with the previously reported methods to orientation control BCPs with high chi-value (including solvent annealing, neutral top-coats, and chemical modification), the easy preparation, high chi value, and etch selectivity while enduring thermal treatment demonstrates PS-b-PPC as a rare and valuable candidate for advancing the field of nanolithography.« less

  12. Machine learning with neural networks - a case study of estimating thermal conductivity with ancient well-log data

    NASA Astrophysics Data System (ADS)

    Harrison, Benjamin; Sandiford, Mike; McLaren, Sandra

    2016-04-01

    Supervised machine learning algorithms attempt to build a predictive model using empirical data. Their aim is to take a known set of input data along with known responses to the data, and adaptively train a model to generate predictions for new data inputs. A key attraction to their use is the ability to perform as function approximators where the definition of an explicit relationship between variables is infeasible. We present a novel means of estimating thermal conductivity using a supervised self-organising map algorithm, trained on about 150 thermal conductivity measurements, and using a suite of five electric logs common to 14 boreholes. A key motivation of the study was to supplement the small number of direct measurements of thermal conductivity with the decades of borehole data acquired in the Gippsland Basin to produce more confident calculations of surface heat flow. A previous attempt to generate estimates from well-log data in the Gippsland Basin using classic petrophysical log interpretation methods was able to produce reasonable synthetic thermal conductivity logs for only four boreholes. The current study has extended this to a further ten boreholes. Interesting outcomes from the study are: the method appears stable at very low sample sizes (< ~100); the SOM permits quantitative analysis of essentially qualitative uncalibrated well-log data; and the method's moderate success at prediction with minimal effort tuning the algorithm's parameters.

  13. Life cycle monitoring of lithium-ion polymer batteries using cost-effective thermal infrared sensors with applications for lifetime prediction

    NASA Astrophysics Data System (ADS)

    Zhou, Xunfei; Malik, Anav; Hsieh, Sheng-Jen

    2017-05-01

    Lithium-ion batteries have become indispensable parts of our lives for their high-energy density and long lifespan. However, failure due to from abusive usage conditions, flawed manufacturing processes, and aging and adversely affect battery performance and even endanger people and property. Therefore, battery cells that are failing or reaching their end-of-life need to be replaced. Traditionally, battery lifetime prediction is achieved by analyzing data from current, voltage and impedance sensors. However, such a prognostic system is expensive to implement and requires direct contact. In this study, low-cost thermal infrared sensors were used to acquire thermographic images throughout the entire lifetime of small scale lithium-ion polymer batteries (410 cycles). The infrared system (non-destructive) took temperature readings from multiple batteries during charging and discharging cycles of 1C. Thermal characteristics of the batteries were derived from the thermographic images. A time-dependent and spatially resolved temperature mapping was obtained and quantitatively analyzed. The developed model can predict cycle number using the first 10 minutes of surface temperature data acquired through infrared imaging at the beginning of the cycle, with an average error rate of less than 10%. This approach can be used to correlate thermal characteristics of the batteries with life cycles, and to propose cost-effective thermal infrared imaging applications in battery prognostic systems.

  14. Low thermal budget annealing technique for high performance amorphous In-Ga-ZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Shin, Joong-Won; Cho, Won-Ju

    2017-07-01

    In this paper, we investigate a low thermal budget post-deposition-annealing (PDA) process for amorphous In-Ga-ZnO (a-IGZO) oxide semiconductor thin-film-transistors (TFTs). To evaluate the electrical characteristics and reliability of the TFTs after the PDA process, microwave annealing (MWA) and rapid thermal annealing (RTA) methods were applied, and the results were compared with those of the conventional annealing (CTA) method. The a-IGZO TFTs fabricated with as-deposited films exhibited poor electrical characteristics; however, their characteristics were improved by the proposed PDA process. The CTA-treated TFTs had excellent electrical properties and stability, but the CTA method required high temperatures and long processing times. In contrast, the fabricated RTA-treated TFTs benefited from the lower thermal budget due to the short process time; however, they exhibited poor stability. The MWA method uses a low temperature (100 °C) and short annealing time (2 min) because microwaves transfer energy directly to the substrate, and this method effectively removed the defects in the a-IGZO TFTs. Consequently, they had a higher mobility, higher on-off current ratio, lower hysteresis voltage, lower subthreshold swing, and higher interface trap density than TFTs treated with CTA or RTA, and exhibited excellent stability. Based on these results, low thermal budget MWA is a promising technology for use on various substrates in next generation displays.

  15. Thermoelectric Performance Enhancement by Surrounding Crystalline Semiconductors with Metallic Nanoparticles

    NASA Technical Reports Server (NTRS)

    Kim, Hyun-Jung; King, Glen C.; Park, Yeonjoon; Lee, Kunik; Choi, Sang H.

    2011-01-01

    Direct conversion of thermal energy to electricity by thermoelectric (TE) devices may play a key role in future energy production and utilization. However, relatively poor performance of current TE materials has slowed development of new energy conversion applications. Recent reports have shown that the dimensionless Figure of Merit, ZT, for TE devices can be increased beyond the state-of-the-art level by nanoscale structuring of materials to reduce their thermal conductivity. New morphologically designed TE materials have been fabricated at the NASA Langley Research Center, and their characterization is underway. These newly designed materials are based on semiconductor crystal grains whose surfaces are surrounded by metallic nanoparticles. The nanoscale particles are used to tailor the thermal and electrical conduction properties for TE applications by altering the phonon and electron transport pathways. A sample of bismuth telluride decorated with metallic nanoparticles showed less thermal conductivity and twice the electrical conductivity at room temperature as compared to pure Bi2Te3. Apparently, electrons cross easily between semiconductor crystal grains via the intervening metallic nanoparticle bridges, but phonons are scattered at the interfacing gaps. Hence, if the interfacing gap is larger than the mean free path of the phonon, thermal energy transmission from one grain to others is reduced. Here we describe the design and analysis of these new materials that offer substantial improvements in thermoelectric performance.

  16. Thermal Protection Materials for Reentry Applications

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Stackpoole, Mairead; Gusman, Mike; Loehman, Ron; Kotula, Paul; Ellerby, Donald; Arnold, James; Wercinski, Paul; Reuthers, James; Kontinos, Dean

    2001-01-01

    Thermal protection materials and systems (IRS) are used to protect spacecraft during reentry into Earth's atmosphere or entry into planetary atmospheres. As such, these materials are subject to severe environments with high heat fluxes and rapid heating. Catalytic effects can increase the temperatures substantially. These materials are also subject to impact damage from micrometeorites or other debris during ascent, orbit, and descent, and thus must be able to withstand damage and to function following damage. Thermal protection materials and coatings used in reusable launch vehicles will be reviewed, including the needs and directions for new materials to enable new missions that require faster turnaround and much greater reusability. The role of ablative materials for use in high heat flux environments, especially for non-reusable applications and upcoming planetary missions, will be discussed. New thermal protection system materials may enable the use of sharp nose caps and leading edges on future reusable space transportation vehicles. Vehicles employing this new technology would have significant increases in maneuverability and out-of-orbit cross range compared to current vehicles, leading to increased mission safety in the event of the need to abort during ascent or from orbit. Ultrahigh temperature ceramics, a family of materials based on HfB2 and ZrB2 with SiC, will be discussed. The development, mechanical and thermal properties, and uses of these materials will be reviewed.

  17. Demonstrating the Viability and Affordability of Nuclear Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Vandyke, Melissa K.

    2006-01-01

    A set of tasks have been identified to help demonstrate the viability, performance, and affordability of surface fission systems. Completion of these tasks will move surface fission systems closer to reality by demonstrating affordability and performance potential. Tasks include fabrication and test of a 19-pin section of a Surface Power Unit Demonstrator (SPUD); design, fabrication, and utilization of thermal simulators optimized for surface fission' applications; design, fabrication, and utilization of GPHS module thermal simulators; design, fabrication, and test of a fission surface power system shield; and work related to potential fission surface power fuel/clad systems. Work on the SPUD will feed directly into joint NASA MSFC/NASA GRC fabrication and test of a surface power plant Engineering Development Unit (EDU). The goal of the EDU will be to perform highly realistic thermal, structural, and electrical testing on an integrated fission surface power system. Fission thermal simulator work will help enable high fidelity non-nuclear testing of pumped NaK surface fission power systems. Radioisotope thermal simulator work will help enable design and development of higher power radioisotope systems (power ultimately limited by Pu-238 availability). Shield work is designed to assess the potential of using a water neutron shield on the surface of the moon. Fuels work is geared toward assessing the current potential of using fuels that have already flown in space.

  18. Crystal Lattice Controlled SiGe Thermoelectric Materials with High Figure of Merit

    NASA Technical Reports Server (NTRS)

    Kim, Hyun-Jung; Park, Yeonjoon; King, Glen C.; Lee, Kunik; Choi, Sang H.

    2010-01-01

    Direct energy conversion between thermal and electrical energy, based on thermoelectric (TE) effect, has the potential to recover waste heat and convert it to provide clean electric power. The energy conversion efficiency is related to the thermoelectric figure of merit ZT expressed as ZT=S(exp 2)(sigma)T/Kappa, T is temperature, S is the Seebeck coefficient, sigma is conductance and Kappa is thermal conductivity. For a lower thermal conductivity Kappa and high power factor (S(exp 2)(sigma)), our current strategy is the development of rhombohedrally strained single crystalline SiGe materials that are highly [111]-oriented twinned. The development of a SiGe "twin lattice structure (TLS)" plays a key role in phonon scattering. The TLS increases the electrical conductivity and decreases thermal conductivity due to phonon scattering at stacking faults generated from the 60 X rotated primary twin structure. To develop high performance materials, the substrate temperature, chamber working pressure, and DC sputtering power are controlled for the aligned growth production of SiGe layer and TLS on a c-plane sapphire. Additionally, a new elevated temperature thermoelectric characterization system, that measures the thermal diffusivity and Seebeck effect nondestructively, was developed. The material properties were characterized at various temperatures and optimized process conditions were experimentally determined. The present paper encompasses the technical discussions toward the development of thermoelectric materials and the measurement techniques.

  19. Effects of Combining a Brief Cognitive Intervention with Transcranial Direct Current Stimulation on Pain Tolerance: A Randomized Controlled Pilot Study.

    PubMed

    Powers, Abigail; Madan, Alok; Hilbert, Megan; Reeves, Scott T; George, Mark; Nash, Michael R; Borckardt, Jeffrey J

    2018-04-01

    Cognitive behavioral therapy has been shown to be effective for treating chronic pain, and a growing literature shows the potential analgesic effects of minimally invasive brain stimulation. However, few studies have systematically investigated the potential benefits associated with combining approaches. The goal of this pilot laboratory study was to investigate the combination of a brief cognitive restructuring intervention and transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex in affecting pain tolerance. Randomized, double-blind, placebo-controlled laboratory pilot. Medical University of South Carolina. A total of 79 healthy adult volunteers. Subjects were randomized into one of six groups: 1) anodal tDCS plus a brief cognitive intervention (BCI); 2) anodal tDCS plus pain education; 3) cathodal tDCS plus BCI; 4) cathodal tDCS plus pain education; 5) sham tDCS plus BCI; and 6) sham tDCS plus pain education. Participants underwent thermal pain tolerance testing pre- and postintervention using the Method of Limits. A significant main effect for time (pre-post intervention) was found, as well as for baseline thermal pain tolerance (covariate) in the model. A significant time × group interaction effect was found on thermal pain tolerance. Each of the five groups that received at least one active intervention outperformed the group receiving sham tDCS and pain education only (i.e., control group), with the exception of the anodal tDCS + education-only group. Cathodal tDCS combined with the BCI produced the largest analgesic effect. Combining cathodal tDCS with BCI yielded the largest analgesic effect of all the conditions tested. Future research might find stronger interactive effects of combined tDCS and a cognitive intervention with larger doses of each intervention. Because this controlled laboratory pilot employed an acute pain analogue and the cognitive intervention did not authentically represent cognitive behavioral therapy per se, the implications of the findings on chronic pain management remain unclear.

  20. A study of direct moxibustion using mathematical methods.

    PubMed

    Liu, Miao; Kauh, Sang Ken; Lim, Sabina

    2012-01-01

    Direct moxibustion is an important and widely used treatment method in traditional medical science. The use of a mathematical method to analyse direct moxibustion treatment is necessary and helpful in exploring the new direct moxibustion instruments and their standardisation. Thus, this paper aims to use a mathematical method to study direct moxibustion in skin to demonstrate a direct relationship between direct moxibustion and skin stimuli. In this paper, the transient thermal response of skin layers is analysed to study direct moxibustion using the data got from standardised method to measure the temperature of a burning moxa cone. Numerical simulations based on an appropriate finite element model are developed to predict the heat transfer, thermal damage and thermal stress distribution of barley moxa cones and jujube moxa cones in the skin tissue. The results are verified by the ancient literatures of traditional Chinese medicine and clinical application, and showed that mathematical method can be a good interface between moxa cone and skin tissue providing the numerical value basis for moxibustion.

  1. Measurement of Thermal Dependencies of PBG Fiber Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laouar, Rachik

    Photonic crystal fibers (PCFs) represent a class of optical fibers which have a wide spectrum of applications in the telecom and sensing industries. Currently, the Advanced Accelerator Research Department at SLAC is developing photonic bandgap particle accelerators, which are photonic crystal structures with a central defect used to accelerate electrons and achieve high longitudinal electric fields. Extremely compact and less costly than the traditional accelerators, these structures can support higher accelerating gradients and will open a new era in high energy physics as well as other fields of science. Based on direct laser acceleration in dielectric materials, the so calledmore » photonic band gap accelerators will benefit from mature laser and semiconductor industries. One of the key elements to direct laser acceleration in hollow core PCFs, is maintaining thermal and structural stability. Previous simulations demonstrate that accelerating modes are sensitive to the geometry of the defect region and the variations in the effective index. Unlike the telecom modes (for which over 95% of the energy propagates in the hollow core) most of the power of these modes is located in the glass at the periphery of the central hole which has a higher thermal constant than air ({gamma}{sub SiO{sub 2}} = 1.19 x 10{sup -6} 1/K, {gamma}{sub air} = -9 x 10{sup -7} 1/K with {gamma} = dn/dT). To fully control laser driven acceleration, we need to evaluate the thermal and structural consequences of such modes on the PCFs. We are conducting series of interferometric tests to quantify the dependencies of the HC-633-02 (NKT Photonics) propagation constant (k{sub z}) on temperature, vibration amplitude, stress and electric field strength. In this paper we will present the theoretical principles characterizing the thermal behavior of a PCF, the measurements realized for the fundamental telecom mode (TE{sub 00}), and the experimental demonstration of TM-like mode propagation in the HC-633-02 fiber.« less

  2. Applications of HCMM data to soil moisture snow and estuarine current studies. [Cooper River and Delaware Bay

    NASA Technical Reports Server (NTRS)

    Wiesnet, D. R. (Principal Investigator); Mcginnis, D. F.; Matson, M.

    1980-01-01

    The author has identified the following significant results. The HCMM thermal data are useful for monitoring estuarine surface thermal patterns. Estuarine thermal patterns, are, under certain conditions, indicative of the surface tidal current circulation patterns. Under optimum conditions, estuaries as small as the Cooper River (i.e., approximately 100 sq km) can be monitored for tidal/thermal circulation patterns by HCMM-type IR sensors.

  3. Mars 2020 Entry, Descent and Landing Instrumentation 2 (MEDLI2)

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Bose, Deepak; White, Todd R.; Wright, Henry S.; Schoenenberger, Mark; Kuhl, Christopher A.; Trombetta, Dominic; Santos, Jose A.; Oishi, Tomomi; Karlgaard, Christopher D.; hide

    2016-01-01

    The Mars Entry Descent and Landing Instrumentation 2 (MEDLI2) sensor suite will measure aerodynamic, aerothermodynamic, and TPS performance during the atmospheric entry, descent, and landing phases of the Mars 2020 mission. The key objectives are to reduce design margin and prediction uncertainties for the aerothermal environments and aerodynamic database. For MEDLI2, the sensors are installed on both the heatshield and backshell, and include 7 pressure transducers, 17 thermal plugs, and 3 heat flux sensors (including a radiometer). These sensors will expand the set of measurements collected by the highly successful MEDLI suite, collecting supersonic pressure measurements on the forebody, a pressure measurement on the aftbody, direct heat flux measurements on the aftbody, a radiative heating measurement on the aftbody, and multiple near-surface thermal measurements on the thermal protection system (TPS) materials on both the forebody and aftbody. To meet the science objectives, supersonic pressure transducers and heat flux sensors are currently being developed and their qualification and calibration plans are presented. Finally, the reconstruction targets for data accuracy are presented, along with the planned methodologies for achieving the targets.

  4. Influence of Catalysis and Oxidation on Slug Calorimeter Measurements in Arc Jets

    NASA Technical Reports Server (NTRS)

    Nawaz, Anuscheh; Driver, Dave; TerrazasSalinas, Imelda

    2012-01-01

    Arc jet tests play a critical role in the characterization and certification of thermal protection materials and systems (TPS). The results from these arc jet tests feed directly into computational models of material response and aerothermodynamics to predict the performance of the TPS in flight. Thus the precise knowledge of the plasma environment to which the test material is subjected, is invaluable. As one of the environmental parameters, the heat flux is commonly measured. The measured heat flux is used to determine the plasma enthalpy through analytical or computational models. At NASA Ames Research Center (ARC), slug calorimeters of a geometrically similar body to the test article are routinely used to determine the heat flux. A slug calorimeter is a thermal capacitance-type calorimeter that uses the temperature rise in a thermally insulated slug to determine the heat transfer rate, see Figure 1(left). Current best practices for measuring the heat flux with a slug calorimeter are described in ASTM E457 - 96. Both the calorimeter body and slug are made of Oxygen Free High Conductivity Copper, and are cleaned before each run.

  5. Effect of device package on optical, spectral, and thermal properties of InGaN/GaN near-ultraviolet lateral light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Soo Hyun; Guan, Xiang-Yu; Jeon, Soo-Kun; Yu, Jae Su

    2017-09-01

    We investigated the package effect on the temperature-dependent optical and spectral characteristics of InGaN/GaN near-ultraviolet (NUV) lateral light-emitting diodes (LLEDs) on the metal heatsink (MH) and package (PKG) in the injection current range of 0 - 500 mA at 298 and 358 K. For the NUV LLEDs on the MH, the device characteristics reflected directly its chip performance. For the NUV LLEDs on the PKG, the rapidly varied spectral shift as well as the reduced device efficiency was observed due to the increased number of layers with relatively low thermal conductivities. The junction temperature ( T j ) and thermal resistance of the NUV LLEDs on the PKG were also significantly increased compared to the NUV LLEDs on the MH. The three-dimensional heat transfer simulations for both the devices were carried out to obtain the temperature distributions by finite element method. The theoretically calculated T j values showed a good agreement with the experimentally measured T j values.

  6. Solar Thermoelectricity via Advanced Latent Heat Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Michele L.; Rea, J.; Glatzmaier, Greg C.

    2016-05-31

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a 'thermalmore » valve,' which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.« less

  7. Nonequilibrium Green's function method for quantum thermal transport

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Sheng; Agarwalla, Bijay Kumar; Li, Huanan; Thingna, Juzar

    2014-12-01

    This review deals with the nonequilibrium Green's function (NEGF) method applied to the problems of energy transport due to atomic vibrations (phonons), primarily for small junction systems. We present a pedagogical introduction to the subject, deriving some of the well-known results such as the Laudauer-like formula for heat current in ballistic systems. The main aim of the review is to build the machinery of the method so that it can be applied to other situations, which are not directly treated here. In addition to the above, we consider a number of applications of NEGF, not in routine model system calculations, but in a few new aspects showing the power and usefulness of the formalism. In particular, we discuss the problems of multiple leads, coupled left-right-lead system, and system without a center. We also apply the method to the problem of full counting statistics. In the case of nonlinear systems, we make general comments on the thermal expansion effect, phonon relaxation time, and a certain class of mean-field approximations. Lastly, we examine the relationship between NEGF, reduced density matrix, and master equation approaches to thermal transport.

  8. Analysis of the energy potential of municipal solid waste for the thermal treatment technology development in Poland

    NASA Astrophysics Data System (ADS)

    Midor, Katarzyna; Jąderko, Karolina

    2017-11-01

    The problem of overproduction of waste has been a local issue for many years. Since the new environment law came into effect, the current approach to waste management has changed significantly. The accessible technological possibilities of thermal waste treatment with the energy recovery set a new area of research over the process of choosing effective and rational way of calorific waste management. The objective of this article is to provide assessment results of the analysed energy potential in waste management system in the form of calorific waste stream. In includes all the activities and actions required to manage municipal solid waste from its inception to its final disposal i.e. collection, transport, treatment and disposal. The graphical representation of waste flow indicates the lost opportunities of waste energy recovery. Visual research method was supported and founded on value stream mapping. On the basis of the results were presented the directions of further improvement of calorific waste stream mapping for the purposes of implementation the thermal treatment technology in the selected waste management region.

  9. Solar thermal technology development: Estimated market size and energy cost savings. Volume 2: Assumptions, methodology and results

    NASA Astrophysics Data System (ADS)

    Gates, W. R.

    1983-02-01

    Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. Three fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. Solar thermal technology research and development (R&D) is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), depending on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest. Analysis is also provided regarding two federal incentives currently in use: The Federal Business Energy Tax Credit and direct R&D funding.

  10. Solar thermal technology development: Estimated market size and energy cost savings. Volume 2: Assumptions, methodology and results

    NASA Technical Reports Server (NTRS)

    Gates, W. R.

    1983-01-01

    Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. Three fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. Solar thermal technology research and development (R&D) is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), depending on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest. Analysis is also provided regarding two federal incentives currently in use: The Federal Business Energy Tax Credit and direct R&D funding.

  11. Dynamic Electrothermal Model of a Sputtered Thermopile Thermal Radiation Detector for Earth Radiation Budget Applications

    NASA Technical Reports Server (NTRS)

    Weckmann, Stephanie

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) is a program sponsored by the National Aeronautics and Space Administration (NASA) aimed at evaluating the global energy balance. Current scanning radiometers used for CERES consist of thin-film thermistor bolometers viewing the Earth through a Cassegrain telescope. The Thermal Radiation Group, a laboratory in the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently studying a new sensor concept to replace the current bolometer: a thermopile thermal radiation detector. This next-generation detector would consist of a thermal sensor array made of thermocouple junction pairs, or thermopiles. The objective of the current research is to perform a thermal analysis of the thermopile. Numerical thermal models are particularly suited to solve problems for which temperature is the dominant mechanism of the operation of the device (through the thermoelectric effect), as well as for complex geometries composed of numerous different materials. Feasibility and design specifications are studied by developing a dynamic electrothermal model of the thermopile using the finite element method. A commercial finite element-modeling package, ALGOR, is used.

  12. STDAC: Solar thermal design assistance center annual report fiscal year 1994

    NASA Astrophysics Data System (ADS)

    The Solar Thermal Design Assistance Center (STDAC) at Sandia is a resource provided by the DOE Solar Thermal Program. The STDAC's major objective is to accelerate the use of solar thermal systems by providing direct technical assistance to users in industry, government, and foreign countries; cooperating with industry to test, evaluate, and develop renewable energy systems and components; and educating public and private professionals, administrators, and decision makers. This FY94 report highlights the activities and accomplishments of the STDAC. In 1994, the STDAC continued to provide significant direct technical assistance to domestic and international organizations in industry, government, and education, Applying solar thermal technology to solve energy problems is a vital element of direct technical assistance. The STDAC provides information on the status of new, existing, and developing solar technologies; helps users screen applications; predicts the performance of components and systems; and incorporates the experience of Sandia's solar energy personnel and facilities to provide expert guidance. The STDAC directly enhances the US solar industry's ability to successfully bring improved systems to the marketplace. By collaborating with Sandia's Photovoltaic Design Assistance Center and the National Renewable Energy Laboratory the STDAC is able to offer each customer complete service in applying solar thermal technology. At the National Solar Thermal Test Facility the STDAC tests and evaluates new and innovative solar thermal technologies. Evaluations are conducted in dose cooperation with manufacturers, and the results are used to improve the product and/or quantify its performance characteristics. Manufacturers, in turn, benefit from the improved design, economic performance, and operation of their solar thermal technology. The STDAC provides cost sharing and in-kind service to manufacturers in the development and improvement of solar technology.

  13. Thermal conductivity in Bi0.5Sb1.5Te3+x and the role of dense dislocation arrays at grain boundaries.

    PubMed

    Deng, Rigui; Su, Xianli; Zheng, Zheng; Liu, Wei; Yan, Yonggao; Zhang, Qingjie; Dravid, Vinayak P; Uher, Ctirad; Kanatzidis, Mercouri G; Tang, Xinfeng

    2018-06-01

    Several prominent mechanisms for reduction in thermal conductivity have been shown in recent years to improve the figure of merit for thermoelectric materials. Such a mechanism is a hierarchical all-length-scale architecturing that recognizes the role of all microstructure elements, from atomic to nano to microscales, in reducing (lattice) thermal conductivity. In this context, there have been recent claims of remarkably low (lattice) thermal conductivity in Bi 0.5 Sb 1.5 Te 3 that are attributed to seemingly ordinary grain boundary dislocation networks. These high densities of dislocation networks in Bi 0.5 Sb 1.5 Te 3 were generated via unconventional materials processing with excess Te (which formed liquid phase, thereby facilitating sintering), followed by spark plasma sintering under pressure to squeeze out the liquid. We reproduced a practically identical microstructure, following practically identical processing strategies, but with noticeably different (higher) thermal conductivity than that claimed before. We show that the resultant microstructure is anisotropic, with notable difference of thermal and charge transport properties across and along two orthonormal directions, analogous to anisotropic crystals. Thus, we believe that grain boundary dislocation networks are not the primary cause of enhanced ZT through reduction in thermal conductivity. Instead, we can reproduce the purported high ZT through a favorable but impractical and incorrect combination of thermal conductivity measured along the pressing direction of anisotropy while charge transport measured in the direction perpendicular to the anisotropic direction. We believe that our work underscores the need for consistency in charge and thermal transport measurements for unified and verifiable measurements of thermoelectric (and related) properties and phenomena.

  14. Two-dimensional quasineutral description of particles and fields above discrete auroral arcs

    NASA Technical Reports Server (NTRS)

    Newman, A. L.; Chiu, Y. T.; Cornwall, J. M.

    1985-01-01

    Stationary hot and cool particle distributions in the auroral magnetosphere are modelled using adiabatic assumptions of particle motion in the presence of broad-scale electrostatic potential structure. The study has identified geometrical restrictions on the type of broadscale potential structure which can be supported by a multispecies plasma having specified sources and energies. Without energization of cool thermal ionospheric electrons, a substantial parallel potential drop cannot be supported down to altitudes of 2000 km or less. Observed upward-directed field-aligned currents must be closed by return currents along field lines which support little net potential drop. In such regions the plasma density appears significantly enhanced. Model details agree well with recent broad-scale implications of satellite observations.

  15. Crystal structure and partial Ising-like magnetic ordering of orthorhombic D y 2 Ti O 5

    DOE PAGES

    Shamblin, Jacob; Calder, Stuart; Dun, Zhiling; ...

    2016-07-12

    The structure and magnetic properties of orthorhombic Dy 2TiO 5 have been investigated using x-ray diffraction, neutron diffraction, and alternating current (ac)/direct current (dc) magnetic susceptibility measurements. In this paper, we report a continuous structural distortion below 100 K characterized by negative thermal expansion in the [0 1 0] direction. Neutron diffraction and magnetic susceptibility measurements revealed that two-dimensional (2D) magnetic ordering begins at 3.1 K, which is followed by a three-dimensional magnetic transition at 1.7 K. The magnetic structure has been solved through a representational analysis approach and can be indexed with the propagation vector k = [0 1/2more » 0]. The spin structure corresponds to a coplanar model of interwoven 2D “sheets” extending in the [0 1 0] direction. The local crystal field is different for each Dy 3+ ion (Dy1 and Dy2), one of which possesses strong uniaxial symmetry indicative of Ising-like magnetic ordering. In conclusion, consequently, two succeeding transitions under magnetic field are observed in the ac susceptibility, which are associated with flipping each Dy 3+ spin independently.« less

  16. Direct electrochemistry of glucose oxidase on novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers composite film.

    PubMed

    Zhang, Xueping; Liu, Dong; Li, Libo; You, Tianyan

    2015-05-06

    We have proposed a novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers (NCNSs@CNFs) composite film with high processability for the investigation of the direct electron transfer (DET) of glucose oxidase (GOx) and the DET-based glucose biosensing. The composites were simply prepared by controlled thermal treatment of electrospun polypyrrole nanospheres doped polyacrylonitrile nanofibers (PPyNSs@PAN NFs). Without any pretreatment, the as-prepared material can directly serve as a platform for GOx immobilization. The cyclic voltammetry of immobilized GOx showed a pair of well-defined redox peaks in O2-free solution, indicating the DET of GOx. With the addition of glucose, the anodic peak current increased, while the cathodic peak current decreased, which demonstrated the DET-based bioelectrocatalysis. The detection of glucose based on the DET of GOx was achieved, which displayed high sensitivity, stability and selectivity, with a low detection limit of 2 μM and wide linear range of 12-1000 μM. These results demonstrate that the as-obtained NCNSs@CNFs can serve as an ideal platform for the construction of the third-generation glucose biosensor.

  17. Direct Electrochemistry of Glucose Oxidase on Novel Free-Standing Nitrogen-Doped Carbon Nanospheres@Carbon Nanofibers Composite Film

    PubMed Central

    Zhang, Xueping; Liu, Dong; Li, Libo; You, Tianyan

    2015-01-01

    We have proposed a novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers (NCNSs@CNFs) composite film with high processability for the investigation of the direct electron transfer (DET) of glucose oxidase (GOx) and the DET-based glucose biosensing. The composites were simply prepared by controlled thermal treatment of electrospun polypyrrole nanospheres doped polyacrylonitrile nanofibers (PPyNSs@PAN NFs). Without any pretreatment, the as-prepared material can directly serve as a platform for GOx immobilization. The cyclic voltammetry of immobilized GOx showed a pair of well-defined redox peaks in O2-free solution, indicating the DET of GOx. With the addition of glucose, the anodic peak current increased, while the cathodic peak current decreased, which demonstrated the DET-based bioelectrocatalysis. The detection of glucose based on the DET of GOx was achieved, which displayed high sensitivity, stability and selectivity, with a low detection limit of 2 μM and wide linear range of 12–1000 μM. These results demonstrate that the as-obtained NCNSs@CNFs can serve as an ideal platform for the construction of the third-generation glucose biosensor. PMID:25943704

  18. Direct Measurement of Pyroelectric and Electrocaloric Effects in Thin Films

    NASA Astrophysics Data System (ADS)

    Pandya, Shishir; Wilbur, Joshua D.; Bhatia, Bikram; Damodaran, Anoop R.; Monachon, Christian; Dasgupta, Arvind; King, William P.; Dames, Chris; Martin, Lane W.

    2017-03-01

    An understanding of polarization-heat interactions in pyroelectric and electrocaloric thin-film materials requires that the electrothermal response is reliably characterized. While most work, particularly in electrocalorics, has relied on indirect measurement protocols, here we report a direct technique for measuring both pyroelectric and electrocaloric effects in epitaxial ferroelectric thin films. We demonstrate an electrothermal test platform where localized high-frequency (approximately 1 kHz) periodic heating and highly sensitive thin-film resistance thermometry allow the direct measurement of pyrocurrents (<10 pA ) and electrocaloric temperature changes (<2 mK ) using the "2-omega" and an adapted "3-omega" technique, respectively. Frequency-domain, phase-sensitive detection permits the extraction of the pyrocurrent from the total current, which is often convoluted by thermally-stimulated currents. The wide-frequency-range measurements employed in this study further show the effect of secondary contributions to pyroelectricity due to the mechanical constraints of the substrate. Similarly, measurement of the electrocaloric effect on the same device in the frequency domain (at approximately 100 kHz) allows for the decoupling of Joule heating from the electrocaloric effect. Using one-dimensional, analytical heat-transport models, the transient temperature profile of the heterostructure is characterized to extract pyroelectric and electrocaloric coefficients.

  19. Natural selection on thermal preference, critical thermal maxima and locomotor performance.

    PubMed

    Gilbert, Anthony L; Miles, Donald B

    2017-08-16

    Climate change is resulting in a radical transformation of the thermal quality of habitats across the globe. Whereas species have altered their distributions to cope with changing environments, the evidence for adaptation in response to rising temperatures is limited. However, to determine the potential of adaptation in response to thermal variation, we need estimates of the magnitude and direction of natural selection on traits that are assumed to increase persistence in warmer environments. Most inferences regarding physiological adaptation are based on interspecific analyses, and those of selection on thermal traits are scarce. Here, we estimate natural selection on major thermal traits used to assess the vulnerability of ectothermic organisms to altered thermal niches. We detected significant directional selection favouring lizards with higher thermal preferences and faster sprint performance at their optimal temperature. Our analyses also revealed correlational selection between thermal preference and critical thermal maxima, where individuals that preferred warmer body temperatures with cooler critical thermal maxima were favoured by selection. Recent published estimates of heritability for thermal traits suggest that, in concert with the strong selective pressures we demonstrate here, evolutionary adaptation may promote long-term persistence of ectotherms in altered thermal environments. © 2017 The Author(s).

  20. Intrinsic autocorrelation time of picoseconds for thermal noise in water.

    PubMed

    Zhu, Zhi; Sheng, Nan; Wan, Rongzheng; Fang, Haiping

    2014-10-02

    Whether thermal noise is colored or white is of fundamental importance. In conventional theory, thermal noise is usually treated as white noise so that there are no directional transportations in the asymmetrical systems without external inputs, since only the colored fluctuations with appropriate autocorrelation time length can lead to directional transportations in the asymmetrical systems. Here, on the basis of molecular dynamics simulations, we show that the autocorrelation time length of thermal noise in water is ~10 ps at room temperature, which indicates that thermal noise is not white in the molecular scale while thermal noise can be reasonably assumed as white in macro- and meso-scale systems. The autocorrelation time length of thermal noise is intrinsic, since the value is almost unchanged for different temperature coupling methods. Interestingly, the autocorrelation time of thermal noise is correlated with the lifetime of hydrogen bonds, suggesting that the finite autocorrelation time length of thermal noise mainly comes from the finite lifetime of the interactions between neighboring water molecules.

  1. Influence of thermal aging on AC leakage current in XLPE insulation

    NASA Astrophysics Data System (ADS)

    Geng, Pulong; Song, Jiancheng; Tian, Muqin; Lei, Zhipeng; Du, Yakun

    2018-02-01

    Cross-linked polyethylene (XLPE) has been widely used as cable insulation material because of its excellent dielectric properties, thermal stability and solvent resistance. To understand the influence of thermal aging on AC leakage current in XLPE insulation, all XLPE specimens were aged in oven in temperature range from 120 °C to 150 °C, and a series of tests were conducted on these XLPE specimens in different aging stages to measure the characteristic parameters, such as complex permittivity, leakage current and complex dielectric modulus. In the experiments, the effects of thermal aging, temperature and frequency on the AC leakage current in XLPE insulation were studied by analyzing complex dielectric constant and dielectric relaxation modulus spectrum, the change of relaxation peak and activation energy. It has been found that the active part of leakage current increases sharply with the increase of aging degree, and the test temperature and frequency have an influence on AC leakage current but the influence of test temperature is mainly reflected in the low frequency region. In addition, it has been shown by the experiments that the reactive part of leakage current exhibits a strong frequency dependent characteristic in the testing frequency range from 10-2 Hz to 105 Hz, but the influence of test temperature and thermal aging on it is relatively small.

  2. Energy storage using phase-change materials for active solar heating and cooling: An evaluation of future research and development direction

    NASA Astrophysics Data System (ADS)

    Borkowski, R. J.; Stovall, T. K.; Kedl, R. J.; Tomlinson, J. J.

    1982-04-01

    The current state of the art and commercial potential of active solar heating and cooling systems for buildings, and the use of thermal energy storage with these systems are assessed. The need for advanced latent heat storage subsystems in these applications and priorities for their development are determined. Latent storage subsystems are advantageous in applications where their compactness may be exploited. It is suggested that subsystems could facilitate storage in retrofit applications in which storage would be physically impossible otherwise.

  3. Nonlinear thermoelectric transport in single-molecule junctions: the effect of electron-phonon interactions.

    PubMed

    Zimbovskaya, Natalya A

    2016-07-27

    In this paper, we theoretically analyze steady-state thermoelectric transport through a single-molecule junction with a vibrating bridge. The thermally induced charge current in the system is explored using a nonequilibrium Green function formalism. We study the combined effects of Coulomb interactions between charge carriers on the bridge and electron-phonon interactions on the thermocurrent beyond the linear response regime. It is shown that electron-vibron interactions may significantly affect both the magnitude and the direction of the thermocurrent, and vibrational signatures may appear.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucia, M., E-mail: mlucia@pppl.gov; Kaita, R.; Majeski, R.

    The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.

  5. Direct measurement of thermal conductivity in solid iron at planetary core conditions.

    PubMed

    Konôpková, Zuzana; McWilliams, R Stewart; Gómez-Pérez, Natalia; Goncharov, Alexander F

    2016-06-02

    The conduction of heat through minerals and melts at extreme pressures and temperatures is of central importance to the evolution and dynamics of planets. In the cooling Earth's core, the thermal conductivity of iron alloys defines the adiabatic heat flux and therefore the thermal and compositional energy available to support the production of Earth's magnetic field via dynamo action. Attempts to describe thermal transport in Earth's core have been problematic, with predictions of high thermal conductivity at odds with traditional geophysical models and direct evidence for a primordial magnetic field in the rock record. Measurements of core heat transport are needed to resolve this difference. Here we present direct measurements of the thermal conductivity of solid iron at pressure and temperature conditions relevant to the cores of Mercury-sized to Earth-sized planets, using a dynamically laser-heated diamond-anvil cell. Our measurements place the thermal conductivity of Earth's core near the low end of previous estimates, at 18-44 watts per metre per kelvin. The result is in agreement with palaeomagnetic measurements indicating that Earth's geodynamo has persisted since the beginning of Earth's history, and allows for a solid inner core as old as the dynamo.

  6. Block copolymer self-assembly–directed synthesis of mesoporous gyroidal superconductors

    PubMed Central

    Robbins, Spencer W.; Beaucage, Peter A.; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G.; Sethna, James P.; DiSalvo, Francis J.; Gruner, Sol M.; Van Dover, Robert B.; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly–directed sol-gel–derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (Tc) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (Jc) of 440 A cm−2 at 100 Oe and 2.5 K. We expect block copolymer self-assembly–directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies. PMID:27152327

  7. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors.

    PubMed

    Robbins, Spencer W; Beaucage, Peter A; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G; Sethna, James P; DiSalvo, Francis J; Gruner, Sol M; Van Dover, Robert B; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly-directed sol-gel-derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (T c) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (J c) of 440 A cm(-2) at 100 Oe and 2.5 K. We expect block copolymer self-assembly-directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies.

  8. The fraternal WIMP miracle

    DOE PAGES

    Craig, Nathaniel; Katz, Andrey

    2015-10-27

    We identify and analyze thermal dark matter candidates in the fraternal twin Higgs model and its generalizations. The relic abundance of fraternal twin dark matter is set by twin weak interactions, with a scale tightly tied to the weak scale of the Standard Model by naturalness considerations. As such, the dark matter candidates benefit from a "fraternal WIMP miracle'', reproducing the observed dark matter abundance for dark matter masses between 50 and 150 GeV . However, the couplings dominantly responsible for dark matter annihilation do not lead to interactions with the visible sector. The direct detection rate is instead setmore » via fermionic Higgs portal interactions, which are likewise constrained by naturalness considerations but parametrically weaker than those leading to dark matter annihilation. Finally, the predicted direct detection cross section is close to current LUX bounds and presents an opportunity for the next generation of direct detection experiments.« less

  9. Electric thruster research

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1982-01-01

    It has been customary to assume that ions flow nearly equally in all directions from the ion production region within an electron-bombardment discharge chamber. In general, the electron current through a magnetic field can alter the electron density, and hence the ion density, in such a way that ions tend to be directed away from the region bounded by the magnetic field. When this mechanism is understood, it becomes evident that many past discharge chamber designs have operated with a preferentially directed flow of ions. Thermal losses were calculated for an oxide-free hollow cathode. At low electron emissions, the total of the radiation and conduction losses agreed with the total discharge power. At higher emissions, though, the plasma collisions external to the cathode constituted an increasingly greater fraction of the discharge power. Experimental performance of a Hall-current thruster was adversely affected by nonuniformities in the magnetic field, produced by the cathode heating current. The technology of closed-drift thrusters was reviewed. The experimental electron diffusion in the acceleration channel was found to be within about a factor of 3 of the Bohm value for the better thruster designs at most operating conditions. Thruster efficiencies of about 0.5 appear practical for the 1000 to 2000 s range of specific impulse. Lifetime information is limited, but values of several thousands of hours should be possible with anode layer thrusters operated or = to 2000 s.

  10. Non-Ideal Properties of Gallium Nitride Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Shan, Qifeng

    The spectacular development of gallium nitride (GaN) based light-emitting diodes (LEDs) in recent years foreshadows a new era for lighting. There are still several non-ideal properties of GaN based LEDs that hinder their widespread applications. This dissertation studies these non-ideal properties including the large reverse leakage current, large subthreshold forward leakage current, an undesired parasitic cyan luminescence and high-concentration deep levels in GaInN blue LEDs. This dissertation also studies the thermal properties of GaInN LEDs. Chapter 1 gives a brief introduction of non-ideal properties of GaN based LEDs. The leakage current of GaN based LEDs, defects in epitaxially grown GaN devices, and doping problems of p-type GaN materials are discussed. The transient junction temperature measurement technique for GaN based LEDs is introduced. The leakage current of an LED includes the subthreshold forward leakage current and the reverse leakage current. The leakage current of GaN based LEDs affects the reliability, electrostatic discharge resilience, and sub-threshold power consumption. In Chapter 2, the reverse leakage current of a GaInN LED is analyzed by temperaturedependent current-voltage measurements. At low temperature, the reverse leakage current is attributed to the variable-range-hopping conduction. At high temperature, the reverse leakage current is attributed to a thermally-assisted multi-step tunneling. The thermal activation energies (95 meV ~ 162 meV), extracted from the Arrhenius plot for the reverse current in the high-temperature range, indicate a thermally activated tunneling process. Additional room-temperature capacitance-voltage (C-V) measurements are performed to obtain information on the depletion width and doping concentration of the LED. The average internal electric field is estimated by the C-V measurements. The strong internal electric field enhances the thermal emission of electrons in the thermally-assisted multi-step tunneling process. Another problem of GaInN blue LEDs is the undesired parasitic cyan emission band. The undesired parasitic emission band strongly influence the electrical and optical properties of GaInN blue LEDs including the subthreshold forward leakage current and the color purity of the emission. In Chapter 3 , GaInN blue LEDs emitting at 445 nm with a parasitic cyan (blue-green) emission band (480 nm), which dominates the emission spectrum at low injection current, are analyzed. Photoluminescence using resonant optical excitation shows that the cyan emission originates from the active region of the LED. The current- and excitation-density-dependent blue-to-cyan intensity ratio reveals that the cyan emission is due to a transition from the conduction band to a Mg acceptor having diffused into the last-grown quantum well of the active region. The Mg in the active region provides an additional carrier-transport path, and therefore can explain the high subthreshold forward leakage current that is measured in these LEDs. Deep levels in GaN-based materials strongly affect the electrical and optical properties of GaN-based LEDs. Chapter 4 describes the basic principle and the setup of a deep-level transient spectroscopy (DLTS) measurement system. This DLTS system is used to determine the concentration and thermal activation energy of deep levels in the depletion region of the GaInN LED. Two types of hole traps in the n-type side of the depletion region are observed in the DLTS measurement. The thermal activation energies of these two types of hole traps are compared with the results reported in literature. The hole trap associated with the major DLTS peak with a thermal activation energy of 0.80 eV is presumably related to the “yellow luminescence band”. Self-heating of LEDs is an important issue that affects the efficiency and reliability. In Chapter 5, the thermal properties, including thermal time constants, of GaN LEDs are analyzed. The transient-junction-temperature behavior of unpackaged LED chips is described by a single time constant, which is the product of a thermal resistance Rth and a thermal capacitance Cth. Furthermore, a multistage RthCth thermal model for packaged LEDs is developed. The transient response of the junction temperature of LEDs after the power is switched on or switched off can be described by a multi-exponential function. Each time constant of this function is approximately the product of a thermal resistance, Rth, and a thermal capacitance, Cth. The transient junction temperature after the power is switched off is measured for a high-power flip-chip LED by the forward-voltage method. A two-stage RthCth model is used to analyze the thermal properties of the packaged LED. Two time constants, 2.72 ms and 18.7 ms are extracted from the junction temperature decay measurement and attributed to the thermal time constant of the LED GaN / sapphire chip and LED Si submount, respectively.

  11. Recovery in dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors with thermal annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Byung-Jae; Hwang, Ya-Hsi; Ahn, Shihyun

    The recovery effects of thermal annealing on dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors were investigated. After stress, reverse gate leakage current and sub-threshold swing increased and drain current on-off ratio decreased. However, these degradations were completely recovered after thermal annealing at 450 °C for 10 mins for devices stressed either once or twice. The trap densities, which were estimated by temperature-dependent drain-current sub-threshold swing measurements, increased after off-state step-stress and were reduced after subsequent thermal annealing. In addition, the small signal rf characteristics of stressed devices were completely recovered after thermal annealing.

  12. Concentrating Solar Power Projects - Crescent Dunes Solar Energy Project |

    Science.gov Websites

    : None Thermal Storage Storage Type: 2-tank direct Storage Capacity: 10 hours Thermal Storage Description : Thermal energy storage achieved by raising salt temperature from 550 to 1050 F. Thermal storage efficiency

  13. Thermal fatigue resistance of NASA WAZ-20 alloy with three commercial coatings

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Oldrieve, R. E.

    1975-01-01

    Screening tests using three commercial coatings (Jocoat, HI-15, and RT-1A) on the nickel-base alloy NASA WAZ-20 were performed by cyclic exposure in a Mach 1 burner facility. These tests showed Jocoated WAZ-20 to have the best cracking resistance. The thermal fatigue resistance of Jocoated WAZ-20 in both the random polycrystalline and directionally solidified polycrystalline forms relative to that of other superalloys was then evaluated in a fluidized-bed facility. This investigation showed that Jocoated random polycrystalline WAZ-20 ranked approximately in midrange in thermal fatigue life. The thermal fatigue life of directionally solidified Jocoated WAZ-20 was shorter than that of other directionally solidified alloys but still longer than that of all alloys in the random polycrystalline form.

  14. Multi-Functional Carbon Fibre Composites using Carbon Nanotubes as an Alternative to Polymer Sizing

    PubMed Central

    Pozegic, T. R.; Anguita, J. V.; Hamerton, I.; Jayawardena, K. D. G. I.; Chen, J-S.; Stolojan, V.; Ballocchi, P.; Walsh, R.; Silva, S. R. P.

    2016-01-01

    Carbon fibre reinforced polymers (CFRP) were introduced to the aerospace, automobile and civil engineering industries for their high strength and low weight. A key feature of CFRP is the polymer sizing - a coating applied to the surface of the carbon fibres to assist handling, improve the interfacial adhesion between fibre and polymer matrix and allow this matrix to wet-out the carbon fibres. In this paper, we introduce an alternative material to the polymer sizing, namely carbon nanotubes (CNTs) on the carbon fibres, which in addition imparts electrical and thermal functionality. High quality CNTs are grown at a high density as a result of a 35 nm aluminium interlayer which has previously been shown to minimise diffusion of the catalyst in the carbon fibre substrate. A CNT modified-CFRP show 300%, 450% and 230% improvements in the electrical conductivity on the ‘surface’, ‘through-thickness’ and ‘volume’ directions, respectively. Furthermore, through-thickness thermal conductivity calculations reveal a 107% increase. These improvements suggest the potential of a direct replacement for lightning strike solutions and to enhance the efficiency of current de-icing solutions employed in the aerospace industry. PMID:27876858

  15. Multi-Functional Carbon Fibre Composites using Carbon Nanotubes as an Alternative to Polymer Sizing

    NASA Astrophysics Data System (ADS)

    Pozegic, T. R.; Anguita, J. V.; Hamerton, I.; Jayawardena, K. D. G. I.; Chen, J.-S.; Stolojan, V.; Ballocchi, P.; Walsh, R.; Silva, S. R. P.

    2016-11-01

    Carbon fibre reinforced polymers (CFRP) were introduced to the aerospace, automobile and civil engineering industries for their high strength and low weight. A key feature of CFRP is the polymer sizing - a coating applied to the surface of the carbon fibres to assist handling, improve the interfacial adhesion between fibre and polymer matrix and allow this matrix to wet-out the carbon fibres. In this paper, we introduce an alternative material to the polymer sizing, namely carbon nanotubes (CNTs) on the carbon fibres, which in addition imparts electrical and thermal functionality. High quality CNTs are grown at a high density as a result of a 35 nm aluminium interlayer which has previously been shown to minimise diffusion of the catalyst in the carbon fibre substrate. A CNT modified-CFRP show 300%, 450% and 230% improvements in the electrical conductivity on the ‘surface’, ‘through-thickness’ and ‘volume’ directions, respectively. Furthermore, through-thickness thermal conductivity calculations reveal a 107% increase. These improvements suggest the potential of a direct replacement for lightning strike solutions and to enhance the efficiency of current de-icing solutions employed in the aerospace industry.

  16. Multi-Functional Carbon Fibre Composites using Carbon Nanotubes as an Alternative to Polymer Sizing.

    PubMed

    Pozegic, T R; Anguita, J V; Hamerton, I; Jayawardena, K D G I; Chen, J-S; Stolojan, V; Ballocchi, P; Walsh, R; Silva, S R P

    2016-11-23

    Carbon fibre reinforced polymers (CFRP) were introduced to the aerospace, automobile and civil engineering industries for their high strength and low weight. A key feature of CFRP is the polymer sizing - a coating applied to the surface of the carbon fibres to assist handling, improve the interfacial adhesion between fibre and polymer matrix and allow this matrix to wet-out the carbon fibres. In this paper, we introduce an alternative material to the polymer sizing, namely carbon nanotubes (CNTs) on the carbon fibres, which in addition imparts electrical and thermal functionality. High quality CNTs are grown at a high density as a result of a 35 nm aluminium interlayer which has previously been shown to minimise diffusion of the catalyst in the carbon fibre substrate. A CNT modified-CFRP show 300%, 450% and 230% improvements in the electrical conductivity on the 'surface', 'through-thickness' and 'volume' directions, respectively. Furthermore, through-thickness thermal conductivity calculations reveal a 107% increase. These improvements suggest the potential of a direct replacement for lightning strike solutions and to enhance the efficiency of current de-icing solutions employed in the aerospace industry.

  17. Microwave Regenerable Air Purification Device

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Holtsnider, John T.; Wheeler, Richard R., Jr.

    1996-01-01

    The feasibility of using microwave power to thermally regenerate sorbents loaded with water vapor, CO2, and organic contaminants has been rigorously demonstrated. Sorbents challenged with air containing 0.5% CO2, 300 ppm acetone, 50 ppm trichloroethylene, and saturated with water vapor have been regenerated, singly and in combination. Microwave transmission, reflection, and phase shift has also been determined for a variety of sorbents over the frequency range between 1.3-2.7 GHz. This innovative technology offers the potential for significant energy savings in comparison to current resistive heating methods because energy is absorbed directly by the material to be heated. Conductive, convective and radiative losses are minimized. Extremely rapid heating is also possible, i.e., 1400 C in less than 60 seconds. Microwave powered thermal desorption is directly applicable to the needs of Advance Life Support in general, and of EVA in particular. Additionally, the applicability of two specific commercial applications arising from this technology have been demonstrated: the recovery for re-use of acetone (and similar solvents) from industrial waste streams using a carbon based molecular sieve; and the separation and destruction of trichloroethylene using ZSM-5 synthetic zeolite catalyst, a predominant halocarbon environmental contaminant. Based upon these results, Phase II development is strongly recommended.

  18. Application of Temperature-Controlled Thermal Atomization for Printing Electronics in Space

    NASA Technical Reports Server (NTRS)

    Wu, Chih-Hao; Thompson, Furman V.

    2017-01-01

    Additive Manufacturing (AM) is a technology that builds three dimensional objects by adding material layer-upon-layer throughout the fabrication process. The Electrical, Electronic and Electromechanical (EEE) parts packaging group at Marshall Space Flight Center (MSFC) is investigating how various AM and 3D printing processes can be adapted to the microgravity environment of space to enable on demand manufacturing of electronics. The current state-of-the art processes for accomplishing the task of printing electronics through non-contact, direct-write means rely heavily on the process of atomization of liquid inks into fine aerosols to be delivered ultimately to a machine's print head and through its nozzle. As a result of cumulative International Space Station (ISS) research into the behaviors of fluids in zero-gravity, our experience leads us to conclude that the direct adaptation of conventional atomization processes will likely fall short and alternative approaches will need to be explored. In this report, we investigate the development of an alternative approach to atomizing electronic materials by way of thermal atomization, to be used in place of conventional aerosol generation and delivery processes for printing electronics in space.

  19. The role of MHD in 3D aspects of massive gas injection

    DOE PAGES

    Izzo, Valerie A.; Parks, P. B.; Eidietis, Nicholas W.; ...

    2015-06-26

    Simulations of massive gas injection (MGI) for disruption mitigation in DIII-D are carried out to compare the toroidal peaking of radiated power for the cases of one and two gas jets. The radiation toroidal peaking factor (TPF) results from a combination of the distribution of impurities and the distribution of heat flux associated with then =1 mode. The injected impurities are found to spread helically along field lines preferentially toward the high-field-side, which is explained in terms of a nozzle equation. In light of this mechanism, reversing the current direction also reverses the toroidal direction of impurity spreading. During themore » pre-thermal quench phase of the disruption, the toroidal peaking of radiated power is reduced in the straightforward manner by increasing from one to two gas jets. However, during the thermal quench phase, reduction in the TPF is achieved only for a particular arrangement of the two gas valves with respect to the field line pitch. In particular, the relationship between the two valve locations and the 1/1 mode phase is critical, where gas valve spacing that is coherent with 1/1 symmetry effectively reduces TPF.« less

  20. Adequacy of Current State Setbacks for Directional High-Volume Hydraulic Fracturing in the Marcellus, Barnett, and Niobrara Shale Plays.

    PubMed

    Haley, Marsha; McCawley, Michael; Epstein, Anne C; Arrington, Bob; Bjerke, Elizabeth Ferrell

    2016-09-01

    There is an increasing awareness of the multiple potential pathways leading to human health risks from hydraulic fracturing. Setback distances are a legislative method to mitigate potential risks. We attempted to determine whether legal setback distances between well-pad sites and the public are adequate in three shale plays. We reviewed geography, current statutes and regulations, evacuations, thermal modeling, air pollution studies, and vapor cloud modeling within the Marcellus, Barnett, and Niobrara Shale Plays. The evidence suggests that presently utilized setbacks may leave the public vulnerable to explosions, radiant heat, toxic gas clouds, and air pollution from hydraulic fracturing activities. Our results suggest that setbacks may not be sufficient to reduce potential threats to human health in areas where hydraulic fracturing occurs. It is more likely that a combination of reasonable setbacks with controls for other sources of pollution associated with the process will be required. Haley M, McCawley M, Epstein AC, Arrington B, Bjerke EF. 2016. Adequacy of current state setbacks for directional high-volume hydraulic fracturing in the Marcellus, Barnett, and Niobrara Shale Plays. Environ Health Perspect 124:1323-1333; http://dx.doi.org/10.1289/ehp.1510547.

  1. Primary Dendrite Array Morphology: Observations from Ground-based and Space Station Processed Samples

    NASA Technical Reports Server (NTRS)

    Tewari, Surendra; Rajamure, Ravi; Grugel, Richard; Erdmann, Robert; Poirier, David

    2012-01-01

    Influence of natural convection on primary dendrite array morphology during directional solidification is being investigated under a collaborative European Space Agency-NASA joint research program, "Microstructure Formation in Castings of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST)". Two Aluminum-7 wt pct Silicon alloy samples, MICAST6 and MICAST7, were directionally solidified in microgravity on the International Space Station. Terrestrially grown dendritic monocrystal cylindrical samples were remelted and directionally solidified at 18 K/cm (MICAST6) and 28 K/cm (MICAST7). Directional solidification involved a growth speed step increase (MICAST6-from 5 to 50 micron/s) and a speed decrease (MICAST7-from 20 to 10 micron/s). Distribution and morphology of primary dendrites is currently being characterized in these samples, and also in samples solidified on earth under nominally similar thermal gradients and growth speeds. Primary dendrite spacing and trunk diameter measurements from this investigation will be presented.

  2. Primary Dendrite Array: Observations from Ground-Based and Space Station Processed Samples

    NASA Technical Reports Server (NTRS)

    Tewari, Surendra N.; Grugel, Richard N.; Erdman, Robert G.; Poirier, David R.

    2012-01-01

    Influence of natural convection on primary dendrite array morphology during directional solidification is being investigated under a collaborative European Space Agency-NASA joint research program, Microstructure Formation in Castings of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST). Two Aluminum-7 wt pct Silicon alloy samples, MICAST6 and MICAST7, were directionally solidified in microgravity on the International Space Station. Terrestrially grown dendritic monocrystal cylindrical samples were remelted and directionally solidified at 18 K per centimeter (MICAST6) and 28 K per centimeter (MICAST7). Directional solidification involved a growth speed step increase (MICAST6-from 5 to 50 millimeters per second) and a speed decrease (MICAST7-from 20 to 10 millimeters per second). Distribution and morphology of primary dendrites is currently being characterized in these samples, and also in samples solidified on earth under nominally similar thermal gradients and growth speeds. Primary dendrite spacing and trunk diameter measurements from this investigation will be presented.

  3. Maskless direct laser writing with visible light: Breaking through the optical resolving limit with cooperative manipulations of nonlinear reverse saturation absorption and thermal diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Jingsong, E-mail: weijingsong@siom.ac.cn; Wang, Rui; University of Chinese Academy of Sciences, Beijing 100049

    In this work, the resolving limit of maskless direct laser writing is overcome by cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion, where the nonlinear reverse saturation absorption can induce the formation of below diffraction-limited energy absorption spot, and the thermal diffusion manipulation can make the heat quantity at the central region of energy absorption spot propagate along the thin film thickness direction. The temperature at the central region of energy absorption spot transiently reaches up to melting point and realizes nanolithography. The sample “glass substrate/AgInSbTe” is prepared, where AgInSbTe is taken as nonlinear reverse saturation absorption thinmore » film. The below diffraction-limited energy absorption spot is simulated theoretically and verified experimentally by near-field spot scanning method. The “glass substrate/Al/AgInSbTe” sample is prepared, where the Al is used as thermal conductive layer to manipulate the thermal diffusion channel because the thermal diffusivity coefficient of Al is much larger than that of AgInSbTe. The direct laser writing is conducted by a setup with a laser wavelength of 650 nm and a converging lens of NA=0.85, the lithographic marks with a size of about 100 nm are obtained, and the size is only about 1/10 the incident focused spot. The experimental results indicate that the cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion is a good method to realize nanolithography in maskless direct laser writing with visible light.« less

  4. Numerical study of the process parameters in spark plasma sintering (sps)

    NASA Astrophysics Data System (ADS)

    Chowdhury, Redwan Jahid

    Spark plasma sintering (SPS) is one of the most widely used sintering techniques that utilizes pulsed direct current together with uniaxial pressure to consolidate a wide variety of materials. The unique mechanisms of SPS enable it to sinter powder compacts at a lower temperature and in a shorter time than the conventional hot pressing, hot isostatic pressing and vacuum sintering process. One of the limitations of SPS is the presence of temperature gradients inside the sample, which could result in non-uniform physical and microstructural properties. Detailed study of the temperature and current distributions inside the sintered sample is necessary to minimize the temperature gradients and achieve desired properties. In the present study, a coupled thermal-electric model was developed using finite element codes in ABAQUS software to investigate the temperature and current distributions inside the conductive and non-conductive samples. An integrated experimental-numerical methodology was implemented to determine the system contact resistances accurately. The developed sintering model was validated by a series of experiments, which showed good agreements with simulation results. The temperature distribution inside the sample depends on some process parameters such as sample and tool geometry, punch and die position, applied current and thermal insulation around the die. The role of these parameters on sample temperature distribution was systematically analyzed. The findings of this research could prove very useful for the reliable production of large size sintered samples with controlled and tailored properties.

  5. Thermophysical properties study of micro/nanoscale materials

    NASA Astrophysics Data System (ADS)

    Feng, Xuhui

    Thermal transport in low-dimensional structure has attracted tremendous attentions because micro/nanoscale materials play crucial roles in advancing micro/nanoelectronics industry. The thermal properties are essential for understanding of the energy conversion and thermal management. To better investigate micro/nanoscale materials and characterize the thermal transport, pulse laser-assisted thermal relaxation 2 (PLTR2) and transient electrothermal (TET) are both employed to determine thermal property of various forms of materials, including thin films and nanowires. As conducting polymer, Poly(3-hexylthiophene) (P3HT) thin film is studied to understand its thermal properties variation with P3HT weight percentage. 4 P3HT solutions of different weight percentages are compounded to fabricate thin films using spin-coating technique. Experimental results indicate that weight percentage exhibits impact on thermophysical properties. When percentage changes from 2% to 7%, thermal conductivity varies from 1.29 to 1.67 W/m·K and thermal diffusivity decreases from 10-6 to 5×10-7 m2/s. Moreover, PLTR2 technique is applied to characterize the three-dimensional anisotropic thermal properties in spin-coated P3HT thin films. Raman spectra verify that the thin films embrace partially orientated P3HT molecular chains, leading to anisotropic thermal transport. Among all three directions, lowest thermal property is observed along out-of-plane direction. For in-plane characterization, anisotropic ratio is around 2 to 3, indicating that the orientation of the molecular chains has strong impact on the thermal transport along different directions. Titanium dioxide (TiO2) thin film is synthesized by electrospinning features porous structure composed by TiO2 nanowires with random orientations. The porous structure caused significant degradation of thermal properties. Effective thermal diffusivity, conductivity, and density of the films are 1.35˜3.52 × 10-6 m2/s, 0.06˜0.36 W/m·K, and 25.8˜373 kg/m3, respectively, much lower than bulk values. Then single anatase TiO2 nanowire is synthesized to understand intrinsic thermophysical properties and secondary porosity. Thermal diffusivity of nanowires varies from 1.76 to 5.08 × 10-6 m 2/s, while thermal conductivity alters from 1.38 to 6.01 W/m·K. SEM image of TiO2 nanowire shows secondary porous surface structure. In addition, nonlinear effects are also observed with experimental data. Two methods, generalized function analysis and direct capacitance derivation, are developed to suppress nonlinear effects. Effective thermal diffusivities from both modified analysis agree well with each other.

  6. Thermal tolerance during early ontogeny in the common whelk Buccinum undatum (Linnaeus 1785): Bioenergetics, nurse egg partitioning and developmental success

    NASA Astrophysics Data System (ADS)

    Smith, Kathryn E.; Thatje, Sven; Hauton, Chris

    2013-05-01

    Temperature is arguably the primary factor affecting development in ectotherms and, as a result, may be the driving force behind setting species' geographic limits. The shallow-water gastropod Buccinum undatum is distributed widely throughout the North Atlantic, with an overall annual thermal range of below zero to above 22 °C. In UK waters this species is a winter spawner. Egg masses are laid and develop when sea temperatures are at their coolest (4 to 10 °C) indicating future climate warming may have the potential to cause range shifts in this species. In order to examine the potential impacts of ocean warming, we investigate the effects of temperature on the early ontogeny of B. undatum across a thermal range of 0 to 22 °C. Each egg mass consists of approximately 100 capsules, in which embryos undergo direct development. Successful development was observed at temperatures ranging from 6 to 18 °C. Rates of development increased with temperature, but the proportion of each egg mass developing successfully decreased at the same time. With increasing temperature, the mean early veliger weight increased, but the number of early veligers developing per capsule decreased, suggesting a negative impact on the number of crawl-away juveniles produced per capsule. Elemental analysis showed both carbon (C) and nitrogen (N) to increase with temperature in early veligers but not in hatching juveniles, indicating greater energy reserves are accumulated during early ontogeny to compensate for the higher energetic demands of development at higher temperature. The developmental plasticity observed in B. undatum suggests this species to be capable of adapting to temperatures above those it currently experiences in nature. B. undatum may possess a thermal resilience to ocean warming at its current upper temperature distribution limit. This thermal resilience, however, may come at the cost of a reduced offspring number.

  7. Fabrication methods and anisotropic properties of graphite matrix compacts for use in HTGR

    NASA Astrophysics Data System (ADS)

    Yeo, Sunghwan; Yun, Jihae; Kim, Sungok; Cho, Moon Sung; Lee, Young-Woo

    2018-02-01

    This study investigated the anisotropic microstructural, mechanical, and thermal properties of fabricated graphite matrix prismatic compacts for High Temperature Gas Cooled Reactor (HTGR) fuel. When the observed alignment of graphite grains and the coke derived from phenolic resin is in the transverse direction, the result is severely anisotropic thermal properties. Compacts with such orientation in the transverse direction exhibited increases of thermal expansion and conductivity up to 5.8 times and 4.82 times, respectively, more than those in the axial direction. The formation of pores due to the pyrolysis of phenolic resin was observed predominantly on upper region of the fabricated compacts. This anisotropic pore formation created anisotropic Vickers hardness on the planes with different directions.

  8. Casimir Interaction from Magnetically Coupled Eddy Currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intravaia, Francesco; Henkel, Carsten

    2009-09-25

    We study the quantum and thermal fluctuations of eddy (Foucault) currents in thick metallic plates. A Casimir interaction between two plates arises from the coupling via quasistatic magnetic fields. As a function of distance, the relevant eddy current modes cross over from a quantum to a thermal regime. These modes alone reproduce previously discussed thermal anomalies of the electromagnetic Casimir interaction between good conductors. In particular, they provide a physical picture for the Casimir entropy whose nonzero value at zero temperature arises from a correlated, glassy state.

  9. Comparative thermal fatigue resistances of twenty-six nickel and cobalt base alloys

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Spera, D. A.

    1975-01-01

    Thermal fatigue resistances were determined from fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials with directional solidification and surface protection of definite benefit. The alloy-coating combination with the highest thermal fatigue resistance was directionally solidified NASA TAZ-8A with an RT-XP coating. It oxidation resistance was excellent, showing almost no weight change after 15 000 fluidized bed cycles.

  10. Direct plasma interaction with living tissue

    NASA Astrophysics Data System (ADS)

    Fridman, Gregory

    For some time, plasma has been used in medicine to cauterize or cut tissue using heat and mechanical energy. In the recent decade, some researchers around the world have started to investigate how gas jets that pass through thermal plasma can be employed in medicine. This thesis presents the first investigation of biomedical uses of non-thermal plasma discharge which comes in direct contact with living tissue. It is demonstrated that the direct application of non-thermal plasma in air can cause rapid deactivation of bacteria on surfaces of tissues without causing any visible tissue damage. Medical need for such a device is discussed. Construction and operation of various types of non-thermal plasma power supplies and many types of treatment electrodes are presented as well. Application of this plasma to living organisms is shown to be safe from both the electrical perspective and from the biological perspective. Biological safety is revealed through a series of differential skin toxicity trials on human cadaver tissue, live hairless mouse skin tissue, live pig skin tissue, and finally in an open wound model on pigs. Direct non-thermal plasma in air is shown to deactivate bacteria about 100 times faster than indirect application using jets. A series of experiments reveal that this effectiveness is due to the ability of direct discharge to bring charges to tissue surfaces. It is demonstrated that neither ultraviolet (UV) radiation nor neutral active species such as hydroxyl radicals or ozone produced in plasma are responsible for the main effect on bacteria. Although much additional work remains on establishing detailed mechanism by which charges from plasma achieve this effect, the work carried out in this thesis clearly demonstrates that direct application of non-thermal plasma in air can be a very useful tool in medicine.

  11. Isoquinoline alkaloids and their binding with DNA: calorimetry and thermal analysis applications.

    PubMed

    Bhadra, Kakali; Kumar, Gopinatha Suresh

    2010-11-01

    Alkaloids are a group of natural products with unmatched chemical diversity and biological relevance forming potential quality pools in drug screening. The molecular aspects of their interaction with many cellular macromolecules like DNA, RNA and proteins are being currently investigated in order to evolve the structure activity relationship. Isoquinolines constitute an important group of alkaloids. They have extensive utility in cancer therapy and a large volume of data is now emerging in the literature on their mode, mechanism and specificity of binding to DNA. Thermodynamic characterization of the binding of these alkaloids to DNA may offer key insights into the molecular aspects that drive complex formation and these data can provide valuable information about the balance of driving forces. Various thermal techniques have been conveniently used for this purpose and modern calorimetric instrumentation provides direct and quick estimation of thermodynamic parameters. Thermal melting studies and calorimetric techniques like isothermal titration calorimetry and differential scanning calorimetry have further advanced the field by providing authentic, reliable and sensitive data on various aspects of temperature dependent structural analysis of the interaction. In this review we present the application of various thermal techniques, viz. isothermal titration calorimetry, differential scanning calorimetry and optical melting studies in the characterization of drug-DNA interactions with particular emphasis on isoquinoline alkaloid-DNA interaction.

  12. Thermal design of spacecraft solar arrays using a polyimide foam

    NASA Astrophysics Data System (ADS)

    Bianco, N.; Iasiello, M.; Naso, V.

    2015-11-01

    The design of the Thermal Control System (TCS) of spacecraft solar arrays plays a fundamental role. Indeed, the spacecraft components must operate within a certain range of temperature. If this doesn't occur, their performance is reduced and they may even break. Solar arrays, which are employed to recharge batteries, are directly exposed to the solar heat flux, and they need to be insulated from the earth's surface irradiation. Insulation is currently provided either with a white paint coating or with a Multi Layer Insulation (MLI) system [1]. A configuration based on an open-cell polyimide foam has also been recently proposed [2]. Using polyimide foams in TCSs looks very attractive in terms of costs, weight and assembling. An innovative thermal analysis of the above cited TCS configurations is carried out in this paper, by solving the porous media energy equation, under the assumption of Local Thermal Equilibrium (LTE) between the two phases. Radiation effects through the solar array are also considered by using the Rosseland approximation. Under a stationary daylight condition, temperature profiles are obtained by means of the finite-element based code COMSOL Multiphysics®. Finally, since the weight plays an important role in aerospace applications, weights of the three TCS configurations are compared.

  13. Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries

    NASA Astrophysics Data System (ADS)

    Giuliano, Michael R.; Prasad, Ajay K.; Advani, Suresh G.

    2012-10-01

    Lithium-titanate batteries have become an attractive option for battery electric vehicles and hybrid electric vehicles. In order to maintain safe operating temperatures, these batteries must be actively cooled during operation. Liquid-cooled systems typically employed for this purpose are inefficient due to the parasitic power consumed by the on-board chiller unit and the coolant pump. A more efficient option would be to circulate ambient air through the battery bank and directly reject the heat to the ambient. We designed and fabricated such an air-cooled thermal management system employing metal-foam based heat exchanger plates for sufficient heat removal capacity. Experiments were conducted with Altairnano's 50 Ah cells over a range of charge-discharge cycle currents at two air flow rates. It was found that an airflow of 1100 mls-1 per cell restricts the temperature rise of the coolant air to less than 10 °C over ambient even for 200 A charge-discharge cycles. Furthermore, it was shown that the power required to drive the air through the heat exchanger was less than a conventional liquid-cooled thermal management system. The results indicate that air-cooled systems can be an effective and efficient method for the thermal management of automotive battery packs.

  14. Solar receiver with integrated optics

    NASA Astrophysics Data System (ADS)

    Jiang, Lun; Winston, Roland

    2012-10-01

    The current challenge for PV/Thermal (PV/T) systems is the reduction of radiation heat loss. Compared to solar thermal selective coating, the solar cells cannot be used as an efficient thermal absorber due to their large emissivity of the encapsulation material. Many commercial PV/T products therefore require a high concentration (more than 10x) to reach an acceptable thermal efficiency for their receivers. Such a concentration system inevitably has to track or semi-track, which induces additional cost and collects only the direct radiation from the sun. We propose a new PV/T design using a vacuum encapsulated thin film cell to solve this problem. The proposed design also collects the diffuse sun light efficiently by using an external compound parabolic concentrator (XCPC). Since the transparent electrode (TCO) of thin film cell is inherently transparent in visible light and reflective beyond infrared, this design uses this layer instead of the conventional solar cell encapsulation as the outmost heat loss surface. By integrating such a vacuum design with a tube shaped absorber, we reduce the complexity of conducting the heat energy and electricity out of the device. A low concentration standalone non-tracking solar collector is proposed in this paper. We also analyzed the thermosyphon system configuration using heat transfer and ray tracing models. The economics of such a receiver are presented.

  15. Differential modulation of the chaperone-like activity of HSP-1/2, a major protein of horse seminal plasma by anionic and cationic surfactants.

    PubMed

    Kumar, C Sudheer; Swamy, Musti J

    2017-03-01

    The major protein of equine seminal plasma, HSP-1/2 exhibits chaperone-like activity (CLA) by protecting various target proteins against thermal, chemical and oxidative stress. Polydispersity and surface hydrophobicity of HSP-1/2 were found to be important for its CLA. Surfactants are known to alter certain properties of proteins, e.g. hydrophobicity, charge and conformation either by altering properties of the medium or by direct binding. In the current study, thermal aggregation of alcohol dehydrogenase (ADH) and enolase has been studied in the presence of HSP-1/2, different surfactants and their combinations. The results obtained show that anionic surfactants (SDS, sodium dodecyl benzene sulfate) and neutral surfactants (tween-20, triton X-100) increase the CLA of HSP-1/2 and also inhibit aggregation of the target proteins independently. On the other hand, cationic surfactants (CTAB, alanine palmityl ester) increased the thermal aggregation of ADH and enolase and also decreased the CLA of HSP-1/2. These results are of significant interest as they show that surfactants such as SDS and tween-20 can potentially be used as anti-aggregation agents to prevent thermal aggregation of target proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Finite-element modelling of thermal micracking in fresh and consolidated marbles

    NASA Astrophysics Data System (ADS)

    Weiss, T.; Fuller, E.; Siegesmund, S.

    2003-04-01

    The initial stage of marble weathering is supposed to be controlled by thermal microcracking. Due to the anisotropy of the thermal expansion coefficients of calcite, the main rock forming mineral in marble, stresses are caused which lead to thermally-induced microcracking, especially along the grain boundaries. The so-called "granular disintegration" is a frequent weathering phenomenon observed for marbles. The controlling parameters are the grain size, grain shape and grain orientation. We use a finite-element approach to constrain magnitude and directional dependence of thermal degradation. Therefore, different assumptions are validated including the fracture toughness of the grain boundaries, the effects of the grain-to-grain orientation and bulk lattice preferred orientation (here referred to as texture). The resulting thermal microcracking and bulk rock thermal expansion anisotropy are validated. It is evident that thermal degradation depends on the texture. Strongly textured marbles exhibit a clear directional dependence of thermal degradation and a smaller bulk thermal degradation than randomly oriented ones. The effect of different stone consolidants in the pore space of degraded marble is simulated and its influence on mechanical properties such as tensile strength are evaluated.

  17. Thermal neutron detection system

    DOEpatents

    Peurrung, Anthony J.; Stromswold, David C.

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  18. Anisotropic in-plane thermal conductivity in multilayer silicene

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Guo, Zhi-Xin; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao

    2018-06-01

    We systematically study thermal conductivity of multilayer silicene by means of Boltzmann Transportation Equation (BTE) method. We find that their thermal conductivity strongly depends on the surface structures. Thermal conductivity of bilayer silicene varies from 3.31 W/mK to 57.9 W/mK with different surface structures. Also, the 2 × 1 surface reconstruction induces unusual large thermal conductivity anisotropy, which reaches 70% in a four-layer silicene. We also find that the anisotropy decreases with silicene thickness increasing, owing to the significant reduction of thermal conductivity in the zigzag direction and its slight increment in the armchair direction. Finally, we find that both the phonon-lifetime anisotropy and the phonon-group-velocity anisotropy contribute to the thermal conductivity anisotropy of multilayer silicene. These findings could be helpful in the field of heat management, thermoelectric applications involving silicene and other multilayer nanomaterials with surface reconstructions in the future.

  19. The impact of the driving frequency on the output flux of high-power InGaAlP-LEDs during high-current pulsed operation

    NASA Astrophysics Data System (ADS)

    Schulz, Benjamin; Morgott, Stefan

    2017-09-01

    Direct red light-emitting diodes based on InGaAlP comprise a strong temperature sensitivity regarding their output flux. In étendue-limited applications, like digital projectors, these LEDs are usually driven at current densities exceeding 3 A/mm2 in pulsed mode. The losses inside the semiconductor lead to a large amount of heat, which has to be removed most efficiently by a heatsink to keep the junction temperature as low as possible and therefore to obtain the maximum output flux. One important performance parameter is the thermal resistance Rth of the LED, which has been improved during the last few years, e.g. by the development of new high-power chips and packages. In our present approach, we investigated the influence of the driving frequency - which is closely related to the thermal impedance Zth - on the luminous and the radiant flux of red LEDs. A simulation model based on the electro-thermal analogies was implemented in SPICE and the optical and electrical characteristics of one LED type (OSRAM OSTAR Projection Power LE A P1W) were measured under application-related driving conditions while varying the parameters frequency, duty cycle, forward current, and heatsink temperature. The experimental results show clearly that the luminous and the radiant flux go up when the driving frequency is increased while the other parameters are maintained. Moreover, it can be noticed that the degree of this effect depends on the other parameters. The largest impact can be observed at the lowest tested duty cycle (30 %) and the highest tested current density (4 A/mm2) and heatsink temperature (80 °C). At this operating point, the luminous and the radiant flux increase by 20 % and 14 % respectively when raising the frequency from 240 Hz to 1920 Hz.

  20. Roll-to-Roll Continuous Manufacturing Multifunctional Nanocomposites by Electric-Field-Assisted "Z" Direction Alignment of Graphite Flakes in Poly(dimethylsiloxane).

    PubMed

    Guo, Yuanhao; Chen, Yuwei; Wang, Enmin; Cakmak, Miko

    2017-01-11

    A roll-to-roll continuous process was developed to manufacture large-scale multifunctional poly(dimethylsiloxane) (PDMS) films embedded with thickness direction ("Z" direction) aligned graphite nanoparticles by application of electric field. The kinetics of particle "Z" alignment and chain formation was studied by tracking the real-time change of optical light transmission through film thickness direction. Benefiting from the anisotropic structure of aligned particle chains, the electrical and thermal properties of the nanocomposites were dramatically enhanced through the thickness direction as compared to those of the nanocomposites containing the same particle loading without electrical field alignment. With 5 vol % graphite loading, 250 times higher electrical conductivity, 43 times higher dielectric permittivity, and 1.5 times higher thermal conductivity was achieved in the film thickness direction after the particles were aligned under electrical field. Moreover, the aligned nanocomposites with merely 2 vol % graphite particles exhibit even higher electric conductivity and dielectric permittivity than those of the nonaligned nanocomposites at random percolation threshold (10 vol % particles), as the "electric-field-directed" percolation threshold concentration is substantially decreased using this process. As the graphite loading increases to 20 vol %, the aligned nanocomposites exhibit thermal conductivity as high as 6.05 W/m·K, which is 35 times the thermal conductivity of pure matrix. This roll-to-roll electric field continuous process provides a simple, low-cost, and commercially viable method to manufacture multifunctional nanocomposites for applications as embedded capacitor, electromagnetic (EM) shielding, and thermal interface materials.

  1. LANDSAT 4 band 6 data evaluation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Previously experienced data collection problems were successfully resolved. A limited effort, directed at improved methods of display of TM Band 6 data, has concentrated on implementation of intensity hue and saturation displays using the Band 6 data to control hue. These displays tend to give the appearance of high resolution thermal data and make whole scene thermal interpretation easier by color coding thermal data in a manner that aids visual interpretation. More quantitative efforts were directed at utilizing the reflected bands to define land cover classes and then modifying the thermal displays using long wave optical properties associated with cover type.

  2. Periodic composites: quasi-uniform heat conduction, Janus thermal illusion, and illusion thermal diodes

    NASA Astrophysics Data System (ADS)

    Xu, Liujun; Jiang, Chaoran; Shang, Jin; Wang, Ruizhe; Huang, Jiping

    2017-11-01

    Manipulating thermal conductivities at will plays a crucial role in controlling heat flow. By developing an effective medium theory including periodicity, here we experimentally show that nonuniform media can exhibit quasi-uniform heat conduction. This provides capabilities in proposing Janus thermal illusion and illusion thermal rectification. For the former, we study, via experiment and theory, a big periodic composite containing a small periodic composite with circular or elliptic particles. As a result, we reveal the Janus thermal illusion that describes the whole periodic system with both invisibility illusion along one direction and visibility illusion along the perpendicular direction, which is fundamentally different from the existing thermal illusions for misleading thermal detection. Further, the Janus illusion helps to design two different periodic systems that both work as thermal diodes but with nearly the same temperature distribution, heat fluxes and rectification ratios, thus being called illusion thermal diodes. Such thermal diodes differ from those extensively studied in the literature, and are useful for the areas that require both thermal rectification and thermal camouflage. This work not only opens a door for designing novel periodic composites in thermal camouflage and heat rectification, but also holds for achieving similar composites in other disciplines like electrostatics, magnetostatics, and particle dynamics.

  3. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyser (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, D. W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current development and cutting edge research. The Thermal Evolved Gas Analyzer (TEGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil. Additional information is available in the original extended abstract.

  4. Cell Membrane Softening in Cancer Cells

    NASA Astrophysics Data System (ADS)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  5. Finite Element Methods for Modelling Mechanical Loss in LIGO coating optics.

    NASA Astrophysics Data System (ADS)

    Newport, Jonathan; Harry, Gregg; LIGO Collaboration

    2015-04-01

    Gravitational waves from sources such as binary star systems, supernovae explosions and stochastic background radiation have yet to be directly detected by experimental observations. Alongside international collaborators, the Laser Interferometer Gravitational-Wave Observatory (LIGO) is designed to realize detection of gravitational waves using interferometric techniques. The second generation of gravitational wave observatories, known as Advanced LIGO, are currently undergoing installation and commissioning at sites in Hanford, Washington and Livingston, Louisiana. The ultimate sensitivity of Advanced LIGO within select spectral bands is limited by thermal noise in the coatings of the interferometer optics. The LIGO lab at American University is measuring the mechanical loss of coated substrates to predict thermal noise within these spectral bands. These predictions use increasingly sophisticated finite element models to ensure the ultimate design sensitivity of Advanced LIGO and to study coating and substrate materials for future gravitational wave detectors.

  6. Electron beam induced damage in ITO coated Kapton. [Indium Tin Oxide

    NASA Technical Reports Server (NTRS)

    Krainsky, I.; Gordon, W. L.; Hoffman, R. W.

    1981-01-01

    Data for the stability of thin conductive indium tin oxide films on 0.003 inch thick Kapton substrates during exposure of the surface to electron beams are reported. The electron beam energy was 3 keV and the diameter was about 0.8 mm. Thermal effects and surface modifications are considered. For primary current greater than 0.6 microamperes, an obvious dark discoloration with diameter approximately that of the beam was produced. The structure of the discolored region was studied with the scanning electron microscope, and the findings are stated. Surface modifications were explored by AES, obtaining spectra and secondary emission coefficient as a function of time for different beam intensities. In all cases beam exposure results in a decrease of the secondary yield but because of thermal effects this change, as well as composition changes, cannot be directly interpreted in terms of electron beam dosage.

  7. Performance of Continuous Quantum Thermal Devices Indirectly Connected to Environments

    NASA Astrophysics Data System (ADS)

    González, J.; Alonso, Daniel; Palao, José

    2016-04-01

    A general quantum thermodynamics network is composed of thermal devices connected to the environments through quantum wires. The coupling between the devices and the wires may introduce additional decay channels which modify the system performance with respect to the directly-coupled device. We analyze this effect in a quantum three-level device connected to a heat bath or to a work source through a two-level wire. The steady state heat currents are decomposed into the contributions of the set of simple circuits in the graph representing the master equation. Each circuit is associated with a mechanism in the device operation and the system performance can be described by a small number of circuit representatives of those mechanisms. Although in the limit of weak coupling between the device and the wire the new irreversible contributions can become small, they prevent the system from reaching the Carnot efficiency.

  8. Observation of negative differential resistance in mesoscopic graphene oxide devices.

    PubMed

    Rathi, Servin; Lee, Inyeal; Kang, Moonshik; Lim, Dongsuk; Lee, Yoontae; Yamacli, Serhan; Joh, Han-Ik; Kim, Seongsu; Kim, Sang-Woo; Yun, Sun Jin; Choi, Sukwon; Kim, Gil-Ho

    2018-05-08

    The fractions of various functional groups in graphene oxide (GO) are directly related to its electrical and chemical properties and can be controlled by various reduction methods like thermal, chemical and optical. However, a method with sufficient controllability to regulate the reduction process has been missing. In this work, a hybrid method of thermal and joule heating processes is demonstrated where a progressive control of the ratio of various functional groups can be achieved in a localized area. With this precise control of carbon-oxygen ratio, negative differential resistance (NDR) is observed in the current-voltage characteristics of a two-terminal device in the ambient environment due to charge-activated electrochemical reactions at the GO surface. This experimental observation correlates with the optical and chemical characterizations. This NDR behavior offers new opportunities for the fabrication and application of such novel electronic devices in a wide range of devices applications including switches and oscillators.

  9. An electric noise component with density 1/f identified on ISEE 3

    NASA Technical Reports Server (NTRS)

    Hoang, S.; Steinberg, J. L.; Couturier, P.; Feldman, W. C.

    1982-01-01

    The properties of the 1/f noise detected at the terminals of ISEE 3 antennas are described and related to the solar wind parameters. The 1/f noise was observed with the radio receivers of the three-dimensional radio mapping experiment using the S and Z dipole antennas. The noise spectra contained a negative spectral index component at frequencies lower than 0.7 of the plasma frequency, and 5-10 times the predicted thermal noise for the Z antenna. S-antenna measurements of the 1/f component revealed it to be deeply spin modulated with a minimum electric field in the direction of the solar wind. Modulation increases with increasing frequency, becomes negligible when the 1/f intensity is negligible with respect to the thermal noise, and increases with solar wind velocity. The possibilities that the noise is due either to waves or currents are discussed.

  10. Electrical-thermal-structural finite element simulation and experimental study of a plasma ion source for the production of radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Manzolaro, M.; Meneghetti, G.; Andrighetto, A.; Vivian, G.

    2016-03-01

    The production target and the ion source constitute the core of the selective production of exotic species (SPES) facility. In this complex experimental apparatus for the production of radioactive ion beams, a 40 MeV, 200 μA proton beam directly impinges a uranium carbide target, generating approximately 1013 fissions per second. The transfer line enables the unstable isotopes generated by the 238U fissions in the target to reach the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work, the plasma ion source currently adopted for the SPES facility is analyzed in detail by means of electrical, thermal, and structural numerical models. Next, theoretical results are compared with the electric potential difference, temperature, and displacement measurements. Experimental tests with stable ion beams are also presented and discussed.

  11. Heat analysis of thermal overload relays using 3-D finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawase, Yoshihiro; Ichihashi, Takayuki; Ito, Shokichi

    1999-05-01

    In designing a thermal overload relay, it is necessary to analyze thermal characteristics of several trial models. Up to now, this has been done by measuring the temperatures on a number of positions in the trial models. This experimental method is undoubtedly expensive. In this paper, the temperature distribution of a thermal overload relay is obtained by using 3-D finite element analysis taking into account the current distribution in current-carrying conductors. It is shown that the 3-D analysis is capable of evaluating a new design of thermal overload relays.

  12. Assessment of contamination of soil due to heavy metals around coal fired thermal power plants at Singrauli region of India.

    PubMed

    Agrawal, Prashant; Mittal, Anugya; Prakash, Rajiv; Kumar, Manoj; Singh, T B; Tripathi, S K

    2010-08-01

    In the present study, an attempt was made to measure contamination of soil around four large coal-based Thermal Power Plants. The concentration of Cadmium, Lead, Arsenic and Nickel was estimated in all four directions from Thermal Power Plants. The soil in the study area was found to be contaminated to varying degrees from coal combustion byproducts. The soil drawn from various selected sites in each direction was largely contaminated by metals, predominantly higher within 2-4 km distance from Thermal Power Plant. Within 2-4 km, the mean maximum concentration of Cadmium, Lead, Arsenic and Nickel was 0.69, 13.69, 17.76, and 3.51 mg/kg, respectively. It was also observed that concentration was maximum in the prevalent wind direction. The concentration of Cadmium, Lead, Arsenic and Nickel was highest 0.69, 13.23, 17.29 and 3.56 mg/kg, respectively in west direction where wind was prevalent.

  13. Tissue-mimicking gel phantoms for thermal therapy studies.

    PubMed

    Dabbagh, Ali; Abdullah, Basri Johan Jeet; Ramasindarum, Chanthiriga; Abu Kasim, Noor Hayaty

    2014-10-01

    Tissue-mimicking phantoms that are currently available for routine biomedical applications may not be suitable for high-temperature experiments or calibration of thermal modalities. Therefore, design and fabrication of customized thermal phantoms with tailored properties are necessary for thermal therapy studies. A multitude of thermal phantoms have been developed in liquid, solid, and gel forms to simulate biological tissues in thermal therapy experiments. This article is an attempt to outline the various materials and techniques used to prepare thermal phantoms in the gel state. The relevant thermal, electrical, acoustic, and optical properties of these phantoms are presented in detail and the benefits and shortcomings of each type are discussed. This review could assist the researchers in the selection of appropriate phantom recipes for their in vitro study of thermal modalities and highlight the limitations of current phantom recipes that remain to be addressed in further studies. © The Author(s) 2014.

  14. Criteria for extending the operation periods of thermoelectric converters based on IV-VI compounds

    NASA Astrophysics Data System (ADS)

    Sadia, Yatir; Ohaion-Raz, Tsion; Ben-Yehuda, Ohad; Korngold, Meidad; Gelbstein, Yaniv

    2016-09-01

    The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations, had positioned the research of renewable energy conversion methods in general and of thermoelectric direct conversion of thermal into electrical energies in particular, in the forefront of the currently active applicative sciences. IV-VI thermoelectric compounds (e.g. GeTe, PbTe and SnTe) and their alloys comprise some of the most efficient thermoelectric compositions ever reported. Yet a proper utilization of such materials in practical thermoelectric devices, still requires an overcoming the so-called technological "valley of death", including among others, transport properties' degradation, due to sublimation of volatile Te rich species, while being subjected to elevated temperatures for long periods of time. In an attempt to establish practical operation criteria for extending the operation periods of such thermoelectric converters, it is currently shown based on thermal gravimetric and metallurgical considerations that such harmful sublimation can be practically bridged over by limiting the maximal operating temperatures to the 410-430 °C range for GeTe rich alloys and to 510-530 °C for PbTe and SnTe rich alloys, depending of the thermoelectric leg's diameter.

  15. Improvement of Thermal Interruption Capability in Self-blast Interrupting Chamber for New 245kV-50kA GCB

    NASA Astrophysics Data System (ADS)

    Shinkai, Takeshi; Koshiduka, Tadashi; Mori, Tadashi; Uchii, Toshiyuki; Tanaka, Tsutomu; Ikeda, Hisatoshi

    Current zero measurements are performed for 245kV-50kA-60Hz short line fault (L90) interruption tests with a self-blast interrupting chamber (double volume system) which has the interrupting capability up to 245kV-50kA-50Hz L90. Lower L90 interruption capability is observed for longer arcing time although very high pressure rise is obtained. It may be caused by higher blowing temperature and lower blowing density for longer arcing time. Interruption criteria and a optimization method of the chamber design are discussed to improve L90 interruption capability with it. The new chambers are designed at 245kV-50kA-60Hz to improve gas density in thermal volume for long arcing time. 245kV-50kA-60Hz L90 interruptions are performed with the new chamber. The suggested optimization method is an efficient tool for the self-blast interrupting chamber design although study of computing methods is required to calculate arc conductance around current zero as a direct criterion for L90 interruption capability with higher accuracy.

  16. Compatibility between Co-Metallized PbTe Thermoelectric Legs and an Ag-Cu-In Brazing Alloy.

    PubMed

    Ben-Ayoun, Dana; Sadia, Yatir; Gelbstein, Yaniv

    2018-01-10

    In thermoelectric (TE) generators, maximizing the efficiency of conversion of direct heat to electricity requires the reduction of any thermal and electrical contact resistances between the TE legs and the metallic contacts. This requirement is especially challenging in the development of intermediate to high-temperature TE generators. PbTe-based TE materials are known to be highly efficient up to temperatures of around 500 °C; however, only a few practical TE generators based on these materials are currently commercially available. One reason for that is the insufficient bonding techniques between the TE legs and the hot-side metallic contacts. The current research is focused on the interaction between cobalt-metallized n -type 9.104 × 10 -3 mol % PbI₂-doped PbTe TE legs and the Ag 0.32 Cu 0.43 In 0.25 brazing alloy, which is free of volatile species. Clear and fine interfaces without any noticeable formation of adverse brittle intermetallic compounds were observed following prolonged thermal treatment testing. Moreover, a reasonable electrical contact resistance of ~2.25 mΩmm² was observed upon brazing at 600 °C, highlighting the potential of such contacts while developing practical PbTe-based TE generators.

  17. Multiscale modelling for tokamak pedestals

    NASA Astrophysics Data System (ADS)

    Abel, I. G.

    2018-04-01

    Pedestal modelling is crucial to predict the performance of future fusion devices. Current modelling efforts suffer either from a lack of kinetic physics, or an excess of computational complexity. To ameliorate these problems, we take a first-principles multiscale approach to the pedestal. We will present three separate sets of equations, covering the dynamics of edge localised modes (ELMs), the inter-ELM pedestal and pedestal turbulence, respectively. Precisely how these equations should be coupled to each other is covered in detail. This framework is completely self-consistent; it is derived from first principles by means of an asymptotic expansion of the fundamental Vlasov-Landau-Maxwell system in appropriate small parameters. The derivation exploits the narrowness of the pedestal region, the smallness of the thermal gyroradius and the low plasma (the ratio of thermal to magnetic pressures) typical of current pedestal operation to achieve its simplifications. The relationship between this framework and gyrokinetics is analysed, and possibilities to directly match our systems of equations onto multiscale gyrokinetics are explored. A detailed comparison between our model and other models in the literature is performed. Finally, the potential for matching this framework onto an open-field-line region is briefly discussed.

  18. Mass spectrometry of planetary exospheres at high relative velocity: direct comparison of open- and closed source measurements

    NASA Astrophysics Data System (ADS)

    Meyer, Stefan; Tulej, Marek; Wurz, Peter

    2016-04-01

    The exploration of habitable worlds around the gas giants in the Solar System is of major interest in upcoming planetary missions. Exactly this theme is addressed by the Jupiter Icy Moons Explorer (JUICE) mission of ESA, which will characterise Ganymede, Europa and Callisto as planetary objects and potential habitats [1], [2]. We developed a prototype of the Neutral gas and Ion Mass spectrometer (NIM) of the Particle Environment Package (PEP) for the JUICE mission intended for composition measurements of neutral gas and thermal plasma. NIM/PEP will be used to measure the chemical composition of the exospheres of the icy Jovian moons. Besides direct ion measurement, the NIM instrument is able to measure the inflowing neutral gas in two different modes: in neutral mode the gas enters directly the ion source (open source) and in thermal mode, the gas gets thermally accommodated to wall temperature by several collisions inside an equilibrium sphere before entering the ion source (closed source). We performed measurements with the prototype NIM using a neutral gas beam of 1 up to 5 km/s velocity in the neutral and thermal mode. The current trajectory of JUICE foresees a flyby velocity of 4 km/s at Europa, other flybys are in the range of 1 up to 7 km/s and velocity in Ganymede orbits is around 2 km/s. Different species are used for gas beam, such as noble gases Ne, Ar, Kr as well as molecules like H2, Methane, Ethane, Propane and more complex ones. We will present the results of these measurements with respect to fragmentation and density enhancements in the closed source mode. Furthermore, we will give a direct comparison between open and closed source mode measurements. References: [1] ESA, "JUICE assessment study report (Yellow Book)", ESA/SRE(2011)18, 2012. [2] O. Grasset, M.K. Dougherty, A. Coustenis, E.J. Bunce, C. Erd, D. Titov, M. Blanc, A. Coates, P. Drossart, L.N. Fletcher, H. Hussmann, R. Jaumann, N. Krupp, J.-P. Lebreton, O. Prieto-Ballesteros, P. Tortora, F. Tosi, T. Van Hoolst, "JUpiter Icy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system", Planet. Space Sci., 2013, 78, pp. 1 - 21.

  19. Magnetohydrodynamic simulations of noninductive helicity injection in the reversed-field pinch and tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sovinec, Carl R.

    1995-11-01

    Numerical computation is used to investigate resistive magnetohydrodynamic (MHD) fluctuations in the reversed-field pinch (RFP) and in tokamak-like configurations driven solely by direct current (DC) helicity injection. A Lundquist number (S) scan of RFP turbulence without plasma pressure produces the weak scaling of S -0.18 for the root-mean-square magnetic fluctuation level for 2.5x10 3≤S≤4x10 4. The temporal behavior of fluctuations and the reversal parameter becomes more regular as S is increased, acquiring a "sawtooth" shape at the largest value of S. Simulations with plasma pressure and anisotropic thermal conduction demonstrate energy transport resulting from parallel heat fluctuations. To investigate meansmore » of improving RFP energy confinement, three forms of current profile modification are tested. Radio frequency (RF) current drive is modeled with an auxiliary electron force, and linear stability calculations are used.« less

  20. Experimental Demonstration of a Multiphysics Cloak: Manipulating Heat Flux and Electric Current Simultaneously

    NASA Astrophysics Data System (ADS)

    Ma, Yungui; Liu, Yichao; Raza, Muhammad; Wang, Yudong; He, Sailing

    2014-11-01

    Invisible cloaks have been widely explored in many different physical systems but usually for a single phenomenon for one device. In this Letter we make an experimental attempt to show a multidisciplinary framework that has the capability to simultaneously respond to two different physical excitations according to predetermined scenarios. As a proof of concept, we implement an electric-thermal bifunctional device that can guide both electric current and heat flux "across" a strong `scatterer' (air cavity) and restore their original diffusion directions as if nothing exists along the paths, thus rendering dual cloaking effects for objects placed inside the cavity. This bifunctional cloaking performance is also numerically verified for a line-source nonuniform excitation. Our results and the fabrication technique presented here will help broaden the current research scope for multiple disciplines and may pave a way to manipulate multiple flows and create new functional devices, e.g., for on-chip applications.

Top