A simple procedure for parallel sequence analysis of both strands of 5'-labeled DNA.
Razvi, F; Gargiulo, G; Worcel, A
1983-08-01
Ligation of a 5'-labeled DNA restriction fragment results in a circular DNA molecule carrying the two 32Ps at the reformed restriction site. Double digestions of the circular DNA with the original enzyme and a second restriction enzyme cleavage near the labeled site allows direct chemical sequencing of one 5'-labeled DNA strand. Similar double digestions, using an isoschizomer that cleaves differently at the 32P-labeled site, allows direct sequencing of the now 3'-labeled complementary DNA strand. It is possible to directly sequence both strands of cloned DNA inserts by using the above protocol and a multiple cloning site vector that provides the necessary restriction sites. The simultaneous and parallel visualization of both DNA strands eliminates sequence ambiguities. In addition, the labeled circular molecules are particularly useful for single-hit DNA cleavage studies and DNA footprint analysis. As an example, we show here an analysis of the micrococcal nuclease-induced breaks on the two strands of the somatic 5S RNA gene of Xenopus borealis, which suggests that the enzyme may recognize and cleave small AT-containing palindromes along the DNA helix.
To Clone or Not To Clone: Method Analysis for Retrieving Consensus Sequences In Ancient DNA Samples
Winters, Misa; Barta, Jodi Lynn; Monroe, Cara; Kemp, Brian M.
2011-01-01
The challenges associated with the retrieval and authentication of ancient DNA (aDNA) evidence are principally due to post-mortem damage which makes ancient samples particularly prone to contamination from “modern” DNA sources. The necessity for authentication of results has led many aDNA researchers to adopt methods considered to be “gold standards” in the field, including cloning aDNA amplicons as opposed to directly sequencing them. However, no standardized protocol has emerged regarding the necessary number of clones to sequence, how a consensus sequence is most appropriately derived, or how results should be reported in the literature. In addition, there has been no systematic demonstration of the degree to which direct sequences are affected by damage or whether direct sequencing would provide disparate results from a consensus of clones. To address this issue, a comparative study was designed to examine both cloned and direct sequences amplified from ∼3,500 year-old ancient northern fur seal DNA extracts. Majority rules and the Consensus Confidence Program were used to generate consensus sequences for each individual from the cloned sequences, which exhibited damage at 31 of 139 base pairs across all clones. In no instance did the consensus of clones differ from the direct sequence. This study demonstrates that, when appropriate, cloning need not be the default method, but instead, should be used as a measure of authentication on a case-by-case basis, especially when this practice adds time and cost to studies where it may be superfluous. PMID:21738625
Direct Detection and Sequencing of Damaged DNA Bases
2011-01-01
Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications. PMID:22185597
Direct detection and sequencing of damaged DNA bases.
Clark, Tyson A; Spittle, Kristi E; Turner, Stephen W; Korlach, Jonas
2011-12-20
Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications.
Trinh, T. Q.; Sinden, R. R.
1993-01-01
We describe a system to measure the frequency of both deletions and duplications between direct repeats. Short 17- and 18-bp palindromic and nonpalindromic DNA sequences were cloned into the EcoRI site within the chloramphenicol acetyltransferase gene of plasmids pBR325 and pJT7. This creates an insert between direct repeated EcoRI sites and results in a chloramphenicol-sensitive phenotype. Selection for chloramphenicol resistance was utilized to select chloramphenicol resistant revertants that included those with precise deletion of the insert from plasmid pBR325 and duplication of the insert in plasmid pJT7. The frequency of deletion or duplication varied more than 500-fold depending on the sequence of the short sequence inserted into the EcoRI site. For the nonpalindromic inserts, multiple internal direct repeats and the length of the direct repeats appear to influence the frequency of deletion. Certain palindromic DNA sequences with the potential to form DNA hairpin structures that might stabilize the misalignment of direct repeats had a high frequency of deletion. Other DNA sequences with the potential to form structures that might destabilize misalignment of direct repeats had a very low frequency of deletion. Duplication mutations occurred at the highest frequency when the DNA between the direct repeats contained no direct or inverted repeats. The presence of inverted repeats dramatically reduced the frequency of duplications. The results support the slippage-misalignment model, suggesting that misalignment occurring during DNA replication leads to deletion and duplication mutations. The results also support the idea that the formation of DNA secondary structures during DNA replication can facilitate and direct specific mutagenic events. PMID:8325478
Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA
Oberstrass, Florian C.; Fernandes, Louis E.; Bryant, Zev
2012-01-01
B-DNA becomes unstable under superhelical stress and is able to adopt a wide range of alternative conformations including strand-separated DNA and Z-DNA. Localized sequence-dependent structural transitions are important for the regulation of biological processes such as DNA replication and transcription. To directly probe the effect of sequence on structural transitions driven by torque, we have measured the torsional response of a panel of DNA sequences using single molecule assays that employ nanosphere rotational probes to achieve high torque resolution. The responses of Z-forming d(pGpC)n sequences match our predictions based on a theoretical treatment of cooperative transitions in helical polymers. “Bubble” templates containing 50–100 bp mismatch regions show cooperative structural transitions similar to B-DNA, although less torque is required to disrupt strand–strand interactions. Our mechanical measurements, including direct characterization of the torsional rigidity of strand-separated DNA, establish a framework for quantitative predictions of the complex torsional response of arbitrary sequences in their biological context. PMID:22474350
Biosensors for DNA sequence detection
NASA Technical Reports Server (NTRS)
Vercoutere, Wenonah; Akeson, Mark
2002-01-01
DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.
Single-cell genomic sequencing using Multiple Displacement Amplification.
Lasken, Roger S
2007-10-01
Single microbial cells can now be sequenced using DNA amplified by the Multiple Displacement Amplification (MDA) reaction. The few femtograms of DNA in a bacterium are amplified into micrograms of high molecular weight DNA suitable for DNA library construction and Sanger sequencing. The MDA-generated DNA also performs well when used directly as template for pyrosequencing by the 454 Life Sciences method. While MDA from single cells loses some of the genomic sequence, this approach will greatly accelerate the pace of sequencing from uncultured microbes. The genetically linked sequences from single cells are also a powerful tool to be used in guiding genomic assembly of shotgun sequences of multiple organisms from environmental DNA extracts (metagenomic sequences).
Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood
Fan, H. Christina; Blumenfeld, Yair J.; Chitkara, Usha; Hudgins, Louanne; Quake, Stephen R.
2008-01-01
We directly sequenced cell-free DNA with high-throughput shotgun sequencing technology from plasma of pregnant women, obtaining, on average, 5 million sequence tags per patient sample. This enabled us to measure the over- and underrepresentation of chromosomes from an aneuploid fetus. The sequencing approach is polymorphism-independent and therefore universally applicable for the noninvasive detection of fetal aneuploidy. Using this method, we successfully identified all nine cases of trisomy 21 (Down syndrome), two cases of trisomy 18 (Edward syndrome), and one case of trisomy 13 (Patau syndrome) in a cohort of 18 normal and aneuploid pregnancies; trisomy was detected at gestational ages as early as the 14th week. Direct sequencing also allowed us to study the characteristics of cell-free plasma DNA, and we found evidence that this DNA is enriched for sequences from nucleosomes. PMID:18838674
An integrated semiconductor device enabling non-optical genome sequencing.
Rothberg, Jonathan M; Hinz, Wolfgang; Rearick, Todd M; Schultz, Jonathan; Mileski, William; Davey, Mel; Leamon, John H; Johnson, Kim; Milgrew, Mark J; Edwards, Matthew; Hoon, Jeremy; Simons, Jan F; Marran, David; Myers, Jason W; Davidson, John F; Branting, Annika; Nobile, John R; Puc, Bernard P; Light, David; Clark, Travis A; Huber, Martin; Branciforte, Jeffrey T; Stoner, Isaac B; Cawley, Simon E; Lyons, Michael; Fu, Yutao; Homer, Nils; Sedova, Marina; Miao, Xin; Reed, Brian; Sabina, Jeffrey; Feierstein, Erika; Schorn, Michelle; Alanjary, Mohammad; Dimalanta, Eileen; Dressman, Devin; Kasinskas, Rachel; Sokolsky, Tanya; Fidanza, Jacqueline A; Namsaraev, Eugeni; McKernan, Kevin J; Williams, Alan; Roth, G Thomas; Bustillo, James
2011-07-20
The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.
A comparison of RNA with DNA in template-directed synthesis
NASA Technical Reports Server (NTRS)
Zielinski, M.; Kozlov, I. A.; Orgel, L. E.; Bada, J. L. (Principal Investigator)
2000-01-01
Nonenzymatic template-directed copying of RNA sequences rich in cytidylic acid using nucleoside 5'-(2-methylimidazol-1-yl phosphates) as substrates is substantially more efficient than the copying of corresponding DNA sequences. However, many sequences cannot be copied, and the prospect of replication in this system is remote, even for RNA. Surprisingly, wobble-pairing leads to much more efficient incorporation of G opposite U on RNA templates than of G opposite T on DNA templates.
Attomole-level Genomics with Single-molecule Direct DNA, cDNA and RNA Sequencing Technologies.
Ozsolak, Fatih
2016-01-01
With the introduction of next-generation sequencing (NGS) technologies in 2005, the domination of microarrays in genomics quickly came to an end due to NGS's superior technical performance and cost advantages. By enabling genetic analysis capabilities that were not possible previously, NGS technologies have started to play an integral role in all areas of biomedical research. This chapter outlines the low-quantity DNA and cDNA sequencing capabilities and applications developed with the Helicos single molecule DNA sequencing technology.
Quantitative DNA fiber mapping
Gray, Joe W.; Weier, Heinz-Ulrich G.
1998-01-01
The present invention relates generally to the DNA mapping and sequencing technologies. In particular, the present invention provides enhanced methods and compositions for the physical mapping and positional cloning of genomic DNA. The present invention also provides a useful analytical technique to directly map cloned DNA sequences onto individual stretched DNA molecules.
Methods for sequencing GC-rich and CCT repeat DNA templates
Robinson, Donna L.
2007-02-20
The present invention is directed to a PCR-based method of cycle sequencing DNA and other polynucleotide sequences having high CG content and regions of high GC content, and includes for example DNA strands with a high Cytosine and/or Guanosine content and repeated motifs such as CCT repeats.
The Neandertal genome and ancient DNA authenticity
Green, Richard E; Briggs, Adrian W; Krause, Johannes; Prüfer, Kay; Burbano, Hernán A; Siebauer, Michael; Lachmann, Michael; Pääbo, Svante
2009-01-01
Recent advances in high-thoughput DNA sequencing have made genome-scale analyses of genomes of extinct organisms possible. With these new opportunities come new difficulties in assessing the authenticity of the DNA sequences retrieved. We discuss how these difficulties can be addressed, particularly with regard to analyses of the Neandertal genome. We argue that only direct assays of DNA sequence positions in which Neandertals differ from all contemporary humans can serve as a reliable means to estimate human contamination. Indirect measures, such as the extent of DNA fragmentation, nucleotide misincorporations, or comparison of derived allele frequencies in different fragment size classes, are unreliable. Fortunately, interim approaches based on mtDNA differences between Neandertals and current humans, detection of male contamination through Y chromosomal sequences, and repeated sequencing from the same fossil to detect autosomal contamination allow initial large-scale sequencing of Neandertal genomes. This will result in the discovery of fixed differences in the nuclear genome between Neandertals and current humans that can serve as future direct assays for contamination. For analyses of other fossil hominins, which may become possible in the future, we suggest a similar ‘boot-strap' approach in which interim approaches are applied until sufficient data for more definitive direct assays are acquired. PMID:19661919
Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning.
Teng, Haotian; Cao, Minh Duc; Hall, Michael B; Duarte, Tania; Wang, Sheng; Coin, Lachlan J M
2018-05-01
Sequencing by translocating DNA fragments through an array of nanopores is a rapidly maturing technology that offers faster and cheaper sequencing than other approaches. However, accurately deciphering the DNA sequence from the noisy and complex electrical signal is challenging. Here, we report Chiron, the first deep learning model to achieve end-to-end basecalling and directly translate the raw signal to DNA sequence without the error-prone segmentation step. Trained with only a small set of 4,000 reads, we show that our model provides state-of-the-art basecalling accuracy, even on previously unseen species. Chiron achieves basecalling speeds of more than 2,000 bases per second using desktop computer graphics processing units.
Kim, Suk Kyeong; Kim, Dong-Lim; Han, Hye Seung; Kim, Wan Seop; Kim, Seung Ja; Moon, Won Jin; Oh, Seo Young; Hwang, Tae Sook
2008-06-01
Fine-needle aspiration biopsy (FNAB) is the primary means of distinguishing benign from malignant and of guiding therapeutic intervention in thyroid nodules. However, 10% to 30% of cases with indeterminate cytology in FNAB need other diagnostic tools to refine diagnosis. We compared the pyrosequencing method with the conventional direct DNA sequencing analysis and investigated the usefulness of preoperative BRAF mutation analysis as an adjunct diagnostic tool with routine FNAB. A total of 103 surgically confirmed patients' FNA slides were recruited and DNA was extracted after atypical cells were scraped from the slides. BRAF mutation was analyzed by pyrosequencing and direct DNA sequencing. Sixty-three (77.8%) of 81 histopathologically diagnosed malignant nodules revealed positive BRAF mutation on pyrosequencing analysis. In detail, 63 (84.0%) of 75 papillary thyroid carcinoma (PTC) samples showed positive BRAF mutation, whereas 3 follicular thyroid carcinomas, 1 anaplastic carcinoma, 1 medullary thyroid carcinoma, and 1 metastatic lung carcinoma did not show BRAF mutation. None of 22 benign nodules had BRAF mutation in both pyrosequencing and direct DNA sequencing. Out of 27 thyroid nodules classified as 'indeterminate' on cytologic examination preoperatively, 21 (77.8%) cases turned out to be malignant: 18 PTCs (including 2 follicular variant types) and 3 follicular thyroid carcinomas. Among these, 13 (61.9%) classic PTCs had BRAF mutation. None of 6 benign nodules, including 3 follicular adenomas and 3 nodular hyperplasias, had BRAF mutation. Among 63 PTCs with positive BRAF mutation detected by pyrosequencing analysis, 3 cases did not show BRAF mutation by direct DNA sequencing. Although it was not statistically significant, pyrosequencing was superior to direct DNA sequencing in detecting the BRAF mutation of thyroid nodules (P=0.25). Detecting BRAF mutation by pyrosequencing is more sensitive, faster, and less expensive than direct DNA sequencing and is proposed as an adjunct diagnostic tool in evaluating thyroid nodules of indeterminate cytology.
Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting
NASA Astrophysics Data System (ADS)
Chen, C. H. Winston; Taranenko, N. I.; Zhu, Y. F.; Chung, C. N.; Allman, S. L.
1997-05-01
Since laser mass spectrometry has the potential for achieving very fast DNA analysis, we recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Sanger's enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. Our preliminary results indicate laser mass spectrometry can possible be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, we applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.
Zhu, X Q; Gasser, R B
1998-06-01
In this study, we assessed single-strand conformation polymorphism (SSCP)-based approaches for their capacity to fingerprint sequence variation in ribosomal DNA (rDNA) of ascaridoid nematodes of veterinary and/or human health significance. The second internal transcribed spacer region (ITS-2) of rDNA was utilised as the target region because it is known to provide species-specific markers for this group of parasites. ITS-2 was amplified by PCR from genomic DNA derived from individual parasites and subjected to analysis. Direct SSCP analysis of amplicons from seven taxa (Toxocara vitulorum, Toxocara cati, Toxocara canis, Toxascaris leonina, Baylisascaris procyonis, Ascaris suum and Parascaris equorum) showed that the single-strand (ss) ITS-2 patterns produced allowed their unequivocal identification to species. While no variation in SSCP patterns was detected in the ITS-2 within four species for which multiple samples were available, the method allowed the direct display of four distinct sequence types of ITS-2 among individual worms of T. cati. Comparison of SSCP/sequencing with the methods of dideoxy fingerprinting (ddF) and restriction endonuclease fingerprinting (REF) revealed that also ddF allowed the definition of the four sequence types, whereas REF displayed three of four. The findings indicate the usefulness of the SSCP-based approaches for the identification of ascaridoid nematodes to species, the direct display of sequence variation in rDNA and the detection of population variation. The ability to fingerprint microheterogeneity in ITS-2 rDNA using such approaches also has implications for studying fundamental aspects relating to mutational change in rDNA.
Williams-Woods, Jacquelina; González-Escalona, Narjol; Burkhardt, William
2011-12-01
Human norovirus (HuNoV) and hepatitis A (HAV) are recognized as leading causes of non-bacterial foodborne associated illnesses in the United States. DNA sequencing is generally considered the standard for accurate viral genotyping in support of epidemiological investigations. Due to the genetic diversity of noroviruses (NoV), degenerate primer sets are often used in conventional reverse transcription (RT) PCR and real-time RT-quantitative PCR (RT-qPCR) for the detection of these viruses and cDNA fragments are generally cloned prior to sequencing. HAV detection methods that are sensitive and specific for real-time RT-qPCR yields small fragments sizes of 89-150bp, which can be difficult to sequence. In order to overcome these obstacles, norovirus and HAV primers were tailed with M13 forward and reverse primers. This modification increases the sequenced product size and allows for direct sequencing of the amplicons utilizing complementary M13 primers. HuNoV and HAV cDNA products from environmentally contaminated oysters were analyzed using this method. Alignments of the sequenced samples revealed ≥95% nucleotide identities. Tailing NoV and HAV primers with M13 sequence increases the cDNA product size, offers an alternative to cloning, and allows for rapid, accurate and direct sequencing of cDNA products produced by conventional or real time RT-qPCR assays. Published by Elsevier B.V.
Specific minor groove solvation is a crucial determinant of DNA binding site recognition
Harris, Lydia-Ann; Williams, Loren Dean; Koudelka, Gerald B.
2014-01-01
The DNA sequence preferences of nearly all sequence specific DNA binding proteins are influenced by the identities of bases that are not directly contacted by protein. Discrimination between non-contacted base sequences is commonly based on the differential abilities of DNA sequences to allow narrowing of the DNA minor groove. However, the factors that govern the propensity of minor groove narrowing are not completely understood. Here we show that the differential abilities of various DNA sequences to support formation of a highly ordered and stable minor groove solvation network are a key determinant of non-contacted base recognition by a sequence-specific binding protein. In addition, disrupting the solvent network in the non-contacted region of the binding site alters the protein's ability to recognize contacted base sequences at positions 5–6 bases away. This observation suggests that DNA solvent interactions link contacted and non-contacted base recognition by the protein. PMID:25429976
Schnitzler, P; Delius, H; Scholz, J; Touray, M; Orth, E; Darai, G
1987-12-01
The genome of the fish lymphocystis disease virus (FLDV) was screened for the existence of repetitive DNA sequences using a defined and complete gene library of the viral genome (98 kbp) by DNA-DNA hybridization, heteroduplex analysis, and restriction fine mapping. A repetitive DNA sequence was detected at the coordinates 0.034 to 0.057 and 0.718 to 0.736 map units (m.u.) of the FLDV genome. The first region (0.034 to 0.057 m.u.) corresponds to the 5' terminus of the EcoRI FLDV DNA fragment B (0.034 to 0.165 m.u.) and the second region (0.718 to 0.736 m.u.) is identical to the EcoRI DNA fragment M of the viral genome. The DNA nucleotide sequence of the EcoRI FLDV DNA fragment M was determined. This analysis revealed the presence of many short direct and inverted repetitions, e.g., a 18-mer direct repetition (TTTAAAATTTAATTAA) that started at nucleotide positions 812 and 942 and a 14-mer inverted repeat (TTAAATTTAAATTT) at nucleotide positions 820 and 959. Only short open reading frames were detected within this region. The DNA repetitions are discussed as sequences that play a possible regulatory role for virus replication. Furthermore, hybridization experiments revealed that the repetitive DNA sequences are conserved in the genome of different strains of fish lymphocystis disease virus isolated from two species of Pleuronectidae (flounder and dab).
Karsten, Stanislav L; Kumemura, Momoko; Jalabert, Laurent; Lafitte, Nicolas; Kudo, Lili C; Collard, Dominique; Fujita, Hiroyuki
2016-05-24
Previously, we reported the application of micromachined silicon nanotweezers (SNT) integrated with a comb-drive actuator and capacitive sensors for capturing and mechanical characterization of DNA bundles. Here, we demonstrate direct DNA amplification on such a MEMS structure with subsequent electrical and mechanical characterization of a single stranded DNA (ssDNA) bundle generated between the tips of SNT via isothermal rolling circle amplification (RCA) and dielectrophoresis (DEP). An in situ generated ssDNA bundle was visualized and evaluated via electrical conductivity (I-V) and mechanical frequency response measurements. Colloidal gold nanoparticles significantly enhanced (P < 0.01) the electrical properties of thin ssDNA bundles. The proposed technology allows direct in situ synthesis of DNA with a predefined sequence on the tips of a MEMS sensor device, such as SNT, followed by direct DNA electrical and mechanical characterization. In addition, our data provides a "proof-of-principle" for the feasibility of the on-chip label free DNA detection device that can be used for a variety of biomedical applications focused on sequence specific DNA detection.
Colony-PCR Is a Rapid Method for DNA Amplification of Hyphomycetes
Walch, Georg; Knapp, Maria; Rainer, Georg; Peintner, Ursula
2016-01-01
Fungal pure cultures identified with both classical morphological methods and through barcoding sequences are a basic requirement for reliable reference sequences in public databases. Improved techniques for an accelerated DNA barcode reference library construction will result in considerably improved sequence databases covering a wider taxonomic range. Fast, cheap, and reliable methods for obtaining DNA sequences from fungal isolates are, therefore, a valuable tool for the scientific community. Direct colony PCR was already successfully established for yeasts, but has not been evaluated for a wide range of anamorphic soil fungi up to now, and a direct amplification protocol for hyphomycetes without tissue pre-treatment has not been published so far. Here, we present a colony PCR technique directly from fungal hyphae without previous DNA extraction or other prior manipulation. Seven hundred eighty-eight fungal strains from 48 genera were tested with a success rate of 86%. PCR success varied considerably: DNA of fungi belonging to the genera Cladosporium, Geomyces, Fusarium, and Mortierella could be amplified with high success. DNA of soil-borne yeasts was always successfully amplified. Absidia, Mucor, Trichoderma, and Penicillium isolates had noticeably lower PCR success. PMID:29376929
Gene Identification Algorithms Using Exploratory Statistical Analysis of Periodicity
NASA Astrophysics Data System (ADS)
Mukherjee, Shashi Bajaj; Sen, Pradip Kumar
2010-10-01
Studying periodic pattern is expected as a standard line of attack for recognizing DNA sequence in identification of gene and similar problems. But peculiarly very little significant work is done in this direction. This paper studies statistical properties of DNA sequences of complete genome using a new technique. A DNA sequence is converted to a numeric sequence using various types of mappings and standard Fourier technique is applied to study the periodicity. Distinct statistical behaviour of periodicity parameters is found in coding and non-coding sequences, which can be used to distinguish between these parts. Here DNA sequences of Drosophila melanogaster were analyzed with significant accuracy.
Oikonomopoulos, Spyros; Wang, Yu Chang; Djambazian, Haig; Badescu, Dunarel; Ragoussis, Jiannis
2016-08-24
To assess the performance of the Oxford Nanopore Technologies MinION sequencing platform, cDNAs from the External RNA Controls Consortium (ERCC) RNA Spike-In mix were sequenced. This mix mimics mammalian mRNA species and consists of 92 polyadenylated transcripts with known concentration. cDNA libraries were generated using a template switching protocol to facilitate the direct comparison between different sequencing platforms. The MinION performance was assessed for its ability to sequence the cDNAs directly with good accuracy in terms of abundance and full length. The abundance of the ERCC cDNA molecules sequenced by MinION agreed with their expected concentration. No length or GC content bias was observed. The majority of cDNAs were sequenced as full length. Additionally, a complex cDNA population derived from a human HEK-293 cell line was sequenced on an Illumina HiSeq 2500, PacBio RS II and ONT MinION platforms. We observed that there was a good agreement in the measured cDNA abundance between PacBio RS II and ONT MinION (rpearson = 0.82, isoforms with length more than 700bp) and between Illumina HiSeq 2500 and ONT MinION (rpearson = 0.75). This indicates that the ONT MinION can sequence quantitatively both long and short full length cDNA molecules.
Parrish, R Ryley; Day, Jeremy J; Lubin, Farah D
2012-07-01
DNA methylation is an epigenetic modification that is essential for the development and mature function of the central nervous system. Due to the relevance of this modification to the transcriptional control of gene expression, it is often necessary to examine changes in DNA methylation patterns with both gene and single-nucleotide resolution. Here, we describe an in-depth basic protocol for direct bisulfite sequencing of DNA isolated from brain tissue, which will permit direct assessment of methylation status at individual genes as well as individual cytosine molecules/nucleotides within a genomic region. This method yields analysis of DNA methylation patterns that is robust, accurate, and reproducible, thereby allowing insights into the role of alterations in DNA methylation in brain tissue.
Engineering of a DNA Polymerase for Direct m6 A Sequencing.
Aschenbrenner, Joos; Werner, Stephan; Marchand, Virginie; Adam, Martina; Motorin, Yuri; Helm, Mark; Marx, Andreas
2018-01-08
Methods for the detection of RNA modifications are of fundamental importance for advancing epitranscriptomics. N 6 -methyladenosine (m 6 A) is the most abundant RNA modification in mammalian mRNA and is involved in the regulation of gene expression. Current detection techniques are laborious and rely on antibody-based enrichment of m 6 A-containing RNA prior to sequencing, since m 6 A modifications are generally "erased" during reverse transcription (RT). To overcome the drawbacks associated with indirect detection, we aimed to generate novel DNA polymerase variants for direct m 6 A sequencing. Therefore, we developed a screen to evolve an RT-active KlenTaq DNA polymerase variant that sets a mark for N 6 -methylation. We identified a mutant that exhibits increased misincorporation opposite m 6 A compared to unmodified A. Application of the generated DNA polymerase in next-generation sequencing allowed the identification of m 6 A sites directly from the sequencing data of untreated RNA samples. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Characterization of proviruses cloned from mink cell focus-forming virus-infected cellular DNA.
Khan, A S; Repaske, R; Garon, C F; Chan, H W; Rowe, W P; Martin, M A
1982-01-01
Two proviruses were cloned from EcoRI-digested DNA extracted from mink cells chronically infected with AKR mink cell focus-forming (MCF) 247 murine leukemia virus (MuLV), using a lambda phage host vector system. One cloned MuLV DNA fragment (designated MCF 1) contained sequences extending 6.8 kilobases from an EcoRI restriction site in the 5' long terminal repeat (LTR) to an EcoRI site located in the envelope (env) region and was indistinguishable by restriction endonuclease mapping for 5.1 kilobases (except for the EcoRI site in the LTR) from the 5' end of AKR ecotropic proviral DNA. The DNA segment extending from 5.1 to 6.8 kilobases contained several restriction sites that were not present in the AKR ecotropic provirus. A 0.5-kilobase DNA segment located at the 3' end of MCF 1 DNA contained sequences which hybridized to a xenotropic env-specific DNA probe but not to labeled ecotropic env-specific DNA. This dual character of MCF 1 proviral DNA was also confirmed by analyzing heteroduplex molecules by electron microscopy. The second cloned proviral DNA (designated MCF 2) was a 6.9-kilobase EcoRI DNA fragment which contained LTR sequences at each end and a 2.0-kilobase deletion encompassing most of the env region. The MCF 2 proviral DNA proved to be a useful reagent for detecting LTRs electron microscopically due to the presence of nonoverlapping, terminally located LTR sequences which effected its circularization with DNAs containing homologous LTR sequences. Nucleotide sequence analysis demonstrated the presence of a 104-base-pair direct repeat in the LTR of MCF 2 DNA. In contrast, only a single copy of the reiterated component of the direct repeat was present in MCF 1 DNA. Images PMID:6281459
Thauvin-Robinet, Christel; Franco, Brunella; Saugier-Veber, Pascale; Aral, Bernard; Gigot, Nadège; Donzel, Anne; Van Maldergem, Lionel; Bieth, Eric; Layet, Valérie; Mathieu, Michèle; Teebi, Ahmad; Lespinasse, James; Callier, Patrick; Mugneret, Francine; Masurel-Paulet, Alice; Gautier, Elodie; Huet, Frédéric; Teyssier, Jean-Raymond; Tosi, Mario; Frébourg, Thierry; Faivre, Laurence
2009-02-01
Oral-facial-digital type I syndrome (OFDI) is characterised by an X-linked dominant mode of inheritance with lethality in males. Clinical features include facial dysmorphism with oral, dental and distal abnormalities, polycystic kidney disease and central nervous system malformations. Considerable allelic heterogeneity has been reported within the OFD1 gene, but DNA bi-directional sequencing of the exons and intron-exon boundaries of the OFD1 gene remains negative in more than 20% of cases. We hypothesized that genomic rearrangements could account for the majority of the remaining undiagnosed cases. Thus, we took advantage of two independent available series of patients with OFDI syndrome and negative DNA bi-directional sequencing of the exons and intron-exon boundaries of the OFD1 gene from two different European labs: 13/36 cases from the French lab; 13/95 from the Italian lab. All patients were screened by a semiquantitative fluorescent multiplex method (QFMPSF) and relative quantification by real-time PCR (qPCR). Six OFD1 genomic deletions (exon 5, exons 1-8, exons 1-14, exons 10-11, exons 13-23 and exon 17) were identified, accounting for 5% of OFDI patients and for 23% of patients with negative mutation screening by DNA sequencing. The association of DNA direct sequencing, QFMPSF and qPCR detects OFD1 alteration in up to 85% of patients with a phenotype suggestive of OFDI syndrome. Given the average percentage of large genomic rearrangements (5%), we suggest that dosage methods should be performed in addition to DNA direct sequencing analysis to exclude the involvement of the OFD1 transcript when there are genetic counselling issues. (c) 2008 Wiley-Liss, Inc.
Leblanc, B; Read, C; Moss, T
1993-02-01
The interaction of the ribosomal transcription factor xUBF with the RNA polymerase I core promoter of Xenopus laevis has been studied both at the DNA and protein levels. It is shown that a single xUBF-DNA complex forms over the 40S initiation site (+1) and involves at least the DNA sequences between -20 and +60 bp. DNA sequences upstream of +10 and downstream of +18 are each sufficient to direct complex formation independently. HMG box 1 of xUBF independently recognizes the sequences -20 to -1 and +1 to +22 and the addition of the N-terminal dimerization domain to HMG box 1 stabilizes its interaction with these sequences approximately 10-fold. HMG boxes 2/3 interact with the DNA downstream of +22 and can independently position xUBF across the initiation site. The C-terminal segment of xUBF, HMG boxes 4, 5 or the acidic domain, directly or indirectly interact with HMG box 1, making the core promoter sequences between -11 and -15 hypersensitive to DNase. This interaction also requires the DNA sequences between +17 and +32, i.e. the HMG box 2/3 binding site. The data suggest extensive folding of the core promoter within the xUBF complex.
Line scanning system for direct digital chemiluminescence imaging of DNA sequencing blots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karger, A.E.; Weiss, R.; Gesteland, R.F.
A cryogenically cooled charge-coupled device (CCD) camera equipped with an area CCD array is used in a line scanning system for low-light-level imaging of chemiluminescent DNA sequencing blots. Operating the CCD camera in time-delayed integration (TDI) mode results in continuous data acquisition independent of the length of the CCD array. Scanning is possible with a resolution of 1.4 line pairs/mm at the 50% level of the modulation transfer function. High-sensitivity, low-light-level scanning of chemiluminescent direct-transfer electrophoresis (DTE) DNA sequencing blots is shown. The detection of DNA fragments on the blot involves DNA-DNA hybridization with oligonucleotide-alkaline phosphatase conjugate and 1,2-dioxetane-based chemiluminescence.more » The width of the scan allows the recording of up to four sequencing reactions (16 lanes) on one scan. The scan speed of 52 cm/h used for the sequencing blots corresponds to a data acquisition rate of 384 pixels/s. The chemiluminescence detection limit on the scanned images is 3.9 [times] 10[sup [minus]18] mol of plasmid DNA. A conditional median filter is described to remove spikes caused by cosmic ray events from the CCD images. 39 refs., 9 refs.« less
Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw
2017-01-01
Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare . However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes.
Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw
2017-01-01
Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare. However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes. PMID:29250096
Advances in high throughput DNA sequence data compression.
Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz
2016-06-01
Advances in high throughput sequencing technologies and reduction in cost of sequencing have led to exponential growth in high throughput DNA sequence data. This growth has posed challenges such as storage, retrieval, and transmission of sequencing data. Data compression is used to cope with these challenges. Various methods have been developed to compress genomic and sequencing data. In this article, we present a comprehensive review of compression methods for genome and reads compression. Algorithms are categorized as referential or reference free. Experimental results and comparative analysis of various methods for data compression are presented. Finally, key challenges and research directions in DNA sequence data compression are highlighted.
Lavania, Surabhi; Anthwal, Divya; Bhalla, Manpreet; Singh, Nagendra; Haldar, Sagarika; Tyagi, Jaya Sivaswami
2017-01-01
Direct smear microscopy of sputum forms the mainstay of TB diagnosis in resource-limited settings. Stained sputum smear slides can serve as a ready-made resource to transport sputum for molecular drug susceptibility testing. However, bio-safety is a major concern during transport of sputum/stained slides and for laboratory workers engaged in processing Mycobacterium tuberculosis infected sputum specimens. In this study, a bio-safe USP (Universal Sample Processing) concentration-based sputum processing method (Bio-safe method) was assessed on 87 M. tuberculosis culture positive sputum samples. Samples were processed for Ziehl-Neelsen (ZN) smear, liquid culture and DNA isolation. DNA isolated directly from sputum was subjected to an IS6110 PCR assay. Both sputum DNA and DNA extracted from bio-safe ZN concentrated smear slides were subjected to rpoB PCR and simultaneously assessed by DNA sequencing for determining rifampin (RIF) resistance. All sputum samples were rendered sterile by Bio-safe method. Bio-safe smears exhibited a 5% increment in positivity over direct smear with a 14% increment in smear grade status. All samples were positive for IS6110 and rpoB PCR. Thirty four percent samples were RIF resistant by rpoB PCR product sequencing. A 100% concordance (κ value = 1) was obtained between sequencing results derived from bio-safe smear slides and bio-safe sputum. This study demonstrates that Bio-safe method can address safety issues associated with sputum processing, provide an efficient alternative to sample transport in the form of bio-safe stained concentrated smear slides and can also provide information on drug (RIF) resistance by direct DNA sequencing.
Direct detection of Mycobacterium tuberculosis rifampin resistance in bio-safe stained sputum smears
Lavania, Surabhi; Anthwal, Divya; Bhalla, Manpreet; Singh, Nagendra; Haldar, Sagarika; Tyagi, Jaya Sivaswami
2017-01-01
Direct smear microscopy of sputum forms the mainstay of TB diagnosis in resource-limited settings. Stained sputum smear slides can serve as a ready-made resource to transport sputum for molecular drug susceptibility testing. However, bio-safety is a major concern during transport of sputum/stained slides and for laboratory workers engaged in processing Mycobacterium tuberculosis infected sputum specimens. In this study, a bio-safe USP (Universal Sample Processing) concentration-based sputum processing method (Bio-safe method) was assessed on 87 M. tuberculosis culture positive sputum samples. Samples were processed for Ziehl-Neelsen (ZN) smear, liquid culture and DNA isolation. DNA isolated directly from sputum was subjected to an IS6110 PCR assay. Both sputum DNA and DNA extracted from bio-safe ZN concentrated smear slides were subjected to rpoB PCR and simultaneously assessed by DNA sequencing for determining rifampin (RIF) resistance. All sputum samples were rendered sterile by Bio-safe method. Bio-safe smears exhibited a 5% increment in positivity over direct smear with a 14% increment in smear grade status. All samples were positive for IS6110 and rpoB PCR. Thirty four percent samples were RIF resistant by rpoB PCR product sequencing. A 100% concordance (κ value = 1) was obtained between sequencing results derived from bio-safe smear slides and bio-safe sputum. This study demonstrates that Bio-safe method can address safety issues associated with sputum processing, provide an efficient alternative to sample transport in the form of bio-safe stained concentrated smear slides and can also provide information on drug (RIF) resistance by direct DNA sequencing. PMID:29216262
Schneider, T D
2001-12-01
The sequence logo for DNA binding sites of the bacteriophage P1 replication protein RepA shows unusually high sequence conservation ( approximately 2 bits) at a minor groove that faces RepA. However, B-form DNA can support only 1 bit of sequence conservation via contacts into the minor groove. The high conservation in RepA sites therefore implies a distorted DNA helix with direct or indirect contacts to the protein. Here I show that a high minor groove conservation signature also appears in sequence logos of sites for other replication origin binding proteins (Rts1, DnaA, P4 alpha, EBNA1, ORC) and promoter binding proteins (sigma(70), sigma(D) factors). This finding implies that DNA binding proteins generally use non-B-form DNA distortion such as base flipping to initiate replication and transcription.
Real-Time DNA Sequencing in the Antarctic Dry Valleys Using the Oxford Nanopore Sequencer
Johnson, Sarah S.; Zaikova, Elena; Goerlitz, David S.; Bai, Yu; Tighe, Scott W.
2017-01-01
The ability to sequence DNA outside of the laboratory setting has enabled novel research questions to be addressed in the field in diverse areas, ranging from environmental microbiology to viral epidemics. Here, we demonstrate the application of offline DNA sequencing of environmental samples using a hand-held nanopore sequencer in a remote field location: the McMurdo Dry Valleys, Antarctica. Sequencing was performed using a MK1B MinION sequencer from Oxford Nanopore Technologies (ONT; Oxford, United Kingdom) that was equipped with software to operate without internet connectivity. One-direction (1D) genomic libraries were prepared using portable field techniques on DNA isolated from desiccated microbial mats. By adequately insulating the sequencer and laptop, it was possible to run the sequencing protocol for up to 2½ h under arduous conditions. PMID:28337073
Rapid and efficient cDNA library screening by self-ligation of inverse PCR products (SLIP).
Hoskins, Roger A; Stapleton, Mark; George, Reed A; Yu, Charles; Wan, Kenneth H; Carlson, Joseph W; Celniker, Susan E
2005-12-02
cDNA cloning is a central technology in molecular biology. cDNA sequences are used to determine mRNA transcript structures, including splice junctions, open reading frames (ORFs) and 5'- and 3'-untranslated regions (UTRs). cDNA clones are valuable reagents for functional studies of genes and proteins. Expressed Sequence Tag (EST) sequencing is the method of choice for recovering cDNAs representing many of the transcripts encoded in a eukaryotic genome. However, EST sequencing samples a cDNA library at random, and it recovers transcripts with low expression levels inefficiently. We describe a PCR-based method for directed screening of plasmid cDNA libraries. We demonstrate its utility in a screen of libraries used in our Drosophila EST projects for 153 transcription factor genes that were not represented by full-length cDNA clones in our Drosophila Gene Collection. We recovered high-quality, full-length cDNAs for 72 genes and variously compromised clones for an additional 32 genes. The method can be used at any scale, from the isolation of cDNA clones for a particular gene of interest, to the improvement of large gene collections in model organisms and the human. Finally, we discuss the relative merits of directed cDNA library screening and RT-PCR approaches.
Effects of sequence on DNA wrapping around histones
NASA Astrophysics Data System (ADS)
Ortiz, Vanessa
2011-03-01
A central question in biophysics is whether the sequence of a DNA strand affects its mechanical properties. In epigenetics, these are thought to influence nucleosome positioning and gene expression. Theoretical and experimental attempts to answer this question have been hindered by an inability to directly resolve DNA structure and dynamics at the base-pair level. In our previous studies we used a detailed model of DNA to measure the effects of sequence on the stability of naked DNA under bending. Sequence was shown to influence DNA's ability to form kinks, which arise when certain motifs slide past others to form non-native contacts. Here, we have now included histone-DNA interactions to see if the results obtained for naked DNA are transferable to the problem of nucleosome positioning. Different DNA sequences interacting with the histone protein complex are studied, and their equilibrium and mechanical properties are compared among themselves and with the naked case. NLM training grant to the Computation and Informatics in Biology and Medicine Training Program (NLM T15LM007359).
NASA Astrophysics Data System (ADS)
Yang, Hong
Until recently, recovery and analysis of genetic information encoded in ancient DNA sequences from Pleistocene fossils were impossible. Recent advances in molecular biology offered technical tools to obtain ancient DNA sequences from well-preserved Quaternary fossils and opened the possibilities to directly study genetic changes in fossil species to address various biological and paleontological questions. Ancient DNA studies involving Pleistocene fossil material and ancient DNA degradation and preservation in Quaternary deposits are reviewed. The molecular technology applied to isolate, amplify, and sequence ancient DNA is also presented. Authentication of ancient DNA sequences and technical problems associated with modern and ancient DNA contamination are discussed. As illustrated in recent studies on ancient DNA from proboscideans, it is apparent that fossil DNA sequence data can shed light on many aspects of Quaternary research such as systematics and phylogeny. conservation biology, evolutionary theory, molecular taphonomy, and forensic sciences. Improvement of molecular techniques and a better understanding of DNA degradation during fossilization are likely to build on current strengths and to overcome existing problems, making fossil DNA data a unique source of information for Quaternary scientists.
Radioresistance of GGG Sequences to Prompt Strand Break Formation from Direct-Type Radiation Damage
Black, Paul J.; Miller, Adam S.; Hayes, Jeffrey J.
2016-01-01
Purpose As humans, we are constantly exposed to ionizing radiation from natural, man-made and cosmic sources which can damage DNA, leading to deleterious effects including cancer incidence. In this work we introduce a method to monitor strand breaks resulting from damage due to the direct effect of ionizing radiation and provide evidence for sequence-dependent effects leading to strand breaks. Materials and methods To analyze only DNA strand breaks caused by radiation damage due to the direct effect of ionizing radiation, we combined an established technique to generate dehydrated DNA samples with a technique to analyze single strand breaks on short oligonucleotide sequences via denaturing gel electrophoresis. Results We find that direct damage primarily results in a reduced number of strand breaks in guanine triplet regions (GGG) when compared to isolated guanine (G) bases with identical flanking base context. In addition, we observe strand break behavior possibly indicative of protection of guanine bases when flanked by pyrimidines, and sensitization of guanine to strand break when flanked by adenine (A) bases in both isolated G and GGG cases. Conclusions These observations provide insight into the strand break behavior in GGG regions damaged via the direct effect of ionizing radiation. In addition, this could be indicative of DNA sequences that are naturally more susceptible to strand break due to the direct effect of ionizing radiation. PMID:27349757
Adachi, Noboru; Umetsu, Kazuo; Shojo, Hideki
2014-01-01
Mitochondrial DNA (mtDNA) is widely used for DNA analysis of highly degraded samples because of its polymorphic nature and high number of copies in a cell. However, as endogenous mtDNA in deteriorated samples is scarce and highly fragmented, it is not easy to obtain reliable data. In the current study, we report the risks of direct sequencing mtDNA in highly degraded material, and suggest a strategy to ensure the quality of sequencing data. It was observed that direct sequencing data of the hypervariable segment (HVS) 1 by using primer sets that generate an amplicon of 407 bp (long-primer sets) was different from results obtained by using newly designed primer sets that produce an amplicon of 120-139 bp (mini-primer sets). The data aligned with the results of mini-primer sets analysis in an amplicon length-dependent manner; the shorter the amplicon, the more evident the endogenous sequence became. Coding region analysis using multiplex amplified product-length polymorphisms revealed the incongruence of single nucleotide polymorphisms between the coding region and HVS 1 caused by contamination with exogenous mtDNA. Although the sequencing data obtained using long-primer sets turned out to be erroneous, it was unambiguous and reproducible. These findings suggest that PCR primers that produce amplicons shorter than those currently recognized should be used for mtDNA analysis in highly degraded samples. Haplogroup motif analysis of the coding region and HVS should also be performed to improve the reliability of forensic mtDNA data. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Smith, Rick W A; Monroe, Cara; Bolnick, Deborah A
2015-01-01
While cytosine methylation has been widely studied in extant populations, relatively few studies have analyzed methylation in ancient DNA. Most existing studies of epigenetic marks in ancient DNA have inferred patterns of methylation in highly degraded samples using post-mortem damage to cytosines as a proxy for cytosine methylation levels. However, this approach limits the inference of methylation compared with direct bisulfite sequencing, the current gold standard for analyzing cytosine methylation at single nucleotide resolution. In this study, we used direct bisulfite sequencing to assess cytosine methylation in ancient DNA from the skeletal remains of 30 Native Americans ranging in age from approximately 230 to 4500 years before present. Unmethylated cytosines were converted to uracils by treatment with sodium bisulfite, bisulfite products of a CpG-rich retrotransposon were pyrosequenced, and C-to-T ratios were quantified for a single CpG position. We found that cytosine methylation is readily recoverable from most samples, given adequate preservation of endogenous nuclear DNA. In addition, our results indicate that the precision of cytosine methylation estimates is inversely correlated with aDNA preservation, such that samples of low DNA concentration show higher variability in measures of percent methylation than samples of high DNA concentration. In particular, samples in this study with a DNA concentration above 0.015 ng/μL generated the most consistent measures of cytosine methylation. This study presents evidence of cytosine methylation in a large collection of ancient human remains, and indicates that it is possible to analyze epigenetic patterns in ancient populations using direct bisulfite sequencing approaches.
Murray, V
1999-01-01
This article reviews the literature concerning the sequence specificity of DNA-damaging agents. DNA-damaging agents are widely used in cancer chemotherapy. It is important to understand fully the determinants of DNA sequence specificity so that more effective DNA-damaging agents can be developed as antitumor drugs. There are five main methods of DNA sequence specificity analysis: cleavage of end-labeled fragments, linear amplification with Taq DNA polymerase, ligation-mediated polymerase chain reaction (PCR), single-strand ligation PCR, and footprinting. The DNA sequence specificity in purified DNA and in intact mammalian cells is reviewed for several classes of DNA-damaging agent. These include agents that form covalent adducts with DNA, free radical generators, topoisomerase inhibitors, intercalators and minor groove binders, enzymes, and electromagnetic radiation. The main sites of adduct formation are at the N-7 of guanine in the major groove of DNA and the N-3 of adenine in the minor groove, whereas free radical generators abstract hydrogen from the deoxyribose sugar and topoisomerase inhibitors cause enzyme-DNA cross-links to form. Several issues involved in the determination of the DNA sequence specificity are discussed. The future directions of the field, with respect to cancer chemotherapy, are also examined.
Sequence of retrovirus provirus resembles that of bacterial transposable elements
NASA Astrophysics Data System (ADS)
Shimotohno, Kunitada; Mizutani, Satoshi; Temin, Howard M.
1980-06-01
The nucleotide sequences of the terminal regions of an infectious integrated retrovirus cloned in the modified λ phage cloning vector Charon 4A have been elucidated. There is a 569-base pair direct repeat at both ends of the viral DNA. The cell-virus junctions at each end consist of a 5-base pair direct repeat of cell DNA next to a 3-base pair inverted repeat of viral DNA. This structure resembles that of a transposable element and is consistent with the protovirus hypothesis that retroviruses evolved from the cell genome.
Facile Site-Directed Mutagenesis of Large Constructs Using Gibson Isothermal DNA Assembly.
Yonemoto, Isaac T; Weyman, Philip D
2017-01-01
Site-directed mutagenesis is a commonly used molecular biology technique to manipulate biological sequences, and is especially useful for studying sequence determinants of enzyme function or designing proteins with improved activity. We describe a strategy using Gibson Isothermal DNA Assembly to perform site-directed mutagenesis on large (>~20 kbp) constructs that are outside the effective range of standard techniques such as QuikChange II (Agilent Technologies), but more reliable than traditional cloning using restriction enzymes and ligation.
Bypassing bacterial infection in phage display by sequencing DNA released from phage particles.
Villequey, Camille; Kong, Xu-Dong; Heinis, Christian
2017-11-01
Phage display relies on a bacterial infection step in which the phage particles are replicated to perform multiple affinity selection rounds and to enable the identification of isolated clones by DNA sequencing. While this process is efficient for wild-type phage, the bacterial infection rate of phage with mutant or chemically modified coat proteins can be low. For example, a phage mutant with a disulfide-free p3 coat protein, used for the selection of bicyclic peptides, has a more than 100-fold reduced infection rate compared to the wild-type. A potential strategy for bypassing the bacterial infection step is to directly sequence DNA extracted from phage particles after a single round of phage panning using high-throughput sequencing. In this work, we have quantified the fraction of phage clones that can be identified by directly sequencing DNA from phage particles. The results show that the DNA of essentially all of the phage particles can be 'decoded', and that the sequence coverage for mutants equals that of amplified DNA extracted from cells infected with wild-type phage. This procedure is particularly attractive for selections with phage that have a compromised infection capacity, and it may allow phage display to be performed with particles that are not infective at all. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Triplex technology in studies of DNA damage, DNA repair, and mutagenesis.
Mukherjee, Anirban; Vasquez, Karen M
2011-08-01
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Evaluation of microbial community in hydrothermal field by direct DNA sequencing
NASA Astrophysics Data System (ADS)
Kawarabayasi, Y.; Maruyama, A.
2002-12-01
Many extremophiles have been discovered from terrestrial and marine hydrothermal fields. Some thermophiles can grow beyond 90°C in culture, while direct microscopic analysis occasionally indicates that microbes may survive in much hotter hydrothermal fluids. However, it is very difficult to isolate and cultivate such microbes from the environments, i.e., over 99% of total microbes remains undiscovered. Based on experiences of entire microbial genome analysis (Y.K.) and microbial community analysis (A.M.), we started to find out unique microbes/genes in hydrothermal fields through direct sequencing of environmental DNA fragments. At first, shotgun plasmid libraries were directly constructed with the DNA molecules prepared from mixed microbes collected by an in situ filtration system from low-temperature fluids at RM24 in the Southern East Pacific Rise (S-EPR). A gene amplification (PCR) technique was not used for preventing mutation in the process. The nucleotide sequences of 285 clones indicated that no sequence had identical data in public databases. Among 27 clones determined entire sequences, no ORF was identified on 14 clones like intron in Eukaryote. On four clones, tetra-nucleotide-long multiple tandem repetitive sequences were identified. This type of sequence was identified in some familiar disease in human. The result indicates that living/dead materials with eukaryotic features may exist in this low temperature field. Secondly, shotgun plasmid libraries were constructed from the environmental DNA prepared from Beppu hot springs. In randomly-selected 143 clones used for sequencing, no known sequence was identified. Unlike the clones in S-EPR library, clear ORFs were identified on all nine clones determined the entire sequence. It was found that one clone, H4052, contained the complete Aspartyl-tRNA synthetase. Phylogenetic analysis using amino acid sequences of this gene indicated that this gene was separated from other Euryarchaea before the differentiation of species. Thus, some novel archaeal species are expected to be in this field. The present direct cloning and sequencing technique is now opening a window to the new world in hydrothermal microbial community analysis.
Hamond, C; Pestana, C P; Medeiros, M A; Lilenbaum, W
2016-01-01
The aim of this study was to identify Leptospira in urine samples of cattle by direct sequencing of the secY gene. The validity of this approach was assessed using ten Leptospira strains obtained from cattle in Brazil and 77 DNA samples previously extracted from cattle urine, that were positive by PCR for the genus-specific lipL32 gene of Leptospira. Direct sequencing identified 24 (31·1%) interpretable secY sequences and these were identical to those obtained from direct DNA sequencing of the urine samples from which they were recovered. Phylogenetic analyses identified four species: L. interrogans, L. borgpetersenii, L. noguchii, and L. santarosai with the most prevalent genotypes being associated with L. borgpetersenii. While direct sequencing cannot, as yet, replace culturing of leptospires, it is a valid additional tool for epidemiological studies. An unexpected finding from this study was the genetic diversity of Leptospira infecting Brazilian cattle.
Yoo, Jejoong; Kim, Hajin; Aksimentiev, Aleksei; Ha, Taekjip
2016-03-22
Although proteins mediate highly ordered DNA organization in vivo, theoretical studies suggest that homologous DNA duplexes can preferentially associate with one another even in the absence of proteins. Here we combine molecular dynamics simulations with single-molecule fluorescence resonance energy transfer experiments to examine the interactions between duplex DNA in the presence of spermine, a biological polycation. We find that AT-rich DNA duplexes associate more strongly than GC-rich duplexes, regardless of the sequence homology. Methyl groups of thymine acts as a steric block, relocating spermine from major grooves to interhelical regions, thereby increasing DNA-DNA attraction. Indeed, methylation of cytosines makes attraction between GC-rich DNA as strong as that between AT-rich DNA. Recent genome-wide chromosome organization studies showed that remote contact frequencies are higher for AT-rich and methylated DNA, suggesting that direct DNA-DNA interactions that we report here may play a role in the chromosome organization and gene regulation.
NASA Astrophysics Data System (ADS)
Yoo, Jejoong; Kim, Hajin; Aksimentiev, Aleksei; Ha, Taekjip
2016-03-01
Although proteins mediate highly ordered DNA organization in vivo, theoretical studies suggest that homologous DNA duplexes can preferentially associate with one another even in the absence of proteins. Here we combine molecular dynamics simulations with single-molecule fluorescence resonance energy transfer experiments to examine the interactions between duplex DNA in the presence of spermine, a biological polycation. We find that AT-rich DNA duplexes associate more strongly than GC-rich duplexes, regardless of the sequence homology. Methyl groups of thymine acts as a steric block, relocating spermine from major grooves to interhelical regions, thereby increasing DNA-DNA attraction. Indeed, methylation of cytosines makes attraction between GC-rich DNA as strong as that between AT-rich DNA. Recent genome-wide chromosome organization studies showed that remote contact frequencies are higher for AT-rich and methylated DNA, suggesting that direct DNA-DNA interactions that we report here may play a role in the chromosome organization and gene regulation.
Chara, Osvaldo; Borges, Augusto; Milhiet, Pierre-Emmanuel; Nöllmann, Marcelo; Cattoni, Diego I
2018-03-27
Transport of cellular cargo by molecular motors requires directionality to ensure proper biological functioning. During sporulation in Bacillus subtilis, directionality of chromosome transport is mediated by the interaction between the membrane-bound DNA translocase SpoIIIE and specific octameric sequences (SRS). Whether SRS regulate directionality by recruiting and orienting SpoIIIE or by simply catalyzing its translocation activity is still unclear. By using atomic force microscopy and single-round fast kinetics translocation assays we determined the localization and dynamics of diffusing and translocating SpoIIIE complexes on DNA with or without SRS. Our findings combined with mathematical modelling revealed that SpoIIIE directionality is not regulated by protein recruitment to SRS but rather by a fine-tuned balance among the rates governing SpoIIIE-DNA interactions and the probability of starting translocation modulated by SRS. Additionally, we found that SpoIIIE can start translocation from non-specific DNA, providing an alternative active search mechanism for SRS located beyond the exploratory length defined by 1D diffusion. These findings are relevant in vivo in the context of chromosome transport through an open channel, where SpoIIIE can rapidly explore DNA while directionality is modulated by the probability of translocation initiation upon interaction with SRS versus non-specific DNA.
Electrochemical direct immobilization of DNA sequences for label-free herpes virus detection
NASA Astrophysics Data System (ADS)
Tam, Phuong Dinh; Trung, Tran; Tuan, Mai Anh; Chien, Nguyen Duc
2009-09-01
DNA sequences/bio-macromolecules of herpes virus (5'-AT CAC CGA CCC GGA GAG GGA C-3') were directly immobilized into polypyrrole matrix by using the cyclic voltammetry method, and grafted onto arrays of interdigitated platinum microelectrodes. The morphology surface of the obtained PPy/DNA of herpes virus composite films was investigated by a FESEM Hitachi-S 4800. Fourier transform infrared spectroscopy (FTIR) was used to characterize the PPy/DNA film and to study the specific interactions that may exist between DNA biomacromolecules and PPy chains. Attempts are made to use these PPy/DNA composite films for label-free herpes virus detection revealed a response time of 60 s in solutions containing as low as 2 nM DNA concentration, and self life of six months when immerged in double distilled water and kept refrigerated.
Sequencing of cDNA Clones from the Genetic Map of Tomato (Lycopersicon esculentum)
Ganal, Martin W.; Czihal, Rosemarie; Hannappel, Ulrich; Kloos, Dorothee-U.; Polley, Andreas; Ling, Hong-Qing
1998-01-01
The dense RFLP linkage map of tomato (Lycopersicon esculentum) contains >300 anonymous cDNA clones. Of those clones, 272 were partially or completely sequenced. The sequences were compared at the DNA and protein level to known genes in databases. For 57% of the clones, a significant match to previously described genes was found. The information will permit the conversion of those markers to STS markers and allow their use in PCR-based mapping experiments. Furthermore, it will facilitate the comparative mapping of genes across distantly related plant species by direct comparison of DNA sequences and map positions. [cDNA sequence data reported in this paper have been submitted to the EMBL database under accession nos. AA824695–AA825005 and the dbEST_Id database under accession nos. 1546519–1546862.] PMID:9724330
Pyrin gene and mutants thereof, which cause familial Mediterranean fever
Kastner, Daniel L [Bethesda, MD; Aksentijevichh, Ivona [Bethesda, MD; Centola, Michael [Tacoma Park, MD; Deng, Zuoming [Gaithersburg, MD; Sood, Ramen [Rockville, MD; Collins, Francis S [Rockville, MD; Blake, Trevor [Laytonsville, MD; Liu, P Paul [Ellicott City, MD; Fischel-Ghodsian, Nathan [Los Angeles, CA; Gumucio, Deborah L [Ann Arbor, MI; Richards, Robert I [North Adelaide, AU; Ricke, Darrell O [San Diego, CA; Doggett, Norman A [Santa Cruz, NM; Pras, Mordechai [Tel-Hashomer, IL
2003-09-30
The invention provides the nucleic acid sequence encoding the protein associated with familial Mediterranean fever (FMF). The cDNA sequence is designated as MEFV. The invention is also directed towards fragments of the DNA sequence, as well as the corresponding sequence for the RNA transcript and fragments thereof. Another aspect of the invention provides the amino acid sequence for a protein (pyrin) associated with FMF. The invention is directed towards both the full length amino acid sequence, fusion proteins containing the amino acid sequence and fragments thereof. The invention is also directed towards mutants of the nucleic acid and amino acid sequences associated with FMF. In particular, the invention discloses three missense mutations, clustered in within about 40 to 50 amino acids, in the highly conserved rfp (B30.2) domain at the C-terminal of the protein. These mutants include M6801, M694V, K695R, and V726A. Additionally, the invention includes methods for diagnosing a patient at risk for having FMF and kits therefor.
Sequence periodicity in nucleosomal DNA and intrinsic curvature.
Nair, T Murlidharan
2010-05-17
Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures. Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature. The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA.
DNA damage induced by ascorbate in the presence of Cu2+.
Kobayashi, S; Ueda, K; Morita, J; Sakai, H; Komano, T
1988-01-25
DNA damage induced by ascorbate in the presence of Cu2+ was investigated by use of bacteriophage phi X174 double-stranded supercoiled DNA and linear restriction fragments as substrates. Single-strand cleavage was induced when supercoiled DNA was incubated with 5 microM-10 mM ascorbate and 50 microM Cu2+ at 37 degrees C for 10 min. The induced DNA damage was analyzed by sequencing of fragments singly labeled at their 5'- or 3'-end. DNA was cleaved directly and almost uniformly at every nucleotide by ascorbate and Cu2+. Piperidine treatment after the reaction showed that ascorbate and Cu2+ induced another kind of DNA damage different from the direct cleavage. The damage proceeded to DNA cleavage by piperidine treatment and was sequence-specific rather than random. These results indicate that ascorbate induces two classes of DNA damage in the presence of Cu2+, one being direct strand cleavage, probably via damage to the DNA backbone, and the other being a base modification labile to alkali treatment. These two classes of DNA damage were inhibited by potassium iodide, catalase and metal chelaters, suggesting the involvement of radicals generated from ascorbate hydroperoxide.
Direct uptake and degradation of DNA by lysosomes
Fujiwara, Yuuki; Kikuchi, Hisae; Aizawa, Shu; Furuta, Akiko; Hatanaka, Yusuke; Konya, Chiho; Uchida, Kenko; Wada, Keiji; Kabuta, Tomohiro
2013-01-01
Lysosomes contain various hydrolases that can degrade proteins, lipids, nucleic acids and carbohydrates. We recently discovered “RNautophagy,” an autophagic pathway in which RNA is directly taken up by lysosomes and degraded. A lysosomal membrane protein, LAMP2C, a splice variant of LAMP2, binds to RNA and acts as a receptor for this pathway. In the present study, we show that DNA is also directly taken up by lysosomes and degraded. Like RNautophagy, this autophagic pathway, which we term “DNautophagy,” is dependent on ATP. The cytosolic sequence of LAMP2C also directly interacts with DNA, and LAMP2C functions as a receptor for DNautophagy, in addition to RNautophagy. Similarly to RNA, DNA binds to the cytosolic sequences of fly and nematode LAMP orthologs. Together with the findings of our previous study, our present findings suggest that RNautophagy and DNautophagy are evolutionarily conserved systems in Metazoa. PMID:23839276
Pyle, Angela; Hudson, Gavin; Wilson, Ian J; Coxhead, Jonathan; Smertenko, Tania; Herbert, Mary; Santibanez-Koref, Mauro; Chinnery, Patrick F
2015-05-01
Recent reports have questioned the accepted dogma that mammalian mitochondrial DNA (mtDNA) is strictly maternally inherited. In humans, the argument hinges on detecting a signature of inter-molecular recombination in mtDNA sequences sampled at the population level, inferring a paternal source for the mixed haplotypes. However, interpreting these data is fraught with difficulty, and direct experimental evidence is lacking. Using extreme-high depth mtDNA re-sequencing up to ~1.2 million-fold coverage, we find no evidence that paternal mtDNA haplotypes are transmitted to offspring in humans, thus excluding a simple dilution mechanism for uniparental transmission of mtDNA present in all healthy individuals. Our findings indicate that an active mechanism eliminates paternal mtDNA which likely acts at the molecular level.
Pyle, Angela; Hudson, Gavin; Wilson, Ian J.; Coxhead, Jonathan; Smertenko, Tania; Herbert, Mary; Santibanez-Koref, Mauro; Chinnery, Patrick F.
2015-01-01
Recent reports have questioned the accepted dogma that mammalian mitochondrial DNA (mtDNA) is strictly maternally inherited. In humans, the argument hinges on detecting a signature of inter-molecular recombination in mtDNA sequences sampled at the population level, inferring a paternal source for the mixed haplotypes. However, interpreting these data is fraught with difficulty, and direct experimental evidence is lacking. Using extreme-high depth mtDNA re-sequencing up to ~1.2 million-fold coverage, we find no evidence that paternal mtDNA haplotypes are transmitted to offspring in humans, thus excluding a simple dilution mechanism for uniparental transmission of mtDNA present in all healthy individuals. Our findings indicate that an active mechanism eliminates paternal mtDNA which likely acts at the molecular level. PMID:25973765
NASA Technical Reports Server (NTRS)
Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.
1990-01-01
The sequence of the major portion of a Bacillus cycloheptanicus strain SCH(T) 16S rRNA gene is reported. This sequence suggests that B. cycloheptanicus is genetically quite distinct from traditional Bacillus strains (e.g., B. subtilis) and may be properly regarded as belonging to a different genus. The sequence was determined from DNA that was produced by direct amplification of ribosomal DNA from a lyophilized cell pellet with straightforward polymerase chain reaction (PCR) procedures. By obviating the need to revive cell cultures from the lyophile pellet, this approach facilitates rapid 16S rDNA sequencing and thereby advances studies in molecular systematics.
Benabdelkrim Filali, Oumama; Kabine, Mostafa; El Hamouchi, Adil; Lemrani, Meryem; Debboun, Mustapha; Sarih, M'hammed
2018-06-05
Anopheles sergentii known as the "oasis vector" or the "desert malaria vector" is considered the main vector of malaria in the southern parts of Morocco. Its presence in Morocco is confirmed for the first time through sequencing of mitochondrial DNA (mDNA) cytochrome c oxidase subunit I (COI) barcodes and nuclear ribosomal DNA (rDNA) second internal transcribed spacer (ITS2) sequences and direct comparison with specimens of A. sergentii of other countries. The DNA barcodes (n = 39) obtained from A. sergentii collected in 2015 and 2016 showed more diversity with 10 haplotypes, compared with 3 haplotypes obtained from ITS2 sequences (n = 59). Moreover, the comparison using the ITS2 sequences showed closer evolutionary relationship between the Moroccan and Egyptian strains than the Iranian strain. Nevertheless, genetic differences due to geographical segregation were also observed. This study provides the first report on the sequence of rDNA-ITS2 and mtDNA COI, which could be used to better understand the biodiversity of A. sergentii.
Sanders, Ashley D; Falconer, Ester; Hills, Mark; Spierings, Diana C J; Lansdorp, Peter M
2017-06-01
The ability to distinguish between genome sequences of homologous chromosomes in single cells is important for studies of copy-neutral genomic rearrangements (such as inversions and translocations), building chromosome-length haplotypes, refining genome assemblies, mapping sister chromatid exchange events and exploring cellular heterogeneity. Strand-seq is a single-cell sequencing technology that resolves the individual homologs within a cell by restricting sequence analysis to the DNA template strands used during DNA replication. This protocol, which takes up to 4 d to complete, relies on the directionality of DNA, in which each single strand of a DNA molecule is distinguished based on its 5'-3' orientation. Culturing cells in a thymidine analog for one round of cell division labels nascent DNA strands, allowing for their selective removal during genomic library construction. To preserve directionality of template strands, genomic preamplification is bypassed and labeled nascent strands are nicked and not amplified during library preparation. Each single-cell library is multiplexed for pooling and sequencing, and the resulting sequence data are aligned, mapping to either the minus or plus strand of the reference genome, to assign template strand states for each chromosome in the cell. The major adaptations to conventional single-cell sequencing protocols include harvesting of daughter cells after a single round of BrdU incorporation, bypassing of whole-genome amplification, and removal of the BrdU + strand during Strand-seq library preparation. By sequencing just template strands, the structure and identity of each homolog are preserved.
Assessing the Fidelity of Ancient DNA Sequences Amplified From Nuclear Genes
Binladen, Jonas; Wiuf, Carsten; Gilbert, M. Thomas P.; Bunce, Michael; Barnett, Ross; Larson, Greger; Greenwood, Alex D.; Haile, James; Ho, Simon Y. W.; Hansen, Anders J.; Willerslev, Eske
2006-01-01
To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequences. However, a number of recent studies have reported the successful recovery of ancient nuclear DNA (nuDNA) sequences, thereby allowing the characterization of genetic loci directly involved in phenotypic traits of extinct taxa. It is well documented that postmortem damage in ancient mtDNA can lead to the generation of artifactual sequences. However, as yet no one has thoroughly investigated the damage spectrum in ancient nuDNA. By comparing clone sequences from 23 fossil specimens, recovered from environments ranging from permafrost to desert, we demonstrate the presence of miscoding lesion damage in both the mtDNA and nuDNA, resulting in insertion of erroneous bases during amplification. Interestingly, no significant differences in the frequency of miscoding lesion damage are recorded between mtDNA and nuDNA despite great differences in cellular copy numbers. For both mtDNA and nuDNA, we find significant positive correlations between total sequence heterogeneity and the rates of type 1 transitions (adenine → guanine and thymine → cytosine) and type 2 transitions (cytosine → thymine and guanine → adenine), respectively. Type 2 transitions are by far the most dominant and increase relative to those of type 1 with damage load. The results suggest that the deamination of cytosine (and 5-methyl cytosine) to uracil (and thymine) is the main cause of miscoding lesions in both ancient mtDNA and nuDNA sequences. We argue that the problems presented by postmortem damage, as well as problems with contamination from exogenous sources of conserved nuclear genes, allelic variation, and the reliance on single nucleotide polymorphisms, call for great caution in studies relying on ancient nuDNA sequences. PMID:16299392
In silico evidence for sequence-dependent nucleosome sliding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lequieu, Joshua; Schwartz, David C.; de Pablo, Juan J.
Nucleosomes represent the basic building block of chromatin and provide an important mechanism by which cellular processes are controlled. The locations of nucleosomes across the genome are not random but instead depend on both the underlying DNA sequence and the dynamic action of other proteins within the nucleus. These processes are central to cellular function, and the molecular details of the interplay between DNA sequence and nudeosome dynamics remain poorly understood. In this work, we investigate this interplay in detail by relying on a molecular model, which permits development of a comprehensive picture of the underlying free energy surfaces andmore » the corresponding dynamics of nudeosome repositioning. The mechanism of nudeosome repositioning is shown to be strongly linked to DNA sequence and directly related to the binding energy of a given DNA sequence to the histone core. It is also demonstrated that chromatin remodelers can override DNA-sequence preferences by exerting torque, and the histone H4 tail is then identified as a key component by which DNA-sequence, histone modifications, and chromatin remodelers could in fact be coupled.« less
Su, Jiao; Zhang, Haijie; Jiang, Bingying; Zheng, Huzhi; Chai, Yaqin; Yuan, Ruo; Xiang, Yun
2011-11-15
We report an ultrasensitive electrochemical approach for the detection of uropathogen sequence-specific DNA target. The sensing strategy involves a dual signal amplification process, which combines the signal enhancement by the enzymatic target recycling technique with the sensitivity improvement by the quantum dot (QD) layer-by-layer (LBL) assembled labels. The enzyme-based catalytic target DNA recycling process results in the use of each target DNA sequence for multiple times and leads to direct amplification of the analytical signal. Moreover, the LBL assembled QD labels can further enhance the sensitivity of the sensing system. The coupling of these two effective signal amplification strategies thus leads to low femtomolar (5fM) detection of the target DNA sequences. The proposed strategy also shows excellent discrimination between the target DNA and the single-base mismatch sequences. The advantageous intrinsic sequence-independent property of exonuclease III over other sequence-dependent enzymes makes our new dual signal amplification system a general sensing platform for monitoring ultralow level of various types of target DNA sequences. Copyright © 2011 Elsevier B.V. All rights reserved.
Sequence-dependent base pair stepping dynamics in XPD helicase unwinding
Qi, Zhi; Pugh, Robert A; Spies, Maria; Chemla, Yann R
2013-01-01
Helicases couple the chemical energy of ATP hydrolysis to directional translocation along nucleic acids and transient duplex separation. Understanding helicase mechanism requires that the basic physicochemical process of base pair separation be understood. This necessitates monitoring helicase activity directly, at high spatio-temporal resolution. Using optical tweezers with single base pair (bp) resolution, we analyzed DNA unwinding by XPD helicase, a Superfamily 2 (SF2) DNA helicase involved in DNA repair and transcription initiation. We show that monomeric XPD unwinds duplex DNA in 1-bp steps, yet exhibits frequent backsteps and undergoes conformational transitions manifested in 5-bp backward and forward steps. Quantifying the sequence dependence of XPD stepping dynamics with near base pair resolution, we provide the strongest and most direct evidence thus far that forward, single-base pair stepping of a helicase utilizes the spontaneous opening of the duplex. The proposed unwinding mechanism may be a universal feature of DNA helicases that move along DNA phosphodiester backbones. DOI: http://dx.doi.org/10.7554/eLife.00334.001 PMID:23741615
Divergence, differential methylation and interspersion of melon satellite DNA sequences.
Shmookler Reis, R; Timmis, J N; Ingle, J
1981-01-01
Melon (Cucumis melo) satellite DNA consists of two components, Q and S, each with a buoyant density in CsCl of 1.707 g/ml, but differing by 9 degrees C in "melting" temperature. These physical properties appear to be in contradiction, since both depend on G + C content. In order to resolve this anomaly, base compositions were directly determined for isolated fractions. the low-"melting" component S contains 41.8% G + C, with 6% of C present as 5-methylcytosine, whereas Q DNA contains 54% G + C, with 41% of C methylated. Analyses of restriction site loss agreed well with the direct determinations of methylation and divergence, and indicated some clustering of methylated sites in Q DNA. Analysis of restricted main-band DNA by hydridization with RNA complementary to Q satellite DNA ("Southern transfer") showed satellite Q tandem arrays interspersed in DNA of main-band density. Sequence divergence and extent of methylation did not appear to depend on whether a repeat array was present as satellite or interspersed in main-band DNA. Hydridization in situ indicated considerable heterogeneity in the genomic proportion of the Q-DNA sequences in melon fruit nuclei, implying over- and under-representation consistent with extensive unequal recombination in satellite Q tandem arrays. The cucumber, Cucumis sativus, contains less than 8% as much Q-homologous DNA per genome as the melon, suggesting rapid evolutionary gain or loss of these tandem repeat sequences. Images Fig. 2. PLATE 1 Fig. 4. Fig. 10. PMID:6172117
Role of the Adenovirus DNA-Binding Protein in In Vitro Adeno-Associated Virus DNA Replication
Ward, Peter; Dean, Frank B.; O’Donnell, Michael E.; Berns, Kenneth I.
1998-01-01
A basic question in adeno-associated virus (AAV) biology has been whether adenovirus (Ad) infection provided any function which directly promoted replication of AAV DNA. Previously in vitro assays for AAV DNA replication, using linear duplex AAV DNA as the template, uninfected or Ad-infected HeLa cell extracts, and exogenous AAV Rep protein, demonstrated that Ad infection provides a direct helper effect for AAV DNA replication. It was shown that the nature of this helper effect was to increase the processivity of AAV DNA replication. Left unanswered was the question of whether this effect was the result of cellular factors whose activity was enhanced by Ad infection or was the result of direct participation of Ad proteins in AAV DNA replication. In this report, we show that in the in vitro assay, enhancement of processivity occurs with the addition of either the Ad DNA-binding protein (Ad-DBP) or the human single-stranded DNA-binding protein (replication protein A [RPA]). Clearly Ad-DBP is present after Ad infection but not before, whereas the cellular level of RPA is not apparently affected by Ad infection. However, we have not measured possible modifications of RPA which might occur after Ad infection and affect AAV DNA replication. When the substrate for replication was an AAV genome inserted into a plasmid vector, RPA was not an effective substitute for Ad-DBP. Extracts supplemented with Ad-DBP preferentially replicated AAV sequences rather than adjacent vector sequences; in contrast, extracts supplemented with RPA preferentially replicated vector sequences. PMID:9420241
Videvall, Elin; Strandh, Maria; Engelbrecht, Anel; Cloete, Schalk; Cornwallis, Charlie K
2017-01-01
The gut microbiome of animals is emerging as an important factor influencing ecological and evolutionary processes. A major bottleneck in obtaining microbiome data from large numbers of samples is the time-consuming laboratory procedures required, specifically the isolation of DNA and generation of amplicon libraries. Recently, direct PCR kits have been developed that circumvent conventional DNA extraction steps, thereby streamlining the laboratory process by reducing preparation time and costs. However, the reliability and efficacy of direct PCR for measuring host microbiomes have not yet been investigated other than in humans with 454 sequencing. Here, we conduct a comprehensive evaluation of the microbial communities obtained with direct PCR and the widely used Mo Bio PowerSoil DNA extraction kit in five distinct gut sample types (ileum, cecum, colon, feces, and cloaca) from 20 juvenile ostriches, using 16S rRNA Illumina MiSeq sequencing. We found that direct PCR was highly comparable over a range of measures to the DNA extraction method in cecal, colon, and fecal samples. However, the two methods significantly differed in samples with comparably low bacterial biomass: cloacal and especially ileal samples. We also sequenced 100 replicate sample pairs to evaluate repeatability during both extraction and PCR stages and found that both methods were highly consistent for cecal, colon, and fecal samples ( r s > 0.7) but had low repeatability for cloacal ( r s = 0.39) and ileal ( r s = -0.24) samples. This study indicates that direct PCR provides a fast, cheap, and reliable alternative to conventional DNA extraction methods for retrieving 16S rRNA data, which can aid future gut microbiome studies. IMPORTANCE The microbial communities of animals can have large impacts on their hosts, and the number of studies using high-throughput sequencing to measure gut microbiomes is rapidly increasing. However, the library preparation procedure in microbiome research is both costly and time-consuming, especially for large numbers of samples. We investigated a cheaper and faster direct PCR method designed to bypass the DNA isolation steps during 16S rRNA library preparation and compared it with a standard DNA extraction method. We used both techniques on five different gut sample types collected from 20 juvenile ostriches and sequenced samples with Illumina MiSeq. The methods were highly comparable and highly repeatable in three sample types with high microbial biomass (cecum, colon, and feces), but larger differences and low repeatability were found in the microbiomes obtained from the ileum and cloaca. These results will help microbiome researchers assess library preparation procedures and plan their studies accordingly.
Regulatory link between DNA methylation and active demethylation in Arabidopsis
Lei, Mingguang; Zhang, Huiming; Julian, Russell; Tang, Kai; Xie, Shaojun; Zhu, Jian-Kang
2015-01-01
De novo DNA methylation through the RNA-directed DNA methylation (RdDM) pathway and active DNA demethylation play important roles in controlling genome-wide DNA methylation patterns in plants. Little is known about how cells manage the balance between DNA methylation and active demethylation activities. Here, we report the identification of a unique RdDM target sequence, where DNA methylation is required for maintaining proper active DNA demethylation of the Arabidopsis genome. In a genetic screen for cellular antisilencing factors, we isolated several REPRESSOR OF SILENCING 1 (ros1) mutant alleles, as well as many RdDM mutants, which showed drastically reduced ROS1 gene expression and, consequently, transcriptional silencing of two reporter genes. A helitron transposon element (TE) in the ROS1 gene promoter negatively controls ROS1 expression, whereas DNA methylation of an RdDM target sequence between ROS1 5′ UTR and the promoter TE region antagonizes this helitron TE in regulating ROS1 expression. This RdDM target sequence is also targeted by ROS1, and defective DNA demethylation in loss-of-function ros1 mutant alleles causes DNA hypermethylation of this sequence and concomitantly causes increased ROS1 expression. Our results suggest that this sequence in the ROS1 promoter region serves as a DNA methylation monitoring sequence (MEMS) that senses DNA methylation and active DNA demethylation activities. Therefore, the ROS1 promoter functions like a thermostat (i.e., methylstat) to sense DNA methylation levels and regulates DNA methylation by controlling ROS1 expression. PMID:25733903
Method of artificial DNA splicing by directed ligation (SDL).
Lebedenko, E N; Birikh, K R; Plutalov, O V; Berlin YuA
1991-01-01
An approach to directed genetic recombination in vitro has been devised, which allows for joining together, in a predetermined way, a series of DNA segments to give a precisely spliced polynucleotide sequence (DNA splicing by directed ligation, SDL). The approach makes use of amplification, by means of several polymerase chain reactions (PCR), of a chosen set of DNA segments. Primers for the amplifications contain recognition sites of the class IIS restriction endonucleases, which transform blunt ends of the amplification products into protruding ends of unique primary structures, the ends to be used for joining segments together being mutually complementary. Ligation of the mixture of the segments so synthesized gives the desired sequence in an unambiguous way. The suggested approach has been exemplified by the synthesis of a totally processed (intronless) gene encoding human mature interleukin-1 alpha. Images PMID:1662363
Sequence periodicity in nucleosomal DNA and intrinsic curvature
2010-01-01
Background Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures. Results Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature. Conclusions The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA. PMID:20487515
Sequence-dependent DNA deformability studied using molecular dynamics simulations.
Fujii, Satoshi; Kono, Hidetoshi; Takenaka, Shigeori; Go, Nobuhiro; Sarai, Akinori
2007-01-01
Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein-DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein-DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids.
Casini, Arturo; MacDonald, James T.; Jonghe, Joachim De; Christodoulou, Georgia; Freemont, Paul S.; Baldwin, Geoff S.; Ellis, Tom
2014-01-01
Overlap-directed DNA assembly methods allow multiple DNA parts to be assembled together in one reaction. These methods, which rely on sequence homology between the ends of DNA parts, have become widely adopted in synthetic biology, despite being incompatible with a key principle of engineering: modularity. To answer this, we present MODAL: a Modular Overlap-Directed Assembly with Linkers strategy that brings modularity to overlap-directed methods, allowing assembly of an initial set of DNA parts into a variety of arrangements in one-pot reactions. MODAL is accompanied by a custom software tool that designs overlap linkers to guide assembly, allowing parts to be assembled in any specified order and orientation. The in silico design of synthetic orthogonal overlapping junctions allows for much greater efficiency in DNA assembly for a variety of different methods compared with using non-designed sequence. In tests with three different assembly technologies, the MODAL strategy gives assembly of both yeast and bacterial plasmids, composed of up to five DNA parts in the kilobase range with efficiencies of between 75 and 100%. It also seamlessly allows mutagenesis to be performed on any specified DNA parts during the process, allowing the one-step creation of construct libraries valuable for synthetic biology applications. PMID:24153110
Identification of Bacterial Species in Kuwaiti Waters Through DNA Sequencing
NASA Astrophysics Data System (ADS)
Chen, K.
2017-01-01
With an objective of identifying the bacterial diversity associated with ecosystem of various Kuwaiti Seas, bacteria were cultured and isolated from 3 water samples. Due to the difficulties for cultured and isolated fecal coliforms on the selective agar plates, bacterial isolates from marine agar plates were selected for molecular identification. 16S rRNA genes were successfully amplified from the genome of the selected isolates using Universal Eubacterial 16S rRNA primers. The resulted amplification products were subjected to automated DNA sequencing. Partial 16S rDNA sequences obtained were compared directly with sequences in the NCBI database using BLAST as well as with the sequences available with Ribosomal Database Project (RDP).
A DNA sequence element that advances replication origin activation time in Saccharomyces cerevisiae.
Pohl, Thomas J; Kolor, Katherine; Fangman, Walton L; Brewer, Bonita J; Raghuraman, M K
2013-11-06
Eukaryotic origins of DNA replication undergo activation at various times in S-phase, allowing the genome to be duplicated in a temporally staggered fashion. In the budding yeast Saccharomyces cerevisiae, the activation times of individual origins are not intrinsic to those origins but are instead governed by surrounding sequences. Currently, there are two examples of DNA sequences that are known to advance origin activation time, centromeres and forkhead transcription factor binding sites. By combining deletion and linker scanning mutational analysis with two-dimensional gel electrophoresis to measure fork direction in the context of a two-origin plasmid, we have identified and characterized a 19- to 23-bp and a larger 584-bp DNA sequence that are capable of advancing origin activation time.
Fariña Sarasqueta, Arantza; Moerland, Elna; de Bruyne, Hanneke; de Graaf, Henk; Vrancken, Tamara; van Lijnschoten, Gesina; van den Brule, Adriaan J.C.
2011-01-01
Although direct sequencing is the gold standard for KRAS mutation detection in routine diagnostics, it remains laborious, time consuming, and not very sensitive. Our objective was to evaluate SNaPshot and the KRAS StripAssay as alternatives to sequencing for KRAS mutation detection in daily practice. KRAS exon 2–specific PCR followed by sequencing or by a SNaPshot reaction was performed. For the StripAssay, a mutant-enriched PCR was followed by hybridization to KRAS-specific probes bound to a nitrocellulose strip. To test sensitivities, dilution series of mutated DNA in wild-type DNA were made. Additionally, direct sequencing and SNaPshot were evaluated in 296 colon cancer samples. Detection limits of direct sequencing, SNaPshot, and StripAssay were 20%, 10%, and 1% tumor cells, respectively. Direct sequencing and SNaPshot can detect all 12 mutations in KRAS codons 12 and 13, whereas the StripAssay detects 10 of the most frequent ones. Workload and time to results are comparable for SNaPshot and direct sequencing. SNaPshot is flexible and easy to multiplex. The StripAssay is less time consuming for daily laboratory practice. SNaPshot is more flexible and slightly more sensitive than direct sequencing. The clinical evaluation showed comparable performances between direct sequencing and SNaPshot. The StripAssay is rapid and an extremely sensitive assay that could be considered when few tumor cells are available. However, found mutants should be confirmed to avoid risk of false positives. PMID:21354055
enoLOGOS: a versatile web tool for energy normalized sequence logos
Workman, Christopher T.; Yin, Yutong; Corcoran, David L.; Ideker, Trey; Stormo, Gary D.; Benos, Panayiotis V.
2005-01-01
enoLOGOS is a web-based tool that generates sequence logos from various input sources. Sequence logos have become a popular way to graphically represent DNA and amino acid sequence patterns from a set of aligned sequences. Each position of the alignment is represented by a column of stacked symbols with its total height reflecting the information content in this position. Currently, the available web servers are able to create logo images from a set of aligned sequences, but none of them generates weighted sequence logos directly from energy measurements or other sources. With the advent of high-throughput technologies for estimating the contact energy of different DNA sequences, tools that can create logos directly from binding affinity data are useful to researchers. enoLOGOS generates sequence logos from a variety of input data, including energy measurements, probability matrices, alignment matrices, count matrices and aligned sequences. Furthermore, enoLOGOS can represent the mutual information of different positions of the consensus sequence, a unique feature of this tool. Another web interface for our software, C2H2-enoLOGOS, generates logos for the DNA-binding preferences of the C2H2 zinc-finger transcription factor family members. enoLOGOS and C2H2-enoLOGOS are accessible over the web at . PMID:15980495
Blochlinger, K; Diggelmann, H
1984-12-01
The DNA coding sequence for the hygromycin B phosphotransferase gene was placed under the control of the regulatory sequences of a cloned long terminal repeat of Moloney sarcoma virus. This construction allowed direct selection for hygromycin B resistance after transfection of eucaryotic cell lines not naturally resistant to this antibiotic, thus providing another dominant marker for DNA transfer in eucaryotic cells.
Blochlinger, K; Diggelmann, H
1984-01-01
The DNA coding sequence for the hygromycin B phosphotransferase gene was placed under the control of the regulatory sequences of a cloned long terminal repeat of Moloney sarcoma virus. This construction allowed direct selection for hygromycin B resistance after transfection of eucaryotic cell lines not naturally resistant to this antibiotic, thus providing another dominant marker for DNA transfer in eucaryotic cells. Images PMID:6098829
In vitro fluorescence studies of transcription factor IIB-DNA interaction.
Górecki, Andrzej; Figiel, Małgorzata; Dziedzicka-Wasylewska, Marta
2015-01-01
General transcription factor TFIIB is one of the basal constituents of the preinitiation complex of eukaryotic RNA polymerase II, acting as a bridge between the preinitiation complex and the polymerase, and binding promoter DNA in an asymmetric manner, thereby defining the direction of the transcription. Methods of fluorescence spectroscopy together with circular dichroism spectroscopy were used to observe conformational changes in the structure of recombinant human TFIIB after binding to specific DNA sequence. To facilitate the exploration of the structural changes, several site-directed mutations have been introduced altering the fluorescence properties of the protein. Our observations showed that binding of specific DNA sequences changed the protein structure and dynamics, and TFIIB may exist in two conformational states, which can be described by a different microenvironment of W52. Fluorescence studies using both intrinsic and exogenous fluorophores showed that these changes significantly depended on the recognition sequence and concerned various regions of the protein, including those interacting with other transcription factors and RNA polymerase II. DNA binding can cause rearrangements in regions of proteins interacting with the polymerase in a manner dependent on the recognized sequences, and therefore, influence the gene expression.
Underwound DNA under Tension: Structure, Elasticity, and Sequence-Dependent Behaviors
NASA Astrophysics Data System (ADS)
Sheinin, Maxim Y.; Forth, Scott; Marko, John F.; Wang, Michelle D.
2011-09-01
DNA melting under torsion plays an important role in a wide variety of cellular processes. In the present Letter, we have investigated DNA melting at the single-molecule level using an angular optical trap. By directly measuring force, extension, torque, and angle of DNA, we determined the structural and elastic parameters of torsionally melted DNA. Our data reveal that under moderate forces, the melted DNA assumes a left-handed structure as opposed to an open bubble conformation and is highly torsionally compliant. We have also discovered that at low forces melted DNA properties are highly dependent on DNA sequence. These results provide a more comprehensive picture of the global DNA force-torque phase diagram.
Simon, J W; Slabas, A R
1998-09-18
The GenBank database was searched using the E. coli malonyl CoA:ACP transacylase (MCAT) sequence, for plant protein/cDNA sequences corresponding to MCAT, a component of plant fatty acid synthetase (FAS), for which the plant cDNA has not been isolated. A 272-bp Zea mays EST sequence (GenBank accession number: AA030706) was identified which has strong homology to the E. coli MCAT. A PCR derived cDNA probe from Zea mays was used to screen a Brassica napus (rape) cDNA library. This resulted in the isolation of a 1200-bp cDNA clone which encodes an open reading frame corresponding to a protein of 351 amino acids. The protein shows 47% homology to the E. coli MCAT amino acid sequence in the coding region for the mature protein. Expression of a plasmid (pMCATrap2) containing the plant cDNA sequence in Fab D89, an E. coli mutant, in MCAT activity restores growth demonstrating functional complementation and direct function of the cloned cDNA. This is the first functional evidence supporting the identification of a plant cDNA for MCAT.
Fisher, R P; Topper, J N; Clayton, D A
1987-07-17
Selective transcription of human mitochondrial DNA requires a transcription factor (mtTF) in addition to an essentially nonselective RNA polymerase. Partially purified mtTF is able to sequester promoter-containing DNA in preinitiation complexes in the absence of mitochondrial RNA polymerase, suggesting a DNA-binding mechanism for factor activity. Functional domains, required for positive transcriptional regulation by mtTF, are identified within both major promoters of human mtDNA through transcription of mutant promoter templates in a reconstituted in vitro system. These domains are essentially coextensive with DNA sequences protected from nuclease digestion by mtTF-binding. Comparison of the sequences of the two mtTF-responsive elements reveals significant homology only when one sequence is inverted; the binding sites are in opposite orientations with respect to the predominant direction of transcription. Thus mtTF may function bidirectionally, requiring additional protein-DNA interactions to dictate transcriptional polarity. The mtTF-responsive elements are arrayed as direct repeats, separated by approximately 80 bp within the displacement-loop region of human mitochondrial DNA; this arrangement may reflect duplication of an ancestral bidirectional promoter, giving rise to separate, unidirectional promoters for each strand.
Quantification of HCV RNA in Clinical Specimens by Branched DNA (bDNA) Technology.
Wilber, J C; Urdea, M S
1999-01-01
The diagnosis and monitoring of hepatitis C virus (HCV) infection have been aided by the development of HCV RNA quantification assays A direct measure of viral load, HCV RNA quantification has the advantage of providing information on viral kinetics and provides unique insight into the disease process. Branched DNA (bDNA) signal amplification technology provides a novel approach for the direct quantification of HCV RNA in patient specimens. The bDNA assay measures HCV RNA at physiological levels by boosting the reporter signal, rather than by replicating target sequences as the means of detection, and thus avoids the errors inherent in the extraction and amplification of target sequences. Inherently quantitative and nonradioactive, the bDNA assay is amenable to routine use in a clinical research setting, and has been used by several groups to explore the natural history, pathogenesis, and treatment of HCV infection.
Rapid amplification of 5' complementary DNA ends (5' RACE).
2005-08-01
This method is used to extend partial cDNA clones by amplifying the 5' sequences of the corresponding mRNAs 1-3. The technique requires knowledge of only a small region of sequence within the partial cDNA clone. During PCR, the thermostable DNA polymerase is directed to the appropriate target RNA by a single primer derived from the region of known sequence; the second primer required for PCR is complementary to a general feature of the target-in the case of 5' RACE, to a homopolymeric tail added (via terminal transferase) to the 3' termini of cDNAs transcribed from a preparation of mRNA. This synthetic tail provides a primer-binding site upstream of the unknown 5' sequence of the target mRNA. The products of the amplification reaction are cloned into a plasmid vector for sequencing and subsequent manipulation.
NASA Technical Reports Server (NTRS)
Ho, P. S.; Ellison, M. J.; Quigley, G. J.; Rich, A.
1986-01-01
The ease with which a particular DNA segment adopts the left-handed Z-conformation depends largely on the sequence and on the degree of negative supercoiling to which it is subjected. We describe a computer program (Z-hunt) that is designed to search long sequences of naturally occurring DNA and retrieve those nucleotide combinations of up to 24 bp in length which show a strong propensity for Z-DNA formation. Incorporated into Z-hunt is a statistical mechanical model based on empirically determined energetic parameters for the B to Z transition accumulated to date. The Z-forming potential of a sequence is assessed by ranking its behavior as a function of negative superhelicity relative to the behavior of similar sized randomly generated nucleotide sequences assembled from over 80,000 combinations. The program makes it possible to compare directly the Z-forming potential of sequences with different base compositions and different sequence lengths. Using Z-hunt, we have analyzed the DNA sequences of the bacteriophage phi X174, plasmid pBR322, the animal virus SV40 and the replicative form of the eukaryotic adenovirus-2. The results are compared with those previously obtained by others from experiments designed to locate Z-DNA forming regions in these sequences using probes which show specificity for the left-handed DNA conformation.
Impact of cultivation on characterisation of species composition of soil bacterial communities.
McCaig, A E.; Grayston, S J.; Prosser, J I.; Glover, L A.
2001-03-01
The species composition of culturable bacteria in Scottish grassland soils was investigated using a combination of Biolog and 16S rDNA analysis for characterisation of isolates. The inclusion of a molecular approach allowed direct comparison of sequences from culturable bacteria with sequences obtained during analysis of DNA extracted directly from the same soil samples. Bacterial strains were isolated on Pseudomonas isolation agar (PIA), a selective medium, and on tryptone soya agar (TSA), a general laboratory medium. In total, 12 and 21 morphologically different bacterial cultures were isolated on PIA and TSA, respectively. Biolog and sequencing placed PIA isolates in the same taxonomic groups, the majority of cultures belonging to the Pseudomonas (sensu stricto) group. However, analysis of 16S rDNA sequences proved more efficient than Biolog for characterising TSA isolates due to limitations of the Microlog database for identifying environmental bacteria. In general, 16S rDNA sequences from TSA isolates showed high similarities to cultured species represented in sequence databases, although TSA-8 showed only 92.5% similarity to the nearest relative, Bacillus insolitus. In general, there was very little overlap between the culturable and uncultured bacterial communities, although two sequences, PIA-2 and TSA-13, showed >99% similarity to soil clones. A cloning step was included prior to sequence analysis of two isolates, TSA-5 and TSA-14, and analysis of several clones confirmed that these cultures comprised at least four and three sequence types, respectively. All isolate clones were most closely related to uncultured bacteria, with clone TSA-5.1 showing 99.8% similarity to a sequence amplified directly from the same soil sample. Interestingly, one clone, TSA-5.4, clustered within a novel group comprising only uncultured sequences. This group, which is associated with the novel, deep-branching Acidobacterium capsulatum lineage, also included clones isolated during direct analysis of the same soil and from a wide range of other sample types studied elsewhere. The study demonstrates the value of fine-scale molecular analysis for identification of laboratory isolates and indicates the culturability of approximately 1% of the total population but under a restricted range of media and cultivation conditions.
Metatranscriptomics of Soil Eukaryotic Communities.
Yadav, Rajiv K; Bragalini, Claudia; Fraissinet-Tachet, Laurence; Marmeisse, Roland; Luis, Patricia
2016-01-01
Functions expressed by eukaryotic organisms in soil can be specifically studied by analyzing the pool of eukaryotic-specific polyadenylated mRNA directly extracted from environmental samples. In this chapter, we describe two alternative protocols for the extraction of high-quality RNA from soil samples. Total soil RNA or mRNA can be converted to cDNA for direct high-throughput sequencing. Polyadenylated mRNA-derived full-length cDNAs can also be cloned in expression plasmid vectors to constitute soil cDNA libraries, which can be subsequently screened for functional gene categories. Alternatively, the diversity of specific gene families can also be explored following cDNA sequence capture using exploratory oligonucleotide probes.
Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.
Nakano, Kazuma; Shiroma, Akino; Shimoji, Makiko; Tamotsu, Hinako; Ashimine, Noriko; Ohki, Shun; Shinzato, Misuzu; Minami, Maiko; Nakanishi, Tetsuhiro; Teruya, Kuniko; Satou, Kazuhito; Hirano, Takashi
2017-07-01
PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II's sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.
Paliwoda, Rebecca E; Li, Feng; Reid, Michael S; Lin, Yanwen; Le, X Chris
2014-06-17
Functionalizing nanomaterials for diverse analytical, biomedical, and therapeutic applications requires determination of surface coverage (or density) of DNA on nanomaterials. We describe a sequential strand displacement beacon assay that is able to quantify specific DNA sequences conjugated or coconjugated onto gold nanoparticles (AuNPs). Unlike the conventional fluorescence assay that requires the target DNA to be fluorescently labeled, the sequential strand displacement beacon method is able to quantify multiple unlabeled DNA oligonucleotides using a single (universal) strand displacement beacon. This unique feature is achieved by introducing two short unlabeled DNA probes for each specific DNA sequence and by performing sequential DNA strand displacement reactions. Varying the relative amounts of the specific DNA sequences and spacing DNA sequences during their coconjugation onto AuNPs results in different densities of the specific DNA on AuNP, ranging from 90 to 230 DNA molecules per AuNP. Results obtained from our sequential strand displacement beacon assay are consistent with those obtained from the conventional fluorescence assays. However, labeling of DNA with some fluorescent dyes, e.g., tetramethylrhodamine, alters DNA density on AuNP. The strand displacement strategy overcomes this problem by obviating direct labeling of the target DNA. This method has broad potential to facilitate more efficient design and characterization of novel multifunctional materials for diverse applications.
Assessing Diversity of DNA Structure-Related Sequence Features in Prokaryotic Genomes
Huang, Yongjie; Mrázek, Jan
2014-01-01
Prokaryotic genomes are diverse in terms of their nucleotide and oligonucleotide composition as well as presence of various sequence features that can affect physical properties of the DNA molecule. We present a survey of local sequence patterns which have a potential to promote non-canonical DNA conformations (i.e. different from standard B-DNA double helix) and interpret the results in terms of relationships with organisms' habitats, phylogenetic classifications, and other characteristics. Our present work differs from earlier similar surveys not only by investigating a wider range of sequence patterns in a large number of genomes but also by using a more realistic null model to assess significant deviations. Our results show that simple sequence repeats and Z-DNA-promoting patterns are generally suppressed in prokaryotic genomes, whereas palindromes and inverted repeats are over-represented. Representation of patterns that promote Z-DNA and intrinsic DNA curvature increases with increasing optimal growth temperature (OGT), and decreases with increasing oxygen requirement. Additionally, representations of close direct repeats, palindromes and inverted repeats exhibit clear negative trends with increasing OGT. The observed relationships with environmental characteristics, particularly OGT, suggest possible evolutionary scenarios of structural adaptation of DNA to particular environmental niches. PMID:24408877
Spencer, J Vaughn; Arndt, Karen M
2002-12-01
The TATA-binding protein (TBP) nucleates the assembly and determines the position of the preinitiation complex at RNA polymerase II-transcribed genes. We investigated the importance of two conserved residues on the DNA binding surface of Saccharomyces cerevisiae TBP to DNA binding and sequence discrimination. Because they define a significant break in the twofold symmetry of the TBP-TATA interface, Ala100 and Pro191 have been proposed to be key determinants of TBP binding orientation and transcription directionality. In contrast to previous predictions, we found that substitution of an alanine for Pro191 did not allow recognition of a reversed TATA box in vivo; however, the reciprocal change, Ala100 to proline, resulted in efficient utilization of this and other variant TATA sequences. In vitro assays demonstrated that TBP mutants with the A100P and P191A substitutions have increased and decreased affinity for DNA, respectively. The TATA binding defect of TBP with the P191A mutation could be intragenically suppressed by the A100P substitution. Our results suggest that Ala100 and Pro191 are important for DNA binding and sequence recognition by TBP, that the naturally occurring asymmetry of Ala100 and Pro191 is not essential for function, and that a single amino acid change in TBP can lead to elevated DNA binding affinity and recognition of a reversed TATA sequence.
DDM1 represses noncoding RNA expression and RNA-directed DNA methylation in heterochromatin.
Tan, Feng; Lu, Yue; Jiang, Wei; Zhao, Yu; Wu, Tian; Zhang, Ruoyu; Zhou, Dao-Xiu
2018-05-24
Cytosine methylation of DNA, which occurs at CG, CHG, and CHH (H=A, C, or T) sequences in plants, is a hallmark for epigenetic repression of repetitive sequences. The chromatin remodeling factor DECREASE IN DNA METHYLATION1 (DDM1) is essential for DNA methylation, especially at CG and CHG sequences. However, its potential role in RNA-directed DNA methylation (RdDM) and in chromatin function is not completely understood in rice (Oryza sativa). In this work, we used high-throughput approaches to study the function of rice DDM1 (OsDDM1) in RdDM and the expression of non-coding RNA (ncRNA). We show that loss of function of OsDDM1 results in ectopic CHH methylation of transposable elements and repeats. The ectopic CHH methylation was dependent on rice DOMAINS REARRANGED METHYLTRANSFERASE2 (OsDRM2), a DNA methyltransferase involved in RdDM. Mutations in OsDDM1 lead to decreases of histone H3K9me2 and increases in the levels of heterochromatic small RNA (sRNA) and long noncoding RNA (lncRNA). In particular, OsDDM1 was found to be essential to repress transcription of the two repetitive sequences, Centromeric Retrotransposons of Rice1 (CRR1) and the dominant centromeric CentO repeats. These results suggest that OsDDM1 antagonizes RdDM at heterochromatin and represses tissue-specific expression of ncRNA from repetitive sequences in the rice genome. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.
PMS2 gene mutational analysis: direct cDNA sequencing to circumvent pseudogene interference.
Wimmer, Katharina; Wernstedt, Annekatrin
2014-01-01
The presence of highly homologous pseudocopies can compromise the mutation analysis of a gene of interest. In particular, when using PCR-based strategies, pseudogene co-amplification has to be effectively prevented. This is often achieved by using primers designed to be parental gene specific according to the reference sequence and by applying stringent PCR conditions. However, there are cases in which this approach is of limited utility. For example, it has been shown that the PMS2 gene exchanges sequences with one of its pseudogenes, named PMS2CL. This results in functional PMS2 alleles containing pseudogene-derived sequences at their 3'-end and in nonfunctional PMS2CL pseudogene alleles that contain gene-derived sequences. Hence, the paralogues cannot be distinguished according to the reference sequence. This shortcoming can be effectively circumvented by using direct cDNA sequencing. This approach is based on the selective amplification of PMS2 transcripts in two overlapping 1.6-kb RT-PCR products. In addition to avoiding pseudogene co-amplification and allele dropout, this method has also the advantage that it allows to effectively identify deletions, splice mutations, and de novo retrotransposon insertions that escape the detection of most DNA-based mutation analysis protocols.
Functional interrogation of non-coding DNA through CRISPR genome editing
Canver, Matthew C.; Bauer, Daniel E.; Orkin, Stuart H.
2017-01-01
Methodologies to interrogate non-coding regions have lagged behind coding regions despite comprising the vast majority of the genome. However, the rapid evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing has provided a multitude of novel techniques for laboratory investigation including significant contributions to the toolbox for studying non-coding DNA. CRISPR-mediated loss-of-function strategies rely on direct disruption of the underlying sequence or repression of transcription without modifying the targeted DNA sequence. CRISPR-mediated gain-of-function approaches similarly benefit from methods to alter the targeted sequence through integration of customized sequence into the genome as well as methods to activate transcription. Here we review CRISPR-based loss- and gain-of-function techniques for the interrogation of non-coding DNA. PMID:28288828
A DNA Sequence Element That Advances Replication Origin Activation Time in Saccharomyces cerevisiae
Pohl, Thomas J.; Kolor, Katherine; Fangman, Walton L.; Brewer, Bonita J.; Raghuraman, M. K.
2013-01-01
Eukaryotic origins of DNA replication undergo activation at various times in S-phase, allowing the genome to be duplicated in a temporally staggered fashion. In the budding yeast Saccharomyces cerevisiae, the activation times of individual origins are not intrinsic to those origins but are instead governed by surrounding sequences. Currently, there are two examples of DNA sequences that are known to advance origin activation time, centromeres and forkhead transcription factor binding sites. By combining deletion and linker scanning mutational analysis with two-dimensional gel electrophoresis to measure fork direction in the context of a two-origin plasmid, we have identified and characterized a 19- to 23-bp and a larger 584-bp DNA sequence that are capable of advancing origin activation time. PMID:24022751
A novel model for DNA sequence similarity analysis based on graph theory.
Qi, Xingqin; Wu, Qin; Zhang, Yusen; Fuller, Eddie; Zhang, Cun-Quan
2011-01-01
Determination of sequence similarity is one of the major steps in computational phylogenetic studies. As we know, during evolutionary history, not only DNA mutations for individual nucleotide but also subsequent rearrangements occurred. It has been one of major tasks of computational biologists to develop novel mathematical descriptors for similarity analysis such that various mutation phenomena information would be involved simultaneously. In this paper, different from traditional methods (eg, nucleotide frequency, geometric representations) as bases for construction of mathematical descriptors, we construct novel mathematical descriptors based on graph theory. In particular, for each DNA sequence, we will set up a weighted directed graph. The adjacency matrix of the directed graph will be used to induce a representative vector for DNA sequence. This new approach measures similarity based on both ordering and frequency of nucleotides so that much more information is involved. As an application, the method is tested on a set of 0.9-kb mtDNA sequences of twelve different primate species. All output phylogenetic trees with various distance estimations have the same topology, and are generally consistent with the reported results from early studies, which proves the new method's efficiency; we also test the new method on a simulated data set, which shows our new method performs better than traditional global alignment method when subsequent rearrangements happen frequently during evolutionary history.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iovannisci, D.; Brown, C.; Winn-Deen, E.
1994-09-01
The cloning and sequencing of the gene associated with cystic fibrosis (CF) now provides the opportunity for earlier detection and carrier screening through DNA-based detection schemes. To date, over 300 mutations have been reported to the CF Consortium; however, only 30 mutations have been observed frequently enough world-wide to warrant routine screening. Many of these mutations are not available as cloned material or as established tissue culture cell lines to aid in the development of DNA-based detection assays. We have therefore cloned the 30 most frequently reported mutations, plus the mutation R347H due to its association with male infertility (31more » mutations, total). Two approaches were employed: direct PCR amplification, where mutations were available from patient sources, and site-directed PCR mutagenesis of normal genomic DNA to generate the remaining mutations. After amplification, products were cloned into a sequencing vector, bacterial transformants were screened by a novel method (PCR/oligonucleotide litigation assay/sequence-coded separation), and plamid DNA sequences determined by automated fluorescent methods on the Applied Biosystems 373A. Mixing of the clones allows the construction of artificial genotypes useful as positive control material for assay validation. A second round of mutagenesis, resulting in the construction of plasmids bearing multiple mutations, will be evaluated for their utility as reagent control materials in kit development.« less
Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using
Weier, H.U.G.; Gray, J.W.
1995-06-27
A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers and probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity. 18 figs.
Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using
Weier, Heinz-Ulrich G.; Gray, Joe W.
1995-01-01
A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers ard probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benasutti, M.; Ejadi, S.; Whitlow, M.D.
The mutagenic and carcinogenic chemical aflatoxin B/sub 1/ (AFB/sub 1/) reacts almost exclusively at the N(7)-position of guanine following activation to its reactive form, the 8,9-epoxide (AFB/sub 1/ oxide). In general N(7)-guanine adducts yield DNA strand breaks when heated in base, a property that serves as the basis for the Maxam-Gilbert DNA sequencing reaction specific for guanine. Using DNA sequencing methods, other workers have shown that AFB/sub 1/ oxide gives strand breaks at positions of guanines; however, the guanine bands varied in intensity. This phenomenon has been used to infer that AFB/sub 1/ oxide prefers to react with guanines inmore » some sequence contexts more than in others and has been referred to as sequence specificity of binding. Herein, data on the reaction of AFB/sub 1/ oxide with several synthetic DNA polymers with different sequences are presented, and (following hydrolysis) adduct levels are determine by high-pressure liquid chromatography. These results reveal that for AFB/sub 1/ oxide (1) the N(7)-guanine adduct is the major adduct found in all of the DNA polymers, (2) adduct levels vary in different sequences, and, thus, sequence specificity is also observed by this more direct method, and (3) the intensity of bands in DNA sequencing gels is likely to reflect adduct levels formed at the N(7)-position of guanine. Knowing this, a reinvestigation of the reactivity of guanines in different DNA sequences using DNA sequencing methods was undertaken. Methods are developed to determine the X (5'-side) base and the Y (3'-side) base are most influential in determining guanine reactivity. These rules in conjunction with molecular modeling studies were used to assess the binding sites that might be utilized by AFB/sub 1/ oxide in its reaction with DNA.« less
Parallel gene analysis with allele-specific padlock probes and tag microarrays
Banér, Johan; Isaksson, Anders; Waldenström, Erik; Jarvius, Jonas; Landegren, Ulf; Nilsson, Mats
2003-01-01
Parallel, highly specific analysis methods are required to take advantage of the extensive information about DNA sequence variation and of expressed sequences. We present a scalable laboratory technique suitable to analyze numerous target sequences in multiplexed assays. Sets of padlock probes were applied to analyze single nucleotide variation directly in total genomic DNA or cDNA for parallel genotyping or gene expression analysis. All reacted probes were then co-amplified and identified by hybridization to a standard tag oligonucleotide array. The technique was illustrated by analyzing normal and pathogenic variation within the Wilson disease-related ATP7B gene, both at the level of DNA and RNA, using allele-specific padlock probes. PMID:12930977
Garcia, J A; Harrich, D; Soultanakis, E; Wu, F; Mitsuyasu, R; Gaynor, R B
1989-01-01
The human immunodeficiency virus (HIV) type 1 LTR is regulated at the transcriptional level by both cellular and viral proteins. Using HeLa cell extracts, multiple regions of the HIV LTR were found to serve as binding sites for cellular proteins. An untranslated region binding protein UBP-1 has been purified and fractions containing this protein bind to both the TAR and TATA regions. To investigate the role of cellular proteins binding to both the TATA and TAR regions and their potential interaction with other HIV DNA binding proteins, oligonucleotide-directed mutagenesis of both these regions was performed followed by DNase I footprinting and transient expression assays. In the TATA region, two direct repeats TC/AAGC/AT/AGCTGC surround the TATA sequence. Mutagenesis of both of these direct repeats or of the TATA sequence interrupted binding over the TATA region on the coding strand, but only a mutation of the TATA sequence affected in vivo assays for tat-activation. In addition to TAR serving as the site of binding of cellular proteins, RNA transcribed from TAR is capable of forming a stable stem-loop structure. To determine the relative importance of DNA binding proteins as compared to secondary structure, oligonucleotide-directed mutations in the TAR region were studied. Local mutations that disrupted either the stem or loop structure were defective in gene expression. However, compensatory mutations which restored base pairing in the stem resulted in complete tat-activation. This indicated a significant role for the stem-loop structure in HIV gene expression. To determine the role of TAR binding proteins, mutations were constructed which extensively changed the primary structure of the TAR region, yet left stem base pairing, stem energy and the loop sequence intact. These mutations resulted in decreased protein binding to TAR DNA and defects in tat-activation, and revealed factor binding specifically to the loop DNA sequence. Further mutagenesis which inverted this stem and loop mutation relative to the HIV LTR mRNA start site resulted in even larger decreases in tat-activation. This suggests that multiple determinants, including protein binding, the loop sequence, and RNA or DNA secondary structure, are important in tat-activation and suggests that tat may interact with cellular proteins binding to DNA to increase HIV gene expression. Images PMID:2721501
Phylogenetic Network for European mtDNA
Finnilä, Saara; Lehtonen, Mervi S.; Majamaa, Kari
2001-01-01
The sequence in the first hypervariable segment (HVS-I) of the control region has been used as a source of evolutionary information in most phylogenetic analyses of mtDNA. Population genetic inference would benefit from a better understanding of the variation in the mtDNA coding region, but, thus far, complete mtDNA sequences have been rare. We determined the nucleotide sequence in the coding region of mtDNA from 121 Finns, by conformation-sensitive gel electrophoresis and subsequent sequencing and by direct sequencing of the D loop. Furthermore, 71 sequences from our previous reports were included, so that the samples represented all the mtDNA haplogroups present in the Finnish population. We found a total of 297 variable sites in the coding region, which allowed the compilation of unambiguous phylogenetic networks. The D loop harbored 104 variable sites, and, in most cases, these could be localized within the coding-region networks, without discrepancies. Interestingly, many homoplasies were detected in the coding region. Nucleotide variation in the rRNA and tRNA genes was 6%, and that in the third nucleotide positions of structural genes amounted to 22% of that in the HVS-I. The complete networks enabled the relationships between the mtDNA haplogroups to be analyzed. Phylogenetic networks based on the entire coding-region sequence in mtDNA provide a rich source for further population genetic studies, and complete sequences make it easier to differentiate between disease-causing mutations and rare polymorphisms. PMID:11349229
Anwar, R; Booth, A; Churchill, A J; Markham, A F
1996-01-01
The determination of nucleotide sequence is fundamental to the identification and molecular analysis of genes. Direct sequencing of PCR products is now becoming a commonplace procedure for haplotype analysis, and for defining mutations and polymorphism within genes, particularly for diagnostic purposes. A previously unrecognised phenomenon, primer related variability, observed in sequence data generated using Taq cycle sequencing and T7 Sequenase sequencing, is reported. This suggests that caution is necessary when interpreting DNA sequence data. This is particularly important in situations where treatment may be dependent on the accuracy of the molecular diagnosis. Images PMID:16696096
Local alignment of two-base encoded DNA sequence
Homer, Nils; Merriman, Barry; Nelson, Stanley F
2009-01-01
Background DNA sequence comparison is based on optimal local alignment of two sequences using a similarity score. However, some new DNA sequencing technologies do not directly measure the base sequence, but rather an encoded form, such as the two-base encoding considered here. In order to compare such data to a reference sequence, the data must be decoded into sequence. The decoding is deterministic, but the possibility of measurement errors requires searching among all possible error modes and resulting alignments to achieve an optimal balance of fewer errors versus greater sequence similarity. Results We present an extension of the standard dynamic programming method for local alignment, which simultaneously decodes the data and performs the alignment, maximizing a similarity score based on a weighted combination of errors and edits, and allowing an affine gap penalty. We also present simulations that demonstrate the performance characteristics of our two base encoded alignment method and contrast those with standard DNA sequence alignment under the same conditions. Conclusion The new local alignment algorithm for two-base encoded data has substantial power to properly detect and correct measurement errors while identifying underlying sequence variants, and facilitating genome re-sequencing efforts based on this form of sequence data. PMID:19508732
Beyond sequencing: optical mapping of DNA in the age of nanotechnology and nanoscopy.
Levy-Sakin, Michal; Ebenstein, Yuval
2013-08-01
Next generation sequencing (NGS) is revolutionizing all fields of biological research but it fails to extract the full range of information associated with genetic material. Optical mapping of DNA grants access to genetic and epigenetic information on individual DNA molecules up to ∼1 Mbp in length. Fluorescent labeling of specific sequence motifs, epigenetic marks and other genomic information on individual DNA molecules generates a high content optical barcode along the DNA. By stretching the DNA to a linear configuration this barcode may be directly visualized by fluorescence microscopy. We discuss the advances of these methods in light of recent developments in nano-fabrication and super-resolution optical imaging (nanoscopy) and review the latest achievements of optical mapping in the context of genomic analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ton, H.; Yeung, E.S.
1997-02-15
An integrated on-line prototype for coupling a microreactor to capillary electrophoresis for DNA sequencing has been demonstrated. A dye-labeled terminator cycle-sequencing reaction is performed in a fused-silica capillary. Subsequently, the sequencing ladder is directly injected into a size-exclusion chromatographic column operated at nearly 95{degree}C for purification. On-line injection to a capillary for electrophoresis is accomplished at a junction set at nearly 70{degree}C. High temperature at the purification column and injection junction prevents the renaturation of DNA fragments during on-line transfer without affecting the separation. The high solubility of DNA in and the relatively low ionic strength of 1 x TEmore » buffer permit both effective purification and electrokinetic injection of the DNA sample. The system is compatible with highly efficient separations by a replaceable poly(ethylene oxide) polymer solution in uncoated capillary tubes. Future automation and adaptation to a multiple-capillary array system should allow high-speed, high-throughput DNA sequencing from templates to called bases in one step. 32 refs., 5 figs.« less
Gilley, D; Preer, J R; Aufderheide, K J; Polisky, B
1988-01-01
Paramecium tetraurelia can be transformed by microinjection of cloned serotype A gene sequences into the macronucleus. Transformants are detected by their ability to express serotype A surface antigen from the injected templates. After injection, the DNA is converted from a supercoiled form to a linear form by cleavage at nonrandom sites. The linear form appears to replicate autonomously as a unit-length molecule and is present in transformants at high copy number. The injected DNA is further processed by the addition of paramecium-type telomeric sequences to the termini of the linear DNA. To examine the fate of injected linear DNA molecules, plasmid pSA14SB DNA containing the A gene was cleaved into two linear pieces, a 14-kilobase (kb) piece containing the A gene and flanking sequences and a 2.2-kb piece consisting of the procaryotic vector. In transformants expressing the A gene, we observed that two linear DNA species were present which correspond to the two species injected. Both species had Paramecium telomerelike sequences added to their termini. For the 2.2-kb DNA, we show that the site of addition of the telomerelike sequences is directly at one terminus and within one nucleotide of the other terminus. These results indicate that injected procaryotic DNA is capable of autonomous replication in Paramecium macronuclei and that telomeric addition in the macronucleus does not require specific recognition sequences. Images PMID:3211128
Automated one-step DNA sequencing based on nanoliter reaction volumes and capillary electrophoresis.
Pang, H M; Yeung, E S
2000-08-01
An integrated system with a nano-reactor for cycle-sequencing reaction coupled to on-line purification and capillary gel electrophoresis has been demonstrated. Fifty nanoliters of reagent solution, which includes dye-labeled terminators, polymerase, BSA and template, was aspirated and mixed with the template inside the nano-reactor followed by cycle-sequencing reaction. The reaction products were then purified by a size-exclusion chromatographic column operated at 50 degrees C followed by room temperature on-line injection of the DNA fragments into a capillary for gel electrophoresis. Over 450 bases of DNA can be separated and identified. As little as 25 nl reagent solution can be used for the cycle-sequencing reaction with a slightly shorter read length. Significant savings on reagent cost is achieved because the remaining stock solution can be reused without contamination. The steps of cycle sequencing, on-line purification, injection, DNA separation, capillary regeneration, gel-filling and fluidic manipulation were performed with complete automation. This system can be readily multiplexed for high-throughput DNA sequencing or PCR analysis directly from templates or even biological materials.
Josephs, Eric A.; Kocak, D. Dewran; Fitzgibbon, Christopher J.; McMenemy, Joshua; Gersbach, Charles A.; Marszalek, Piotr E.
2015-01-01
CRISPR-associated endonuclease Cas9 cuts DNA at variable target sites designated by a Cas9-bound RNA molecule. Cas9's ability to be directed by single ‘guide RNA’ molecules to target nearly any sequence has been recently exploited for a number of emerging biological and medical applications. Therefore, understanding the nature of Cas9's off-target activity is of paramount importance for its practical use. Using atomic force microscopy (AFM), we directly resolve individual Cas9 and nuclease-inactive dCas9 proteins as they bind along engineered DNA substrates. High-resolution imaging allows us to determine their relative propensities to bind with different guide RNA variants to targeted or off-target sequences. Mapping the structural properties of Cas9 and dCas9 to their respective binding sites reveals a progressive conformational transformation at DNA sites with increasing sequence similarity to its target. With kinetic Monte Carlo (KMC) simulations, these results provide evidence of a ‘conformational gating’ mechanism driven by the interactions between the guide RNA and the 14th–17th nucleotide region of the targeted DNA, the stabilities of which we find correlate significantly with reported off-target cleavage rates. KMC simulations also reveal potential methodologies to engineer guide RNA sequences with improved specificity by considering the invasion of guide RNAs into targeted DNA duplex. PMID:26384421
Sonnenberg, Avery; Marciniak, Jennifer Y.; Skowronski, Elaine A.; Manouchehri, Sareh; Rassenti, Laura; Ghia, Emanuela M.; Widhopf, George F.; Kipps, Thomas J.; Heller, Michael J.
2014-01-01
Conventional methods for the isolation of cancer-related circulating cell-free (ccf) DNA from patient blood (plasma) are time consuming and laborious. A DEP approach utilizing a microarray device now allows rapid isolation of ccf-DNA directly from a small volume of unprocessed blood. In this study, the DEP device is used to compare the ccf-DNA isolated directly from whole blood and plasma from 11 chronic lymphocytic leukemia (CLL) patients and one normal individual. Ccf-DNA from both blood and plasma samples was separated into DEP high-field regions, after which cells (blood), proteins, and other biomolecules were removed by a fluidic wash. The concentrated ccf-DNA was detected on-chip by fluorescence, and then eluted for PCR and DNA sequencing. The complete process from blood to PCR required less than 10 min; an additional 15 min was required to obtain plasma from whole blood. Ccf-DNA from the equivalent of 5 µL of CLL blood and 5 µL of plasma was amplified by PCR using Ig heavy-chain variable (IGHV) specific primers to identify the unique IGHV gene expressed by the leukemic B-cell clone. The PCR and DNA sequencing results obtained by DEP from all 11 CLL blood samples and from 8 of the 11 CLL plasma samples were exactly comparable to the DNA sequencing results obtained from genomic DNA isolated from CLL patient leukemic B cells (gold standard). PMID:24723219
Sonnenberg, Avery; Marciniak, Jennifer Y; Skowronski, Elaine A; Manouchehri, Sareh; Rassenti, Laura; Ghia, Emanuela M; Widhopf, George F; Kipps, Thomas J; Heller, Michael J
2014-07-01
Conventional methods for the isolation of cancer-related circulating cell-free (ccf) DNA from patient blood (plasma) are time consuming and laborious. A DEP approach utilizing a microarray device now allows rapid isolation of ccf-DNA directly from a small volume of unprocessed blood. In this study, the DEP device is used to compare the ccf-DNA isolated directly from whole blood and plasma from 11 chronic lymphocytic leukemia (CLL) patients and one normal individual. Ccf-DNA from both blood and plasma samples was separated into DEP high-field regions, after which cells (blood), proteins, and other biomolecules were removed by a fluidic wash. The concentrated ccf-DNA was detected on-chip by fluorescence, and then eluted for PCR and DNA sequencing. The complete process from blood to PCR required less than 10 min; an additional 15 min was required to obtain plasma from whole blood. Ccf-DNA from the equivalent of 5 μL of CLL blood and 5 μL of plasma was amplified by PCR using Ig heavy-chain variable (IGHV) specific primers to identify the unique IGHV gene expressed by the leukemic B-cell clone. The PCR and DNA sequencing results obtained by DEP from all 11 CLL blood samples and from 8 of the 11 CLL plasma samples were exactly comparable to the DNA sequencing results obtained from genomic DNA isolated from CLL patient leukemic B cells (gold standard). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ahmed, Ikhlak; Sarazin, Alexis; Bowler, Chris; Colot, Vincent; Quesneville, Hadi
2011-09-01
Transposable elements (TEs) and their relics play major roles in genome evolution. However, mobilization of TEs is usually deleterious and strongly repressed. In plants and mammals, this repression is typically associated with DNA methylation, but the relationship between this epigenetic mark and TE sequences has not been investigated systematically. Here, we present an improved annotation of TE sequences and use it to analyze genome-wide DNA methylation maps obtained at single-nucleotide resolution in Arabidopsis. We show that although the majority of TE sequences are methylated, ∼26% are not. Moreover, a significant fraction of TE sequences densely methylated at CG, CHG and CHH sites (where H = A, T or C) have no or few matching small interfering RNA (siRNAs) and are therefore unlikely to be targeted by the RNA-directed DNA methylation (RdDM) machinery. We provide evidence that these TE sequences acquire DNA methylation through spreading from adjacent siRNA-targeted regions. Further, we show that although both methylated and unmethylated TE sequences located in euchromatin tend to be more abundant closer to genes, this trend is least pronounced for methylated, siRNA-targeted TE sequences located 5' to genes. Based on these and other findings, we propose that spreading of DNA methylation through promoter regions explains at least in part the negative impact of siRNA-targeted TE sequences on neighboring gene expression.
MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data.
Ozaki, Haruka; Iwasaki, Wataru
2016-08-01
As a key mechanism of gene regulation, transcription factors (TFs) bind to DNA by recognizing specific short sequence patterns that are called DNA-binding motifs. A single TF can accept ambiguity within its DNA-binding motifs, which comprise both canonical (typical) and non-canonical motifs. Clarification of such DNA-binding motif ambiguity is crucial for revealing gene regulatory networks and evaluating mutations in cis-regulatory elements. Although chromatin immunoprecipitation sequencing (ChIP-seq) now provides abundant data on the genomic sequences to which a given TF binds, existing motif discovery methods are unable to directly answer whether a given TF can bind to a specific DNA-binding motif. Here, we report a method for clarifying the DNA-binding motif ambiguity, MOCCS. Given ChIP-Seq data of any TF, MOCCS comprehensively analyzes and describes every k-mer to which that TF binds. Analysis of simulated datasets revealed that MOCCS is applicable to various ChIP-Seq datasets, requiring only a few minutes per dataset. Application to the ENCODE ChIP-Seq datasets proved that MOCCS directly evaluates whether a given TF binds to each DNA-binding motif, even if known position weight matrix models do not provide sufficient information on DNA-binding motif ambiguity. Furthermore, users are not required to provide numerous parameters or background genomic sequence models that are typically unavailable. MOCCS is implemented in Perl and R and is freely available via https://github.com/yuifu/moccs. By complementing existing motif-discovery software, MOCCS will contribute to the basic understanding of how the genome controls diverse cellular processes via DNA-protein interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characterization of (CA)n microsatellite repeats from large-insert clones.
Litt, M; Browne, D
2001-05-01
The most laborious part of developing (CA)n microsatellite repeats as genetic markers is constructing DNA clones to permit determination of sequences flanking the microsatellites. When cosmids or large-insert phage clones are used as primary sources of (CA)n repeat markers, they have traditionally been subcloned into plasmid vectors such as pUC18 or M13 mp 18/19 cloning vectors to obtain fragments of suitable size for DNA sequencing. This unit presents an alternative approach whereby a set of degenerate sequencing primers that anneal directly to (CA)n microsatellites can be used to determine sequences that are inaccessible with vector-derived primers. Because the primers anneal to the repeat and not to the vector, they can be used with subclones containing inserts of several kilobases and should, in theory, always give sequence in the regions directly flanking the repeat. Degeneracy at the 3 end of each of these primers prevents elongation of primers that have annealed out-of-register. The most laborious part of developing (CA)n microsatellite repeats as genetic markers is constructing DNA clones to permit.
Mutation detection using automated fluorescence-based sequencing.
Montgomery, Kate T; Iartchouck, Oleg; Li, Li; Perera, Anoja; Yassin, Yosuf; Tamburino, Alex; Loomis, Stephanie; Kucherlapati, Raju
2008-04-01
The development of high-throughput DNA sequencing techniques has made direct DNA sequencing of PCR-amplified genomic DNA a rapid and economical approach to the identification of polymorphisms that may play a role in disease. Point mutations as well as small insertions or deletions are readily identified by DNA sequencing. The mutations may be heterozygous (occurring in one allele while the other allele retains the normal sequence) or homozygous (occurring in both alleles). Sequencing alone cannot discriminate between true homozygosity and apparent homozygosity due to the loss of one allele due to a large deletion. In this unit, strategies are presented for using PCR amplification and automated fluorescence-based sequencing to identify sequence variation. The size of the project and laboratory preference and experience will dictate how the data is managed and which software tools are used for analysis. A high-throughput protocol is given that has been used to search for mutations in over 200 different genes at the Harvard Medical School - Partners Center for Genetics and Genomics (HPCGG, http://www.hpcgg.org/). Copyright 2008 by John Wiley & Sons, Inc.
Sequence Dependent Interactions Between DNA and Single-Walled Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Roxbury, Daniel
It is known that single-stranded DNA adopts a helical wrap around a single-walled carbon nanotube (SWCNT), forming a water-dispersible hybrid molecule. The ability to sort mixtures of SWCNTs based on chirality (electronic species) has recently been demonstrated using special short DNA sequences that recognize certain matching SWCNTs of specific chirality. This thesis investigates the intricacies of DNA-SWCNT sequence-specific interactions through both experimental and molecular simulation studies. The DNA-SWCNT binding strengths were experimentally quantified by studying the kinetics of DNA replacement by a surfactant on the surface of particular SWCNTs. Recognition ability was found to correlate strongly with measured binding strength, e.g. DNA sequence (TAT)4 was found to bind 20 times stronger to the (6,5)-SWCNT than sequence (TAT)4T. Next, using replica exchange molecular dynamics (REMD) simulations, equilibrium structures formed by (a) single-strands and (b) multiple-strands of 12-mer oligonucleotides adsorbed on various SWCNTs were explored. A number of structural motifs were discovered in which the DNA strand wraps around the SWCNT and 'stitches' to itself via hydrogen bonding. Great variability among equilibrium structures was observed and shown to be directly influenced by DNA sequence and SWCNT type. For example, the (6,5)-SWCNT DNA recognition sequence, (TAT)4, was found to wrap in a tight single-stranded right-handed helical conformation. In contrast, DNA sequence T12 forms a beta-barrel left-handed structure on the same SWCNT. These are the first theoretical indications that DNA-based SWCNT selectivity can arise on a molecular level. In a biomedical collaboration with the Mayo Clinic, pathways for DNA-SWCNT internalization into healthy human endothelial cells were explored. Through absorbance spectroscopy, TEM imaging, and confocal fluorescence microscopy, we showed that intracellular concentrations of SWCNTs far exceeded those of the incubation solution, which suggested an energy-dependent pathway. Additionally, by means of pharmacological inhibition and vector-induced gene knockout studies, the DNA-SWCNTs were shown to enter the cells via Rac1-mediated macropinocytosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, H.
1999-03-31
The purpose of this research is to develop a multiplexed sample processing system in conjunction with multiplexed capillary electrophoresis for high-throughput DNA sequencing. The concept from DNA template to called bases was first demonstrated with a manually operated single capillary system. Later, an automated microfluidic system with 8 channels based on the same principle was successfully constructed. The instrument automatically processes 8 templates through reaction, purification, denaturation, pre-concentration, injection, separation and detection in a parallel fashion. A multiplexed freeze/thaw switching principle and a distribution network were implemented to manage flow direction and sample transportation. Dye-labeled terminator cycle-sequencing reactions are performedmore » in an 8-capillary array in a hot air thermal cycler. Subsequently, the sequencing ladders are directly loaded into a corresponding size-exclusion chromatographic column operated at {approximately} 60 C for purification. On-line denaturation and stacking injection for capillary electrophoresis is simultaneously accomplished at a cross assembly set at {approximately} 70 C. Not only the separation capillary array but also the reaction capillary array and purification columns can be regenerated after every run. DNA sequencing data from this system allow base calling up to 460 bases with accuracy of 98%.« less
Cooper, David N.; Bacolla, Albino; Férec, Claude; Vasquez, Karen M.; Kehrer-Sawatzki, Hildegard; Chen, Jian-Min
2011-01-01
Different types of human gene mutation may vary in size, from structural variants (SVs) to single base-pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher-order features of the genomic architecture. The human genome is now recognized to contain ‘pervasive architectural flaws’ in that certain DNA sequences are inherently mutation-prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of non-canonical (non-B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere with subsequent DNA replication and repair, and may serve to increase mutation frequencies in generalized fashion (i.e. both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease. PMID:21853507
Functional interrogation of non-coding DNA through CRISPR genome editing.
Canver, Matthew C; Bauer, Daniel E; Orkin, Stuart H
2017-05-15
Methodologies to interrogate non-coding regions have lagged behind coding regions despite comprising the vast majority of the genome. However, the rapid evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing has provided a multitude of novel techniques for laboratory investigation including significant contributions to the toolbox for studying non-coding DNA. CRISPR-mediated loss-of-function strategies rely on direct disruption of the underlying sequence or repression of transcription without modifying the targeted DNA sequence. CRISPR-mediated gain-of-function approaches similarly benefit from methods to alter the targeted sequence through integration of customized sequence into the genome as well as methods to activate transcription. Here we review CRISPR-based loss- and gain-of-function techniques for the interrogation of non-coding DNA. Copyright © 2017 Elsevier Inc. All rights reserved.
Soares, Marcelo B.; Efstratiadis, Argiris
1997-01-01
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3' noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library.
Soares, M.B.; Efstratiadis, A.
1997-06-10
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3{prime} noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library. 4 figs.
Jakubec, David; Laskowski, Roman A.; Vondrasek, Jiri
2016-01-01
Decades of intensive experimental studies of the recognition of DNA sequences by proteins have provided us with a view of a diverse and complicated world in which few to no features are shared between individual DNA-binding protein families. The originally conceived direct readout of DNA residue sequences by amino acid side chains offers very limited capacity for sequence recognition, while the effects of the dynamic properties of the interacting partners remain difficult to quantify and almost impossible to generalise. In this work we investigated the energetic characteristics of all DNA residue—amino acid side chain combinations in the conformations found at the interaction interface in a very large set of protein—DNA complexes by the means of empirical potential-based calculations. General specificity-defining criteria were derived and utilised to look beyond the binding motifs considered in previous studies. Linking energetic favourability to the observed geometrical preferences, our approach reveals several additional amino acid motifs which can distinguish between individual DNA bases. Our results remained valid in environments with various dielectric properties. PMID:27384774
Rapid DNA Sequencing by Direct Nanoscale Reading of Nucleotide Bases on Individual DNA Chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, James Weifu; Meller, Amit
2007-01-01
Since the independent invention of DNA sequencing by Sanger and by Gilbert 30 years ago, it has grown from a small scale technique capable of reading several kilobase-pair of sequence per day into today's multibillion dollar industry. This growth has spurred the development of new sequencing technologies that do not involve either electrophoresis or Sanger sequencing chemistries. Sequencing by Synthesis (SBS) involves multiple parallel micro-sequencing addition events occurring on a surface, where data from each round is detected by imaging. New High Throughput Technologies for DNA Sequencing and Genomics is the second volume in the Perspectives in Bioanalysis series, whichmore » looks at the electroanalytical chemistry of nucleic acids and proteins, development of electrochemical sensors and their application in biomedicine and in the new fields of genomics and proteomics. The authors have expertly formatted the information for a wide variety of readers, including new developments that will inspire students and young scientists to create new tools for science and medicine in the 21st century. Reviews of complementary developments in Sanger and SBS sequencing chemistries, capillary electrophoresis and microdevice integration, MS sequencing and applications set the framework for the book.« less
Retroviral DNA Integration Directed by HIV Integration Protein in Vitro
NASA Astrophysics Data System (ADS)
Bushman, Frederic D.; Fujiwara, Tamio; Craigie, Robert
1990-09-01
Efficient retroviral growth requires integration of a DNA copy of the viral RNA genome into a chromosome of the host. As a first step in analyzing the mechanism of integration of human immunodeficiency virus (HIV) DNA, a cell-free system was established that models the integration reaction. The in vitro system depends on the HIV integration (IN) protein, which was partially purified from insect cells engineered to express IN protein in large quantities. Integration was detected in a biological assay that scores the insertion of a linear DNA containing HIV terminal sequences into a λ DNA target. Some integration products generated in this assay contained five-base pair duplications of the target DNA at the recombination junctions, a characteristic of HIV integration in vivo; the remaining products contained aberrant junctional sequences that may have been produced in a variation of the normal reaction. These results indicate that HIV IN protein is the only viral protein required to insert model HIV DNA sequences into a target DNA in vitro.
Zaboikin, Michail; Zaboikina, Tatiana; Freter, Carl; Srinivasakumar, Narasimhachar
2017-01-01
Genome editing using transcription-activator like effector nucleases or RNA guided nucleases allows one to precisely engineer desired changes within a given target sequence. The genome editing reagents introduce double stranded breaks (DSBs) at the target site which can then undergo DNA repair by non-homologous end joining (NHEJ) or homology directed recombination (HDR) when a template DNA molecule is available. NHEJ repair results in indel mutations at the target site. As PCR amplified products from mutant target regions are likely to exhibit different melting profiles than PCR products amplified from wild type target region, we designed a high resolution melting analysis (HRMA) for rapid identification of efficient genome editing reagents. We also designed TaqMan assays using probes situated across the cut site to discriminate wild type from mutant sequences present after genome editing. The experiments revealed that the sensitivity of the assays to detect NHEJ-mediated DNA repair could be enhanced by selection of transfected cells to reduce the contribution of unmodified genomic DNA from untransfected cells to the DNA melting profile. The presence of donor template DNA lacking the target sequence at the time of genome editing further enhanced the sensitivity of the assays for detection of mutant DNA molecules by excluding the wild-type sequences modified by HDR. A second TaqMan probe that bound to an adjacent site, outside of the primary target cut site, was used to directly determine the contribution of HDR to DNA repair in the presence of the donor template sequence. The TaqMan qPCR assay, designed to measure the contribution of NHEJ and HDR in DNA repair, corroborated the results from HRMA. The data indicated that genome editing reagents can produce DSBs at high efficiency in HEK293T cells but a significant proportion of these are likely masked by reversion to wild type as a result of HDR. Supplying a donor plasmid to provide a template for HDR (that eliminates a PCR amplifiable target) revealed these cryptic DSBs and facilitated the determination of the true efficacy of genome editing reagents. The results indicated that in HEK293T cells, approximately 40% of the DSBs introduced by genome editing, were available for participation in HDR.
Kang, Seung-Hui; Park, Chan Hee; Jeung, Hei Cheul; Kim, Ki-Yeol; Rha, Sun Young; Chung, Hyun Cheol
2007-06-01
In array-CGH, various factors may act as variables influencing the result of experiments. Among them, Cot-1 DNA, which has been used as a repetitive sequence-blocking agent, may become an artifact-inducing factor in BAC array-CGH. To identify the effect of Cot-1 DNA on Microarray-CGH experiments, Cot-1 DNA was labeled directly and Microarray-CGH experiments were performed. The results confirmed that probes which hybridized more completely with Cot-1 DNA had a higher sequence similarity to the Alu element. Further, in the sex-mismatched Microarray-CGH experiments, the variation and intensity in the fluorescent signal were reduced in the high intensity probe group in which probes were better hybridized with Cot-1 DNA. Otherwise, those of the low intensity probe group showed no alterations regardless of Cot-1 DNA. These results confirmed by in silico methods that Cot-1 DNA could block repetitive sequences in gDNA and probes. In addition, it was confirmed biologically that the blocking effect of Cot-1 DNA could be presented via its repetitive sequences, especially Alu elements. Thus, in contrast to BAC-array CGH, the use of Cot-1 DNA is advantageous in controlling experimental variation in Microarray-CGH.
Functional specificity of a Hox protein mediated by the recognition of minor groove structure.
Joshi, Rohit; Passner, Jonathan M; Rohs, Remo; Jain, Rinku; Sosinsky, Alona; Crickmore, Michael A; Jacob, Vinitha; Aggarwal, Aneel K; Honig, Barry; Mann, Richard S
2007-11-02
The recognition of specific DNA-binding sites by transcription factors is a critical yet poorly understood step in the control of gene expression. Members of the Hox family of transcription factors bind DNA by making nearly identical major groove contacts via the recognition helices of their homeodomains. In vivo specificity, however, often depends on extended and unstructured regions that link Hox homeodomains to a DNA-bound cofactor, Extradenticle (Exd). Using a combination of structure determination, computational analysis, and in vitro and in vivo assays, we show that Hox proteins recognize specific Hox-Exd binding sites via residues located in these extended regions that insert into the minor groove but only when presented with the correct DNA sequence. Our results suggest that these residues, which are conserved in a paralog-specific manner, confer specificity by recognizing a sequence-dependent DNA structure instead of directly reading a specific DNA sequence.
Do the same traffic rules apply? Directional chromosome segregation by SpoIIIE and FtsK.
Besprozvannaya, Marina; Burton, Briana M
2014-08-01
Over a decade of studies have tackled the question of how FtsK/SpoIIIE translocases establish and maintain directional DNA translocation during chromosome segregation in bacteria. FtsK/SpoIIIE translocases move DNA in a highly processive, directional manner, where directionality is facilitated by sequences on the substrate DNA molecules that are being transported. In recent years, structural, biochemical, single-molecule and high-resolution microscopic studies have provided new insight into the mechanistic details of directional DNA segregation. Out of this body of work, a series of models have emerged and, ultimately, yielded two seemingly opposing models: the loading model and the target search model. We review these recent mechanistic insights into directional DNA movement and discuss the data that may serve to unite these suggested models, as well as propose future directions that may ultimately solve the debate. © 2014 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillson, Nathan
j5 automates and optimizes the design of the molecular biological process of cloning/constructing DNA. j5 enables users to benefit from (combinatorial) multi-part scar-less SLIC, Gibson, CPEC, Golden Gate assembly, or variants thereof, for which automation software does not currently exist, without the intense labor currently associated with the process. j5 inputs a list of the DNA sequences to be assembled, along with a Genbank, FASTA, jbei-seq, or SBOL v1.1 format sequence file for each DNA source. Given the list of DNA sequences to be assembled, j5 first determines the cost-minimizing assembly strategy for each part (direct synthesis, PCR/SOE, or oligo-embedding),more » designs DNA oligos with Primer3, adds flanking homology sequences (SLIC, Gibson, and CPEC; optimized with Primer3 for CPEC) or optimized overhang sequences (Golden Gate) to the oligos and direct synthesis pieces, and utilizes BLAST to check against oligo mis-priming and assembly piece incompatibility events. After identifying DNA oligos that are already contained within a local collection for reuse, the program estimates the total cost of direct synthesis and new oligos to be ordered. In the instance that j5 identifies putative assembly piece incompatibilities (multiple pieces with high flanking sequence homology), the program suggests hierarchical subassemblies where possible. The program outputs a comma-separated value (CSV) file, viewable via Excel or other spreadsheet software, that contains assembly design information (such as the PCR/SOE reactions to perform, their anticipated sizes and sequences, etc.) as well as a properly annotated genbank file containing the sequence resulting from the assembly, and appends the local oligo library with the oligos to be ordered j5 condenses multiple independent assembly projects into 96-well format for high-throughput liquid-handling robotics platforms, and generates configuration files for the PR-PR biology-friendly robot programming language. j5 thus provides a new way to design DNA assembly procedures much more productively and efficiently, not only in terms of time, but also in terms of cost. To a large extent, however, j5 does not allow people to do something that could not be done before by hand given enough time and effort. An exception to this is that, since the very act of using j5 to design the DNA assembly process standardizes the experimental details and workflow, j5 enables a single person to concurrently perform the independent DNA construction tasks of an entire group of researchers. Currently, this is not readily possible, since separate researchers employ disparate design strategies and workflows, and furthermore, their designs and workflows are very infrequently fully captured in an electronic format which is conducive to automation.« less
Xu, Yi-Hua; Manoharan, Herbert T; Pitot, Henry C
2007-09-01
The bisulfite genomic sequencing technique is one of the most widely used techniques to study sequence-specific DNA methylation because of its unambiguous ability to reveal DNA methylation status to the order of a single nucleotide. One characteristic feature of the bisulfite genomic sequencing technique is that a number of sample sequence files will be produced from a single DNA sample. The PCR products of bisulfite-treated DNA samples cannot be sequenced directly because they are heterogeneous in nature; therefore they should be cloned into suitable plasmids and then sequenced. This procedure generates an enormous number of sample DNA sequence files as well as adding extra bases belonging to the plasmids to the sequence, which will cause problems in the final sequence comparison. Finding the methylation status for each CpG in each sample sequence is not an easy job. As a result CpG PatternFinder was developed for this purpose. The main functions of the CpG PatternFinder are: (i) to analyze the reference sequence to obtain CpG and non-CpG-C residue position information. (ii) To tailor sample sequence files (delete insertions and mark deletions from the sample sequence files) based on a configuration of ClustalW multiple alignment. (iii) To align sample sequence files with a reference file to obtain bisulfite conversion efficiency and CpG methylation status. And, (iv) to produce graphics, highlighted aligned sequence text and a summary report which can be easily exported to Microsoft Office suite. CpG PatternFinder is designed to operate cooperatively with BioEdit, a freeware on the internet. It can handle up to 100 files of sample DNA sequences simultaneously, and the total CpG pattern analysis process can be finished in minutes. CpG PatternFinder is an ideal software tool for DNA methylation studies to determine the differential methylation pattern in a large number of individuals in a population. Previously we developed the CpG Analyzer program; CpG PatternFinder is our further effort to create software tools for DNA methylation studies.
Rapid Electrokinetic Isolation of Cancer-Related Circulating Cell-Free DNA Directly from Blood
Sonnenberg, Avery; Marciniak, Jennifer Y.; Rassenti, Laura; Ghia, Emanuela M.; Skowronski, Elaine A.; Manouchehri, Sareh; McCanna, James; Widhopf, George F.; Kipps, Thomas J.; Heller, Michael J.
2014-01-01
BACKGROUND Circulating cell-free DNA (ccf-DNA) is becoming an important biomarker for cancer diagnostics and therapy monitoring. The isolation of ccf-DNA from plasma as a “liquid biopsy” may begin to replace more invasive tissue biopsies for the detection and analysis of cancer-related mutations. Conventional methods for the isolation of ccf-DNA from plasma are costly, time-consuming, and complex, preventing the use of ccf-DNA biomarkers for point-of-care diagnostics and limiting other biomedical research applications. METHODS We used an AC electrokinetic device to rapidly isolate ccf-DNA from 25 μL unprocessed blood. ccf-DNA from 15 chronic lymphocytic leukemia (CLL) patients and 3 healthy individuals was separated into dielectrophoretic (DEP) high-field regions, after which other blood components were removed by a fluidic wash. Concentrated ccf-DNA was detected by fluorescence and eluted for quantification,PCR,and DNA sequencing. The complete process, blood to PCR, required <10 min. ccf-DNA was amplified by PCR with immunoglobulin heavy chain variable region (IGHV)-specific primers to identify the unique IGHV gene expressed by the leukemic B-cell clone, and then sequenced. RESULTS PCR and DNA sequencing results obtained by DEP from 25 μL CLL blood matched results obtained by use of conventional methods for ccf-DNA isolation from 1 mL plasma and for genomic DNA isolation from CLL patient leukemic B cells isolated from 15–20 mL blood. CONCLUSIONS Rapid isolation of ccf-DNA directly from a drop of blood will advance disease-related biomarker research, accelerate the transition from tissue to liquid biopsies, and enable point-of-care diagnostic systems for patient monitoring. PMID:24270796
Rapid electrokinetic isolation of cancer-related circulating cell-free DNA directly from blood.
Sonnenberg, Avery; Marciniak, Jennifer Y; Rassenti, Laura; Ghia, Emanuela M; Skowronski, Elaine A; Manouchehri, Sareh; McCanna, James; Widhopf, George F; Kipps, Thomas J; Heller, Michael J
2014-03-01
Circulating cell-free DNA (ccf-DNA) is becoming an important biomarker for cancer diagnostics and therapy monitoring. The isolation of ccf-DNA from plasma as a "liquid biopsy" may begin to replace more invasive tissue biopsies for the detection and analysis of cancer-related mutations. Conventional methods for the isolation of ccf-DNA from plasma are costly, time-consuming, and complex, preventing the use of ccf-DNA biomarkers for point-of-care diagnostics and limiting other biomedical research applications. We used an AC electrokinetic device to rapidly isolate ccf-DNA from 25 μL unprocessed blood. ccf-DNA from 15 chronic lymphocytic leukemia (CLL) patients and 3 healthy individuals was separated into dielectrophoretic (DEP) high-field regions, after which other blood components were removed by a fluidic wash. Concentrated ccf-DNA was detected by fluorescence and eluted for quantification, PCR, and DNA sequencing. The complete process, blood to PCR, required <10 min. ccf-DNA was amplified by PCR with immunoglobulin heavy chain variable region (IGHV)-specific primers to identify the unique IGHV gene expressed by the leukemic B-cell clone, and then sequenced. PCR and DNA sequencing results obtained by DEP from 25 μL CLL blood matched results obtained by use of conventional methods for ccf-DNA isolation from 1 mL plasma and for genomic DNA isolation from CLL patient leukemic B cells isolated from 15-20 mL blood. Rapid isolation of ccf-DNA directly from a drop of blood will advance disease-related biomarker research, accelerate the transition from tissue to liquid biopsies, and enable point-of-care diagnostic systems for patient monitoring.
Massively Parallel DNA Sequencing Facilitates Diagnosis of Patients with Usher Syndrome Type 1
Yoshimura, Hidekane; Iwasaki, Satoshi; Nishio, Shin-ya; Kumakawa, Kozo; Tono, Tetsuya; Kobayashi, Yumiko; Sato, Hiroaki; Nagai, Kyoko; Ishikawa, Kotaro; Ikezono, Tetsuo; Naito, Yasushi; Fukushima, Kunihiro; Oshikawa, Chie; Kimitsuki, Takashi; Nakanishi, Hiroshi; Usami, Shin-ichi
2014-01-01
Usher syndrome is an autosomal recessive disorder manifesting hearing loss, retinitis pigmentosa and vestibular dysfunction, and having three clinical subtypes. Usher syndrome type 1 is the most severe subtype due to its profound hearing loss, lack of vestibular responses, and retinitis pigmentosa that appears in prepuberty. Six of the corresponding genes have been identified, making early diagnosis through DNA testing possible, with many immediate and several long-term advantages for patients and their families. However, the conventional genetic techniques, such as direct sequence analysis, are both time-consuming and expensive. Targeted exon sequencing of selected genes using the massively parallel DNA sequencing technology will potentially enable us to systematically tackle previously intractable monogenic disorders and improve molecular diagnosis. Using this technique combined with direct sequence analysis, we screened 17 unrelated Usher syndrome type 1 patients and detected probable pathogenic variants in the 16 of them (94.1%) who carried at least one mutation. Seven patients had the MYO7A mutation (41.2%), which is the most common type in Japanese. Most of the mutations were detected by only the massively parallel DNA sequencing. We report here four patients, who had probable pathogenic mutations in two different Usher syndrome type 1 genes, and one case of MYO7A/PCDH15 digenic inheritance. This is the first report of Usher syndrome mutation analysis using massively parallel DNA sequencing and the frequency of Usher syndrome type 1 genes in Japanese. Mutation screening using this technique has the power to quickly identify mutations of many causative genes while maintaining cost-benefit performance. In addition, the simultaneous mutation analysis of large numbers of genes is useful for detecting mutations in different genes that are possibly disease modifiers or of digenic inheritance. PMID:24618850
Massively parallel DNA sequencing facilitates diagnosis of patients with Usher syndrome type 1.
Yoshimura, Hidekane; Iwasaki, Satoshi; Nishio, Shin-Ya; Kumakawa, Kozo; Tono, Tetsuya; Kobayashi, Yumiko; Sato, Hiroaki; Nagai, Kyoko; Ishikawa, Kotaro; Ikezono, Tetsuo; Naito, Yasushi; Fukushima, Kunihiro; Oshikawa, Chie; Kimitsuki, Takashi; Nakanishi, Hiroshi; Usami, Shin-Ichi
2014-01-01
Usher syndrome is an autosomal recessive disorder manifesting hearing loss, retinitis pigmentosa and vestibular dysfunction, and having three clinical subtypes. Usher syndrome type 1 is the most severe subtype due to its profound hearing loss, lack of vestibular responses, and retinitis pigmentosa that appears in prepuberty. Six of the corresponding genes have been identified, making early diagnosis through DNA testing possible, with many immediate and several long-term advantages for patients and their families. However, the conventional genetic techniques, such as direct sequence analysis, are both time-consuming and expensive. Targeted exon sequencing of selected genes using the massively parallel DNA sequencing technology will potentially enable us to systematically tackle previously intractable monogenic disorders and improve molecular diagnosis. Using this technique combined with direct sequence analysis, we screened 17 unrelated Usher syndrome type 1 patients and detected probable pathogenic variants in the 16 of them (94.1%) who carried at least one mutation. Seven patients had the MYO7A mutation (41.2%), which is the most common type in Japanese. Most of the mutations were detected by only the massively parallel DNA sequencing. We report here four patients, who had probable pathogenic mutations in two different Usher syndrome type 1 genes, and one case of MYO7A/PCDH15 digenic inheritance. This is the first report of Usher syndrome mutation analysis using massively parallel DNA sequencing and the frequency of Usher syndrome type 1 genes in Japanese. Mutation screening using this technique has the power to quickly identify mutations of many causative genes while maintaining cost-benefit performance. In addition, the simultaneous mutation analysis of large numbers of genes is useful for detecting mutations in different genes that are possibly disease modifiers or of digenic inheritance.
The implication of DNA bending energy for nucleosome positioning and sliding.
Liu, Guoqing; Xing, Yongqiang; Zhao, Hongyu; Cai, Lu; Wang, Jianying
2018-06-11
Nucleosome not only directly affects cellular processes, such as DNA replication, recombination, and transcription, but also severs as a fundamentally important target of epigenetic modifications. Our previous study indicated that the bending property of DNA is important in nucleosome formation, particularly in predicting the dyad positions of nucleosomes on a DNA segment. Here, we investigated the role of bending energy in nucleosome positioning and sliding in depth to decipher sequence-directed mechanism. The results show that bending energy is a good physical index to predict the free energy in the process of nucleosome reconstitution in vitro. Our data also imply that there are at least 20% of the nucleosomes in budding yeast do not adopt canonical positioning, in which underlying sequences wrapped around histones are structurally symmetric. We also revealed distinct patterns of bending energy profile for distinctly organized chromatin structures, such as well-positioned nucleosomes, fuzzy nucleosomes, and linker regions and discussed nucleosome sliding in terms of bending energy. We proposed that the stability of a nucleosome is positively correlated with the strength of the bending anisotropy of DNA segment, and both accessibility and directionality of nucleosome sliding is likely to be modulated by diverse patterns of DNA bending energy profile.
Transcriptome analysis by strand-specific sequencing of complementary DNA
Parkhomchuk, Dmitri; Borodina, Tatiana; Amstislavskiy, Vyacheslav; Banaru, Maria; Hallen, Linda; Krobitsch, Sylvia; Lehrach, Hans; Soldatov, Alexey
2009-01-01
High-throughput complementary DNA sequencing (RNA-Seq) is a powerful tool for whole-transcriptome analysis, supplying information about a transcript's expression level and structure. However, it is difficult to determine the polarity of transcripts, and therefore identify which strand is transcribed. Here, we present a simple cDNA sequencing protocol that preserves information about a transcript's direction. Using Saccharomyces cerevisiae and mouse brain transcriptomes as models, we demonstrate that knowing the transcript's orientation allows more accurate determination of the structure and expression of genes. It also helps to identify new genes and enables studying promoter-associated and antisense transcription. The transcriptional landscapes we obtained are available online. PMID:19620212
Transcriptome analysis by strand-specific sequencing of complementary DNA.
Parkhomchuk, Dmitri; Borodina, Tatiana; Amstislavskiy, Vyacheslav; Banaru, Maria; Hallen, Linda; Krobitsch, Sylvia; Lehrach, Hans; Soldatov, Alexey
2009-10-01
High-throughput complementary DNA sequencing (RNA-Seq) is a powerful tool for whole-transcriptome analysis, supplying information about a transcript's expression level and structure. However, it is difficult to determine the polarity of transcripts, and therefore identify which strand is transcribed. Here, we present a simple cDNA sequencing protocol that preserves information about a transcript's direction. Using Saccharomyces cerevisiae and mouse brain transcriptomes as models, we demonstrate that knowing the transcript's orientation allows more accurate determination of the structure and expression of genes. It also helps to identify new genes and enables studying promoter-associated and antisense transcription. The transcriptional landscapes we obtained are available online.
Genomics approach to the environmental community of microorganisms
NASA Astrophysics Data System (ADS)
Kawarabayasi, Y.; Maruyama, A.
2004-12-01
It was indicated by microscopic observation or comparison of 16S rDNA sequence that many extremophiles were surviving in many hydrothermal environments. But it is generally said that over 99% of total microbes are now uncultivable. Thus, we planned to identify uncultivable microbes through direct sequencing of environmental DNA. At first, shotgun plasmid libraries were directly constructed with the DNA molecules prepared from mixed microbes collected from low-temperature hydrothermal water at RM24 in the Southern East Pacific Rise (S-EPR). It was shown that the sequences of some number of clones indicated the similar feature to the intron in eukaryote or tandem repetitive sequence identified in some human familiar diseases. The results indicated that many microorganisms with eukaryotic feature were dominant in low temperature water of S-EPR. Secondly, shotgun plasmid libraries were constructed from the environmental DNA prepared from Beppu hot springs. The ORFs were easily identified all clones determined entire sequence. Thus it can be said that hot springs is good resources for searching novel genes. At last, the mixed microbes isolated from Suiyo seamount were used for construction of shotgun library. The clones in this library contained the ORFs. From some clones in hot spring and Suiyo sample, aminoacyl-tRNA synthatase, which is generally present in all organisms, was isolated by similarity. The phylogenetic analysis of aminoacyl-tRNA synthetase identified indicated that novel and unidentified microorganisms should be present in hot spring or Suiyo seamount. The novel genes identified from Suiyo seamount were also utilized for expression in E. coli. Some gene products were successfully obtained from the E. coli cells as soluble proteins. Some protein indicated the thermostability up to 70_E#8249;C, meaning that the original host cell of this gene should be stable up to the same temperature. Our work indicates that environmental genomics, including the direct cloning, sequencing of environmental DNA and expression of gene identified, is powerful approach to collect novel uncultivable microbes or novel active genes.
Pancoska, Petr; Moravek, Zdenek; Moll, Ute M
2004-01-01
Nucleic acids are molecules of choice for both established and emerging nanoscale technologies. These technologies benefit from large functional densities of 'DNA processing elements' that can be readily manufactured. To achieve the desired functionality, polynucleotide sequences are currently designed by a process that involves tedious and laborious filtering of potential candidates against a series of requirements and parameters. Here, we present a complete novel methodology for the rapid rational design of large sets of DNA sequences. This method allows for the direct implementation of very complex and detailed requirements for the generated sequences, thus avoiding 'brute force' filtering. At the same time, these sequences have narrow distributions of melting temperatures. The molecular part of the design process can be done without computer assistance, using an efficient 'human engineering' approach by drawing a single blueprint graph that represents all generated sequences. Moreover, the method eliminates the necessity for extensive thermodynamic calculations. Melting temperature can be calculated only once (or not at all). In addition, the isostability of the sequences is independent of the selection of a particular set of thermodynamic parameters. Applications are presented for DNA sequence designs for microarrays, universal microarray zip sequences and electron transfer experiments.
Length polymorphism scanning is an efficient approach for revealing chloroplast DNA variation.
Matthew E. Horning; Richard C. Cronn
2006-01-01
Phylogeographic and population genetic screens of chloroplast DNA (cpDNA) provide insights into seedbased gene flow in angiosperms, yet studies are frequently hampered by the low mutation rate of this genome. Detection methods for intraspecific variation can be either direct (DNA sequencing) or indirect (PCR-RFLP), although no single method incorporates the best...
Topological Interaction by Entanglement of DNA
NASA Astrophysics Data System (ADS)
Feng, Lang; Sha, Ruojie; Seeman, Nadrian; Chaikin, Paul
2012-02-01
We find and study a new type of interaction between colloids, Topological Interaction by Entanglement of DNA (TIED), due to concatenation of loops formed by palindromic DNA. Consider a particle coated with palindromic DNA of sequence ``P1.'' Below the DNA hybridization temperature (Tm), loops of the self-complementary DNA form on the particle surface. Direct hybridization with similar particle covered with a different sequence P2 do not occur. However when particles are held together at T > Tm, then cooled to T < Tm, some of the loops entangle and link, similar to a Olympic Gel. We quantitatively observe and measure this topological interaction between colloids in a ˜5^o C temperature window, ˜6^o C lower than direct binding of complementary DNA with similar strength and introduce the concept of entanglement binding free energy. To prove our interaction to be topological, we unknot the purely entangled binding sites between colloids by adding Topoisomerase I which unconcatenates our loops. This research suggests novel history dependent ways of binding particles and serves as a new design tool in colloidal self-assembly.
Studier, F. William
1995-04-18
Random and directed priming methods for determining nucleotide sequences by enzymatic sequencing techniques, using libraries of primers of lengths 8, 9 or 10 bases, are disclosed. These methods permit direct sequencing of nucleic acids as large as 45,000 base pairs or larger without the necessity for subcloning. Individual primers are used repeatedly to prime sequence reactions in many different nucleic acid molecules. Libraries containing as few as 10,000 octamers, 14,200 nonamers, or 44,000 decamers would have the capacity to determine the sequence of almost any cosmid DNA. Random priming with a fixed set of primers from a smaller library can also be used to initiate the sequencing of individual nucleic acid molecules, with the sequence being completed by directed priming with primers from the library. In contrast to random cloning techniques, a combined random and directed priming strategy is far more efficient.
Studier, F.W.
1995-04-18
Random and directed priming methods for determining nucleotide sequences by enzymatic sequencing techniques, using libraries of primers of lengths 8, 9 or 10 bases, are disclosed. These methods permit direct sequencing of nucleic acids as large as 45,000 base pairs or larger without the necessity for subcloning. Individual primers are used repeatedly to prime sequence reactions in many different nucleic acid molecules. Libraries containing as few as 10,000 octamers, 14,200 nonamers, or 44,000 decamers would have the capacity to determine the sequence of almost any cosmid DNA. Random priming with a fixed set of primers from a smaller library can also be used to initiate the sequencing of individual nucleic acid molecules, with the sequence being completed by directed priming with primers from the library. In contrast to random cloning techniques, a combined random and directed priming strategy is far more efficient. 2 figs.
Lenzmeier, B A; Giebler, H A; Nyborg, J K
1998-02-01
Efficient human T-cell leukemia virus type 1 (HTLV-1) replication and viral gene expression are dependent upon the virally encoded oncoprotein Tax. To activate HTLV-1 transcription, Tax interacts with the cellular DNA binding protein cyclic AMP-responsive element binding protein (CREB) and recruits the coactivator CREB binding protein (CBP), forming a nucleoprotein complex on the three viral cyclic AMP-responsive elements (CREs) in the HTLV-1 promoter. Short stretches of dG-dC-rich (GC-rich) DNA, immediately flanking each of the viral CREs, are essential for Tax recruitment of CBP in vitro and Tax transactivation in vivo. Although the importance of the viral CRE-flanking sequences is well established, several studies have failed to identify an interaction between Tax and the DNA. The mechanistic role of the viral CRE-flanking sequences has therefore remained enigmatic. In this study, we used high resolution methidiumpropyl-EDTA iron(II) footprinting to show that Tax extended the CREB footprint into the GC-rich DNA flanking sequences of the viral CRE. The Tax-CREB footprint was enhanced but not extended by the KIX domain of CBP, suggesting that the coactivator increased the stability of the nucleoprotein complex. Conversely, the footprint pattern of CREB on a cellular CRE lacking GC-rich flanking sequences did not change in the presence of Tax or Tax plus KIX. The minor-groove DNA binding drug chromomycin A3 bound to the GC-rich flanking sequences and inhibited the association of Tax and the Tax-CBP complex without affecting CREB binding. Tax specifically cross-linked to the viral CRE in the 5'-flanking sequence, and this cross-link was blocked by chromomycin A3. Together, these data support a model where Tax interacts directly with both CREB and the minor-groove viral CRE-flanking sequences to form a high-affinity binding site for the recruitment of CBP to the HTLV-1 promoter.
Classification of Plant Associated Bacteria Using RIF, a Computationally Derived DNA Marker
Schneider, Kevin L.; Marrero, Glorimar; Alvarez, Anne M.; Presting, Gernot G.
2011-01-01
A DNA marker that distinguishes plant associated bacteria at the species level and below was derived by comparing six sequenced genomes of Xanthomonas, a genus that contains many important phytopathogens. This DNA marker comprises a portion of the dnaA replication initiation factor (RIF). Unlike the rRNA genes, dnaA is a single copy gene in the vast majority of sequenced bacterial genomes, and amplification of RIF requires genus-specific primers. In silico analysis revealed that RIF has equal or greater ability to differentiate closely related species of Xanthomonas than the widely used ribosomal intergenic spacer region (ITS). Furthermore, in a set of 263 Xanthomonas, Ralstonia and Clavibacter strains, the RIF marker was directly sequenced in both directions with a success rate approximately 16% higher than that for ITS. RIF frameworks for Xanthomonas, Ralstonia and Clavibacter were constructed using 682 reference strains representing different species, subspecies, pathovars, races, hosts and geographic regions, and contain a total of 109 different RIF sequences. RIF sequences showed subspecific groupings but did not place strains of X. campestris or X. axonopodis into currently named pathovars nor R. solanacearum strains into their respective races, confirming previous conclusions that pathovar and race designations do not necessarily reflect genetic relationships. The RIF marker also was sequenced for 24 reference strains from three genera in the Enterobacteriaceae: Pectobacterium, Pantoea and Dickeya. RIF sequences of 70 previously uncharacterized strains of Ralstonia, Clavibacter, Pectobacterium and Dickeya matched, or were similar to, those of known reference strains, illustrating the utility of the frameworks to classify bacteria below the species level and rapidly match unknown isolates to reference strains. The RIF sequence frameworks are available at the online RIF database, RIFdb, and can be queried for diagnostic purposes with RIF sequences obtained from unknown strains in both chromatogram and FASTA format. PMID:21533033
Zhao, A; Guo, A; Liu, Z; Pape, L
1997-01-01
The coding sequences for a Schizosaccharomyces pombe sequence-specific DNA binding protein, Reb1p, have been cloned. The predicted S. pombe Reb1p is 24-29% identical to mouse TTF-1 (transcription termination factor-1) and Saccharomyces cerevisiae REB1 protein, both of which direct termination of RNA polymerase I catalyzed transcripts. The S.pombe Reb1 cDNA encodes a predicted polypeptide of 504 amino acids with a predicted molecular weight of 58.4 kDa. The S. pombe Reb1p is unusual in that the bipartite DNA binding motif identified originally in S.cerevisiae and Klyveromyces lactis REB1 proteins is uninterrupted and thus S.pombe Reb1p may contain the smallest natural REB1 homologous DNA binding domain. Its genomic coding sequences were shown to be interrupted by two introns. A recombinant histidine-tagged Reb1 protein bearing the rDNA binding domain has two homologous, sequence-specific binding sites in the S. pomber DNA intergenic spacer, located between 289 and 480 nt downstream of the end of the approximately 25S rRNA coding sequences. Each binding site is 13-14 bp downstream of two of the three proposed in vivo termination sites. The core of this 17 bp site, AGGTAAGGGTAATGCAC, is specifically protected by Reb1p in footprinting analysis. PMID:9016645
The full mitochondrial genome sequence of Raillietina tetragona from chicken (Cestoda: Davaineidae).
Liang, Jian-Ying; Lin, Rui-Qing
2016-11-01
In the present study, the complete mitochondrial DNA (mtDNA) sequence of Raillietina tetragona was sequenced and its gene contents and genome organizations was compared with that of other tapeworm. The complete mt genome sequence of R. tetragona is 14,444 bp in length. It contains 12 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and two non-coding region. All genes are transcribed in the same direction and have a nucleotide composition high in A and T. The contents of A + T of the complete mt genome are 71.4% for R. tetragona. The R. tetragona mt genome sequence provides novel mtDNA marker for studying the molecular epidemiology and population genetics of Raillietina and has implications for the molecular diagnosis of chicken cestodosis caused by Raillietina.
Oishi, M; Gohma, H; Lejukole, H Y; Taniguchi, Y; Yamada, T; Suzuki, K; Shinkai, H; Uenishi, H; Yasue, H; Sasaki, Y
2004-05-01
Expressed sequence tags (ESTs) generated based on characterization of clones isolated randomly from cDNA libraries are used to study gene expression profiles in specific tissues and to provide useful information for characterizing tissue physiology. In this study, two directionally cloned cDNA libraries were constructed from 60 day-old bovine whole fetus and fetal placenta. We have characterized 5357 and 1126 clones, and then identified 3464 and 795 unique sequences for the fetus and placenta cDNA libraries: 1851 and 504 showed homology to already identified genes, and 1613 and 291 showed no significant matches to any of the sequences in DNA databases, respectively. Further, we found 94 unique sequences overlapping in both the fetus and the placenta, leading to a catalog of 4165 genes expressed in 60 day-old fetus and placenta. The catalog is used to examine expression profile of genes in 60 day-old bovine fetus and placenta.
Identification of a novel circular DNA virus in pig feces
USDA-ARS?s Scientific Manuscript database
Metagenomic analysis of fecal samples collected from a swine with diarrhea detected sequences encoding a replicase (Rep) protein typically found in small circular Rep-encoding ssDNA (CRESS-DNA) viruses. The complete 3,062 nucleotide genome was generated and found to encode two bi-directionally trans...
NASA Astrophysics Data System (ADS)
Wu, Jiangling; Huang, Yu; Bian, Xintong; Li, DanDan; Cheng, Quan; Ding, Shijia
2016-10-01
In this work, a custom-made intensity-interrogation surface plasmon resonance imaging (SPRi) system has been developed to directly detect a specific sequence of BCR/ABL fusion gene in chronic myelogenous leukemia (CML). The variation in the reflected light intensity detected from the sensor chip composed of gold islands array is proportional to the change of refractive index due to the selective hybridization of surface-bound DNA probes with target ssDNA. SPRi measurements were performed with different concentrations of synthetic target DNA sequence. The calibration curve of synthetic target sequence shows a good relationship between the concentration of synthetic target and the change of reflected light intensity. The detection limit of this SPRi measurement could approach 10.29 nM. By comparing SPRi images, the target ssDNA and non-complementary DNA sequence are able to be distinguished. This SPRi system has been applied for assay of BCR/ABL fusion gene extracted from real samples. This nucleic acid-based SPRi biosensor therefore offers an alternative high-effective, high-throughput label-free tool for DNA detection in biomedical research and molecular diagnosis.
Zhao, Junhua; Wang, Guliang; Del Mundo, Imee M; McKinney, Jennifer A; Lu, Xiuli; Bacolla, Albino; Boulware, Stephen B; Zhang, Changsheng; Zhang, Haihua; Ren, Pengyu; Freudenreich, Catherine H; Vasquez, Karen M
2018-01-30
Sequences with the capacity to adopt alternative DNA structures have been implicated in cancer etiology; however, the mechanisms are unclear. For example, H-DNA-forming sequences within oncogenes have been shown to stimulate genetic instability in mammals. Here, we report that H-DNA-forming sequences are enriched at translocation breakpoints in human cancer genomes, further implicating them in cancer etiology. H-DNA-induced mutations were suppressed in human cells deficient in the nucleotide excision repair nucleases, ERCC1-XPF and XPG, but were stimulated in cells deficient in FEN1, a replication-related endonuclease. Further, we found that these nucleases cleaved H-DNA conformations, and the interactions of modeled H-DNA with ERCC1-XPF, XPG, and FEN1 proteins were explored at the sub-molecular level. The results suggest mechanisms of genetic instability triggered by H-DNA through distinct structure-specific, cleavage-based replication-independent and replication-dependent pathways, providing critical evidence for a role of the DNA structure itself in the etiology of cancer and other human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Direct radiocarbon dating and DNA analysis of the Darra-i-Kur (Afghanistan) human temporal bone.
Douka, Katerina; Slon, Viviane; Stringer, Chris; Potts, Richard; Hübner, Alexander; Meyer, Matthias; Spoor, Fred; Pääbo, Svante; Higham, Tom
2017-06-01
The temporal bone discovered in the 1960s from the Darra-i-Kur cave in Afghanistan is often cited as one of the very few Pleistocene human fossils from Central Asia. Here we report the first direct radiocarbon date for the specimen and the genetic analyses of DNA extracted and sequenced from two areas of the bone. The new radiocarbon determination places the find to ∼4500 cal BP (∼2500 BCE) contradicting an assumed Palaeolithic age of ∼30,000 years, as originally suggested. The DNA retrieved from the specimen originates from a male individual who carried mitochondrial DNA of the modern human type. The petrous part yielded more endogenous ancient DNA molecules than the squamous part of the same bone. Molecular dating of the Darra-i-Kur mitochondrial DNA sequence corroborates the radiocarbon date and suggests that the specimen is younger than previously thought. Taken together, the results consolidate the fact that the human bone is not associated with the Pleistocene-age deposits of Darra-i-Kur; instead it is intrusive, possibly re-deposited from upper levels dating to much later periods (Neolithic). Despite its Holocene age, the Darra-i-Kur specimen is, so far, the first and only ancient human from Afghanistan whose DNA has been sequenced. Copyright © 2017 Elsevier Ltd. All rights reserved.
Candéias, S; Pons, B; Viau, M; Caillat, S; Sauvaigo, S
2010-12-10
The well established toxicity of cadmium and cadmium compounds results from their additive effects on several key cellular processes, including DNA repair. Mammalian cells have evolved several biochemical pathways to repair DNA lesions and maintain genomic integrity. By interfering with the homeostasis of redox metals and antioxidant systems, cadmium promotes the development of an intracellular environment that results in oxidative DNA damage which can be mutagenic if unrepaired. Small base lesions are recognised by specialized glycosylases and excised from the DNA molecule. The resulting abasic sites are incised, and the correct sequences restored by DNA polymerases using the opposite strands as template. Bulky lesions are recognised by a different set of proteins and excised from DNA as part of an oligonucleotide. As in base repair, the resulting gaps are filled by DNA polymerases using the opposite strands as template. Thus, these two repair pathways consist in excision of the lesion followed by DNA synthesis. In this study, we analysed in vitro the direct effects of cadmium exposure on the functionality of base and nucleotide DNA repair pathways. To this end, we used recently described dedicated microarrays that allow the parallel monitoring in cell extracts of the repair activities directed against several model base and/or nucleotide lesions. Both base and nucleotide excision/repair pathways are inhibited by CdCl₂, with different sensitivities. The inhibitory effects of cadmium affect mainly the recognition and excision stages of these processes. Furthermore, our data indicate that the repair activities directed against different damaged bases also exhibit distinct sensitivities, and the direct comparison of cadmium effects on the excision of uracile in different sequences even allows us to propose a hierarchy of cadmium sensibility within the glycosylases removing U from DNA. These results indicate that, in our experimental conditions, cadmium is a very potent DNA repair poison. Copyright © 2010 Elsevier B.V. All rights reserved.
Improved multiple displacement amplification (iMDA) and ultraclean reagents.
Motley, S Timothy; Picuri, John M; Crowder, Chris D; Minich, Jeremiah J; Hofstadler, Steven A; Eshoo, Mark W
2014-06-06
Next-generation sequencing sample preparation requires nanogram to microgram quantities of DNA; however, many relevant samples are comprised of only a few cells. Genomic analysis of these samples requires a whole genome amplification method that is unbiased and free of exogenous DNA contamination. To address these challenges we have developed protocols for the production of DNA-free consumables including reagents and have improved upon multiple displacement amplification (iMDA). A specialized ethylene oxide treatment was developed that renders free DNA and DNA present within Gram positive bacterial cells undetectable by qPCR. To reduce DNA contamination in amplification reagents, a combination of ion exchange chromatography, filtration, and lot testing protocols were developed. Our multiple displacement amplification protocol employs a second strand-displacing DNA polymerase, improved buffers, improved reaction conditions and DNA free reagents. The iMDA protocol, when used in combination with DNA-free laboratory consumables and reagents, significantly improved efficiency and accuracy of amplification and sequencing of specimens with moderate to low levels of DNA. The sensitivity and specificity of sequencing of amplified DNA prepared using iMDA was compared to that of DNA obtained with two commercial whole genome amplification kits using 10 fg (~1-2 bacterial cells worth) of bacterial genomic DNA as a template. Analysis showed >99% of the iMDA reads mapped to the template organism whereas only 0.02% of the reads from the commercial kits mapped to the template. To assess the ability of iMDA to achieve balanced genomic coverage, a non-stochastic amount of bacterial genomic DNA (1 pg) was amplified and sequenced, and data obtained were compared to sequencing data obtained directly from genomic DNA. The iMDA DNA and genomic DNA sequencing had comparable coverage 99.98% of the reference genome at ≥1X coverage and 99.9% at ≥5X coverage while maintaining both balance and representation of the genome. The iMDA protocol in combination with DNA-free laboratory consumables, significantly improved the ability to sequence specimens with low levels of DNA. iMDA has broad utility in metagenomics, diagnostics, ancient DNA analysis, pre-implantation embryo screening, single-cell genomics, whole genome sequencing of unculturable organisms, and forensic applications for both human and microbial targets.
Bacterial identification and subtyping using DNA microarray and DNA sequencing.
Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D
2012-01-01
The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.
Zhu, X Q; Chilton, N B; Gasser, R B
1998-05-01
This study evaluated the use of a commercially available DNA intercalating agent (Resolver Gold) in agarose gels for the direct detection of sequence variation in ribosomal DNA (rDNA). This agent binds preferentially to AT sequence motifs in DNA. Regions of nuclear rDNA, known to provide genetic markers for the identification of species of parasitic ascarid nematodes (order Ascaridida), were amplified by polymerase chain reaction (PCR) and subjected to electrophoresis in standard agarose gels versus gels supplemented with Resolver Gold. Individual taxa examined could not be distinguished reliably based on the size of their amplicons in standard agarose gels, whereas they could be readily delineated based on mobility using Resolver Gold-supplemented gels. The latter was achieved because of differences (approximately 0.1-8.2%) in the AT content of the fragments among different taxa, which were associated with significant interspecific differences (approximately 11-39%) in the rDNA sequences employed. There was a tendency for fragments with higher AT content to migrate slower in supplemented agarose gels compared with those of lower AT content. The results indicate the usefulness of this electrophoretic approach to rapidly screen for sequence variability within or among PCR-amplified rDNA fragments of similar sizes but differing AT contents. Although evaluated on rDNA of parasites, the approach has potential to be applied to a range of genes of different groups of infectious organisms.
Method for construction of normalized cDNA libraries
Soares, Marcelo B.; Efstratiadis, Argiris
1996-01-01
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3' noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library.
Method for construction of normalized cDNA libraries
Soares, M.B.; Efstratiadis, A.
1996-01-09
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form. The method comprises: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3` noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library. 4 figs.
Fiannaca, Antonino; La Rosa, Massimo; Rizzo, Riccardo; Urso, Alfonso
2015-07-01
In this paper, an alignment-free method for DNA barcode classification that is based on both a spectral representation and a neural gas network for unsupervised clustering is proposed. In the proposed methodology, distinctive words are identified from a spectral representation of DNA sequences. A taxonomic classification of the DNA sequence is then performed using the sequence signature, i.e., the smallest set of k-mers that can assign a DNA sequence to its proper taxonomic category. Experiments were then performed to compare our method with other supervised machine learning classification algorithms, such as support vector machine, random forest, ripper, naïve Bayes, ridor, and classification tree, which also consider short DNA sequence fragments of 200 and 300 base pairs (bp). The experimental tests were conducted over 10 real barcode datasets belonging to different animal species, which were provided by the on-line resource "Barcode of Life Database". The experimental results showed that our k-mer-based approach is directly comparable, in terms of accuracy, recall and precision metrics, with the other classifiers when considering full-length sequences. In addition, we demonstrate the robustness of our method when a classification is performed task with a set of short DNA sequences that were randomly extracted from the original data. For example, the proposed method can reach the accuracy of 64.8% at the species level with 200-bp fragments. Under the same conditions, the best other classifier (random forest) reaches the accuracy of 20.9%. Our results indicate that we obtained a clear improvement over the other classifiers for the study of short DNA barcode sequence fragments. Copyright © 2015 Elsevier B.V. All rights reserved.
msgbsR: An R package for analysing methylation-sensitive restriction enzyme sequencing data.
Mayne, Benjamin T; Leemaqz, Shalem Y; Buckberry, Sam; Rodriguez Lopez, Carlos M; Roberts, Claire T; Bianco-Miotto, Tina; Breen, James
2018-02-01
Genotyping-by-sequencing (GBS) or restriction-site associated DNA marker sequencing (RAD-seq) is a practical and cost-effective method for analysing large genomes from high diversity species. This method of sequencing, coupled with methylation-sensitive enzymes (often referred to as methylation-sensitive restriction enzyme sequencing or MRE-seq), is an effective tool to study DNA methylation in parts of the genome that are inaccessible in other sequencing techniques or are not annotated in microarray technologies. Current software tools do not fulfil all methylation-sensitive restriction sequencing assays for determining differences in DNA methylation between samples. To fill this computational need, we present msgbsR, an R package that contains tools for the analysis of methylation-sensitive restriction enzyme sequencing experiments. msgbsR can be used to identify and quantify read counts at methylated sites directly from alignment files (BAM files) and enables verification of restriction enzyme cut sites with the correct recognition sequence of the individual enzyme. In addition, msgbsR assesses DNA methylation based on read coverage, similar to RNA sequencing experiments, rather than methylation proportion and is a useful tool in analysing differential methylation on large populations. The package is fully documented and available freely online as a Bioconductor package ( https://bioconductor.org/packages/release/bioc/html/msgbsR.html ).
Selection and Screening of DNA Aptamers for Inorganic Nanomaterials.
Zhou, Yibo; Huang, Zhicheng; Yang, Ronghua; Liu, Juewen
2018-02-21
Searching for DNA sequences that can strongly and selectively bind to inorganic surfaces is a long-standing topic in bionanotechnology, analytical chemistry and biointerface research. This can be achieved either by aptamer selection starting with a very large library of ≈10 14 random DNA sequences, or by careful screening of a much smaller library (usually from a few to a few hundred) with rationally designed sequences. Unlike typical molecular targets, inorganic surfaces often have quite strong DNA adsorption affinities due to polyvalent binding and even chemical interactions. This leads to a very high background binding making aptamer selection difficult. Screening, on the other hand, can be designed to compare relative binding affinities of different DNA sequences and could be more appropriate for inorganic surfaces. The resulting sequences have been used for DNA-directed assembly, sorting of carbon nanotubes, and DNA-controlled growth of inorganic nanomaterials. It was recently discovered that poly-cytosine (C) DNA can strongly bind to a diverse range of nanomaterials including nanocarbons (graphene oxide and carbon nanotubes), various metal oxides and transition-metal dichalcogenides. In this Concept article, we articulate the need for screening and potential artifacts associated with traditional aptamer selection methods for inorganic surfaces. Representative examples of application are discussed, and a few future research opportunities are proposed towards the end of this article. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mak, Sarah Siu Tze; Gopalakrishnan, Shyam; Carøe, Christian; Geng, Chunyu; Liu, Shanlin; Sinding, Mikkel-Holger S; Kuderna, Lukas F K; Zhang, Wenwei; Fu, Shujin; Vieira, Filipe G; Germonpré, Mietje; Bocherens, Hervé; Fedorov, Sergey; Petersen, Bent; Sicheritz-Pontén, Thomas; Marques-Bonet, Tomas; Zhang, Guojie; Jiang, Hui; Gilbert, M Thomas P
2017-01-01
Abstract Ancient DNA research has been revolutionized following development of next-generation sequencing platforms. Although a number of such platforms have been applied to ancient DNA samples, the Illumina series are the dominant choice today, mainly because of high production capacities and short read production. Recently a potentially attractive alternative platform for palaeogenomic data generation has been developed, the BGISEQ-500, whose sequence output are comparable with the Illumina series. In this study, we modified the standard BGISEQ-500 library preparation specifically for use on degraded DNA, then directly compared the sequencing performance and data quality of the BGISEQ-500 to the Illumina HiSeq2500 platform on DNA extracted from 8 historic and ancient dog and wolf samples. The data generated were largely comparable between sequencing platforms, with no statistically significant difference observed for parameters including level (P = 0.371) and average sequence length (P = 0718) of endogenous nuclear DNA, sequence GC content (P = 0.311), double-stranded DNA damage rate (v. 0.309), and sequence clonality (P = 0.093). Small significant differences were found in single-strand DNA damage rate (δS; slightly lower for the BGISEQ-500, P = 0.011) and the background rate of difference from the reference genome (θ; slightly higher for BGISEQ-500, P = 0.012). This may result from the differences in amplification cycles used to polymerase chain reaction–amplify the libraries. A significant difference was also observed in the mitochondrial DNA percentages recovered (P = 0.018), although we believe this is likely a stochastic effect relating to the extremely low levels of mitochondria that were sequenced from 3 of the samples with overall very low levels of endogenous DNA. Although we acknowledge that our analyses were limited to animal material, our observations suggest that the BGISEQ-500 holds the potential to represent a valid and potentially valuable alternative platform for palaeogenomic data generation that is worthy of future exploration by those interested in the sequencing and analysis of degraded DNA. PMID:28854615
Fluorogenic DNA Sequencing in PDMS Microreactors
Sims, Peter A.; Greenleaf, William J.; Duan, Haifeng; Xie, X. Sunney
2012-01-01
We have developed a multiplex sequencing-by-synthesis method combining terminal-phosphate labeled fluorogenic nucleotides (TPLFNs) and resealable microreactors. In the presence of phosphatase, the incorporation of a non-fluorescent TPLFN into a DNA primer by DNA polymerase results in a fluorophore. We immobilize DNA templates within polydimethylsiloxane (PDMS) microreactors, sequentially introduce one of the four identically labeled TPLFNs, seal the microreactors, allow template-directed TPLFN incorporation, and measure the signal from the fluorophores trapped in the microreactors. This workflow allows sequencing in a manner akin to pyrosequencing but without constant monitoring of each microreactor. With cycle times of <10 minutes, we demonstrate 30 base reads with ∼99% raw accuracy. “Fluorogenic pyrosequencing” combines benefits of pyrosequencing, such as rapid turn-around, native DNA generation, and single-color detection, with benefits of fluorescence-based approaches, such as highly sensitive detection and simple parallelization. PMID:21666670
Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy.
Mankos, Marian; Persson, Henrik H J; N'Diaye, Alpha T; Shadman, Khashayar; Schmid, Andreas K; Davis, Ronald W
2016-01-01
DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectron and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. Both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging.
Laser desorption mass spectrometry for biomolecule detection and its applications
NASA Astrophysics Data System (ADS)
Winston Chen, C. H.; Sammartano, L. J.; Isola, N. R.; Allman, S. L.
2001-08-01
During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications.
DNA-encoded chemistry: enabling the deeper sampling of chemical space.
Goodnow, Robert A; Dumelin, Christoph E; Keefe, Anthony D
2017-02-01
DNA-encoded chemical library technologies are increasingly being adopted in drug discovery for hit and lead generation. DNA-encoded chemistry enables the exploration of chemical spaces four to five orders of magnitude more deeply than is achievable by traditional high-throughput screening methods. Operation of this technology requires developing a range of capabilities including aqueous synthetic chemistry, building block acquisition, oligonucleotide conjugation, large-scale molecular biological transformations, selection methodologies, PCR, sequencing, sequence data analysis and the analysis of large chemistry spaces. This Review provides an overview of the development and applications of DNA-encoded chemistry, highlighting the challenges and future directions for the use of this technology.
Selective DNA demethylation by fusion of TDG with a sequence-specific DNA-binding domain
Gregory, David J.; Mikhaylova, Lyudmila; Fedulov, Alexey V.
2012-01-01
Our ability to selectively manipulate gene expression by epigenetic means is limited, as there is no approach for targeted reactivation of epigenetically silenced genes, in contrast to what is available for selective gene silencing. We aimed to develop a tool for selective transcriptional activation by DNA demethylation. Here we present evidence that direct targeting of thymine-DNA-glycosylase (TDG) to specific sequences in the DNA can result in local DNA demethylation at potential regulatory sequences and lead to enhanced gene induction. When TDG was fused to a well-characterized DNA-binding domain [the Rel-homology domain (RHD) of NFκB], we observed decreased DNA methylation and increased transcriptional response to unrelated stimulus of inducible nitric oxide synthase (NOS2). The effect was not seen for control genes lacking either RHD-binding sites or high levels of methylation, nor in control mock-transduced cells. Specific reactivation of epigenetically silenced genes may thus be achievable by this approach, which provides a broadly useful strategy to further our exploration of biological mechanisms and to improve control over the epigenome. PMID:22419066
USDA-ARS?s Scientific Manuscript database
Changes in gene regulation that underlie phenotypic evolution can be encoded directly in the DNA sequence or mediated by chromatin modifications such as DNA methylation. It has been hypothesized that the evolution of social behavior is associated with enhanced gene regulatory potential, which may in...
Parson, Walther; Strobl, Christina; Huber, Gabriela; Zimmermann, Bettina; Gomes, Sibylle M.; Souto, Luis; Fendt, Liane; Delport, Rhena; Langit, Reina; Wootton, Sharon; Lagacé, Robert; Irwin, Jodi
2013-01-01
Insights into the human mitochondrial phylogeny have been primarily achieved by sequencing full mitochondrial genomes (mtGenomes). In forensic genetics (partial) mtGenome information can be used to assign haplotypes to their phylogenetic backgrounds, which may, in turn, have characteristic geographic distributions that would offer useful information in a forensic case. In addition and perhaps even more relevant in the forensic context, haplogroup-specific patterns of mutations form the basis for quality control of mtDNA sequences. The current method for establishing (partial) mtDNA haplotypes is Sanger-type sequencing (STS), which is laborious, time-consuming, and expensive. With the emergence of Next Generation Sequencing (NGS) technologies, the body of available mtDNA data can potentially be extended much more quickly and cost-efficiently. Customized chemistries, laboratory workflows and data analysis packages could support the community and increase the utility of mtDNA analysis in forensics. We have evaluated the performance of mtGenome sequencing using the Personal Genome Machine (PGM) and compared the resulting haplotypes directly with conventional Sanger-type sequencing. A total of 64 mtGenomes (>1 million bases) were established that yielded high concordance with the corresponding STS haplotypes (<0.02% differences). About two-thirds of the differences were observed in or around homopolymeric sequence stretches. In addition, the sequence alignment algorithm employed to align NGS reads played a significant role in the analysis of the data and the resulting mtDNA haplotypes. Further development of alignment software would be desirable to facilitate the application of NGS in mtDNA forensic genetics. PMID:23948325
Primer in Genetics and Genomics, Article 6: Basics of Epigenetic Control.
Fessele, Kristen L; Wright, Fay
2018-01-01
The epigenome is a collection of chemical compounds that attach to and overlay the DNA sequence to direct gene expression. Epigenetic marks do not alter DNA sequence but instead allow or silence gene activity and the subsequent production of proteins that guide the growth and development of an organism, direct and maintain cell identity, and allow for the production of primordial germ cells (PGCs; ova and spermatozoa). The three main epigenetic marks are (1) histone modification, (2) DNA methylation, and (3) noncoding RNA, and each works in a different way to regulate gene expression. This article reviews these concepts and discusses their role in normal functions such as X-chromosome inactivation, epigenetic reprogramming during embryonic development and PGC production, and the clinical example of the imprinting disorders Angelman and Prader-Willi syndromes.
Thieme, Frank; Marillonnet, Sylvestre
2014-01-01
Identification of unknown sequences that flank known sequences of interest requires PCR amplification of DNA fragments that contain the junction between the known and unknown flanking sequences. Since amplified products often contain a mixture of specific and nonspecific products, the quick and clean (QC) cloning procedure was developed to clone specific products only. QC cloning is a ligation-independent cloning procedure that relies on the exonuclease activity of T4 DNA polymerase to generate single-stranded extensions at the ends of the vector and insert. A specific feature of QC cloning is the use of vectors that contain a sequence called catching sequence that allows cloning specific products only. QC cloning is performed by a one-pot incubation of insert and vector in the presence of T4 DNA polymerase at room temperature for 10 min followed by direct transformation of the incubation mix in chemo-competent Escherichia coli cells.
Tosto, D S; Hopp, H E
1996-01-01
The internal transcribed spacer region (ITS1 and ITS2) of the 18S-25S nuclear ribosomal DNA sequence and the intervening 5.8S region from five species of the genus Oxalis was amplified by polymerase chain reaction and subjected to direct DNA sequencing. On the basis of cytogenetic studies some species of this genus were postulated to be related by the number of chromosomes. Sequence homologies in the ITS1, 5.8S and ITS2 among species are in good agreement with previous relationships established on the basis of chromosome numbers. We also identified a highly conserved sequence of six bp in the ITS1, reported to be present in a wide range of flowering plants, but not in the Oxalidaceae family to which the genus Oxalis belongs to.
Fantin, Yuri S.; Neverov, Alexey D.; Favorov, Alexander V.; Alvarez-Figueroa, Maria V.; Braslavskaya, Svetlana I.; Gordukova, Maria A.; Karandashova, Inga V.; Kuleshov, Konstantin V.; Myznikova, Anna I.; Polishchuk, Maya S.; Reshetov, Denis A.; Voiciehovskaya, Yana A.; Mironov, Andrei A.; Chulanov, Vladimir P.
2013-01-01
Sanger sequencing is a common method of reading DNA sequences. It is less expensive than high-throughput methods, and it is appropriate for numerous applications including molecular diagnostics. However, sequencing mixtures of similar DNA of pathogens with this method is challenging. This is important because most clinical samples contain such mixtures, rather than pure single strains. The traditional solution is to sequence selected clones of PCR products, a complicated, time-consuming, and expensive procedure. Here, we propose the base-calling with vocabulary (BCV) method that computationally deciphers Sanger chromatograms obtained from mixed DNA samples. The inputs to the BCV algorithm are a chromatogram and a dictionary of sequences that are similar to those we expect to obtain. We apply the base-calling function on a test dataset of chromatograms without ambiguous positions, as well as one with 3–14% sequence degeneracy. Furthermore, we use BCV to assemble a consensus sequence for an HIV genome fragment in a sample containing a mixture of viral DNA variants and to determine the positions of the indels. Finally, we detect drug-resistant Mycobacterium tuberculosis strains carrying frameshift mutations mixed with wild-type bacteria in the pncA gene, and roughly characterize bacterial communities in clinical samples by direct 16S rRNA sequencing. PMID:23382983
DNA polymerase preference determines PCR priming efficiency.
Pan, Wenjing; Byrne-Steele, Miranda; Wang, Chunlin; Lu, Stanley; Clemmons, Scott; Zahorchak, Robert J; Han, Jian
2014-01-30
Polymerase chain reaction (PCR) is one of the most important developments in modern biotechnology. However, PCR is known to introduce biases, especially during multiplex reactions. Recent studies have implicated the DNA polymerase as the primary source of bias, particularly initiation of polymerization on the template strand. In our study, amplification from a synthetic library containing a 12 nucleotide random portion was used to provide an in-depth characterization of DNA polymerase priming bias. The synthetic library was amplified with three commercially available DNA polymerases using an anchored primer with a random 3' hexamer end. After normalization, the next generation sequencing (NGS) results of the amplified libraries were directly compared to the unamplified synthetic library. Here, high throughput sequencing was used to systematically demonstrate and characterize DNA polymerase priming bias. We demonstrate that certain sequence motifs are preferred over others as primers where the six nucleotide sequences at the 3' end of the primer, as well as the sequences four base pairs downstream of the priming site, may influence priming efficiencies. DNA polymerases in the same family from two different commercial vendors prefer similar motifs, while another commercially available enzyme from a different DNA polymerase family prefers different motifs. Furthermore, the preferred priming motifs are GC-rich. The DNA polymerase preference for certain sequence motifs was verified by amplification from single-primer templates. We incorporated the observed DNA polymerase preference into a primer-design program that guides the placement of the primer to an optimal location on the template. DNA polymerase priming bias was characterized using a synthetic library amplification system and NGS. The characterization of DNA polymerase priming bias was then utilized to guide the primer-design process and demonstrate varying amplification efficiencies among three commercially available DNA polymerases. The results suggest that the interaction of the DNA polymerase with the primer:template junction during the initiation of DNA polymerization is very important in terms of overall amplification bias and has broader implications for both the primer design process and multiplex PCR.
Compressing DNA sequence databases with coil.
White, W Timothy J; Hendy, Michael D
2008-05-20
Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip) compression - an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression - the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST) data. Finally, coil can efficiently encode incremental additions to a sequence database. coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.
Compressing DNA sequence databases with coil
White, W Timothy J; Hendy, Michael D
2008-01-01
Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip) compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST) data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work. PMID:18489794
Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus vulgaris.
Kami, J; Velásquez, V B; Debouck, D G; Gepts, P
1995-01-01
Common bean (Phaseolus vulgaris) consists of two major geographic gene pools, one distributed in Mexico, Central America, and Colombia and the other in the southern Andes (southern Peru, Bolivia, and Argentina). Amplification and sequencing of members of the multigene family coding for phaseolin, the major seed storage protein of the common bean, provide evidence for accumulation of tandem direct repeats in both introns and exons during evolution of the multigene family in this species. The presumed ancestral phaseolin sequences, without tandem repeats, were found in recently discovered but nearly extinct wild common bean populations of Ecuador and northern Peru that are intermediate between the two major gene pools of the species based on geographical and molecular arguments. Our results illustrate the usefulness of tandem direct repeats in establishing the polarity of DNA sequence divergence and therefore in proposing phylogenies. Images Fig. 1 Fig. 3 PMID:7862642
Method for construction of normalized cDNA libraries
Soares, Marcelo B.; Efstratiadis, Argiris
1998-01-01
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3' noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to appropriate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library. This invention also provides normalized cDNA libraries generated by the above-described method and uses of the generated libraries.
Method for construction of normalized cDNA libraries
Soares, M.B.; Efstratiadis, A.
1998-11-03
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3` noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to appropriate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library. This invention also provides normalized cDNA libraries generated by the above-described method and uses of the generated libraries. 19 figs.
Jurka, Jerzy W.
1997-01-01
Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.
Apparatus for improved DNA sequencing
Douthart, R.J.; Crowell, S.L.
1996-05-07
This invention is a means for the rapid sequencing of DNA samples. More specifically, it consists of a new design direct blotting electrophoresis unit. The DNA sequence is deposited on a membrane attached to a rotating drum. Initial data compaction is facilitated by the use of a machined multi-channeled plate called a ribbon channel plate. Each channel is an isolated mini gel system much like a gel filled capillary. The system as a whole, however, is in a slab gel like format with the advantages of uniformity and easy reusability. The system can be used in different embodiments. The drum system is unique in that after deposition the drum rotates the deposited DNA into a large non-buffer open space where processing and detection can occur. The drum can also be removed in toto to special workstations for downstream processing, multiplexing and detection. 18 figs.
Apparatus for improved DNA sequencing
Douthart, Richard J.; Crowell, Shannon L.
1996-01-01
This invention is a means for the rapid sequencing of DNA samples. More specifically, it consists of a new design direct blotting electrophoresis unit. The DNA sequence is deposited on a membrane attached to a rotating drum. Initial data compaction is facilitated by the use of a machined multi-channeled plate called a ribbon channel plate. Each channel is an isolated mini gel system much like a gel filled capillary. The system as a whole, however, is in a slab gel like format with the advantages of uniformity and easy reusability. The system can be used in different embodiments. The drum system is unique in that after deposition the drum rotates the deposited DNA into a large non-buffer open space where processing and detection can occur. The drum can also be removed in toto to special workstations for downstream processing, multiplexing and detection.
Langley, Alexander R.; Gräf, Stefan; Smith, James C.; Krude, Torsten
2016-01-01
Next-generation sequencing has enabled the genome-wide identification of human DNA replication origins. However, different approaches to mapping replication origins, namely (i) sequencing isolated small nascent DNA strands (SNS-seq); (ii) sequencing replication bubbles (bubble-seq) and (iii) sequencing Okazaki fragments (OK-seq), show only limited concordance. To address this controversy, we describe here an independent high-resolution origin mapping technique that we call initiation site sequencing (ini-seq). In this approach, newly replicated DNA is directly labelled with digoxigenin-dUTP near the sites of its initiation in a cell-free system. The labelled DNA is then immunoprecipitated and genomic locations are determined by DNA sequencing. Using this technique we identify >25,000 discrete origin sites at sub-kilobase resolution on the human genome, with high concordance between biological replicates. Most activated origins identified by ini-seq are found at transcriptional start sites and contain G-quadruplex (G4) motifs. They tend to cluster in early-replicating domains, providing a correlation between early replication timing and local density of activated origins. Origins identified by ini-seq show highest concordance with sites identified by SNS-seq, followed by OK-seq and bubble-seq. Furthermore, germline origins identified by positive nucleotide distribution skew jumps overlap with origins identified by ini-seq and OK-seq more frequently and more specifically than do sites identified by either SNS-seq or bubble-seq. PMID:27587586
Langley, Alexander R; Gräf, Stefan; Smith, James C; Krude, Torsten
2016-12-01
Next-generation sequencing has enabled the genome-wide identification of human DNA replication origins. However, different approaches to mapping replication origins, namely (i) sequencing isolated small nascent DNA strands (SNS-seq); (ii) sequencing replication bubbles (bubble-seq) and (iii) sequencing Okazaki fragments (OK-seq), show only limited concordance. To address this controversy, we describe here an independent high-resolution origin mapping technique that we call initiation site sequencing (ini-seq). In this approach, newly replicated DNA is directly labelled with digoxigenin-dUTP near the sites of its initiation in a cell-free system. The labelled DNA is then immunoprecipitated and genomic locations are determined by DNA sequencing. Using this technique we identify >25,000 discrete origin sites at sub-kilobase resolution on the human genome, with high concordance between biological replicates. Most activated origins identified by ini-seq are found at transcriptional start sites and contain G-quadruplex (G4) motifs. They tend to cluster in early-replicating domains, providing a correlation between early replication timing and local density of activated origins. Origins identified by ini-seq show highest concordance with sites identified by SNS-seq, followed by OK-seq and bubble-seq. Furthermore, germline origins identified by positive nucleotide distribution skew jumps overlap with origins identified by ini-seq and OK-seq more frequently and more specifically than do sites identified by either SNS-seq or bubble-seq. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Chernicky, C L; Tan, H; Burfeind, P; Ilan, J; Ilan, J
1996-02-01
There are several cell types within the placenta that produce cytokines which can contribute to the regulatory mechanisms that ensure normal pregnancy. The immunological milieu at the maternofetal interface is considered to be crucial for survival of the fetus. Interleukin-2 (IL-2) is expressed by the syncytiotrophoblast, the cell layer between the mother and the fetus. IL-2 appears to be a key factor in maintenance of pregnancy. Therefore, it was important to determine the sequence of human placental interleukin-2. Direct sequencing of human placental IL-2 cDNA was determined for the coding region. Subclone sequencing was carried out for the 5'- and 3'-untranslated regions (5'-UTR and 3'-UTR). The 5'-UTR for human placental IL-2 cDNA is 294 bp, which is 247 nucleotides longer than that reported for cDNA IL-2 derived from T cells. The sequence of the coding region is identical to that reported for T cell IL-2, while sequence analysis of the polymerase chain reaction (PCR) product showed that the cDNA from the 3' end was the same as that reported for cDNA from T cells. Human placental IL-2 cDNA is 1,028 base pairs (excluding the poly A tail), which is 247 bp longer at the 5' end than that reported for IL-2 T cell cDNA. Therefore, the extended 5'-UTR of the placental IL-2 cDNA may be a consequence of alternative promoter utilization in the placenta.
Contamination of sequence databases with adaptor sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshikawa, Takeo; Sanders, A.R.; Detera-Wadleigh, S.D.
Because of the exponential increase in the amount of DNA sequences being added to the public databases on a daily basis, it has become imperative to identify sources of contamination rapidly. Previously, contaminations of sequence databases have been reported to alert the scientific community to the problem. These contaminations can be divided into two categories. The first category comprises host sequences that have been difficult for submitters to manage or control. Examples include anomalous sequences derived from Escherichia coli, which are inserted into the chromosomes (and plasmids) of the bacterial hosts. Insertion sequences are highly mobile and are capable ofmore » transposing themselves into plasmids during cloning manipulation. Another example of the first category is the infection with yeast genomic DNA or with bacterial DNA of some commercially available cDNA libraries from Clontech. The second category of database contamination is due to the inadvertent inclusion of nonhost sequences. This category includes incorporation of cloning-vector sequences and multicloning sites in the database submission. M13-derived artifacts have been common, since M13-based vectors have been widely used for subcloning DNA fragments. Recognizing this problem, the National Center for Biotechnology Information (NCBI) started to screen, in April 1994, all sequences directly submitted to GenBank, against a set of vector data retrieved from GenBank by use of key-word searches, such as {open_quotes}vector.{close_quotes} In this report, we present evidence for another sequence artifact that is widespread but that, to our knowledge, has not yet been reported. 11 refs., 1 tab.« less
Evolutionary and biophysical relationships among the papillomavirus E2 proteins.
Blakaj, Dukagjin M; Fernandez-Fuentes, Narcis; Chen, Zigui; Hegde, Rashmi; Fiser, Andras; Burk, Robert D; Brenowitz, Michael
2009-01-01
Infection by human papillomavirus (HPV) may result in clinical conditions ranging from benign warts to invasive cancer. The HPV E2 protein represses oncoprotein transcription and is required for viral replication. HPV E2 binds to palindromic DNA sequences of highly conserved four base pair sequences flanking an identical length variable 'spacer'. E2 proteins directly contact the conserved but not the spacer DNA. Variation in naturally occurring spacer sequences results in differential protein affinity that is dependent on their sensitivity to the spacer DNA's unique conformational and/or dynamic properties. This article explores the biophysical character of this core viral protein with the goal of identifying characteristics that associated with risk of virally caused malignancy. The amino acid sequence, 3d structure and electrostatic features of the E2 protein DNA binding domain are highly conserved; specific interactions with DNA binding sites have also been conserved. In contrast, the E2 protein's transactivation domain does not have extensive surfaces of highly conserved residues. Rather, regions of high conservation are localized to small surface patches. Implications to cancer biology are discussed.
Evers, R; Grummt, I
1995-01-01
Both the DNA elements and the nuclear factors that direct termination of ribosomal gene transcription exhibit species-specific differences. Even between mammals--e.g., human and mouse--the termination signals are not identical and the respective transcription termination factors (TTFs) which bind to the terminator sequence are not fully interchangeable. To elucidate the molecular basis for this species-specificity, we have cloned TTF-I from human and mouse cells and compared their structural and functional properties. Recombinant TTF-I exhibits species-specific DNA binding and terminates transcription both in cell-free transcription assays and in transfection experiments. Chimeric constructs of mouse TTF-I and human TTF-I reveal that the major determinant for species-specific DNA binding resides within the C terminus of TTF-I. Replacing 31 C-terminal amino acids of mouse TTF-I with the homologous human sequences relaxes the DNA-binding specificity and, as a consequence, allows the chimeric factor to bind the human terminator sequence and to specifically stop rDNA transcription. Images Fig. 2 Fig. 3 Fig. 4 PMID:7597036
In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting.
Chen, Xiaoyu; Janssen, Josephine M; Liu, Jin; Maggio, Ignazio; 't Jong, Anke E J; Mikkers, Harald M M; Gonçalves, Manuel A F V
2017-09-22
Precise genome editing involves homologous recombination between donor DNA and chromosomal sequences subjected to double-stranded DNA breaks made by programmable nucleases. Ideally, genome editing should be efficient, specific, and accurate. However, besides constituting potential translocation-initiating lesions, double-stranded DNA breaks (targeted or otherwise) are mostly repaired through unpredictable and mutagenic non-homologous recombination processes. Here, we report that the coordinated formation of paired single-stranded DNA breaks, or nicks, at donor plasmids and chromosomal target sites by RNA-guided nucleases based on CRISPR-Cas9 components, triggers seamless homology-directed gene targeting of large genetic payloads in human cells, including pluripotent stem cells. Importantly, in addition to significantly reducing the mutagenicity of the genome modification procedure, this in trans paired nicking strategy achieves multiplexed, single-step, gene targeting, and yields higher frequencies of accurately edited cells when compared to the standard double-stranded DNA break-dependent approach.CRISPR-Cas9-based gene editing involves double-strand breaks at target sequences, which are often repaired by mutagenic non-homologous end-joining. Here the authors use Cas9 nickases to generate coordinated single-strand breaks in donor and target DNA for precise homology-directed gene editing.
Mapping vaccinia virus DNA replication origins at nucleotide level by deep sequencing.
Senkevich, Tatiana G; Bruno, Daniel; Martens, Craig; Porcella, Stephen F; Wolf, Yuri I; Moss, Bernard
2015-09-01
Poxviruses reproduce in the host cytoplasm and encode most or all of the enzymes and factors needed for expression and synthesis of their double-stranded DNA genomes. Nevertheless, the mode of poxvirus DNA replication and the nature and location of the replication origins remain unknown. A current but unsubstantiated model posits only leading strand synthesis starting at a nick near one covalently closed end of the genome and continuing around the other end to generate a concatemer that is subsequently resolved into unit genomes. The existence of specific origins has been questioned because any plasmid can replicate in cells infected by vaccinia virus (VACV), the prototype poxvirus. We applied directional deep sequencing of short single-stranded DNA fragments enriched for RNA-primed nascent strands isolated from the cytoplasm of VACV-infected cells to pinpoint replication origins. The origins were identified as the switching points of the fragment directions, which correspond to the transition from continuous to discontinuous DNA synthesis. Origins containing a prominent initiation point mapped to a sequence within the hairpin loop at one end of the VACV genome and to the same sequence within the concatemeric junction of replication intermediates. These findings support a model for poxvirus genome replication that involves leading and lagging strand synthesis and is consistent with the requirements for primase and ligase activities as well as earlier electron microscopic and biochemical studies implicating a replication origin at the end of the VACV genome.
Adeno-associated virus inverted terminal repeats stimulate gene editing.
Hirsch, M L
2015-02-01
Advancements in genome editing have relied on technologies to specifically damage DNA which, in turn, stimulates DNA repair including homologous recombination (HR). As off-target concerns complicate the therapeutic translation of site-specific DNA endonucleases, an alternative strategy to stimulate gene editing based on fragile DNA was investigated. To do this, an episomal gene-editing reporter was generated by a disruptive insertion of the adeno-associated virus (AAV) inverted terminal repeat (ITR) into the egfp gene. Compared with a non-structured DNA control sequence, the ITR induced DNA damage as evidenced by increased gamma-H2AX and Mre11 foci formation. As local DNA damage stimulates HR, ITR-mediated gene editing was investigated using DNA oligonucleotides as repair substrates. The AAV ITR stimulated gene editing >1000-fold in a replication-independent manner and was not biased by the polarity of the repair oligonucleotide. Analysis of additional human DNA sequences demonstrated stimulation of gene editing to varying degrees. In particular, inverted yet not direct, Alu repeats induced gene editing, suggesting a role for DNA structure in the repair event. Collectively, the results demonstrate that inverted DNA repeats stimulate gene editing via double-strand break repair in an episomal context and allude to efficient gene editing of the human chromosome using fragile DNA sequences.
Schultz, Sharon J; Zhang, Miaohua; Champoux, James J
2010-03-19
The RNase H activity of reverse transcriptase is required during retroviral replication and represents a potential target in antiviral drug therapies. Sequence features flanking a cleavage site influence the three types of retroviral RNase H activity: internal, DNA 3'-end-directed, and RNA 5'-end-directed. Using the reverse transcriptases of HIV-1 (human immunodeficiency virus type 1) and Moloney murine leukemia virus (M-MuLV), we evaluated how individual base preferences at a cleavage site direct retroviral RNase H specificity. Strong test cleavage sites (designated as between nucleotide positions -1 and +1) for the HIV-1 and M-MuLV enzymes were introduced into model hybrid substrates designed to assay internal or DNA 3'-end-directed cleavage, and base substitutions were tested at specific nucleotide positions. For internal cleavage, positions +1, -2, -4, -5, -10, and -14 for HIV-1 and positions +1, -2, -6, and -7 for M-MuLV significantly affected RNase H cleavage efficiency, while positions -7 and -12 for HIV-1 and positions -4, -9, and -11 for M-MuLV had more modest effects. DNA 3'-end-directed cleavage was influenced substantially by positions +1, -2, -4, and -5 for HIV-1 and positions +1, -2, -6, and -7 for M-MuLV. Cleavage-site distance from the recessed end did not affect sequence preferences for M-MuLV reverse transcriptase. Based on the identified sequence preferences, a cleavage site recognized by both HIV-1 and M-MuLV enzymes was introduced into a sequence that was otherwise resistant to RNase H. The isolated RNase H domain of M-MuLV reverse transcriptase retained sequence preferences at positions +1 and -2 despite prolific cleavage in the absence of the polymerase domain. The sequence preferences of retroviral RNase H likely reflect structural features in the substrate that favor cleavage and represent a novel specificity determinant to consider in drug design. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Preparation of 13C/15N-labeled oligomers using the polymerase chain reaction
Chen, Xian; Gupta, Goutam; Bradbury, E. Morton
2001-01-01
Preparation of .sup.13 C/.sup.15 N-labeled DNA oligomers using the polymerase chain reaction (PCR). A PCR based method for uniform (.sup.13 C/.sup.15 N)-labeling of DNA duplexes is described. Multiple copies of a blunt-ended duplex are cloned into a plasmid, each copy containing the sequence of interest and restriction Hinc II sequences at both the 5' and 3' ends. PCR using bi-directional primers and uniformly .sup.13 C/.sup.15 N-labeled dNTP precursors generates labeled DNA duplexes containing multiple copies of the sequence of interest. Twenty-four cycles of PCR, followed by restriction and purification, gave the uniformly .sup.13 C/.sup.15 N-labeled duplex sequence with a 30% yield. Such labeled duplexes find significant applications in multinuclear magnetic resonance spectroscopy.
Ramond, J-B; Makhalanyane, T P; Tuffin, M I; Cowan, D A
2015-04-01
Normalization is a procedure classically employed to detect rare sequences in cellular expression profiles (i.e. cDNA libraries). Here, we present a normalization protocol involving the direct treatment of extracted environmental metagenomic DNA with S1 nuclease, referred to as normalization of metagenomic DNA: NmDNA. We demonstrate that NmDNA, prior to post hoc PCR-based experiments (16S rRNA gene T-RFLP fingerprinting and clone library), increased the diversity of sequences retrieved from environmental microbial communities by detection of rarer sequences. This approach could be used to enhance the resolution of detection of ecologically relevant rare members in environmental microbial assemblages and therefore is promising in enabling a better understanding of ecosystem functioning. This study is the first testing 'normalization' on environmental metagenomic DNA (mDNA). The aim of this procedure was to improve the identification of rare phylotypes in environmental communities. Using hypoliths as model systems, we present evidence that this post-mDNA extraction molecular procedure substantially enhances the detection of less common phylotypes and could even lead to the discovery of novel microbial genotypes within a given environment. © 2014 The Society for Applied Microbiology.
Cimino, Matthew T
2010-03-01
Twenty-four herbal dietary supplement powder and extract reference standards provided by the National Institute of Standards and Technology (NIST) were investigated using three different commercially available DNA extraction kits to evaluate DNA availability for downstream nucleotide-based applications. The material included samples of Camellia, Citrus, Ephedra, Ginkgo, Hypericum, Serenoa, And Vaccinium. Protocols from Qiagen, MoBio, and Phytopure were used to isolate and purify DNA from the NIST standards. The resulting DNA concentration was quantified using SYBR Green fluorometry. Each of the 24 samples yielded DNA, though the concentration of DNA from each approach was notably different. The Phytopure method consistently yielded more DNA. The average yield ratio was 22 : 3 : 1 (ng/microL; Phytopure : Qiagen : MoBio). Amplification of the internal transcribed spacer II region using PCR was ultimately successful in 22 of the 24 samples. Direct sequencing chromatograms of the amplified material suggested that most of the samples were comprised of mixtures. However, the sequencing chromatograms of 12 of the 24 samples were sufficient to confirm the identity of the target material. The successful extraction, amplification, and sequencing of DNA from these herbal dietary supplement extracts and powders supports a continued effort to explore nucleotide sequence-based tools for the authentication and identification of plants in dietary supplements. (c) Georg Thieme Verlag KG Stuttgart . New York.
Mitochondrial DNA mutations in single human blood cells.
Yao, Yong-Gang; Kajigaya, Sachiko; Young, Neal S
2015-09-01
Determination mitochondrial DNA (mtDNA) sequences from extremely small amounts of DNA extracted from tissue of limited amounts and/or degraded samples is frequently employed in medical, forensic, and anthropologic studies. Polymerase chain reaction (PCR) amplification followed by DNA cloning is a routine method, especially to examine heteroplasmy of mtDNA mutations. In this review, we compare the mtDNA mutation patterns detected by three different sequencing strategies. Cloning and sequencing methods that are based on PCR amplification of DNA extracted from either single cells or pooled cells yield a high frequency of mutations, partly due to the artifacts introduced by PCR and/or the DNA cloning process. Direct sequencing of PCR product which has been amplified from DNA in individual cells is able to detect the low levels of mtDNA mutations present within a cell. We further summarize the findings in our recent studies that utilized this single cell method to assay mtDNA mutation patterns in different human blood cells. Our data show that many somatic mutations observed in the end-stage differentiated cells are found in hematopoietic stem cells (HSCs) and progenitors within the CD34(+) cell compartment. Accumulation of mtDNA variations in the individual CD34+ cells is affected by both aging and family genetic background. Granulocytes harbor higher numbers of mutations compared with the other cells, such as CD34(+) cells and lymphocytes. Serial assessment of mtDNA mutations in a population of single CD34(+) cells obtained from the same donor over time suggests stability of some somatic mutations. CD34(+) cell clones from a donor marked by specific mtDNA somatic mutations can be found in the recipient after transplantation. The significance of these findings is discussed in terms of the lineage tracing of HSCs, aging effect on accumulation of mtDNA mutations and the usage of mtDNA sequence in forensic identification. Copyright © 2015 Elsevier B.V. All rights reserved.
Havert, Michael B.; Ji, Lin; Loeb, Daniel D.
2002-01-01
The synthesis of the hepadnavirus relaxed circular DNA genome requires two template switches, primer translocation and circularization, during plus-strand DNA synthesis. Repeated sequences serve as donor and acceptor templates for these template switches, with direct repeat 1 (DR1) and DR2 for primer translocation and 5′r and 3′r for circularization. These donor and acceptor sequences are at, or near, the ends of the minus-strand DNA. Analysis of plus-strand DNA synthesis of duck hepatitis B virus (DHBV) has indicated that there are at least three other cis-acting sequences that make contributions during the synthesis of relaxed circular DNA. These sequences, 5E, M, and 3E, are located near the 5′ end, the middle, and the 3′ end of minus-strand DNA, respectively. The mechanism by which these sequences contribute to the synthesis of plus-strand DNA was unclear. Our aim was to better understand the mechanism by which 5E and M act. We localized the DHBV 5E element to a short sequence of approximately 30 nucleotides that is 100 nucleotides 3′ of DR2 on minus-strand DNA. We found that the new 5E mutants were partially defective for primer translocation/utilization at DR2. They were also invariably defective for circularization. In addition, examination of several new DHBV M variants indicated that they too were defective for primer translocation/utilization and circularization. Thus, this analysis indicated that 5E and M play roles in both primer translocation/utilization and circularization. In conjunction with earlier findings that 3E functions in both template switches, our findings indicate that the processes of primer translocation and circularization share a common underlying mechanism. PMID:11861843
Ginther, C; Corach, D; Penacino, G A; Rey, J A; Carnese, F R; Hutz, M H; Anderson, A; Just, J; Salzano, F M; King, M C
1993-01-01
DNA samples from 60 Mapuche Indians, representing 39 maternal lineages, were genetically characterized for (1) nucleotide sequences of the mtDNA control region; (2) presence or absence of a nine base duplication in mtDNA region V; (3) HLA loci DRB1 and DQA1; (4) variation at three nuclear genes with short tandem repeats; and (5) variation at the polymorphic marker D2S44. The genetic profile of the Mapuche population was compared to other Amerinds and to worldwide populations. Two highly polymorphic portions of the mtDNA control region, comprising 650 nucleotides, were amplified by the polymerase chain reaction (PCR) and directly sequenced. The 39 maternal lineages were defined by two or three generation families identified by the Mapuches. These 39 lineages included 19 different mtDNA sequences that could be grouped into four classes. The same classes of sequences appear in other Amerinds from North, Central, and South American populations separated by thousands of miles, suggesting that the origin of the mtDNA patterns predates the migration to the Americas. The mtDNA sequence similarity between Amerind populations suggests that the migration throughout the Americas occurred rapidly relative to the mtDNA mutation rate. HLA DRB1 alleles 1602 and 1402 were frequent among the Mapuches. These alleles also occur at high frequency among other Amerinds in North and South America, but not among Spanish, Chinese or African-American populations. The high frequency of these alleles throughout the Americas, and their specificity to the Americas, supports the hypothesis that Mapuches and other Amerind groups are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)
Nanowire-nanopore transistor sensor for DNA detection during translocation
NASA Astrophysics Data System (ADS)
Xie, Ping; Xiong, Qihua; Fang, Ying; Qing, Quan; Lieber, Charles
2011-03-01
Nanopore sequencing, as a promising low cost, high throughput sequencing technique, has been proposed more than a decade ago. Due to the incompatibility between small ionic current signal and fast translocation speed and the technical difficulties on large scale integration of nanopore for direct ionic current sequencing, alternative methods rely on integrated DNA sensors have been proposed, such as using capacitive coupling or tunnelling current etc. But none of them have been experimentally demonstrated yet. Here we show that for the first time an amplified sensor signal has been experimentally recorded from a nanowire-nanopore field effect transistor sensor during DNA translocation. Independent multi-channel recording was also demonstrated for the first time. Our results suggest that the signal is from highly localized potential change caused by DNA translocation in none-balanced buffer condition. Given this method may produce larger signal for smaller nanopores, we hope our experiment can be a starting point for a new generation of nanopore sequencing devices with larger signal, higher bandwidth and large-scale multiplexing capability and finally realize the ultimate goal of low cost high throughput sequencing.
Howland, Shanshan W; Poh, Chek-Meng; Rénia, Laurent
2011-09-01
Directional cloning of complementary DNA (cDNA) primed by oligo(dT) is commonly achieved by appending a restriction site to the primer, whereas the second strand is synthesized through the combined action of RNase H and Escherichia coli DNA polymerase I (PolI). Although random primers provide more uniform and complete coverage, directional cloning with the same strategy is highly inefficient. We report that phosphorothioate linkages protect the tail sequence appended to random primers from the 5'→3' exonuclease activity of PolI. We present a simple strategy for constructing a random-primed cDNA library using the efficient, size-independent, and seamless In-Fusion cloning method instead of restriction enzymes. Copyright © 2011 Elsevier Inc. All rights reserved.
[Establishment of systemic lupus erythematosus-like murine model with Sm mimotope].
Xie, Hong-Fu; Feng, Hao; Zeng, Hai-Yan; Li, Ji; Shi, Wei; Yi, Mei; Wu, Bin
2007-04-01
To establish systemic lupus erythematosus (SLE) -like murine model by immunizing BALB/C mice with Sm mimotope. Sm mimotope was identified by screening a 12-mer random peptide library with monoclonal anti-Smith antibody. Sm mimotope was initially defined with sandwich ELISA, DNA sequencing, and deduced amino acid sequence; and BALB/C mice were subcutaneously injected with mixture phages clones. Sera Sm antibody, anti-double stranded DNA (dsDNA) antibody, and antinuclear antibody (ANA) of mice were detected using direct immunofluorescence; kidney histological changes were examined by HE staining. Five randomly selected peptides were sequenced and the amino acid sequences IR, SQ, and PP were detected in a higher frequency. High-titer IgG autoantibodies of dsDNA, Sm, and ANA in the sera of experiment group were detected by ELISA 28 days after having been immunized by Sm mimotope. Proteinuria was detected 33 days later; immune complex and nephritis were observed in kidney specimens. SLE-like murine model can be successfully induced by Sm phage mimotope.
Bose, Baundauna; Reed, Sydney E; Besprozvannaya, Marina; Burton, Briana M
2016-01-01
SpoIIIE directionally pumps DNA across membranes during Bacillus subtilis sporulation and vegetative growth. The sequence-reading domain (γ domain) is required for directional DNA transport, and its deletion severely impairs sporulation. We selected suppressors of the spoIIIEΔγ sporulation defect. Unexpectedly, many suppressors were intragenic missense mutants, and some restore sporulation to near-wild-type levels. The mutant proteins are likely not more abundant, faster at translocating DNA, or sequence-sensitive, and rescue does not involve the SpoIIIE homolog SftA. Some mutants behave differently when co-expressed with spoIIIEΔγ, consistent with the idea that some, but not all, variants may form mixed oligomers. In full-length spoIIIE, these mutations do not affect sporulation, and yet the corresponding residues are rarely found in other SpoIIIE/FtsK family members. The suppressors do not rescue chromosome translocation defects during vegetative growth, indicating that the role of the γ domain cannot be fully replaced by these mutations. We present two models consistent with our findings: that the suppressors commit to transport in one arbitrarily-determined direction or delay spore development. It is surprising that missense mutations somehow rescue loss of an entire domain with a complex function, and this raises new questions about the mechanism by which SpoIIIE pumps DNA and the roles SpoIIIE plays in vivo.
Fritz, Megan L; Miller, James R; Bayoh, M Nabie; Vulule, John M; Landgraf, Jeffrey R; Walker, Edward D
2012-01-01
A DNA-DNA hybridization method, reverse dot blot analysis (RDBA), was used for identification of Anopheles gambiae s.s. and An. arabiensis hosts. Of 299 blood fed and half gravid An. gambiae s.l. collected from Kisian, Kenya, 244 individuals were identifiable to species; 69.5% were An. arabiensis, and 29.5% were An. gambiae s.s. Host identifications with RDBA were comparable to conventional PCR followed by direct sequencing of amplicons of the vertebrate mitochondrial cytochrome B gene. Of the 174 amplicon-producing samples used for comparison of these two methods, 147 were identifiable by direct sequencing, and 139 of these same by RDBA. An. arabiensis blood meals were mostly (>90%) bovine in origin, whereas An. gambiae s.s. fed upon humans > 90% of the time. RDBA detected that 2 of 112 An. arabiensis had blood from more than one host species, whereas PCR and direct sequencing did not. Recent insecticide-treated bednet (ITN) use in Kisian has likely caused the shift in the dominant vector species from An. gambiae s.s. to An. arabiensis. RDBA provides an opportunity to study changes in host-feeding by members of the An. gambiae complex as a response to the broadening distribution of vector control measures targeting host-selection behaviors. PMID:24188164
Triplex-mediated analysis of cytosine methylation at CpA sites in DNA.
Johannsen, Marie W; Gerrard, Simon R; Melvin, Tracy; Brown, Tom
2014-01-18
Modified triplex-forming oligonucleotides distinguish 5-methyl cytosine from unmethylated cytosine in DNA duplexes by differences in triplex melting temperatures. The discrimination is sequence-specific; dramatic differences in stabilisation are seen for CpA methylation, whereas CpG methylation is not detected. This direct detection of DNA methylation constitutes a new approach for epigenetic analysis.
DNA-directed mutations. Leading and lagging strand specificity
NASA Technical Reports Server (NTRS)
Sinden, R. R.; Hashem, V. I.; Rosche, W. A.
1999-01-01
The fidelity of replication has evolved to reproduce B-form DNA accurately, while allowing a low frequency of mutation. The fidelity of replication can be compromised, however, by defined order sequence DNA (dosDNA) that can adopt unusual or non B-DNA conformations. These alternative DNA conformations, including hairpins, cruciforms, triplex DNAs, and slipped-strand structures, may affect enzyme-template interactions that potentially lead to mutations. To analyze the effect of dosDNA elements on spontaneous mutagenesis, various mutational inserts containing inverted repeats or direct repeats were cloned in a plasmid containing a unidirectional origin of replication and a selectable marker for the mutation. This system allows for analysis of mutational events that are specific for the leading or lagging strands during DNA replication in Escherichia coli. Deletions between direct repeats, involving misalignment stabilized by DNA secondary structure, occurred preferentially on the lagging strand. Intermolecular strand switch events, correcting quasipalindromes to perfect inverted repeats, occurred preferentially during replication of the leading strand.
Greenberg, Jay R.; Perry, Robert P.
1971-01-01
The relationship of the DNA sequences from which polyribosomal messenger RNA (mRNA) and heterogeneous nuclear RNA (NRNA) of mouse L cells are transcribed was investigated by means of hybridization kinetics and thermal denaturation of the hybrids. Hybridization was performed in formamide solutions at DNA excess. Under these conditions most of the hybridizing mRNA and NRNA react at values of Dot (DNA concentration multiplied by time) expected for RNA transcribed from the nonrepeated or rarely repeated fraction of the genome. However, a fraction of both mRNA and NRNA hybridize at values of Dot about 10,000 times lower, and therefore must be transcribed from highly redundant DNA sequences. The fraction of NRNA hybridizing to highly repeated sequences is about 1.7 times greater than the corresponding fraction of mRNA. The hybrids formed by the rapidly reacting fractions of both NRNA and mRNA melt over a narrow temperature range with a midpoint about 11°C below that of native L cell DNA. This indicates that these hybrids consist of partially complementary sequences with approximately 11% mismatching of bases. Hybrids formed by the slowly reacting fraction of NRNA melt within 4°–6°C of native DNA, indicating very little, if any, mismatching of bases. Hybrids of the slowly reacting components of mRNA, formed under conditions of sufficiently low RNA input, have a high thermal stability, similar to that observed for hybrids of the slowly reacting NRNA component. However, when higher inputs of mRNA are used, hybrids are formed which have a strikingly lower thermal stability. This observation can be explained by assuming that there is sufficient similarity among the relatively rare DNA sequences coding for mRNA so that under hybridization conditions, in which these DNA sequences are not truly in excess, reversible hybrids exhibiting a considerable amount of mispairing are formed. The fact that a comparable phenomenon has not been observed for NRNA may mean that there is less similarity among the relatively rare DNA sequences coding for NRNA than there is among the rare sequences coding for mRNA. PMID:4999767
Park, Suehyun; Joo, Heesun; Kim, Jun Soo
2018-01-31
Directing the motion of molecules/colloids in any specific direction is of great interest in many applications of chemistry, physics, and biological sciences, where regulated positioning or transportation of materials is highly desired. Using Brownian dynamics simulations of coarse-grained models of a long, double-stranded DNA molecule and positively charged nanoparticles, we observed that the motion of a single nanoparticle bound to and wrapped by the DNA molecule can be directed along a gradient of DNA local flexibility. The flexibility gradient is constructed along a 0.8 kilobase-pair DNA molecule such that local persistence length decreases gradually from 50 nm to 40 nm, mimicking a gradual change in sequence-dependent flexibility. Nanoparticles roll over a long DNA molecule from less flexible regions towards more flexible ones as a result of the decreasing energetic cost of DNA bending and wrapping. In addition, the rolling becomes slightly accelerated as the positive charge of nanoparticles decreases due to a lower free energy barrier of DNA detachment from charged nanoparticle for processive rolling. This study suggests that the variation in DNA local flexibility can be utilized in constructing and manipulating supramolecular assemblies of DNA molecules and nanoparticles in structural DNA nanotechnology.
Mixed Sequence Reader: A Program for Analyzing DNA Sequences with Heterozygous Base Calling
Chang, Chun-Tien; Tsai, Chi-Neu; Tang, Chuan Yi; Chen, Chun-Houh; Lian, Jang-Hau; Hu, Chi-Yu; Tsai, Chia-Lung; Chao, Angel; Lai, Chyong-Huey; Wang, Tzu-Hao; Lee, Yun-Shien
2012-01-01
The direct sequencing of PCR products generates heterozygous base-calling fluorescence chromatograms that are useful for identifying single-nucleotide polymorphisms (SNPs), insertion-deletions (indels), short tandem repeats (STRs), and paralogous genes. Indels and STRs can be easily detected using the currently available Indelligent or ShiftDetector programs, which do not search reference sequences. However, the detection of other genomic variants remains a challenge due to the lack of appropriate tools for heterozygous base-calling fluorescence chromatogram data analysis. In this study, we developed a free web-based program, Mixed Sequence Reader (MSR), which can directly analyze heterozygous base-calling fluorescence chromatogram data in .abi file format using comparisons with reference sequences. The heterozygous sequences are identified as two distinct sequences and aligned with reference sequences. Our results showed that MSR may be used to (i) physically locate indel and STR sequences and determine STR copy number by searching NCBI reference sequences; (ii) predict combinations of microsatellite patterns using the Federal Bureau of Investigation Combined DNA Index System (CODIS); (iii) determine human papilloma virus (HPV) genotypes by searching current viral databases in cases of double infections; (iv) estimate the copy number of paralogous genes, such as β-defensin 4 (DEFB4) and its paralog HSPDP3. PMID:22778697
DNA Translator and Aligner: HyperCard utilities to aid phylogenetic analysis of molecules.
Eernisse, D J
1992-04-01
DNA Translator and Aligner are molecular phylogenetics HyperCard stacks for Macintosh computers. They manipulate sequence data to provide graphical gene mapping, conversions, translations and manual multiple-sequence alignment editing. DNA Translator is able to convert documented GenBank or EMBL documented sequences into linearized, rescalable gene maps whose gene sequences are extractable by clicking on the corresponding map button or by selection from a scrolling list. Provided gene maps, complete with extractable sequences, consist of nine metazoan, one yeast, and one ciliate mitochondrial DNAs and three green plant chloroplast DNAs. Single or multiple sequences can be manipulated to aid in phylogenetic analysis. Sequences can be translated between nucleic acids and proteins in either direction with flexible support of alternate genetic codes and ambiguous nucleotide symbols. Multiple aligned sequence output from diverse sources can be converted to Nexus, Hennig86 or PHYLIP format for subsequent phylogenetic analysis. Input or output alignments can be examined with Aligner, a convenient accessory stack included in the DNA Translator package. Aligner is an editor for the manual alignment of up to 100 sequences that toggles between display of matched characters and normal unmatched sequences. DNA Translator also generates graphic displays of amino acid coding and codon usage frequency relative to all other, or only synonymous, codons for approximately 70 select organism-organelle combinations. Codon usage data is compatible with spreadsheet or UWGCG formats for incorporation of additional molecules of interest. The complete package is available via anonymous ftp and is free for non-commercial uses.
Shu, Fan-Fan; Lv, Rui-Qing; Zhang, Yi-Fang; Duan, Gang; Wu, Ding-Yu; Li, Bi-Feng; Yang, Jian-Fa; Zou, Feng-Cai
2012-08-01
On mainland China, liver flukes of Fasciola spp. (Digenea: Fasciolidae) can cause serious acute and chronic morbidity in numerous species of mammals such as sheep, goats, cattle, and humans. The objective of the present study was to examine the taxonomic identity of Fasciola species in Yunnan province by sequences of the first and second internal transcribed spacers (ITS-1 and ITS-2) of nuclear ribosomal DNA (rDNA). The ITS rDNA was amplified from 10 samples representing Fasciola species in cattle from 2 geographical locations in Yunnan Province, by polymerase chain reaction (PCR), and the products were sequenced directly. The lengths of the ITS-1 and ITS-2 sequences were 422 and 361-362 base pairs, respectively, for all samples sequenced. Using ITS sequences, 2 Fasciola species were revealed, namely Fasciola hepatica and Fasciola gigantica. This is the first demonstration of F. gigantica in cattle in Yunnan Province, China using a molecular approach; our findings have implications for studying the population genetic characterization of the Chinese Fasciola species and for the prevention and control of Fasciola spp. in this province.
Methylsorb: a simple method for quantifying DNA methylation using DNA-gold affinity interactions.
Sina, Abu Ali Ibn; Carrascosa, Laura G; Palanisamy, Ramkumar; Rauf, Sakandar; Shiddiky, Muhammad J A; Trau, Matt
2014-10-21
The analysis of DNA methylation is becoming increasingly important both in the clinic and also as a research tool to unravel key epigenetic molecular mechanisms in biology. Current methodologies for the quantification of regional DNA methylation (i.e., the average methylation over a region of DNA in the genome) are largely affected by comprehensive DNA sequencing methodologies which tend to be expensive, tedious, and time-consuming for many applications. Herein, we report an alternative DNA methylation detection method referred to as "Methylsorb", which is based on the inherent affinity of DNA bases to the gold surface (i.e., the trend of the affinity interactions is adenine > cytosine ≥ guanine > thymine).1 Since the degree of gold-DNA affinity interaction is highly sequence dependent, it provides a new capability to detect DNA methylation by simply monitoring the relative adsorption of bisulfite treated DNA sequences onto a gold chip. Because the selective physical adsorption of DNA fragments to gold enable a direct read-out of regional DNA methylation, the current requirement for DNA sequencing is obviated. To demonstrate the utility of this method, we present data on the regional methylation status of two CpG clusters located in the EN1 and MIR200B genes in MCF7 and MDA-MB-231 cells. The methylation status of these regions was obtained from the change in relative mass on gold surface with respect to relative adsorption of an unmethylated DNA source and this was detected using surface plasmon resonance (SPR) in a label-free and real-time manner. We anticipate that the simplicity of this method, combined with the high level of accuracy for identifying the methylation status of cytosines in DNA, could find broad application in biology and diagnostics.
Transposon-containing DNA cloning vector and uses thereof
Berg, C.M.; Berg, D.E.; Wang, G.
1997-07-08
The present invention discloses a rapid method of restriction mapping, sequencing or localizing genetic features in a segment of deoxyribonucleic acid (DNA) that is up to 42 kb in size. The method in part comprises cloning of the DNA segment in a specialized cloning vector and then isolating nested deletions in either direction in vivo by intramolecular transposition into the cloned DNA. A plasmid has been prepared and disclosed. 4 figs.
The Viral Evolution Core within the AIDS and Cancer Virus Program will extract viral RNA/DNA from cell-free or cell-associated samples. Complementary (cDNA) will be generated as needed, and cDNA or DNA will be diluted to a single copy prior to nested
Transposon-containing DNA cloning vector and uses thereof
Berg, Claire M.; Berg, Douglas E.; Wang, Gan
1997-01-01
The present invention discloses a rapid method of restriction mapping, sequencing or localizing genetic features in a segment of deoxyribonucleic acid (DNA) that is up to 42 kb in size. The method in part comprises cloning of the DNA segment in a specialized cloning vector and then isolating nested deletions in either direction in vivo by intramolecular transposition into the cloned DNA. A plasmid has been prepared and disclosed.
Programmable RNA recognition and cleavage by CRISPR/Cas9.
O'Connell, Mitchell R; Oakes, Benjamin L; Sternberg, Samuel H; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A
2014-12-11
The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA-DNA complementarity to identify target sites for sequence-specific double-stranded DNA (dsDNA) cleavage. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, known as the protospacer adjacent motif (PAM), next to and on the strand opposite the twenty-nucleotide target site in dsDNA. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in a large range of prokaryotic and eukaryotic cell types, and in whole organisms, but it has been thought to be incapable of targeting RNA. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalysed DNA cleavage. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous messenger RNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable transcript recognition without the need for tags.
Programmable RNA recognition and cleavage by CRISPR/Cas9
O’Connell, Mitchell R.; Oakes, Benjamin L.; Sternberg, Samuel H.; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A.
2014-01-01
The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA:DNA complementarity to identify target sites for sequence-specific doublestranded DNA (dsDNA) cleavage1-5. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, the protospacer adjacent motif (PAM), next to and on the strand opposite the 20-nucleotide target site in dsDNA4-7. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in many cell types and organisms8, but it has been thought to be incapable of targeting RNA5. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalyzed DNA cleavage7. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous mRNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable and tagless transcript recognition. PMID:25274302
Genome sequence diversity and clues to the evolution of variola (smallpox) virus.
Esposito, Joseph J; Sammons, Scott A; Frace, A Michael; Osborne, John D; Olsen-Rasmussen, Melissa; Zhang, Ming; Govil, Dhwani; Damon, Inger K; Kline, Richard; Laker, Miriam; Li, Yu; Smith, Geoffrey L; Meyer, Hermann; Leduc, James W; Wohlhueter, Robert M
2006-08-11
Comparative genomics of 45 epidemiologically varied variola virus isolates from the past 30 years of the smallpox era indicate low sequence diversity, suggesting that there is probably little difference in the isolates' functional gene content. Phylogenetic clustering inferred three clades coincident with their geographical origin and case-fatality rate; the latter implicated putative proteins that mediate viral virulence differences. Analysis of the viral linear DNA genome suggests that its evolution involved direct descent and DNA end-region recombination events. Knowing the sequences will help understand the viral proteome and improve diagnostic test precision, therapeutics, and systems for their assessment.
Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankos, Marian; Persson, Henrik H. J.; N’Diaye, Alpha T.
DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectronmore » and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. In conclusion, both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging.« less
Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy
Mankos, Marian; Persson, Henrik H. J.; N’Diaye, Alpha T.; ...
2016-05-05
DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectronmore » and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. In conclusion, both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging.« less
Template-Directed Copolymerization, Random Walks along Disordered Tracks, and Fractals
NASA Astrophysics Data System (ADS)
Gaspard, Pierre
2016-12-01
In biology, template-directed copolymerization is the fundamental mechanism responsible for the synthesis of DNA, RNA, and proteins. More than 50 years have passed since the discovery of DNA structure and its role in coding genetic information. Yet, the kinetics and thermodynamics of information processing in DNA replication, transcription, and translation remain poorly understood. Challenging issues are the facts that DNA or RNA sequences constitute disordered media for the motion of polymerases or ribosomes while errors occur in copying the template. Here, it is shown that these issues can be addressed and sequence heterogeneity effects can be quantitatively understood within a framework revealing universal aspects of information processing at the molecular scale. In steady growth regimes, the local velocities of polymerases or ribosomes along the template are distributed as the continuous or fractal invariant set of a so-called iterated function system, which determines the copying error probabilities. The growth may become sublinear in time with a scaling exponent that can also be deduced from the iterated function system.
BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone.
Yang, Bite; Liu, Feng; Ren, Chao; Ouyang, Zhangyi; Xie, Ziwei; Bo, Xiaochen; Shu, Wenjie
2017-07-01
Enhancer elements are noncoding stretches of DNA that play key roles in controlling gene expression programmes. Despite major efforts to develop accurate enhancer prediction methods, identifying enhancer sequences continues to be a challenge in the annotation of mammalian genomes. One of the major issues is the lack of large, sufficiently comprehensive and experimentally validated enhancers for humans or other species. Thus, the development of computational methods based on limited experimentally validated enhancers and deciphering the transcriptional regulatory code encoded in the enhancer sequences is urgent. We present a deep-learning-based hybrid architecture, BiRen, which predicts enhancers using the DNA sequence alone. Our results demonstrate that BiRen can learn common enhancer patterns directly from the DNA sequence and exhibits superior accuracy, robustness and generalizability in enhancer prediction relative to other state-of-the-art enhancer predictors based on sequence characteristics. Our BiRen will enable researchers to acquire a deeper understanding of the regulatory code of enhancer sequences. Our BiRen method can be freely accessed at https://github.com/wenjiegroup/BiRen . shuwj@bmi.ac.cn or boxc@bmi.ac.cn. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Saleh, Mona; El-Matbouli, Mansour
2015-06-01
Cyprinid herpesvirus-3 (CyHV-3) is a highly infectious pathogen that causes fatal disease in common and koi carp Cyprinus carpio L. CyHV-3 detection is usually based on virus propagation or amplification of the viral DNA using the PCR or LAMP techniques. However, due to the limited susceptibility of cells used for propagation, it is not always possible to successfully isolate CyHV-3 even from tissue samples that have high virus titres. All previously described detection methods including PCR-based assays are time consuming, laborious and require specialized equipment. To overcome these limitations, gold nanoparticles (AuNPs) have been explored for direct and sensitive detection of DNA. In this study, a label-free colorimetric nanodiagnostic method for direct detection of unamplified CyHV-3 DNA using gold nanoparticles is introduced. Under appropriate conditions, DNA probes hybridize with their complementary target sequences in the sample DNA, which results in aggregation of the gold nanoparticles and a concomitant colour change from red to blue, whereas test samples with non complementary DNA sequences remain red. In this study, gold nanoparticles were used to develop and evaluate a specific and sensitive hybridization assay for direct and rapid detection of the highly infectious pathogen termed Cyprinid herpesvirus-3. Copyright © 2015 Elsevier B.V. All rights reserved.
Paca-Uccaralertkun, S; Zhao, L J; Adya, N; Cross, J V; Cullen, B R; Boros, I M; Giam, C Z
1994-01-01
The human T-cell lymphotropic virus type I (HTLV-I) transactivator, Tax, the ubiquitous transcriptional factor cyclic AMP (cAMP) response element-binding protein (CREB protein), and the 21-bp repeats in the HTLV-I transcriptional enhancer form a ternary nucleoprotein complex (L. J. Zhao and C. Z. Giam, Proc. Natl. Acad. Sci. USA 89:7070-7074, 1992). Using an antibody directed against the COOH-terminal region of Tax along with purified Tax and CREB proteins, we selected DNA elements bound specifically by the Tax-CREB complex in vitro. Two distinct but related groups of sequences containing the cAMP response element (CRE) flanked by long runs of G and C residues in the 5' and 3' regions, respectively, were preferentially recognized by Tax-CREB. In contrast, CREB alone binds only to CRE motifs (GNTGACG[T/C]) without neighboring G- or C-rich sequences. The Tax-CREB-selected sequences bear a striking resemblance to the 5' or 3' two-thirds of the HTLV-I 21-bp repeats and are highly inducible by Tax. Gel electrophoretic mobility shift assays, DNA transfection, and DNase I footprinting analyses indicated that the G- and C-rich sequences flanking the CRE motif are crucial for Tax-CREB-DNA ternary complex assembly and Tax transactivation but are not in direct contact with the Tax-CREB complex. These data show that Tax recruits CREB to form a multiprotein complex that specifically recognizes the viral 21-bp repeats. The expanded DNA binding specificity of Tax-CREB and the obligatory role the ternary Tax-CREB-DNA complex plays in transactivation reveal a novel mechanism for regulating the transcriptional activity of leucine zipper proteins like CREB.
Borsu, Laetitia; Intrieri, Julie; Thampi, Linta; Yu, Helena; Riely, Gregory; Nafa, Khedoudja; Chandramohan, Raghu; Ladanyi, Marc; Arcila, Maria E
2016-11-01
Although next-generation sequencing (NGS) is a robust technology for comprehensive assessment of EGFR-mutant lung adenocarcinomas with acquired resistance to tyrosine kinase inhibitors, it may not provide sufficiently rapid and sensitive detection of the EGFR T790M mutation, the most clinically relevant resistance biomarker. Here, we describe a digital PCR (dPCR) assay for rapid T790M detection on aliquots of NGS libraries prepared for comprehensive profiling, fully maximizing broad genomic analysis on limited samples. Tumor DNAs from patients with EGFR-mutant lung adenocarcinomas and acquired resistance to epidermal growth factor receptor inhibitors were prepared for Memorial Sloan-Kettering-Integrated Mutation Profiling of Actionable Cancer Targets sequencing, a hybrid capture-based assay interrogating 410 cancer-related genes. Precapture library aliquots were used for rapid EGFR T790M testing by dPCR, and results were compared with NGS and locked nucleic acid-PCR Sanger sequencing (reference high sensitivity method). Seventy resistance samples showed 99% concordance with the reference high sensitivity method in accuracy studies. Input as low as 2.5 ng provided a sensitivity of 1% and improved further with increasing DNA input. dPCR on libraries required less DNA and showed better performance than direct genomic DNA. dPCR on NGS libraries is a robust and rapid approach to EGFR T790M testing, allowing most economical utilization of limited material for comprehensive assessment. The same assay can also be performed directly on any limited DNA source and cell-free DNA. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis.
MacConnell, Andrew B; McEnaney, Patrick J; Cavett, Valerie J; Paegel, Brian M
2015-09-14
The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the "structure elucidation problem": the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS's utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 10(4) molecules/bead and sequencing allowed for elucidation of each compound's synthetic history. We applied DESPS to the combinatorial synthesis of a 75,645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and PCR make implementation of DESPS straightforward, and may prompt the chemistry community to revisit the synthesis of more complex and diverse libraries.
Is a Genome a Codeword of an Error-Correcting Code?
Kleinschmidt, João H.; Silva-Filho, Márcio C.; Bim, Edson; Herai, Roberto H.; Yamagishi, Michel E. B.; Palazzo, Reginaldo
2012-01-01
Since a genome is a discrete sequence, the elements of which belong to a set of four letters, the question as to whether or not there is an error-correcting code underlying DNA sequences is unavoidable. The most common approach to answering this question is to propose a methodology to verify the existence of such a code. However, none of the methodologies proposed so far, although quite clever, has achieved that goal. In a recent work, we showed that DNA sequences can be identified as codewords in a class of cyclic error-correcting codes known as Hamming codes. In this paper, we show that a complete intron-exon gene, and even a plasmid genome, can be identified as a Hamming code codeword as well. Although this does not constitute a definitive proof that there is an error-correcting code underlying DNA sequences, it is the first evidence in this direction. PMID:22649495
Potapov, Vladimir; Ong, Jennifer L; Langhorst, Bradley W; Bilotti, Katharina; Cahoon, Dan; Canton, Barry; Knight, Thomas F; Evans, Thomas C; Lohman, Gregory Js
2018-05-08
DNA ligases are key enzymes in molecular and synthetic biology that catalyze the joining of breaks in duplex DNA and the end-joining of DNA fragments. Ligation fidelity (discrimination against the ligation of substrates containing mismatched base pairs) and bias (preferential ligation of particular sequences over others) have been well-studied in the context of nick ligation. However, almost no data exist for fidelity and bias in end-joining ligation contexts. In this study, we applied Pacific Biosciences Single-Molecule Real-Time sequencing technology to directly sequence the products of a highly multiplexed ligation reaction. This method has been used to profile the ligation of all three-base 5'-overhangs by T4 DNA ligase under typical ligation conditions in a single experiment. We report the relative frequency of all ligation products with or without mismatches, the position-dependent frequency of each mismatch, and the surprising observation that 5'-TNA overhangs ligate extremely inefficiently compared to all other Watson-Crick pairings. The method can easily be extended to profile other ligases, end-types (e.g. blunt ends and overhangs of different lengths), and the effect of adjacent sequence on the ligation results. Further, the method has the potential to provide new insights into the thermodynamics of annealing and the kinetics of end-joining reactions.
Jalili, Seifollah; Karami, Leila; Schofield, Jeremy
2013-06-01
Proline-rich homeodomain (PRH) is a regulatory protein controlling transcription and gene expression processes by binding to the specific sequence of DNA, especially to the sequence 5'-TAATNN-3'. The impact of base pair mutations on the binding between the PRH protein and DNA is investigated using molecular dynamics and free energy simulations to identify DNA sequences that form stable complexes with PRH. Three 20-ns molecular dynamics simulations (PRH-TAATTG, PRH-TAATTA and PRH-TAATGG complexes) in explicit solvent water were performed to investigate three complexes structurally. Structural analysis shows that the native TAATTG sequence forms a complex that is more stable than complexes with base pair mutations. It is also observed that upon mutation, the number and occupancy of the direct and water-mediated hydrogen bonds decrease. Free energy calculations performed with the thermodynamic integration method predict relative binding free energies of 0.64 and 2 kcal/mol for GC to AT and TA to GC mutations, respectively, suggesting that among the three DNA sequences, the PRH-TAATTG complex is more stable than the two mutated complexes. In addition, it is demonstrated that the stability of the PRH-TAATTA complex is greater than that of the PRH-TAATGG complex.
Nanoliter reactors improve multiple displacement amplification of genomes from single cells.
Marcy, Yann; Ishoey, Thomas; Lasken, Roger S; Stockwell, Timothy B; Walenz, Brian P; Halpern, Aaron L; Beeson, Karen Y; Goldberg, Susanne M D; Quake, Stephen R
2007-09-01
Since only a small fraction of environmental bacteria are amenable to laboratory culture, there is great interest in genomic sequencing directly from single cells. Sufficient DNA for sequencing can be obtained from one cell by the Multiple Displacement Amplification (MDA) method, thereby eliminating the need to develop culture methods. Here we used a microfluidic device to isolate individual Escherichia coli and amplify genomic DNA by MDA in 60-nl reactions. Our results confirm a report that reduced MDA reaction volume lowers nonspecific synthesis that can result from contaminant DNA templates and unfavourable interaction between primers. The quality of the genome amplification was assessed by qPCR and compared favourably to single-cell amplifications performed in standard 50-microl volumes. Amplification bias was greatly reduced in nanoliter volumes, thereby providing a more even representation of all sequences. Single-cell amplicons from both microliter and nanoliter volumes provided high-quality sequence data by high-throughput pyrosequencing, thereby demonstrating a straightforward route to sequencing genomes from single cells.
Direct Detection of Drug-Resistant Hepatitis B Virus in Serum Using a Dendron-Modified Microarray
Kim, Doo Hyun; Kang, Hong Seok; Hur, Seong-Suk; Sim, Seobo; Ahn, Sung Hyun; Park, Yong Kwang; Park, Eun-Sook; Lee, Ah Ram; Park, Soree; Kwon, So Young; Lee, Jeong-Hoon
2018-01-01
Background/Aims Direct sequencing is the gold standard for the detection of drug-resistance mutations in hepatitis B virus (HBV); however, this procedure is time-consuming, labor-intensive, and difficult to adapt to high-throughput screening. In this study, we aimed to develop a dendron-modified DNA microarray for the detection of genotypic resistance mutations and evaluate its efficiency. Methods The specificity, sensitivity, and selectivity of dendron-modified slides for the detection of representative drug-resistance mutations were evaluated and compared to those of conventional slides. The diagnostic accuracy was validated using sera obtained from 13 patients who developed viral breakthrough during lamivudine, adefovir, or entecavir therapy and compared with the accuracy of restriction fragment mass polymorphism and direct sequencing data. Results The dendron-modified slides significantly outperformed the conventional microarray slides and were able to detect HBV DNA at a very low level (1 copy/μL). Notably, HBV mutants could be detected in the chronic hepatitis B patient sera without virus purification. The validation of our data revealed that this technique is fully compatible with sequencing data of drug-resistant HBV. Conclusions We developed a novel diagnostic technique for the simultaneous detection of several drug-resistance mutations using a dendron-modified DNA microarray. This technique can be directly applied to sera from chronic hepatitis B patients who show resistance to several nucleos(t)ide analogues. PMID:29271185
An att site-based recombination reporter system for genome engineering and synthetic DNA assembly.
Bland, Michael J; Ducos-Galand, Magaly; Val, Marie-Eve; Mazel, Didier
2017-07-14
Direct manipulation of the genome is a widespread technique for genetic studies and synthetic biology applications. The tyrosine and serine site-specific recombination systems of bacteriophages HK022 and ΦC31 are widely used for stable directional exchange and relocation of DNA sequences, making them valuable tools in these contexts. We have developed site-specific recombination tools that allow the direct selection of recombination events by embedding the attB site from each system within the β-lactamase resistance coding sequence (bla). The HK and ΦC31 tools were developed by placing the attB sites from each system into the signal peptide cleavage site coding sequence of bla. All possible open reading frames (ORFs) were inserted and tested for recombination efficiency and bla activity. Efficient recombination was observed for all tested ORFs (3 for HK, 6 for ΦC31) as shown through a cointegrate formation assay. The bla gene with the embedded attB site was functional for eight of the nine constructs tested. The HK/ΦC31 att-bla system offers a simple way to directly select recombination events, thus enhancing the use of site-specific recombination systems for carrying out precise, large-scale DNA manipulation, and adding useful tools to the genetics toolbox. We further show the power and flexibility of bla to be used as a reporter for recombination.
Xuan, Shi-Hai; Zhou, Yu-Gui; Shao, Bo; Cui, Ya-Lin; Li, Jian; Yin, Hong-Bo; Song, Xiao-Ping; Cong, Hui; Jing, Feng-Xiang; Jin, Qing-Hui; Wang, Hui-Min; Zhou, Jie
2009-11-01
Macrolide drugs, such as clarithromycin (CAM), are a key component of many combination therapies used to eradicate Helicobacter pylori. However, resistance to CAM is increasing in H. pylori and is becoming a serious problem in H. pylori eradication therapy. CAM resistance in H. pylori is mostly due to point mutations (A2142G/C, A2143G) in the peptidyltransferase-encoding region of the 23S rRNA gene. In this study an enzymic colorimetry-based DNA chip was developed to analyse single-nucleotide polymorphisms of the 23S rRNA gene to determine the prevalence of mutations in CAM-related resistance in H. pylori-positive patients. The results of the colorimetric DNA chip were confirmed by direct DNA sequencing. In 63 samples, the incidence of the A2143G mutation was 17.46 % (11/63). The results of the colorimetric DNA chip were concordant with DNA sequencing in 96.83 % of results (61/63). The colorimetric DNA chip could detect wild-type and mutant signals at every site, even at a DNA concentration of 1.53 x 10(2) copies microl(-1). Thus, the colorimetric DNA chip is a reliable assay for rapid and accurate detection of mutations in the 23S rRNA gene of H. pylori that lead to CAM-related resistance, directly from gastric tissues.
Directing an artificial zinc finger protein to new targets by fusion to a non-DNA-binding domain.
Lim, Wooi F; Burdach, Jon; Funnell, Alister P W; Pearson, Richard C M; Quinlan, Kate G R; Crossley, Merlin
2016-04-20
Transcription factors are often regarded as having two separable components: a DNA-binding domain (DBD) and a functional domain (FD), with the DBD thought to determine target gene recognition. While this holds true for DNA bindingin vitro, it appears thatin vivoFDs can also influence genomic targeting. We fused the FD from the well-characterized transcription factor Krüppel-like Factor 3 (KLF3) to an artificial zinc finger (AZF) protein originally designed to target the Vascular Endothelial Growth Factor-A (VEGF-A) gene promoter. We compared genome-wide occupancy of the KLF3FD-AZF fusion to that observed with AZF. AZF bound to theVEGF-Apromoter as predicted, but was also found to occupy approximately 25,000 other sites, a large number of which contained the expected AZF recognition sequence, GCTGGGGGC. Interestingly, addition of the KLF3 FD re-distributes the fusion protein to new sites, with total DNA occupancy detected at around 50,000 sites. A portion of these sites correspond to known KLF3-bound regions, while others contained sequences similar but not identical to the expected AZF recognition sequence. These results show that FDs can influence and may be useful in directing AZF DNA-binding proteins to specific targets and provide insights into how natural transcription factors operate. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Directing folding pathways for multi-component DNA origami nanostructures with complex topology
NASA Astrophysics Data System (ADS)
Marras, A. E.; Zhou, L.; Kolliopoulos, V.; Su, H.-J.; Castro, C. E.
2016-05-01
Molecular self-assembly has become a well-established technique to design complex nanostructures and hierarchical mesoscale assemblies. The typical approach is to design binding complementarity into nucleotide or amino acid sequences to achieve the desired final geometry. However, with an increasing interest in dynamic nanodevices, the need to design structures with motion has necessitated the development of multi-component structures. While this has been achieved through hierarchical assembly of similar structural units, here we focus on the assembly of topologically complex structures, specifically with concentric components, where post-folding assembly is not feasible. We exploit the ability to direct folding pathways to program the sequence of assembly and present a novel approach of designing the strand topology of intermediate folding states to program the topology of the final structure, in this case a DNA origami slider structure that functions much like a piston-cylinder assembly in an engine. The ability to program the sequence and control orientation and topology of multi-component DNA origami nanostructures provides a foundation for a new class of structures with internal and external moving parts and complex scaffold topology. Furthermore, this work provides critical insight to guide the design of intermediate states along a DNA origami folding pathway and to further understand the details of DNA origami self-assembly to more broadly control folding states and landscapes.
Zinc-binding Domain of the Bacteriophage T7 DNA Primase Modulates Binding to the DNA Template*
Lee, Seung-Joo; Zhu, Bin; Akabayov, Barak; Richardson, Charles C.
2012-01-01
The zinc-binding domain (ZBD) of prokaryotic DNA primases has been postulated to be crucial for recognition of specific sequences in the single-stranded DNA template. To determine the molecular basis for this role in recognition, we carried out homolog-scanning mutagenesis of the zinc-binding domain of DNA primase of bacteriophage T7 using a bacterial homolog from Geobacillus stearothermophilus. The ability of T7 DNA primase to catalyze template-directed oligoribonucleotide synthesis is eliminated by substitution of any five-amino acid residue-long segment within the ZBD. The most significant defect occurs upon substitution of a region (Pro-16 to Cys-20) spanning two cysteines that coordinate the zinc ion. The role of this region in primase function was further investigated by generating a protein library composed of multiple amino acid substitutions for Pro-16, Asp-18, and Asn-19 followed by genetic screening for functional proteins. Examination of proteins selected from the screening reveals no change in sequence-specific recognition. However, the more positively charged residues in the region facilitate DNA binding, leading to more efficient oligoribonucleotide synthesis on short templates. The results suggest that the zinc-binding mode alone is not responsible for sequence recognition, but rather its interaction with the RNA polymerase domain is critical for DNA binding and for sequence recognition. Consequently, any alteration in the ZBD that disturbs its conformation leads to loss of DNA-dependent oligoribonucleotide synthesis. PMID:23024359
Distinctive archaebacterial species associated with anaerobic rumen protozoan Entodinium caudatum.
Tóthová, T; Piknová, M; Kisidayová, S; Javorský, P; Pristas, P
2008-01-01
The diversity of archaebacteria associated with anaerobic rumen protozoan Entodinium caudatum in long term in vitro culture was investigated by denaturing gradient gel electrophoresis (DGGE) analysis of hypervariable V3 region of archaebacterial 16S rRNA gene. PCR was accomplished directly from DNA extracted from a single protozoal cell and from total community genomic DNA and the obtained fingerprints were compared. The analysis indicated the presence of a solitary intensive band present in Entodinium caudatum single cell DNA, which had no counterparts in the profile from total DNA. The identity of archaebacterium represented by this band was determined by sequence analysis which showed that the sequence fell to the cluster of ciliate symbiotic methanogens identified recently by 16S gene library approach.
DNA confinement in nanochannels: physics and biological applications
NASA Astrophysics Data System (ADS)
Reisner, Walter; Pedersen, Jonas N.; Austin, Robert H.
2012-10-01
DNA is the central storage molecule of genetic information in the cell, and reading that information is a central problem in biology. While sequencing technology has made enormous advances over the past decade, there is growing interest in platforms that can readout genetic information directly from long single DNA molecules, with the ultimate goal of single-cell, single-genome analysis. Such a capability would obviate the need for ensemble averaging over heterogeneous cellular populations and eliminate uncertainties introduced by cloning and molecular amplification steps (thus enabling direct assessment of the genome in its native state). In this review, we will discuss how the information contained in genomic-length single DNA molecules can be accessed via physical confinement in nanochannels. Due to self-avoidance interactions, DNA molecules will stretch out when confined in nanochannels, creating a linear unscrolling of the genome along the channel for analysis. We will first review the fundamental physics of DNA nanochannel confinement—including the effect of varying ionic strength—and then discuss recent applications of these systems to genomic mapping. Apart from the intense biological interest in extracting linear sequence information from elongated DNA molecules, from a physics view these systems are fascinating as they enable probing of single-molecule conformation in environments with dimensions that intersect key physical length-scales in the 1 nm to 100 µm range.
DNA confinement in nanochannels: physics and biological applications.
Reisner, Walter; Pedersen, Jonas N; Austin, Robert H
2012-10-01
DNA is the central storage molecule of genetic information in the cell, and reading that information is a central problem in biology. While sequencing technology has made enormous advances over the past decade, there is growing interest in platforms that can readout genetic information directly from long single DNA molecules, with the ultimate goal of single-cell, single-genome analysis. Such a capability would obviate the need for ensemble averaging over heterogeneous cellular populations and eliminate uncertainties introduced by cloning and molecular amplification steps (thus enabling direct assessment of the genome in its native state). In this review, we will discuss how the information contained in genomic-length single DNA molecules can be accessed via physical confinement in nanochannels. Due to self-avoidance interactions, DNA molecules will stretch out when confined in nanochannels, creating a linear unscrolling of the genome along the channel for analysis. We will first review the fundamental physics of DNA nanochannel confinement--including the effect of varying ionic strength--and then discuss recent applications of these systems to genomic mapping. Apart from the intense biological interest in extracting linear sequence information from elongated DNA molecules, from a physics view these systems are fascinating as they enable probing of single-molecule conformation in environments with dimensions that intersect key physical length-scales in the 1 nm to 100 µm range.
Adelman, K; Salmon, B; Baines, J D
2001-03-13
The product of the herpes simplex virus type 1 U(L)28 gene is essential for cleavage of concatemeric viral DNA into genome-length units and packaging of this DNA into viral procapsids. To address the role of U(L)28 in this process, purified U(L)28 protein was assayed for the ability to recognize conserved herpesvirus DNA packaging sequences. We report that DNA fragments containing the pac1 DNA packaging motif can be induced by heat treatment to adopt novel DNA conformations that migrate faster than the corresponding duplex in nondenaturing gels. Surprisingly, these novel DNA structures are high-affinity substrates for U(L)28 protein binding, whereas double-stranded DNA of identical sequence composition is not recognized by U(L)28 protein. We demonstrate that only one strand of the pac1 motif is responsible for the formation of novel DNA structures that are bound tightly and specifically by U(L)28 protein. To determine the relevance of the observed U(L)28 protein-pac1 interaction to the cleavage and packaging process, we have analyzed the binding affinity of U(L)28 protein for pac1 mutants previously shown to be deficient in cleavage and packaging in vivo. Each of the pac1 mutants exhibited a decrease in DNA binding by U(L)28 protein that correlated directly with the reported reduction in cleavage and packaging efficiency, thereby supporting a role for the U(L)28 protein-pac1 interaction in vivo. These data therefore suggest that the formation of novel DNA structures by the pac1 motif confers added specificity on recognition of DNA packaging sequences by the U(L)28-encoded component of the herpesvirus cleavage and packaging machinery.
The Gene Construction Kit: a new computer program for manipulating and presenting DNA constructs.
Gross, R H
1990-06-01
The Gene Construction Kit is a new tool for manipulating and displaying DNA sequence information. Constructs can be displayed either graphically or as formatted sequence. Segments of DNA can be cut out with restriction enzymes and pasted into other sites. The program keeps track of staggered ends and notifies the user of incompatibilities and offers a choice of ligation options. Each segment of a construct can have its own defined thickness, pattern, direction and color. The sequence listing can be displayed in any font and style in user defined grouping. Nucleotide positions can be displayed as can restriction sites and protein sequences. The DNA can be displayed as either single- or double-stranded. Restriction sites can be readily marked. Alternative views of the DNA can be maintained and the history of the construct automatically stored. Gel electrophoresis patterns can be generated and can be used in cloning project design. Extensive comments can be stored with the construct and can be searched rapidly for key words. High quality illustrations showing multiple editable constructs with added graphics and text information can be generated for slides, posters or publication.
Predicting DNA binding proteins using support vector machine with hybrid fractal features.
Niu, Xiao-Hui; Hu, Xue-Hai; Shi, Feng; Xia, Jing-Bo
2014-02-21
DNA-binding proteins play a vitally important role in many biological processes. Prediction of DNA-binding proteins from amino acid sequence is a significant but not fairly resolved scientific problem. Chaos game representation (CGR) investigates the patterns hidden in protein sequences, and visually reveals previously unknown structure. Fractal dimensions (FD) are good tools to measure sizes of complex, highly irregular geometric objects. In order to extract the intrinsic correlation with DNA-binding property from protein sequences, CGR algorithm, fractal dimension and amino acid composition are applied to formulate the numerical features of protein samples in this paper. Seven groups of features are extracted, which can be computed directly from the primary sequence, and each group is evaluated by the 10-fold cross-validation test and Jackknife test. Comparing the results of numerical experiments, the group of amino acid composition and fractal dimension (21-dimension vector) gets the best result, the average accuracy is 81.82% and average Matthew's correlation coefficient (MCC) is 0.6017. This resulting predictor is also compared with existing method DNA-Prot and shows better performances. © 2013 The Authors. Published by Elsevier Ltd All rights reserved.
Isolation of a cDNA Encoding a Granule-Bound 152-Kilodalton Starch-Branching Enzyme in Wheat1
Båga, Monica; Nair, Ramesh B.; Repellin, Anne; Scoles, Graham J.; Chibbar, Ravindra N.
2000-01-01
Screening of a wheat (Triticum aestivum) cDNA library for starch-branching enzyme I (SBEI) genes combined with 5′-rapid amplification of cDNA ends resulted in isolation of a 4,563-bp composite cDNA, Sbe1c. Based on sequence alignment to characterized SBEI cDNA clones isolated from plants, the SBEIc predicted from the cDNA sequence was produced with a transit peptide directing the polypeptide into plastids. Furthermore, the predicted mature form of SBEIc was much larger (152 kD) than previously characterized plant SBEI (80–100 kD) and contained a partial duplication of SBEI sequences. The first SBEI domain showed high amino acid similarity to a 74-kD wheat SBEI-like protein that is inactive as a branching enzyme when expressed in Escherichia coli. The second SBEI domain on SBEIc was identical in sequence to a functional 87-kD SBEI produced in the wheat endosperm. Immunoblot analysis of proteins produced in developing wheat kernels demonstrated that the 152-kD SBEIc was, in contrast to the 87- to 88-kD SBEI, preferentially associated with the starch granules. Proteins similar in size and recognized by wheat SBEI antibodies were also present in Triticum monococcum, Triticum tauschii, and Triticum turgidum subsp. durum. PMID:10982440
Single-molecule study of thymidine glycol and i-motif through the alpha-hemolysin ion channel
NASA Astrophysics Data System (ADS)
He, Lidong
Nanopore-based devices have emerged as a single-molecule detection and analysis tool for a wide range of applications. Through electrophoretically driving DNA molecules across a nanosized pore, a lot of information can be received, including unfolding kinetics and DNA-protein interactions. This single-molecule method has the potential to sequence kilobase length DNA polymers without amplification or labeling, approaching "the third generation" genome sequencing for around $1000 within 24 hours. alpha-Hemolysin biological nanopores have the advantages of excellent stability, low-noise level, and precise site-directed mutagenesis for engineering this protein nanopore. The first work presented in this thesis established the current signal of the thymidine glycol lesion in DNA oligomers through an immobilization experiment. The thymidine glycol enantiomers were differentiated from each other by different current blockage levels. Also, the effect of bulky hydrophobic adducts to the current blockage was investigated. Secondly, the alpha-hemolysin nanopore was used to study the human telomere i-motif and RET oncogene i-motif at a single-molecule level. In Chapter 3, it was demonstrated that the alpha-hemolysin nanopore can differentiate an i-motif form and single-strand DNA form at different pH values based on the same sequence. In addition, it shows potential to differentiate the folding topologies generated from the same DNA sequence.
Exploring the roles of DNA methylation in the metal-reducing bacterium Shewanella oneidensis MR-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bendall, Matthew L.; Luong, Khai; Wetmore, Kelly M.
2013-08-30
We performed whole genome analyses of DNA methylation in Shewanella 17 oneidensis MR-1 to examine its possible role in regulating gene expression and 18 other cellular processes. Single-Molecule Real Time (SMRT) sequencing 19 revealed extensive methylation of adenine (N6mA) throughout the 20 genome. These methylated bases were located in five sequence motifs, 21 including three novel targets for Type I restriction/modification enzymes. The 22 sequence motifs targeted by putative methyltranferases were determined via 23 SMRT sequencing of gene knockout mutants. In addition, we found S. 24 oneidensis MR-1 cultures grown under various culture conditions displayed 25 different DNA methylation patterns.more » However, the small number of differentially 26 methylated sites could not be directly linked to the much larger number of 27 differentially expressed genes in these conditions, suggesting DNA methylation is 28 not a major regulator of gene expression in S. oneidensis MR-1. The enrichment 29 of methylated GATC motifs in the origin of replication indicate DNA methylation 30 may regulate genome replication in a manner similar to that seen in Escherichia 31 coli. Furthermore, comparative analyses suggest that many 32 Gammaproteobacteria, including all members of the Shewanellaceae family, may 33 also utilize DNA methylation to regulate genome replication.« less
Sirakova, T D; Markaryan, A; Kolattukudy, P E
1994-01-01
An extracellular elastinolytic metalloproteinase, purified from Aspergillus fumigatus isolated from an aspergillosis and patient/and an internal peptide derived from it were subjected to N-terminal sequencing. Oligonucleotide primers based on these sequences were used to PCR amplify a segment of the metalloproteinase cDNA, which was used as a probe to isolate the cDNA and gene for this enzyme. The gene sequence matched exactly with the cDNA sequence except for the four introns that interrupted the open reading frame. According to the deduced amino acid sequence, the metalloproteinase has a signal sequence and 227 additional amino acids preceding the sequence for the mature protein of 389 amino acids with a calculated molecular mass of 42 kDa, which is close to the size of the purified mature fungal proteinase. This sequence contains segments that matched both the N terminus of the mature protein and the internal peptide. A. fumigatus metalloproteinase contains some of the conserved zinc-binding and active-site motifs characteristic of metalloproteinases but shows no overall homology with known metalloproteinases. The cDNA of the mature protein when introduced into Escherichia coli directed the expression of a protein with a size, N-terminal sequence, and immunological cross-reactivity identical to those of the native fungal enzyme. Although the enzyme in the inclusion bodies could not be renatured, expression at 30 degrees C yielded soluble enzyme that showed chromatographic behavior identical to that of the native fungal enzyme and catalyzed hydrolysis of elastin. The metalloproteinase gene described here was not found in Aspergillus flavus. Images PMID:7927676
The punctilious RNA polymerase II core promoter
Vo ngoc, Long; Wang, Yuan-Liang; Kassavetis, George A.; Kadonaga, James T.
2017-01-01
The signals that direct the initiation of transcription ultimately converge at the core promoter, which is the gateway to transcription. Here we provide an overview of the RNA polymerase II core promoter in bilateria (bilaterally symmetric animals). The core promoter is diverse in terms of its composition and function yet is also punctilious, as it acts with strict rules and precision. We additionally describe an expanded view of the core promoter that comprises the classical DNA sequence motifs, sequence-specific DNA-binding transcription factors, chromatin signals, and DNA structure. This model may eventually lead to a more unified conceptual understanding of the core promoter. PMID:28808065
A fungal mock community control for amplicon sequencing experiments
USDA-ARS?s Scientific Manuscript database
The field of microbial ecology has been profoundly advanced by the ability to profile the composition of complex microbial communities by means of high throughput amplicon sequencing of marker genes amplified directly from environmental genomic DNA extracts. However, it has become increasingly clear...
Deppdb--DNA electrostatic potential properties database: electrostatic properties of genome DNA.
Osypov, Alexander A; Krutinin, Gleb G; Kamzolova, Svetlana G
2010-06-01
The electrostatic properties of genome DNA influence its interactions with different proteins, in particular, the regulation of transcription by RNA-polymerases. DEPPDB--DNA Electrostatic Potential Properties Database--was developed to hold and provide all available information on the electrostatic properties of genome DNA combined with its sequence and annotation of biological and structural properties of genome elements and whole genomes. Genomes in DEPPDB are organized on a taxonomical basis. Currently, the database contains all the completely sequenced bacterial and viral genomes according to NCBI RefSeq. General properties of the genome DNA electrostatic potential profile and principles of its formation are revealed. This potential correlates with the GC content but does not correspond to it exactly and strongly depends on both the sequence arrangement and its context (flanking regions). Analysis of the promoter regions for bacterial and viral RNA polymerases revealed a correspondence between the scale of these proteins' physical properties and electrostatic profile patterns. We also discovered a direct correlation between the potential value and the binding frequency of RNA polymerase to DNA, supporting the idea of the role of electrostatics in these interactions. This matches a pronounced tendency of the promoter regions to possess higher values of the electrostatic potential.
Yoshida, Mitsuhiro; Mochizuki, Tomohiro; Urayama, Syun-Ichi; Yoshida-Takashima, Yukari; Nishi, Shinro; Hirai, Miho; Nomaki, Hidetaka; Takaki, Yoshihiro; Nunoura, Takuro; Takai, Ken
2018-01-01
Previous studies on marine environmental virology have primarily focused on double-stranded DNA (dsDNA) viruses; however, it has recently been suggested that single-stranded DNA (ssDNA) viruses are more abundant in marine ecosystems. In this study, we performed a quantitative viral community DNA analysis to estimate the relative abundance and composition of both ssDNA and dsDNA viruses in offshore upper bathyal sediment from Tohoku, Japan (water depth = 500 m). The estimated dsDNA viral abundance ranged from 3 × 106 to 5 × 106 genome copies per cm3 sediment, showing values similar to the range of fluorescence-based direct virus counts. In contrast, the estimated ssDNA viral abundance ranged from 1 × 108 to 3 × 109 genome copies per cm3 sediment, thus providing an estimation that the ssDNA viral populations represent 96.3–99.8% of the benthic total DNA viral assemblages. In the ssDNA viral metagenome, most of the identified viral sequences were associated with ssDNA viral families such as Circoviridae and Microviridae. The principle components analysis of the ssDNA viral sequence components from the sedimentary ssDNA viral metagenomic libraries found that the different depth viral communities at the study site all exhibited similar profiles compared with deep-sea sediment ones at other reference sites. Our results suggested that deep-sea benthic ssDNA viruses have been significantly underestimated by conventional direct virus counts and that their contributions to deep-sea benthic microbial mortality and geochemical cycles should be further addressed by such a new quantitative approach. PMID:29467725
Mitochondrial DNA variant at HVI region as a candidate of genetic markers of type 2 diabetes
NASA Astrophysics Data System (ADS)
Gumilar, Gun Gun; Purnamasari, Yunita; Setiadi, Rahmat
2016-02-01
Mitochondrial DNA (mtDNA) is maternally inherited. mtDNA mutations which can contribute to the excess of maternal inheritance of type 2 diabetes. Due to the high mutation rate, one of the areas in the mtDNA that is often associated with the disease is the hypervariable region I (HVI). Therefore, this study was conducted to determine the genetic variants of human mtDNA HVI that related to the type 2 diabetes in four samples that were taken from four generations in one lineage. Steps being taken include the lyses of hair follicles, amplification of mtDNA HVI fragment using Polymerase Chain Reaction (PCR), detection of PCR products through agarose gel electrophoresis technique, the measurement of the concentration of mtDNA using UV-Vis spectrophotometer, determination of the nucleotide sequence via direct sequencing method and analysis of the sequencing results using SeqMan DNASTAR program. Based on the comparison between nucleotide sequence of samples and revised Cambridge Reference Sequence (rCRS) obtained six same mutations that these are C16147T, T16189C, C16193del, T16127C, A16235G, and A16293C. After comparing the data obtained to the secondary data from Mitomap and NCBI, it were found that two mutations, T16189C and T16217C, become candidates as genetic markers of type 2 diabetes even the mutations were found also in the generations of undiagnosed type 2 diabetes. The results of this study are expected to give contribution to the collection of human mtDNA database of genetic variants that associated to metabolic diseases, so that in the future it can be utilized in various fields, especially in medicine.
Fritz, M L; Miller, J R; Bayoh, M N; Vulule, J M; Landgraf, J R; Walker, E D
2013-12-01
A DNA-DNA hybridization method, reverse dot blot analysis (RDBA), was used to identify Anopheles gambiae s.s. and Anopheles arabiensis (Diptera: Culicidae) hosts. Of 299 blood-fed and semi-gravid An. gambiae s.l. collected from Kisian, Kenya, 244 individuals were identifiable to species; of these, 69.5% were An. arabiensis and 29.5% were An. gambiae s.s. Host identifications with RDBA were comparable with those of conventional polymerase chain reaction (PCR) followed by direct sequencing of amplicons of the vertebrate mitochondrial cytochrome b gene. Of the 174 amplicon-producing samples used to compare these two methods, 147 were identifiable by direct sequencing and 139 of these were identifiable by RDBA. Anopheles arabiensis bloodmeals were mostly (94.6%) bovine in origin, whereas An. gambiae s.s. fed upon humans more than 91.8% of the time. Tests by RDBA detected that two of 112 An. arabiensis contained blood from more than one host species, whereas PCR and direct sequencing did not. Recent use of insecticide-treated bednets in Kisian is likely to have caused the shift in the dominant vector species from An. gambiae s.s. to An. arabiensis. Reverse dot blot analysis provides an opportunity to study changes in host-feeding by members of the An. gambiae complex in response to the broadening distribution of vector control measures targeting host-selection behaviours. © 2013 The Royal Entomological Society.
Phylogeographic Differentiation of Mitochondrial DNA in Han Chinese
Yao, Yong-Gang; Kong, Qing-Peng; Bandelt, Hans-Jürgen; Kivisild, Toomas; Zhang, Ya-Ping
2002-01-01
To characterize the mitochondrial DNA (mtDNA) variation in Han Chinese from several provinces of China, we have sequenced the two hypervariable segments of the control region and the segment spanning nucleotide positions 10171–10659 of the coding region, and we have identified a number of specific coding-region mutations by direct sequencing or restriction-fragment–length–polymorphism tests. This allows us to define new haplogroups (clades of the mtDNA phylogeny) and to dissect the Han mtDNA pool on a phylogenetic basis, which is a prerequisite for any fine-grained phylogeographic analysis, the interpretation of ancient mtDNA, or future complete mtDNA sequencing efforts. Some of the haplogroups under study differ considerably in frequencies across different provinces. The southernmost provinces show more pronounced contrasts in their regional Han mtDNA pools than the central and northern provinces. These and other features of the geographical distribution of the mtDNA haplogroups observed in the Han Chinese make an initial Paleolithic colonization from south to north plausible but would suggest subsequent migration events in China that mainly proceeded from north to south and east to west. Lumping together all regional Han mtDNA pools into one fictive general mtDNA pool or choosing one or two regional Han populations to represent all Han Chinese is inappropriate for prehistoric considerations as well as for forensic purposes or medical disease studies. PMID:11836649
A force-based, parallel assay for the quantification of protein-DNA interactions.
Limmer, Katja; Pippig, Diana A; Aschenbrenner, Daniela; Gaub, Hermann E
2014-01-01
Analysis of transcription factor binding to DNA sequences is of utmost importance to understand the intricate regulatory mechanisms that underlie gene expression. Several techniques exist that quantify DNA-protein affinity, but they are either very time-consuming or suffer from possible misinterpretation due to complicated algorithms or approximations like many high-throughput techniques. We present a more direct method to quantify DNA-protein interaction in a force-based assay. In contrast to single-molecule force spectroscopy, our technique, the Molecular Force Assay (MFA), parallelizes force measurements so that it can test one or multiple proteins against several DNA sequences in a single experiment. The interaction strength is quantified by comparison to the well-defined rupture stability of different DNA duplexes. As a proof-of-principle, we measured the interaction of the zinc finger construct Zif268/NRE against six different DNA constructs. We could show the specificity of our approach and quantify the strength of the protein-DNA interaction.
Townsley, Brad T; Covington, Michael F; Ichihashi, Yasunori; Zumstein, Kristina; Sinha, Neelima R
2015-01-01
Next Generation Sequencing (NGS) is driving rapid advancement in biological understanding and RNA-sequencing (RNA-seq) has become an indispensable tool for biology and medicine. There is a growing need for access to these technologies although preparation of NGS libraries remains a bottleneck to wider adoption. Here we report a novel method for the production of strand specific RNA-seq libraries utilizing the terminal breathing of double-stranded cDNA to capture and incorporate a sequencing adapter. Breath Adapter Directional sequencing (BrAD-seq) reduces sample handling and requires far fewer enzymatic steps than most available methods to produce high quality strand-specific RNA-seq libraries. The method we present is optimized for 3-prime Digital Gene Expression (DGE) libraries and can easily extend to full transcript coverage shotgun (SHO) type strand-specific libraries and is modularized to accommodate a diversity of RNA and DNA input materials. BrAD-seq offers a highly streamlined and inexpensive option for RNA-seq libraries.
Ekaphan Kraichak; Sittiporn Parnmen; Robert Lücking; Eimy Rivas Plata; Andre Aptroot; Marcela E.S. Caceres; Damien Ertz; Armin Mangold; Joel A. Mercado-Diaz; Khwanruan Papong; Dries Van der Broeck; Gothamie Weerakoon; H. Thorsten Lumbsch; NO-VALUE
2014-01-01
We present an updated 3-locus molecular phylogeny of tribe Ocellularieae, the second largest tribe within subfamily Graphidoideae in the Graphidaceae. Adding 165 newly generated sequences from the mitochondrial small subunit rDNA (mtSSU), the nuclear large subunit rDNA (nuLSU), and the second largest subunit of the DNA-directed RNA polymerase II (RPB2), we currently...
DNA Origami: Folded DNA-Nanodevices That Can Direct and Interpret Cell Behavior
Kearney, Cathal J.; Lucas, Christopher R.; O'Brien, Fergal J.; Castro, Carlos E.
2016-01-01
DNA origami is a DNA-based nanotechnology that utilizes programmed combinations of short complementary oligonucleotides to fold a large single strand of DNA into precise 2-D and 3-D shapes. The exquisite nanoscale shape control of this inherently biocompatible material is combined with the potential to spatially address the origami structures with diverse cargos including drugs, antibodies, nucleic acid sequences, small molecules and inorganic particles. This programmable flexibility enables the fabrication of precise nanoscale devices that have already shown great potential for biomedical applications such as: drug delivery, biosensing and synthetic nanopore formation. In this Progress Report, we will review the advances in the DNA origami field since its inception several years ago and then focus on how these DNA-nanodevices can be designed to interact with cells to direct or probe their behavior. PMID:26840503
Prithiviraj, Jothikumar; Hill, Vincent; Jothikumar, Narayanan
2012-04-20
In this study we report the development of a simple target-specific isothermal nucleic acid amplification technique, termed genome exponential amplification reaction (GEAR). Escherichia coli was selected as the microbial target to demonstrate the GEAR technique as a proof of concept. The GEAR technique uses a set of four primers; in the present study these primers targeted 5 regions on the 16S rRNA gene of E. coli. The outer forward and reverse Tab primer sequences are complementary to each other at their 5' end, whereas their 3' end sequences are complementary to their respective target nucleic acid sequences. The GEAR assay was performed at a constant temperature 60 °C and monitored continuously in a real-time PCR instrument in the presence of an intercalating dye (SYTO 9). The GEAR assay enabled amplification of as few as one colony forming units of E. coli per reaction within 30 min. We also evaluated the GEAR assay for rapid identification of bacterial colonies cultured on agar media directly in the reaction without DNA extraction. Cells from E. coli colonies were picked and added directly to GEAR assay mastermix without prior DNA extraction. DNA in the cells could be amplified, yielding positive results within 15 min. Published by Elsevier Inc.
van Koningsbruggen, Silvana; Gierliński, Marek; Schofield, Pietá; Martin, David; Barton, Geoffey J.; Ariyurek, Yavuz; den Dunnen, Johan T.
2010-01-01
The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes. In addition to rDNA, other chromatin sequences also surround the nucleolar surface and may even loop into the nucleolus. These additional nucleolar-associated domains (NADs) have not been well characterized. We present here a whole-genome, high-resolution analysis of chromatin endogenously associated with nucleoli. We have used a combination of three complementary approaches, namely fluorescence comparative genome hybridization, high-throughput deep DNA sequencing and photoactivation combined with time-lapse fluorescence microscopy. The data show that specific sequences from most human chromosomes, in addition to the rDNA repeat units, associate with nucleoli in a reproducible and heritable manner. NADs have in common a high density of AT-rich sequence elements, low gene density and a statistically significant enrichment in transcriptionally repressed genes. Unexpectedly, both the direct DNA sequencing and fluorescence photoactivation data show that certain chromatin loci can specifically associate with either the nucleolus, or the nuclear envelope. PMID:20826608
van Koningsbruggen, Silvana; Gierlinski, Marek; Schofield, Pietá; Martin, David; Barton, Geoffey J; Ariyurek, Yavuz; den Dunnen, Johan T; Lamond, Angus I
2010-11-01
The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes. In addition to rDNA, other chromatin sequences also surround the nucleolar surface and may even loop into the nucleolus. These additional nucleolar-associated domains (NADs) have not been well characterized. We present here a whole-genome, high-resolution analysis of chromatin endogenously associated with nucleoli. We have used a combination of three complementary approaches, namely fluorescence comparative genome hybridization, high-throughput deep DNA sequencing and photoactivation combined with time-lapse fluorescence microscopy. The data show that specific sequences from most human chromosomes, in addition to the rDNA repeat units, associate with nucleoli in a reproducible and heritable manner. NADs have in common a high density of AT-rich sequence elements, low gene density and a statistically significant enrichment in transcriptionally repressed genes. Unexpectedly, both the direct DNA sequencing and fluorescence photoactivation data show that certain chromatin loci can specifically associate with either the nucleolus, or the nuclear envelope.
Programmable DNA-Guided Artificial Restriction Enzymes.
Enghiad, Behnam; Zhao, Huimin
2017-05-19
Restriction enzymes are essential tools for recombinant DNA technology that have revolutionized modern biological research. However, they have limited sequence specificity and availability. Here we report a Pyrococcus furiosus Argonaute (PfAgo) based platform for generating artificial restriction enzymes (AREs) capable of recognizing and cleaving DNA sequences at virtually any arbitrary site and generating defined sticky ends of varying length. Short DNA guides are used to direct PfAgo to target sites for cleavage at high temperatures (>87 °C) followed by reannealing of the cleaved single stranded DNAs. We used this platform to generate over 18 AREs for DNA fingerprinting and molecular cloning of PCR-amplified or genomic DNAs. These AREs work as efficiently as their naturally occurring counterparts, and some of them even do not have any naturally occurring counterparts, demonstrating easy programmability, generality, versatility, and high efficiency for this new technology.
NASA Astrophysics Data System (ADS)
McCarthy, Erik L.; Egeler, Teressa J.; Bickerstaff, Lee E.; Pereira da Cunha, Mauricio; Millard, Paul J.
2005-11-01
RNA sequences derived from infectious hematopoeitic necrosis virus (IHNV) could be detected using a combination of surface-associated molecular padlock DNA probes (MPP) and rolling circle amplification (RCA) in microcapillary tubes. DNA oligonucleotides with base sequences identical to RNA obtained from IHNV were recognized by MPP. Circularized MPP were then captured on the inner surface of glass microcapillary tubes by immobilized DNA oligonucleotide primers. Extension of the immobilized primers by isothermal RCA gave rise to DNA concatamers, which were in turn bound by the fluorescent reporter SYBR Green II nucleic acid stain, and measured by microfluorimetry. Surface-associated molecular padlock technology, combined with isothermal RCA, exhibited high selectivity and sensitivity without thermal cycling. This technology is applicable to direct RNA and DNA detection, permitting detection of a variety of viral or bacterial pathogens.
Deng, Jiajia; Toh, Chee-Seng
2013-06-17
A novel and integrated membrane sensing platform for DNA detection is developed based on an anodic aluminum oxide (AAO) membrane. Platinum electrodes (~50-100 nm thick) are coated directly on both sides of the alumina membrane to eliminate the solution resistance outside the nanopores. The electrochemical impedance technique is employed to monitor the impedance changes within the nanopores upon DNA binding. Pore resistance (Rp) linearly increases in response towards the increasing concentration of the target DNA in the range of 1 × 10⁻¹² to 1 × 10⁻⁶ M. Moreover, the biosensor selectively differentiates the complementary sequence from single base mismatched (MM-1) strands and non-complementary strands. This study reveals a simple, selective and sensitive method to fabricate a label-free DNA biosensor.
Novel division level bacterial diversity in a Yellowstone hot spring.
Hugenholtz, P; Pitulle, C; Hershberger, K L; Pace, N R
1998-01-01
A culture-independent molecular phylogenetic survey was carried out for the bacterial community in Obsidian Pool (OP), a Yellowstone National Park hot spring previously shown to contain remarkable archaeal diversity (S. M. Barns, R. E. Fundyga, M. W. Jeffries, and N. R. Page, Proc. Natl. Acad. Sci. USA 91:1609-1613, 1994). Small-subunit rRNA genes (rDNA) were amplified directly from OP sediment DNA by PCR with universally conserved or Bacteria-specific rDNA primers and cloned. Unique rDNA types among > 300 clones were identified by restriction fragment length polymorphism, and 122 representative rDNA sequences were determined. These were found to represent 54 distinct bacterial sequence types or clusters (> or = 98% identity) of sequences. A majority (70%) of the sequence types were affiliated with 14 previously recognized bacterial divisions (main phyla; kingdoms); 30% were unaffiliated with recognized bacterial divisions. The unaffiliated sequence types (represented by 38 sequences) nominally comprise 12 novel, division level lineages termed candidate divisions. Several OP sequences were nearly identical to those of cultivated chemolithotrophic thermophiles, including the hydrogen-oxidizing Calderobacterium and the sulfate reducers Thermodesulfovibrio and Thermodesulfobacterium, or belonged to monophyletic assemblages recognized for a particular type of metabolism, such as the hydrogen-oxidizing Aquificales and the sulfate-reducing delta-Proteobacteria. The occurrence of such organisms is consistent with the chemical composition of OP (high in reduced iron and sulfur) and suggests a lithotrophic base for primary productivity in this hot spring, through hydrogen oxidation and sulfate reduction. Unexpectedly, no archaeal sequences were encountered in OP clone libraries made with universal primers. Hybridization analysis of amplified OP DNA with domain-specific probes confirmed that the analyzed community rDNA from OP sediment was predominantly bacterial. These results expand substantially our knowledge of the extent of bacterial diversity and call into question the commonly held notion that Archaea dominate hydrothermal environments. Finally, the currently known extent of division level bacterial phylogenetic diversity is collated and summarized.
Bidlingmaier, Scott; Ha, Kevin; Lee, Nam-Kyung; Su, Yang; Liu, Bin
2016-04-01
Although the bioactive sphingolipid ceramide is an important cell signaling molecule, relatively few direct ceramide-interacting proteins are known. We used an approach combining yeast surface cDNA display and deep sequencing technology to identify novel proteins binding directly to ceramide. We identified 234 candidate ceramide-binding protein fragments and validated binding for 20. Most (17) bound selectively to ceramide, although a few (3) bound to other lipids as well. Several novel ceramide-binding domains were discovered, including the EF-hand calcium-binding motif, the heat shock chaperonin-binding motif STI1, the SCP2 sterol-binding domain, and the tetratricopeptide repeat region motif. Interestingly, four of the verified ceramide-binding proteins (HPCA, HPCAL1, NCS1, and VSNL1) and an additional three candidate ceramide-binding proteins (NCALD, HPCAL4, and KCNIP3) belong to the neuronal calcium sensor family of EF hand-containing proteins. We used mutagenesis to map the ceramide-binding site in HPCA and to create a mutant HPCA that does not bind to ceramide. We demonstrated selective binding to ceramide by mammalian cell-produced wild type but not mutant HPCA. Intriguingly, we also identified a fragment from prostaglandin D2synthase that binds preferentially to ceramide 1-phosphate. The wide variety of proteins and domains capable of binding to ceramide suggests that many of the signaling functions of ceramide may be regulated by direct binding to these proteins. Based on the deep sequencing data, we estimate that our yeast surface cDNA display library covers ∼60% of the human proteome and our selection/deep sequencing protocol can identify target-interacting protein fragments that are present at extremely low frequency in the starting library. Thus, the yeast surface cDNA display/deep sequencing approach is a rapid, comprehensive, and flexible method for the analysis of protein-ligand interactions, particularly for the study of non-protein ligands. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns
NASA Astrophysics Data System (ADS)
Trinh, Tuan; Liao, Chenyi; Toader, Violeta; Barłóg, Maciej; Bazzi, Hassan S.; Li, Jianing; Sleiman, Hanadi F.
2018-02-01
As colloidal self-assembly increasingly approaches the complexity of natural systems, an ongoing challenge is to generate non-centrosymmetric structures. For example, patchy, Janus or living crystallization particles have significantly advanced the area of polymer assembly. It has remained difficult, however, to devise polymer particles that associate in a directional manner, with controlled valency and recognition motifs. Here, we present a method to transfer DNA patterns from a DNA cage to a polymeric nanoparticle encapsulated inside the cage in three dimensions. The resulting DNA-imprinted particles (DIPs), which are 'moulded' on the inside of the DNA cage, consist of a monodisperse crosslinked polymer core with a predetermined pattern of different DNA strands covalently 'printed' on their exterior, and further assemble with programmability and directionality. The number, orientation and sequence of DNA strands grafted onto the polymeric core can be controlled during the process, and the strands are addressable independently of each other.
Advances in high-throughput next-generation sequencing (NGS) technology for direct sequencing of environmental DNA (i.e. shotgun metagenomics) is transforming the field of microbiology. NGS technologies are now regularly being applied in comparative metagenomic studies, which pr...
Next-generation sequencing library construction on a surface.
Feng, Kuan; Costa, Justin; Edwards, Jeremy S
2018-05-30
Next-generation sequencing (NGS) has revolutionized almost all fields of biology, agriculture and medicine, and is widely utilized to analyse genetic variation. Over the past decade, the NGS pipeline has been steadily improved, and the entire process is currently relatively straightforward. However, NGS instrumentation still requires upfront library preparation, which can be a laborious process, requiring significant hands-on time. Herein, we present a simple but robust approach to streamline library preparation by utilizing surface bound transposases to construct DNA libraries directly on a flowcell surface. The surface bound transposases directly fragment genomic DNA while simultaneously attaching the library molecules to the flowcell. We sequenced and analysed a Drosophila genome library generated by this surface tagmentation approach, and we showed that our surface bound library quality was comparable to the quality of the library from a commercial kit. In addition to the time and cost savings, our approach does not require PCR amplification of the library, which eliminates potential problems associated with PCR duplicates. We described the first study to construct libraries directly on a flowcell. We believe our technique could be incorporated into the existing Illumina sequencing pipeline to simplify the workflow, reduce costs, and improve data quality.
Zhang, Wanying; Wang, Tao; Huang, Shuaiwu; Zhao, Xiuli
2018-04-10
To detect mutation of HPGD gene among three pedigrees affected with primary hypertrophic osteoarthropathy (PHO) by DNA sequencing and high-resolution melting (HRM) analysis. Genomic DNA was extracted from peripheral blood samples collected from the pedigrees. PCR and direct sequencing were carried out to identify potential mutations of the HPGD gene. Amplicons containing the mutation spot were generated by nested PCR. The products were then subjected to HRM analysis using the HR-1 instrument. Direct sequencing was carried out in family members and healthy individuals to confirm the result of HRM analysis. A homozygous mutation c.310_311delCT was detected in 2 affected probands, while a heterozygous mutation c.310_311delCT was detected in the third proband. HRM analysis of the fragments encompassing HPGD exon 3 showed 3 curve patterns representing three different genotypes, i.e., the wild type, the c.310_311delCT homozygote, and the c.310_311delCT heterozygote. Result of DNA sequencing was consistent with that of the HRM analysis and phenotype of the subjects. The c.310_311delCT mutation may be the most prevalent mutation among Chinese population. HRM analysis has provided an optimized method for genetic testing of HPGD mutation for its simplicity, rapid turnover and high sensitivity.
1-deoxy-d-xylulose-5-phosphate reductoisomerases and method of use
Croteau, Rodney B.; Lange, Bernd M.
2001-01-01
The present invention relates to isolated DNA sequences which code for the expression of plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein, such as the sequence presented in SEQ ID NO:1 which encodes a 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein from peppermint (Mentha x piperita). Additionally, the present invention relates to isolated plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein. In other aspects, the present invention is directed to replicable recombinant cloning vehicles comprising a nucleic acid sequence which codes for a plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase, to modified host cells transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence of the invention.
1-deoxy-D-xylulose-5-phosphate reductoisomerases, and methods of use
Croteau, Rodney B.; Lange, Bernd M.
2002-07-16
The present invention relates to isolated DNA sequences which code for the expression of plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein, such as the sequence presented in SEQ ID NO:1 which encodes a 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein from peppermint (Mentha x piperita). Additionally, the present invention relates to isolated plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein. In other aspects, the present invention is directed to replicable recombinant cloning vehicles comprising a nucleic acid sequence which codes for a plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase, to modified host cells transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence of the invention.
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.
Sternberg, Samuel H; Redding, Sy; Jinek, Martin; Greene, Eric C; Doudna, Jennifer A
2014-03-06
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
NASA Astrophysics Data System (ADS)
Sternberg, Samuel H.; Redding, Sy; Jinek, Martin; Greene, Eric C.; Doudna, Jennifer A.
2014-03-01
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.
Sequences in the intergenic spacer influence RNA Pol I transcription from the human rRNA promoter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, W.M.; Sylvester, J.E.
1994-09-01
In most eucaryotic species, ribosomal genes are tandemly repeated about 100-5000 times per haploid genome. The 43 Kb human rDNA repeat consists of a 13 Kb coding region for the 18S, 5.8S, 28S ribosomal RNAs (rRNAs) and transcribed spacers separated by a 30 Kb intergenic spacer. For species such as frog, mouse and rat, sequences in the intergenic spacer other than the gene promoter have been shown to modulate transcription of the ribosomal gene. These sequences are spacer promoters, enhancers and the terminator for spacer transcription. We are addressing whether the human ribosomal gene promoter is similarly influenced. In-vitro transcriptionmore » run-off assays have revealed that the 4.5 kb region (CBE), directly upstream of the gene promoter, has cis-stimulation and trans-competition properties. This suggests that the CBE fragment contains an enhancer(s) for ribosomal gene transcription. Further experiments have shown that a fragment ({approximately}1.6 kb) within the CBE fragment also has trans-competition function. Deletion subclones of this region are being tested to delineate the exact sequences responsible for these modulating activities. Previous sequence analysis and functional studies have revealed that CBE contains regions of DNA capable of adopting alternative structures such as bent DNA, Z-DNA, and triple-stranded DNA. Whether these structures are required for modulating transcription remains to be determined as does the specific DNA-protein interaction involved.« less
Selecting Fully-Modified XNA Aptamers Using Synthetic Genetics.
Taylor, Alexander I; Holliger, Philipp
2018-06-01
This unit describes the application of "synthetic genetics," i.e., the replication of xeno nucleic acids (XNAs), artificial analogs of DNA and RNA bearing alternative backbone or sugar congeners, to the directed evolution of synthetic oligonucleotide ligands (XNA aptamers) specific for target proteins or nucleic acid motifs, using a cross-chemistry selective exponential enrichment (X-SELEX) approach. Protocols are described for synthesis of diverse-sequence XNA repertoires (typically 10 14 molecules) using DNA templates, isolation and panning for functional XNA sequences using targets immobilized on solid phase or gel shift induced by target binding in solution, and XNA reverse transcription to allow cDNA amplification or sequencing. The method may be generally applied to select fully-modified XNA aptamers specific for a wide range of target molecules. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.
Mitochondrial Mutations in Subjects with Psychiatric Disorders
Magnan, Christophe; van Oven, Mannis; Baldi, Pierre; Myers, Richard M.; Barchas, Jack D.; Schatzberg, Alan F.; Watson, Stanley J.; Akil, Huda; Bunney, William E.; Vawter, Marquis P.
2015-01-01
A considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA) mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear genome variants associated with these disorders have produced genome wide significant results but those studies have not directly studied mtDNA variants. The purpose of this study is to investigate, using next generation sequencing, the involvement of mtDNA variation in bipolar disorder, schizophrenia, major depressive disorder, and methamphetamine use. MtDNA extracted from multiple brain regions and blood were sequenced (121 mtDNA samples with an average of 8,800x coverage) and compared to an electronic database containing 26,850 mtDNA genomes. We confirmed novel and rare variants, and confirmed next generation sequencing error hotspots by traditional sequencing and genotyping methods. We observed a significant increase of non-synonymous mutations found in individuals with schizophrenia. Novel and rare non-synonymous mutations were found in psychiatric cases in mtDNA genes: ND6, ATP6, CYTB, and ND2. We also observed mtDNA heteroplasmy in brain at a locus previously associated with schizophrenia (T16519C). Large differences in heteroplasmy levels across brain regions within subjects suggest that somatic mutations accumulate differentially in brain regions. Finally, multiplasmy, a heteroplasmic measure of repeat length, was observed in brain from selective cases at a higher frequency than controls. These results offer support for increased rates of mtDNA substitutions in schizophrenia shown in our prior results. The variable levels of heteroplasmic/multiplasmic somatic mutations that occur in brain may be indicators of genetic instability in mtDNA. PMID:26011537
He, Xiaoyuan; Wang, Liqin; Wang, Shuishu
2016-04-15
The transcriptional regulator PhoP is an essential virulence factor in Mycobacterium tuberculosis, and it presents a target for the development of new anti-tuberculosis drugs and attenuated tuberculosis vaccine strains. PhoP binds to DNA as a highly cooperative dimer by recognizing direct repeats of 7-bp motifs with a 4-bp spacer. To elucidate the PhoP-DNA binding mechanism, we determined the crystal structure of the PhoP-DNA complex. The structure revealed a tandem PhoP dimer that bound to the direct repeat. The surprising tandem arrangement of the receiver domains allowed the four domains of the PhoP dimer to form a compact structure, accounting for the strict requirement of a 4-bp spacer and the highly cooperative binding of the dimer. The PhoP-DNA interactions exclusively involved the effector domain. The sequence-recognition helix made contact with the bases of the 7-bp motif in the major groove, and the wing interacted with the adjacent minor groove. The structure provides a starting point for the elucidation of the mechanism by which PhoP regulates the virulence of M. tuberculosis and guides the design of screening platforms for PhoP inhibitors.
Allison, J; Hall, L; MacIntyre, I; Craig, R K
1981-01-01
(1) Total poly(A)-containing RNA isolated from human thyroid medullary carcinoma tissue was shown to direct the synthesis in the wheat germ cell-free system of a major (Mr 21000) and several minor forms of human calcitonin precursor polyproteins. Evidence for processing of these precursor(s) by the wheat germ cell-free system is also presented. (2) A small complementary DNA (cDNA) plasmid library has been constructed in the PstI site of the plasmid pAT153, using total human thyroid medullary carcinoma poly(A)-containing RNA as the starting material. (3) Plasmids containing abundant cDNA sequences were selected by hybridization in situ, and two of these (ph T-B3 and phT-B6) were characterized by hybridization--translation and restriction analysis. Each was shown to contain human calcitonin precursor polyprotein cDNA sequences. (4) RNA blotting techniques demonstrate that the human calcitonin precursor polyprotein is encoded within a mRNA containing 1000 bases. (5) The results demonstrate that human calcitonin is synthesized as a precursor polyprotein. Images Fig. 1. Fig. 2. Fig. 3. PMID:6896146
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damian, Luminita, E-mail: luminitadamian@microcal.eu.com; Universite de Toulouse, UPS, IPBS, F-31077 Toulouse; IUB, School of Engineering and Science, D-28727 Bremen
Is single-strand DNA translatable? Since the 60s, the question still remains whether or not DNA could be directly translated into protein. Some discrepancies in the results were reported about functional translation of single-strand DNA but all results converged on a similar behavior of RNA and ssDNA in the initiation step. Isothermal Titration Calorimetry method was used to determine thermodynamic constants of interaction between single-strand DNA and S30 extract of Escherichia coli. Our results showed that the binding was not affected by the nature of the template tested and the dissociation constants were in the same range when ssDNA (K{sub d}more » = 3.62 {+-} 2.1 x 10{sup -8} M) or the RNA corresponding sequence (K{sub d} = 2.7 {+-} 0.82 x 10{sup -8} M) bearing SD/ATG sequences were used. The binding specificity was confirmed by antibiotic interferences which block the initiation complex formation. These results suggest that the limiting step in translation of ssDNA is the elongation process.« less
Electronic Transport in Single-Stranded DNA Molecule Related to Huntington's Disease
NASA Astrophysics Data System (ADS)
Sarmento, R. G.; Silva, R. N. O.; Madeira, M. P.; Frazão, N. F.; Sousa, J. O.; Macedo-Filho, A.
2018-04-01
We report a numerical analysis of the electronic transport in single chain DNA molecule consisting of 182 nucleotides. The DNA chains studied were extracted from a segment of the human chromosome 4p16.3, which were modified by expansion of CAG (cytosine-adenine-guanine) triplet repeats to mimics Huntington's disease. The mutated DNA chains were connected between two platinum electrodes to analyze the relationship between charge propagation in the molecule and Huntington's disease. The computations were performed within a tight-binding model, together with a transfer matrix technique, to investigate the current-voltage (I-V) of 23 types of DNA sequence and compare them with the distributions of the related CAG repeat numbers with the disease. All DNA sequences studied have a characteristic behavior of a semiconductor. In addition, the results showed a direct correlation between the current-voltage curves and the distributions of the CAG repeat numbers, suggesting possible applications in the development of DNA-based biosensors for molecular diagnostics.
Heyduk, E; Baichoo, N; Heyduk, T
2001-11-30
The alpha-subunit of Escherichia coli RNA polymerase plays an important role in the activity of many promoters by providing a direct protein-DNA contact with a specific sequence (UP element) located upstream of the core promoter sequence. To obtain insight into the nature of thermodynamic forces involved in the formation of this protein-DNA contact, the binding of the alpha-subunit of E. coli RNA polymerase to a fluorochrome-labeled DNA fragment containing the rrnB P1 promoter UP element sequence was quantitatively studied using fluorescence polarization. The alpha dimer and DNA formed a 1:1 complex in solution. Complex formation at 25 degrees C was enthalpy-driven, the binding was accompanied by a net release of 1-2 ions, and no significant specific ion effects were observed. The van't Hoff plot of temperature dependence of binding was linear suggesting that the heat capacity change (Deltac(p)) was close to zero. Protein footprinting with hydroxyradicals showed that the protein did not change its conformation upon protein-DNA contact formation. No conformational changes in the DNA molecule were detected by CD spectroscopy upon protein-DNA complex formation. The thermodynamic characteristics of the binding together with the lack of significant conformational changes in the protein and in the DNA suggested that the alpha-subunit formed a rigid body-like contact with the DNA in which a tight complementary recognition interface between alpha-subunit and DNA was not formed.
Ahn, Junho; Choi, Yeonweon; Lee, Ae-Ree; Lee, Joon-Hwa; Jung, Jong Hwa
2016-03-21
Using duplex DNA-AuNP aggregates, a sequence-specific DNA-binding protein, SQUAMOSA Promoter-binding-Like protein 12 (SPL-12), was directly determined by SPL-12-duplex DNA interaction-based colorimetric actions of DNA-Au assemblies. In order to prepare duplex DNA-Au aggregates, thiol-modified DNA 1 and DNA 2 were attached onto the surface of AuNPs, respectively, by the salt-aging method and then the DNA-attached AuNPs were mixed. Duplex-DNA-Au aggregates having the average size of 160 nm diameter and the maximum absorption at 529 nm were able to recognize SPL-12 and reached the equivalent state by the addition of ∼30 equivalents of SPL-12 accompanying a color change from red to blue with a red shift of the maximum absorption at 570 nm. As a result, the aggregation size grew to about 247 nm. Also, at higher temperatures of the mixture of duplex-DNA-Au aggregate solution and SPL-12, the equivalent state was reached rapidly. On the contrary, in the control experiment using Bovine Serum Albumin (BSA), no absorption band shift of duplex-DNA-Au aggregates was observed.
Mitochondrial signature sequences have frequently been used to study the demographics of many different populations around the world. Traditionally, this requires obtaining samples directly from individuals which is cumbersome, time consuming and limited to the number of individu...
Saingam, Prakit; Li, Bo; Yan, Tao
2018-06-01
DNA-based molecular detection of microbial pathogens in complex environments is still plagued by sensitivity, specificity and robustness issues. We propose to address these issues by viewing them as inadvertent consequences of requiring specific and adequate amplification (SAA) of target DNA molecules by current PCR methods. Using the invA gene of Salmonella as the model system, we investigated if next generation sequencing (NGS) can be used to directly detect target sequences in false-negative PCR reaction (PCR-NGS) in order to remove the SAA requirement from PCR. False-negative PCR and qPCR reactions were first created using serial dilutions of laboratory-prepared Salmonella genomic DNA and then analyzed directly by NGS. Target invA sequences were detected in all false-negative PCR and qPCR reactions, which lowered the method detection limits near the theoretical minimum of single gene copy detection. The capability of the PCR-NGS approach in correcting false negativity was further tested and confirmed under more environmentally relevant conditions using Salmonella-spiked stream water and sediment samples. Finally, the PCR-NGS approach was applied to ten urban stream water samples and detected invA sequences in eight samples that would be otherwise deemed Salmonella negative. Analysis of the non-target sequences in the false-negative reactions helped to identify primer dime-like short sequences as the main cause of the false negativity. Together, the results demonstrated that the PCR-NGS approach can significantly improve method sensitivity, correct false-negative detections, and enable sequence-based analysis for failure diagnostics in complex environmental samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Nanjunda, Rupesh; Wilson, W. David
2012-01-01
Compounds that bind in the DNA minor groove have provided critical information on DNA molecular recognition, they have found extensive uses in biotechnology and they are providing clinically useful drugs against diseases as diverse as cancer and sleeping sickness. This review focuses on the development of clinically useful heterocyclic diamidine minor groove binders. These compounds have shown us that the classical model for minor groove binding in AT DNA sequences must be expanded in several ways: compounds with nonstandard shapes can bind strongly to the groove, water can be directly incorporated into the minor groove complex in an interfacial interaction, and the compounds can form cooperative stacked dimers to recognize GC and mixed AT/GC base pair sequences. PMID:23255206
DNA sequence-directed shape change of photopatterned hydrogels via high-degree swelling
NASA Astrophysics Data System (ADS)
Cangialosi, Angelo; Yoon, ChangKyu; Liu, Jiayu; Huang, Qi; Guo, Jingkai; Nguyen, Thao D.; Gracias, David H.; Schulman, Rebecca
2017-09-01
Shape-changing hydrogels that can bend, twist, or actuate in response to external stimuli are critical to soft robots, programmable matter, and smart medicine. Shape change in hydrogels has been induced by global cues, including temperature, light, or pH. Here we demonstrate that specific DNA molecules can induce 100-fold volumetric hydrogel expansion by successive extension of cross-links. We photopattern up to centimeter-sized gels containing multiple domains that undergo different shape changes in response to different DNA sequences. Experiments and simulations suggest a simple design rule for controlled shape change. Because DNA molecules can be coupled to molecular sensors, amplifiers, and logic circuits, this strategy introduces the possibility of building soft devices that respond to diverse biochemical inputs and autonomously implement chemical control programs.
Assignment of the human caltractin gene (CALT) to Xq28 by fluorescence in situ hybridization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Tanaka; Okui, Keiko; Nakamura, Yusuke
1994-12-01
The centrosome is the major microtubule-organizing center of interphase eukaryotic cells, an its duplication is essential to eukaryotic cell division. Caltractin, a structural component of centrosomes, is highly homologous in amino acid sequence to the product of the CDC31 gene of Saccharomyces cerevisiae. In S. cerevisiae, an important role for CDC31 in duplication of the spindle pole body (SPB), a kind of microtubule-organizing center, has been demonstrated by an experiment in which mutant CDC31 prevented SPB duplication and led to formation of a monopolar spindle. In view of the localization of human caltractin in centrosomes and the sequence homology itmore » bears to yeast CDC31, it is reasonable to assume that caltractin functions in humans as CDC31 does in yeast. As a part of the Human Genome Project, we have been determining nucleotide sequences of DNA clones randomly selected from a directionally cloned cDNA library constructed from fetal brain mRNA obtained from Clontech (La Jolla, CA). By comparing 5{prime} partial DNA sequences of these cDNA clones with known DNA sequences in the database, we found one clone that was highly homologous to the caltractin gene of Chlamydomonas, which turned out to be the same as a human gene identified recently. 4 refs., 1 fig.« less
Wang, Qiuyan; Wu, Huili; Wang, Anming; Du, Pengfei; Pei, Xiaolin; Li, Haifeng; Yin, Xiaopu; Huang, Lifeng; Xiong, Xiaolong
2010-01-01
DNA family shuffling is a powerful method for enzyme engineering, which utilizes recombination of naturally occurring functional diversity to accelerate laboratory-directed evolution. However, the use of this technique has been hindered by the scarcity of family genes with the required level of sequence identity in the genome database. We describe here a strategy for collecting metagenomic homologous genes for DNA shuffling from environmental samples by truncated metagenomic gene-specific PCR (TMGS-PCR). Using identified metagenomic gene-specific primers, twenty-three 921-bp truncated lipase gene fragments, which shared 64–99% identity with each other and formed a distinct subfamily of lipases, were retrieved from 60 metagenomic samples. These lipase genes were shuffled, and selected active clones were characterized. The chimeric clones show extensive functional and genetic diversity, as demonstrated by functional characterization and sequence analysis. Our results indicate that homologous sequences of genes captured by TMGS-PCR can be used as suitable genetic material for DNA family shuffling with broad applications in enzyme engineering. PMID:20962349
Dean, Frank B.; Nelson, John R.; Giesler, Theresa L.; Lasken, Roger S.
2001-01-01
We describe a simple method of using rolling circle amplification to amplify vector DNA such as M13 or plasmid DNA from single colonies or plaques. Using random primers and φ29 DNA polymerase, circular DNA templates can be amplified 10,000-fold in a few hours. This procedure removes the need for lengthy growth periods and traditional DNA isolation methods. Reaction products can be used directly for DNA sequencing after phosphatase treatment to inactivate unincorporated nucleotides. Amplified products can also be used for in vitro cloning, library construction, and other molecular biology applications. PMID:11381035
Phylogeographic patterns of Armillaria ostoyae in the western United States
J. W. Hanna; N. B. Klopfenstein; M. -S. Kim; G. I. McDonald; J. A. Moore
2007-01-01
Nuclear ribosomal DNA regions (i.e. large subunit, internal transcribed spacer, 5.8S and intergenic spacer) were sequenced using a direct-polymerase chain reaction method from Armillaria ostoyae genets collected from the western USA. Many of the A. ostoyae genets contained heterogeneity among rDNA repeats, indicating intragenomic variation and likely intraspecific...
The effects of metal ions on the DNA damage induced by hydrogen peroxide.
Kobayashi, S; Ueda, K; Komano, T
1990-01-01
The effects of metal ions on DNA damage induced by hydrogen peroxide were investigated using two methods, agarose-gel electrophoretic analysis of supercoiled DNA and sequencing-gel analysis of single end-labeled DNA fragments of defined sequences. Hydrogen peroxide induced DNA damage when iron or copper ion was present. At least two classes of DNA damage were induced, one being direct DNA-strand cleavage, and the other being base modification labile to hot piperidine. The investigation of the damaged sites and the inhibitory effects of radical scavengers revealed that hydroxyl radical was the species which attacked DNA in the reaction of H2O2/Fe(II). On the other hand, two types of DNA damage were induced by H2O2/Cu(II). Type I damage was predominant and inhibited by potassium iodide, but type II was not. The sites of the base-modification induced by type I damage were similar to those by lipid peroxidation products and by ascorbate in the presence of Cu(II), suggesting the involvement of radical species other than free hydroxyl radical in the damaging reactions.
2002-08-01
We study the process of DNA replication in proliferating human cells. Our efforts are directed to the identification and characterization of proteins...that promote DNA replication (initiators) as well as the DNA sequences recognized by them (replicators) . We have focused in a group of initiator...to be a critical factor for the coordination of DNA replication with the cell division cycle. hOrclp levels are higher between the exit of mitosis and
Hussey, Richard S; Huang, Guozhong; Allen, Rex
2011-01-01
Identifying parasitism genes encoding proteins secreted from a plant-parasitic nematode's esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Parasitism genes have been cloned by directly microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages of cyst or root-knot nematodes to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. cDNA clones are sequenced and deduced protein sequences with a signal peptide for secretion are identified for high-throughput in situ hybridization to confirm gland-specific expression.
Sochorová, Jana; Coriton, Olivier; Kuderová, Alena; Lunerová, Jana; Chèvre, Anne-Marie; Kovařík, Aleš
2017-01-01
Background and aims Brassica napus (AACC, 2n = 38, oilseed rape) is a relatively recent allotetraploid species derived from the putative progenitor diploid species Brassica rapa (AA, 2n = 20) and Brassica oleracea (CC, 2n = 18). To determine the influence of intensive breeding conditions on the evolution of its genome, we analysed structure and copy number of rDNA in 21 cultivars of B. napus, representative of genetic diversity. Methods We used next-generation sequencing genomic approaches, Southern blot hybridization, expression analysis and fluorescence in situ hybridization (FISH). Subgenome-specific sequences derived from rDNA intergenic spacers (IGS) were used as probes for identification of loci composition on chromosomes. Key Results Most B. napus cultivars (18/21, 86 %) had more A-genome than C-genome rDNA copies. Three cultivars analysed by FISH (‘Darmor’, ‘Yudal’ and ‘Asparagus kale’) harboured the same number (12 per diploid set) of loci. In B. napus ‘Darmor’, the A-genome-specific rDNA probe hybridized to all 12 rDNA loci (eight on the A-genome and four on the C-genome) while the C-genome-specific probe showed weak signals on the C-genome loci only. Deep sequencing revealed high homogeneity of arrays suggesting that the C-genome genes were largely overwritten by the A-genome variants in B. napus ‘Darmor’. In contrast, B. napus ‘Yudal’ showed a lack of gene conversion evidenced by additive inheritance of progenitor rDNA variants and highly localized hybridization signals of subgenome-specific probes on chromosomes. Brassica napus ‘Asparagus kale’ showed an intermediate pattern to ‘Darmor’ and ‘Yudal’. At the expression level, most cultivars (95 %) exhibited stable A-genome nucleolar dominance while one cultivar (‘Norin 9’) showed co-dominance. Conclusions The B. napus cultivars differ in the degree and direction of rDNA homogenization. The prevalent direction of gene conversion (towards the A-genome) correlates with the direction of expression dominance indicating that gene activity may be needed for interlocus gene conversion. PMID:27707747
Gold nanocrystals with DNA-directed morphologies.
Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P; Kwon, Young Jik; Sim, Sang Jun
2016-09-16
Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.
Novel narrow-host-range vectors for direct cloning of foreign DNA in Pseudomonas.
Boivin, R; Bellemare, G; Dion, P
1994-01-01
Narrow-host-range vectors, based on an indigenous replicon and containing a multiple cloning site, have been constructed in a Pseudomonas host capable of growth on unusual substrates. The new cloning vectors yield sufficient amounts of DNA for preparative purposes and belong to an incompatibility group different from that of the incP and incQ broad-host-range vectors. One of these vectors, named pDB47F, was used to clone, directly in Pseudomonas, DNA fragments from Agrobacterium, Pseudomonas, and Rhizobium. A clone containing Agrobacterium and KmR gene sequences was transformed with a higher efficiency than an RSF1010-derived vector (by as much as 1250-fold) in four out of five Pseudomonas strains tested. The considerable efficiency obtained with this system makes possible the direct cloning and phenotypic selection of foreign DNA in Pseudomonas.
Gold nanocrystals with DNA-directed morphologies
NASA Astrophysics Data System (ADS)
Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P.; Kwon, Young Jik; Sim, Sang Jun
2016-09-01
Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.
Watanabe, Kazuya; Teramoto, Maki; Futamata, Hiroyuki; Harayama, Shigeaki
1998-01-01
DNA was isolated from phenol-digesting activated sludge, and partial fragments of the 16S ribosomal DNA (rDNA) and the gene encoding the largest subunit of multicomponent phenol hydroxylase (LmPH) were amplified by PCR. An analysis of the amplified fragments by temperature gradient gel electrophoresis (TGGE) demonstrated that two major 16S rDNA bands (bands R2 and R3) and two major LmPH gene bands (bands P2 and P3) appeared after the activated sludge became acclimated to phenol. The nucleotide sequences of these major bands were determined. In parallel, bacteria were isolated from the activated sludge by direct plating or by plating after enrichment either in batch cultures or in a chemostat culture. The bacteria isolated were classified into 27 distinct groups by a repetitive extragenic palindromic sequence PCR analysis. The partial nucleotide sequences of 16S rDNAs and LmPH genes of members of these 27 groups were then determined. A comparison of these nucleotide sequences with the sequences of the major TGGE bands indicated that the major bacterial populations, R2 and R3, possessed major LmPH genes P2 and P3, respectively. The dominant populations could be isolated either by direct plating or by chemostat culture enrichment but not by batch culture enrichment. One of the dominant strains (R3) which contained a novel type of LmPH (P3), was closely related to Valivorax paradoxus, and the result of a kinetic analysis of its phenol-oxygenating activity suggested that this strain was the principal phenol digester in the activated sludge. PMID:9797297
Single molecule sequencing of the M13 virus genome without amplification
Zhao, Luyang; Deng, Liwei; Li, Gailing; Jin, Huan; Cai, Jinsen; Shang, Huan; Li, Yan; Wu, Haomin; Xu, Weibin; Zeng, Lidong; Zhang, Renli; Zhao, Huan; Wu, Ping; Zhou, Zhiliang; Zheng, Jiao; Ezanno, Pierre; Yang, Andrew X.; Yan, Qin; Deem, Michael W.; He, Jiankui
2017-01-01
Next generation sequencing (NGS) has revolutionized life sciences research. However, GC bias and costly, time-intensive library preparation make NGS an ill fit for increasing sequencing demands in the clinic. A new class of third-generation sequencing platforms has arrived to meet this need, capable of directly measuring DNA and RNA sequences at the single-molecule level without amplification. Here, we use the new GenoCare single-molecule sequencing platform from Direct Genomics to sequence the genome of the M13 virus. Our platform detects single-molecule fluorescence by total internal reflection microscopy, with sequencing-by-synthesis chemistry. We sequenced the genome of M13 to a depth of 316x, with 100% coverage. We determined a consensus sequence accuracy of 100%. In contrast to GC bias inherent to NGS results, we demonstrated that our single-molecule sequencing method yields minimal GC bias. PMID:29253901
Single molecule sequencing of the M13 virus genome without amplification.
Zhao, Luyang; Deng, Liwei; Li, Gailing; Jin, Huan; Cai, Jinsen; Shang, Huan; Li, Yan; Wu, Haomin; Xu, Weibin; Zeng, Lidong; Zhang, Renli; Zhao, Huan; Wu, Ping; Zhou, Zhiliang; Zheng, Jiao; Ezanno, Pierre; Yang, Andrew X; Yan, Qin; Deem, Michael W; He, Jiankui
2017-01-01
Next generation sequencing (NGS) has revolutionized life sciences research. However, GC bias and costly, time-intensive library preparation make NGS an ill fit for increasing sequencing demands in the clinic. A new class of third-generation sequencing platforms has arrived to meet this need, capable of directly measuring DNA and RNA sequences at the single-molecule level without amplification. Here, we use the new GenoCare single-molecule sequencing platform from Direct Genomics to sequence the genome of the M13 virus. Our platform detects single-molecule fluorescence by total internal reflection microscopy, with sequencing-by-synthesis chemistry. We sequenced the genome of M13 to a depth of 316x, with 100% coverage. We determined a consensus sequence accuracy of 100%. In contrast to GC bias inherent to NGS results, we demonstrated that our single-molecule sequencing method yields minimal GC bias.
Analytical Devices Based on Direct Synthesis of DNA on Paper.
Glavan, Ana C; Niu, Jia; Chen, Zhen; Güder, Firat; Cheng, Chao-Min; Liu, David; Whitesides, George M
2016-01-05
This paper addresses a growing need in clinical diagnostics for parallel, multiplex analysis of biomarkers from small biological samples. It describes a new procedure for assembling arrays of ssDNA and proteins on paper. This method starts with the synthesis of DNA oligonucleotides covalently linked to paper and proceeds to assemble microzones of DNA-conjugated paper into arrays capable of simultaneously capturing DNA, DNA-conjugated protein antigens, and DNA-conjugated antibodies. The synthesis of ssDNA oligonucleotides on paper is convenient and effective with 32% of the oligonucleotides cleaved and eluted from the paper substrate being full-length by HPLC for a 32-mer. These ssDNA arrays can be used to detect fluorophore-linked DNA oligonucleotides in solution, and as the basis for DNA-directed assembly of arrays of DNA-conjugated capture antibodies on paper, detect protein antigens by sandwich ELISAs. Paper-anchored ssDNA arrays with different sequences can be used to assemble paper-based devices capable of detecting DNA and antibodies in the same device and enable simple microfluidic paper-based devices.
Thomas, Austen C; Jarman, Simon N; Haman, Katherine H; Trites, Andrew W; Deagle, Bruce E
2014-08-01
Ecologists are increasingly interested in quantifying consumer diets based on food DNA in dietary samples and high-throughput sequencing of marker genes. It is tempting to assume that food DNA sequence proportions recovered from diet samples are representative of consumer's diet proportions, despite the fact that captive feeding studies do not support that assumption. Here, we examine the idea of sequencing control materials of known composition along with dietary samples in order to correct for technical biases introduced during amplicon sequencing and biological biases such as variable gene copy number. Using the Ion Torrent PGM(©) , we sequenced prey DNA amplified from scats of captive harbour seals (Phoca vitulina) fed a constant diet including three fish species in known proportions. Alongside, we sequenced a prey tissue mix matching the seals' diet to generate tissue correction factors (TCFs). TCFs improved the diet estimates (based on sequence proportions) for all species and reduced the average estimate error from 28 ± 15% (uncorrected) to 14 ± 9% (TCF-corrected). The experimental design also allowed us to infer the magnitude of prey-specific digestion biases and calculate digestion correction factors (DCFs). The DCFs were compared with possible proxies for differential digestion (e.g. fish protein%, fish lipid%) revealing a strong relationship between the DCFs and percent lipid of the fish prey, suggesting prey-specific corrections based on lipid content would produce accurate diet estimates in this study system. These findings demonstrate the value of parallel sequencing of food tissue mixtures in diet studies and offer new directions for future research in quantitative DNA diet analysis. © 2013 John Wiley & Sons Ltd.
Alasaad, S; Soglia, D; Spalenza, V; Maione, S; Soriguer, R C; Pérez, J M; Rasero, R; Degiorgis, M P Ryser; Nimmervoll, H; Zhu, X Q; Rossi, L
2009-02-05
The present study examined the relationship among individual Sarcoptes scabiei mites from 13 wild mammalian populations belonging to nine species in four European countries using the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA (rDNA) as genetic marker. The ITS-2 plus primer flanking 5.8S and 28S rDNA (ITS-2+) was amplified from individual mites by polymerase chain reaction (PCR) and the amplicons were sequenced directly. A total of 148 ITS-2+ sequences of 404bp in length were obtained and 67 variable sites were identified (16.59%). UPGMA analyses did not show any geographical or host-specific clustering, and a similar outcome was obtained using population pairwise Fst statistics. These results demonstrated that ITS-2 rDNA does not appear to be suitable for examining genetic diversity among mite populations.
A septal chromosome segregator protein evolved into a conjugative DNA-translocator protein
Sepulveda, Edgardo; Vogelmann, Jutta
2011-01-01
Streptomycetes, Gram-positive soil bacteria well known for the production of antibiotics feature a unique conjugative DNA transfer system. In contrast to classical conjugation which is characterized by the secretion of a pilot protein covalently linked to a single-stranded DNA molecule, in Streptomyces a double-stranded DNA molecule is translocated during conjugative transfer. This transfer involves a single plasmid encoded protein, TraB. A detailed biochemical and biophysical characterization of TraB, revealed a close relationship to FtsK, mediating chromosome segregation during bacterial cell division. TraB translocates plasmid DNA by recognizing 8-bp direct repeats located in a specific plasmid region clt. Similar sequences accidentally also occur on chromosomes and have been shown to be bound by TraB. We suggest that TraB mobilizes chromosomal genes by the interaction with these chromosomal clt-like sequences not relying on the integration of the conjugative plasmid into the chromosome. PMID:22479692
Andréasson, Claes; Schick, Anna J; Pfeiffer, Susanne M; Sarov, Mihail; Stewart, Francis; Wurst, Wolfgang; Schick, Joel A
2013-01-01
Efficient gene targeting in embryonic stem cells requires that modifying DNA sequences are identical to those in the targeted chromosomal locus. Yet, there is a paucity of isogenic genomic clones for human cell lines and PCR amplification cannot be used in many mutation-sensitive applications. Here, we describe a novel method for the direct cloning of genomic DNA into a targeting vector, pRTVIR, using oligonucleotide-directed homologous recombination in yeast. We demonstrate the applicability of the method by constructing functional targeting vectors for mammalian genes Uhrf1 and Gfap. Whereas the isogenic targeting of the gene Uhrf1 showed a substantial increase in targeting efficiency compared to non-isogenic DNA in mouse E14 cells, E14-derived DNA performed better than the isogenic DNA in JM8 cells for both Uhrf1 and Gfap. Analysis of 70 C57BL/6-derived targeting vectors electroporated in JM8 and E14 cell lines in parallel showed a clear dependence on isogenicity for targeting, but for three genes isogenic DNA was found to be inhibitory. In summary, this study provides a straightforward methodological approach for the direct generation of isogenic gene targeting vectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadano, S.; Ishida, Y.; Tomiyasu, H.
1994-09-01
To complete a transcription map of the 1 Mb region in human chromosome 4p16.3 containing the Huntington disease (HD) gene, the isolation of cDNA clones are being performed throughout. Our method relies on a direct screening of the cDNA libraries probed with single copy microclones from 3 YAC clones spanning 1 Mbp of the HD gene region. AC-DNAs were isolated by a preparative pulsed-field gel electrophoresis, amplified by both a single unique primer (SUP)-PCR and a linker ligation PCR, and 6 microclone-DNA libraries were generated. Then, 8,640 microclones from these libraries were independently amplified by PCR, and arrayed onto themore » membranes. 800-900 microclones that were not cross-hybridized with total human and yeast genomic DNA, TAC vector DNA, and ribosomal cDNA on a dot hybridization (putatively carrying single copy sequences) were pooled to make 9 probe pools. A total of {approximately}1.8x10{sup 7} plaques from the human brain cDNA libraries was screened with 9 pool-probes, and then 672 positive cDNA clones were obtained. So far, 597 cDNA clones were defined and arrayed onto a map of the 1 Mbp of the HD gene region by hybridization with HD region-specific cosmid contigs and YAC clones. Further characterization including a DNA sequencing and Northern blot analysis is currently underway.« less
Equine behavioral enrichment toys as tools for non-invasive recovery of viral and host DNA.
Seeber, Peter A; Soilemetzidou, Sanatana E; East, Marion L; Walzer, Chris; Greenwood, Alex D
2017-09-01
Direct collection of samples from wildlife can be difficult and sometimes impossible. Non-invasive remote sampling for the purpose of DNA extraction is a potential tool for monitoring the presence of wildlife at the individual level, and for identifying the pathogens shed by wildlife. Equine herpesviruses (EHV) are common pathogens of equids that can be fatal if transmitted to other mammals. Transmission usually occurs by nasal aerosol discharge from virus-shedding individuals. The aim of this study was to validate a simple, non-invasive method to track EHV shedding in zebras and to establish an efficient protocol for genotyping individual zebras from environmental DNA (eDNA). A commercially available horse enrichment toy was deployed in captive Grévy's, mountain, and plains zebra enclosures and swabbed after 4-24 hr. Using eDNA extracted from these swabs four EHV strains (EHV-1, EHV-7, wild ass herpesvirus and zebra herpesvirus) were detected by PCR and confirmed by sequencing, and 12 of 16 zebras present in the enclosures were identified as having interacted with the enrichment toy by mitochondrial DNA amplification and sequencing. We conclude that, when direct sampling is difficult or prohibited, non-invasive sampling of eDNA can be a useful tool to determine the genetics of individuals or populations and for detecting pathogen shedding in captive wildlife. © 2017 Wiley Periodicals, Inc.
Microsatellite DNA capture from enriched libraries.
Gonzalez, Elena G; Zardoya, Rafael
2013-01-01
Microsatellites are DNA sequences of tandem repeats of one to six nucleotides, which are highly polymorphic, and thus the molecular markers of choice in many kinship, population genetic, and conservation studies. There have been significant technical improvements since the early methods for microsatellite isolation were developed, and today the most common procedures take advantage of the hybrid capture methods of enriched-targeted microsatellite DNA. Furthermore, recent advents in sequencing technologies (i.e., next-generation sequencing, NGS) have fostered the mining of microsatellite markers in non-model organisms, affording a cost-effective way of obtaining a large amount of sequence data potentially useful for loci characterization. The rapid improvements of NGS platforms together with the increase in available microsatellite information open new avenues to the understanding of the evolutionary forces that shape genetic structuring in wild populations. Here, we provide detailed methodological procedures for microsatellite isolation based on the screening of GT microsatellite-enriched libraries, either by cloning and Sanger sequencing of positive clones or by direct NGS. Guides for designing new species-specific primers and basic genotyping are also given.
The use of museum specimens with high-throughput DNA sequencers
Burrell, Andrew S.; Disotell, Todd R.; Bergey, Christina M.
2015-01-01
Natural history collections have long been used by morphologists, anatomists, and taxonomists to probe the evolutionary process and describe biological diversity. These biological archives also offer great opportunities for genetic research in taxonomy, conservation, systematics, and population biology. They allow assays of past populations, including those of extinct species, giving context to present patterns of genetic variation and direct measures of evolutionary processes. Despite this potential, museum specimens are difficult to work with because natural postmortem processes and preservation methods fragment and damage DNA. These problems have restricted geneticists’ ability to use natural history collections primarily by limiting how much of the genome can be surveyed. Recent advances in DNA sequencing technology, however, have radically changed this, making truly genomic studies from museum specimens possible. We review the opportunities and drawbacks of the use of museum specimens, and suggest how to best execute projects when incorporating such samples. Several high-throughput (HT) sequencing methodologies, including whole genome shotgun sequencing, sequence capture, and restriction digests (demonstrated here), can be used with archived biomaterials. PMID:25532801
Epigenetic Telomere Protection by Drosophila DNA Damage Response Pathways
Oikemus, Sarah R; Queiroz-Machado, Joana; Lai, KuanJu; McGinnis, Nadine; Sunkel, Claudio; Brodsky, Michael H
2006-01-01
Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms. PMID:16710445
Epigenetic telomere protection by Drosophila DNA damage response pathways.
Oikemus, Sarah R; Queiroz-Machado, Joana; Lai, KuanJu; McGinnis, Nadine; Sunkel, Claudio; Brodsky, Michael H
2006-05-01
Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms.
Vermaak, Danielle; Bayes, Joshua J.
2009-01-01
Comparative genomics provides a facile way to address issues of evolutionary constraint acting on different elements of the genome. However, several important DNA elements have not reaped the benefits of this new approach. Some have proved intractable to current day sequencing technology. These include centromeric and heterochromatic DNA, which are essential for chromosome segregation as well as gene regulation, but the highly repetitive nature of the DNA sequences in these regions make them difficult to assemble into longer contigs. Other sequences, like dosage compensation X chromosomal sites, origins of DNA replication, or heterochromatic sequences that encode piwi-associated RNAs, have proved difficult to study because they do not have recognizable DNA features that allow them to be described functionally or computationally. We have employed an alternate approach to the direct study of these DNA elements. By using proteins that specifically bind these noncoding DNAs as surrogates, we can indirectly assay the evolutionary constraints acting on these important DNA elements. We review the impact that such “surrogate strategies” have had on our understanding of the evolutionary constraints shaping centromeres, origins of DNA replication, and dosage compensation X chromosomal sites. These have begun to reveal that in contrast to the view that such structural DNA elements are either highly constrained (under purifying selection) or free to drift (under neutral evolution), some of them may instead be shaped by adaptive evolution and genetic conflicts (these are not mutually exclusive). These insights also help to explain why the same elements (e.g., centromeres and replication origins), which are so complex in some eukaryotic genomes, can be simple and well defined in other where similar conflicts do not exist. PMID:19635763
Neuropeptidomics of the Mosquito Aedes Aegypti
2010-01-01
translational processing ( pyroglutamate formation) was detected for AST-C and CAPA-PVK-2. For the first time in insects, we succeeded in the direct...hormones, trace DNA sequences generated by TIGR and the Broad Institute were first searched by TBLASTN24 using amino acid sequences of candidate peptides...previously described.1 TBLASTN searches, using the amino acid sequences of putative Ae. aegypti neuropeptide and peptide hormone orthologs identified in
Chaikind, Brian; Bessen, Jeffrey L.; Thompson, David B.; Hu, Johnny H.; Liu, David R.
2016-01-01
We describe the development of ‘recCas9’, an RNA-programmed small serine recombinase that functions in mammalian cells. We fused a catalytically inactive dCas9 to the catalytic domain of Gin recombinase using an optimized fusion architecture. The resulting recCas9 system recombines DNA sites containing a minimal recombinase core site flanked by guide RNA-specified sequences. We show that these recombinases can operate on DNA sites in mammalian cells identical to genomic loci naturally found in the human genome in a manner that is dependent on the guide RNA sequences. DNA sequencing reveals that recCas9 catalyzes guide RNA-dependent recombination in human cells with an efficiency as high as 32% on plasmid substrates. Finally, we demonstrate that recCas9 expressed in human cells can catalyze in situ deletion between two genomic sites. Because recCas9 directly catalyzes recombination, it generates virtually no detectable indels or other stochastic DNA modification products. This work represents a step toward programmable, scarless genome editing in unmodified cells that is independent of endogenous cellular machinery or cell state. Current and future generations of recCas9 may facilitate targeted agricultural breeding, or the study and treatment of human genetic diseases. PMID:27515511
Directed evolution of the TALE N-terminal domain for recognition of all 5' bases.
Lamb, Brian M; Mercer, Andrew C; Barbas, Carlos F
2013-11-01
Transcription activator-like effector (TALE) proteins can be designed to bind virtually any DNA sequence. General guidelines for design of TALE DNA-binding domains suggest that the 5'-most base of the DNA sequence bound by the TALE (the N0 base) should be a thymine. We quantified the N0 requirement by analysis of the activities of TALE transcription factors (TALE-TF), TALE recombinases (TALE-R) and TALE nucleases (TALENs) with each DNA base at this position. In the absence of a 5' T, we observed decreases in TALE activity up to >1000-fold in TALE-TF activity, up to 100-fold in TALE-R activity and up to 10-fold reduction in TALEN activity compared with target sequences containing a 5' T. To develop TALE architectures that recognize all possible N0 bases, we used structure-guided library design coupled with TALE-R activity selections to evolve novel TALE N-terminal domains to accommodate any N0 base. A G-selective domain and broadly reactive domains were isolated and characterized. The engineered TALE domains selected in the TALE-R format demonstrated modularity and were active in TALE-TF and TALEN architectures. Evolved N-terminal domains provide effective and unconstrained TALE-based targeting of any DNA sequence as TALE binding proteins and designer enzymes.
Singh, Digvijay; Mallon, John; Poddar, Anustup; Wang, Yanbo; Tippana, Ramreddy; Yang, Olivia; Bailey, Scott; Ha, Taekjip
2018-05-22
CRISPR-Cas9, which imparts adaptive immunity against foreign genomic invaders in certain prokaryotes, has been repurposed for genome-engineering applications. More recently, another RNA-guided CRISPR endonuclease called Cpf1 (also known as Cas12a) was identified and is also being repurposed. Little is known about the kinetics and mechanism of Cpf1 DNA interaction and how sequence mismatches between the DNA target and guide-RNA influence this interaction. We used single-molecule fluorescence analysis and biochemical assays to characterize DNA interrogation, cleavage, and product release by three Cpf1 orthologs. Our Cpf1 data are consistent with the DNA interrogation mechanism proposed for Cas9. They both bind any DNA in search of protospacer-adjacent motif (PAM) sequences, verify the target sequence directionally from the PAM-proximal end, and rapidly reject any targets that lack a PAM or that are poorly matched with the guide-RNA. Unlike Cas9, which requires 9 bp for stable binding and ∼16 bp for cleavage, Cpf1 requires an ∼17-bp sequence match for both stable binding and cleavage. Unlike Cas9, which does not release the DNA cleavage products, Cpf1 rapidly releases the PAM-distal cleavage product, but not the PAM-proximal product. Solution pH, reducing conditions, and 5' guanine in guide-RNA differentially affected different Cpf1 orthologs. Our findings have important implications on Cpf1-based genome engineering and manipulation applications.
Blow flies as urban wildlife sensors.
Hoffmann, Constanze; Merkel, Kevin; Sachse, Andreas; Rodríguez, Pablo; Leendertz, Fabian H; Calvignac-Spencer, Sébastien
2018-05-01
Wildlife detection in urban areas is very challenging. Conventional monitoring techniques such as direct observation are faced with the limitation that urban wildlife is extremely elusive. It was recently shown that invertebrate-derived DNA (iDNA) can be used to assess wildlife diversity in tropical rainforests. Flies, which are ubiquitous and very abundant in most cities, may also be used to detect wildlife in urban areas. In urban ecosystems, however, overwhelming quantities of domestic mammal DNA could completely mask the presence of wild mammal DNA. To test whether urban wild mammals can be detected using fly iDNA, we performed DNA metabarcoding of pools of flies captured in Berlin, Germany, using three combinations of blocking primers. Our results show that domestic animal sequences are, as expected, very dominant in urban environments. Nevertheless, wild mammal sequences can often be retrieved, although they usually only represent a minor fraction of the sequence reads. Fly iDNA metabarcoding is therefore a viable approach for quick scans of urban wildlife diversity. Interestingly, our study also shows that blocking primers can interact with each other in ways that affect the outcome of metabarcoding. We conclude that the use of complex combinations of blocking primers, although potentially powerful, should be carefully planned when designing experiments. © 2018 John Wiley & Sons Ltd.
Povedano, Eloy; Valverde, Alejandro; Ruiz-Valdepeñas Montiel, Víctor; Pedrero, María; Yáñez-Sedeño, Paloma; Barderas, Rodrigo; San Segundo-Acosta, Pablo; Peláez-García, Alberto; Mendiola, Marta; Hardisson, David; Campuzano, Susana; Pingarron, José Manuel
2018-05-09
We report a rapid and sensitive electrochemical strategy for the detection of gene-specific 5-methylcytosine DNA methylation. Magnetic beads (MBs) modified with an antibody specific for 5-methylcytosines (5-mC) are employed for the selective capture of any 5-mC methylated single-stranded (ss)DNA sequence. A flanking region next to the 5-mCs of the captured methylated ssDNA is recognized by selective hybridization with a synthetic biotinylated DNA sequence, further labeled with an HRP streptavidin conjugate. Amperometric transduction at disposable screen-printed carbon electrodes (SPCEs) is employed. The developed biosensor exhibits a dynamic range from 3.9 to 500 pM and a detection limit of 1.2 pM for the methylated synthetic sequence of the tumor suppressor gene O-6-methylguanine-DNA methyltransferase (MGMT) promoter region. The applicability of this strategy is demonstrated through the 45 min-analysis of specific methylation in the MGMT promoter region directly in raw spiked human serum samples and in genomic DNA extracted from U-87 glioblastoma cells and paraffin-embedded brain tumor tissues without any amplification and pretreatment step. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hu, Jiazhi; Meyers, Robin M; Dong, Junchao; Panchakshari, Rohit A; Alt, Frederick W; Frock, Richard L
2016-05-01
Unbiased, high-throughput assays for detecting and quantifying DNA double-stranded breaks (DSBs) across the genome in mammalian cells will facilitate basic studies of the mechanisms that generate and repair endogenous DSBs. They will also enable more applied studies, such as those to evaluate the on- and off-target activities of engineered nucleases. Here we describe a linear amplification-mediated high-throughput genome-wide sequencing (LAM-HTGTS) method for the detection of genome-wide 'prey' DSBs via their translocation in cultured mammalian cells to a fixed 'bait' DSB. Bait-prey junctions are cloned directly from isolated genomic DNA using LAM-PCR and unidirectionally ligated to bridge adapters; subsequent PCR steps amplify the single-stranded DNA junction library in preparation for Illumina Miseq paired-end sequencing. A custom bioinformatics pipeline identifies prey sequences that contribute to junctions and maps them across the genome. LAM-HTGTS differs from related approaches because it detects a wide range of broken end structures with nucleotide-level resolution. Familiarity with nucleic acid methods and next-generation sequencing analysis is necessary for library generation and data interpretation. LAM-HTGTS assays are sensitive, reproducible, relatively inexpensive, scalable and straightforward to implement with a turnaround time of <1 week.
Andersson, P; Klein, M; Lilliebridge, R A; Giffard, P M
2013-09-01
Ultra-deep Illumina sequencing was performed on whole genome amplified DNA derived from a Chlamydia trachomatis-positive vaginal swab. Alignment of reads with reference genomes allowed robust SNP identification from the C. trachomatis chromosome and plasmid. This revealed that the C. trachomatis in the specimen was very closely related to the sequenced urogenital, serovar F, clade T1 isolate F-SW4. In addition, high genome-wide coverage was obtained for Prevotella melaninogenica, Gardnerella vaginalis, Clostridiales genomosp. BVAB3 and Mycoplasma hominis. This illustrates the potential of metagenome data to provide high resolution bacterial typing data from multiple taxa in a diagnostic specimen. ©2013 The Authors Clinical Microbiology and Infection ©2013 European Society of Clinical Microbiology and Infectious Diseases.
Environmental DNA sequencing primers for eutardigrades and bdelloid rotifers
2009-01-01
Background The time it takes to isolate individuals from environmental samples and then extract DNA from each individual is one of the problems with generating molecular data from meiofauna such as eutardigrades and bdelloid rotifers. The lack of consistent morphological information and the extreme abundance of these classes makes morphological identification of rare, or even common cryptic taxa a large and unwieldy task. This limits the ability to perform large-scale surveys of the diversity of these organisms. Here we demonstrate a culture-independent molecular survey approach that enables the generation of large amounts of eutardigrade and bdelloid rotifer sequence data directly from soil. Our PCR primers, specific to the 18s small-subunit rRNA gene, were developed for both eutardigrades and bdelloid rotifers. Results The developed primers successfully amplified DNA of their target organism from various soil DNA extracts. This was confirmed by both the BLAST similarity searches and phylogenetic analyses. Tardigrades showed much better phylogenetic resolution than bdelloids. Both groups of organisms exhibited varying levels of endemism. Conclusion The development of clade-specific primers for characterizing eutardigrades and bdelloid rotifers from environmental samples should greatly increase our ability to characterize the composition of these taxa in environmental samples. Environmental sequencing as shown here differs from other molecular survey methods in that there is no need to pre-isolate the organisms of interest from soil in order to amplify their DNA. The DNA sequences obtained from methods that do not require culturing can be identified post-hoc and placed phylogenetically as additional closely related sequences are obtained from morphologically identified conspecifics. Our non-cultured environmental sequence based approach will be able to provide a rapid and large-scale screening of the presence, absence and diversity of Bdelloidea and Eutardigrada in a variety of soils. PMID:20003362
Klobutcher, L A; Swanton, M T; Donini, P; Prescott, D M
1981-01-01
In hypotrichous ciliates, all of the macronuclear DNA is in the form of low molecular weight molecules with an average size of approximately 2200 base pairs. Total macronuclear DNA from four hypotrichs has been shown to have inverted terminal repeats by direct sequence analysis. In Oxytricha nova, Oxytricha sp., and Stylonychia pustulata, this terminal sequence may be written as 5'-C4A4C4A4C4 ... 3'-G4T4G4T4G4T4G4T4G4 ... In Euplotes aediculatus, the sequences is similar but differs in the lengths of the duplex region (28 base pairs) and of the putative 3' extension (14 base pairs). Also in Euplotes, a second common sequence of 5 base pairs (A-A-C-T-T-T-T-G-A-A) occurs internal to the terminal repeat and a 17-base-pair heterogeneous region: 5'-C4A4C4A4C4A4C4(X)17T-T-G-A-A ... 3'-G2T4G4T4G4T4G4T4G4T4G4(X)17A-A-C-T-T ... The length of the terminal repeat sequence for O. nova was confirmed in cloned macronuclear DNA molecules. Images PMID:6265931
Biorecognition by DNA oligonucleotides after Exposure to Photoresists and Resist Removers
Dean, Stacey L.; Morrow, Thomas J.; Patrick, Sue; Li, Mingwei; Clawson, Gary; Mayer, Theresa S.; Keating, Christine D.
2013-01-01
Combining biological molecules with integrated circuit technology is of considerable interest for next generation sensors and biomedical devices. Current lithographic microfabrication methods, however, were developed for compatibility with silicon technology rather than bioorganic molecules and consequently it cannot be assumed that biomolecules will remain attached and intact during on-chip processing. Here, we evaluate the effects of three common photoresists (Microposit S1800 series, PMGI SF6, and Megaposit SPR 3012) and two photoresist removers (acetone and 1165 remover) on the ability of surface-immobilized DNA oligonucleotides to selectively recognize their reverse-complementary sequence. Two common DNA immobilization methods were compared: adsorption of 5′-thiolated sequences directly to gold nanowires and covalent attachment of 5′-thiolated sequences to surface amines on silica coated nanowires. We found that acetone had deleterious effects on selective hybridization as compared to 1165 remover, presumably due to incomplete resist removal. Use of the PMGI photoresist, which involves a high temperature bake step, was detrimental to the later performance of nanowire-bound DNA in hybridization assays, especially for DNA attached via thiol adsorption. The other three photoresists did not substantially degrade DNA binding capacity or selectivity for complementary DNA sequences. To determine if the lithographic steps caused more subtle damage, we also tested oligonucleotides containing a single base mismatch. Finally, a two-step photolithographic process was developed and used in combination with dielectrophoretic nanowire assembly to produce an array of doubly-contacted, electrically isolated individual nanowire components on a chip. Post-fabrication fluorescence imaging indicated that nanowire-bound DNA was present and able to selectively bind complementary strands. PMID:23952639
Robinson, Clifford R.; Sligar, Stephen G.
1998-01-01
Restriction endonucleases such as EcoRI bind and cleave DNA with great specificity and represent a paradigm for protein–DNA interactions and molecular recognition. Using osmotic pressure to induce water release, we demonstrate the participation of bound waters in the sequence discrimination of substrate DNA by EcoRI. Changes in solvation can play a critical role in directing sequence-specific DNA binding by EcoRI and are also crucial in assisting site discrimination during catalysis. By measuring the volume change for complex formation, we show that at the cognate sequence (GAATTC) EcoRI binding releases about 70 fewer water molecules than binding at an alternate DNA sequence (TAATTC), which differs by a single base pair. EcoRI complexation with nonspecific DNA releases substantially less water than either of these specific complexes. In cognate substrates (GAATTC) kcat decreases as osmotic pressure is increased, indicating the binding of about 30 water molecules accompanies the cleavage reaction. For the alternate substrate (TAATTC), release of about 40 water molecules accompanies the reaction, indicated by a dramatic acceleration of the rate when osmotic pressure is raised. These large differences in solvation effects demonstrate that water molecules can be key players in the molecular recognition process during both association and catalytic phases of the EcoRI reaction, acting to change the specificity of the enzyme. For both the protein–DNA complex and the transition state, there may be substantial conformational differences between cognate and alternate sites, accompanied by significant alterations in hydration and solvent accessibility. PMID:9482860
Hamilton, John P; Neeno-Eckwall, Eric C; Adhikari, Bishwo N; Perna, Nicole T; Tisserat, Ned; Leach, Jan E; Lévesque, C André; Buell, C Robin
2011-01-01
The Comprehensive Phytopathogen Genomics Resource (CPGR) provides a web-based portal for plant pathologists and diagnosticians to view the genome and trancriptome sequence status of 806 bacterial, fungal, oomycete, nematode, viral and viroid plant pathogens. Tools are available to search and analyze annotated genome sequences of 74 bacterial, fungal and oomycete pathogens. Oomycete and fungal genomes are obtained directly from GenBank, whereas bacterial genome sequences are downloaded from the A Systematic Annotation Package (ASAP) database that provides curation of genomes using comparative approaches. Curated lists of bacterial genes relevant to pathogenicity and avirulence are also provided. The Plant Pathogen Transcript Assemblies Database provides annotated assemblies of the transcribed regions of 82 eukaryotic genomes from publicly available single pass Expressed Sequence Tags. Data-mining tools are provided along with tools to create candidate diagnostic markers, an emerging use for genomic sequence data in plant pathology. The Plant Pathogen Ribosomal DNA (rDNA) database is a resource for pathogens that lack genome or transcriptome data sets and contains 131 755 rDNA sequences from GenBank for 17 613 species identified as plant pathogens and related genera. Database URL: http://cpgr.plantbiology.msu.edu.
Régoudis, Estelle; Pélandakis, Michel
2016-02-01
The amoeba-flagellate Naegleria fowleri is a causative agent of primary amoebic meningoencephalitis (PAM). This thermophilic species occurs worldwide and tends to proliferate in warm aquatic environment. The PAM cases remain rare but this infection is mostly fatal. Here, we describe a single copy region which has been cloned and sequenced, and was used for both conventional and real-time PCR. Targeting a single-copy DNA sequence allows to directly quantify the N. fowleri cells. The real-time PCR results give a detection limit of 1 copy per reaction with high reproducibility without the need of a Taqman probe. This procedure is of interest as compared to other procedures which are mostly based on the detection of multi-copy DNA associated with a Taqman probe. Copyright © 2015 Elsevier Inc. All rights reserved.
The genome of Eimeria spp., with special reference to Eimeria tenella--a coccidium from the chicken.
Shirley, M W
2000-04-10
Eimeria spp. contain at least four genomes. The nuclear genome is best studied in the avian species Eimeria tenella and comprises about 60 Mbp DNA contained within ca. 14 chromosomes; other avian and lupine species appear to possess a nuclear genome of similar size. In addition, sequence data and hybridisation studies have provided direct evidence for extrachromosomal mitochondrial and plastid DNA genomes, and double-stranded RNA segments have also been described. The unique phenotype of "precocious" development that characterises some selected lines of Eimeria spp. not only provides the basis for the first generation of live attenuated vaccines, but offers a significant entrée into studies on the regulation of an apicomplexan life-cycle. With a view to identifying loci implicated in the trait of precocious development, a genetic linkage map of the genome of E. tenella is being constructed in this laboratory from analyses of the inheritance of over 400 polymorphic DNA markers in the progeny of a cross between complementary drug-resistant and precocious parents. Other projects that impinge directly or indirectly on the genome and/or genetics of Eimeria spp. are currently in progress in several laboratories, and include the derivation of expressed sequence tag data and the development of ancillary technologies such as transfection techniques. No large-scale genomic DNA sequencing projects have been reported.
NASA Technical Reports Server (NTRS)
Dar, M. E.; Winters, T. A.; Jorgensen, T. J.
1997-01-01
Ataxia-telangiectasia (A-T) is an autosomal-recessive lethal human disease. Homozygotes suffer from a number of neurological disorders, as well as very high cancer incidence. Heterozygotes may also have a higher than normal risk of cancer, particularly for the breast. The gene responsible for the disease (ATM) has been cloned, but its role in mechanisms of the disease remain unknown. Cellular A-T phenotypes, such as radiosensitivity and genomic instability, suggest that a deficiency in the repair of DNA double-strand breaks (DSBs) may be the primary defect; however, overall levels of DSB rejoining appear normal. We used the shuttle vector, pZ189, containing an oxidatively-induced DSB, to compare the integrity of DSB rejoining in one normal and two A-T fibroblast cells lines. Mutation frequencies were two-fold higher in A-T cells, and the mutational spectrum was different. The majority of the mutations found in all three cell lines were deletions (44-63%). The DNA sequence analysis indicated that 17 of the 17 plasmids with deletion mutations in normal cells occurred between short direct-repeat sequences (removing one of the repeats plus the intervening sequences), implicating illegitimate recombination in DSB rejoining. The combined data from both A-T cell lines showed that 21 of 24 deletions did not involve direct-repeats sequences, implicating a defect in the illegitimate recombination pathway. These findings suggest that the A-T gene product may either directly participate in illegitimate recombination or modulate the pathway. Regardless, this defect is likely to be important to a mechanistic understanding of this lethal disease.
Molecular characterization of the canine mitochondrial DNA control region for forensic applications.
Eichmann, Cordula; Parson, Walther
2007-09-01
The canine mitochondrial DNA (mtDNA) control region of 133 dogs living in the area around Innsbruck, Austria was sequenced. A total of 40 polymorphic sites were observed in the first hypervariable segment and 15 in the second, which resulted in the differentiation of 40 distinct haplotypes. We observed five nucleotide positions that were highly polymorphic within different haplogroups, and they represent good candidates for mtDNA screening. We found five point heteroplasmic positions; all located in HVS-I and a polythymine region in HVS-II, the latter often being associated with length heteroplasmy. In contrast to human mtDNA, the canine control region contains a hypervariable 10 nucleotide repeat region, which is located between the two hypervariable regions. In our population sample, we observed eight different repeat types, which we characterized by direct sequencing and fragment length analysis. The discrimination power of the canine mtDNA control region was 0.93, not taking the polymorphic repeat region into consideration.
Sato, Takehiro; Razhev, Dmitry; Amano, Tetsuya; Masuda, Ryuichi
2011-08-01
In order to investigate the genetic features of ancient West Siberian people of the Middle Ages, we studied ancient DNA from bone remains excavated from two archeological sites in West Siberia: Saigatinsky 6 (eighth to eleventh centuries) and Zeleny Yar (thirteenth century). Polymerase chain reaction amplification and nucleotide sequencing of mitochondrial DNA (mtDNA) succeeded for 9 of 67 specimens examined, and the sequences were assigned to mtDNA haplogroups B4, C4, G2, H and U. This distribution pattern of mtDNA haplogroups in medieval West Siberian people was similar to those previously reported in modern populations living in West Siberia, such as the Mansi, Ket and Nganasan. Exact tests of population differentiation showed no significant differences between the medieval people and modern populations in West Siberia. The findings suggest that some medieval West Siberian people analyzed in the present study are included in direct ancestral lineages of modern populations native to West Siberia.
Computational Design of DNA-Binding Proteins.
Thyme, Summer; Song, Yifan
2016-01-01
Predicting the outcome of engineered and naturally occurring sequence perturbations to protein-DNA interfaces requires accurate computational modeling technologies. It has been well established that computational design to accommodate small numbers of DNA target site substitutions is possible. This chapter details the basic method of design used in the Rosetta macromolecular modeling program that has been successfully used to modulate the specificity of DNA-binding proteins. More recently, combining computational design and directed evolution has become a common approach for increasing the success rate of protein engineering projects. The power of such high-throughput screening depends on computational methods producing multiple potential solutions. Therefore, this chapter describes several protocols for increasing the diversity of designed output. Lastly, we describe an approach for building comparative models of protein-DNA complexes in order to utilize information from homologous sequences. These models can be used to explore how nature modulates specificity of protein-DNA interfaces and potentially can even be used as starting templates for further engineering.
Hajibabaei, Mehrdad; Shokralla, Shadi; Zhou, Xin; Singer, Gregory A. C.; Baird, Donald J.
2011-01-01
Timely and accurate biodiversity analysis poses an ongoing challenge for the success of biomonitoring programs. Morphology-based identification of bioindicator taxa is time consuming, and rarely supports species-level resolution especially for immature life stages. Much work has been done in the past decade to develop alternative approaches for biodiversity analysis using DNA sequence-based approaches such as molecular phylogenetics and DNA barcoding. On-going assembly of DNA barcode reference libraries will provide the basis for a DNA-based identification system. The use of recently introduced next-generation sequencing (NGS) approaches in biodiversity science has the potential to further extend the application of DNA information for routine biomonitoring applications to an unprecedented scale. Here we demonstrate the feasibility of using 454 massively parallel pyrosequencing for species-level analysis of freshwater benthic macroinvertebrate taxa commonly used for biomonitoring. We designed our experiments in order to directly compare morphology-based, Sanger sequencing DNA barcoding, and next-generation environmental barcoding approaches. Our results show the ability of 454 pyrosequencing of mini-barcodes to accurately identify all species with more than 1% abundance in the pooled mixture. Although the approach failed to identify 6 rare species in the mixture, the presence of sequences from 9 species that were not represented by individuals in the mixture provides evidence that DNA based analysis may yet provide a valuable approach in finding rare species in bulk environmental samples. We further demonstrate the application of the environmental barcoding approach by comparing benthic macroinvertebrates from an urban region to those obtained from a conservation area. Although considerable effort will be required to robustly optimize NGS tools to identify species from bulk environmental samples, our results indicate the potential of an environmental barcoding approach for biomonitoring programs. PMID:21533287
Nakamura, Mikiko; Suzuki, Ayako; Akada, Junko; Tomiyoshi, Keisuke; Hoshida, Hisashi; Akada, Rinji
2015-12-01
Mammalian gene expression constructs are generally prepared in a plasmid vector, in which a promoter and terminator are located upstream and downstream of a protein-coding sequence, respectively. In this study, we found that front terminator constructs-DNA constructs containing a terminator upstream of a promoter rather than downstream of a coding region-could sufficiently express proteins as a result of end joining of the introduced DNA fragment. By taking advantage of front terminator constructs, FLAG substitutions, and deletions were generated using mutagenesis primers to identify amino acids specifically recognized by commercial FLAG antibodies. A minimal epitope sequence for polyclonal FLAG antibody recognition was also identified. In addition, we analyzed the sequence of a C-terminal Ser-Lys-Leu peroxisome localization signal, and identified the key residues necessary for peroxisome targeting. Moreover, front terminator constructs of hepatitis B surface antigen were used for deletion analysis, leading to the identification of regions required for the particle formation. Collectively, these results indicate that front terminator constructs allow for easy manipulations of C-terminal protein-coding sequences, and suggest that direct gene expression with PCR-amplified DNA is useful for high-throughput protein analysis in mammalian cells.
Leonard, D A; Rajaram, N; Kerppola, T K
1997-05-13
Interactions among transcription factors that bind to separate sequence elements require bending of the intervening DNA and juxtaposition of interacting molecular surfaces in an appropriate orientation. Here, we examine the effects of single amino acid substitutions adjacent to the basic regions of Fos and Jun as well as changes in sequences flanking the AP-1 site on DNA bending. Substitution of charged amino acid residues at positions adjacent to the basic DNA-binding domains of Fos and Jun altered DNA bending. The change in DNA bending was directly proportional to the change in net charge for all heterodimeric combinations between these proteins. Fos and Jun induced distinct DNA bends at different binding sites. Exchange of a single base pair outside of the region contacted in the x-ray crystal structure altered DNA bending. Substitution of base pairs flanking the AP-1 site had converse effects on the opposite directions of DNA bending induced by homodimers and heterodimers. These results suggest that Fos and Jun induce DNA bending in part through electrostatic interactions between amino acid residues adjacent to the basic region and base pairs flanking the AP-1 site. DNA bending by Fos and Jun at inverted binding sites indicated that heterodimers bind to the AP-1 site in a preferred orientation. Mutation of a conserved arginine within the basic regions of Fos and transversion of the central C:G base pair in the AP-1 site to G:C had complementary effects on the orientation of heterodimer binding and DNA bending. The conformational variability of the Fos-Jun-AP-1 complex may contribute to its functional versatility at different promoters.
Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing
NASA Astrophysics Data System (ADS)
Marín, Antonio García; García-Mendiola, Tania; Bernabeu, Cristina Navio; Hernández, María Jesús; Piqueras, Juan; Pau, Jose Luis; Pariente, Félix; Lorenzo, Encarnación
2016-05-01
A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori onto GaNP/Si substrates; complementary target sequences of Helicobacter pylori can be quantified over the range of 10 pM to 3.0 nM with a detection limit of 6.0 pM and a linear correlation coefficient of R2 = 0.990. The selectivity of the device allows the detection of a single nucleotide polymorphism (SNP) in a specific sequence of Helicobacter pylori, without the need for a hybridization suppressor in solution such as formamide. Furthermore, it also allows the detection of this sequence in the presence of other pathogens, such as Escherichia coli in the sample. The broad applicability of the system was demonstrated by the detection of a specific gene mutation directly associated with cystic fibrosis in large genomic DNA isolated from blood cells.A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori onto GaNP/Si substrates; complementary target sequences of Helicobacter pylori can be quantified over the range of 10 pM to 3.0 nM with a detection limit of 6.0 pM and a linear correlation coefficient of R2 = 0.990. The selectivity of the device allows the detection of a single nucleotide polymorphism (SNP) in a specific sequence of Helicobacter pylori, without the need for a hybridization suppressor in solution such as formamide. Furthermore, it also allows the detection of this sequence in the presence of other pathogens, such as Escherichia coli in the sample. The broad applicability of the system was demonstrated by the detection of a specific gene mutation directly associated with cystic fibrosis in large genomic DNA isolated from blood cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00926c
Quantum Point Contact Single-Nucleotide Conductance for DNA and RNA Sequence Identification.
Afsari, Sepideh; Korshoj, Lee E; Abel, Gary R; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant
2017-11-28
Several nanoscale electronic methods have been proposed for high-throughput single-molecule nucleic acid sequence identification. While many studies display a large ensemble of measurements as "electronic fingerprints" with some promise for distinguishing the DNA and RNA nucleobases (adenine, guanine, cytosine, thymine, and uracil), important metrics such as accuracy and confidence of base calling fall well below the current genomic methods. Issues such as unreliable metal-molecule junction formation, variation of nucleotide conformations, insufficient differences between the molecular orbitals responsible for single-nucleotide conduction, and lack of rigorous base calling algorithms lead to overlapping nanoelectronic measurements and poor nucleotide discrimination, especially at low coverage on single molecules. Here, we demonstrate a technique for reproducible conductance measurements on conformation-constrained single nucleotides and an advanced algorithmic approach for distinguishing the nucleobases. Our quantum point contact single-nucleotide conductance sequencing (QPICS) method uses combed and electrostatically bound single DNA and RNA nucleotides on a self-assembled monolayer of cysteamine molecules. We demonstrate that by varying the applied bias and pH conditions, molecular conductance can be switched ON and OFF, leading to reversible nucleotide perturbation for electronic recognition (NPER). We utilize NPER as a method to achieve >99.7% accuracy for DNA and RNA base calling at low molecular coverage (∼12×) using unbiased single measurements on DNA/RNA nucleotides, which represents a significant advance compared to existing sequencing methods. These results demonstrate the potential for utilizing simple surface modifications and existing biochemical moieties in individual nucleobases for a reliable, direct, single-molecule, nanoelectronic DNA and RNA nucleotide identification method for sequencing.
Zhang, Lu; Cai, You-Ming; Zhuge, Qiang; Zou, Hui-Yu; Huang, Min-Ren
2002-06-01
Xinjiang is a center of distribution and differentiation of genus Dianthus in China, and has a great deal of species resources. The sequences of ITS region (including ITS-1, 5.8S rDNA and ITS-2) of nuclear ribosomal DNA from 8 species of genus Dianthus wildly distributed in Xinjiang were determined by direct sequencing of PCR products. The result showed that the size of the ITS of Dianthus is from 617 to 621 bp, and the length variation is only 4 bp. There are very high homogeneous (97.6%-99.8%) sequences between species, and about 80% homogeneous sequences between genus Dianthus and outgroup. The sequences of ITS in genus Dianthus are relatively conservative. In general, there are more conversion than transition in the variation sites among genus Dianthus. The conversion rates are relatively high, and the ratios of conversion/transition are 1.0-3.0. On the basis of phylogenetic analysis of nucleotide sequences the species of Dianthus in China would be divided into three sections. There is a distant relationship between sect. Barbulatum Williams and sect. Dianthus and between sect. Barbulatum Williams and sect. Fimbriatum Williams, and there is a close relationship between sect. Dianthus and sect. Fimbriatum Williams. From the phylogenetic tree of ITS it was found that the origin of sect. Dianthusis is earlier than that of sect. Fimbriatum Williams and sect. Barbulatum Williams.
Target Site Recognition by a Diversity-Generating Retroelement
Guo, Huatao; Tse, Longping V.; Nieh, Angela W.; Czornyj, Elizabeth; Williams, Steven; Oukil, Sabrina; Liu, Vincent B.; Miller, Jeff F.
2011-01-01
Diversity-generating retroelements (DGRs) are in vivo sequence diversification machines that are widely distributed in bacterial, phage, and plasmid genomes. They function to introduce vast amounts of targeted diversity into protein-encoding DNA sequences via mutagenic homing. Adenine residues are converted to random nucleotides in a retrotransposition process from a donor template repeat (TR) to a recipient variable repeat (VR). Using the Bordetella bacteriophage BPP-1 element as a prototype, we have characterized requirements for DGR target site function. Although sequences upstream of VR are dispensable, a 24 bp sequence immediately downstream of VR, which contains short inverted repeats, is required for efficient retrohoming. The inverted repeats form a hairpin or cruciform structure and mutational analysis demonstrated that, while the structure of the stem is important, its sequence can vary. In contrast, the loop has a sequence-dependent function. Structure-specific nuclease digestion confirmed the existence of a DNA hairpin/cruciform, and marker coconversion assays demonstrated that it influences the efficiency, but not the site of cDNA integration. Comparisons with other phage DGRs suggested that similar structures are a conserved feature of target sequences. Using a kanamycin resistance determinant as a reporter, we found that transplantation of the IMH and hairpin/cruciform-forming region was sufficient to target the DGR diversification machinery to a heterologous gene. In addition to furthering our understanding of DGR retrohoming, our results suggest that DGRs may provide unique tools for directed protein evolution via in vivo DNA diversification. PMID:22194701
Ozawa, Tatsuhiko; Kondo, Masato; Isobe, Masaharu
2004-01-01
The 3' rapid amplification of cDNA ends (3' RACE) is widely used to isolate the cDNA of unknown 3' flanking sequences. However, the conventional 3' RACE often fails to amplify cDNA from a large transcript if there is a long distance between the 5' gene-specific primer and poly(A) stretch, since the conventional 3' RACE utilizes 3' oligo-dT-containing primer complementary to the poly(A) tail of mRNA at the first strand cDNA synthesis. To overcome this problem, we have developed an improved 3' RACE method suitable for the isolation of cDNA derived from very large transcripts. By using the oligonucleotide-containing random 9mer together with the GC-rich sequence for the suppression PCR technology at the first strand of cDNA synthesis, we have been able to amplify the cDNA from a very large transcript, such as the microtubule-actin crosslinking factor 1 (MACF1) gene, which codes a transcript of 20 kb in size. When there is no splicing variant, our highly specific amplification allows us to perform the direct sequencing of 3' RACE products without requiring cloning in bacterial hosts. Thus, this stepwise 3' RACE walking will help rapid characterization of the 3' structure of a gene, even when it encodes a very large transcript.
NMR studies of DNA oligomers and their interactions with minor groove binding ligands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fagan, Patricia A.
1996-05-01
The cationic peptide ligands distamycin and netropsin bind noncovalently to the minor groove of DNA. The binding site, orientation, stoichiometry, and qualitative affinity of distamycin binding to several short DNA oligomers were investigated by NMR spectroscopy. The oligomers studied contain A,T-rich or I,C-rich binding sites, where I = 2-desaminodeoxyguanosine. I•C base pairs are functional analogs of A•T base pairs in the minor groove. The different behaviors exhibited by distamycin and netropsin binding to various DNA sequences suggested that these ligands are sensitive probes of DNA structure. For sites of five or more base pairs, distamycin can form 1:1 or 2:1more » ligand:DNA complexes. Cooperativity in distamycin binding is low in sites such as AAAAA which has narrow minor grooves, and is higher in sites with wider minor grooves such as ATATAT. The distamycin binding and base pair opening lifetimes of I,C-containing DNA oligomers suggest that the I,C minor groove is structurally different from the A,T minor groove. Molecules which direct chemistry to a specific DNA sequence could be used as antiviral compounds, diagnostic probes, or molecular biology tools. The author studied two ligands in which reactive groups were tethered to a distamycin to increase the sequence specificity of the reactive agent.« less
Determination of fetal DNA fraction from the plasma of pregnant women using sequence read counts.
Kim, Sung K; Hannum, Gregory; Geis, Jennifer; Tynan, John; Hogg, Grant; Zhao, Chen; Jensen, Taylor J; Mazloom, Amin R; Oeth, Paul; Ehrich, Mathias; van den Boom, Dirk; Deciu, Cosmin
2015-08-01
This study introduces a novel method, referred to as SeqFF, for estimating the fetal DNA fraction in the plasma of pregnant women and to infer the underlying mechanism that allows for such statistical modeling. Autosomal regional read counts from whole-genome massively parallel single-end sequencing of circulating cell-free DNA (ccfDNA) from the plasma of 25 312 pregnant women were used to train a multivariate model. The pretrained model was then applied to 505 pregnant samples to assess the performance of SeqFF against known methodologies for fetal DNA fraction calculations. Pearson's correlation between chromosome Y and SeqFF for pregnancies with male fetuses from two independent cohorts ranged from 0.932 to 0.938. Comparison between a single-nucleotide polymorphism-based approach and SeqFF yielded a Pearson's correlation of 0.921. Paired-end sequencing suggests that shorter ccfDNA, that is, less than 150 bp in length, is nonuniformly distributed across the genome. Regions exhibiting an increased proportion of short ccfDNA, which are more likely of fetal origin, tend to provide more information in the SeqFF calculations. SeqFF is a robust and direct method to determine fetal DNA fraction. Furthermore, the method is applicable to both male and female pregnancies and can greatly improve the accuracy of noninvasive prenatal testing for fetal copy number variation. © 2015 John Wiley & Sons, Ltd.
LOPES, Estela Gallucci; GERALDO, Carlos Alberto; MARCILI, Arlei; SILVA, Ricardo Duarte; KEID, Lara Borges; OLIVEIRA, Trícia Maria Ferreira da Silva; SOARES, Rodrigo Martins
2016-01-01
In visceral leishmaniasis, the detection of the agent is of paramount importance to identify reservoirs of infection. Here, we evaluated the diagnostic attributes of PCRs based on primers directed to cytochrome-B (cytB), cytochrome-oxidase-subunit II (coxII), cytochrome-C (cytC), and the minicircle-kDNA. Although PCRs directed to cytB, coxII, cytC were able to detect different species of Leishmania, and the nucleotide sequence of their amplicons allowed the unequivocal differentiation of species, the analytical and diagnostic sensitivity of these PCRs were much lower than the analytical and diagnostic sensitivity of the kDNA-PCR. Among the 73 seropositive animals, the asymptomatic dogs had spleen and bone marrow samples collected and tested; only two animals were positive by PCRs based on cytB, coxII, and cytC, whereas 18 were positive by the kDNA-PCR. Considering the kDNA-PCR results, six dogs had positive spleen and bone marrow samples, eight dogs had positive bone marrow results but negative results in spleen samples and, in four dogs, the reverse situation occurred. We concluded that PCRs based on cytB, coxII, and cytC can be useful tools to identify Leishmania species when used in combination with automated sequencing. The discordance between the results of the kDNA-PCR in bone marrow and spleen samples may indicate that conventional PCR lacks sensitivity for the detection of infected dogs. Thus, primers based on the kDNA should be preferred for the screening of infected dogs. PMID:27253743
The TGA codons are present in the open reading frame of selenoprotein P cDNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, K.E.; Lloyd, R.S.; Read, R.
1991-03-11
The TGA codon in DNA has been shown to direct incorporation of selenocysteine into protein. Several proteins from bacteria and animals contain selenocysteine in their primary structures. Each of the cDNA clones of these selenoproteins contains one TGA codon in the open reading frame which corresponds to the selenocysteine in the protein. A cDNA clone for selenoprotein P (SeP), obtained from a {gamma}ZAP rat liver library, was sequenced by the dideoxy termination method. The correct reading frame was determined by comparison of the deduced amino acid sequence with the amino acid sequence of several peptides from SeP. Using SeP labelledmore » with {sup 75}Se in vivo, the selenocysteine content of the peptides was verified by the collection of carboxymethylated {sup 77}Se-selenocysteine as it eluted from the amino acid analyzer and determination of the radioactivity contained in the collected samples. Ten TGA codons are present in the open reading frame of the cDNA. Peptide fragmentation studies and the deduced sequence indicate that selenium-rich regions are located close to the carboxy terminus. Nine of the 10 selenocysteines are located in the terminal 26% of the sequence with four in the terminal 15 amino acids. The deduced sequence codes for a protein of 385 amino acids. Cleavage of the signal peptide gives the mature protein with 366 amino acids and a calculated mol wt of 41,052 Da. Searches of PIR and SWISSPROT protein databases revealed no similarity with glutathione peroxidase or other selenoproteins.« less
Characterization of c-Ki-ras and N-ras oncogenes in aflatoxin B sub 1 -induced rat liver tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, G.; Davis, E.F.; Huber, L.J.
c-Ki-ras and N-ras oncogenes have been characterized in aflatoxin B{sub 1}-induced hepatocellular carcinomas. Detection of different protooncogene and oncogene sequences and estimation of their frequency distribution were accomplished by polymerase chain reaction, cloning, and plaque screening methods. Two c-Ki-ras oncogene sequences were identified in DNA from liver tumors that contained nucleotide changes absent in DNA from livers of untreated control rats. Sequence changes involving G{center dot}C to T{center dot}A or G{center dot}C to A{center dot}T nucleotide substitutions in codon 12 were scored in three of eight tumor-bearing animals. Distributions of c-Ki-ras sequences in tumors and normal liver DNA indicated thatmore » the observed nucleotide changes were consistent with those expected to result from direct mutagenesis of the germ-line protooncogene by aflatoxin B{sub 1}. N-ras oncogene sequences were identified in DNA from two of eight tumors. Three N-ras gene regions were identified, one of which was shown to be associated with an oncogene containing a putative activating amino acid residing at codon 13. All three N-ras sequences, including the region detected in N-ras oncogenes, were present at similar frequencies in DNA samples from control livers as well as liver tumors. The presence of a potential germ-line oncogene may be related to the sensitivity of the Fischer rat strain to liver carcinogenesis by aflatoxin B{sub 1} and other chemical carcinogens.« less
The study of human Y chromosome variation through ancient DNA.
Kivisild, Toomas
2017-05-01
High throughput sequencing methods have completely transformed the study of human Y chromosome variation by offering a genome-scale view on genetic variation retrieved from ancient human remains in context of a growing number of high coverage whole Y chromosome sequence data from living populations from across the world. The ancient Y chromosome sequences are providing us the first exciting glimpses into the past variation of male-specific compartment of the genome and the opportunity to evaluate models based on previously made inferences from patterns of genetic variation in living populations. Analyses of the ancient Y chromosome sequences are challenging not only because of issues generally related to ancient DNA work, such as DNA damage-induced mutations and low content of endogenous DNA in most human remains, but also because of specific properties of the Y chromosome, such as its highly repetitive nature and high homology with the X chromosome. Shotgun sequencing of uniquely mapping regions of the Y chromosomes to sufficiently high coverage is still challenging and costly in poorly preserved samples. To increase the coverage of specific target SNPs capture-based methods have been developed and used in recent years to generate Y chromosome sequence data from hundreds of prehistoric skeletal remains. Besides the prospects of testing directly as how much genetic change in a given time period has accompanied changes in material culture the sequencing of ancient Y chromosomes allows us also to better understand the rate at which mutations accumulate and get fixed over time. This review considers genome-scale evidence on ancient Y chromosome diversity that has recently started to accumulate in geographic areas favourable to DNA preservation. More specifically the review focuses on examples of regional continuity and change of the Y chromosome haplogroups in North Eurasia and in the New World.
Direct mapping of symbolic DNA sequence into frequency domain in global repeat map algorithm
Glunčić, Matko; Paar, Vladimir
2013-01-01
The main feature of global repeat map (GRM) algorithm (www.hazu.hr/grm/software/win/grm2012.exe) is its ability to identify a broad variety of repeats of unbounded length that can be arbitrarily distant in sequences as large as human chromosomes. The efficacy is due to the use of complete set of a K-string ensemble which enables a new method of direct mapping of symbolic DNA sequence into frequency domain, with straightforward identification of repeats as peaks in GRM diagram. In this way, we obtain very fast, efficient and highly automatized repeat finding tool. The method is robust to substitutions and insertions/deletions, as well as to various complexities of the sequence pattern. We present several case studies of GRM use, in order to illustrate its capabilities: identification of α-satellite tandem repeats and higher order repeats (HORs), identification of Alu dispersed repeats and of Alu tandems, identification of Period 3 pattern in exons, implementation of ‘magnifying glass’ effect, identification of complex HOR pattern, identification of inter-tandem transitional dispersed repeat sequences and identification of long segmental duplications. GRM algorithm is convenient for use, in particular, in cases of large repeat units, of highly mutated and/or complex repeats, and of global repeat maps for large genomic sequences (chromosomes and genomes). PMID:22977183
Guo, Q; Mintier, G; Ma-Edmonds, M; Storton, D; Wang, X; Xiao, X; Kienzle, B; Zhao, D; Feder, John N
2018-02-01
Using CRISPR/Cas9 delivered as a RNA modality in conjunction with a lipid specifically formulated for large RNA molecules, we demonstrate that homology directed repair (HDR) rates between 20-40% can be achieved in induced pluripotent stem cells (iPSC). Furthermore, low HDR rates (between 1-20%) can be enhanced two- to ten-fold in both iPSCs and HEK293 cells by 'cold shocking' cells at 32 °C for 24-48 hours following transfection. This method can also increases the proportion of loci that have undergone complete sequence conversion across the donor sequence, or 'perfect HDR', as opposed to partial sequence conversion where nucleotides more distal to the CRISPR cut site are less efficiently incorporated ('partial HDR'). We demonstrate that the structure of the single-stranded DNA oligo donor can influence the fidelity of HDR, with oligos symmetric with respect to the CRISPR cleavage site and complementary to the target strand being more efficient at directing 'perfect HDR' compared to asymmetric non-target strand complementary oligos. Our protocol represents an efficient method for making CRISPR-mediated, specific DNA sequence changes within the genome that will facilitate the rapid generation of genetic models of human disease in iPSCs as well as other genome engineered cell lines.
Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data.
Chin, Chen-Shan; Alexander, David H; Marks, Patrick; Klammer, Aaron A; Drake, James; Heiner, Cheryl; Clum, Alicia; Copeland, Alex; Huddleston, John; Eichler, Evan E; Turner, Stephen W; Korlach, Jonas
2013-06-01
We present a hierarchical genome-assembly process (HGAP) for high-quality de novo microbial genome assemblies using only a single, long-insert shotgun DNA library in conjunction with Single Molecule, Real-Time (SMRT) DNA sequencing. Our method uses the longest reads as seeds to recruit all other reads for construction of highly accurate preassembled reads through a directed acyclic graph-based consensus procedure, which we follow with assembly using off-the-shelf long-read assemblers. In contrast to hybrid approaches, HGAP does not require highly accurate raw reads for error correction. We demonstrate efficient genome assembly for several microorganisms using as few as three SMRT Cell zero-mode waveguide arrays of sequencing and for BACs using just one SMRT Cell. Long repeat regions can be successfully resolved with this workflow. We also describe a consensus algorithm that incorporates SMRT sequencing primary quality values to produce de novo genome sequence exceeding 99.999% accuracy.
DNA rearrangements directed by non-coding RNAs in ciliates
Mochizuki, Kazufumi
2013-01-01
Extensive programmed rearrangement of DNA, including DNA elimination, chromosome fragmentation, and DNA descrambling, takes place in the newly developed macronucleus during the sexual reproduction of ciliated protozoa. Recent studies have revealed that two distant classes of ciliates use distinct types of non-coding RNAs to regulate such DNA rearrangement events. DNA elimination in Tetrahymena is regulated by small non-coding RNAs that are produced and utilized in an RNAi-related process. It has been proposed that the small RNAs produced from the micronuclear genome are used to identify eliminated DNA sequences by whole-genome comparison between the parental macronucleus and the micronucleus. In contrast, DNA descrambling in Oxytricha is guided by long non-coding RNAs that are produced from the parental macronuclear genome. These long RNAs are proposed to act as templates for the direct descrambling events that occur in the developing macronucleus. Both cases provide useful examples to study epigenetic chromatin regulation by non-coding RNAs. PMID:21956937
Nanopore DNA Sequencing and Genome Assembly on the International Space Station.
Castro-Wallace, Sarah L; Chiu, Charles Y; John, Kristen K; Stahl, Sarah E; Rubins, Kathleen H; McIntyre, Alexa B R; Dworkin, Jason P; Lupisella, Mark L; Smith, David J; Botkin, Douglas J; Stephenson, Timothy A; Juul, Sissel; Turner, Daniel J; Izquierdo, Fernando; Federman, Scot; Stryke, Doug; Somasekar, Sneha; Alexander, Noah; Yu, Guixia; Mason, Christopher E; Burton, Aaron S
2017-12-21
We evaluated the performance of the MinION DNA sequencer in-flight on the International Space Station (ISS), and benchmarked its performance off-Earth against the MinION, Illumina MiSeq, and PacBio RS II sequencing platforms in terrestrial laboratories. Samples contained equimolar mixtures of genomic DNA from lambda bacteriophage, Escherichia coli (strain K12, MG1655) and Mus musculus (female BALB/c mouse). Nine sequencing runs were performed aboard the ISS over a 6-month period, yielding a total of 276,882 reads with no apparent decrease in performance over time. From sequence data collected aboard the ISS, we constructed directed assemblies of the ~4.6 Mb E. coli genome, ~48.5 kb lambda genome, and a representative M. musculus sequence (the ~16.3 kb mitochondrial genome), at 100%, 100%, and 96.7% consensus pairwise identity, respectively; de novo assembly of the E. coli genome from raw reads yielded a single contig comprising 99.9% of the genome at 98.6% consensus pairwise identity. Simulated real-time analyses of in-flight sequence data using an automated bioinformatic pipeline and laptop-based genomic assembly demonstrated the feasibility of sequencing analysis and microbial identification aboard the ISS. These findings illustrate the potential for sequencing applications including disease diagnosis, environmental monitoring, and elucidating the molecular basis for how organisms respond to spaceflight.
Neugebauer, Tomasz; Bordeleau, Eric; Burrus, Vincent; Brzezinski, Ryszard
2015-01-01
Data visualization methods are necessary during the exploration and analysis activities of an increasingly data-intensive scientific process. There are few existing visualization methods for raw nucleotide sequences of a whole genome or chromosome. Software for data visualization should allow the researchers to create accessible data visualization interfaces that can be exported and shared with others on the web. Herein, novel software developed for generating DNA data visualization interfaces is described. The software converts DNA data sets into images that are further processed as multi-scale images to be accessed through a web-based interface that supports zooming, panning and sequence fragment selection. Nucleotide composition frequencies and GC skew of a selected sequence segment can be obtained through the interface. The software was used to generate DNA data visualization of human and bacterial chromosomes. Examples of visually detectable features such as short and long direct repeats, long terminal repeats, mobile genetic elements, heterochromatic segments in microbial and human chromosomes, are presented. The software and its source code are available for download and further development. The visualization interfaces generated with the software allow for the immediate identification and observation of several types of sequence patterns in genomes of various sizes and origins. The visualization interfaces generated with the software are readily accessible through a web browser. This software is a useful research and teaching tool for genetics and structural genomics.
Lusky, M; Berg, L; Weiher, H; Botchan, M
1983-01-01
Bovine papilloma virus (BPV) contains a cis-acting DNA element which can enhance transcription of distal promoters. Utilizing both direct and indirect transient transfection assays, we showed that a 59-base-pair DNA sequence from the BPV genome could activate the simian virus 40 promoter from distances exceeding 2.5 kilobases and in an orientation-independent manner. In contrast to the promoter 5'-proximal localization of other known viral activators, this element was located immediately 3' to the early polyadenylation signal in the BPV genome. Deletion of these sequences from the BPV genome inactivated the transforming ability of BPV recombinant plasmids. Orientation-independent reinsertion of this 59-base-pair sequence, or alternatively of activator DNA sequences from simian virus 40 or polyoma virus, restored the transforming activity of the BPV recombinant plasmids. Furthermore, the stable transformation frequency of the herpes simplex virus type 1 thymidine kinase gene was enhanced when linked to restriction fragments of BPV DNA which included the defined activator element. This enhancement was orientation independent with respect to the thymidine kinase promoter. The enhancement also appeared to be unrelated to the establishment of the recombinant plasmids as episomes, since in transformed cells these sequences are found linked to high-molecular-weight DNA. We propose that the enhancement of stable transformation frequencies and the activation of transcription units are in this case alternate manifestations of the same biochemical events. Images PMID:6308425
Kilina, Svetlana; Yarotski, Dzmitry A.; Talin, A. Alec; ...
2011-01-01
We present a combined approach that relies on computational simulations and scanning tunneling microscopy (STM) measurements to reveal morphological properties and stability criteria of carbon nanotube-DNA (CNT-DNA) constructs. Application of STM allows direct observation of very stable CNT-DNA hybrid structures with the well-defined DNA wrapping angle of 63.4 ° and a coiling period of 3.3 nm. Using force field simulations, we determine how the DNA-CNT binding energy depends on the sequence and binding geometry of a single strand DNA. This dependence allows us to quantitatively characterize the stability of a hybrid structure with an optimal π-stacking between DNA nucleotides and themore » tube surface and better interpret STM data. Our simulations clearly demonstrate the existence of a very stable DNA binding geometry for (6,5) CNT as evidenced by the presence of a well-defined minimum in the binding energy as a function of an angle between DNA strand and the nanotube chiral vector. This novel approach demonstrates the feasibility of CNT-DNA geometry studies with subnanometer resolution and paves the way towards complete characterization of the structural and electronic properties of drug-delivering systems based on DNA-CNT hybrids as a function of DNA sequence and a nanotube chirality.« less
Specific and reversible DNA-directed self-assembly of oil-in-water emulsion droplets
Hadorn, Maik; Boenzli, Eva; Sørensen, Kristian T.; Fellermann, Harold; Eggenberger Hotz, Peter; Hanczyc, Martin M.
2012-01-01
Higher-order structures that originate from the specific and reversible DNA-directed self-assembly of microscopic building blocks hold great promise for future technologies. Here, we functionalized biotinylated soft colloid oil-in-water emulsion droplets with biotinylated single-stranded DNA oligonucleotides using streptavidin as an intermediary linker. We show the components of this modular linking system to be stable and to induce sequence-specific aggregation of binary mixtures of emulsion droplets. Three length scales were thereby involved: nanoscale DNA base pairing linking microscopic building blocks resulted in macroscopic aggregates visible to the naked eye. The aggregation process was reversible by changing the temperature and electrolyte concentration and by the addition of competing oligonucleotides. The system was reset and reused by subsequent refunctionalization of the emulsion droplets. DNA-directed self-assembly of oil-in-water emulsion droplets, therefore, offers a solid basis for programmable and recyclable soft materials that undergo structural rearrangements on demand and that range in application from information technology to medicine. PMID:23175791
Balintová, Jana; Plucnara, Medard; Vidláková, Pavlína; Pohl, Radek; Havran, Luděk; Fojta, Miroslav; Hocek, Michal
2013-09-16
Benzofurazane has been attached to nucleosides and dNTPs, either directly or through an acetylene linker, as a new redox label for electrochemical analysis of nucleotide sequences. Primer extension incorporation of the benzofurazane-modified dNTPs by polymerases has been developed for the construction of labeled oligonucleotide probes. In combination with nitrophenyl and aminophenyl labels, we have successfully developed a three-potential coding of DNA bases and have explored the relevant electrochemical potentials. The combination of benzofurazane and nitrophenyl reducible labels has proved to be excellent for ratiometric analysis of nucleotide sequences and is suitable for bioanalytical applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Direct Single-Molecule Observation of Mode and Geometry of RecA-Mediated Homology Search.
Lee, Andrew J; Endo, Masayuki; Hobbs, Jamie K; Wälti, Christoph
2018-01-23
Genomic integrity, when compromised by accrued DNA lesions, is maintained through efficient repair via homologous recombination. For this process the ubiquitous recombinase A (RecA), and its homologues such as the human Rad51, are of central importance, able to align and exchange homologous sequences within single-stranded and double-stranded DNA in order to swap out defective regions. Here, we directly observe the widely debated mechanism of RecA homology searching at a single-molecule level using high-speed atomic force microscopy (HS-AFM) in combination with tailored DNA origami frames to present the reaction targets in a way suitable for AFM-imaging. We show that RecA nucleoprotein filaments move along DNA substrates via short-distance facilitated diffusions, or slides, interspersed with longer-distance random moves, or hops. Importantly, from the specific interaction geometry, we find that the double-stranded substrate DNA resides in the secondary DNA binding-site within the RecA nucleoprotein filament helical groove during the homology search. This work demonstrates that tailored DNA origami, in conjunction with HS-AFM, can be employed to reveal directly conformational and geometrical information on dynamic protein-DNA interactions which was previously inaccessible at an individual single-molecule level.
Contrasting Patterns of rDNA Homogenization within the Zygosaccharomyces rouxii Species Complex
Chand Dakal, Tikam; Giudici, Paolo; Solieri, Lisa
2016-01-01
Arrays of repetitive ribosomal DNA (rDNA) sequences are generally expected to evolve as a coherent family, where repeats within such a family are more similar to each other than to orthologs in related species. The continuous homogenization of repeats within individual genomes is a recombination process termed concerted evolution. Here, we investigated the extent and the direction of concerted evolution in 43 yeast strains of the Zygosaccharomyces rouxii species complex (Z. rouxii, Z. sapae, Z. mellis), by analyzing two portions of the 35S rDNA cistron, namely the D1/D2 domains at the 5’ end of the 26S rRNA gene and the segment including the internal transcribed spacers (ITS) 1 and 2 (ITS regions). We demonstrate that intra-genomic rDNA sequence variation is unusually frequent in this clade and that rDNA arrays in single genomes consist of an intermixing of Z. rouxii, Z. sapae and Z. mellis-like sequences, putatively evolved by reticulate evolutionary events that involved repeated hybridization between lineages. The levels and distribution of sequence polymorphisms vary across rDNA repeats in different individuals, reflecting four patterns of rDNA evolution: I) rDNA repeats that are homogeneous within a genome but are chimeras derived from two parental lineages via recombination: Z. rouxii in the ITS region and Z. sapae in the D1/D2 region; II) intra-genomic rDNA repeats that retain polymorphisms only in ITS regions; III) rDNA repeats that vary only in their D1/D2 domains; IV) heterogeneous rDNA arrays that have both polymorphic ITS and D1/D2 regions. We argue that an ongoing process of homogenization following allodiplodization or incomplete lineage sorting gave rise to divergent evolutionary trajectories in different strains, depending upon temporal, structural and functional constraints. We discuss the consequences of these findings for Zygosaccharomyces species delineation and, more in general, for yeast barcoding. PMID:27501051
Merkiene, Egle; Gaidamaviciute, Edita; Riauba, Laurynas; Janulaitis, Arvydas; Lagunavicius, Arunas
2010-08-01
We improved the target RNA-primed RCA technique for direct detection and analysis of RNA in vitro and in situ. Previously we showed that the 3' --> 5' single-stranded RNA exonucleolytic activity of Phi29 DNA polymerase converts the target RNA into a primer and uses it for RCA initiation. However, in some cases, the single-stranded RNA exoribonucleolytic activity of the polymerase is hindered by strong double-stranded structures at the 3'-end of target RNAs. We demonstrate that in such hampered cases, the double-stranded RNA-specific Escherichia coli RNase III efficiently assists Phi29 DNA polymerase in converting the target RNA into a primer. These observations extend the target RNA-primed RCA possibilities to test RNA sequences distanced far from the 3'-end and customize this technique for the inner RNA sequence analysis.
Schmitz, Ralf W.; Serre, David; Bonani, Georges; Feine, Susanne; Hillgruber, Felix; Krainitzki, Heike; Pääbo, Svante; Smith, Fred H.
2002-01-01
The 1856 discovery of the Neandertal type specimen (Neandertal 1) in western Germany marked the beginning of human paleontology and initiated the longest-standing debate in the discipline: the role of Neandertals in human evolutionary history. We report excavations of cave sediments that were removed from the Feldhofer caves in 1856. These deposits have yielded over 60 human skeletal fragments, along with a large series of Paleolithic artifacts and faunal material. Our analysis of this material represents the first interdisciplinary analysis of Neandertal remains incorporating genetic, direct dating, and morphological dimensions simultaneously. Three of these skeletal fragments fit directly on Neandertal 1, whereas several others have distinctively Neandertal features. At least three individuals are represented in the skeletal sample. Radiocarbon dates for Neandertal 1, from which a mtDNA sequence was determined in 1997, and a second individual indicate an age of ≈40,000 yr for both. mtDNA analysis on the same second individual yields a sequence that clusters with other published Neandertal sequences. PMID:12232049
Programmable in vivo selection of arbitrary DNA sequences.
Ben Yehezkel, Tuval; Biezuner, Tamir; Linshiz, Gregory; Mazor, Yair; Shapiro, Ehud
2012-01-01
The extraordinary fidelity, sensory and regulatory capacity of natural intracellular machinery is generally confined to their endogenous environment. Nevertheless, synthetic bio-molecular components have been engineered to interface with the cellular transcription, splicing and translation machinery in vivo by embedding functional features such as promoters, introns and ribosome binding sites, respectively, into their design. Tapping and directing the power of intracellular molecular processing towards synthetic bio-molecular inputs is potentially a powerful approach, albeit limited by our ability to streamline the interface of synthetic components with the intracellular machinery in vivo. Here we show how a library of synthetic DNA devices, each bearing an input DNA sequence and a logical selection module, can be designed to direct its own probing and processing by interfacing with the bacterial DNA mismatch repair (MMR) system in vivo and selecting for the most abundant variant, regardless of its function. The device provides proof of concept for programmable, function-independent DNA selection in vivo and provides a unique example of a logical-functional interface of an engineered synthetic component with a complex endogenous cellular system. Further research into the design, construction and operation of synthetic devices in vivo may lead to other functional devices that interface with other complex cellular processes for both research and applied purposes.
Häring, Monika; Peng, Xu; Brügger, Kim; Rachel, Reinhard; Stetter, Karl O; Garrett, Roger A; Prangishvili, David
2004-06-01
A novel virus, termed Pyrobaculum spherical virus (PSV), is described that infects anaerobic hyperthermophilic archaea of the genera Pyrobaculum and Thermoproteus. Spherical enveloped virions, about 100 nm in diameter, contain a major multimeric 33-kDa protein and host-derived lipids. A viral envelope encases a superhelical nucleoprotein core containing linear double-stranded DNA. The PSV infection cycle does not cause lysis of host cells. The viral genome was sequenced and contains 28337 bp. The genome is unique for known archaeal viruses in that none of the genes, including that encoding the major structural protein, show any significant sequence matches to genes in public sequence databases. Exceptionally for an archaeal double-stranded DNA virus, almost all the recognizable genes are located on one DNA strand. The ends of the genome consist of 190-bp inverted repeats that contain multiple copies of short direct repeats. The two DNA strands are probably covalently linked at their termini. On the basis of the unusual morphological and genomic properties of this DNA virus, we propose to assign PSV to a new viral family, the Globuloviridae.
Genes for cytochrome c oxidase subunit I, URF2, and three tRNAs in Drosophila mitochondrial DNA.
Clary, D O; Wolstenholme, D R
1983-01-01
Genes for URF2, tRNAtrp, tRNAcys, tRNAtyr and cytochrome c oxidase subunit I (COI) have been identified within a sequenced segment of the Drosophila yakuba mtDNA molecule. The five genes are arranged in the order given. Transcription of the tRNAcys and tRNAtyr genes is in the same direction as replication, while transcription of the URF2, tRNAtrp and COI genes is in the opposite direction. A similar arrangement of these genes is found in mammalian mtDNA except that in the latter, the tRNAala and tRNAasn genes are located between the tRNAtrp and tRNAcys genes. Also, a sequence found between the tRNAasn and tRNAcys genes in mammalian mtDNA, which is associated with the initiation of second strand DNA synthesis, is not found in this region of the D. yakuba mtDNA molecule. As the D. yakuba COI gene lacks a standard translation initiation codon, we consider the possibility that the quadruplet ATAA may serve this function. As in other D. yakuba mitochondrial polypeptide genes, AGA codons in the URF2 and COI genes do not correspond in position to arginine-specifying codons in the equivalent genes of mouse and yeast mtDNAs, but do most frequently correspond to serine-specifying codons. PMID:6314262
Arnaiz, Olivier; Mathy, Nathalie; Baudry, Céline; Malinsky, Sophie; Aury, Jean-Marc; Denby Wilkes, Cyril; Garnier, Olivier; Labadie, Karine; Lauderdale, Benjamin E; Le Mouël, Anne; Marmignon, Antoine; Nowacki, Mariusz; Poulain, Julie; Prajer, Malgorzata; Wincker, Patrick; Meyer, Eric; Duharcourt, Sandra; Duret, Laurent; Bétermier, Mireille; Sperling, Linda
2012-01-01
Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES) from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of -45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a -10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a fraction of the genome in which parasitic DNA is not usually tolerated.
Arnaiz, Olivier; Mathy, Nathalie; Baudry, Céline; Malinsky, Sophie; Aury, Jean-Marc; Denby Wilkes, Cyril; Garnier, Olivier; Labadie, Karine; Lauderdale, Benjamin E.; Le Mouël, Anne; Marmignon, Antoine; Nowacki, Mariusz; Poulain, Julie; Prajer, Malgorzata; Wincker, Patrick; Meyer, Eric; Duharcourt, Sandra; Duret, Laurent; Bétermier, Mireille; Sperling, Linda
2012-01-01
Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES) from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of ∼45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a ∼10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a fraction of the genome in which parasitic DNA is not usually tolerated. PMID:23071448
Fortin, Connor H; Schulze, Katharina V; Babbitt, Gregory A
2015-01-01
It is now widely-accepted that DNA sequences defining DNA-protein interactions functionally depend upon local biophysical features of DNA backbone that are important in defining sites of binding interaction in the genome (e.g. DNA shape, charge and intrinsic dynamics). However, these physical features of DNA polymer are not directly apparent when analyzing and viewing Shannon information content calculated at single nucleobases in a traditional sequence logo plot. Thus, sequence logos plots are severely limited in that they convey no explicit information regarding the structural dynamics of DNA backbone, a feature often critical to binding specificity. We present TRX-LOGOS, an R software package and Perl wrapper code that interfaces the JASPAR database for computational regulatory genomics. TRX-LOGOS extends the traditional sequence logo plot to include Shannon information content calculated with regard to the dinucleotide-based BI-BII conformation shifts in phosphate linkages on the DNA backbone, thereby adding a visual measure of intrinsic DNA flexibility that can be critical for many DNA-protein interactions. TRX-LOGOS is available as an R graphics module offered at both SourceForge and as a download supplement at this journal. To demonstrate the general utility of TRX logo plots, we first calculated the information content for 416 Saccharomyces cerevisiae transcription factor binding sites functionally confirmed in the Yeastract database and matched to previously published yeast genomic alignments. We discovered that flanking regions contain significantly elevated information content at phosphate linkages than can be observed at nucleobases. We also examined broader transcription factor classifications defined by the JASPAR database, and discovered that many general signatures of transcription factor binding are locally more information rich at the level of DNA backbone dynamics than nucleobase sequence. We used TRX-logos in combination with MEGA 6.0 software for molecular evolutionary genetics analysis to visually compare the human Forkhead box/FOX protein evolution to its binding site evolution. We also compared the DNA binding signatures of human TP53 tumor suppressor determined by two different laboratory methods (SELEX and ChIP-seq). Further analysis of the entire yeast genome, center aligned at the start codon, also revealed a distinct sequence-independent 3 bp periodic pattern in information content, present only in coding region, and perhaps indicative of the non-random organization of the genetic code. TRX-LOGOS is useful in any situation in which important information content in DNA can be better visualized at the positions of phosphate linkages (i.e. dinucleotides) where the dynamic properties of the DNA backbone functions to facilitate DNA-protein interaction.
Construction of Infectious cDNA Clone of a Chrysanthemum stunt viroid Korean Isolate
Yoon, Ju-Yeon; Cho, In-Sook; Choi, Gug-Seoun; Choi, Seung-Kook
2014-01-01
Chrysanthemum stunt viroid (CSVd), a noncoding infectious RNA molecule, causes seriously economic losses of chrysanthemum for 3 or 4 years after its first infection. Monomeric cDNA clones of CSVd isolate SK1 (CSVd-SK1) were constructed in the plasmids pGEM-T easy vector and pUC19 vector. Linear positive-sense transcripts synthesized in vitro from the full-length monomeric cDNA clones of CSVd-SK1 could infect systemically tomato seedlings and chrysanthemum plants, suggesting that the linear CSVd RNA transcribed from the cDNA clones could be replicated as efficiently as circular CSVd in host species. However, direct inoculation of plasmid cDNA clones containing full-length monomeric cDNA of CSVd-SK1 failed to infect tomato and chrysanthemum and linear negative-sense transcripts from the plasmid DNAs were not infectious in the two plant species. The cDNA sequences of progeny viroid in systemically infected tomato and chrysanthemum showed a few substitutions at a specific nucleotide position, but there were no deletions and insertions in the sequences of the CSVd progeny from tomato and chrysanthemum plants. PMID:25288987
Grandpaternal mosaicism in a family with isolated haemophilia A.
Casey, G J; Rodgers, S E; Hall, J R; Rudzki, Z; Lloyd, J V
1999-12-01
About one third of cases of haemophilia A have no family history of the disorder, and 20% are thought to be due to a new mutation. In the family reported here, a 3 bp deletion was detected in DNA from the proband at the 3' end of exon 15. Direct sequencing of genomic DNA prepared from blood and buccal cells of the grandfather revealed both normal and mutant sequences, suggesting that he is a mosaic for this mutation. This highlights the usefulness of mutation detection, both for accurate genetic counselling and to determine the origin of new mutations of haemophilia.
Comparative Analyses of DNA Methylation and Sequence Evolution Using Nasonia Genomes
Park, Jungsun; Peng, Zuogang; Zeng, Jia; Elango, Navin; Park, Taesung; Wheeler, Dave; Werren, John H.; Yi, Soojin V.
2011-01-01
The functional and evolutionary significance of DNA methylation in insect genomes remains to be resolved. Nasonia is well situated for comparative analyses of DNA methylation and genome evolution, since the genomes of a moderately distant outgroup species as well as closely related sibling species are available. Using direct sequencing of bisulfite-converted DNA, we uncovered a substantial level of DNA methylation in 17 of 18 Nasonia vitripennis genes and a strong correlation between methylation level and CpG depletion. Notably, in the sex-determining locus transformer, the exon that is alternatively spliced between the sexes is heavily methylated in both males and females, whereas other exons are only sparsely methylated. Orthologous genes of the honeybee and Nasonia show highly similar relative levels of CpG depletion, despite ∼190 My divergence. Densely and sparsely methylated genes in these species also exhibit similar functional enrichments. We found that the degree of CpG depletion is negatively correlated with substitution rates between closely related Nasonia species for synonymous, nonsynonymous, and intron sites. This suggests that mutation rates increase with decreasing levels of germ line methylation. Thus, DNA methylation is prevalent in the Nasonia genome, may participate in regulatory processes such as sex determination and alternative splicing, and is correlated with several aspects of genome and sequence evolution. PMID:21693438
Identification of apple cultivars on the basis of simple sequence repeat markers.
Liu, G S; Zhang, Y G; Tao, R; Fang, J G; Dai, H Y
2014-09-12
DNA markers are useful tools that play an important role in plant cultivar identification. They are usually based on polymerase chain reaction (PCR) and include simple sequence repeats (SSRs), inter-simple sequence repeats, and random amplified polymorphic DNA. However, DNA markers were not used effectively in the complete identification of plant cultivars because of the lack of known DNA fingerprints. Recently, a novel approach called the cultivar identification diagram (CID) strategy was developed to facilitate the use of DNA markers for separate plant individuals. The CID was designed whereby a polymorphic maker was generated from each PCR that directly allowed for cultivar sample separation at each step. Therefore, it could be used to identify cultivars and varieties easily with fewer primers. In this study, 60 apple cultivars, including a few main cultivars in fields and varieties from descendants (Fuji x Telamon) were examined. Of the 20 pairs of SSR primers screened, 8 pairs gave reproducible, polymorphic DNA amplification patterns. The banding patterns obtained from these 8 primers were used to construct a CID map. Each cultivar or variety in this study was distinguished from the others completely, indicating that this method can be used for efficient cultivar identification. The result contributed to studies on germplasm resources and the seedling industry in fruit trees.
Genetic analysis of 7 medieval skeletons from Aragonese Pyrenees
Núńez, Carolina; Sosa, Cecilia; Baeta, Miriam; Geppert, Maria; Turnbough, Meredith; Phillips, Nicole; Casalod, Yolanda; Bolea, Miguel; Roby, Rhonda; Budowle, Bruce; Martínez-Jarreta, Begońa
2011-01-01
Aim To perform a genetic characterization of 7 skeletons from medieval age found in a burial site in the Aragonese Pyrenees. Methods Allele frequencies of autosomal short tandem repeats (STR) loci were determined by 3 different STR systems. Mitochondrial DNA (mtDNA) and Y-chromosome haplogroups were determined by sequencing of the hypervariable segment 1 of mtDNA and typing of phylogenetic Y chromosome single nucleotide polymorphisms (Y-SNP) markers, respectively. Possible familial relationships were also investigated. Results Complete or partial STR profiles were obtained in 3 of the 7 samples. Mitochondrial DNA haplogroup was determined in 6 samples, with 5 of them corresponding to the haplogroup H and 1 to the haplogroup U5a. Y-chromosome haplogroup was determined in 2 samples, corresponding to the haplogroup R. In one of them, the sub-branch R1b1b2 was determined. mtDNA sequences indicated that some of the individuals could be maternally related, while STR profiles indicated no direct family relationships. Conclusions Despite the antiquity of the samples and great difficulty that genetic analyses entail, the combined use of autosomal STR markers, Y-chromosome informative SNPs, and mtDNA sequences allowed us to genotype a group of skeletons from the medieval age. PMID:21674829
Cotmore, S F; Christensen, J; Nüesch, J P; Tattersall, P
1995-01-01
A DNA fragment containing the minute virus of mice 3' replication origin was specifically coprecipitated in immune complexes containing the virally coded NS1, but not the NS2, polypeptide. Antibodies directed against the amino- or carboxy-terminal regions of NS1 precipitated the NS1-origin complexes, but antibodies directed against NS1 amino acids 284 to 459 blocked complex formation. Using affinity-purified histidine-tagged NS1 preparations, we have shown that the specific protein-DNA interaction is of moderate affinity, being stable in 0.1 M salt but rapidly lost at higher salt concentrations. In contrast, generalized (or nonspecific) DNA binding by NS1 could be demonstrated only in low salt. Addition of ATP or gamma S-ATP enhanced specific DNA binding by wild-type NS1 severalfold, but binding was lost under conditions which favored ATP hydrolysis. NS1 molecules with mutations in a critical lysine residue (amino acid 405) in the consensus ATP-binding site bound to the origin, but this binding could not be enhanced by ATP addition. DNase I protection assays carried out with wild-type NS1 in the presence of gamma S-ATP gave footprints which extended over 43 nucleotides on both DNA strands, from the middle of the origin bubble sequence to a position some 14 bp beyond the nick site. The DNA-binding site for NS1 was mapped to a 22-bp fragment from the middle of the 3' replication origin which contains the sequence ACCAACCA. This conforms to a reiterated motif (ACCA)2-3, which occurs, in more or less degenerate form, at many sites throughout the minute virus of mice genome (J. W. Bodner, Virus Genes 2:167-182, 1989). Insertion of a single copy of the sequence (ACCA)3 was shown to be sufficient to confer NS1 binding on an otherwise unrecognized plasmid fragment. The functions of NS1 in the viral life cycle are reevaluated in the light of this result. PMID:7853501
Cotmore, S F; Christensen, J; Nüesch, J P; Tattersall, P
1995-03-01
A DNA fragment containing the minute virus of mice 3' replication origin was specifically coprecipitated in immune complexes containing the virally coded NS1, but not the NS2, polypeptide. Antibodies directed against the amino- or carboxy-terminal regions of NS1 precipitated the NS1-origin complexes, but antibodies directed against NS1 amino acids 284 to 459 blocked complex formation. Using affinity-purified histidine-tagged NS1 preparations, we have shown that the specific protein-DNA interaction is of moderate affinity, being stable in 0.1 M salt but rapidly lost at higher salt concentrations. In contrast, generalized (or nonspecific) DNA binding by NS1 could be demonstrated only in low salt. Addition of ATP or gamma S-ATP enhanced specific DNA binding by wild-type NS1 severalfold, but binding was lost under conditions which favored ATP hydrolysis. NS1 molecules with mutations in a critical lysine residue (amino acid 405) in the consensus ATP-binding site bound to the origin, but this binding could not be enhanced by ATP addition. DNase I protection assays carried out with wild-type NS1 in the presence of gamma S-ATP gave footprints which extended over 43 nucleotides on both DNA strands, from the middle of the origin bubble sequence to a position some 14 bp beyond the nick site. The DNA-binding site for NS1 was mapped to a 22-bp fragment from the middle of the 3' replication origin which contains the sequence ACCAACCA. This conforms to a reiterated motif (ACCA)2-3, which occurs, in more or less degenerate form, at many sites throughout the minute virus of mice genome (J. W. Bodner, Virus Genes 2:167-182, 1989). Insertion of a single copy of the sequence (ACCA)3 was shown to be sufficient to confer NS1 binding on an otherwise unrecognized plasmid fragment. The functions of NS1 in the viral life cycle are reevaluated in the light of this result.
ScaffoldSeq: Software for characterization of directed evolution populations.
Woldring, Daniel R; Holec, Patrick V; Hackel, Benjamin J
2016-07-01
ScaffoldSeq is software designed for the numerous applications-including directed evolution analysis-in which a user generates a population of DNA sequences encoding for partially diverse proteins with related functions and would like to characterize the single site and pairwise amino acid frequencies across the population. A common scenario for enzyme maturation, antibody screening, and alternative scaffold engineering involves naïve and evolved populations that contain diversified regions, varying in both sequence and length, within a conserved framework. Analyzing the diversified regions of such populations is facilitated by high-throughput sequencing platforms; however, length variability within these regions (e.g., antibody CDRs) encumbers the alignment process. To overcome this challenge, the ScaffoldSeq algorithm takes advantage of conserved framework sequences to quickly identify diverse regions. Beyond this, unintended biases in sequence frequency are generated throughout the experimental workflow required to evolve and isolate clones of interest prior to DNA sequencing. ScaffoldSeq software uniquely handles this issue by providing tools to quantify and remove background sequences, cluster similar protein families, and dampen the impact of dominant clones. The software produces graphical and tabular summaries for each region of interest, allowing users to evaluate diversity in a site-specific manner as well as identify epistatic pairwise interactions. The code and detailed information are freely available at http://research.cems.umn.edu/hackel. Proteins 2016; 84:869-874. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Spink, N; Brown, D G; Skelly, J V; Neidle, S
1994-01-01
The bis-benzimidazole drug Hoechst 33258 has been co-crystallized with the dodecanucleotide sequence d(CGCAAATTTGCG)2. The structure has been solved by molecular replacement and refined to an R factor of 18.5% for 2125 reflections collected on a Xentronics area detector. The drug is bound in the minor groove, at the five base-pair site 5'-ATTTG and is in a unique orientation. This is displaced by one base pair in the 5' direction compared to previously-determined structures of this drug with the sequence d(CGCGAATTCGCG)2. Reasons for this difference in behaviour are discussed in terms of several sequence-dependent structural features of the DNA, with particular reference to differences in propeller twist and minor-groove width. Images PMID:7515488
Reid-Bayliss, Kate S; Loeb, Lawrence A
2017-08-29
Transcriptional mutagenesis (TM) due to misincorporation during RNA transcription can result in mutant RNAs, or epimutations, that generate proteins with altered properties. TM has long been hypothesized to play a role in aging, cancer, and viral and bacterial evolution. However, inadequate methodologies have limited progress in elucidating a causal association. We present a high-throughput, highly accurate RNA sequencing method to measure epimutations with single-molecule sensitivity. Accurate RNA consensus sequencing (ARC-seq) uniquely combines RNA barcoding and generation of multiple cDNA copies per RNA molecule to eliminate errors introduced during cDNA synthesis, PCR, and sequencing. The stringency of ARC-seq can be scaled to accommodate the quality of input RNAs. We apply ARC-seq to directly assess transcriptome-wide epimutations resulting from RNA polymerase mutants and oxidative stress.
Tooley, Paul W; Bandyopadhyay, Ranajit; Carras, Marie M; Pazoutová, Sylvie
2006-04-01
Isolates of Claviceps causing ergot on sorghum in India were analysed by AFLP analysis, and by analysis of DNA sequences of the EF-1alpha gene intron 4 and beta-tubulin gene intron 3 region. Of 89 isolates assayed from six states in India, four were determined to be C. sorghi, and the rest C. africana. A relatively low level of genetic diversity was observed within the Indian C. africana population. No evidence of genetic exchange between C. africana and C. sorghi was observed in either AFLP or DNA sequence analysis. Phylogenetic analysis was conducted using DNA sequences from 14 different Claviceps species. A multigene phylogeny based on the EF-1alpha gene intron 4, the beta-tubulin gene intron 3 region, and rDNA showed that C. sorghi grouped most closely with C. gigantea and C. africana. Although the Claviceps species we analysed were closely related, they colonize hosts that are taxonomically very distinct suggesting that there is no direct coevolution of Claviceps with its hosts.
Livingston, B T; Shaw, R; Bailey, A; Wilt, F
1991-12-01
In order to investigate the role of proteins in the formation of mineralized tissues during development, we have isolated a cDNA that encodes a protein that is a component of the organic matrix of the skeletal spicule of the sea urchin, Lytechinus pictus. The expression of the RNA encoding this protein is regulated over development and is localized to the descendents of the micromere lineage. Comparison of the sequence of this cDNA to homologous cDNAs from other species of urchin reveal that the protein is basic and contains three conserved structural motifs: a signal peptide, a proline-rich region, and an unusual region composed of a series of direct repeats. Studies on the protein encoded by this cDNA confirm the predicted reading frame deduced from the nucleotide sequence and show that the protein is secreted and not glycosylated. Comparison of the amino acid sequence to databases reveal that the repeat domain is similar to proteins that form a unique beta-spiral supersecondary structure.
Scar-less multi-part DNA assembly design automation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillson, Nathan J.
The present invention provides a method of a method of designing an implementation of a DNA assembly. In an exemplary embodiment, the method includes (1) receiving a list of DNA sequence fragments to be assembled together and an order in which to assemble the DNA sequence fragments, (2) designing DNA oligonucleotides (oligos) for each of the DNA sequence fragments, and (3) creating a plan for adding flanking homology sequences to each of the DNA oligos. In an exemplary embodiment, the method includes (1) receiving a list of DNA sequence fragments to be assembled together and an order in which tomore » assemble the DNA sequence fragments, (2) designing DNA oligonucleotides (oligos) for each of the DNA sequence fragments, and (3) creating a plan for adding optimized overhang sequences to each of the DNA oligos.« less
Determining orientation and direction of DNA sequences
Goodwin, Edwin H.; Meyne, Julianne
2000-01-01
Determining orientation and direction of DNA sequences. A method by which fluorescence in situ hybridization can be made strand specific is described. Cell cultures are grown in a medium containing a halogenated nucleotide. The analog is partially incorporated in one DNA strand of each chromatid. This substitution takes place in opposite strands of the two sister chromatids. After staining with the fluorescent DNA-binding dye Hoechst 33258, cells are exposed to long-wavelength ultraviolet light which results in numerous strand nicks. These nicks enable the substituted strand to be denatured and solubilized by heat, treatment with high or low pH aqueous solutions, or by immersing the strands in 2.times.SSC (0.3M NaCl+0.03M sodium citrate), to name three procedures. It is unnecessary to enzymatically digest the strands using Exo III or another exonuclease in order to excise and solubilize nucleotides starting at the sites of the nicks. The denaturing/solubilizing process removes most of the substituted strand while leaving the prereplication strand largely intact. Hybridization of a single-stranded probe of a tandem repeat arranged in a head-to-tail orientation will result in hybridization only to the chromatid with the complementary strand present.
Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases
Lamb, Brian M.; Mercer, Andrew C.; Barbas, Carlos F.
2013-01-01
Transcription activator-like effector (TALE) proteins can be designed to bind virtually any DNA sequence. General guidelines for design of TALE DNA-binding domains suggest that the 5′-most base of the DNA sequence bound by the TALE (the N0 base) should be a thymine. We quantified the N0 requirement by analysis of the activities of TALE transcription factors (TALE-TF), TALE recombinases (TALE-R) and TALE nucleases (TALENs) with each DNA base at this position. In the absence of a 5′ T, we observed decreases in TALE activity up to >1000-fold in TALE-TF activity, up to 100-fold in TALE-R activity and up to 10-fold reduction in TALEN activity compared with target sequences containing a 5′ T. To develop TALE architectures that recognize all possible N0 bases, we used structure-guided library design coupled with TALE-R activity selections to evolve novel TALE N-terminal domains to accommodate any N0 base. A G-selective domain and broadly reactive domains were isolated and characterized. The engineered TALE domains selected in the TALE-R format demonstrated modularity and were active in TALE-TF and TALEN architectures. Evolved N-terminal domains provide effective and unconstrained TALE-based targeting of any DNA sequence as TALE binding proteins and designer enzymes. PMID:23980031
Concerted evolution at the population level: pupfish HindIII satellite DNA sequences.
Elder, J F; Turner, B J
1994-01-01
The canonical monomers (approximately 170 bp) of an abundant (1.9 x 10(6) copies per diploid genome) satellite DNA sequence family in the genome of Cyprinodon variegatus, a "pupfish" that ranges along the Atlantic coast from Cape Cod to central Mexico, are divergent in base sequence in 10 of 12 samples collected from natural populations. The divergence involves substitutions, deletions, and insertions, is marked in scope (mean pairwise sequence similarity = 61.6%; range = 35-95.9%), is largely confined to the 3' half of the monomer, and is not correlated with the distance among collecting sites. Repetitive cloning and direct genomic sequencing experiments failed to detect intrapopulation and intraindividual variation, suggesting high levels of sequence homogeneity within populations. The satellite sequence has therefore undergone "concerted evolution," at the level of the local population. Concerted evolution has previously almost always been discussed in terms of the divergence of species or higher taxa; its intraspecific occurrence apparently has not been reported previously. The generality of the observation is difficult to evaluate, for although satellite DNAs from a large number of organisms have been studied in detail, there appear to be little or no other data on their sequence variation in natural populations. The relationship (if any) between concerted, population level, satellite DNA divergence and the extent of gene flow/genetic isolation among conspecific natural populations remains to be established. Images PMID:8302879
CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity.
Modell, Joshua W; Jiang, Wenyan; Marraffini, Luciano A
2017-04-06
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems provide protection against viral and plasmid infection by capturing short DNA sequences from these invaders and integrating them into the CRISPR locus of the prokaryotic host. These sequences, known as spacers, are transcribed into short CRISPR RNA guides that specify the cleavage site of Cas nucleases in the genome of the invader. It is not known when spacer sequences are acquired during viral infection. Here, to investigate this, we tracked spacer acquisition in Staphylococcus aureus cells harbouring a type II CRISPR-Cas9 system after infection with the staphylococcal bacteriophage ϕ12. We found that new spacers were acquired immediately after infection preferentially from the cos site, the viral free DNA end that is first injected into the cell. Analysis of spacer acquisition after infection with mutant phages demonstrated that most spacers are acquired during DNA injection, but not during other stages of the viral cycle that produce free DNA ends, such as DNA replication or packaging. Finally, we showed that spacers acquired from early-injected genomic regions, which direct Cas9 cleavage of the viral DNA immediately after infection, provide better immunity than spacers acquired from late-injected regions. Our results reveal that CRISPR-Cas systems exploit the phage life cycle to generate a pattern of spacer acquisition that ensures a successful CRISPR immune response.
Morise, Hisashi; Miyazaki, Erika; Yoshimitsu, Shoko; Eki, Toshihiko
2012-01-01
Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU) rDNA fragments were directly amplified from each of 68 (flowerbed samples) and 48 (field samples) isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs) were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs) were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds) in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI) gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs), indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis. PMID:23284767
Xu, Jian-zhong; Zhang, Wei-guo
2016-01-01
With the availability of the whole genome sequence of Escherichia coli or Corynebacterium glutamicum, strategies for directed DNA manipulation have developed rapidly. DNA manipulation plays an important role in understanding the function of genes and in constructing novel engineering bacteria according to requirement. DNA manipulation involves modifying the autologous genes and expressing the heterogenous genes. Two alternative approaches, using electroporation linear DNA or recombinant suicide plasmid, allow a wide variety of DNA manipulation. However, the over-expression of the desired gene is generally executed via plasmid-mediation. The current review summarizes the common strategies used for genetically modifying E. coli and C. glutamicum genomes, and discusses the technical problem of multi-layered DNA manipulation. Strategies for gene over-expression via integrating into genome are proposed. This review is intended to be an accessible introduction to DNA manipulation within the bacterial genome for novices and a source of the latest experimental information for experienced investigators. PMID:26834010
Galbany-Casals, M; Carnicero-Campmany, P; Blanco-Moreno, J M; Smissen, R D
2012-09-01
Hybridisation is considered an important evolutionary phenomenon in Gnaphalieae, but contemporary hybridisation has been little explored within the tribe. Here, hybridisation between Helichrysum orientale and Helichrysum stoechas is studied at two different localities in the islands of Crete and Rhodes (Greece). Using three different types of molecular data (AFLP, nrDNA ITS sequences and cpDNA ndhF sequences) and morphological data, the aim is to provide simultaneous and direct comparisons between molecular and morphological variation among the parental species and the studied hybrid populations. AFLP profiles, ITS sequences and morphological data support the existence of hybrids at the two localities studied, shown as morphological and genetic intermediates between the parental species. Chloroplast DNA sequences show that both parental species can act either as pollen donor or as maternal parent. Fertility of hybrids is demonstrated by the viability of seeds produced by hybrids from both localities, and the detection of a backcross specimen to H. orientale. Although there is general congruence of morphological and molecular data, the analysis of morphology and ITS sequences can fail to detect backcross hybrids. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Stevenson, Clare E. M.; Assaad, Aoun; Chandra, Govind; Le, Tung B. K.; Greive, Sandra J.; Bibb, Mervyn J.; Lawson, David M.
2013-01-01
Consistent with their complex lifestyles and rich secondary metabolite profiles, the genomes of streptomycetes encode a plethora of transcription factors, the vast majority of which are uncharacterized. Herein, we use Surface Plasmon Resonance (SPR) to identify and delineate putative operator sites for SCO3205, a MarR family transcriptional regulator from Streptomyces coelicolor that is well represented in sequenced actinomycete genomes. In particular, we use a novel SPR footprinting approach that exploits indirect ligand capture to vastly extend the lifetime of a standard streptavidin SPR chip. We define two operator sites upstream of sco3205 and a pseudopalindromic consensus sequence derived from these enables further potential operator sites to be identified in the S. coelicolor genome. We evaluate each of these through SPR and test the importance of the conserved bases within the consensus sequence. Informed by these results, we determine the crystal structure of a SCO3205-DNA complex at 2.8 Å resolution, enabling molecular level rationalization of the SPR data. Taken together, our observations support a DNA recognition mechanism involving both direct and indirect sequence readout. PMID:23748564
Salient Features of Endonuclease Platforms for Therapeutic Genome Editing.
Certo, Michael T; Morgan, Richard A
2016-03-01
Emerging gene-editing technologies are nearing a revolutionary phase in genetic medicine: precisely modifying or repairing causal genetic defects. This may include any number of DNA sequence manipulations, such as knocking out a deleterious gene, introducing a particular mutation, or directly repairing a defective sequence by site-specific recombination. All of these edits can currently be achieved via programmable rare-cutting endonucleases to create targeted DNA breaks that can engage and exploit endogenous DNA repair pathways to impart site-specific genetic changes. Over the past decade, several distinct technologies for introducing site-specific DNA breaks have been developed, yet the different biological origins of these gene-editing technologies bring along inherent differences in parameters that impact clinical implementation. This review aims to provide an accessible overview of the various endonuclease-based gene-editing platforms, highlighting the strengths and weakness of each with respect to therapeutic applications.
Salient Features of Endonuclease Platforms for Therapeutic Genome Editing
Certo, Michael T; Morgan, Richard A
2016-01-01
Emerging gene-editing technologies are nearing a revolutionary phase in genetic medicine: precisely modifying or repairing causal genetic defects. This may include any number of DNA sequence manipulations, such as knocking out a deleterious gene, introducing a particular mutation, or directly repairing a defective sequence by site-specific recombination. All of these edits can currently be achieved via programmable rare-cutting endonucleases to create targeted DNA breaks that can engage and exploit endogenous DNA repair pathways to impart site-specific genetic changes. Over the past decade, several distinct technologies for introducing site-specific DNA breaks have been developed, yet the different biological origins of these gene-editing technologies bring along inherent differences in parameters that impact clinical implementation. This review aims to provide an accessible overview of the various endonuclease-based gene-editing platforms, highlighting the strengths and weakness of each with respect to therapeutic applications. PMID:26796671
van Brabant, A J; Hunt, S Y; Fangman, W L; Brewer, B J
1998-06-01
DNA fragments that contain an active origin of replication generate bubble-shaped replication intermediates with diverging forks. We describe two methods that use two-dimensional (2-D) agarose gel electrophoresis along with DNA sequence information to identify replication origins in natural and artificial Saccharomyces cerevisiae chromosomes. The first method uses 2-D gels of overlapping DNA fragments to locate an active chromosomal replication origin within a region known to confer autonomous replication on a plasmid. A variant form of 2-D gels can be used to determine the direction of fork movement, and the second method uses this technique to find restriction fragments that are replicated by diverging forks, indicating that a bidirectional replication origin is located between the two fragments. Either of these two methods can be applied to the analysis of any genomic region for which there is DNA sequence information or an adequate restriction map.
BayesPI-BAR: a new biophysical model for characterization of regulatory sequence variations
Wang, Junbai; Batmanov, Kirill
2015-01-01
Sequence variations in regulatory DNA regions are known to cause functionally important consequences for gene expression. DNA sequence variations may have an essential role in determining phenotypes and may be linked to disease; however, their identification through analysis of massive genome-wide sequencing data is a great challenge. In this work, a new computational pipeline, a Bayesian method for protein–DNA interaction with binding affinity ranking (BayesPI-BAR), is proposed for quantifying the effect of sequence variations on protein binding. BayesPI-BAR uses biophysical modeling of protein–DNA interactions to predict single nucleotide polymorphisms (SNPs) that cause significant changes in the binding affinity of a regulatory region for transcription factors (TFs). The method includes two new parameters (TF chemical potentials or protein concentrations and direct TF binding targets) that are neglected by previous methods. The new method is verified on 67 known human regulatory SNPs, of which 47 (70%) have predicted true TFs ranked in the top 10. Importantly, the performance of BayesPI-BAR, which uses principal component analysis to integrate multiple predictions from various TF chemical potentials, is found to be better than that of existing programs, such as sTRAP and is-rSNP, when evaluated on the same SNPs. BayesPI-BAR is a publicly available tool and is able to carry out parallelized computation, which helps to investigate a large number of TFs or SNPs and to detect disease-associated regulatory sequence variations in the sea of genome-wide noncoding regions. PMID:26202972
Publishing large DNA sequence data in reduced spaces and lasting formats, in paper or PDF.
Aguiar, Alexandre Pires
2013-02-04
Scientific publications carry a practical moral duty: they must last. Along that line of thinking, some methods are proposed to allow economically and structurally viable publication of DNA sequence data of any size in printed matter and PDFs. The proposal is primarily aimed at contributing for preserving information for the future, while allowing authors to avoid information splitting and complement storage ex situ, that is, in server machines, outside the publication proper. The technique may also help to solve the impasse between the ICZN Code requirement that a new nomen be associated to diagnostic characters for the taxon vs. the phylogenetic definition of taxa, based on cladograms only: sequence data are characters, and can now be easily and comfortably included in taxonomic publications, with direct textual mention to their diagnostic sections. The compression level achieved allows the inclusion of all wanted DNA or RNA sequences in the same printed matter or PDF publications where the sequences are cited and discussed. Reduced font sizes, invisible fonts, and original 2D black & white and color barcodes are illustrated and briefly discussed. The level of data compression achieved can allow each full page of sequence data, or about 5000 characters, to be precisely coded into a color barcode as small as a square of 1.5 mm. A practical example is provided with Taeniogonalos woodorum Smith (Hymenoptera, Trigonalidae). Free software to generate publishable barcodes from txt or FASTA files is provided at www.systaxon.ufes.br/dna.
Structure of the highly repeated, long interspersed DNA family (LINE or L1Rn) of the rat.
D'Ambrosio, E; Waitzkin, S D; Witney, F R; Salemme, A; Furano, A V
1986-01-01
We present the DNA sequence of a 6.7-kilobase member of the rat long interspersed repeated DNA family (LINE or L1Rn). This member (LINE 3) is flanked by a perfect 14-base-pair (bp) direct repeat and is a full-length, or close-to-full-length, member of this family. LINE 3 contains an approximately 100-bp A-rich right end, a number of long (greater than 400-bp) open reading frames, and a ca. 200-bp G + C-rich (ca. 60%) cluster near each terminus. Comparison of the LINE 3 sequence with the sequence of about one-half of another member, which we also present, as well as restriction enzyme analysis of the genomic copies of this family, indicates that in length and overall structure LINE 3 is quite typical of the 40,000 or so other genomic members of this family which would account for as much as 10% of the rat genome. Therefore, the rat LINE family is relatively homogeneous, which contrasts with the heterogeneous LINE families in primates and mice. Transcripts corresponding to the entire LINE sequence are abundant in the nuclear RNA of rat liver. The characteristics of the rat LINE family are discussed with respect to the possible function and evolution of this family of DNA sequences. Images PMID:3023845
Local Renyi entropic profiles of DNA sequences.
Vinga, Susana; Almeida, Jonas S
2007-10-16
In a recent report the authors presented a new measure of continuous entropy for DNA sequences, which allows the estimation of their randomness level. The definition therein explored was based on the Rényi entropy of probability density estimation (pdf) using the Parzen's window method and applied to Chaos Game Representation/Universal Sequence Maps (CGR/USM). Subsequent work proposed a fractal pdf kernel as a more exact solution for the iterated map representation. This report extends the concepts of continuous entropy by defining DNA sequence entropic profiles using the new pdf estimations to refine the density estimation of motifs. The new methodology enables two results. On the one hand it shows that the entropic profiles are directly related with the statistical significance of motifs, allowing the study of under and over-representation of segments. On the other hand, by spanning the parameters of the kernel function it is possible to extract important information about the scale of each conserved DNA region. The computational applications, developed in Matlab m-code, the corresponding binary executables and additional material and examples are made publicly available at http://kdbio.inesc-id.pt/~svinga/ep/. The ability to detect local conservation from a scale-independent representation of symbolic sequences is particularly relevant for biological applications where conserved motifs occur in multiple, overlapping scales, with significant future applications in the recognition of foreign genomic material and inference of motif structures.
Local Renyi entropic profiles of DNA sequences
Vinga, Susana; Almeida, Jonas S
2007-01-01
Background In a recent report the authors presented a new measure of continuous entropy for DNA sequences, which allows the estimation of their randomness level. The definition therein explored was based on the Rényi entropy of probability density estimation (pdf) using the Parzen's window method and applied to Chaos Game Representation/Universal Sequence Maps (CGR/USM). Subsequent work proposed a fractal pdf kernel as a more exact solution for the iterated map representation. This report extends the concepts of continuous entropy by defining DNA sequence entropic profiles using the new pdf estimations to refine the density estimation of motifs. Results The new methodology enables two results. On the one hand it shows that the entropic profiles are directly related with the statistical significance of motifs, allowing the study of under and over-representation of segments. On the other hand, by spanning the parameters of the kernel function it is possible to extract important information about the scale of each conserved DNA region. The computational applications, developed in Matlab m-code, the corresponding binary executables and additional material and examples are made publicly available at . Conclusion The ability to detect local conservation from a scale-independent representation of symbolic sequences is particularly relevant for biological applications where conserved motifs occur in multiple, overlapping scales, with significant future applications in the recognition of foreign genomic material and inference of motif structures. PMID:17939871
Scanning the human genome at kilobase resolution.
Chen, Jun; Kim, Yeong C; Jung, Yong-Chul; Xuan, Zhenyu; Dworkin, Geoff; Zhang, Yanming; Zhang, Michael Q; Wang, San Ming
2008-05-01
Normal genome variation and pathogenic genome alteration frequently affect small regions in the genome. Identifying those genomic changes remains a technical challenge. We report here the development of the DGS (Ditag Genome Scanning) technique for high-resolution analysis of genome structure. The basic features of DGS include (1) use of high-frequent restriction enzymes to fractionate the genome into small fragments; (2) collection of two tags from two ends of a given DNA fragment to form a ditag to represent the fragment; (3) application of the 454 sequencing system to reach a comprehensive ditag sequence collection; (4) determination of the genome origin of ditags by mapping to reference ditags from known genome sequences; (5) use of ditag sequences directly as the sense and antisense PCR primers to amplify the original DNA fragment. To study the relationship between ditags and genome structure, we performed a computational study by using the human genome reference sequences as a model, and analyzed the ditags experimentally collected from the well-characterized normal human DNA GM15510 and the leukemic human DNA of Kasumi-1 cells. Our studies show that DGS provides a kilobase resolution for studying genome structure with high specificity and high genome coverage. DGS can be applied to validate genome assembly, to compare genome similarity and variation in normal populations, and to identify genomic abnormality including insertion, inversion, deletion, translocation, and amplification in pathological genomes such as cancer genomes.
LinkFinder: An expert system that constructs phylogenic trees
NASA Technical Reports Server (NTRS)
Inglehart, James; Nelson, Peter C.
1991-01-01
An expert system has been developed using the C Language Integrated Production System (CLIPS) that automates the process of constructing DNA sequence based phylogenies (trees or lineages) that indicate evolutionary relationships. LinkFinder takes as input homologous DNA sequences from distinct individual organisms. It measures variations between the sequences, selects appropriate proportionality constants, and estimates the time that has passed since each pair of organisms diverged from a common ancestor. It then designs and outputs a phylogenic map summarizing these results. LinkFinder can find genetic relationships between different species, and between individuals of the same species, including humans. It was designed to take advantage of the vast amount of sequence data being produced by the Genome Project, and should be of value to evolution theorists who wish to utilize this data, but who have no formal training in molecular genetics. Evolutionary theory holds that distinct organisms carrying a common gene inherited that gene from a common ancestor. Homologous genes vary from individual to individual and species to species, and the amount of variation is now believed to be directly proportional to the time that has passed since divergence from a common ancestor. The proportionality constant must be determined experimentally; it varies considerably with the types of organisms and DNA molecules under study. Given an appropriate constant, and the variation between two DNA sequences, a simple linear equation gives the divergence time.
The complete mitochondrial genome sequence of Eimeria magna (Apicomplexa: Coccidia).
Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Liu, Guo-Hua; Wang, Chun-Ren; Zhu, Xing-Quan
2015-01-01
In the present study, we determined the complete mitochondrial DNA (mtDNA) sequence of Eimeria magna from rabbits for the first time, and compared its gene contents and genome organizations with that of seven Eimeria spp. from domestic chickens. The size of the complete mt genome sequence of E. magna is 6249 bp, which consists of 3 protein-coding genes (cytb, cox1 and cox3), 12 gene fragments for the large subunit (LSU) rRNA, and 7 gene fragments for the small subunit (SSU) rRNA, without transfer RNA genes, in accordance with that of Eimeria spp. from chickens. The putative direction of translation for three genes (cytb, cox1 and cox3) was the same as those of Eimeria species from domestic chickens. The content of A + T is 65.16% for E. magna mt genome (29.73% A, 35.43% T, 17.09 G and 17.75% C). The E. magna mt genome sequence provides novel mtDNA markers for studying the molecular epidemiology and population genetics of Eimeria spp. and has implications for the molecular diagnosis and control of rabbit coccidiosis.
Ding, Yuan; Zhang, Xiaojun; Tham, Kenneth W.; Qin, Peter Z.
2014-01-01
Sequence-dependent variation in structure and dynamics of a DNA duplex, collectively referred to as ‘DNA shape’, critically impacts interactions between DNA and proteins. Here, a method based on the technique of site-directed spin labeling was developed to experimentally map shapes of two DNA duplexes that contain response elements of the p53 tumor suppressor. An R5a nitroxide spin label, which was covalently attached at a specific phosphate group, was scanned consecutively through the DNA duplex. X-band continuous-wave electron paramagnetic resonance spectroscopy was used to monitor rotational motions of R5a, which report on DNA structure and dynamics at the labeling site. An approach based on Pearson's coefficient analysis was developed to collectively examine the degree of similarity among the ensemble of R5a spectra. The resulting Pearson's coefficients were used to generate maps representing variation of R5a mobility along the DNA duplex. The R5a mobility maps were found to correlate with maps of certain DNA helical parameters, and were capable of revealing similarity and deviation in the shape of the two closely related DNA duplexes. Collectively, the R5a probe and the Pearson's coefficient-based lineshape analysis scheme yielded a generalizable method for examining sequence-dependent DNA shapes. PMID:25092920
Chaw, Shu-Miaw; Shih, Arthur Chun-Chieh; Wang, Daryi; Wu, Yu-Wei; Liu, Shu-Mei; Chou, The-Yuan
2008-03-01
The mtDNA of Cycas taitungensis is a circular molecule of 414,903 bp, making it 2- to 6-fold larger than the known mtDNAs of charophytes and bryophytes, but similar to the average of 7 elucidated angiosperm mtDNAs. It is characterized by abundant RNA editing sites (1,084), more than twice the number found in the angiosperm mtDNAs. The A + T content of Cycas mtDNA is 53.1%, the lowest among known land plants. About 5% of the Cycas mtDNA is composed of a novel family of mobile elements, which we designated as "Bpu sequences." They share a consensus sequence of 36 bp with 2 terminal direct repeats (AAGG) and a recognition site for the Bpu 10I restriction endonuclease (CCTGAAGC). Comparison of the Cycas mtDNA with other plant mtDNAs revealed many new insights into the biology and evolution of land plant mtDNAs. For example, the noncoding sequences in mtDNAs have drastically expanded as land plants have evolved, with abrupt increases appearing in the bryophytes, and then in the seed plants. As a result, the genomic organizations of seed plant mtDNAs are much less compact than in other plants. Also, the Cycas mtDNA appears to have been exempted from the frequent gene loss observed in angiosperm mtDNAs. Similar to the angiosperms, the 3 Cycas genes nad1, nad2, and nad5 are disrupted by 5 group II intron squences, which have brought the genes into trans-splicing arrangements. The evolutionary origin and invasion/duplication mechanism of the Bpu sequences in Cycas mtDNA are hypothesized and discussed.
Ma, Xin-Ye; Xie, Cai-Xiang; Liu, Chang; Song, Jing-Yuan; Yao, Hui; Luo, Kun; Zhu, Ying-Jie; Gao, Ting; Pang, Xiao-Hui; Qian, Jun; Chen, Shi-Lin
2010-01-01
Medicinal pteridophytes are an important group used in traditional Chinese medicine; however, there is no simple and universal way to differentiate various species of this group by morphological traits. A novel technology termed "DNA barcoding" could discriminate species by a standard DNA sequence with universal primers and sufficient variation. To determine whether DNA barcoding would be effective for differentiating pteridophyte species, we first analyzed five DNA sequence markers (psbA-trnH intergenic region, rbcL, rpoB, rpoC1, and matK) using six chloroplast genomic sequences from GeneBank and found psbA-trnH intergenic region the best candidate for availability of universal primers. Next, we amplified the psbA-trnH region from 79 samples of medicinal pteridophyte plants. These samples represented 51 species from 24 families, including all the authentic pteridophyte species listed in the Chinese pharmacopoeia (2005 version) and some commonly used adulterants. We found that the sequence of the psbA-trnH intergenic region can be determined with both high polymerase chain reaction (PCR) amplification efficiency (94.1%) and high direct sequencing success rate (81.3%). Combined with GeneBank data (54 species cross 12 pteridophyte families), species discriminative power analysis showed that 90.2% of species could be separated/identified successfully by the TaxonGap method in conjunction with the Basic Local Alignment Search Tool 1 (BLAST1) method. The TaxonGap method results further showed that, for 37 out of 39 separable species with at least two samples each, between-species variation was higher than the relevant within-species variation. Thus, the psbA-trnH intergenic region is a suitable DNA marker for species identification in medicinal pteridophytes.
Mariottini, P; Chomyn, A; Riley, M; Cottrell, B; Doolittle, R F; Attardi, G
1986-01-01
In previous work, antibodies prepared against chemically synthesized peptides predicted from the DNA sequence were used to identify the polypeptides encoded in three of the eight unassigned reading frames (URFs) of human mitochondrial DNA (mtDNA). In the present study, this approach has been extended to other human mtDNA URFs. In particular, antibodies directed against the NH2-terminal octapeptide of the putative URF2 product specifically precipitated component 11 of the HeLa cell mitochondrial translation products, the reaction being inhibited by the specific peptide. Similarly, antibodies directed against the COOH-terminal nonapeptide of the putative URF4 product reacted specifically with components 4 and 5, and antibodies against a COOH-terminal heptapeptide of the presumptive URF4L product reacted specifically with component 26. Antibodies against the NH2-terminal heptapeptide of the putative product of URF5 reacted with component 1, but only to a marginal extent; however, the results of a trypsin fingerprinting analysis of component 1 point strongly to this component as being the authentic product of URF5. The polypeptide assignments to the mtDNA URFs analyzed here are supported by the relative electrophoretic mobilities of proteins 11, 4-5, 26, and 1, which are those expected for the molecular weights predicted from the DNA sequence for the products of URF2, URF4, URF4L, and URF5, respectively. With the present assignment, seven of the eight human mtDNA URFs have been shown to be expressed in HeLa cells. Images PMID:3456601
RNA-dependent RNA targeting by CRISPR-Cas9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strutt, Steven C.; Torrez, Rachel M.; Kaya, Emine
Double-stranded DNA (dsDNA) binding and cleavage by Cas9 is a hallmark of type II CRISPR-Cas bacterial adaptive immunity. All known Cas9 enzymes are thought to recognize DNA exclusively as a natural substrate, providing protection against DNA phage and plasmids. Here, we show that Cas9 enzymes from both subtypes II-A and II-C can recognize and cleave single-stranded RNA (ssRNA) by an RNA-guided mechanism that is independent of a protospacer-adjacent motif (PAM) sequence in the target RNA. RNA-guided RNA cleavage is programmable and site-specific, and we find that this activity can be exploited to reduce infection by single-stranded RNA phage in vivo.more » We also demonstrate that Cas9 can direct PAM-independent repression of gene expression in bacteria. In conclusion, these results indicate that a subset of Cas9 enzymes have the ability to act on both DNA and RNA target sequences, and suggest the potential for use in programmable RNA targeting applications.« less
RNA-dependent RNA targeting by CRISPR-Cas9
Strutt, Steven C.; Torrez, Rachel M.; Kaya, Emine; ...
2018-01-05
Double-stranded DNA (dsDNA) binding and cleavage by Cas9 is a hallmark of type II CRISPR-Cas bacterial adaptive immunity. All known Cas9 enzymes are thought to recognize DNA exclusively as a natural substrate, providing protection against DNA phage and plasmids. Here, we show that Cas9 enzymes from both subtypes II-A and II-C can recognize and cleave single-stranded RNA (ssRNA) by an RNA-guided mechanism that is independent of a protospacer-adjacent motif (PAM) sequence in the target RNA. RNA-guided RNA cleavage is programmable and site-specific, and we find that this activity can be exploited to reduce infection by single-stranded RNA phage in vivo.more » We also demonstrate that Cas9 can direct PAM-independent repression of gene expression in bacteria. In conclusion, these results indicate that a subset of Cas9 enzymes have the ability to act on both DNA and RNA target sequences, and suggest the potential for use in programmable RNA targeting applications.« less
RNA-dependent RNA targeting by CRISPR-Cas9
Strutt, Steven C; Torrez, Rachel M; Kaya, Emine; Negrete, Oscar A
2018-01-01
Double-stranded DNA (dsDNA) binding and cleavage by Cas9 is a hallmark of type II CRISPR-Cas bacterial adaptive immunity. All known Cas9 enzymes are thought to recognize DNA exclusively as a natural substrate, providing protection against DNA phage and plasmids. Here, we show that Cas9 enzymes from both subtypes II-A and II-C can recognize and cleave single-stranded RNA (ssRNA) by an RNA-guided mechanism that is independent of a protospacer-adjacent motif (PAM) sequence in the target RNA. RNA-guided RNA cleavage is programmable and site-specific, and we find that this activity can be exploited to reduce infection by single-stranded RNA phage in vivo. We also demonstrate that Cas9 can direct PAM-independent repression of gene expression in bacteria. These results indicate that a subset of Cas9 enzymes have the ability to act on both DNA and RNA target sequences, and suggest the potential for use in programmable RNA targeting applications. PMID:29303478
2009-01-01
Background Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. Results We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. Conclusion We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The results of the present work provide important new information about the structure and content of conifer genomic DNA that will guide future efforts to sequence and assemble conifer genomes. PMID:19656416
Hamberger, Björn; Hall, Dawn; Yuen, Mack; Oddy, Claire; Hamberger, Britta; Keeling, Christopher I; Ritland, Carol; Ritland, Kermit; Bohlmann, Jörg
2009-08-06
Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The results of the present work provide important new information about the structure and content of conifer genomic DNA that will guide future efforts to sequence and assemble conifer genomes.
Lenglez, Sandrine; Hermand, Damien; Decottignies, Anabelle
2010-01-01
Chromosomal double-strand breaks (DSBs) threaten genome integrity and repair of these lesions is often mutagenic. How and where DSBs are formed is a major question conveniently addressed in simple model organisms like yeast. NUMTs, nuclear DNA sequences of mitochondrial origin, are present in most eukaryotic genomes and probably result from the capture of mitochondrial DNA (mtDNA) fragments into chromosomal breaks. NUMT formation is ongoing and was reported to cause de novo human genetic diseases. Study of NUMTs is likely to contribute to the understanding of naturally occurring chromosomal breaks. We show that Schizosaccharomyces pombe NUMTs are exclusively located in noncoding regions with no preference for gene promoters and, when located into promoters, do not affect gene transcription level. Strikingly, most noncoding regions comprising NUMTs are also associated with a DNA replication origin (ORI). Chromatin immunoprecipitation experiments revealed that chromosomal NUMTs are probably not acting as ORI on their own but that mtDNA insertions occurred directly next to ORIs, suggesting that these loci may be prone to DSB formation. Accordingly, induction of excessive DNA replication origin firing, a phenomenon often associated with human tumor formation, resulted in frequent nucleotide deletion events within ORI3001 subtelomeric chromosomal locus, illustrating a novel aspect of DNA replication-driven genomic instability. How mtDNA is fragmented is another important issue that we addressed by sequencing experimentally induced NUMTs. This highlighted regions of S. pombe mtDNA prone to breaking. Together with an analysis of human NUMTs, we propose that these fragile sites in mtDNA may correspond to replication pause sites. PMID:20688779
Small gene family encoding an eggshell (chorion) protein of the human parasite Schistosoma mansoni
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobek, L.A.; Rekosh, D.M.; Lo Verde, P.T.
1988-08-01
The authors isolated six independent genomic clones encoding schistosome chorion or eggshell proteins from a Schistosoma mansoni genomic library. A linkage map of five of the clones spanning 35 kilobase pairs (kbp) of the S. mansoni genome was constructed. The region contained two eggshell protein genes closely linked, separated by 7.5 kbp of intergenic DNA. The two genes of the cluster were arranged in the same orientation, that is, they were transcribed from the same strand. The sixth clone probably represents a third copy of the eggshell gene that is not contained within the 35-kbp region. The 5- end ofmore » the mRNA transcribed from these genes was defined by primer extension directly off the RNA. The ATCAT cap site sequence was homologous to a silkmoth chorion PuTCATT cap site sequence, where Pu indicates any purine. DNA sequence analysis showed that there were no introns in these genes. The DNA sequences of the three genes were very homologous to each other and to a cDNA clone, pSMf61-46, differing only in three or four nucleotices. A multiple TATA box was located at positions -23 to -31, and a CAAAT sequence was located at -52 upstream of the eggshell transcription unit. Comparison of sequences in regions further upstream with silkmoth and Drosophila sequences revealed very short elements that were shared. One such element, TCACGT, recently shown to be an essential cis-regulatory element for silkmoth chorion gene promoter function, was found at a similar position in all three organisms.« less
Finnerty, J R; Block, B A
1992-06-01
We were able to differentiate between species of billfish (Istiophoridae family) and to detect considerable intraspecific variation in the blue marlin (Makaira nigricans) by directly sequencing a polymerase chain reaction (PCR)-amplified, 612-bp fragment of the mitochondrial cytochrome b gene. Thirteen variable nucleotide sites separated blue marlin (n = 26) into 7 genotypes. On average, these genotypes differed by 5.7 base substitutions. A smaller sample of swordfish from an equally broad geographic distribution displayed relatively little intraspecific variation, with an average of 1.3 substitutions separating different genotypes. A cladistic analysis of blue marlin cytochrome b variants indicates two major divergent evolutionary lines within the species. The frequencies of these two major evolutionary lines differ significantly between Atlantic and Pacific ocean basins. This finding is important given that the Atlantic stocks of blue marlin are considered endangered. Migration from the Pacific can help replenish the numbers of blue marlin in the Atlantic, but the loss of certain mitochondrial DNA haplotypes in the Atlantic due to overfishing probably could not be remedied by an influx of Pacific fish because of their absence in the Pacific population. Fishery management strategies should attempt to preserve the genetic diversity within the species. The detection of DNA sequence polymorphism indicates the utility of PCR technology in pelagic fishery genetics.
Angsuthanasombat, C; Chungjatupornchai, W; Kertbundit, S; Luxananil, P; Settasatian, C; Wilairat, P; Panyim, S
1987-07-01
Five recombinant E. coli clones exhibiting toxicity to Aedes aegypti larvae were obtained from a library of 800 clones containing XbaI DNA fragments of 110 kb plasmid from B. thuringiensis var. israelensis. All the five clones (pMU 14/258/303/388/679) had the same 3.8-kb insert and encoded a major protein of 130 kDa which was highly toxic to A. aegypti larvae. Three clones (pMU 258/303/388) transcribed the 130 kD a gene in the same direction as that of lac Z promoter of pUC12 vector whereas the transcription of the other two (pMU 14/679) was in the opposite direction. A 1.9-kb fragment of the 3.8 kb insert coded for a protein of 65 kDa. Partial DNA sequence of the 3.8 kb insert, corresponding to the 5'-terminal of the 130 kDa gene, revealed a continuous reading frame, a Shine-Dalgarno sequence and a tentative 5'-regulatory region. These results demonstrated that the 3.8 kb insert is a minimal DNA fragment containing a regulatory region plus the coding sequence of the 130 kDa protein that is highly toxic to mosquito larvae.
Rolling Circle Transcription of Ribozymes Targeted to ras and mdr-1
2001-09-01
ssDNA) to direct transcription of an tion-PCR, and recyclization were carried out to optimize active hammerhead ribozyme in E. coli cells. transcription...transcription I hammerhead ribozyme I in vitro selection and 12.5 units/ml RNase inhibitor (Promega), in a total reaction volume of 15 tk1. After a...sequence encoding a ssDNA, and splint ssDNA were ethanol-precipitated and used as hammerhead ribozyme . templates to begin the next round of in vitro
Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions
Gardner, Shea N; Mariella, Jr., Raymond P; Christian, Allen T; Young, Jennifer A; Clague, David S
2013-06-25
A method of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths.
Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions
Gardner, Shea N [San Leandro, CA; Mariella, Jr., Raymond P.; Christian, Allen T [Tracy, CA; Young, Jennifer A [Berkeley, CA; Clague, David S [Livermore, CA
2011-01-18
A method of fabricating a DNA molecule of user-defined sequence. The method comprises the steps of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an even or odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths. In one embodiment starting sequence fragments are of different lengths, n, n+1, n+2, etc.
Ding, Yanqiang; Fang, Yang; Guo, Ling; Li, Zhidan; He, Kaize; Zhao, Yun; Zhao, Hai
2017-01-01
Phylogenetic relationship within different genera of Lemnoideae, a kind of small aquatic monocotyledonous plants, was not well resolved, using either morphological characters or traditional markers. Given that rich genetic information in chloroplast genome makes them particularly useful for phylogenetic studies, we used chloroplast genomes to clarify the phylogeny within Lemnoideae. DNAs were sequenced with next-generation sequencing. The duckweeds chloroplast genomes were indirectly filtered from the total DNA data, or directly obtained from chloroplast DNA data. To test the reliability of assembling the chloroplast genome based on the filtration of the total DNA, two methods were used to assemble the chloroplast genome of Landoltia punctata strain ZH0202. A phylogenetic tree was built on the basis of the whole chloroplast genome sequences using MrBayes v.3.2.6 and PhyML 3.0. Eight complete duckweeds chloroplast genomes were assembled, with lengths ranging from 165,775 bp to 171,152 bp, and each contains 80 protein-coding sequences, four rRNAs, 30 tRNAs and two pseudogenes. The identity of L. punctata strain ZH0202 chloroplast genomes assembled through two methods was 100%, and their sequences and lengths were completely identical. The chloroplast genome comparison demonstrated that the differences in chloroplast genome sizes among the Lemnoideae primarily resulted from variation in non-coding regions, especially from repeat sequence variation. The phylogenetic analysis demonstrated that the different genera of Lemnoideae are derived from each other in the following order: Spirodela , Landoltia , Lemna , Wolffiella , and Wolffia . This study demonstrates potential of whole chloroplast genome DNA as an effective option for phylogenetic studies of Lemnoideae. It also showed the possibility of using chloroplast DNA data to elucidate those phylogenies which were not yet solved well by traditional methods even in plants other than duckweeds.
Phylogenic study of Lemnoideae (duckweeds) through complete chloroplast genomes for eight accessions
Ding, Yanqiang; Fang, Yang; Guo, Ling; Li, Zhidan; He, Kaize
2017-01-01
Background Phylogenetic relationship within different genera of Lemnoideae, a kind of small aquatic monocotyledonous plants, was not well resolved, using either morphological characters or traditional markers. Given that rich genetic information in chloroplast genome makes them particularly useful for phylogenetic studies, we used chloroplast genomes to clarify the phylogeny within Lemnoideae. Methods DNAs were sequenced with next-generation sequencing. The duckweeds chloroplast genomes were indirectly filtered from the total DNA data, or directly obtained from chloroplast DNA data. To test the reliability of assembling the chloroplast genome based on the filtration of the total DNA, two methods were used to assemble the chloroplast genome of Landoltia punctata strain ZH0202. A phylogenetic tree was built on the basis of the whole chloroplast genome sequences using MrBayes v.3.2.6 and PhyML 3.0. Results Eight complete duckweeds chloroplast genomes were assembled, with lengths ranging from 165,775 bp to 171,152 bp, and each contains 80 protein-coding sequences, four rRNAs, 30 tRNAs and two pseudogenes. The identity of L. punctata strain ZH0202 chloroplast genomes assembled through two methods was 100%, and their sequences and lengths were completely identical. The chloroplast genome comparison demonstrated that the differences in chloroplast genome sizes among the Lemnoideae primarily resulted from variation in non-coding regions, especially from repeat sequence variation. The phylogenetic analysis demonstrated that the different genera of Lemnoideae are derived from each other in the following order: Spirodela, Landoltia, Lemna, Wolffiella, and Wolffia. Discussion This study demonstrates potential of whole chloroplast genome DNA as an effective option for phylogenetic studies of Lemnoideae. It also showed the possibility of using chloroplast DNA data to elucidate those phylogenies which were not yet solved well by traditional methods even in plants other than duckweeds. PMID:29302399
Sanderson, Nicholas D.; Atkins, Bridget L.; Brent, Andrew J.; Cole, Kevin; Foster, Dona; McNally, Martin A.; Oakley, Sarah; Peto, Leon; Taylor, Adrian; Peto, Tim E. A.; Crook, Derrick W.; Eyre, David W.
2017-01-01
ABSTRACT Culture of multiple periprosthetic tissue samples is the current gold standard for microbiological diagnosis of prosthetic joint infections (PJI). Additional diagnostic information may be obtained through culture of sonication fluid from explants. However, current techniques can have relatively low sensitivity, with prior antimicrobial therapy and infection by fastidious organisms influencing results. We assessed if metagenomic sequencing of total DNA extracts obtained direct from sonication fluid can provide an alternative rapid and sensitive tool for diagnosis of PJI. We compared metagenomic sequencing with standard aerobic and anaerobic culture in 97 sonication fluid samples from prosthetic joint and other orthopedic device infections. Reads from Illumina MiSeq sequencing were taxonomically classified using Kraken. Using 50 derivation samples, we determined optimal thresholds for the number and proportion of bacterial reads required to identify an infection and confirmed our findings in 47 independent validation samples. Compared to results from sonication fluid culture, the species-level sensitivity of metagenomic sequencing was 61/69 (88%; 95% confidence interval [CI], 77 to 94%; for derivation samples 35/38 [92%; 95% CI, 79 to 98%]; for validation samples, 26/31 [84%; 95% CI, 66 to 95%]), and genus-level sensitivity was 64/69 (93%; 95% CI, 84 to 98%). Species-level specificity, adjusting for plausible fastidious causes of infection, species found in concurrently obtained tissue samples, and prior antibiotics, was 85/97 (88%; 95% CI, 79 to 93%; for derivation samples, 43/50 [86%; 95% CI, 73 to 94%]; for validation samples, 42/47 [89%; 95% CI, 77 to 96%]). High levels of human DNA contamination were seen despite the use of laboratory methods to remove it. Rigorous laboratory good practice was required to minimize bacterial DNA contamination. We demonstrate that metagenomic sequencing can provide accurate diagnostic information in PJI. Our findings, combined with the increasing availability of portable, random-access sequencing technology, offer the potential to translate metagenomic sequencing into a rapid diagnostic tool in PJI. PMID:28490492
Modahl, Cassandra M.; Mackessy, Stephen P.
2016-01-01
Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides access to cDNA sequences in the absence of living specimens, even from commercial venom sources, to evaluate important regional differences in venom composition and to study snake venom protein evolution. PMID:27280639
The contribution of alu elements to mutagenic DNA double-strand break repair.
Morales, Maria E; White, Travis B; Streva, Vincent A; DeFreece, Cecily B; Hedges, Dale J; Deininger, Prescott L
2015-03-01
Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic structural variation. To begin understanding the molecular mechanisms leading to these rearrangements in mammalian cells, we constructed Alu/Alu recombination reporter cell lines containing Alu elements ranging in sequence divergence from 0%-30% that allow detection of both Alu/Alu recombination and large non-homologous end joining (NHEJ) deletions that range from 1.0 to 1.9 kb in size. Introduction of as little as 0.7% sequence divergence between Alu elements resulted in a significant reduction in recombination, which indicates even small degrees of sequence divergence reduce the efficiency of homology-directed DNA double-strand break (DSB) repair. Further reduction in recombination was observed in a sequence divergence-dependent manner for diverged Alu/Alu recombination constructs with up to 10% sequence divergence. With greater levels of sequence divergence (15%-30%), we observed a significant increase in DSB repair due to a shift from Alu/Alu recombination to variable-length NHEJ which removes sequence between the two Alu elements. This increase in NHEJ deletions depends on the presence of Alu sequence homeology (similar but not identical sequences). Analysis of recombination products revealed that Alu/Alu recombination junctions occur more frequently in the first 100 bp of the Alu element within our reporter assay, just as they do in genomic Alu/Alu recombination events. This is the first extensive study characterizing the influence of Alu element sequence divergence on DNA repair, which will inform predictions regarding the effect of Alu element sequence divergence on both the rate and nature of DNA repair events.
Lee, Shih-Chieh; Wang, Chia-Hsiang; Yen, Cheng-En; Chang, Chieh
2017-04-01
The major aim of made tea identification is to identify the variety and provenance of the tea plant. The present experiment used 113 tea plants [Camellia sinensis (L.) O. Kuntze] housed at the Tea Research and Extension Substation, from which 113 internal transcribed spacer 2 (ITS2) fragments, 104 trnL intron, and 98 trnL-trnF intergenic sequence region DNA sequences were successfully sequenced. The similarity of the ITS2 nucleotide sequences between tea plants housed at the Tea Research and Extension Substation was 0.379-0.994. In this polymerase chain reaction-amplified noncoding region, no varieties possessed identical sequences. Compared with the trnL intron and trnL-trnF intergenic sequence fragments of chloroplast cpDNA, the proportion of ITS2 nucleotide sequence variation was large and is more suitable for establishing a DNA barcode database to identify tea plant varieties. After establishing the database, 30 imported teas and 35 domestic made teas were used in this model system to explore the feasibility of using ITS2 sequences to identify the varieties and provenances of made teas. A phylogenetic tree was constructed using ITS2 sequences with the unweighted pair group method with arithmetic mean, which indicated that the same variety of tea plant is likely to be successfully categorized into one cluster, but contamination from other tea plants was also detected. This result provides molecular evidence that the similarity between important tea varieties in Taiwan remains high. We suggest a direct, wide collection of made tea and original samples of tea plants to establish an ITS2 sequence molecular barcode identification database to identify the varieties and provenances of tea plants. The DNA barcode comparison method can satisfy the need for a rapid, low-cost, frontline differentiation of the large amount of made teas from Taiwan and abroad, and can provide molecular evidence of their varieties and provenances. Copyright © 2016. Published by Elsevier B.V.
Vertical transmission of Theileria lestoquardi in sheep.
Zakian, Amir; Nouri, Mohammad; Barati, Farid; Kahroba, Hooman; Jolodar, Abbas; Rashidi, Fardokht
2014-07-14
This is the first report of an outbreak of Theileria lestoquardi abortion and stillbirth in a mob of 450 ewes in July 2012, during which, approximately 35 late-term ewes lost their fetuses over a 5-day period. A dead ewe and her aborted fetus were transported to the Ahvaz Veterinary Hospital for the diagnostic evaluation. The microbial cultures from the ewe vaginal discharges and fetal abomasal contents and the liver were negative. The blood films of the ewe and her fetus contained Theileria piroplasms and the impression smears from ewe liver and fetal spleen were positive for Theileria Koch blue bodies. The DNA was extracted from the liver and spleen of ewe and her fetus, respectively, and analyzed by polymerase chain reaction (PCR) using specific primers derived from the nucleotide sequences of 18S ribosomal DNA (rDNA) gene of T. lestoquardi. A single fragment of 428-bp fragment was amplified. The PCR product was directly sequenced and the alignment of the sequence with similar sequences in GenBank(®) showed 100% identities with 18S rDNA gene of T. lestoquardi. The present study is the first report of the T. lestoquardi vertical transmission that could be related to the abortion. Copyright © 2014 Elsevier B.V. All rights reserved.
Molecular cloning of a cDNA encoding the glycoprotein of hen oviduct microsomal signal peptidase.
Newsome, A L; McLean, J W; Lively, M O
1992-01-01
Detergent-solubilized hen oviduct signal peptidase has been characterized previously as an apparent complex of a 19 kDa protein and a 23 kDa glycoprotein (GP23) [Baker & Lively (1987) Biochemistry 26, 8561-8567]. A cDNA clone encoding GP23 from a chicken oviduct lambda gt11 cDNA library has now been characterized. The cDNA encodes a protein of 180 amino acid residues with a single site for asparagine-linked glycosylation that has been directly identified by amino acid sequence analysis of a tryptic-digest peptide containing the glycosylated site. Immunoblot analysis reveals cross-reactivity with a dog pancreas protein. Comparison of the deduced amino acid sequence of GP23 with the 22/23 kDa glycoprotein of dog microsomal signal peptidase [Shelness, Kanwar & Blobel (1988) J. Biol. Chem. 263, 17063-17070], one of five proteins associated with this enzyme, reveals that the amino acid sequences are 90% identical. Thus the signal peptidase glycoprotein is as highly conserved as the sequences of cytochromes c and b from these same species and is likely to be found in a similar form in many, if not all, vertebrate species. The data also show conclusively that the dog and avian signal peptidases have at least one protein subunit in common. Images Fig. 1. PMID:1546959
Intramolecular transposition by a synthetic IS50 (Tn5) derivative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomcsanyi, T.; Phadnis, S.H.; Berg, D.E.
1990-11-01
We report the formation of deletions and inversions by intramolecular transposition of Tn5-derived mobile elements. The synthetic transposons used contained the IS50 O and I end segments and the transposase gene, a contraselectable gene encoding sucrose sensitivity (sacB), antibiotic resistance genes, and a plasmid replication origin. Both deletions and inversions were associated with loss of a 300-bp segment that is designated the vector because it is outside of the transposon. Deletions were severalfold more frequent than inversions, perhaps reflecting constraints on DNA twisting or abortive transposition. Restriction and DNA sequence analyses showed that both types of rearrangements extended from onemore » transposon end to many different sites in target DNA. In the case of inversions, transposition generated 9-bp direct repeats of target sequences.« less
Discovery of Escherichia coli CRISPR sequences in an undergraduate laboratory.
Militello, Kevin T; Lazatin, Justine C
2017-05-01
Clustered regularly interspaced short palindromic repeats (CRISPRs) represent a novel type of adaptive immune system found in eubacteria and archaebacteria. CRISPRs have recently generated a lot of attention due to their unique ability to catalog foreign nucleic acids, their ability to destroy foreign nucleic acids in a mechanism that shares some similarity to RNA interference, and the ability to utilize reconstituted CRISPR systems for genome editing in numerous organisms. In order to introduce CRISPR biology into an undergraduate upper-level laboratory, a five-week set of exercises was designed to allow students to examine the CRISPR status of uncharacterized Escherichia coli strains and to allow the discovery of new repeats and spacers. Students started the project by isolating genomic DNA from E. coli and amplifying the iap CRISPR locus using the polymerase chain reaction (PCR). The PCR products were analyzed by Sanger DNA sequencing, and the sequences were examined for the presence of CRISPR repeat sequences. The regions between the repeats, the spacers, were extracted and analyzed with BLASTN searches. Overall, CRISPR loci were sequenced from several previously uncharacterized E. coli strains and one E. coli K-12 strain. Sanger DNA sequencing resulted in the discovery of 36 spacer sequences and their corresponding surrounding repeat sequences. Five of the spacers were homologous to foreign (non-E. coli) DNA. Assessment of the laboratory indicates that improvements were made in the ability of students to answer questions relating to the structure and function of CRISPRs. Future directions of the laboratory are presented and discussed. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):262-269, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.
Rivera-Torres, Natalia; Banas, Kelly; Bialk, Pawel; Bloh, Kevin M; Kmiec, Eric B
2017-01-01
CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex.
Rivera-Torres, Natalia; Bialk, Pawel; Bloh, Kevin M.; Kmiec, Eric B.
2017-01-01
CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex. PMID:28052104
Protecting genomic sequence anonymity with generalization lattices.
Malin, B A
2005-01-01
Current genomic privacy technologies assume the identity of genomic sequence data is protected if personal information, such as demographics, are obscured, removed, or encrypted. While demographic features can directly compromise an individual's identity, recent research demonstrates such protections are insufficient because sequence data itself is susceptible to re-identification. To counteract this problem, we introduce an algorithm for anonymizing a collection of person-specific DNA sequences. The technique is termed DNA lattice anonymization (DNALA), and is based upon the formal privacy protection schema of k -anonymity. Under this model, it is impossible to observe or learn features that distinguish one genetic sequence from k-1 other entries in a collection. To maximize information retained in protected sequences, we incorporate a concept generalization lattice to learn the distance between two residues in a single nucleotide region. The lattice provides the most similar generalized concept for two residues (e.g. adenine and guanine are both purines). The method is tested and evaluated with several publicly available human population datasets ranging in size from 30 to 400 sequences. Our findings imply the anonymization schema is feasible for the protection of sequences privacy. The DNALA method is the first computational disclosure control technique for general DNA sequences. Given the computational nature of the method, guarantees of anonymity can be formally proven. There is room for improvement and validation, though this research provides the groundwork from which future researchers can construct genomics anonymization schemas tailored to specific datasharing scenarios.
Jakupciak, John P; Wells, Jeffrey M; Karalus, Richard J; Pawlowski, David R; Lin, Jeffrey S; Feldman, Andrew B
2013-01-01
Large-scale genomics projects are identifying biomarkers to detect human disease. B. pseudomallei and B. mallei are two closely related select agents that cause melioidosis and glanders. Accurate characterization of metagenomic samples is dependent on accurate measurements of genetic variation between isolates with resolution down to strain level. Often single biomarker sensitivity is augmented by use of multiple or panels of biomarkers. In parallel with single biomarker validation, advances in DNA sequencing enable analysis of entire genomes in a single run: population-sequencing. Potentially, direct sequencing could be used to analyze an entire genome to serve as the biomarker for genome identification. However, genome variation and population diversity complicate use of direct sequencing, as well as differences caused by sample preparation protocols including sequencing artifacts and mistakes. As part of a Department of Homeland Security program in bacterial forensics, we examined how to implement whole genome sequencing (WGS) analysis as a judicially defensible forensic method for attributing microbial sample relatedness; and also to determine the strengths and limitations of whole genome sequence analysis in a forensics context. Herein, we demonstrate use of sequencing to provide genetic characterization of populations: direct sequencing of populations.
Jakupciak, John P.; Wells, Jeffrey M.; Karalus, Richard J.; Pawlowski, David R.; Lin, Jeffrey S.; Feldman, Andrew B.
2013-01-01
Large-scale genomics projects are identifying biomarkers to detect human disease. B. pseudomallei and B. mallei are two closely related select agents that cause melioidosis and glanders. Accurate characterization of metagenomic samples is dependent on accurate measurements of genetic variation between isolates with resolution down to strain level. Often single biomarker sensitivity is augmented by use of multiple or panels of biomarkers. In parallel with single biomarker validation, advances in DNA sequencing enable analysis of entire genomes in a single run: population-sequencing. Potentially, direct sequencing could be used to analyze an entire genome to serve as the biomarker for genome identification. However, genome variation and population diversity complicate use of direct sequencing, as well as differences caused by sample preparation protocols including sequencing artifacts and mistakes. As part of a Department of Homeland Security program in bacterial forensics, we examined how to implement whole genome sequencing (WGS) analysis as a judicially defensible forensic method for attributing microbial sample relatedness; and also to determine the strengths and limitations of whole genome sequence analysis in a forensics context. Herein, we demonstrate use of sequencing to provide genetic characterization of populations: direct sequencing of populations. PMID:24455204
Rotation-Induced Macromolecular Spooling of DNA
NASA Astrophysics Data System (ADS)
Shendruk, Tyler N.; Sean, David; Berard, Daniel J.; Wolf, Julian; Dragoman, Justin; Battat, Sophie; Slater, Gary W.; Leslie, Sabrina R.
2017-07-01
Genetic information is stored in a linear sequence of base pairs; however, thermal fluctuations and complex DNA conformations such as folds and loops make it challenging to order genomic material for in vitro analysis. In this work, we discover that rotation-induced macromolecular spooling of DNA around a rotating microwire can monotonically order genomic bases, overcoming this challenge. We use single-molecule fluorescence microscopy to directly visualize long DNA strands deforming and elongating in shear flow near a rotating microwire, in agreement with numerical simulations. While untethered DNA is observed to elongate substantially, in agreement with our theory and numerical simulations, strong extension of DNA becomes possible by introducing tethering. For the case of tethered polymers, we show that increasing the rotation rate can deterministically spool a substantial portion of the chain into a fully stretched, single-file conformation. When applied to DNA, the fraction of genetic information sequentially ordered on the microwire surface will increase with the contour length, despite the increased entropy. This ability to handle long strands of DNA is in contrast to modern DNA sample preparation technologies for sequencing and mapping, which are typically restricted to comparatively short strands, resulting in challenges in reconstructing the genome. Thus, in addition to discovering new rotation-induced macromolecular dynamics, this work inspires new approaches to handling genomic-length DNA strands.
Entropic Profiler – detection of conservation in genomes using information theory
Fernandes, Francisco; Freitas, Ana T; Almeida, Jonas S; Vinga, Susana
2009-01-01
Background In the last decades, with the successive availability of whole genome sequences, many research efforts have been made to mathematically model DNA. Entropic Profiles (EP) were proposed recently as a new measure of continuous entropy of genome sequences. EP represent local information plots related to DNA randomness and are based on information theory and statistical concepts. They express the weighed relative abundance of motifs for each position in genomes. Their study is very relevant because under or over-representation segments are often associated with significant biological meaning. Findings The Entropic Profiler application here presented is a new tool designed to detect and extract under and over-represented DNA segments in genomes by using EP. It allows its computation in a very efficient way by recurring to improved algorithms and data structures, which include modified suffix trees. Available through a web interface and as downloadable source code, it allows to study positions and to search for motifs inside the whole sequence or within a specified range. DNA sequences can be entered from different sources, including FASTA files, pre-loaded examples or resuming a previously saved work. Besides the EP value plots, p-values and z-scores for each motif are also computed, along with the Chaos Game Representation of the sequence. Conclusion EP are directly related with the statistical significance of motifs and can be considered as a new method to extract and classify significant regions in genomes and estimate local scales in DNA. The present implementation establishes an efficient and useful tool for whole genome analysis. PMID:19416538
Evolutionary Patterns and Processes: Lessons from Ancient DNA.
Leonardi, Michela; Librado, Pablo; Der Sarkissian, Clio; Schubert, Mikkel; Alfarhan, Ahmed H; Alquraishi, Saleh A; Al-Rasheid, Khaled A S; Gamba, Cristina; Willerslev, Eske; Orlando, Ludovic
2017-01-01
Ever since its emergence in 1984, the field of ancient DNA has struggled to overcome the challenges related to the decay of DNA molecules in the fossil record. With the recent development of high-throughput DNA sequencing technologies and molecular techniques tailored to ultra-damaged templates, it has now come of age, merging together approaches in phylogenomics, population genomics, epigenomics, and metagenomics. Leveraging on complete temporal sample series, ancient DNA provides direct access to the most important dimension in evolution—time, allowing a wealth of fundamental evolutionary processes to be addressed at unprecedented resolution. This review taps into the most recent findings in ancient DNA research to present analyses of ancient genomic and metagenomic data.
Evolutionary Patterns and Processes: Lessons from Ancient DNA
Leonardi, Michela; Librado, Pablo; Der Sarkissian, Clio; Schubert, Mikkel; Alfarhan, Ahmed H.; Alquraishi, Saleh A.; Al-Rasheid, Khaled A. S.; Gamba, Cristina; Willerslev, Eske
2017-01-01
Abstract Ever since its emergence in 1984, the field of ancient DNA has struggled to overcome the challenges related to the decay of DNA molecules in the fossil record. With the recent development of high-throughput DNA sequencing technologies and molecular techniques tailored to ultra-damaged templates, it has now come of age, merging together approaches in phylogenomics, population genomics, epigenomics, and metagenomics. Leveraging on complete temporal sample series, ancient DNA provides direct access to the most important dimension in evolution—time, allowing a wealth of fundamental evolutionary processes to be addressed at unprecedented resolution. This review taps into the most recent findings in ancient DNA research to present analyses of ancient genomic and metagenomic data. PMID:28173586
Peng, Xin; Yu, Ke-Qiang; Deng, Guan-Hua; Jiang, Yun-Xia; Wang, Yu; Zhang, Guo-Xia; Zhou, Hong-Wei
2013-12-01
Low cost and high throughput capacity are major advantages of using next generation sequencing (NGS) techniques to determine metagenomic 16S rRNA tag sequences. These methods have significantly changed our view of microorganisms in the fields of human health and environmental science. However, DNA extraction using commercial kits has shortcomings of high cost and time constraint. In the present study, we evaluated the determination of fecal microbiomes using a direct boiling method compared with 5 different commercial extraction methods, e.g., Qiagen and MO BIO kits. Principal coordinate analysis (PCoA) using UniFrac distances and clustering showed that direct boiling of a wide range of feces concentrations gave a similar pattern of bacterial communities as those obtained from most of the commercial kits, with the exception of the MO BIO method. Fecal concentration by boiling method affected the estimation of α-diversity indices, otherwise results were generally comparable between boiling and commercial methods. The operational taxonomic units (OTUs) determined through direct boiling showed highly consistent frequencies with those determined through most of the commercial methods. Even those for the MO BIO kit were also obtained by the direct boiling method with high confidence. The present study suggested that direct boiling could be used to determine the fecal microbiome and using this method would significantly reduce the cost and improve the efficiency of the sample preparation for studying gut microbiome diversity. © 2013 Elsevier B.V. All rights reserved.
Bronzini, I; Aresu, L; Paganin, M; Marchioretto, L; Comazzi, S; Cian, F; Riondato, F; Marconato, L; Martini, V; Te Kronnie, G
2017-09-01
Tumours shows aberrant DNA methylation patterns, being hypermethylated or hypomethylated compared with normal tissues. In human acute myeloid leukaemia (hAML) mutations in DNA methyltransferase (DNMT3A) are associated to a more aggressive tumour behaviour. As AML is lethal in dogs, we defined global DNA methylation content, and screened the C-terminal domain of DNMT3 family of genes for sequence variants in 39 canine acute myeloid leukaemia (cAML) cases. A heterogeneous pattern of DNA methylation was found among cAML samples, with subsets of cases being hypermethylated or hypomethylated compared with healthy controls; four recurrent single nucleotide variations (SNVs) were found in DNMT3L gene. Although SNVs were not directly correlated to whole genome DNA methylation levels, all hypomethylated cAML cases were homozygous for the deleterious mutation at p.Arg222Trp. This study contributes to understand genetic modifications of cAML, leading up to studies that will elucidate the role of methylome alterations in the pathogenesis of AML in dogs. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Mackiewicz, P.; Gierlik, A.; Kowalczuk, M.; Szczepanik, D.; Dudek, M. R.; Cebrat, S.
1999-12-01
We have analysed protein coding and intergenic sequences in the Borrelia burgdorferi (the Lyme disease bacterium) genome using different kinds of DNA walks. Genes occupying the leading strand of DNA have significantly different nucleotide composition from genes occupying the lagging strand. Nucleotide compositional bias of the two DNA strands reflects the aminoacid composition of proteins. 96% of genes coding for ribosomal proteins lie on the leading DNA strand, which suggests that the positions of these as well as other genes are non-random. In the B. burgdorferi genome, the asymmetry in intergenic DNA sequences is lower than the asymmetry in the third positions in codons. All these characters of the B. burgdorferi genome suggest that both replication-associated mutational pressure and recombination mechanisms have established the specific structure of the genome and now any recombination leading to inversion of a gene in respect to the direction of replication is forbidden. This property of the genome allows us to assume that it is in a steady state, which enables us to fix some parameters for simulations of DNA evolution.
Mobile small RNAs regulate genome-wide DNA methylation.
Lewsey, Mathew G; Hardcastle, Thomas J; Melnyk, Charles W; Molnar, Attila; Valli, Adrián; Urich, Mark A; Nery, Joseph R; Baulcombe, David C; Ecker, Joseph R
2016-02-09
RNA silencing at the transcriptional and posttranscriptional levels regulates endogenous gene expression, controls invading transposable elements (TEs), and protects the cell against viruses. Key components of the mechanism are small RNAs (sRNAs) of 21-24 nt that guide the silencing machinery to their nucleic acid targets in a nucleotide sequence-specific manner. Transcriptional gene silencing is associated with 24-nt sRNAs and RNA-directed DNA methylation (RdDM) at cytosine residues in three DNA sequence contexts (CG, CHG, and CHH). We previously demonstrated that 24-nt sRNAs are mobile from shoot to root in Arabidopsis thaliana and confirmed that they mediate DNA methylation at three sites in recipient cells. In this study, we extend this finding by demonstrating that RdDM of thousands of loci in root tissues is dependent upon mobile sRNAs from the shoot and that mobile sRNA-dependent DNA methylation occurs predominantly in non-CG contexts. Mobile sRNA-dependent non-CG methylation is largely dependent on the DOMAINS REARRANGED METHYLTRANSFERASES 1/2 (DRM1/DRM2) RdDM pathway but is independent of the CHROMOMETHYLASE (CMT)2/3 DNA methyltransferases. Specific superfamilies of TEs, including those typically found in gene-rich euchromatic regions, lose DNA methylation in a mutant lacking 22- to 24-nt sRNAs (dicer-like 2, 3, 4 triple mutant). Transcriptome analyses identified a small number of genes whose expression in roots is associated with mobile sRNAs and connected to DNA methylation directly or indirectly. Finally, we demonstrate that sRNAs from shoots of one accession move across a graft union and target DNA methylation de novo at normally unmethylated sites in the genomes of root cells from a different accession.
Phylogenetic position and emended description of the genus Methylovorus.
Doronina, Nina V; Ivanova, Ekaterina G; Trotsenko, Yuri A
2005-03-01
The genus Methylovorus, currently represented by the restricted facultative methylotroph Methylovorus glucosotrophus Govorukhina and Trotsenko 1991 and the obligate methylotroph Methylovorus mays Doronina et al. 2001, is here established by direct sequencing of amplified 16S rRNA genes and DNA-DNA hybridization to be clearly separated from the extant ribulose monophosphate (RuMP) pathway methylobacteria and to form a distinct branch within the beta-Proteobacteria.
Grace, Christy R.; Ferreira, Antonio M.; Waddell, M. Brett; Ridout, Granger; Naeve, Deanna; Leuze, Michael; LoCascio, Philip F.; Panetta, John C.; Wilkinson, Mark R.; Pui, Ching-Hon; Naeve, Clayton W.; Uberbacher, Edward C.; Bonten, Erik J.; Evans, William E.
2016-01-01
MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10−16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription. PMID:26844769
Richert, Kathrin; Brambilla, Evelyne; Stackebrandt, Erko
2005-01-01
PCR primer sets were developed for the specific amplification and sequence analyses encoding the gyrase subunit B (gyrB) of members of the family Microbacteriaceae, class Actinobacteria. The family contains species highly related by 16S rRNA gene sequence analyses. In order to test if the gene sequence analysis of gyrB is appropriate to discriminate between closely related species, we evaluate the 16S rRNA gene phylogeny of its members. As the published universal primer set for gyrB failed to amplify the responding gene of the majority of the 80 type strains of the family, three new primer sets were identified that generated fragments with a composite sequence length of about 900 nt. However, the amplification of all three fragments was successful only in 25% of the 80 type strains. In this study, the substitution frequencies in genes encoding gyrase and 16S rDNA were compared for 10 strains of nine genera. The frequency of gyrB nucleotide substitution is significantly higher than that of the 16S rDNA, and no linear correlation exists between the similarities of both molecules among members of the Microbacteriaceae. The phylogenetic analyses using the gyrB sequences provide higher resolution than using 16S rDNA sequences and seem able to discriminate between closely related species.
Aberg, Karolina A.; Xie, Lin Y.; Nerella, Srilaxmi; Copeland, William E.; Costello, E. Jane; van den Oord, Edwin J.C.G.
2013-01-01
The potential importance of DNA methylation in the etiology of complex diseases has led to interest in the development of methylome-wide association studies (MWAS) aimed at interrogating all methylation sites in the human genome. When using blood as biomaterial for a MWAS the DNA is typically extracted directly from fresh or frozen whole blood that was collected via venous puncture. However, DNA extracted from dry blood spots may also be an alternative starting material. In the present study, we apply a methyl-CpG binding domain (MBD) protein enrichment-based technique in combination with next generation sequencing (MBD-seq) to assess the methylation status of the ~27 million CpGs in the human autosomal reference genome. We investigate eight methylomes using DNA from blood spots. This data are compared with 1,500 methylomes previously assayed with the same MBD-seq approach using DNA from whole blood. When investigating the sequence quality and the enrichment profile across biological features, we find that DNA extracted from blood spots gives comparable results with DNA extracted from whole blood. Only if the amount of starting material is ≤ 0.5µg DNA we observe a slight decrease in the assay performance. In conclusion, we show that high quality methylome-wide investigations using MBD-seq can be conducted in DNA extracted from archived dry blood spots without sacrificing quality and without bias in enrichment profile as long as the amount of starting material is sufficient. In general, the amount of DNA extracted from a single blood spot is sufficient for methylome-wide investigations with the MBD-seq approach. PMID:23644822
Aberg, Karolina A; Xie, Lin Y; Nerella, Srilaxmi; Copeland, William E; Costello, E Jane; van den Oord, Edwin J C G
2013-05-01
The potential importance of DNA methylation in the etiology of complex diseases has led to interest in the development of methylome-wide association studies (MWAS) aimed at interrogating all methylation sites in the human genome. When using blood as biomaterial for a MWAS the DNA is typically extracted directly from fresh or frozen whole blood that was collected via venous puncture. However, DNA extracted from dry blood spots may also be an alternative starting material. In the present study, we apply a methyl-CpG binding domain (MBD) protein enrichment-based technique in combination with next generation sequencing (MBD-seq) to assess the methylation status of the ~27 million CpGs in the human autosomal reference genome. We investigate eight methylomes using DNA from blood spots. This data are compared with 1,500 methylomes previously assayed with the same MBD-seq approach using DNA from whole blood. When investigating the sequence quality and the enrichment profile across biological features, we find that DNA extracted from blood spots gives comparable results with DNA extracted from whole blood. Only if the amount of starting material is ≤ 0.5µg DNA we observe a slight decrease in the assay performance. In conclusion, we show that high quality methylome-wide investigations using MBD-seq can be conducted in DNA extracted from archived dry blood spots without sacrificing quality and without bias in enrichment profile as long as the amount of starting material is sufficient. In general, the amount of DNA extracted from a single blood spot is sufficient for methylome-wide investigations with the MBD-seq approach.
Packaging of Dinoroseobacter shibae DNA into Gene Transfer Agent Particles Is Not Random.
Tomasch, Jürgen; Wang, Hui; Hall, April T K; Patzelt, Diana; Preusse, Matthias; Petersen, Jörn; Brinkmann, Henner; Bunk, Boyke; Bhuju, Sabin; Jarek, Michael; Geffers, Robert; Lang, Andrew S; Wagner-Döbler, Irene
2018-01-01
Gene transfer agents (GTAs) are phage-like particles which contain a fragment of genomic DNA of the bacterial or archaeal producer and deliver this to a recipient cell. GTA gene clusters are present in the genomes of almost all marine Rhodobacteraceae (Roseobacters) and might be important contributors to horizontal gene transfer in the world's oceans. For all organisms studied so far, no obvious evidence of sequence specificity or other nonrandom process responsible for packaging genomic DNA into GTAs has been found. Here, we show that knock-out of an autoinducer synthase gene of Dinoroseobacter shibae resulted in overproduction and release of functional GTA particles (DsGTA). Next-generation sequencing of the 4.2-kb DNA fragments isolated from DsGTAs revealed that packaging was not random. DNA from low-GC conjugative plasmids but not from high-GC chromids was excluded from packaging. Seven chromosomal regions were strongly overrepresented in DNA isolated from DsGTA. These packaging peaks lacked identifiable conserved sequence motifs that might represent recognition sites for the GTA terminase complex. Low-GC regions of the chromosome, including the origin and terminus of replication, were underrepresented in DNA isolated from DsGTAs. DNA methylation reduced packaging frequency while the level of gene expression had no influence. Chromosomal regions found to be over- and underrepresented in DsGTA-DNA were regularly spaced. We propose that a "headful" type of packaging is initiated at the sites of coverage peaks and, after linearization of the chromosomal DNA, proceeds in both directions from the initiation site. GC-content, DNA-modifications, and chromatin structure might influence at which sides GTA packaging can be initiated. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Packaging of Dinoroseobacter shibae DNA into Gene Transfer Agent Particles Is Not Random
Wang, Hui; Hall, April T K; Patzelt, Diana; Preusse, Matthias; Petersen, Jörn; Brinkmann, Henner; Bunk, Boyke; Bhuju, Sabin; Jarek, Michael; Geffers, Robert; Lang, Andrew S; Wagner-Döbler, Irene
2018-01-01
Abstract Gene transfer agents (GTAs) are phage-like particles which contain a fragment of genomic DNA of the bacterial or archaeal producer and deliver this to a recipient cell. GTA gene clusters are present in the genomes of almost all marine Rhodobacteraceae (Roseobacters) and might be important contributors to horizontal gene transfer in the world’s oceans. For all organisms studied so far, no obvious evidence of sequence specificity or other nonrandom process responsible for packaging genomic DNA into GTAs has been found. Here, we show that knock-out of an autoinducer synthase gene of Dinoroseobacter shibae resulted in overproduction and release of functional GTA particles (DsGTA). Next-generation sequencing of the 4.2-kb DNA fragments isolated from DsGTAs revealed that packaging was not random. DNA from low-GC conjugative plasmids but not from high-GC chromids was excluded from packaging. Seven chromosomal regions were strongly overrepresented in DNA isolated from DsGTA. These packaging peaks lacked identifiable conserved sequence motifs that might represent recognition sites for the GTA terminase complex. Low-GC regions of the chromosome, including the origin and terminus of replication, were underrepresented in DNA isolated from DsGTAs. DNA methylation reduced packaging frequency while the level of gene expression had no influence. Chromosomal regions found to be over- and underrepresented in DsGTA-DNA were regularly spaced. We propose that a “headful” type of packaging is initiated at the sites of coverage peaks and, after linearization of the chromosomal DNA, proceeds in both directions from the initiation site. GC-content, DNA-modifications, and chromatin structure might influence at which sides GTA packaging can be initiated. PMID:29325123
Wu, Fang; Yan, Ming; Li, Yikun; Chang, Shaojie; Song, Xiaomin; Zhou, Zhaocai; Gong, Weimin
2003-12-19
SPE-16 is a new 16kDa protein that has been purified from the seeds of Pachyrrhizus erosus. It's N-terminal amino acid sequence shows significant sequence homology to pathogenesis-related class 10 proteins. cDNA encoding 150 amino acids was cloned by RT-PCR and the gene sequence proved SPE-16 to be a new member of PR-10 family. The cDNA was cloned into pET15b plasmid and expressed in Escherichia coli. The bacterially expressed SPE-16 also demonstrated ribonuclease-like activity in vitro. Site-directed mutation of three conserved amino acids E95A, E147A, Y150A, and a P-loop truncated form were constructed and their different effects on ribonuclease activities were observed. SPE-16 is also able to bind the fluorescent probe 8-anilino-1-naphthalenesulfonate (ANS) in the native state. The ANS anion is a much-utilized "hydrophobic probe" for proteins. This binding activity indicated another biological function of SPE-16.
Almeida, Jonatas Campos; Martins, Felippe Danyel Cardoso; Ferreira Neto, José Maurício; Santos, Maíra Moreira Dos; Garcia, João Luis; Navarro, Italmar Teodorico; Kuroda, Emília Kiyomi; Freire, Roberta Lemos
2015-01-01
The purpose of this study was to investigate the occurrence of Cryptosporidium spp. and Giardia spp. in a public water-treatment system. Samples of raw and treated water were collected and concentrated using the membrane filtration technique. Direct Immunofluorescence Test was performed on the samples. DNA extraction using a commercial kit was performed and the DNA extracted was submitted to a nested-PCR reaction (n-PCR) and sequencing. In the immunofluorescence, 2/24 (8.33%) samples of raw water were positive for Giardia spp.. In n-PCR and sequencing, 2/24 (8.33%) samples of raw water were positive for Giardia spp., and 2/24 (8.33%) samples were positive for Cryptosporidium spp.. The sequencing showed Cryptosporidium parvum and Giardia duodenalis DNA. In raw water, there was moderate correlation among turbidity, color and Cryptosporidium spp. and between turbidity and Giardia spp.. The presence of these protozoans in the water indicates the need for monitoring for water-treatment companies.
Species-specific identification of commercial probiotic strains.
Yeung, P S M; Sanders, M E; Kitts, C L; Cano, R; Tong, P S
2002-05-01
Products containing probiotic bacteria are gaining popularity, increasing the importance of their accurate speciation. Unfortunately, studies have suggested that improper labeling of probiotic species is common in commercial products. Species identification of a bank of commercial probiotic strains was attempted using partial 16S rDNA sequencing, carbohydrate fermentation analysis, and cellular fatty acid methyl ester analysis. Results from partial 16S rDNA sequencing indicated discrepancies between species designations for 26 out of 58 strains tested, including two ATCC Lactobacillus strains. When considering only the commercial strains obtained directly from the manufacturers, 14 of 29 strains carried species designations different from those obtained by partial 16S rDNA sequencing. Strains from six commercial products were species not listed on the label. The discrepancies mainly occurred in Lactobacillus acidophilus and Lactobacillus casei groups. Carbohydrate fermentation analysis was not sensitive enough to identify species within the L. acidophilus group. Fatty acid methyl ester analysis was found to be variable and inaccurate and is not recommended to identify probiotic lactobacilli.
Ryan, Niamh M; Lihm, Jayon; Kramer, Melissa; McCarthy, Shane; Morris, Stewart W; Arnau-Soler, Aleix; Davies, Gail; Duff, Barbara; Ghiban, Elena; Hayward, Caroline; Deary, Ian J; Blackwood, Douglas H R; Lawrie, Stephen M; McIntosh, Andrew M; Evans, Kathryn L; Porteous, David J; McCombie, W Richard; Thomson, Pippa A
2018-06-07
Psychiatric disorders are a group of genetically related diseases with highly polygenic architectures. Genome-wide association analyses have made substantial progress towards understanding the genetic architecture of these disorders. More recently, exome- and whole-genome sequencing of cases and families have identified rare, high penetrant variants that provide direct functional insight. There remains, however, a gap in the heritability explained by these complementary approaches. To understand how multiple genetic variants combine to modify both severity and penetrance of a highly penetrant variant, we sequenced 48 whole genomes from a family with a high loading of psychiatric disorder linked to a balanced chromosomal translocation. The (1;11)(q42;q14.3) translocation directly disrupts three genes: DISC1, DISC2, DISC1FP and has been linked to multiple brain imaging and neurocognitive outcomes in the family. Using DNA sequence-level linkage analysis, functional annotation and population-based association, we identified common and rare variants in GRM5 (minor allele frequency (MAF) > 0.05), PDE4D (MAF > 0.2) and CNTN5 (MAF < 0.01) that may help explain the individual differences in phenotypic expression in the family. We suggest that whole-genome sequencing in large families will improve the understanding of the combined effects of the rare and common sequence variation underlying psychiatric phenotypes.
Mitsui, Jun; Fukuda, Yoko; Azuma, Kyo; Tozaki, Hirokazu; Ishiura, Hiroyuki; Takahashi, Yuji; Goto, Jun; Tsuji, Shoji
2010-07-01
We have recently found that multiple rare variants of the glucocerebrosidase gene (GBA) confer a robust risk for Parkinson disease, supporting the 'common disease-multiple rare variants' hypothesis. To develop an efficient method of identifying rare variants in a large number of samples, we applied multiplexed resequencing using a next-generation sequencer to identification of rare variants of GBA. Sixteen sets of pooled DNAs from six pooled DNA samples were prepared. Each set of pooled DNAs was subjected to polymerase chain reaction to amplify the target gene (GBA) covering 6.5 kb, pooled into one tube with barcode indexing, and then subjected to extensive sequence analysis using the SOLiD System. Individual samples were also subjected to direct nucleotide sequence analysis. With the optimization of data processing, we were able to extract all the variants from 96 samples with acceptable rates of false-positive single-nucleotide variants.
Chemale, Gustavo; Paneto, Greiciane Gaburro; Menezes, Meiga Aurea Mendes; de Freitas, Jorge Marcelo; Jacques, Guilherme Silveira; Cicarelli, Regina Maria Barretto; Fagundes, Paulo Roberto
2013-05-01
Mitochondrial DNA (mtDNA) analysis is usually a last resort in routine forensic DNA casework. However, it has become a powerful tool for the analysis of highly degraded samples or samples containing too little or no nuclear DNA, such as old bones and hair shafts. The gold standard methodology still constitutes the direct sequencing of polymerase chain reaction (PCR) products or cloned amplicons from the HVS-1 and HVS-2 (hypervariable segment) control region segments. Identifications using mtDNA are time consuming, expensive and can be very complex, depending on the amount and nature of the material being tested. The main goal of this work is to develop a less labour-intensive and less expensive screening method for mtDNA analysis, in order to aid in the exclusion of non-matching samples and as a presumptive test prior to final confirmatory DNA sequencing. We have selected 14 highly discriminatory single nucleotide polymorphisms (SNPs) based on simulations performed by Salas and Amigo (2010) to be typed using SNaPShot(TM) (Applied Biosystems, Foster City, CA, USA). The assay was validated by typing more than 100 HVS-1/HVS-2 sequenced samples. No differences were observed between the SNP typing and DNA sequencing when results were compared, with the exception of allelic dropouts observed in a few haplotypes. Haplotype diversity simulations were performed using 172 mtDNA sequences representative of the Brazilian population and a score of 0.9794 was obtained when the 14 SNPs were used, showing that the theoretical prediction approach for the selection of highly discriminatory SNPs suggested by Salas and Amigo (2010) was confirmed in the population studied. As the main goal of the work is to develop a screening assay to skip the sequencing of all samples in a particular case, a pair-wise comparison of the sequences was done using the selected SNPs. When both HVS-1/HVS-2 SNPs were used for simulations, at least two differences were observed in 93.2% of the comparisons performed. The assay was validated with casework samples. Results show that the method is straightforward and can be used for exclusionary purposes, saving time and laboratory resources. The assay confirms the theoretic prediction suggested by Salas and Amigo (2010). All forensic advantages, such as high sensitivity and power of discrimination, as also the disadvantages, such as the occurrence of allele dropouts, are discussed throughout the article. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lestari, D.; Bustamam, A.; Novianti, T.; Ardaneswari, G.
2017-07-01
DNA sequence can be defined as a succession of letters, representing the order of nucleotides within DNA, using a permutation of four DNA base codes including adenine (A), guanine (G), cytosine (C), and thymine (T). The precise code of the sequences is determined using DNA sequencing methods and technologies, which have been developed since the 1970s and currently become highly developed, advanced and highly throughput sequencing technologies. So far, DNA sequencing has greatly accelerated biological and medical research and discovery. However, in some cases DNA sequencing could produce any ambiguous and not clear enough sequencing results that make them quite difficult to be determined whether these codes are A, T, G, or C. To solve these problems, in this study we can introduce other representation of DNA codes namely Quaternion Q = (PA, PT, PG, PC), where PA, PT, PG, PC are the probability of A, T, G, C bases that could appear in Q and PA + PT + PG + PC = 1. Furthermore, using Quaternion representations we are able to construct the improved scoring matrix for global sequence alignment processes, by applying a dot product method. Moreover, this scoring matrix produces better and higher quality of the match and mismatch score between two DNA base codes. In implementation, we applied the Needleman-Wunsch global sequence alignment algorithm using Octave, to analyze our target sequence which contains some ambiguous sequence data. The subject sequences are the DNA sequences of Streptococcus pneumoniae families obtained from the Genebank, meanwhile the target DNA sequence are received from our collaborator database. As the results we found the Quaternion representations improve the quality of the sequence alignment score and we can conclude that DNA sequence target has maximum similarity with Streptococcus pneumoniae.
Paull, T T; Cortez, D; Bowers, B; Elledge, S J; Gellert, M
2001-05-22
The tumor suppressor Brca1 plays an important role in protecting mammalian cells against genomic instability, but little is known about its modes of action. In this work we demonstrate that recombinant human Brca1 protein binds strongly to DNA, an activity conferred by a domain in the center of the Brca1 polypeptide. As a result of this binding, Brca1 inhibits the nucleolytic activities of the Mre11/Rad50/Nbs1 complex, an enzyme implicated in numerous aspects of double-strand break repair. Brca1 displays a preference for branched DNA structures and forms protein-DNA complexes cooperatively between multiple DNA strands, but without DNA sequence specificity. This fundamental property of Brca1 may be an important part of its role in DNA repair and transcription.
Detection and decay rates of prey and prey symbionts in the gut of a predator through metagenomics.
Paula, Débora P; Linard, Benjamin; Andow, David A; Sujii, Edison R; Pires, Carmen S S; Vogler, Alfried P
2015-07-01
DNA methods are useful to identify ingested prey items from the gut of predators, but reliable detection is hampered by low amounts of degraded DNA. PCR-based methods can retrieve minute amounts of starting material but suffer from amplification biases and cross-reactions with the predator and related species genomes. Here, we use PCR-free direct shotgun sequencing of total DNA isolated from the gut of the harlequin ladybird Harmonia axyridis at five time points after feeding on a single pea aphid Acyrthosiphon pisum. Sequence reads were matched to three reference databases: Insecta mitogenomes of 587 species, including H. axyridis sequenced here; A. pisum nuclear genome scaffolds; and scaffolds and complete genomes of 13 potential bacterial symbionts. Immediately after feeding, multicopy mtDNA of A. pisum was detected in tens of reads, while hundreds of matches to nuclear scaffolds were detected. Aphid nuclear DNA and mtDNA decayed at similar rates (0.281 and 0.11 h(-1) respectively), and the detectability periods were 32.7 and 23.1 h. Metagenomic sequencing also revealed thousands of reads of the obligate Buchnera aphidicola and facultative Regiella insecticola aphid symbionts, which showed exponential decay rates significantly faster than aphid DNA (0.694 and 0.80 h(-1) , respectively). However, the facultative aphid symbionts Hamiltonella defensa, Arsenophonus spp. and Serratia symbiotica showed an unexpected temporary increase in population size by 1-2 orders of magnitude in the predator guts before declining. Metagenomics is a powerful tool that can reveal complex relationships and the dynamics of interactions among predators, prey and their symbionts. © 2014 John Wiley & Sons Ltd.
Isolation of candidate genes of Friedreich`s ataxia on chromosome 9q13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montermini, L.; Zara, F.; Pandolfo, M.
1994-09-01
Friedreich`s ataxia (FRDA) is an autosomal recessive degenerative disease involving the central and peripheral nervous system and the heart. The mutated gene in FRDA has recently been localized within a 450 Kb interval on chromosome 9q13 between the markers D9S202/FR1/FR8. We have been able to confirm such localization for the disease gene by analysis of extended haplotype in consanguineous families. Cases of loss of marker homozygosity, which are likely to be due to ancient recombinations, have been found to involve D9S110, D9S15, and D9S111 on the telomeric side, and FR5 on the centromeric side, while homozygosity was always found formore » a core haplotype including D9S5, FD1, and D9S202. We constructed a YAC contig spanning the region between the telomeric markers and FR5, and cosmids have been obtained from the YACs. In order to isolate transcribed sequences from the FRDA candidate region we are utilizing a combination of approaches, including hybridization of YACs and cosmids to an arrayed human heart cDNA library, cDNA direct selection, and exon amplification. A transcribed sequence near the telomeric end of the region has been isolated by cDNA direct selection using pooled cosmids as genomic template and primary human heart, muscle, brain, liver and placenta cDNAs as cDNA source. We have shown this sequence to be the human equivalent of ZO-2, a tight junction protein previously described in the dog. No mutations of this gene have been found in FRDA subjects. Additional cDNA have recently been isolated and they are currently being evaluated.« less
Direct on-chip DNA synthesis using electrochemically modified gold electrodes as solid support
NASA Astrophysics Data System (ADS)
Levrie, Karen; Jans, Karolien; Schepers, Guy; Vos, Rita; Van Dorpe, Pol; Lagae, Liesbet; Van Hoof, Chris; Van Aerschot, Arthur; Stakenborg, Tim
2018-04-01
DNA microarrays have propelled important advancements in the field of genomic research by enabling the monitoring of thousands of genes in parallel. The throughput can be increased even further by scaling down the microarray feature size. In this respect, microelectronics-based DNA arrays are promising as they can leverage semiconductor processing techniques with lithographic resolutions. We propose a method that enables the use of metal electrodes for de novo DNA synthesis without the need for an insulating support. By electrochemically functionalizing gold electrodes, these electrodes can act as solid support for phosphoramidite-based synthesis. The proposed method relies on the electrochemical reduction of diazonium salts, enabling site-specific incorporation of hydroxyl groups onto the metal electrodes. An automated DNA synthesizer was used to couple phosphoramidite moieties directly onto the OH-modified electrodes to obtain the desired oligonucleotide sequence. Characterization was done via cyclic voltammetry and fluorescence microscopy. Our results present a valuable proof-of-concept for the integration of solid-phase DNA synthesis with microelectronics.
DNA-programmable nanoparticle crystallization.
Park, Sung Yong; Lytton-Jean, Abigail K R; Lee, Byeongdu; Weigand, Steven; Schatz, George C; Mirkin, Chad A
2008-01-31
It was first shown more than ten years ago that DNA oligonucleotides can be attached to gold nanoparticles rationally to direct the formation of larger assemblies. Since then, oligonucleotide-functionalized nanoparticles have been developed into powerful diagnostic tools for nucleic acids and proteins, and into intracellular probes and gene regulators. In contrast, the conceptually simple yet powerful idea that functionalized nanoparticles might serve as basic building blocks that can be rationally assembled through programmable base-pairing interactions into highly ordered macroscopic materials remains poorly developed. So far, the approach has mainly resulted in polymerization, with modest control over the placement of, the periodicity in, and the distance between particles within the assembled material. That is, most of the materials obtained thus far are best classified as amorphous polymers, although a few examples of colloidal crystal formation exist. Here, we demonstrate that DNA can be used to control the crystallization of nanoparticle-oligonucleotide conjugates to the extent that different DNA sequences guide the assembly of the same type of inorganic nanoparticle into different crystalline states. We show that the choice of DNA sequences attached to the nanoparticle building blocks, the DNA linking molecules and the absence or presence of a non-bonding single-base flexor can be adjusted so that gold nanoparticles assemble into micrometre-sized face-centred-cubic or body-centred-cubic crystal structures. Our findings thus clearly demonstrate that synthetically programmable colloidal crystallization is possible, and that a single-component system can be directed to form different structures.
Large-Scale Concatenation cDNA Sequencing
Yu, Wei; Andersson, Björn; Worley, Kim C.; Muzny, Donna M.; Ding, Yan; Liu, Wen; Ricafrente, Jennifer Y.; Wentland, Meredith A.; Lennon, Greg; Gibbs, Richard A.
1997-01-01
A total of 100 kb of DNA derived from 69 individual human brain cDNA clones of 0.7–2.0 kb were sequenced by concatenated cDNA sequencing (CCS), whereby multiple individual DNA fragments are sequenced simultaneously in a single shotgun library. The method yielded accurate sequences and a similar efficiency compared with other shotgun libraries constructed from single DNA fragments (>20 kb). Computer analyses were carried out on 65 cDNA clone sequences and their corresponding end sequences to examine both nucleic acid and amino acid sequence similarities in the databases. Thirty-seven clones revealed no DNA database matches, 12 clones generated exact matches (≥98% identity), and 16 clones generated nonexact matches (57%–97% identity) to either known human or other species genes. Of those 28 matched clones, 8 had corresponding end sequences that failed to identify similarities. In a protein similarity search, 27 clone sequences displayed significant matches, whereas only 20 of the end sequences had matches to known protein sequences. Our data indicate that full-length cDNA insert sequences provide significantly more nucleic acid and protein sequence similarity matches than expressed sequence tags (ESTs) for database searching. [All 65 cDNA clone sequences described in this paper have been submitted to the GenBank data library under accession nos. U79240–U79304.] PMID:9110174
Parrilla-Doblas, Jara Teresa; Ariza, Rafael R.; Roldán-Arjona, Teresa
2017-01-01
ABSTRACT DNA methylation is a crucial epigenetic mark associated to gene silencing, and its targeted removal is a major goal of epigenetic editing. In animal cells, DNA demethylation involves iterative 5mC oxidation by TET enzymes followed by replication-dependent dilution and/or replication-independent DNA repair of its oxidized derivatives. In contrast, plants use specific DNA glycosylases that directly excise 5mC and initiate its substitution for unmethylated C in a base excision repair process. In this work, we have fused the catalytic domain of Arabidopsis ROS1 5mC DNA glycosylase (ROS1_CD) to the DNA binding domain of yeast GAL4 (GBD). We show that the resultant GBD-ROS1_CD fusion protein binds specifically a GBD-targeted DNA sequence in vitro. We also found that transient in vivo expression of GBD-ROS1_CD in human cells specifically reactivates transcription of a methylation-silenced reporter gene, and that such reactivation requires both ROS1_CD catalytic activity and GBD binding capacity. Finally, we show that reactivation induced by GBD-ROS1_CD is accompanied by decreased methylation levels at several CpG sites of the targeted promoter. All together, these results show that plant 5mC DNA glycosylases can be used for targeted active DNA demethylation in human cells. PMID:28277978
Mariella, Jr., Raymond P.
2008-11-18
A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.
DNA methylation dynamics during early plant life.
Bouyer, Daniel; Kramdi, Amira; Kassam, Mohamed; Heese, Maren; Schnittger, Arp; Roudier, François; Colot, Vincent
2017-09-25
Cytosine methylation is crucial for gene regulation and silencing of transposable elements in mammals and plants. While this epigenetic mark is extensively reprogrammed in the germline and early embryos of mammals, the extent to which DNA methylation is reset between generations in plants remains largely unknown. Using Arabidopsis as a model, we uncovered distinct DNA methylation dynamics over transposable element sequences during the early stages of plant development. Specifically, transposable elements and their relics show invariably high methylation at CG sites but increasing methylation at CHG and CHH sites. This non-CG methylation culminates in mature embryos, where it reaches saturation for a large fraction of methylated CHH sites, compared to the typical 10-20% methylation level observed in seedlings or adult plants. Moreover, the increase in CHH methylation during embryogenesis matches the hypomethylated state in the early endosperm. Finally, we show that interfering with the embryo-to-seedling transition results in the persistence of high CHH methylation levels after germination, specifically over sequences that are targeted by the RNA-directed DNA methylation (RdDM) machinery. Our findings indicate the absence of extensive resetting of DNA methylation patterns during early plant life and point instead to an important role of RdDM in reinforcing DNA methylation of transposable element sequences in every cell of the mature embryo. Furthermore, we provide evidence that this elevated RdDM activity is a specific property of embryogenesis.
Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase
McInerney, Peter; Adams, Paul; Hadi, Masood Z.
2014-01-01
As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error ratemore » measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less
Profiling cellular protein complexes by proximity ligation with dual tag microarray readout.
Hammond, Maria; Nong, Rachel Yuan; Ericsson, Olle; Pardali, Katerina; Landegren, Ulf
2012-01-01
Patterns of protein interactions provide important insights in basic biology, and their analysis plays an increasing role in drug development and diagnostics of disease. We have established a scalable technique to compare two biological samples for the levels of all pairwise interactions among a set of targeted protein molecules. The technique is a combination of the proximity ligation assay with readout via dual tag microarrays. In the proximity ligation assay protein identities are encoded as DNA sequences by attaching DNA oligonucleotides to antibodies directed against the proteins of interest. Upon binding by pairs of antibodies to proteins present in the same molecular complexes, ligation reactions give rise to reporter DNA molecules that contain the combined sequence information from the two DNA strands. The ligation reactions also serve to incorporate a sample barcode in the reporter molecules to allow for direct comparison between pairs of samples. The samples are evaluated using a dual tag microarray where information is decoded, revealing which pairs of tags that have become joined. As a proof-of-concept we demonstrate that this approach can be used to detect a set of five proteins and their pairwise interactions both in cellular lysates and in fixed tissue culture cells. This paper provides a general strategy to analyze the extent of any pairwise interactions in large sets of molecules by decoding reporter DNA strands that identify the interacting molecules.
Nanopore Technology: A Simple, Inexpensive, Futuristic Technology for DNA Sequencing.
Gupta, P D
2016-10-01
In health care, importance of DNA sequencing has been fully established. Sanger's Capillary Electrophoresis DNA sequencing methodology is time consuming, cumbersome, hence become more expensive. Lately, because of its versatility DNA sequencing became house hold name, and therefore, there is an urgent need of simple, fast, inexpensive, DNA sequencing technology. In the beginning of this century efforts were made, and Nanopore DNA sequencing technology was developed; still it is infancy, nevertheless, it is the futuristic technology.
Genetic Perturbation of the Maize Methylome[W
Li, Qing; Hermanson, Peter J.; Zaunbrecher, Virginia M.; Song, Jawon; Wendt, Jennifer; Rosenbaum, Heidi; Madzima, Thelma F.; Sloan, Amy E.; Huang, Ji; Burgess, Daniel L.; Richmond, Todd A.; McGinnis, Karen M.; Meeley, Robert B.; Danilevskaya, Olga N.; Vaughn, Matthew W.; Kaeppler, Shawn M.; Jeddeloh, Jeffrey A.
2014-01-01
DNA methylation can play important roles in the regulation of transposable elements and genes. A collection of mutant alleles for 11 maize (Zea mays) genes predicted to play roles in controlling DNA methylation were isolated through forward- or reverse-genetic approaches. Low-coverage whole-genome bisulfite sequencing and high-coverage sequence-capture bisulfite sequencing were applied to mutant lines to determine context- and locus-specific effects of these mutations on DNA methylation profiles. Plants containing mutant alleles for components of the RNA-directed DNA methylation pathway exhibit loss of CHH methylation at many loci as well as CG and CHG methylation at a small number of loci. Plants containing loss-of-function alleles for chromomethylase (CMT) genes exhibit strong genome-wide reductions in CHG methylation and some locus-specific loss of CHH methylation. In an attempt to identify stocks with stronger reductions in DNA methylation levels than provided by single gene mutations, we performed crosses to create double mutants for the maize CMT3 orthologs, Zmet2 and Zmet5, and for the maize DDM1 orthologs, Chr101 and Chr106. While loss-of-function alleles are viable as single gene mutants, the double mutants were not recovered, suggesting that severe perturbations of the maize methylome may have stronger deleterious phenotypic effects than in Arabidopsis thaliana. PMID:25527708
Molecular detection of Sarcocystis lutrae in the European badger (Meles meles) in Scotland.
Lepore, T; Bartley, P M; Chianini, F; Macrae, A I; Innes, E A; Katzer, F
2017-09-01
Neck samples from 54 badgers and 32 tongue samples of the same badgers (Meles meles), collected in the Lothians and Borders regions of Scotland, were tested using polymerase chain reactions (PCRs) directed against the 18S ribosomal DNA and the internal transcribed spacer (ITS1) region of protozoan parasites of the family Sarcocystidae. Positive results were obtained from 36/54 (67%) neck and 24/32 (75%) tongue samples using an 18S rDNA PCR. A 468 base pair consensus sequence that was generated from the 18S rDNA PCR amplicons (KX229728) showed 100% identity to Sarcocystis lutrae. The ITS1 PCR results revealed that 12/20 (60%) neck and 10/20 (50%) tongue samples were positive for Sarcocystidae DNA. A 1074 bp consensus sequence was generated from the ITS1 PCR amplicons (KX431307) and showed 100% identity to S. lutrae. Multiple sequence alignments and phylogenetic analysis support the finding that the rDNA found in badgers is identical to that of S. lutrae. This parasite has not been previously reported in badgers or in the UK. Sarcocystis lutrae has previously only been detected in tongue, skeletal muscle and diaphragm samples of the Eurasian otter (Lutra lutra) in Norway and potentially in the Arctic fox (Vulpes lagopus).
The genome-wide DNA sequence specificity of the anti-tumour drug bleomycin in human cells.
Murray, Vincent; Chen, Jon K; Tanaka, Mark M
2016-07-01
The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5'-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5'-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5'-GT*A and 5'- TGT* trinucleotide sequences, and 5'-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5'-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine-pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the -3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.
Taverniers, Isabel; Van Bockstaele, Erik; De Loose, Marc
2004-03-01
Analytical real-time PCR technology is a powerful tool for implementation of the GMO labeling regulations enforced in the EU. The quality of analytical measurement data obtained by quantitative real-time PCR depends on the correct use of calibrator and reference materials (RMs). For GMO methods of analysis, the choice of appropriate RMs is currently under debate. So far, genomic DNA solutions from certified reference materials (CRMs) are most often used as calibrators for GMO quantification by means of real-time PCR. However, due to some intrinsic features of these CRMs, errors may be expected in the estimations of DNA sequence quantities. In this paper, two new real-time PCR methods are presented for Roundup Ready soybean, in which two types of plasmid DNA fragments are used as calibrators. Single-target plasmids (STPs) diluted in a background of genomic DNA were used in the first method. Multiple-target plasmids (MTPs) containing both sequences in one molecule were used as calibrators for the second method. Both methods simultaneously detect a promoter 35S sequence as GMO-specific target and a lectin gene sequence as endogenous reference target in a duplex PCR. For the estimation of relative GMO percentages both "delta C(T)" and "standard curve" approaches are tested. Delta C(T) methods are based on direct comparison of measured C(T) values of both the GMO-specific target and the endogenous target. Standard curve methods measure absolute amounts of target copies or haploid genome equivalents. A duplex delta C(T) method with STP calibrators performed at least as well as a similar method with genomic DNA calibrators from commercial CRMs. Besides this, high quality results were obtained with a standard curve method using MTP calibrators. This paper demonstrates that plasmid DNA molecules containing either one or multiple target sequences form perfect alternative calibrators for GMO quantification and are especially suitable for duplex PCR reactions.
Reading biological processes from nucleotide sequences
NASA Astrophysics Data System (ADS)
Murugan, Anand
Cellular processes have traditionally been investigated by techniques of imaging and biochemical analysis of the molecules involved. The recent rapid progress in our ability to manipulate and read nucleic acid sequences gives us direct access to the genetic information that directs and constrains biological processes. While sequence data is being used widely to investigate genotype-phenotype relationships and population structure, here we use sequencing to understand biophysical mechanisms. We present work on two different systems. First, in chapter 2, we characterize the stochastic genetic editing mechanism that produces diverse T-cell receptors in the human immune system. We do this by inferring statistical distributions of the underlying biochemical events that generate T-cell receptor coding sequences from the statistics of the observed sequences. This inferred model quantitatively describes the potential repertoire of T-cell receptors that can be produced by an individual, providing insight into its potential diversity and the probability of generation of any specific T-cell receptor. Then in chapter 3, we present work on understanding the functioning of regulatory DNA sequences in both prokaryotes and eukaryotes. Here we use experiments that measure the transcriptional activity of large libraries of mutagenized promoters and enhancers and infer models of the sequence-function relationship from this data. For the bacterial promoter, we infer a physically motivated 'thermodynamic' model of the interaction of DNA-binding proteins and RNA polymerase determining the transcription rate of the downstream gene. For the eukaryotic enhancers, we infer heuristic models of the sequence-function relationship and use these models to find synthetic enhancer sequences that optimize inducibility of expression. Both projects demonstrate the utility of sequence information in conjunction with sophisticated statistical inference techniques for dissecting underlying biophysical mechanisms.
RNA-Seq analysis to capture the transcriptome landscape of a single cell
Tang, Fuchou; Barbacioru, Catalin; Nordman, Ellen; Xu, Nanlan; Bashkirov, Vladimir I; Lao, Kaiqin; Surani, M. Azim
2013-01-01
We describe here a protocol for digital transcriptome analysis in a single mouse blastomere using a deep sequencing approach. An individual blastomere was first isolated and put into lysate buffer by mouth pipette. Reverse transcription was then performed directly on the whole cell lysate. After this, the free primers were removed by Exonuclease I and a poly(A) tail was added to the 3′ end of the first-strand cDNA by Terminal Deoxynucleotidyl Transferase. Then the single cell cDNAs were amplified by 20 plus 9 cycles of PCR. Then 100-200 ng of these amplified cDNAs were used to construct a sequencing library. The sequencing library can be used for deep sequencing using the SOLiD system. Compared with the cDNA microarray technique, our assay can capture up to 75% more genes expressed in early embryos. The protocol can generate deep sequencing libraries within 6 days for 16 single cell samples. PMID:20203668
Compositional segmentation and complexity measurement in stock indices
NASA Astrophysics Data System (ADS)
Wang, Haifeng; Shang, Pengjian; Xia, Jianan
2016-01-01
In this paper, we introduce a complexity measure based on the entropic segmentation called sequence compositional complexity (SCC) into the analysis of financial time series. SCC was first used to deal directly with the complex heterogeneity in nonstationary DNA sequences. We already know that SCC was found to be higher in sequences with long-range correlation than those with low long-range correlation, especially in the DNA sequences. Now, we introduce this method into financial index data, subsequently, we find that the values of SCC of some mature stock indices, such as S & P 500 (simplified with S & P in the following) and HSI, are likely to be lower than the SCC value of Chinese index data (such as SSE). What is more, we find that, if we classify the indices with the method of SCC, the financial market of Hong Kong has more similarities with mature foreign markets than Chinese ones. So we believe that a good correspondence is found between the SCC of the index sequence and the complexity of the market involved.
Modular structural elements in the replication origin region of Tetrahymena rDNA.
Du, C; Sanzgiri, R P; Shaiu, W L; Choi, J K; Hou, Z; Benbow, R M; Dobbs, D L
1995-01-01
Computer analyses of the DNA replication origin region in the amplified rRNA genes of Tetrahymena thermophila identified a potential initiation zone in the 5'NTS [Dobbs, Shaiu and Benbow (1994), Nucleic Acids Res. 22, 2479-2489]. This region consists of a putative DNA unwinding element (DUE) aligned with predicted bent DNA segments, nuclear matrix or scaffold associated region (MAR/SAR) consensus sequences, and other common modular sequence elements previously shown to be clustered in eukaryotic chromosomal origin regions. In this study, two mung bean nuclease-hypersensitive sites in super-coiled plasmid DNA were localized within the major DUE-like element predicted by thermodynamic analyses. Three restriction fragments of the 5'NTS region predicted to contain bent DNA segments exhibited anomalous migration characteristic of bent DNA during electrophoresis on polyacrylamide gels. Restriction fragments containing the 5'NTS region bound Tetrahymena nuclear matrices in an in vitro binding assay, consistent with an association of the replication origin region with the nuclear matrix in vivo. The direct demonstration in a protozoan origin region of elements previously identified in Drosophila, chick and mammalian origin regions suggests that clusters of modular structural elements may be a conserved feature of eukaryotic chromosomal origins of replication. Images PMID:7784181
Heterologous mitochondrial DNA recombination in human cells.
D'Aurelio, Marilena; Gajewski, Carl D; Lin, Michael T; Mauck, William M; Shao, Leon Z; Lenaz, Giorgio; Moraes, Carlos T; Manfredi, Giovanni
2004-12-15
Inter-molecular heterologous mitochondrial DNA (mtDNA) recombination is known to occur in yeast and plants. Nevertheless, its occurrence in human cells is still controversial. To address this issue we have fused two human cytoplasmic hybrid cell lines, each containing a distinct pathogenic mtDNA mutation and specific sets of genetic markers. In this hybrid model, we found direct evidence of recombination between these two mtDNA haplotypes. Recombinant mtDNA molecules in the hybrid cells were identified using three independent experimental approaches. First, recombinant molecules containing genetic markers from both parental alleles were demonstrated with restriction fragment length polymorphism of polymerase chain reaction products, by measuring the relative frequencies of each marker. Second, fragments of recombinant mtDNA were cloned and sequenced to identify the regions involved in the recombination events. Finally, recombinant molecules were demonstrated directly by Southern blot using appropriate combinations of polymorphic restriction sites and probes. This combined approach confirmed the existence of heterogeneous species of recombinant mtDNA molecules in the hybrid cells. These findings have important implications for mtDNA-related diseases, the interpretation of human evolution and population genetics and forensic analyses based on mtDNA genotyping.
Wang, Yan; Liu, Guo-Hua; Li, Jia-Yuan; Xu, Min-Jun; Ye, Yong-Gang; Zhou, Dong-Hui; Song, Hui-Qun; Lin, Rui-Qing; Zhu, Xing-Quan
2013-02-01
This study examined sequence variation in three mitochondrial DNA (mtDNA) regions, namely cytochrome c oxidase subunit 1 (cox1), NADH dehydrogenase subunit 5 (nad5) and cytochrome b (cytb), among Trichuris ovis isolates from different hosts in Guangdong Province, China. A portion of the cox1 (pcox1), nad5 (pnad5) and cytb (pcytb) genes was amplified separately from individual whipworms by PCR, and was subjected to sequencing from both directions. The size of the sequences of pcox1, pnad5 and pcytb was 618, 240 and 464 bp, respectively. Although the intra-specific sequence variations within T. ovis were 0-0.8% for pcox1, 0-0.8% for pnad5 and 0-1.9% for pcytb, the inter-specific sequence differences among members of the genus Trichuris were significantly higher, being 24.3-26.5% for pcox1, 33.7-56.4% for pnad5 and 24.8-26.1% for pcytb, respectively. Phylogenetic analyses using combined sequences of pcox1, pnad5 and pcytb, with three different computational algorithms (maximum likelihood, maximum parsimony and Bayesian inference), indicated that all of the T. ovis isolates grouped together with high statistical support. These findings demonstrated the existence of intra-specific variation in mtDNA sequences among T. ovis isolates from different hosts, and have implications for studying molecular epidemiology and population genetics of T. ovis.
Engineering the DNA cytosine-5 methyltransferase reaction for sequence-specific labeling of DNA
Lukinavičius, Gražvydas; Lapinaitė, Audronė; Urbanavičiūtė, Giedrė; Gerasimaitė, Rūta; Klimašauskas, Saulius
2012-01-01
DNA methyltransferases catalyse the transfer of a methyl group from the ubiquitous cofactor S-adenosyl-L-methionine (AdoMet) onto specific target sites on DNA and play important roles in organisms from bacteria to humans. AdoMet analogs with extended propargylic side chains have been chemically produced for methyltransferase-directed transfer of activated groups (mTAG) onto DNA, although the efficiency of reactions with synthetic analogs remained low. We performed steric engineering of the cofactor pocket in a model DNA cytosine-5 methyltransferase (C5-MTase), M.HhaI, by systematic replacement of three non-essential positions, located in two conserved sequence motifs and in a variable region, with smaller residues. We found that double and triple replacements lead to a substantial improvement of the transalkylation activity, which manifests itself in a mild increase of cofactor binding affinity and a larger increase of the rate of alkyl transfer. These effects are accompanied with reduction of both the stability of the product DNA–M.HhaI–AdoHcy complex and the rate of methylation, permitting competitive mTAG labeling in the presence of AdoMet. Analogous replacements of two conserved residues in M.HpaII and M2.Eco31I also resulted in improved transalkylation activity attesting a general applicability of the homology-guided engineering to the C5-MTase family and expanding the repertoire of sequence-specific tools for covalent in vitro and ex vivo labeling of DNA. PMID:23042683
Yang, Christine; McLeod, Andrea J.; Cotton, Allison M.; de Leeuw, Charles N.; Laprise, Stéphanie; Banks, Kathleen G.; Simpson, Elizabeth M.; Brown, Carolyn J.
2012-01-01
Regulatory sequences can influence the expression of flanking genes over long distances, and X chromosome inactivation is a classic example of cis-acting epigenetic gene regulation. Knock-ins directed to the Mus musculus Hprt locus offer a unique opportunity to analyze the spread of silencing into different human DNA sequences in the identical genomic environment. X chromosome inactivation of four knock-in constructs, including bacterial artificial chromosome (BAC) integrations of over 195 kb, was demonstrated by both the lack of expression from the inactive X chromosome in females with nonrandom X chromosome inactivation and promoter DNA methylation of the human transgene in females. We further utilized promoter DNA methylation to assess the inactivation status of 74 human reporter constructs comprising >1.5 Mb of DNA. Of the 47 genes examined, only the PHB gene showed female DNA hypomethylation approaching the level seen in males, and escape from X chromosome inactivation was verified by demonstration of expression from the inactive X chromosome. Integration of PHB resulted in lower DNA methylation of the flanking HPRT promoter in females, suggesting the action of a dominant cis-acting escape element. Female-specific DNA hypermethylation of CpG islands not associated with promoters implies a widespread imposition of DNA methylation during X chromosome inactivation; yet transgenes demonstrated differential capacities to accumulate DNA methylation when integrated into the identical location on the inactive X chromosome, suggesting additional cis-acting sequence effects. As only one of the human transgenes analyzed escaped X chromosome inactivation, we conclude that elements permitting ongoing expression from the inactive X are rare in the human genome. PMID:23023002
Liu, Shanlin; Yang, Chentao; Zhou, Chengran; Zhou, Xin
2017-12-01
Over the past decade, biodiversity researchers have dedicated tremendous efforts to constructing DNA reference barcodes for rapid species registration and identification. Although analytical cost for standard DNA barcoding has been significantly reduced since early 2000, further dramatic reduction in barcoding costs is unlikely because Sanger sequencing is approaching its limits in throughput and chemistry cost. Constraints in barcoding cost not only led to unbalanced barcoding efforts around the globe, but also prevented high-throughput sequencing (HTS)-based taxonomic identification from applying binomial species names, which provide crucial linkages to biological knowledge. We developed an Illumina-based pipeline, HIFI-Barcode, to produce full-length Cytochrome c oxidase subunit I (COI) barcodes from pooled polymerase chain reaction amplicons generated by individual specimens. The new pipeline generated accurate barcode sequences that were comparable to Sanger standards, even for different haplotypes of the same species that were only a few nucleotides different from each other. Additionally, the new pipeline was much more sensitive in recovering amplicons at low quantity. The HIFI-Barcode pipeline successfully recovered barcodes from more than 78% of the polymerase chain reactions that didn't show clear bands on the electrophoresis gel. Moreover, sequencing results based on the single molecular sequencing platform Pacbio confirmed the accuracy of the HIFI-Barcode results. Altogether, the new pipeline can provide an improved solution to produce full-length reference barcodes at about one-tenth of the current cost, enabling construction of comprehensive barcode libraries for local fauna, leading to a feasible direction for DNA barcoding global biomes. © The Authors 2017. Published by Oxford University Press.
Sequence and Structure Dependent DNA-DNA Interactions
NASA Astrophysics Data System (ADS)
Kopchick, Benjamin; Qiu, Xiangyun
Molecular forces between dsDNA strands are largely dominated by electrostatics and have been extensively studied. Quantitative knowledge has been accumulated on how DNA-DNA interactions are modulated by varied biological constituents such as ions, cationic ligands, and proteins. Despite its central role in biology, the sequence of DNA has not received substantial attention and ``random'' DNA sequences are typically used in biophysical studies. However, ~50% of human genome is composed of non-random-sequence DNAs, particularly repetitive sequences. Furthermore, covalent modifications of DNA such as methylation play key roles in gene functions. Such DNAs with specific sequences or modifications often take on structures other than the canonical B-form. Here we present series of quantitative measurements of the DNA-DNA forces with the osmotic stress method on different DNA sequences, from short repeats to the most frequent sequences in genome, and to modifications such as bromination and methylation. We observe peculiar behaviors that appear to be strongly correlated with the incurred structural changes. We speculate the causalities in terms of the differences in hydration shell and DNA surface structures.
Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N
2003-09-01
Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.
Evidence for recombination of mitochondrial DNA in triploid crucian carp.
Guo, Xinhong; Liu, Shaojun; Liu, Yun
2006-03-01
In this study, we report the complete mitochondrial DNA (mtDNA) sequences of the allotetraploid and triploid crucian carp and compare the complete mtDNA sequences between the triploid crucian carp and its female parent Japanese crucian carp and between the triploid crucian carp and its male parent allotetraploid. Our results indicate that the complete mtDNA nucleotide identity (98%) between the triploid crucian carp and its male parent allotetraploid was higher than that (93%) between the triploid crucian carp and its female parent Japanese crucian carp. Moreover, the presence of a pattern of identity and difference at synonymous sites of mitochondrial genomes between the triploid crucian carp and its parents provides direct evidence that triploid crucian carp possessed the recombination mtDNA fragment (12,759 bp) derived from the paternal fish. These results suggest that mtDNA recombination was derived from the fusion of the maternal and paternal mtDNAs. Compared with the haploid egg with one set of genome from the Japanese crucian carp, the diploid sperm with two sets of genomes from the allotetraploid could more easily make its mtDNA fuse with the mtDNA of the haploid egg. In addition, the triple hybrid nature of the triploid crucian carp probably allowed its better mtDNA recombination. In summary, our results provide the first evidence of mtDNA combination in polyploid fish.
Poltev, Valeri; Anisimov, Victor M; Danilov, Victor I; Garcia, Dolores; Sanchez, Carolina; Deriabina, Alexandra; Gonzalez, Eduardo; Rivas, Francisco; Polteva, Nina
2014-06-01
Our previous DFT computations of deoxydinucleoside monophosphate complexes with Na(+)-ions (dDMPs) have demonstrated that the main characteristics of Watson-Crick (WC) right-handed duplex families are predefined in the local energy minima of dDMPs. In this work, we study the mechanisms of contribution of chemically monotonous sugar-phosphate backbone and the bases into the double helix irregularity. Geometry optimization of sugar-phosphate backbone produces energy minima matching the WC DNA conformations. Studying the conformational variability of dDMPs in response to sequence permutation, we found that simple replacement of bases in the previously fully optimized dDMPs, e.g. by constructing Pyr-Pur from Pur-Pyr, and Pur-Pyr from Pyr-Pur sequences, while retaining the backbone geometry, automatically produces the mutual base position characteristic of the target sequence. Based on that, we infer that the directionality and the preferable regions of the sugar-phosphate torsions, combined with the difference of purines from pyrimidines in ring shape, determines the sequence dependence of the structure of WC DNA. No such sequence dependence exists in dDMPs corresponding to other DNA conformations (e.g., Z-family and Hoogsteen duplexes). Unlike other duplexes, WC helix is unique by its ability to match the local energy minima of the free single strand to the preferable conformations of the duplex. Copyright © 2013 Wiley Periodicals, Inc.
Genome-Wide Profiling of DNA Double-Strand Breaks by the BLESS and BLISS Methods.
Mirzazadeh, Reza; Kallas, Tomasz; Bienko, Magda; Crosetto, Nicola
2018-01-01
DNA double-strand breaks (DSBs) are major DNA lesions that are constantly formed during physiological processes such as DNA replication, transcription, and recombination, or as a result of exogenous agents such as ionizing radiation, radiomimetic drugs, and genome editing nucleases. Unrepaired DSBs threaten genomic stability by leading to the formation of potentially oncogenic rearrangements such as translocations. In past few years, several methods based on next-generation sequencing (NGS) have been developed to study the genome-wide distribution of DSBs or their conversion to translocation events. We developed Breaks Labeling, Enrichment on Streptavidin, and Sequencing (BLESS), which was the first method for direct labeling of DSBs in situ followed by their genome-wide mapping at nucleotide resolution (Crosetto et al., Nat Methods 10:361-365, 2013). Recently, we have further expanded the quantitative nature, applicability, and scalability of BLESS by developing Breaks Labeling In Situ and Sequencing (BLISS) (Yan et al., Nat Commun 8:15058, 2017). Here, we first present an overview of existing methods for genome-wide localization of DSBs, and then focus on the BLESS and BLISS methods, discussing different assay design options depending on the sample type and application.
Minimap2: pairwise alignment for nucleotide sequences.
Li, Heng
2018-05-10
Recent advances in sequencing technologies promise ultra-long reads of ∼100 kilo bases (kb) in average, full-length mRNA or cDNA reads in high throughput and genomic contigs over 100 mega bases (Mb) in length. Existing alignment programs are unable or inefficient to process such data at scale, which presses for the development of new alignment algorithms. Minimap2 is a general-purpose alignment program to map DNA or long mRNA sequences against a large reference database. It works with accurate short reads of ≥ 100bp in length, ≥1kb genomic reads at error rate ∼15%, full-length noisy Direct RNA or cDNA reads, and assembly contigs or closely related full chromosomes of hundreds of megabases in length. Minimap2 does split-read alignment, employs concave gap cost for long insertions and deletions (INDELs) and introduces new heuristics to reduce spurious alignments. It is 3-4 times as fast as mainstream short-read mappers at comparable accuracy, and is ≥30 times faster than long-read genomic or cDNA mappers at higher accuracy, surpassing most aligners specialized in one type of alignment. https://github.com/lh3/minimap2. hengli@broadinstitute.org.
Traverse, Charles C.
2017-01-01
ABSTRACT Advances in sequencing technologies have enabled direct quantification of genome-wide errors that occur during RNA transcription. These errors occur at rates that are orders of magnitude higher than rates during DNA replication, but due to technical difficulties such measurements have been limited to single-base substitutions and have not yet quantified the scope of transcription insertions and deletions. Previous reporter gene assay findings suggested that transcription indels are produced exclusively by elongation complex slippage at homopolymeric runs, so we enumerated indels across the protein-coding transcriptomes of Escherichia coli and Buchnera aphidicola, which differ widely in their genomic base compositions and incidence of repeat regions. As anticipated from prior assays, transcription insertions prevailed in homopolymeric runs of A and T; however, transcription deletions arose in much more complex sequences and were rarely associated with homopolymeric runs. By reconstructing the relocated positions of the elongation complex as inferred from the sequences inserted or deleted during transcription, we show that continuation of transcription after slippage hinges on the degree of nucleotide complementarity within the RNA:DNA hybrid at the new DNA template location. PMID:28851848
López-Alvarez, Diana; López-Herranz, Maria Luisa; Betekhtin, Alexander; Catalán, Pilar
2012-01-01
Background Brachypodium distachyon s. l. has been widely investigated across the world as a model plant for temperate cereals and biofuel grasses. However, this annual plant shows three cytotypes that have been recently recognized as three independent species, the diploids B. distachyon (2n = 10) and B. stacei (2n = 20) and their derived allotetraploid B. hybridum (2n = 30). Methodology/Principal Findings We propose a DNA barcoding approach that consists of a rapid, accurate and automatable species identification method using the standard DNA sequences of complementary plastid (trnLF) and nuclear (ITS, GI) loci. The highly homogenous but largely divergent B. distachyon and B. stacei diploids could be easily distinguished (100% identification success) using direct trnLF (2.4%), ITS (5.5%) or GI (3.8%) sequence divergence. By contrast, B. hybridum could only be unambiguously identified through the use of combined trnLF+ITS sequences (90% of identification success) or by cloned GI sequences (96.7%) that showed 5.4% (ITS) and 4% (GI) rate divergence between the two parental sequences found in the allopolyploid. Conclusion/Significance Our data provide an unbiased and effective barcode to differentiate these three closely-related species from one another. This procedure overcomes the taxonomic uncertainty generated from methods based on morphology or flow cytometry identifications that have resulted in some misclassifications of the model plant and its allies. Our study also demonstrates that the allotetraploid B. hybridum has resulted from bi-directional crosses of B. distachyon and B. stacei plants acting either as maternal or paternal parents. PMID:23240000
Qin, QinBo; Wang, Juan; Wang, YuDe; Liu, Yun; Liu, ShaoJun
2015-03-13
The offspring with 100 chromosomes (abbreviated as GRCC) have been obtained in the first generation of Carassius auratus red var. (abbreviated as RCC, 2n = 100) (♀) × Megalobrama amblycephala (abbreviated as BSB, 2n = 48) (♂), in which the females and unexpected males both are found. Chromosomal and karyotypic analysis has been reported in GRCC which gynogenesis origin has been suggested, but lack genetic evidence. Fluorescence in situ hybridization with species-specific centromere probes directly proves that GRCC possess two sets of RCC-derived chromosomes. Sequence analysis of the coding region (5S) and adjacent nontranscribed spacer (abbreviated as NTS) reveals that three types of 5S rDNA class (class I; class II and class III) in GRCC are completely inherited from their female parent (RCC), and show obvious base variations and insertions-deletions. Fluorescence in situ hybridization with the entire 5S rDNA probe reveals obvious chromosomal loci (class I and class II) variation in GRCC. This paper provides directly genetic evidence that GRCC is gynogenesis origin. In addition, our result is also reveals that distant hybridization inducing gynogenesis can lead to sequence and partial chromosomal loci of 5S rDNA gene obvious variation.
Oliveira, R R; Viana, A J C; Reátegui, A C E; Vincentz, M G A
2015-12-29
Determination of gene expression is an important tool to study biological processes and relies on the quality of the extracted RNA. Changes in gene expression profiles may be directly related to mutations in regulatory DNA sequences or alterations in DNA cytosine methylation, which is an epigenetic mark. Correlation of gene expression with DNA sequence or epigenetic mark polymorphism is often desirable; for this, a robust protocol to isolate high-quality RNA and DNA simultaneously from the same sample is required. Although commercial kits and protocols are available, they are mainly optimized for animal tissues and, in general, restricted to RNA or DNA extraction, not both. In the present study, we describe an efficient and accessible method to extract both RNA and DNA simultaneously from the same sample of various plant tissues, using small amounts of starting material. The protocol was efficient in the extraction of high-quality nucleic acids from several Arabidopsis thaliana tissues (e.g., leaf, inflorescence stem, flower, fruit, cotyledon, seedlings, root, and embryo) and from other tissues of non-model plants, such as Avicennia schaueriana (Acanthaceae), Theobroma cacao (Malvaceae), Paspalum notatum (Poaceae), and Sorghum bicolor (Poaceae). The obtained nucleic acids were used as templates for downstream analyses, such as mRNA sequencing, quantitative real time-polymerase chain reaction, bisulfite treatment, and others; the results were comparable to those obtained with commercial kits. We believe that this protocol could be applied to a broad range of plant species, help avoid technical and sampling biases, and facilitate several RNA- and DNA-dependent analyses.
Identification of structural variation in mouse genomes.
Keane, Thomas M; Wong, Kim; Adams, David J; Flint, Jonathan; Reymond, Alexandre; Yalcin, Binnaz
2014-01-01
Structural variation is variation in structure of DNA regions affecting DNA sequence length and/or orientation. It generally includes deletions, insertions, copy-number gains, inversions, and transposable elements. Traditionally, the identification of structural variation in genomes has been challenging. However, with the recent advances in high-throughput DNA sequencing and paired-end mapping (PEM) methods, the ability to identify structural variation and their respective association to human diseases has improved considerably. In this review, we describe our current knowledge of structural variation in the mouse, one of the prime model systems for studying human diseases and mammalian biology. We further present the evolutionary implications of structural variation on transposable elements. We conclude with future directions on the study of structural variation in mouse genomes that will increase our understanding of molecular architecture and functional consequences of structural variation.
Preparation of genosensor for detection of specific DNA sequence of the hepatitis B virus
NASA Astrophysics Data System (ADS)
Honorato Castro, Ana C.; França, Erick G.; de Paula, Lucas F.; Soares, Marcia M. C. N.; Goulart, Luiz R.; Madurro, João M.; Brito-Madurro, Ana G.
2014-09-01
An electrochemical genosensor was constructed for detection of specific DNA sequence of the hepatitis B virus, based on graphite electrodes modified with poly(4-aminophenol) and incorporating a specific oligonucleotide probe. The modified electrode containing the probe was evaluated by differential pulse voltammetry, before and after incubation with the complementary oligonucleotide target. Detection was performed by monitoring oxidizable DNA bases (direct detection) or using ethidium bromide as indicator of the hybridization process (indirect detection). The device showed a detection limit for the oligonucleotide target of 2.61 nmol L-1. Indirect detection using ethidium bromide was promising in discriminating mismatches, which is a very desirable attribute for detection of disease-related point mutations. In addition, it was possible to observe differences between hybridized and non-hybridized surfaces by atomic force microscopy.
Robinson, Lois; Panayiotakis, Alexandra; Papas, Takis S.; Kola, Ismail; Seth, Arun
1997-01-01
ETS transcription factors play important roles in hematopoiesis, angiogenesis, and organogenesis during murine development. The ETS genes also have a role in neoplasia, for example in Ewing’s sarcomas and retrovirally induced cancers. The ETS genes encode transcription factors that bind to specific DNA sequences and activate transcription of various cellular and viral genes. To isolate novel ETS target genes, we used two approaches. In the first approach, we isolated genes by the RNA differential display technique. Previously, we have shown that the overexpression of ETS1 and ETS2 genes effects transformation of NIH 3T3 cells and specific transformants produce high levels of the ETS proteins. To isolate ETS1 and ETS2 responsive genes in these transformed cells, we prepared RNA from ETS1, ETS2 transformants, and normal NIH 3T3 cell lines and converted it into cDNA. This cDNA was amplified by PCR and displayed on sequencing gels. The differentially displayed bands were subcloned into plasmid vectors. By Northern blot analysis, several clones showed differential patterns of mRNA expression in the NIH 3T3-, ETS1-, and ETS2-expressing cell lines. Sixteen clones were analyzed by DNA sequence analysis, and 13 of them appeared to be unique because their DNA sequences did not match with any of the known genes present in the gene bank. Three known genes were found to be identical to the CArG box binding factor, phospholipase A2-activating protein, and early growth response 1 (Egr1) genes. In the second approach, to isolate ETS target promoters directly, we performed ETS1 binding with MboI-cleaved genomic DNA in the presence of a specific mAb followed by whole genome PCR. The immune complex-bound ETS binding sites containing DNA fragments were amplified and subcloned into pBluescript and subjected to DNA sequence and computer analysis. We found that, of a large number of clones isolated, 43 represented unique sequences not previously identified. Three clones turned out to contain regulatory sequences derived from human serglycin, preproapolipoprotein C II, and Egr1 genes. The ETS binding sites derived from these three regulatory sequences showed specific binding with recombinant ETS proteins. Of interest, Egr1 was identified by both of these techniques, suggesting strongly that it is indeed an ETS target gene. PMID:9207063
Paugh, Steven W.; Coss, David R.; Bao, Ju; ...
2016-02-04
MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA). Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence that microRNAs form triple-helical structures with duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show thatmore » several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 x 10 -16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. As a result, this work has thus revealed a new mechanism by which microRNAs can interact with gene promoter regions to modify gene transcription.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paugh, Steven W.; Coss, David R.; Bao, Ju
MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA). Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence that microRNAs form triple-helical structures with duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show thatmore » several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 x 10 -16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. As a result, this work has thus revealed a new mechanism by which microRNAs can interact with gene promoter regions to modify gene transcription.« less
Takaesu, Azusa; Watanabe, Kiyotaka; Takai, Shinji; Sasaki, Yukako; Orino, Koichi
2008-01-01
Background Iron-storage protein, ferritin plays a central role in iron metabolism. Ferritin has dual function to store iron and segregate iron for protection of iron-catalyzed reactive oxygen species. Tissue ferritin is composed of two kinds of subunits (H: heavy chain or heart-type subunit; L: light chain or liver-type subunit). Ferritin gene expression is controlled at translational level in iron-dependent manner or at transcriptional level in iron-independent manner. However, sequencing analysis of marine mammalian ferritin subunits has not yet been performed fully. The purpose of this study is to reveal cDNA-derived amino acid sequences of cetacean ferritin H and L subunits, and demonstrate the possibility of expression of these subunits, especially H subunit, by iron. Methods Sequence analyses of cetacean ferritin H and L subunits were performed by direct sequencing of polymerase chain reaction (PCR) fragments from cDNAs generated via reverse transcription-PCR of leukocyte total RNA prepared from blood samples of six different dolphin species (Pseudorca crassidens, Lagenorhynchus obliquidens, Grampus griseus, Globicephala macrorhynchus, Tursiops truncatus, and Delphinapterus leucas). The putative iron-responsive element sequence in the 5'-untranslated region of the six different dolphin species was revealed by direct sequencing of PCR fragments obtained using leukocyte genomic DNA. Results Dolphin H and L subunits consist of 182 and 174 amino acids, respectively, and amino acid sequence identities of ferritin subunits among these dolphins are highly conserved (H: 99–100%, (99→98) ; L: 98–100%). The conserved 28 bp IRE sequence was located -144 bp upstream from the initiation codon in the six different dolphin species. Conclusion These results indicate that six different dolphin species have conserved ferritin sequences, and suggest that these genes are iron-dependently expressed. PMID:18954429
Darai, G; Anders, K; Koch, H G; Delius, H; Gelderblom, H; Samalecos, C; Flügel, R M
1983-04-30
Virions of fish lymphocystis disease virus (FLDV), a member of the iridovirus family, were isolated directly from lymphocystis disease lesions of individual flatfishes and purified by sucrose and subsequent cesium chloride gradient centrifugation to homogeneity as judged by electron microscopy. The isolated FLDV DNAs appear to be heterogeneous in size. Contour length measurements of 43 DNA molecules gave an average length of 49 +/- 23 microns, corresponding to 93 +/- 44 X 10(6) D. Molecular weight estimations of FLDV DNA by restriction enzyme analysis resulted in only 64.8 X 10(6) D indicating an excess length of the DNA of about 50%. FLDV DNA was sensitive to lambda 5'-exonuclease and to E. coli 3'-exonuclease III without preference of any one terminal DNA restriction fragment. Denaturation and reannealing experiments of FLDV DNA resulted in the formation of circular DNA molecules of 34.25 microns contour length (= 65.22 X 10(6) D). This result suggests that FLDV DNA contains directly repeated sequences at both ends and that it is terminally redundant. FLDV DNA is methylated in cytosine. FLDV DNA did not hybridize with frog virus DNA indicating that the two iridoviruses are not closely related to each other. Restriction enzyme analysis and Southern blot hybridizations revealed that FLDV isolates can be classified into two different strains: FLDV strain 1 occurs in flounders and plaice, whereas strain 2 is usually found in lesions of dabs.
Zock, C; Iselt, A; Doerfler, W
1993-01-01
Human adenovirus type 12 (Ad12) cannot replicate in hamster cells, whereas human cells are permissive for Ad12. Ad12 DNA replication and late-gene and virus-associated RNA expression are blocked in hamster cells. Early Ad12 genes are transcribed, and the viral DNA can be integrated into the host genome. Ad12 DNA replication and late-gene transcription can be complemented in hamster cells by E1 functions of Ad2 or Ad5, for which hamster cells are fully permissive (for a review, see W. Doerfler, Adv. Virus Res. 39:89-128, 1991). We have previously demonstrated that a 33-nucleotide mitigator sequence, which is located in the downstream region of the major late promoter (MLP) of Ad12 DNA, is responsible for the inactivity of the Ad12 MLP in hamster cells (C. Zock and W. Doerfler, EMBO J. 9:1615-1623, 1990). A similar negative regulator has not been found in the MLP of Ad2 DNA. We have now studied the mechanism of action of this mitigator element. The results of nuclear run-on experiments document the absence of MLP transcripts in the nuclei of Ad12-infected BHK21 hamster cells. Surprisingly, the mitigator element cannot elicit its function in in vitro transcription experiments with nuclear extracts from both hamster BHK21 and human HeLa cells. Intact nuclear topology and/or tightly bound nuclear elements that cannot be eluted in nuclear extracts are somehow required for recognition of the Ad12 mitigator. Electrophoretic mobility shift assays have not revealed significant differences in the binding of proteins from human HeLa or hamster BHK21 cells to the mitigator sequence in the MLP of Ad12 DNA or to the corresponding sequence in Ad2 DNA. We have converted the sequence of the mitigator in the MLP of Ad12 DNA to the equivalent sequence in the MLP of Ad2 DNA by site-directed mutagenesis. This construct was not active in hamster cells. When the Ad12 mitigator, on the other hand, was inserted into the Ad2 MLP, the latter's function in hamster cells was not compromised. Deletions in the 5' upstream region of the Ad12 MLP have provided evidence for the existence of additional sequences that codetermine the deficiency of the Ad12 MLP in hamster cells. The amphifunctional YY1 protein from HeLa cells can bind specifically to the mitigator and to upstream elements of the MLP of Ad12 DNA.(ABSTRACT TRUNCATED AT 400 WORDS) Images PMID:8419643
Lin, X Y; Wang, J; Xiao, X; Xu, Y W; Yan, Q J; Jiang, W Y
2018-04-01
To reduce the incidence of hemophilia B (HB) which with no complete cure currently, prenatal diagnosis and preimplantation genetic diagnosis (PGD) are effective and feasible means. However, previous studies about genetic diagnosis in HB mostly just focused on the detection of patients and carriers. Here, we established a comprehensive genetic diagnosis strategy for HB and worked it out in Chinese population. The strategy includes the detection of patients and carriers, prenatal diagnosis, and PGD. Seven unrelated HB families from Chinese population involved in this study. Firstly, probands and available members were carried out coagulation laboratory assays, and the clinical information has been recorded. Secondly, we used DNA direct sequencing to screen the whole FIX gene of them. The pathogenicity of novel mutations was verified according to 2015 ACMG-AM guidelines. For prenatal diagnosis, a mix of DNA direct sequencing and STR linkage analysis was employed. To explore a better PGD protocol, Karyomapping was first applied in PGD of HB, comparing with conventional PCR-based methods. Six different pathogenic mutations including 1 novel duplication (c.660_661dup ATCA) were identified. The results of prenatal diagnosis were consistent with birth outcomes. In the PGD case, 4 of 11 embryos were confirmed to be normal and one of them was transferred and led to a healthy birth. The established genetic diagnosis strategy for HB in our study was comprehensive and well applied in clinic practice. Besides, we recommended that DNA direct sequencing combined with Karyomapping was a better PGD protocol. © 2017 John Wiley & Sons Ltd.