Mode structure symmetry breaking of energetic particle driven beta-induced Alfvén eigenmode
NASA Astrophysics Data System (ADS)
Lu, Z. X.; Wang, X.; Lauber, Ph.; Zonca, F.
2018-01-01
The mode structure symmetry breaking of energetic particle driven Beta-induced Alfvén Eigenmode (BAE) is studied based on global theory and simulation. The weak coupling formula gives a reasonable estimate of the local eigenvalue compared with global hybrid simulation using XHMGC. The non-perturbative effect of energetic particles on global mode structure symmetry breaking in radial and parallel (along B) directions is demonstrated. With the contribution from energetic particles, two dimensional (radial and poloidal) BAE mode structures with symmetric/asymmetric tails are produced using an analytical model. It is demonstrated that the symmetry breaking in radial and parallel directions is intimately connected. The effects of mode structure symmetry breaking on nonlinear physics, energetic particle transport, and the possible insight for experimental studies are discussed.
NASA Astrophysics Data System (ADS)
Karavitaki, K. Domenica; Guinan, John J.; Mountain, David C.
2018-05-01
Electrically-evoked outer-hair-cell-driven micromechanical motions within the organ of Corti were visualized and quantified using a video stroboscopy system. The resulting radial motions exhibited phase transitions along the radial direction, characteristic of a system that can exhibit multiple modes of vibration. We argue that the interaction of these modes would shape the input to the inner hair cell hair bundles and resulting auditory-nerve response patterns.
Transient and diffusion analysis of HgCdTe
NASA Technical Reports Server (NTRS)
Clayton, J. C.
1982-01-01
Solute redistribution during directional solidification of HgCdTe is addressed. Both one-dimensional and two-dimensional models for solute redistribution are treated and model results compared to experiment. The central problem studied is the cause of radial inhomogeneities found in directionally solidified HgCdTe. A large scale gravity-driven interface instability, termed shape instability, is postulated to be the cause of radial inhomogeneities. Recommendations for future work, along with appropriate computer programs, are included.
Wind and solar powered turbine
NASA Technical Reports Server (NTRS)
Wells, I. D.; Koh, J. L.; Holmes, M. (Inventor)
1984-01-01
A power generating station having a generator driven by solar heat assisted ambient wind is described. A first plurality of radially extendng air passages direct ambient wind to a radial flow wind turbine disposed in a centrally located opening in a substantially disc-shaped structure. A solar radiation collecting surface having black bodies is disposed above the fist plurality of air passages and in communication with a second plurality of radial air passages. A cover plate enclosing the second plurality of radial air passages is transparent so as to permit solar radiation to effectively reach the black bodies. The second plurality of air passages direct ambient wind and thermal updrafts generated by the black bodies to an axial flow turbine. The rotating shaft of the turbines drive the generator. The solar and wind drien power generating system operates in electrical cogeneration mode with a fuel powered prime mover.
Direct longitudinal laser acceleration of electrons in free space
NASA Astrophysics Data System (ADS)
Carbajo, Sergio; Nanni, Emilio A.; Wong, Liang Jie; Moriena, Gustavo; Keathley, Phillip D.; Laurent, Guillaume; Miller, R. J. Dwayne; Kärtner, Franz X.
2016-02-01
Compact laser-driven accelerators are pursued heavily worldwide because they make novel methods and tools invented at national laboratories widely accessible in science, health, security, and technology [V. Malka et al., Principles and applications of compact laser-plasma accelerators, Nat. Phys. 4, 447 (2008)]. Current leading laser-based accelerator technologies [S. P. D. Mangles et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (London) 431, 535 (2004); T. Toncian et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312, 410 (2006); S. Tokita et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse, Appl. Phys. Lett. 95, 111911 (2009)] rely on a medium to assist the light to particle energy transfer. The medium imposes material limitations or may introduce inhomogeneous fields [J. R. Dwyer et al., Femtosecond electron diffraction: "Making the molecular movie,", Phil. Trans. R. Soc. A 364, 741 (2006)]. The advent of few cycle ultraintense radially polarized lasers [S. Carbajo et al., Efficient generation of ultraintense few-cycle radially polarized laser pulses, Opt. Lett. 39, 2487 (2014)] has ushered in a novel accelerator concept [L. J. Wong and F. X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially polarized laser beam, Opt. Express 18, 25035 (2010); F. Pierre-Louis et al. Direct-field electron acceleration with ultrafast radially polarized laser beams: Scaling laws and optimization, J. Phys. B 43, 025401 (2010); Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon Gaussian laser beam, Phys. Rev. A 73, 043402 (2006); C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006); A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser pulses and soft-x-ray pulses from optical undulators, J. Phys. B 47, 015601 (2014)] avoiding the need of a medium or guiding structure entirely to achieve strong longitudinal energy transfer. Here we present the first observation of direct longitudinal laser acceleration of nonrelativistic electrons that undergo highly directional multi-GeV /m accelerating gradients. This demonstration opens a new frontier for direct laser-driven particle acceleration capable of creating well collimated and relativistic attosecond electron bunches [C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006)] and x-ray pulses [A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser pulses and soft-x-ray pulses from optical undulators, J. Phys. B 47, 015601 (2014)].
NASA Technical Reports Server (NTRS)
Hart, John E.
1996-01-01
Experiments designed to study the fluid dynamics of buoyancy driven circulations in rotating spherical shells were conducted on the United States Microgravity Laboratory 2 spacelab mission. These experiments address several aspects of prototypical global convection relevant to large scale motions on the Sun, Earth, and on the giant planets. The key feature is the consistent modeling of radially directed gravity in spherical geometry by using dielectric polarization forces. Imagery of the planforms of thermally driven flows for rapidly-rotating regimes shows an initial separation and eventual merger of equatorial and polar convection as the heating (i.e. the Rayleigh number) is increased. At low rotation rates, multiple-states of motion for the same external parameters were observed.
Observation of plasma rotation driven by static nonaxisymmetric magnetic fields in a tokamak.
Garofalo, A M; Burrell, K H; DeBoo, J C; deGrassie, J S; Jackson, G L; Lanctot, M; Reimerdes, H; Schaffer, M J; Solomon, W M; Strait, E J
2008-11-07
We present the first evidence for the existence of a neoclassical toroidal rotation driven in a direction counter to the plasma current by nonaxisymmetric, nonresonant magnetic fields. At high beta and with large injected neutral beam momentum, the nonresonant field torque slows down the plasma toward the neoclassical "offset" rotation rate. With small injected neutral beam momentum, the toroidal rotation is accelerated toward the offset rotation, with resulting improvement in the global energy confinement time. The observed magnitude, direction, and radial profile of the offset rotation are consistent with neoclassical theory predictions.
Influence of driven current on resistive tearing mode in Tokamaks
NASA Astrophysics Data System (ADS)
Ma, Zhiwei; Wang, Sheng; Zhang, Wei
2016-10-01
Influence of driven current on the m / n = 2 / 1 resistive tearing mode is studied systematically using a three-dimensional toroidal MHD code (CLT). A uniform driven current with Gaussian distribution in the radial direction is imposed around the unperturbed rational surface. It is found that the driven current can locally modify the profiles of the current and safety factor, such that the tearing mode becomes linearly stable. The stabilizing effect increases with increase of the driven current Icd or decrease of its width δcd, unless an excessively large driven current reverses the magnetic shear near the rational surface and drives other instabilities such as double or triple tearing modes. The stabilizing effect can be negligible or becomes reversed if the maximum driven current density is not at the unperturbed rational surface. ITER-CN Program.
Edge transport and mode structure of a QCM-like fluctuation driven by the Shoelace antenna
NASA Astrophysics Data System (ADS)
Golfinopoulos, T.; LaBombard, B.; Brunner, D.; Terry, J. L.; Baek, S. G.; Ennever, P.; Edlund, E.; Han, W.; Burke, W. M.; Wolfe, S. M.; Irby, J. H.; Hughes, J. W.; Fitzgerald, E. W.; Granetz, R. S.; Greenwald, M. J.; Leccacorvi, R.; Marmar, E. S.; Pierson, S. Z.; Porkolab, M.; Vieira, R. F.; Wukitch, S. J.; The Alcator C-Mod Team
2018-05-01
The Shoelace antenna was built to drive edge fluctuations in the Alcator C-Mod tokamak, matching the wavenumber (k\\perp≈1.5 cm‑1) and frequency (30≲ f ≲ 200 kHz) of the quasi-coherent mode (QCM), which is responsible for regulating transport across the plasma boundary in the steady-state, ELM-free Enhanced D α (EDA) H-mode. Initial experiments in 2012 demonstrated that the antenna drove a resonant response in the edge plasma in steady-state EDA and transient, non-ELMy H-modes, but transport measurements were unavailable. In 2016, the Shoelace antenna was relocated to enable direct measurements of driven transport by a reciprocating Mirror Langmuir Probe, while also making available gas puff imaging and reflectometer data to provide additional radial localization of the driven fluctuation. This new data suggests a ∼4 mm-wide mode layer centered on or just outside the separatrix. Fluctuations coherent with the antenna produced a radial electron flux with {Γ_e}/{n_e}∼4 m s‑1 in EDA H-mode, smaller than but comparable to the QCM level. But in transient ELM-free H-mode, {Γ_e}/{n_e} was an order of magnitude smaller, and driven fluctuations reduced by a factor of ≳ 3. The driven mode is quantitatively similar to the intrinsic QCM across measured spectral quantities, except that it is more coherent and weaker. This work informs the prospect of achieving control of edge transport by direct coupling to edge modes, as well as the use of such active coupling for diagnostic purposes.
Accretion-driven turbulence in filaments - I. Non-gravitational accretion
NASA Astrophysics Data System (ADS)
Heigl, S.; Burkert, A.; Gritschneder, M.
2018-03-01
We study accretion-driven turbulence for different inflow velocities in star-forming filaments using the code RAMSES. Filaments are rarely isolated objects and their gravitational potential will lead to radially dominated accretion. In the non-gravitational case, accretion by itself can already provoke non-isotropic, radially dominated turbulent motions responsible for the complex structure and non-thermal line widths observed in filaments. We find that there is a direct linear relation between the absolute value of the total density-weighted velocity dispersion and the infall velocity. The turbulent velocity dispersion in the filaments is independent of sound speed or any net flow along the filament. We show that the density-weighted velocity dispersion acts as an additional pressure term, supporting the filament in hydrostatic equilibrium. Comparing to observations, we find that the projected non-thermal line width variation is generally subsonic independent of inflow velocity.
Efficiency of wave-driven rigid body rotation toroidal confinement
NASA Astrophysics Data System (ADS)
Rax, J. M.; Gueroult, R.; Fisch, N. J.
2017-03-01
The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared with compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.
The microscopic Z-pinch process of current-carrying rarefied deuterium plasma shell
NASA Astrophysics Data System (ADS)
Ning, Cheng; Feng, Zhixing; Xue, Chuang; Li, Baiwen
2015-02-01
For insight into the microscopic mechanism of Z-pinch dynamic processes, a code of two-dimensional particle-in-cell (PIC) simulation has been developed in cylindrical coordinates. In principle, the Z-pinch of current-carrying rarefied deuterium plasma shell has been simulated by means of this code. Many results related to the microscopic processes of the Z-pinch are obtained. They include the spatio-temporal distributions of electromagnetic field, current density, forces experienced by the ions and electrons, positions and energy distributions of particles, and trailing mass and current. In radial direction, the electric and magnetic forces exerted on the electrons are comparable in magnitude, while the forces exerted on the ions are mainly the electric forces. So in the Z-pinch process, the electrons are first accelerated in Z direction and get higher velocities; then, they are driven inwards to the axis at the same time by the radial magnetic forces (i.e., Lorentz forces) of them. That causes the separations between the electrons and ions because the ion mass is much larger than the electron's, and in turn a strong electrostatic field is produced. The produced electrostatic field attracts the ions to move towards the electrons. When the electrons are driven along the radial direction to arrive at the axis, they shortly move inversely due to the static repellency among them and their tiny mass, while the ions continue to move inertially inwards, and later get into stagnation, and finally scatter outwards. Near the stagnation, the energies of the deuterium ions mostly range from 0.3 to 6 keV, while the electron energies are mostly from 5 to 35 keV. The radial components, which can contribute to the pinched plasma temperature, of the most probable energies of electron and ion at the stagnation are comparable to the Bennett equilibrium temperature (about 1 keV), and also to the highest temperatures of electron and ion obtained in one dimensional radiation magnetohydrodynamic simulation of the plasma shell Z-pinch. The trailing mass is about 20% of the total mass of the shell, and the maximum trailing current is about 7% of the driven current under our trailing definition. Our PIC simulation also demonstrates that the plasma shell first experiences a snow-plow like implosion process, which is relatively stable.
Analytic expressions for ULF wave radiation belt radial diffusion coefficients
Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K
2014-01-01
We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440
NASA Astrophysics Data System (ADS)
Ghods, Masoud
This dissertation explores the role of different types of convection on macrosegregation and on dendritic array morphology of two aluminum alloys directionally solidified through cylindrical graphite molds having both cross-section decrease and increase. Al- 19 wt. % Cu and Al-7 wt. % Si alloys were directionally solidified at two growth speed of 10 and 29.1 mum s-1 and examined for longitudinal and radial macrosegregation, and for primary dendrite spacing and dendrite trunk diameter. Directional solidification of these alloys through constant cross-section showed clustering of primary dendrites and parabolic-shaped radial macrosegregation profile, indicative of "steepling convection" in the mushy-zone. The degree of radial macrosegregation increased with decreased growth speed. The Al- 19 wt. % Cu samples, grown under similar conditions as Al-7 wt. % Si, showed more radial macrosegregation because of more intense "stepling convection" caused by their one order of magnitude larger coefficient of solutal expansion. Positive macrosegregation right before, followed by negative macrosegregation right after an abrupt cross-section decrease (from 9.5 mm diameter to 3.2 mm diameter), were observed in both alloys; this is because of the combined effect of thermosolutal convection and area-change-driven shrinkage flow in the contraction region. The degree of macrosegregation was found to be higher in the Al- 19 wt. % Cu samples. Strong area-change-driven shrinkage flow changes the parabolic-shape radial macrosegregation in the larger diameter section before contraction to "S-shaped" profile. But in the smaller diameter section after the contraction very low degree of radial macrosegregation was found. The samples solidified through an abrupt cross-section increase (from 3.2 mm diameter to 9.5 mm diameter) showed negative macrosegregation right after the cross-section increase on the expansion platform. During the transition to steady-state after the expansion, radial macrosegregation profile in locations close to the expansion was found to be "S-shaped". This is attributed to the redistribution of solute-rich liquid ahead of the mushy-zone as it transitions from the narrow portion below into the large diameter portion above. Solutal remelting and fragmentation of dendrite branches, and floating of these fragmented pieces appear to be responsible for spurious grains formation in Al- 19 wt. % Cu samples after the cross-section expansion. New grain formation was not observed in Al-7 wt. % Si in similar locations; it is believed that this is due to the sinking of the fragmented dendrite branches in this alloy. Experimentally observed radial and axial macrosegregations agree well with the results obtained from the numerical simulations carried out by Dr. Mark Lauer and Prof. David R. Poirier at the University of Arizona. Trunk Diameter (TD) of dendritic array appears to respond more readily to the changing growth conditions as compared to the Nearest Neighbor Spacing (NNS) of primary dendrites.
Thakur, S C; Brandt, C; Light, A; Cui, L; Gosselin, J J; Tynan, G R
2014-11-01
We use multiple-tip Langmuir probes and fast imaging to unambiguously identify and study the dynamics of underlying instabilities during the controlled route to fully-developed plasma turbulence in a linear magnetized helicon plasma device. Langmuir probes measure radial profiles of electron temperature, plasma density and potential; from which we compute linear growth rates of instabilities, cross-phase between density and potential fluctuations, Reynold's stress, particle flux, vorticity, time-delay estimated velocity, etc. Fast imaging complements the 1D probe measurements by providing temporally and spatially resolved 2D details of plasma structures associated with the instabilities. We find that three radially separated plasma instabilities exist simultaneously. Density gradient driven resistive drift waves propagating in the electron diamagnetic drift direction separate the plasma into an edge region dominated by strong, velocity shear driven Kelvin-Helmholtz instabilities and a central core region which shows coherent Rayleigh-Taylor modes propagating in the ion diamagnetic drift direction. The simultaneous, complementary use of both probes and camera was crucial to identify the instabilities and understand the details of the very rich plasma dynamics.
Measurements of Impurity Particle Transport Associated with Drift-Wave Turbulence in MST
NASA Astrophysics Data System (ADS)
Nishizawa, Takashi; Nornberg, Mark; Boguski, John; Craig, Darren; den Hartog, Daniel; Pueschel, M. J.; Sarff, John; Terry, Paul; Williams, Zach; Xing, Zichuan
2017-10-01
Understanding and controlling impurity transport in a toroidal magnetized plasma is one of the critical issues that need to be addressed in order to achieve controlled fusion. Gyrokinetic modeling shows turbulence can drive impurity transport, but direct measurements of the turbulent flux have not been made. Particle balance is typically used to infer the presence of turbulent impurity transport. We report, for the first time in a toroidal plasma, direct measurements of turbulence-driven impurity transport. Trapped electron mode (TEM) turbulence appears in MST plasmas when MHD tearing fluctuations are suppressed. Impurity ion-Doppler spectroscopy is used to correlate impurity density and radial velocity fluctuations associated with TEM. Small Doppler shifts associated with the radial velocity fluctuations (rms 1km/s) are resolved with the use of a new linearized spectrum correlation analysis method, which improves the rejection of Poisson noise. The method employs frequency-domain correlation analysis to expose the fluctuation and transport spectrum. The C+ 2 impurity transport velocity driven by turbulence is found to be 48m/s (inward), which is sufficiently large to impact an impurity flux balance in MST improved-confinement plasmas. This work is supported by the US DOE.
Boundary effects in a quasi-two-dimensional driven granular fluid.
Smith, N D; Smith, M I
2017-12-01
The effect of a confining boundary on the spatial variations in granular temperature of a driven quasi-two-dimensional layer of particles is investigated experimentally. The radial drop in the relative granular temperature ΔT/T exhibits a maximum at intermediate particle numbers which coincides with a crossover from kinetic to collisional transport of energy. It is also found that at low particle numbers, the distributions of radial velocities are increasingly asymmetric as one approaches the boundary. The radial and tangential granular temperatures split, and in the tails of the radial velocity distribution there is a higher population of fast moving particles traveling away rather than towards the boundary.
Lopez; Hirsa
1998-10-01
Recent developments in nonlinear optical techniques for noninvasive probing of a surfactant influenced gas/liquid interface allow for the measurement of the surfactant surface concentration, c, and thus provide new opportunities for the direct determination of its intrinsic viscosities. Here, we present the theoretical foundations, based on the Boussinesq-Scriven surface model without the usual simplification of constant viscosities, for an experimental technique to directly measure the surface shear (µs) and dilatational (kappas) viscosities of a Newtonian interface as functions of the surfactant surface concentration. This ability to directly measure the surfactant concentration permits the use of a simple surface flow for the measurement of the surface viscosities. The requirements are that the interface must be nearly flat, and the flow steady, axisymmetric, and swirling; these flow conditions can be achieved in the deep-channel viscometer driven at relatively fast rates. The tangential stress balance on such an interface leads to two equations; the balance in the azimuthal direction involves only µs and its gradients, and the balance in the radial direction involves both µs and kappas and their gradients. By further exploiting recent developments in laser-based flow measuring techniques, the surface velocities and their gradients which appear in the two equations can be measured directly. The surface tension gradient, which appears in the radial balance equation, is incorporated from the equation of state for the surfactant system and direct measurements of the surfactant surface concentration distribution. The stress balance equations are then ordinary differential equations in the surface viscosities as functions of radial position, which can be readily integrated. Since c is measured as a function of radial position, we then have a direct measurement of µs and kappas as functions of c. Numerical computations of the Navier-Stokes equations are performed to determine the appropriate conditions to achieve the requisite secondary flow. Copyright 1998 Academic Press.
NASA Astrophysics Data System (ADS)
Ridenti, Marco Antonio; de Amorim, Jayr; Dal Pino, Arnaldo; Guerra, Vasco; Petrov, George
2018-01-01
In this work we compute the main features of a surface-wave-driven plasma in argon at atmospheric pressure in view of a better understanding of the contraction phenomenon. We include the detailed chemical kinetics dynamics of Ar and solve the mass conservation equations of the relevant neutral excited and charged species. The gas temperature radial profile is calculated by means of the thermal diffusion equation. The electric field radial profile is calculated directly from the numerical solution of the Maxwell equations assuming the surface wave to be propagating in the TM00 mode. The problem is considered to be radially symmetrical, the axial variations are neglected, and the equations are solved in a self-consistent fashion. We probe the model results considering three scenarios: (i) the electron energy distribution function (EEDF) is calculated by means of the Boltzmann equation; (ii) the EEDF is considered to be Maxwellian; (iii) the dissociative recombination is excluded from the chemical kinetics dynamics, but the nonequilibrium EEDF is preserved. From this analysis, the dissociative recombination is shown to be the leading mechanism in the constriction of surface-wave plasmas. The results are compared with mass spectrometry measurements of the radial density profile of the ions Ar+ and Ar2+. An explanation is proposed for the trends seen by Thomson scattering diagnostics that shows a substantial increase of electron temperature towards the plasma borders where the electron density is small.
ON THE CAUSE OF SOLAR-LIKE EQUATORWARD MIGRATION IN GLOBAL CONVECTIVE DYNAMO SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warnecke, Jörn; Käpylä, Petri J.; Käpylä, Maarit J.
2014-11-20
We present results from four convectively driven stellar dynamo simulations in spherical wedge geometry. All of these simulations produce cyclic and migrating mean magnetic fields. Through detailed comparisons, we show that the migration direction can be explained by an αΩ dynamo wave following the Parker-Yoshimura rule. We conclude that the equatorward migration in this and previous work is due to a positive (negative) α effect in the northern (southern) hemisphere and a negative radial gradient of Ω outside the inner tangent cylinder of these models. This idea is supported by a strong correlation between negative radial shear and toroidal fieldmore » strength in the region of equatorward propagation.« less
Design and parameter estimation of hybrid magnetic bearings for blood pump applications
NASA Astrophysics Data System (ADS)
Lim, Tau Meng; Zhang, Dongsheng; Yang, Juanjuan; Cheng, Shanbao; Low, Sze Hsien; Chua, Leok Poh; Wu, Xiaowei
2009-10-01
This paper discusses the design and parameter estimation of the dynamics characteristics of a high-speed hybrid magnetic bearings (HMBs) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet (PM) brushless and sensorless DC motor. It is levitated by two HMBs at both ends in five-degree-of-freedom with proportional-integral-derivative (PID) controllers; among which four radial directions are actively controlled and one axial direction is passively controlled. Test results show that the rotor can be stably supported to speeds of 14,000 rpm. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMBs system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air—in both the radial and axial directions. The radial stiffness of the HMBs is compared to the Ansoft's Maxwell 2D/3D finite element magnetostatic results. Experimental estimation showed that the dynamics characteristics of the HMBs system are dominated by the frequency-dependent stiffness coefficients. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamics properties under normal operating conditions with fluid.
Magnetic reconnection process in transient coaxial helicity injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebrahimi, F.; Hooper, E. B.; Sovinec, C. R.
The physics of magnetic reconnection and fast flux closure in transient coaxial helicity injection experiments in NSTX is examined using resistive MHD simulations. These simulations have been performed using the NIMROD code with fixed boundary flux (including NSTX poloidal coil currents) in the NSTX experimental geometry. Simulations show that an X point is formed in the injector region, followed by formation of closed flux surfaces within 0.5 ms after the driven injector voltage and injector current begin to rapidly decrease. As the injector voltage is turned off, the field lines tend to untwist in the toroidal direction and magnetic fieldmore » compression exerts a radial J × B force and generates a bi-directional radial E{sub toroidal}×B{sub poloidal} pinch flow to bring oppositely directed field lines closer together to reconnect. At sufficiently low magnetic diffusivity (high Lundquist number), and with a sufficiently narrow injector flux footprint width, the oppositely directed field lines have sufficient time to reconnect (before dissipating), leading to the formation of closed flux surfaces. The reconnection process is shown to have transient Sweet-Parker characteristics.« less
Data-driven RANS for simulations of large wind farms
NASA Astrophysics Data System (ADS)
Iungo, G. V.; Viola, F.; Ciri, U.; Rotea, M. A.; Leonardi, S.
2015-06-01
In the wind energy industry there is a growing need for real-time predictions of wind turbine wake flows in order to optimize power plant control and inhibit detrimental wake interactions. To this aim, a data-driven RANS approach is proposed in order to achieve very low computational costs and adequate accuracy through the data assimilation procedure. The RANS simulations are implemented with a classical Boussinesq hypothesis and a mixing length turbulence closure model, which is calibrated through the available data. High-fidelity LES simulations of a utility-scale wind turbine operating with different tip speed ratios are used as database. It is shown that the mixing length model for the RANS simulations can be calibrated accurately through the Reynolds stress of the axial and radial velocity components, and the gradient of the axial velocity in the radial direction. It is found that the mixing length is roughly invariant in the very near wake, then it increases linearly with the downstream distance in the diffusive region. The variation rate of the mixing length in the downstream direction is proposed as a criterion to detect the transition between near wake and transition region of a wind turbine wake. Finally, RANS simulations were performed with the calibrated mixing length model, and a good agreement with the LES simulations is observed.
Sun, Shuaishuai; Li, Zhongwen; Li, Zi-An; Xiao, Ruijuan; Zhang, Ming; Tian, Huanfang; Yang, Huaixin; Li, Jianqi
2018-04-26
Optical tuning and probing ultrafast structural response of nanomaterials driven by electronic excitation constitute a challenging but promising approach for understanding microscopic mechanisms and applications in microelectromechanical systems and optoelectrical devices. Here we use pulsed electron diffraction in a transmission electron microscope to investigate laser-induced tubular lattice dynamics of multi-walled carbon nanotubes (MWCNTs) with varying laser fluence and initial specimen temperature. Our photoexcitation experiments demonstrate cooperative and inverse collective atomic motions in intralayer and interlayer directions, whose strengths and rates depend on pump fluence. The electron-driven and thermally driven structural responses with opposite amplitudes cause a crossover between intralayer and interlayer directions. Our ab initio calculations support these findings and reveal that electrons excited from π to π* orbitals in a carbon tube weaken the intralayer bonds while strengthening the interlayer bonds along the radial direction. Moreover, by probing the structural dynamics of MWCNTs at initial temperatures of 300 and 100 K, we uncover the concomitance of thermal and nonthermal dynamical processes and their mutual influence in MWCNTs. Our results illustrate the nature of electron-driven nonthermal process and electron-phonon thermalization in the MWCNTs, and bear implications for the intricate energy conversion and transfer in materials at the nanoscale.
Electrostatic turbulence intermittence driven by biasing in Texas Helimak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toufen, D. L.; Institute of Physics, University of São Paulo, 05315-970 São Paulo, São Paulo; Pereira, F. A. C.
We investigate changes in the intermittent sequence of bursts in the electrostatic turbulence due to imposed positive bias voltage applied to control the plasma radial electric field in Texas Helimak [K. W. Gentle and H. He, Plasma Sci. Technol. 10, 284 (2008)]—a toroidal plasma device with a one-dimensional equilibrium, magnetic curvature, and shear. We identify the burst characteristics by analyzing ion saturation current fluctuations collected in a large set of Langmuir probes. The number of bursts increase with positive biasing, giving rise to a long tailed skewed turbulence probability distribution function. The burst shape does not change much with themore » applied bias voltage, while their vertical velocity increases monotonically. For high values of bias voltage, the bursts propagate mainly in the vertical direction which is perpendicular to the radial density gradient and the toroidal magnetic field. Moreover, in contrast with the bursts in tokamaks, the burst velocity agrees with the phase velocity of the overall turbulence in both vertical and radial directions. For a fixed bias voltage, the time interval between bursts and their amplitudes follows exponential distributions. Altogether, these burst characteristics indicate that their production can be modelled by a stochastic process.« less
Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion
Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi
2002-01-01
A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.
Observation of turbulent-driven shear flow in a cylindrical laboratory plasma device.
Holland, C; Yu, J H; James, A; Nishijima, D; Shimada, M; Taheri, N; Tynan, G R
2006-05-19
An azimuthally symmetric radially sheared plasma fluid flow is observed to spontaneously form in a cylindrical magnetized helicon plasma device with no external sources of momentum input. A turbulent momentum conservation analysis shows that this shear flow is sustained by the Reynolds stress generated by collisional drift turbulence in the device. The results provide direct experimental support for the basic theoretical picture of drift-wave-shear-flow interactions.
Towards multi-field D-brane inflation in a warped throat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Heng-Yu; Gong, Jinn-Ouk; Koyama, Kazuya
2010-11-01
We study the inflationary dynamics in a model of slow-roll inflation in warped throat. Inflation is realized by the motion of a D-brane along the radial direction of the throat, and at later stages instabilities develop in the angular directions. We closely investigate both the single field potential relevant for the slow-roll phase, and the full multi-field one including the angular modes which becomes important at later stages. We study the main features of the instability process, discussing its possible consequences and identifying the vacua towards which the angular modes are driven.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierwage, Andreas; Shinohara, Kouji
2016-04-15
The nonlinear interactions between shear Alfvén modes and tangentially injected beam ions in the 150–400 keV range are studied numerically in realistic geometry for a JT-60U tokamak scenario. In Paper I, which was reported in the companion paper, the recently developed orbit-based resonance analysis method was used to track the resonant frequency of fast ions during their nonlinear evolution subject to large magnetic and electric drifts. Here, that method is applied to map the wave-particle power transfer from the canonical guiding center phase space into the frequency-radius plane, where it can be directly compared with the evolution of the fluctuation spectramore » of fast-ion-driven modes. Using this technique, we study the nonlinear dynamics of strongly driven shear Alfvén modes with low toroidal mode numbers n = 1 and n = 3. In the n = 3 case, both chirping and convective amplification can be attributed to the mode following the resonant frequency of the radially displaced particles, i.e., the usual one-dimensional phase locking process. In the n = 1 case, a new chirping mechanism is found, which involves multiple dimensions, namely, wave-particle trapping in the radial direction and phase mixing across velocity coordinates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, S. K.; Chang, H. Y.
To elucidate plasma nonuniformity in high frequency capacitive discharges, Langmuir probe and B-dot probe measurements were carried out in the radial direction in a cylindrical capacitive discharge driven at 90 MHz with argon pressures of 50 and 400 mTorr. Through the measurements, a significant inductive electric field (i.e., time-varying magnetic field) was observed at the radial edge, and it was found that the inductive electric field creates strong plasma nonuniformity at high pressure operation. The plasma nonuniformity at high pressure operation is physically similar to the E-H mode transition typically observed in inductive discharges. This result agrees well with themore » theories of electromagnetic effects in large area and/or high frequency capacitive discharges.« less
Elastomeric load sharing device
NASA Technical Reports Server (NTRS)
Isabelle, Charles J. (Inventor); Kish, Jules G. (Inventor); Stone, Robert A. (Inventor)
1992-01-01
An elastomeric load sharing device, interposed in combination between a driven gear and a central drive shaft to facilitate balanced torque distribution in split power transmission systems, includes a cylindrical elastomeric bearing and a plurality of elastomeric bearing pads. The elastomeric bearing and bearing pads comprise one or more layers, each layer including an elastomer having a metal backing strip secured thereto. The elastomeric bearing is configured to have a high radial stiffness and a low torsional stiffness and is operative to radially center the driven gear and to minimize torque transfer through the elastomeric bearing. The bearing pads are configured to have a low radial and torsional stiffness and a high axial stiffness and are operative to compressively transmit torque from the driven gear to the drive shaft. The elastomeric load sharing device has spring rates that compensate for mechanical deviations in the gear train assembly to provide balanced torque distribution between complementary load paths of split power transmission systems.
Unsteady specific work and isentropic efficiency of a radial turbine driven by pulsed detonations
NASA Astrophysics Data System (ADS)
Rouser, Kurt P.
There has been longstanding government and industry interest in pressure-gain combustion for use in Brayton cycle based engines. Theoretically, pressure-gain combustion allows heat addition with reduced entropy loss. The pulsed detonation combustor (PDC) is a device that can provide such pressure-gain combustion and possibly replace typical steady deflagration combustors. The PDC is inherently unsteady, however, and comparisons with conventional steady deflagration combustors must be based upon time-integrated performance variables. In this study, the radial turbine of a Garrett automotive turbocharger was coupled directly to and driven, full admission, by a PDC in experiments fueled by hydrogen or ethylene. Data included pulsed cycle time histories of turbine inlet and exit temperature, pressure, velocity, mass flow, and enthalpy. The unsteady inlet flowfield showed momentary reverse flow, and thus unsteady accumulation and expulsion of mass and enthalpy within the device. The coupled turbine-driven compressor provided a time-resolved measure of turbine power. Peak power increased with PDC fill fraction, and duty cycle increased with PDC frequency. Cycle-averaged unsteady specific work increased with fill fraction and frequency. An unsteady turbine efficiency formulation is proposed, including heat transfer effects, enthalpy flux-weighted total pressure ratio, and ensemble averaging over multiple cycles. Turbine efficiency increased with frequency but was lower than the manufacturer reported conventional steady turbine efficiency.
NASA Astrophysics Data System (ADS)
Perez, J. C.; Chandran, B. D. G.
2017-12-01
In this work we present recent results from high-resolution direct numerical simulations and a phenomenological model that describes the radial evolution of reflection-driven Alfven Wave turbulence in the solar atmosphere and the inner solar wind. The simulations are performed inside a narrow magnetic flux tube that models a coronal hole extending from the solar surface through the chromosphere and into the solar corona to approximately 21 solar radii. The simulations include prescribed empirical profiles that account for the inhomogeneities in density, background flow, and the background magnetic field present in coronal holes. Alfven waves are injected into the solar corona by imposing random, time-dependent velocity and magnetic field fluctuations at the photosphere. The phenomenological model incorporates three important features observed in the simulations: dynamic alignment, weak/strong nonlinear AW-AW interactions, and that the outward-propagating AWs launched by the Sun split into two populations with different characteristic frequencies. Model and simulations are in good agreement and show that when the key physical parameters are chosen within observational constraints, reflection-driven Alfven turbulence is a plausible mechanism for the heating and acceleration of the fast solar wind. By flying a virtual Parker Solar Probe (PSP) through the simulations, we will also establish comparisons between the model and simulations with the kind of single-point measurements that PSP will provide.
The impact of vorticity waves on the shock dynamics in core-collapse supernovae
NASA Astrophysics Data System (ADS)
Huete, César; Abdikamalov, Ernazar; Radice, David
2018-04-01
Convective perturbations arising from nuclear shell burning can play an important role in propelling neutrino-driven core-collapse supernova explosions. In this work, we analyse the impact of vorticity waves on the shock dynamics, and subsequently on the post-shock flow, using the solution of the linear hydrodynamics equations. As a result of the interaction with the shock wave, vorticity waves increase their kinetic energy, and a new set of entropic and acoustic waves is deposited in the post-shock region. These perturbations interact with the neutrino-driven turbulent convection that develops in that region. Although both vorticity and acoustic waves inject non-radial motion into the gain region, the contribution of the acoustic waves is found to be negligibly small in comparison to that of the vorticity waves. On the other hand, entropy waves become buoyant and trigger more convection. Using the concept of critical neutrino luminosity, we assess the impact of these modes on the explosion conditions. While the direct injection of non-radial motion reduces the critical neutrino luminosity by ˜ 12 per cent for typical problem parameters, the buoyancy-driven convection triggered by entropy waves reduces the critical luminosity by ˜ 17-24 per cent, which approximately agrees with the results of three-dimensional neutrino-hydrodynamics simulations. Finally, we discuss the limits of validity of the assumptions employed.
Ion heating and characteristics of ST plasma used by double-pulsing CHI on HIST
NASA Astrophysics Data System (ADS)
Hanao, Takafumi; Hirono, Hidetoshi; Hyobu, Takahiro; Ito, Kengo; Matsumoto, Keisuke; Nakayama, Takashi; Oki, Nobuharu; Kikuchi, Yusuke; Fukumoto, Naoyuki; Nagata, Masayoshi
2013-10-01
Multi-pulsing Coaxial Helicity Injection (M-CHI) is an efficient current drive and sustainment method used in spheromak and spherical torus (ST). We have observed plasma current/flux amplification by double pulsing CHI. Poloidal ion temperature measured by Ion Doppler Spectrometer (IDS) has a peak at plasma core region. In this region, radial electric field has a negative peak. At more inboard side that is called separatrix between closed flux region and inner open flux region, poloidal flow has a large shear and radial electric field changes the polarity. After the second CHI pulse, we observed sharp and rapid ion heating at plasma core region and separatrix. In this region, the poloidal ion temperature is selective heating because electron temperature is almost uniform. At this time, flow shear become larger and radial electric field is amplified at separatorix. These effects produce direct heating of ion through the viscous flow damping. Furthermore, we observed decrease of electron density at separatrix. Decreased density makes Hall dynamo electric field as two-fluid effect. When the ion temperature is increasing, dynamo electric field is observed at separatrix. It may have influence with the ion heating. We will discuss characteristic of double pulsing CHI driven ST plasmas and correlation of direct heating of ion with dynamo electric field and any other parameters.
Performance of Blowdown Turbine driven by Exhaust Gas of Nine-Cylinder Radial Engine
1944-12-01
blade speed to mean jet speed FIQUBE 6.—Variation of mean turbine efficiency with ratio of blade speed to moan Jot speed. Engine speed, 2000 rpm; full...conventional turbo - supercharger axe used in series, the blowdown turbine may be geared to the engine . Aircraft engines are operated at high speed for...guide vanes in blowdown-turblno noule box. PERFORMANCE OF BLOWDOWN TURBINE DRIVEN BT EXHAUST GAS OF RADIAL ENGINE 245 (6) Diaphragm
Zonal flow dynamics and control of turbulent transport in stellarators.
Xanthopoulos, P; Mischchenko, A; Helander, P; Sugama, H; Watanabe, T-H
2011-12-09
The relation between magnetic geometry and the level of ion-temperature-gradient (ITG) driven turbulence in stellarators is explored through gyrokinetic theory and direct linear and nonlinear simulations. It is found that the ITG radial heat flux is sensitive to details of the magnetic configuration that can be understood in terms of the linear behavior of zonal flows. The results throw light on the question of how the optimization of neoclassical confinement is related to the reduction of turbulence.
NASA Astrophysics Data System (ADS)
Zhu, W.; Wang, R.
2017-08-01
An alternating current atmospheric pressure plasma jet is generated with noble gas or noble gas/oxygen admixture as working gas. A "core plasma filament" is observed at the center of the dielectric tube and extends to the plasma jet at higher peak-to-peak voltages. This type of plasma jet is believed to be of the same nature with the reported plasma bullet driven by pulsed DC power sources. Double current probes are used to assess the speed of the plasma bullet and show that the speed is around 104-105 m/s. The time dependence of the downstream bullet speed is attributed to the gas heating and in turn the increase of the reduced electric field E/N. Optical emission spectra show the dependence of helium and oxygen emission intensities on the concentration of oxygen additive in the carrier gas, with peak values found at 0.5% O2. Multiple radial jets are realized on dielectric tubes of different sizes. As a case study, one of these multi-jet devices is used to treat B. aureus on the inner surface of a plastic beaker and is shown to be more effective than a single jet.
Effect of fatigue/ageing on the lithium distribution in cylinder-type Li-ion batteries
NASA Astrophysics Data System (ADS)
Mühlbauer, M. J.; Dolotko, O.; Hofmann, M.; Ehrenberg, H.; Senyshyn, A.
2017-04-01
The lithium concentration in the graphite anode of fatigued (cycled 1000 times at 25 °C) Li-ion cell of 18650-type has been probed non-destructively by spatially resolved neutron diffraction. The amount x of Li in LixC6 has been determined in a central plane of a cylinder-type Li-ion cell. A radial mesh with a gauge volume of 2 × 2 × 20 mm3 was used. Besides the evidently lower lithiation grade, caused by a lack of free movable lithium and a loss of electrolyte, a development of fatigue-driven spatial lithium inhomogeneities has been observed in radial direction. Observed changes have been discussed in light of their correlations to an increase of the internal cell resistance and to a change of the electrolyte concentration.
Nonlinear cross-field coupling on the route to broadband turbulence
NASA Astrophysics Data System (ADS)
Brandt, Christian; Thakur, Saikat C.; Cui, Lang; Gosselin, Jordan J.; Negrete, Jose, Jr.; Holland, Chris; Tynan, George R.
2013-10-01
In the linear magnetized plasma device CSDX (Controlled Shear De-correlation eXperiment) drift interchange modes are studied coexisting on top of a weak turbulence driven azimuthally symmetric, radially sheared plasma flow. In helicon discharges (helicon antenna diameter 15 cm) with increasing magnetic field (B <= 0 . 24 T) the system can be driven to fully developed broadband turbulence. Fast imaging using a refractive telescope setup is applied to study the dynamics in the azimuthal-radial cross-section. The image data is supported by Langmuir probe measurements. In the present study we examine the development of nonlinear transfer as the fully developed turbulence emerges. Nonlinear cross-field coupling between eigenmodes at different radial positions is investigated using Fourier decomposition of azimuthal eigenmodes. The coupling strength between waves at different radial positions is inferred to radial profiles and cross-field transport between adjacent magnetic flux surfaces. Nonlinear effects like synchronization, phase slippages, phase pulling and periodic pulling are observed. The effects of mode coupling and the stability of modes is compared to the dynamics of a coupled chain of Kuramoto oscillators.
Observation of improved and degraded confinement with driven flow on the LAPD
NASA Astrophysics Data System (ADS)
Schaffner, David
2012-10-01
External continuous control over azimuthal flow and flow shear has been achieved in a linear plasma device for the first time allowing for a careful study of the effect of flow shear on pressure-gradient-driven turbulence and transport in the edge of the Large Plasma Device (LAPD). The flow is controlled using biasable iris-like limiters situated axially between the cathode source and main plasma chamber. LAPD rotates spontaneously in the ion diamagnetic direction (IDD); positive limiter bias first reduces, then minimizes (producing a near-zero shear state), and finally reverses the flow into the electron diamagnetic direction (EDD). Degradation of particle confinement is observed in the minimum shearing state and reduction in turbulent particle flux is observed with increasing shearing in both flow directions. Near-complete suppression of turbulent particle flux is observed for shearing rates comparable to the turbulent autocorrelation rate measured in the minimum shear state. Turbulent flux suppression is dominated by amplitude reduction in low-frequency (>10kHz) density fluctuations and a reduction in the radial correlation length. An increase in fluctuations for the highest shearing states is observed with the emergence of a coherent mode which does not lead to net particle transport. Magnetic field is varied in order to explore whether and how field effects transport modification. Calculations of transport equations are used to predict density profiles given source and temperature profiles and can show the level of transport predicted to be necessary in order to produce the experimental density profiles observed. Finally, the variations of density fluctuations and radial correlation length are fit well with power-laws and compare favorably to simple models of shear suppression of transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Suhas; Wang, Ziwen; Huang, Xiaopeng
Due to the favorable operating power, endurance, speed, and density., transition-metal-oxide memristors, or resistive random-access memory (RRAM) switches, are under intense development for storage-class memory. Their commercial deployment critically depends on predictive compact models based on understanding nanoscale physiocochemical forces, which remains elusive and controversial owing to the difficulties in directly observing atomic motions during resistive switching, Here, using scanning transmission synchrotron X-ray spectromicroscopy to study in situ switching of hafnium oxide memristors, we directly observed the formation of a localized oxygen-deficiency-derived conductive channel surrounded by a low-conductivity ring of excess oxygen. Subsequent thermal annealing homogenized the segregated oxygen, resettingmore » the cells toward their as-grown resistance state. We show that the formation and dissolution of the conduction channel are successfully modeled by radial thermophoresis and Fick diffusion of oxygen atoms driven by Joule heating. This confirmation and quantification of two opposing nanoscale radial forces that affect bipolar memristor switching are important components for any future physics-based compact model for the electronic switching of these devices.« less
Sheared-flow induced confinement transition in a linear magnetized plasma
NASA Astrophysics Data System (ADS)
Zhou, S.; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Friedman, B.; Schaffner, D.
2012-01-01
A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (δn /n~eδφ/kTe~0.5) are observed at the plasma edge, accompanied by a large density gradient (Ln=|∇lnn |-1~2cm) and shearing rate (γ ~300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (Vbias) on the obstacle and the axial magnetic field (Bz) strength. In cases with low Vbias and large Bz, improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by E ×B drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller Bz, large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m =1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshikawa, Jun, E-mail: jun.yoshikawa@tel.com; Susa, Yoshio; Ventzek, Peter L. G.
The radial line slot antenna plasma source is a type of surface wave plasma source driven by a planar slot antenna. Microwave power is transmitted through a slot antenna structure and dielectric window to a plasma characterized by a generation zone adjacent to the window and a diffusion zone that contacts a substrate. The diffusion zone is characterized by a very low electron temperature. This renders the source useful for soft etch applications and thin film deposition processes requiring low ion energy. Another property of the diffusion zone is that the plasma density tends to decrease from the axis tomore » the walls under the action of ambipolar diffusion at distances far from where the plasma is generated. A previous simulation study [Yoshikawa and. Ventzek, J. Vac. Sci. Technol. A 31, 031306 (2013)] predicted that the anisotropy in transport parameters due to weak static magnetic fields less than 50 G could be leveraged to manipulate the plasma profile in the radial direction. These simulations motivated experimental tests in which weak magnetic fields were applied to a radial line slot antenna source. Plasma absorption probe measurements of electron density and etch rate showed that the magnetic fields remote from the wafer were able to manipulate both parameters. A summary of these results is presented in this paper. Argon plasma simulation trends are compared with experimental plasma and etch rate measurements. A test of the impact of magnetic fields on charge up damage showed no perceptible negative effect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mencuccini, Maurizio; Salmon, Yann; Mitchell, Patrick
Substantial uncertainty surrounds our knowledge of tree stem growth, with some of the most basic questions, such as when stem radial growth occurs through the daily cycle, still unanswered. Here, we employed high-resolution point dendrometers, sap flow sensors, and developed theory and statistical approaches, to devise a novel method separating irreversible radial growth from elastic tension-driven and elastic osmotically driven changes in bark water content. We tested this method using data from five case study species. Experimental manipulations, namely a field irrigation experiment on Scots pine and a stem girdling experiment on red forest gum trees, were used to validatemore » the theory. Time courses of stem radial growth following irrigation and stem girdling were consistent with a-priori predictions. Patterns of stem radial growth varied across case studies, with growth occurring during the day and/or night, consistent with the available literature. Importantly, our approach provides a valuable alternative to existing methods, as it can be approximated by a simple empirical interpolation routine that derives irreversible radial growth using standard regression techniques. In conclusion, our novel method provides an improved understanding of the relative source–sink carbon dynamics of tree stems at a sub-daily time scale.« less
Mencuccini, Maurizio; Salmon, Yann; Mitchell, Patrick; Hölttä, Teemu; Choat, Brendan; Meir, Patrick; O'Grady, Anthony; Tissue, David; Zweifel, Roman; Sevanto, Sanna; Pfautsch, Sebastian
2017-02-01
Substantial uncertainty surrounds our knowledge of tree stem growth, with some of the most basic questions, such as when stem radial growth occurs through the daily cycle, still unanswered. We employed high-resolution point dendrometers, sap flow sensors, and developed theory and statistical approaches, to devise a novel method separating irreversible radial growth from elastic tension-driven and elastic osmotically driven changes in bark water content. We tested this method using data from five case study species. Experimental manipulations, namely a field irrigation experiment on Scots pine and a stem girdling experiment on red forest gum trees, were used to validate the theory. Time courses of stem radial growth following irrigation and stem girdling were consistent with a-priori predictions. Patterns of stem radial growth varied across case studies, with growth occurring during the day and/or night, consistent with the available literature. Importantly, our approach provides a valuable alternative to existing methods, as it can be approximated by a simple empirical interpolation routine that derives irreversible radial growth using standard regression techniques. Our novel method provides an improved understanding of the relative source-sink carbon dynamics of tree stems at a sub-daily time scale. © 2016 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.
Mencuccini, Maurizio; Salmon, Yann; Mitchell, Patrick; ...
2017-11-12
Substantial uncertainty surrounds our knowledge of tree stem growth, with some of the most basic questions, such as when stem radial growth occurs through the daily cycle, still unanswered. Here, we employed high-resolution point dendrometers, sap flow sensors, and developed theory and statistical approaches, to devise a novel method separating irreversible radial growth from elastic tension-driven and elastic osmotically driven changes in bark water content. We tested this method using data from five case study species. Experimental manipulations, namely a field irrigation experiment on Scots pine and a stem girdling experiment on red forest gum trees, were used to validatemore » the theory. Time courses of stem radial growth following irrigation and stem girdling were consistent with a-priori predictions. Patterns of stem radial growth varied across case studies, with growth occurring during the day and/or night, consistent with the available literature. Importantly, our approach provides a valuable alternative to existing methods, as it can be approximated by a simple empirical interpolation routine that derives irreversible radial growth using standard regression techniques. In conclusion, our novel method provides an improved understanding of the relative source–sink carbon dynamics of tree stems at a sub-daily time scale.« less
NASA Astrophysics Data System (ADS)
Wang, Xiaojing; Yu, Qingquan; Zhang, Xiaodong; Zhang, Yang; Zhu, Sizheng; Wang, Xiaoguang; Wu, Bin
2018-04-01
Numerical studies on the stabilization of neoclassical tearing modes (NTMs) by electron cyclotron current drive (ECCD) have been carried out based on reduced MHD equations, focusing on the amount of the required driven current for mode stabilization and the comparison with analytical results. The dependence of the minimum driven current required for NTM stabilization on some parameters, including the bootstrap current density, radial width of the driven current, radial deviation of the driven current from the resonant surface, and the island width when applying ECCD, are studied. By fitting the numerical results, simple expressions for these dependences are obtained. Analysis based on the modified Rutherford equation (MRE) has also been carried out, and the corresponding results have the same trend as numerical ones, while a quantitative difference between them exists. This difference becomes smaller when the applied radio frequency (rf) current is smaller.
McKeown, Mark H.; Beason, Steven C.
1991-01-01
The radial arm strike rail assembly is a system for measurement of bearings, directions, and stereophotography for geologic mapping, particularly where magnetic compasses are not appropriate. The radial arm, pivoting around a shaft axis, provides a reference direction determination for geologic mapping and bearing or direction determination. The centerable and levelable pedestal provide a base for the radial arm strike rail and the telescoping camera pedestal. The telescoping feature of the radial arm strike rail allows positioning the end of the rail for strike direction or bearing measurement with a goniometer.
Interpretations of the impact of cross-field drifts on divertor flows in DIII-D with UEDGE
Jaervinen, Aaro E.; Allen, Steve L.; Groth, Mathias; ...
2017-01-27
Simulations using the multi-fluid code UEDGE indicates that, in low confinement (Lmode) plasmas in DIII-D, recycling driven flows dominate poloidal particle flows in the divertor, whereas E×B drift flows dominate the radial particle flows. In contrast, in high confinement (H-mode) conditions E×B drift flows dominate both poloidal and radial particle flows in the divertor. UEDGE indicates that the toroidal C 2+ flow velocities in the divertor plasma are entrained within 30% to the background deuterium flow in both Land H-mode plasmas in the plasma region where the CIII 465 nm emission is measured. Therefore, UEDGE indicates that the Carbon Dopplermore » Coherence Imaging System (CIS), measuring the toroidal velocity of the C 2+ ions, can provide insight to the deuterium flows in the divertor. Parallel-to-B velocity dominates the toroidal divertor flow; direct drift impact being less than 1%. Toroidal divertor flow is predicted to reverse when the magnetic field is reversed. This is explained by the parallel-B flow towards the nearest divertor plate corresponding to opposite toroidal directions in opposite toroidal field configurations. Due to strong poloidal E×B flows in H-mode, net poloidal particle transport can be in opposite direction than the poloidal component of the parallel-B plasma flow.« less
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.
1985-01-01
A numerical study of the steady, axisymmetric flow in a heated, rotating spherical shell is conducted to model the Atmospheric General Circulation Experiment (AGCE) proposed to run aboard a later Shuttle mission. The AGCE will consist of concentric rotating spheres confining a dielectric fluid. By imposing a dielectric field across the fluid a radial body force will be created. The numerical solution technique is based on the incompressible Navier-Stokes equations. In the method a pseudospectral technique is used in the latitudinal direction, and a second-order accurate finite difference scheme discretizes time and radial derivatives. This paper discusses the development and performance of this numerical scheme for the AGCE which has been modeled in the past only by pure FD formulations. In addition, previous models have not investigated the effect of using a dielectric force to simulate terrestrial gravity. The effect of this dielectric force on the flow field is investigated as well as a parameter study of varying rotation rates and boundary temperatures. Among the effects noted are the production of larger velocities and enhanced reversals of radial temperature gradients for a body force generated by the electric field.
NASA Technical Reports Server (NTRS)
Chang, C. J.; Brown, R. A.
1983-01-01
The roles of natural convection in the melt and the shape of the melt/solid interface on radial dopant segregation are analyzed for a prototype of vertical Bridgman crystal growth system by finite element methods that solve simultaneously for the velocity field in the melt, the shape of the solidification isotherm, and the temperature distribution in both phases. Results are presented for crystal and melt with thermophysical properties similar to those of gallium-doped germanium in Bridgman configurations with melt below (thermally destabilizing) and above (stabilizing) the crystal. Steady axisymmetric flow are classified according to Rayleigh number as either being nearly the growth velocity, having a weak cellular structure or having large amplitude cellular convention. The flows in the two Bridgman configurations are driven by different temperature gradients and are in opposite directions. Finite element calculations for the transport of a dilute dopant by these flow fields reveal radial segregation levels as large as sixty percent of the mean concentration. Segregation is found most severe at an intermediate value of Rayleigh number above which the dopant distribution along the interface levels as the intensity of the flow increases.
NASA Technical Reports Server (NTRS)
Thomsen, M. F.; Goertz, C. K.; Van Allen, J. A.
1977-01-01
In a previous paper (Thomsen et al., 1977), a technique was proposed for estimating the radial diffusion coefficient (n) in the inner magnetosphere of Jupiter from the observations of the sweeping effect of the inner Jovian satellites on the fluxes of the energetic charged particles. The present paper extends this technique to permit the unique identification of the parameters D sub O and n, where the diffusion coefficient is assumed to be of the form D = D sub O L to the nth. The derived value of D sub O depends directly on assumptions regarding the nature and efficiency of the loss mechanism operating on the particles, while the value of n depends only on the assumed width of the loss region. The extended technique is applied to the University of Iowa Pioneer 11 proton data, leading to values of n of about O and D(6) of about 3 x 10 to the -8th (R sub J)-squared/sec, when satellite sweepup losses are assumed to be the only loss operating on the protons. The small value of n is strong evidence that the radial diffusion is driven by ionospheric winds.
Modifications to intermittent turbulent structures by sheared flow in LAPD
NASA Astrophysics Data System (ADS)
Rossi, Giovanni; Schaffner, David; Carter, Troy; Guice, Danny; Bengtson, Roger
2012-10-01
Turbulence in the edge of the Large Plasma Device is generally observed to be intermittent with the production of filamentary structures. Density-enhancement events (called ``blobs'') are localized to the region radially outside the edge of the cathode source while density-depletion events (called ``holes'') are localized to the region radially inward. A flow-shear layer is also observed to be localized to this same spatial region. Control over the edge flow and shear in LAPD is now possible using a biasable limiter. Edge intermittency is observed to be strongly affected by variations in the edge flow, with intermittency (as measured by skewness of the fluctuation amplitude PDF) increasing with edge flow (in either direction) and reaching a minimum when spontaneous edge flow is zeroed-out using biasing. This trend is counter to the observed changes in turbulent particle flux, which peaks at low flow/shear. Two-dimensional cross-conditional averaging confirms the blobs to be detached filamentary structures with a clear dipolar potential structure and a geometry also dependent on the magnitude of sheared flow. More detailed measurements are made to connect the occurrence of these blobs to observed flow-driven coherent modes and their contribution to radial particle flux.
Pal, Siladitya; Tsamis, Alkiviadis; Pasta, Salvatore; D'Amore, Antonio; Gleason, Thomas G.; Vorp, David A.; Maiti, Spandan
2014-01-01
Aortic dissection (AoD) is a common condition that often leads to life-threatening cardiovaular emergency. From a biomechanics viewpoint, AoD involves failure of load-bearing microstructural components of the aortic wall, mainly elastin and collagen fibers. Delamination strength of the aortic wall depends on the load-bearing capacity and local micro-architecture of these fibers, which may vary with age, disease and aortic location. Therefore, quantifying the role of fiber micro-architecture on the delamination strength of the aortic wall may lead to improved understanding of AoD. We present an experimentally-driven modeling paradigm towards this goal. Specifically, we utilize collagen fiber microarchitecture, obtained in a parallel study from multi-photon microopy, in a predictive mechanistic framework to characterize the delamination strength. We then validate our model against peel test experiments on human aortic strips and utilize the model to predict the delamination strength of separate aortic strips and compare with experimental findings. We observe that the number density and failure energy of the radially-running collagen fibers control the peel strength. Furthermore, our model suggests that the lower delamination strength previously found for the circumferential direction in human aorta is related to a lower number density of radially-running collagen fibers in that direction. Our model sets the stage for an expanded future study that could predict AoD propagation in patient-specific aortic geometries and better understand factors that may influence propensity for occurrence. PMID:24484644
Spontaneous Generation of a Sheared Plasma Rotation in a Field-Reversed θ-Pinch Discharge
NASA Astrophysics Data System (ADS)
Omelchenko, Y. A.; Karimabadi, H.
2012-08-01
By conducting two-dimensional hybrid simulations of an infinitely long field-reversed θ-pinch discharge we discover a new type of plasma rotation, which rapidly develops at the plasma edge in the ion diamagnetic direction due to the self-consistent generation of a Hall-driven radial electric field. This effect is different from the previously identified end-shorting and particle-loss mechanisms. We also demonstrate flutelike perturbations frequently inferred in experiments and show that in the absence of axial contraction effects they may quickly alter the toroidal symmetry of the plasma.
NASA Astrophysics Data System (ADS)
Murakami, S.; Itoh, K.; Zheng, L. J.; Van Dam, J. W.; Bonoli, P.; Rice, J. E.; Fiore, C. L.; Gao, C.; Fukuyama, A.
2016-01-01
The averaged toroidal flow of energetic minority ions during ICRF (ion cyclotron range of frequencies) heating is investigated in the Alcator C-Mod plasma by applying the GNET code, which can solve the drift kinetic equation with complicated orbits of accelerated energetic particles. It is found that a co-directional toroidal flow of the minority ions is generated in the region outside of the resonance location, and that the toroidal velocity reaches more than 40% of the central ion thermal velocity (Vtor ˜ 300 km/s with PICRF ˜ 2 MW). When we shift the resonance location to the outside of |r /a |˜0.5 , the toroidal flow immediately inside of the resonance location is reduced to 0 or changes to the opposite direction, and the toroidal velocity shear is enhanced at r/a ˜ 0.5. A radial diffusion equation for toroidal flow is solved by assuming a torque profile for the minority ion mean flow, and good agreements with experimental radial toroidal flow profiles are obtained. This suggests that the ICRF driven minority ion flow is related to the experimentally observed toroidal rotation during ICRF heating in the Alcator C-Mod plasma.
NASA Astrophysics Data System (ADS)
Tu, Weichao; Cunningham, G. S.; Chen, Y.; Henderson, M. G.; Camporeale, E.; Reeves, G. D.
2013-10-01
a response to the Geospace Environment Modeling (GEM) "Global Radiation Belt Modeling Challenge," a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle-momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower-band, and upper-band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data-driven boundary condition at Lmax = 5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at Lmax = 5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data-driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required.
A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence
NASA Astrophysics Data System (ADS)
Mavridis, M.; Isliker, H.; Vlahos, L.; Görler, T.; Jenko, F.; Told, D.
2014-10-01
An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties of radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.
A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mavridis, M.; Isliker, H.; Vlahos, L.
2014-10-15
An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties ofmore » radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.« less
Unique capabilities for ICF and HEDP research with the KrF laser
NASA Astrophysics Data System (ADS)
Obenschain, Stephen; Bates, Jason; Chan, Lop-Yung; Karasik, Max; Kehne, David; Sethian, John; Serlin, Victor; Weaver, James; Oh, Jaechul; Jenkins, Bruce; Lehmberg, Robert; Hegeler, Frank; Terrell, Stephen; Aglitskiy, Yefim; Schmitt, Andrew
2014-10-01
The krypton-fluoride (KrF) laser provides the shortest wavelength, broadest bandwidth and most uniform target illumination of all developed high-energy lasers. For directly driven targets these characteristics result in higher and more uniform ablation pressures as well as higher intensity thresholds for laser-plasma instability. The ISI beam smoothing scheme implemented on the NRL Nike KrF facility allows easy implementation of focal zooming where the laser radial profile is varied during the laser pulse. The capability for near continuous zooming with KrF would be valuable towards minimizing the effects of cross beam energy transport (CBET) in directly driven capsule implosions. The broad bandwidth ISI beam smoothing that is utilized with the Nike KrF facility may further inhibit certain laser plasma instability. In this presentation we will summarize our current understanding of laser target interaction with the KrF laser and the benefits it provides for ICF and certain HEDP experiments. Status and progress in high-energy KrF laser technology will also be discussed. Work supported by the Deparment of Energy, NNSA.
Melanophores for microtubule dynamics and motility assays.
Ikeda, Kazuho; Semenova, Irina; Zhapparova, Olga; Rodionov, Vladimir
2010-01-01
Microtubules (MTs) are cytoskeletal structures essential for cell division, locomotion, intracellular transport, and spatial organization of the cytoplasm. In most interphase cells, MTs are organized into a polarized radial array with minus-ends clustered at the centrosome and plus-ends extended to the cell periphery. This array directs transport of organelles driven by MT-based motor proteins that specifically move either to plus- or to minus-ends. Along with using MTs as tracks for cargo, motor proteins can organize MTs into a radial array in the absence of the centrosome. Transport of organelles and motor-dependent radial organization of MTs require MT dynamics, continuous addition and loss of tubulin subunits at minus- and plus-ends. A unique experimental system for studying the role of MT dynamics in these processes is the melanophore, which provides a useful tool for imaging of both dynamic MTs and moving membrane organelles. Melanophores are filled with pigment granules that are synchronously transported by motor proteins in response to hormonal stimuli. The flat shape of the cell and the radial organization of MTs facilitate imaging of dynamic MT plus-ends and monitoring of their interaction with membrane organelles. Microsurgically produced cytoplasmic fragments of melanophores are used to study the centrosome-independent rearrangement of MTs into a radial array. Here we describe the experimental approaches to study the role of MT dynamics in intracellular transport and centrosome-independent MT organization in melanophores. We focus on the preparation of cell cultures, microsurgery and microinjection, fluorescence labeling, and live imaging of MTs. 2010 Elsevier Inc. All rights reserved.
ITER CS Intermodule Support Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myatt, R.; Freudenberg, Kevin D
2011-01-01
With five independently driven, bi-polarity power supplies, the modules of the ITER central solenoid (CS) can be energized in aligned or opposing field directions. This sets up the possibility for repelling modules, which indeed occurs, particularly between CS2L and CS3L around the End of Burn (EOB) time point. Light interface compression between these two modules at EOB and wide variations in these coil currents throughout the pulse produce a tendency for relative motion or slip. Ideally, the slip is purely radial as the modules breathe without any accumulative translational motion. In reality, however, asymmetries such as nonuniformity in intermodule friction,more » lateral loads from a plasma Vertical Disruption Event (VDE), magnetic forces from manufacturing and assembly tolerances, and earthquakes can all contribute to a combination of radial and lateral module motion. This paper presents 2D and 3D, nonlinear, ANSYS models which simulate these various asymmetries and determine the lateral forces which must be carried by the intermodule structure. Summing all of these asymmetric force contributions leads to a design-basis lateral load which is used in the design of various support concepts: the CS-CDR centering rings and a variation, the 2001 FDR baseline radial keys, and interlocking castles structures. Radial key-type intermodule structure interface slip and stresses are tracked through multiple 15 MA scenario current pulses to demonstrate stable motion following the first few cycles. Detractions and benefits of each candidate intermodule structure are discussed, leading to the simplest and most robust configuration which meets the design requirements: match-drilled radial holes and pin-shaped keys.« less
NASA Astrophysics Data System (ADS)
Eddy, C. L.; Ekstrom, G.; Nettles, M.; Gaherty, J. B.
2017-12-01
We present a three-dimensional model of the anisotropic velocity structure of the Pacific lithosphere and asthenosphere. The presence of seismic anisotropy in the oceanic upper mantle provides information about the geometry of flow in the mantle, the nature of the lithosphere-asthenosphere boundary, and the possible presence of partial melt in the asthenosphere. Our dataset consists of fundamental-mode dispersion for Rayleigh and Love waves measured between 25-250 s with paths crossing the Pacific Ocean. We invert the phase anomaly measurements directly for three-dimensional anisotropic velocity structure. Our models are radially anisotropic and include the full set of elastic parameters that describe azimuthal variations in velocity (e.g. Gc, Gs). We investigate the age dependence of seismic velocity and radial anisotropy and find that there are significant deviations from the velocities predicted by a simple oceanic plate cooling model. We observe strong radial anisotropy with vsh > vsv in the asthenosphere of the central Pacific. We investigate the radial anisotropy in the shallow lithosphere, where previous models have reported conflicting results. There is a contrast in both upper-mantle isotropic velocities and radial anisotropy between the Pacific and Nazca plates, across the East Pacific Rise. We also investigate lateral variations in azimuthal anisotropy throughout the Pacific upper mantle and find that there are large areas over which the anisotropy fast axis does not align with absolute plate motion, suggesting the presence of small-scale convection or pressure-driven flow beneath the base of the oceanic plate.
Global simulation of edge pedestal micro-instabilities
NASA Astrophysics Data System (ADS)
Wan, Weigang; Parker, Scott; Chen, Yang
2011-10-01
We study micro turbulence of the tokamak edge pedestal with global gyrokinetic particle simulations. The simulation code GEM is an electromagnetic δf code. Two sets of DIII-D experimental profiles, shot #131997 and shot #136051 are used. The dominant instabilities appear to be two kinds of modes both propagating in the electron diamagnetic direction, with comparable linear growth rates. The low n mode is at the Alfven frequency range and driven by density and ion temperature gradients. The high n mode is driven by electron temperature gradient and has a low real frequency. A β scan shows that the low n mode is electromagnetic. Frequency analysis shows that the high n mode is sometimes mixed with an ion instability. Experimental radial electric field is applied and its effects studied. We will also show some preliminary nonlinear results. We thank R. Groebner, P. Snyder and Y. Zheng for providing experimental profiles and helpful discussions.
Radial Diffusion study of the 1 June 2013 CME event using MHD simulations.
NASA Astrophysics Data System (ADS)
Patel, M.; Hudson, M.; Wiltberger, M. J.; Li, Z.; Boyd, A. J.
2016-12-01
The June 1, 2013 storm was a CME-shock driven geomagnetic storm (Dst = -119 nT) that caused a dropout affecting all radiation belt electron energies measured by the Energetic Particle, Composition and Thermal Plasma Suite (ECT) instrument on Van Allen Probes at higher L-shells following dynamic pressure enhancement in the solar wind. Lower energies (up to about 700 keV) were enhanced by the storm while MeV electrons were depleted throughout the belt. We focus on depletion through radial diffusion caused by the enhanced ULF wave activity due to the CME-shock. This study utilities the Lyon-Fedder-Mobarry (LFM) model, a 3D global magnetospheric simulation code based on the ideal MHD equations, coupled with the Magnetosphere Ionosphere Coupler (MIX) and Rice Convection Model (RCM). The MHD electric and magnetic fields with equations described by Fei et al. [JGR, 2006] are used to calculate radial diffusion coefficients (DLL). These DLL values are input into a radial diffusion code to recreate the dropouts observed by the Van Allen Probes. The importance of understanding the complex role that ULF waves play in radial transport and the effects of CME-driven storms on the relativistic energy electrons in the radiation belts can be accomplished using MHD simulations to obtain diffusion coefficients, initial phase space density and the outer boundary condition from the ECT instrument suite and a radial diffusion model to reproduce observed fluxes which compare favorably with Van Allen Probes ECT measurements.
Expansion of a radially symmetric blast shell into a uniformly magnetized plasma
NASA Astrophysics Data System (ADS)
Dieckmann, M. E.; Moreno, Q.; Doria, D.; Romagnani, L.; Sarri, G.; Folini, D.; Walder, R.; Bret, A.; d'Humières, E.; Borghesi, M.
2018-05-01
The expansion of a thermal pressure-driven radial blast shell into a dilute ambient plasma is examined with two-dimensional PIC simulations. The purpose is to determine if laminar shocks form in a collisionless plasma which resemble their magnetohydrodynamic counterparts. The ambient plasma is composed of electrons with the temperature of 2 keV and cool fully ionized nitrogen ions. It is permeated by a spatially uniform magnetic field. A forward shock forms between the shocked ambient medium and the pristine ambient medium, which changes from an ion acoustic one through a slow magnetosonic one to a fast magnetosonic shock with increasing shock propagation angles relative to the magnetic field. The slow magnetosonic shock that propagates obliquely to the magnetic field changes into a tangential discontinuity for a perpendicular propagation direction, which is in line with the magnetohydrodynamic model. The expulsion of the magnetic field by the expanding blast shell triggers an electron-cyclotron drift instability.
Mechanical Properties Experimental Study of Engineering Vehicle Refurbished Tire
NASA Astrophysics Data System (ADS)
Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv
2018-05-01
The vehicle refurbished tire test system was constructed, got load-deformation, load-stiffness, and load-compression ratio property laws of engineering vehicle refurbished tire under the working condition of static state and ground contact, and built radial direction loading deformation mathematics model of 26.5R25 engineering vehicle refurbished tire. The test results show that radial-direction and side-direction deformation value is a little less than that of the new tire. The radial-direction stiffness and compression ratio of engineering vehicle refurbished tire were greatly influenced by radial-direction load and air inflation pressure. When load was certain, radial-direction stiffness would increase with air inflation pressure increasing. When air inflation pressure was certain, compression ratio of engineering vehicle refurbished tire would enlarge with radial-direction load increasing, which was a little less than that of the new and the same type tire. Aging degree of old car-case would exert a great influence on deformation property of engineering vehicle refurbished tire, thus engineering vehicle refurbished tires are suitable to the working condition of low tire pressure and less load.
Stability of magnetohydrodynamic Dean Flow as applied to centrifugally confined plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassam, A.B.
1999-10-01
Dean Flow is the azimuthal flow of fluid between static concentric cylinders. In a magnetized plasma, there may also be radial stratification of the pressure. The ideal magnetohydrodynamic stability of such a flow in the presence of a strong axial magnetic field and an added radial gravitational force is examined. It is shown that both the Kelvin{endash}Helmholtz instability and pressure-gradient-driven interchanges can be stabilized if the flow is driven by a unidirectional external force and if the plasma annulus is sufficiently thin (large aspect ratio). These results find application in schemes using centrifugal confinement of plasma for fusion. {copyright} {italmore » 1999 American Institute of Physics.}« less
Scientific management and implementation of the geophysical fluid flow cell for Spacelab missions
NASA Technical Reports Server (NTRS)
Hart, J.; Toomre, J.
1980-01-01
Scientific support for the spherical convection experiment to be flown on Spacelab 3 was developed. This experiment takes advantage of the zero gravity environment of the orbiting space laboratory to conduct fundamental fluid flow studies concerned with thermally driven motions inside a rotating spherical shell with radial gravity. Such a system is a laboratory analog of large scale atmospheric and solar circulations. The radial body force necessary to model gravity correctly is obtained by using dielectric polarization forces in a radially varying electric field to produce radial accelerations proportional to temperature. This experiment will answer fundamental questions concerned with establishing the preferred modes of large scale motion in planetary and stellar atmospheres.
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.
1985-01-01
A numerical study of the steady, axisymmetric flow in a heated, rotating spherical shell is conducted to model the Atmospheric General Circulation Experiment (AGCE) proposed to run aboard a later shuttle mission. The AGCE will consist of concentric rotating spheres confining a dielectric fluid. By imposing a dielectric field across the fluid a radial body force will be created. The numerical solution technique is based on the incompressible Navier-Stokes equations. In the method a pseudospectral technique is based on the incompressible Navier-Stokes equations. In the method a pseudospectral technique is used in the latitudinal direction, and a second-order accurate finite difference scheme discretizes time and radial derivatives. This paper discusses the development and performance of this numerical scheme for the AGCE which has been modelled in the past only by pure FD formulations. In addition, previous models have not investigated the effect of using a dielectric force to simulate terrestrial gravity. The effect of this dielectric force on the flow field is investigated as well as a parameter study of varying rotation rates and boundary temperatures. Among the effects noted are the production of larger velocities and enhanced reversals of radial temperature gradients for a body force generated by the electric field.
Powering low-power implants using PZT transducer discs operated in the radial mode
NASA Astrophysics Data System (ADS)
Sanni, Ayodele; Vilches, Antonio
2013-11-01
This paper reports experimental results that are used to compare operation characteristics of lead zirconate titanate (PZT) piezoelectric ceramic discs operated in the radial mode. The devices are driven to radially vibrate at their lowest fundamental resonant frequency and thus transmit and receive power when immersed in a liquid phantom. A number of 1 mm × 10 mm (thickness × diameter) PZT discs are characterized experimentally within a propagation tank and results discussed. On the basis of these measured characteristics, a novel application is developed and reported for the first time. This consists of a tuned LC resonator circuit which is used at the receiving disc to maximize sensitivity as well as a Seiko start-up IC S-882Z which is employed to charge a capacitor that drives a PIC microcontroller (μC) once the voltage exceeds 2 V DC. We show that a mean input power of 486 mW RMS results in 976 μW RMS received over a range of 80 mm and that this is sufficient to periodically (every 60 s) power the μC to directly drive a red LED for 5 ms with a current of 4.8 mA/flash. This approach is suitable for low-power, periodically activated analogue bio-implant applications.
NASA Astrophysics Data System (ADS)
Thomas, Johannes; Kostyukov, Igor Yu.; Pronold, Jari; Golovanov, Anton; Pukhov, Alexander
2016-05-01
We introduce a complete semi-analytical model for a cavitated electron wake driven by an electron beam in a radially inhomogeneous plasma. The electron response to the driver, dynamics of electrons in a thin sheath surrounding the cavity, as well as accelerating and focusing fields inside the cavity are calculated in the quasistatic approximation. Our theory holds for arbitrary radial density profiles and reduces to known models in the limit of a homogeneous plasma. A free-propagating blow-out in an evacuated channel experiences longitudinal squeezing, qualitatively the same as observed in particle-in-cell simulations for the laser pulse-driven case [Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014)]. Our model also permits qualitative interpretation of the earlier observed cancellation of the focusing gradient in the cavity [Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014)]. In this work, we show the underlying mechanism that causes the radial fields in the vacuum part of a channel to become defocussing.
Radial-Velocity Signatures of Magnetic Features on the Sun Observed as a Star
NASA Astrophysics Data System (ADS)
Palumbo, M. L., III; Haywood, R. D.; Saar, S. H.; Dupree, A. K.; Milbourne, T. W.
2017-12-01
In recent years, the search for Earth-mass planets using radial-velocity measurements has become increasingly limited by signals arising from stellar activity. Individual magnetic features induce localized changes in intensity and velocity, which combine to change the apparent radial velocity of the star. Therefore it is critical to identify an indicator of activity-driven radial-velocity variations on the timescale of stellar rotation periods. We use 617.3 nm photospheric filtergrams, magnetograms, and dopplergrams from SDO/HMI and 170.0 nm chromospheric filtergrams from AIA to identify magnetically-driven solar features and reconstruct the integrated solar radial velocity with six samples per day over the course of 2014. Breaking the solar image up into regions of umbrae, penumbrae, quiet Sun, network, and plages, we find a distinct variation in the center-to-limb intensity-weighted velocity for each region. In agreement with past studies, we find that the suppression of convective blueshift is dominated by plages and network, rather than dark photospheric features. In the future, this work will be highly useful for identifying indicators which correlate with rotationally modulated radial-velocity variations. This will allow us to break the activity barrier that currently precludes the precise characterization of exoplanet properties at the lowest masses. This work was supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313. This work was performed in part under contract with the California Institute of Technology (Caltech)/Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute.
NASA Astrophysics Data System (ADS)
Royle, Ryan; Sentoku, Yasuhiko; Mancini, Roberto
2017-10-01
The hard x-ray free electron laser has proven to be a valuable tool for high energy density (HED) physics as it is able to produce well-characterized samples of HED matter at exactly solid density and homogeneous temperatures. However, if the x-ray pulses are focused to sub-micron spot sizes, where peak intensities can exceed 1020 W/cm2, the plasmas driven by sources of non-thermal photoelectrons and Auger electrons can be highly dynamic and so cannot be modeled by atomic kinetics or fluid codes. We apply the 2D/3D particle-in-cell code, PICLS-which has been extended with numerous physics models to enable the simulation of XFEL-driven plasmas-to the modeling of such dynamic plasmas driven by nano-focused XFEL pulses in solid iron targets. In the case of the smallest focal spot investigated of just 100 nm in diameter, keV plasmas induce strong radial E-fields that accelerate keV ions radially as well as sheath fields that accelerate surface ions to hundreds of keV. The heated spot, which is initially larger than the laser spot due to the kinetic nature of the fast Auger electrons, expands as ion and electron waves propagate radially, leaving a low density region along the laser axis. This research was supported by the US DOE-OFES under Grant No. DE-SC0008827, the DOE-NNSA under Grant No. DE-NA0002075, and the JSPS KAKENHI under Grant No. JP15K21767.
Role of the lower hybrid spectrum in the current drive modeling for DEMO scenarios
NASA Astrophysics Data System (ADS)
Cardinali, A.; Castaldo, C.; Cesario, R.; Santini, F.; Amicucci, L.; Ceccuzzi, S.; Galli, A.; Mirizzi, F.; Napoli, F.; Panaccione, L.; Schettini, G.; Tuccillo, A. A.
2017-07-01
The active control of the radial current density profile is one of the major issues of thermonuclear fusion energy research based on magnetic confinement. The lower hybrid current drive could in principle be used as an efficient tool. However, previous understanding considered the electron temperature envisaged in a reactor at the plasma periphery too large to allow penetration of the coupled radio frequency (RF) power due to strong Landau damping. In this work, we present new numerical results based on quasilinear theory, showing that the injection of power spectra with different {n}// widths of the main lobe produce an RF-driven current density profile spanning most of the outer radial half of the plasma ({n}// is the refractive index in a parallel direction to the confinement magnetic field). Plasma kinetic profiles envisaged for the DEMO reactor are used as references. We demonstrate the robustness of the modeling results concerning the key role of the spectral width in determining the lower hybrid-driven current density profile. Scans of plasma parameters are extensively carried out with the aim of excluding the possibility that any artefact of the utilised numerical modeling would produce any novelty. We neglect here the parasitic effect of spectral broadening produced by linear scattering due to plasma density fluctuations, which mainly occurs for low magnetic field devices. This effect will be analyzed in other work that completes the report on the present breakthrough.
Radial and local time structure of the Saturnian ring current, revealed by Cassini
NASA Astrophysics Data System (ADS)
Sergis, N.; Jackman, C. M.; Thomsen, M. F.; Krimigis, S. M.; Mitchell, D. G.; Hamilton, D. C.; Dougherty, M. K.; Krupp, N.; Wilson, R. J.
2017-02-01
We analyze particle and magnetic field data obtained between July 2004 and December 2013 in the equatorial magnetosphere of Saturn, by the Cassini spacecraft. The radial and local time distribution of the total (thermal and suprathermal) particle pressure and total plasma beta (ratio of particle to magnetic pressure) over radial distances from 5 to 16 Saturn radii (RS = 60,258 km) is presented. The average azimuthal current density Jϕ and its separate components (inertial, pressure gradient, and anisotropy) are computed as a function of radial distance and local time and presented as equatorial maps. We explore the relative contribution of different physical mechanisms that drive the ring current at Saturn. Results show that (a) the particle pressure is controlled by thermal plasma inside of 8 RS and by the hot ions beyond 12 RS, exhibiting strong local time asymmetry with higher pressures measured at the dusk and night sectors; (b) the plasma beta increases with radial distance and remains >1 beyond 8-10 RS for all local times; (c) the ring current is asymmetric in local time and forms a maximum region between 7 and 13 RS, with values up to 100-115 pA/m2; and (d) the ring current is inertial everywhere inside of 7 RS, exhibits a mixed nature between 7 and 11 RS and is pressure gradient driven beyond 11 RS, with the exception of the noon sector where the mixed nature persists. In the dawn sector, it appears strongly pressure gradient driven for a wider range of radial distance, consistent with fast return flow of hot, tenuous magnetospheric plasma following tail reconnection.
Analytics of crystal growth in space
NASA Technical Reports Server (NTRS)
Chang, C. E.; Lefever, R. A.; Wilcox, W. R.
1975-01-01
The variation of radial impurity distribution induced by surface tension driven flow increases as the zone length decreases in silicon crystals grown by floating zone melting. In combined buoyancy driven and surface tension driven convection at the gravity of earth, the buoyancy contribution becomes relatively smaller as the zone diameter decreases and eventually convection is dominated by the surface tension driven flow (in the case of silicon, for zones of less than about 0.8 cm in diameter). Preliminary calculations for sapphire suggest the presence of an oscillatory surface tension driven convection as a result of an unstable melt surface temperature that results when the zone is heated by a radiation heater.
In vitro characterization of a magnetically suspended continuous flow ventricular assist device.
Kim, H C; Bearnson, G B; Khanwilkar, P S; Olsen, D B; Maslen, E H; Allaire, P E
1995-01-01
A magnetically suspended continuous flow ventricular assist device using magnetic bearings was developed aiming at an implantable ventricular assist device. The main advantage of this device includes no mechanical wear and minimal chance of blood trauma such, as thrombosis and hemolysis, because there is no mechanical contact between the stationary and rotating parts. The total system consists of two subsystems: the centrifugal pump and the magnetic bearing. The centrifugal pump is comprised of a 4 vane logarithmic spiral radial flow impeller and a brushless DC motor with slotless stator, driven by the back emf commutation scheme. Two radial and one thrust magnetic bearing that dynamically controls the position of the rotor in a radial and axial direction, respectively, contains magnetic coils, the rotor's position sensors, and feedback electronic control system. The magnetic bearing system was able to successfully suspend a 365.5g rotating part in space and sustain it for up to 5000 rpm of rotation. Average force-current square factor of the magnetic bearing was measured as 0.48 and 0.44 (kg-f/Amp2) for radial and thrust bearing, respectively. The integrated system demonstrated adequate performance in mock circulation tests by providing a 6 L/min flow rate against 100 mmHg differential pressure at 2300 rpm. Based on these in vitro performance test results, long-term clinical application of the magnetically suspended continuous flow ventricular assist device is very promising after system optimization with a hybrid system using both active (electromagnet) and passive (permanent magnets) magnet bearings.
Apparatus and method for deterministic control of surface figure during full aperture polishing
Suratwala, Tayyab Ishaq; Feit, Michael Dennis; Steele, William Augustus
2013-11-19
A polishing system configured to polish a lap includes a lap configured to contact a workpiece for polishing the workpiece; and a septum configured to contact the lap. The septum has an aperture formed therein. The radius of the aperture and radius the workpiece are substantially the same. The aperture and the workpiece have centers disposed at substantially the same radial distance from a center of the lap. The aperture is disposed along a first radial direction from the center of the lap, and the workpiece is disposed along a second radial direction from the center of the lap. The first and second radial directions may be opposite directions.
Pipe weld crown removal device
Sword, Charles K.; Sette, Primo J.
1992-01-01
A device is provided for grinding down the crown of a pipe weld joining aligned pipe sections so that the weld is substantially flush with the pipe sections joined by the weld. The device includes a cage assembly comprising a pair of spaced cage rings adapted to be mounted for rotation on the respective pipe sections on opposite sides of the weld, a plurality of grinding wheels, supported by the cage assembly for grinding down the crown of the weld, and a plurality of support shafts, each extending longitudinally along the joined pipe sections, parallel thereto, for individually mounting respective grinding wheels. Each end of the support shafts is mounted for rotation in a bearing assembly housed within a radially directed opening in a corresponding one of the cage rings so as to provide radial movement of the associated shaft, and thus of the associated grinding wheel, towards and away from the weld. A first drive sprocket provides rotation of the cage assembly around the pipe sections while a second drive unit, driven by a common motor, provides rotation of the grinding wheels.
Role of external torque in the formation of ion thermal internal transport barriers
NASA Astrophysics Data System (ADS)
Jhang, Hogun; Kim, S. S.; Diamond, P. H.
2012-04-01
We present an analytic study of the impact of external torque on the formation of ion internal transport barriers (ITBs). A simple analytic relation representing the effect of low external torque on transport bifurcations is derived based on a two field transport model of pressure and toroidal momentum density. It is found that the application of an external torque can either facilitate or hamper bifurcation in heat flux driven plasmas depending on its sign relative to the direction of intrinsic torque. The ratio between radially integrated momentum (i.e., external torque) density to power input is shown to be a key macroscopic control parameter governing the characteristics of bifurcation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Johannes, E-mail: thomas@tp1.uni-duesseldorf.de; Pronold, Jari; Pukhov, Alexander
2016-05-15
We introduce a complete semi-analytical model for a cavitated electron wake driven by an electron beam in a radially inhomogeneous plasma. The electron response to the driver, dynamics of electrons in a thin sheath surrounding the cavity, as well as accelerating and focusing fields inside the cavity are calculated in the quasistatic approximation. Our theory holds for arbitrary radial density profiles and reduces to known models in the limit of a homogeneous plasma. A free-propagating blow-out in an evacuated channel experiences longitudinal squeezing, qualitatively the same as observed in particle-in-cell simulations for the laser pulse-driven case [Pukhov et al., Phys.more » Rev. Lett. 113, 245003 (2014)]. Our model also permits qualitative interpretation of the earlier observed cancellation of the focusing gradient in the cavity [Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014)]. In this work, we show the underlying mechanism that causes the radial fields in the vacuum part of a channel to become defocussing.« less
NASA Astrophysics Data System (ADS)
Caballero Bendixsen, Luis; Bott-Suzuki, Simon; Cordaro, Samuel; Krishnan, Mahadevan; Chapman, Stephen; Coleman, Phil; Chittenden, Jeremy
2015-11-01
Results will be shown on coordinated experiments and MHD simulations on magnetically driven implosions, with an emphasis on current diffusion and heat transport. Experiments are run at a Mather-type dense plasma focus (DPF-3, Vc: 20 kV, Ip: 480 kA, E: 5.8 kJ). Typical experiments are run at 300 kA and 0.33 Hz repetition rate with different gas loads (Ar, Ne, and He) at pressures of ~ 1-3 Torr, usually gathering 1000 shots per day. Simulations are run at a 96-core HP blade server cluster using 3GHz processors with 4GB RAM per node.Preliminary results show axial and radial phase plasma sheath velocity of ~ 1x105 m/s. These are in agreement with the snow-plough model of DPFs. Peak magnetic field of ~ 1 Tesla in the radial compression phase are measured. Electron densities on the order of 1018 cm-3 anticipated. Comparison between 2D and 3D models with empirical results show a good agreement in the axial and radial phase.
Internal baffling for fuel injector
Johnson, Thomas Edward; Lacy, Benjamin; Stevenson, Christian
2014-08-05
A fuel injector includes a fuel delivery tube; a plurality of pre-mixing tubes, each pre-mixing tube comprising at least one fuel injection hole; an upstream tube support plate that supports upstream ends of the plurality of pre-mixing tubes; a downstream tube support plate that supports downstream ends of the plurality of pre-mixing tubes; an outer wall connecting the upstream tube support plate and the downstream tube support plate and defining a plenum therewith; and a baffle provided in the plenum. The baffle includes a radial portion. A fuel delivered in the upstream direction by the fuel delivery tube is directed radially outwardly in the plenum between the radial portion of the baffle and the downstream tube support plate, then in the downstream direction around an outer edge portion of the radial portion, and then radially inwardly between the radial portion and the upstream tube support plate.
K.C. Costilow; Kathleen Knight; Charles Flower
2017-01-01
Key message. Radial growth of silver and red maples was investigated across three forests in northwest Ohio following the outbreak of the invasive emerald ash borer. The growth response of maples was driven by an advancement in canopy class and disturbance severity. Context. Forest disturbances resulting in species-specific diffuse mortality cause shifts in aboveground...
Shock propagation in locally driven granular systems
NASA Astrophysics Data System (ADS)
Joy, Jilmy P.; Pathak, Sudhir N.; Das, Dibyendu; Rajesh, R.
2017-09-01
We study shock propagation in a system of initially stationary hard spheres that is driven by a continuous injection of particles at the origin. The disturbance created by the injection of energy spreads radially outward through collisions between particles. Using scaling arguments, we determine the exponent characterizing the power-law growth of this disturbance in all dimensions. The scaling functions describing the various physical quantities are determined using large-scale event-driven simulations in two and three dimensions for both elastic and inelastic systems. The results are shown to describe well the data from two different experiments on granular systems that are similarly driven.
Shock propagation in locally driven granular systems.
Joy, Jilmy P; Pathak, Sudhir N; Das, Dibyendu; Rajesh, R
2017-09-01
We study shock propagation in a system of initially stationary hard spheres that is driven by a continuous injection of particles at the origin. The disturbance created by the injection of energy spreads radially outward through collisions between particles. Using scaling arguments, we determine the exponent characterizing the power-law growth of this disturbance in all dimensions. The scaling functions describing the various physical quantities are determined using large-scale event-driven simulations in two and three dimensions for both elastic and inelastic systems. The results are shown to describe well the data from two different experiments on granular systems that are similarly driven.
NASA Astrophysics Data System (ADS)
Akahoshi, Hikaru; Takahashi, Kazunori; Ando, Akira
2018-03-01
High temperature electrons generated near a radial wall of a cylindrical source tube in a radiofrequency (rf) inductively-coupled plasma is filtered by an axisymmetric radial magnetic field formed near the source exit by locating annular permanent magnets, where the axial magnetic field strength in the radially central region is fairly uniform inside the source tube and is close to zero near the source exit. The source is operated at 3 mTorr in argon and the rf antenna is powered by a 13.56 MHz and 400 W rf generator. Measurement of electron energy probability functions shows the presence of the peripheral high temperature electrons inside the source, while the temperature of the peripheral electrons downstream of the source is observed to be reduced.
Benchmarking gyrokinetic simulations in a toroidal flux-tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y.; Parker, S. E.; Wan, W.
2013-09-15
A flux-tube model is implemented in the global turbulence code GEM [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 839 (2007)] in order to facilitate benchmarking with Eulerian codes. The global GEM assumes the magnetic equilibrium to be completely given. The initial flux-tube implementation simply selects a radial location as the center of the flux-tube and a radial size of the flux-tube, sets all equilibrium quantities (B, ∇B, etc.) to be equal to the values at the center of the flux-tube, and retains only a linear radial profile of the safety factor needed for boundary conditions. This implementationmore » shows disagreement with Eulerian codes in linear simulations. An alternative flux-tube model based on a complete local equilibrium solution of the Grad-Shafranov equation [J. Candy, Plasma Phys. Controlled Fusion 51, 105009 (2009)] is then implemented. This results in better agreement between Eulerian codes and the particle-in-cell (PIC) method. The PIC algorithm based on the v{sub ||}-formalism [J. Reynders, Ph.D. dissertation, Princeton University, 1992] and the gyrokinetic ion/fluid electron hybrid model with kinetic electron closure [Y. Chan and S. E. Parker, Phys. Plasmas 18, 055703 (2011)] are also implemented in the flux-tube geometry and compared with the direct method for both the ion temperature gradient driven modes and the kinetic ballooning modes.« less
Cotter, Christopher R.; Schüttler, Heinz-Bernd; Igoshin, Oleg A.; Shimkets, Lawrence J.
2017-01-01
Collective cell movement is critical to the emergent properties of many multicellular systems, including microbial self-organization in biofilms, embryogenesis, wound healing, and cancer metastasis. However, even the best-studied systems lack a complete picture of how diverse physical and chemical cues act upon individual cells to ensure coordinated multicellular behavior. Known for its social developmental cycle, the bacterium Myxococcus xanthus uses coordinated movement to generate three-dimensional aggregates called fruiting bodies. Despite extensive progress in identifying genes controlling fruiting body development, cell behaviors and cell–cell communication mechanisms that mediate aggregation are largely unknown. We developed an approach to examine emergent behaviors that couples fluorescent cell tracking with data-driven models. A unique feature of this approach is the ability to identify cell behaviors affecting the observed aggregation dynamics without full knowledge of the underlying biological mechanisms. The fluorescent cell tracking revealed large deviations in the behavior of individual cells. Our modeling method indicated that decreased cell motility inside the aggregates, a biased walk toward aggregate centroids, and alignment among neighboring cells in a radial direction to the nearest aggregate are behaviors that enhance aggregation dynamics. Our modeling method also revealed that aggregation is generally robust to perturbations in these behaviors and identified possible compensatory mechanisms. The resulting approach of directly combining behavior quantification with data-driven simulations can be applied to more complex systems of collective cell movement without prior knowledge of the cellular machinery and behavioral cues. PMID:28533367
Analysis of Radial Segregation in Directionally Solidified Hg(0.89)Mn(0.11)Te
NASA Technical Reports Server (NTRS)
Price, M. W.; Scripa, R. N.; Szofran, F. R.; Motakef, S.; Hanson, B.
2003-01-01
Bridgman growth experiments were performed on Hg(0.89)Mn(0.11)Te (MMT) to determine the extent of radial Manganese segregation during directional solidification. MMT crystals were directionally solidified at rates of 0.09 and 0.18 p d s and in axial thermal gradients of 83 and 68"C/cm. Wavelength Dispersive Spectroscopy (WDS) and Fourier Transform Infra-Red (FTIR) analytical techniques were used to determine the radial homogeneity in all boules and the deflection of the solid-liquid interface (SLI) in two boules that were rapidly quenched after 5 to 6 cm of directional solidification. For all growth runs, the measured radial coinpositional variations were on the order of 0.01 molar percent MnTe in the steady state region of growth. Comparison of the measured radial compositional results of the crystals to predicted values in the diffusion-limited regime indicate a strong influence of convection near the solid-liquid interface. This conclusion is supported by the weak influence of the translation rates and axial thermal gradients utilized in this study upon radial compositional homogeneity.
Apparatus and method for deterministic control of surface figure during full aperture pad polishing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suratwala, Tayyab Ishaq; Feit, Michael Douglas; Steele, William Augustus
A polishing system configured to polish a lap includes a lap configured to contact a workpiece for polishing the workpiece; and a septum configured to contact the lap. The septum has an aperture formed therein. The radius of the aperture and radius the workpiece are substantially the same. The aperture and the workpiece have centers disposed at substantially the same radial distance from a center of the lap. The aperture is disposed along a first radial direction from the center of the lap, and the workpiece is disposed along a second radial direction from the center of the lap. Themore » first and second radial directions may be opposite directions.« less
Visualization of nanocrystal breathing modes at extreme strains
NASA Astrophysics Data System (ADS)
Szilagyi, Erzsi; Wittenberg, Joshua S.; Miller, Timothy A.; Lutker, Katie; Quirin, Florian; Lemke, Henrik; Zhu, Diling; Chollet, Matthieu; Robinson, Joseph; Wen, Haidan; Sokolowski-Tinten, Klaus; Lindenberg, Aaron M.
2015-03-01
Nanoscale dimensions in materials lead to unique electronic and structural properties with applications ranging from site-specific drug delivery to anodes for lithium-ion batteries. These functional properties often involve large-amplitude strains and structural modifications, and thus require an understanding of the dynamics of these processes. Here we use femtosecond X-ray scattering techniques to visualize, in real time and with atomic-scale resolution, light-induced anisotropic strains in nanocrystal spheres and rods. Strains at the percent level are observed in CdS and CdSe samples, associated with a rapid expansion followed by contraction along the nanosphere or nanorod radial direction driven by a transient carrier-induced stress. These morphological changes occur simultaneously with the first steps in the melting transition on hundreds of femtosecond timescales. This work represents the first direct real-time probe of the dynamics of these large-amplitude strains and shape changes in few-nanometre-scale particles.
47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... performance of directional antennas. 73.151 Section 73.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... measurements to establish performance of directional antennas. The performance of a directional antenna may be... directional antenna pattern, a total of six radials is sufficient. If two radials would be more than 90° apart...
47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... performance of directional antennas. 73.151 Section 73.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... measurements to establish performance of directional antennas. The performance of a directional antenna may be... directional antenna pattern, a total of six radials is sufficient. If two radials would be more than 90° apart...
47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... performance of directional antennas. 73.151 Section 73.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... measurements to establish performance of directional antennas. The performance of a directional antenna may be... directional antenna pattern, a total of six radials is sufficient. If two radials would be more than 90° apart...
47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... performance of directional antennas. 73.151 Section 73.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... measurements to establish performance of directional antennas. The performance of a directional antenna may be... directional antenna pattern, a total of six radials is sufficient. If two radials would be more than 90° apart...
Nonradial and radial period changes of the δ Scuti star 4 CVn. II. Systematic behavior over 40 years
NASA Astrophysics Data System (ADS)
Breger, M.; Montgomery, M. H.; Lenz, P.; Pamyatnykh, A. A.
2017-03-01
Aims: Radial and nonradial pulsators on and near the main sequence show period and amplitude changes that are too large to be the product of stellar evolution. The multiperiodic δ Sct stars are well suited to study this, as the period changes of different modes excited in the same star can be compared. This requires a very large amount of photometric data covering years and decades as well as mode identifications. Methods: We have examined over 800 nights of high-precision photometry of the multiperiodic pulsator 4 CVn obtained from 1966 through 2012. Because most of the data were obtained in adjacent observing seasons, it is possible to derive very accurate period values for a number of the excited pulsation modes and to study their systematic changes from 1974 to 2012. Results: Most pulsation modes show systematic significant period and amplitude changes on a timescale of decades. For the well-studied modes, around 1986 a general reversal of the directions of both the positive and negative period changes occurred. Furthermore, the period changes between the different modes are strongly correlated, although they differ in size and sign. For the modes with known values of the spherical degree and azimuthal order, we find a correlation between the direction of the period changes and the identified azimuthal order, m. The associated amplitude changes generally have similar timescales of years or decades, but show little systematic or correlated behavior from mode to mode. Conclusions: A natural explanation for the opposite behavior of the prograde and retrograde modes is that their period changes are driven by a changing rotation profile. The changes in the rotation profile could in turn be driven by processes, perhaps the pulsations themselves, that redistribute angular momentum within the star. In general, different modes have different rotation kernels, so this will produce period shifts of varying magnitude for different modes.
Strain effects on the anisotropic thermal transport in crystalline polyethylene
NASA Astrophysics Data System (ADS)
He, Jixiong; Kim, Kyunghoon; Wang, Yangchao; Liu, Jun
2018-01-01
Thermal transport in the axial direction of polymers has been extensively studied, while the strain effect on the thermal conductivity, especially in the radial direction, remains unknown. In this work, we calculated the thermal conductivity in the radial direction of a crystalline polyethylene model and simulated the uniaxial strain effect on the thermal conductivity tensor by molecular dynamics simulations. We found a strong size effect of the thermal transport in the radial direction and estimated that the phonon mean free path can be much larger than the prediction from the classic kinetic theory. We also found that the thermal conductivity in the axial direction increases dramatically with strain, while the thermal conductivity in the radial direction decreases with uniaxial strain. We attribute the reduction of thermal conductivity in the radial direction to the decreases in inter-chain van der Waals forces with strains. The facts that the chains in the crystalline polyethylene became stiffer and more ordered along the chain direction could be the reasons for the increasing thermal conductivity in the axial direction during stretching. Besides, we observed longer phonon lifetime in acoustic branches and higher group velocity in optical branches after uniaxial stretching. Our work provides fundamental understandings on the phonon transport in crystalline polymers, the structure-property relationship in crystalline polymers, and the strain effect in highly anisotropic materials.
Direct Imaging Of Long Period Radial Velocity Targets With NICI
NASA Astrophysics Data System (ADS)
Salter, Graeme S.; Tinney, Chris G.; Wittenmyer, Robert A.; Jenkins, James S.; Jones, Hugh R. A.; O'Toole, Simon J.
2014-01-01
We are finally entering an era where radial velocity and direct imaging parameter spaces are starting to overlap. Radial velocity measurements provide us with a minimum mass for an orbiting companion (the mass as a function of the inclination of the system). By following up these long period radial velocity detections with direct imaging we can determine whether a trend seen is due to an orbiting planet at low inclination or an orbiting brown dwarf at high inclination. In the event of a non-detection we are still able to put a limit on the maximum mass of the orbiting body. The Anglo-Australian Planet Search is one of the longest baseline radial velocity planet searches in existence, amongst its targets are many that show long period trends in the data. Here we present our direct imaging survey of these objects with our results to date. ADI Observations have been made using NICI (Near Infrared Coronagraphic Imager) on Gemini South and analysed using an in house, LOCI-like, post processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitz, Lothar; Zeng, Lei; Rhodes, Terry L.
2014-04-24
Here, we present direct evidence of low frequency, radially sheared, turbulence-driven flows (zonal flows (ZFs)) triggering edge transport barrier formation preceding the L- to H-mode transition via periodic turbulence suppression in limit-cycle oscillations (LCOs), consistent with predator–prey dynamics. The final transition to edge-localized mode-free H-mode occurs after the equilibrium E × B flow shear increases due to ion pressure profile evolution. ZFs are also observed to initiate formation of an electron internal transport barrier (ITB) at the q = 2 rational surface via local suppression of electron-scale turbulence. Multi-channel Doppler backscattering (DBS) has revealed the radial structure of the ZF-induced shear layer and the E × B shearing rate, ω E×B, in both barrier types. During edge barrier formation, the shearing rate lags the turbulence envelope during the LCO by 90°, transitioning to anti-correlation (180°) when the equilibrium shear dominates the turbulence-driven flow shear due to the increasing edge pressure gradient. The time-dependent flow shear and the turbulence envelope are anti-correlated (180° out of phase) in the electron ITB. LCOs with time-reversed evolution dynamics (transitioning from an equilibrium-flow dominated to a ZF-dominated state) have also been observed during the H–L back-transition and are potentially of interest for controlled ramp-down of the plasma stored energy and pressure (normalized to the poloidal magnetic field)more » $$\\beta_{\\theta} =2\\mu_{0} n{( {T_{{\\rm e}} +T_{{\\rm i}}})}/{B_{\\theta}^{2}}$$ in ITER.« less
NASA Astrophysics Data System (ADS)
Schmitz, L.; Zeng, L.; Rhodes, T. L.; Hillesheim, J. C.; Peebles, W. A.; Groebner, R. J.; Burrell, K. H.; McKee, G. R.; Yan, Z.; Tynan, G. R.; Diamond, P. H.; Boedo, J. A.; Doyle, E. J.; Grierson, B. A.; Chrystal, C.; Austin, M. E.; Solomon, W. M.; Wang, G.
2014-07-01
We present direct evidence of low frequency, radially sheared, turbulence-driven flows (zonal flows (ZFs)) triggering edge transport barrier formation preceding the L- to H-mode transition via periodic turbulence suppression in limit-cycle oscillations (LCOs), consistent with predator-prey dynamics. The final transition to edge-localized mode-free H-mode occurs after the equilibrium E × B flow shear increases due to ion pressure profile evolution. ZFs are also observed to initiate formation of an electron internal transport barrier (ITB) at the q = 2 rational surface via local suppression of electron-scale turbulence. Multi-channel Doppler backscattering (DBS) has revealed the radial structure of the ZF-induced shear layer and the E × B shearing rate, ωE×B, in both barrier types. During edge barrier formation, the shearing rate lags the turbulence envelope during the LCO by 90°, transitioning to anti-correlation (180°) when the equilibrium shear dominates the turbulence-driven flow shear due to the increasing edge pressure gradient. The time-dependent flow shear and the turbulence envelope are anti-correlated (180° out of phase) in the electron ITB. LCOs with time-reversed evolution dynamics (transitioning from an equilibrium-flow dominated to a ZF-dominated state) have also been observed during the H-L back-transition and are potentially of interest for controlled ramp-down of the plasma stored energy and pressure (normalized to the poloidal magnetic field) \\beta_{\\theta} =2\\mu_{0} n{( {T_{e} +T_{i}})}/{B_{\\theta}^{2}} in ITER.
NASA Technical Reports Server (NTRS)
Grappin, R.; Velli, M.
1995-01-01
The solar wind is not an isotropic medium; two symmetry axis are provided, first the radial direction (because the mean wind is radial) and second the spiral direction of the mean magnetic field, which depends on heliocentric distance. Observations show very different anisotropy directions, depending on the frequency waveband; while the large-scale velocity fluctuations are essentially radial, the smaller scale magnetic field fluctuations are mostly perpendicular to the mean field direction, which is not the expected linear (WkB) result. We attempt to explain how these properties are related, with the help of numerical simulations.
Magnetic Fluctuation-Driven Intrinsic Flow in a Toroidal Plasma
NASA Astrophysics Data System (ADS)
Brower, D. L.; Ding, W. X.; Lin, L.; Almagri, A. F.; den Hartog, D. J.; Sarff, J. S.
2012-10-01
Magnetic fluctuations have been long observed in various magnetic confinement configurations. These perturbations may arise naturally from plasma instabilities such as tearing modes and energetic particle driven modes, but they can also be externally imposed by error fields or external magnetic coils. It is commonly observed that large MHD modes lead to plasma locking (no rotation) due to torque produced by eddy currents on the wall, and it is predicted that stochastic field induces flow damping where the radial electric field is reduced. Flow generation is of great importance to fusion plasma research, especially low-torque devices like ITER, as it can act to improve performance. Here we describe new measurements in the MST reversed field pinch (RFP) showing that the coherent interaction of magnetic and particle density fluctuations can produce a turbulent fluctuation-induced kinetic force, which acts to drive intrinsic plasma rotation. Key observations include; (1) the average kinetic force resulting from density fluctuations, ˜ 0.5 N/m^3, is comparable to the intrinsic flow acceleration, and (2) between sawtooth crashes, the spatial distribution of the kinetic force is directed to create a sheared parallel flow profile that is consistent with the measured flow profile in direction and amplitude, suggesting the kinetic force is responsible for intrinsic plasma rotation.
A Saturnian cam current system driven by asymmetric thermospheric heating
NASA Astrophysics Data System (ADS)
Smith, C. G. A.
2011-02-01
We show that asymmetric heating of Saturn's thermosphere can drive a current system consistent with the magnetospheric ‘cam’ proposed by Espinosa, Southwood & Dougherty. A geometrically simple heating distribution is imposed on the Northern hemisphere of a simplified three-dimensional global circulation model of Saturn's thermosphere. Currents driven by the resulting winds are calculated using a globally averaged ionosphere model. Using a simple assumption about how divergences in these currents close by flowing along dipolar field lines between the Northern and Southern hemispheres, we estimate the magnetic field perturbations in the equatorial plane and show that they are broadly consistent with the proposed cam fields, showing a roughly uniform field implying radial and azimuthal components in quadrature. We also identify a small longitudinal phase drift in the cam current with radial distance as a characteristic of a thermosphere-driven current system. However, at present our model does not produce magnetic field perturbations of the required magnitude, falling short by a factor of ˜100, a discrepancy that may be a consequence of an incomplete model of the ionospheric conductance.
Radial forcing and Edgar Allan Poe's lengthening pendulum
NASA Astrophysics Data System (ADS)
McMillan, Matthew; Blasing, David; Whitney, Heather M.
2013-09-01
Inspired by Edgar Allan Poe's The Pit and the Pendulum, we investigate a radially driven, lengthening pendulum. We first show that increasing the length of an undriven pendulum at a uniform rate does not amplify the oscillations in a manner consistent with the behavior of the scythe in Poe's story. We discuss parametric amplification and the transfer of energy (through the parameter of the pendulum's length) to the oscillating part of the system. In this manner, radial driving can easily and intuitively be understood, and the fundamental concept applied in many other areas. We propose and show by a numerical model that appropriately timed radial forcing can increase the oscillation amplitude in a manner consistent with Poe's story. Our analysis contributes a computational exploration of the complex harmonic motion that can result from radially driving a pendulum and sheds light on a mechanism by which oscillations can be amplified parametrically. These insights should prove especially valuable in the undergraduate physics classroom, where investigations into pendulums and oscillations are commonplace.
Effect of electron-to-ion mass ratio on radial electric field generation in tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhenqian; Dong, Jiaqi; Sheng, Zhengmao
Generation of coherent radial electric fields in plasma by drift-wave turbulence driven by plasma inhomogeneities is ab initio studied using gyro-kinetic particle simulation for conditions of operational tokamaks. In particular, the effect of the electron-to-ion mass ratio epsilon on the entire evolution of the plasma is considered. In conclusion, it is found that the electric field can be increased, and the turbulence-induced particle transport reduced, by making epsilon smaller, in agreement with many existing experimental observations.
Effect of electron-to-ion mass ratio on radial electric field generation in tokamak
Li, Zhenqian; Dong, Jiaqi; Sheng, Zhengmao; ...
2017-11-21
Generation of coherent radial electric fields in plasma by drift-wave turbulence driven by plasma inhomogeneities is ab initio studied using gyro-kinetic particle simulation for conditions of operational tokamaks. In particular, the effect of the electron-to-ion mass ratio epsilon on the entire evolution of the plasma is considered. In conclusion, it is found that the electric field can be increased, and the turbulence-induced particle transport reduced, by making epsilon smaller, in agreement with many existing experimental observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahai, Aakash A.
We show the excitation of a nonlinear ion-wake mode by plasma electron modes in the bubble regime driven by intense energy sources, using analytical theory and simulations. The ion wake is shown to be a driven nonlinear ion-acoustic wave in the form of a long-lived cylindrical ion soliton which limits the repetition rate of a plasma-based particle accelerator in the bubble regime. We present the application of this evacuated and radially outwards propagating ion-wake channel with an electron skin-depth scale radius for the “crunch-in” regime of hollow-channel plasma. It is shown that the time-asymmetric focusing force phases in the bubblemore » couple to ion motion significantly differently than in the linear electron mode. The electron compression in the back of the bubble sucks in the ions whereas the space charge within the bubble cavity expels them, driving a cylindrical ion-soliton structure at the bubble radius. Once formed, the soliton is sustained and driven radially outwards by the thermal pressure of the wake energy in electrons. Particle-in-cell simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration in the crunch-in regime.« less
Sahai, Aakash A.
2017-08-23
We show the excitation of a nonlinear ion-wake mode by plasma electron modes in the bubble regime driven by intense energy sources, using analytical theory and simulations. The ion wake is shown to be a driven nonlinear ion-acoustic wave in the form of a long-lived cylindrical ion soliton which limits the repetition rate of a plasma-based particle accelerator in the bubble regime. We present the application of this evacuated and radially outwards propagating ion-wake channel with an electron skin-depth scale radius for the “crunch-in” regime of hollow-channel plasma. It is shown that the time-asymmetric focusing force phases in the bubblemore » couple to ion motion significantly differently than in the linear electron mode. The electron compression in the back of the bubble sucks in the ions whereas the space charge within the bubble cavity expels them, driving a cylindrical ion-soliton structure at the bubble radius. Once formed, the soliton is sustained and driven radially outwards by the thermal pressure of the wake energy in electrons. Particle-in-cell simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration in the crunch-in regime.« less
Lim, Tau Meng; Cheng, Shanbao; Chua, Leok Poh
2009-07-01
Axial flow blood pumps are generally smaller as compared to centrifugal pumps. This is very beneficial because they can provide better anatomical fit in the chest cavity, as well as lower the risk of infection. This article discusses the design, levitated responses, and parameter estimation of the dynamic characteristics of a compact hybrid magnetic bearing (HMB) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet brushless and sensorless motor. It is levitated by two HMBs at both ends in five degree of freedom with proportional-integral-derivative controllers, among which four radial directions are actively controlled and one axial direction is passively controlled. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMB system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air-in both the radial and axial directions. Experimental estimation showed that the dynamic characteristics of the HMB system are dominated by the frequency-dependent stiffness coefficients. By injecting a multifrequency excitation force signal onto the rotor through the HMBs, it is noticed in the experimental results the maximum displacement linear operating range is 20% of the static eccentricity with respect to the rotor and stator gap clearance. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamic properties under normal operating conditions with fluid.
NASA Astrophysics Data System (ADS)
Ogihara, Masahiro; Kokubo, Eiichiro; Suzuki, Takeru K.; Morbidelli, Alessandro
2018-05-01
Context. No planets exist inside the orbit of Mercury and the terrestrial planets of the solar system exhibit a localized configuration. According to thermal structure calculation of protoplanetary disks, a silicate condensation line ( 1300 K) is located around 0.1 au from the Sun except for the early phase of disk evolution, and planetesimals could have formed inside the orbit of Mercury. A recent study of disk evolution that includes magnetically driven disk winds showed that the gas disk obtains a positive surface density slope inside 1 au from the central star. In a region with positive midplane pressure gradient, planetesimals undergo outward radial drift. Aims: We investigate the radial drift of planetesimals and type I migration of planetary embryos in a disk that viscously evolves with magnetically driven disk winds. We show a case in which no planets remain in the close-in region. Methods: Radial drifts of planetesimals are simulated using a recent disk evolution model that includes effects of disk winds. The late stage of planet formation is also examined by performing N-body simulations of planetary embryos. Results: We demonstrate that in the middle stage of disk evolution, planetesimals can undergo convergent radial drift in a magnetorotational instability (MRI)-inactive disk, in which the pressure maximum is created, and accumulate in a narrow ring-like region with an inner edge at 0.7 au from the Sun. We also show that planetary embryos that may grow from the narrow planetesimal ring do not exhibit significant type I migration in the late stage of disk evolution. Conclusions: The origin of the localized configuration of the terrestrial planets of the solar system, in particular the deficit of close-in planets, can be explained by the convergent radial drift of planetesimals in disks with a positive pressure gradient in the close-in region.
Understanding L-H transition in tokamak fusion plasmas
NASA Astrophysics Data System (ADS)
Xu, Guosheng; Wu, Xingquan
2017-03-01
This paper reviews the current state of understanding of the L-H transition phenomenon in tokamak plasmas with a focus on two central issues: (a) the mechanism for turbulence quick suppression at the L-H transition; (b) the mechanism for subsequent generation of sheared flow. We briefly review recent advances in the understanding of the fast suppression of edge turbulence across the L-H transition. We uncover a comprehensive physical picture of the L-H transition by piecing together a number of recent experimental observations and insights obtained from 1D and 2D simulation models. Different roles played by diamagnetic mean flow, neoclassical-driven mean flow, turbulence-driven mean flow, and turbulence-driven zonal flows are discussed and clarified. It is found that the L-H transition occurs spontaneously mediated by a shift in the radial wavenumber spectrum of edge turbulence, which provides a critical evidence for the theory of turbulence quench by the flow shear. Remaining questions and some key directions for future investigations are proposed. This work was supported by National Magnetic Confinement Fusion Science Program of China under Contracts No. 2015GB101000, No. 2013GB106000, and No. 2013GB107000 and National Natural Science Foundation of China under Contracts No. 11575235 and No. 11422546.
B2.5-Eirene modeling of radial transport in the MAGPIE linear plasma device
NASA Astrophysics Data System (ADS)
Owen, L. W.; Caneses, J. F.; Canik, J.; Lore, J. D.; Corr, C.; Blackwell, B.; Bonnin, X.; Rapp, J.
2017-05-01
Radial transport in helicon heated hydrogen plasmas in the MAGnetized Plasma Interaction Experiment (MAGPIE) is studied with the B2.5-Eirene (SOLPS5.0) code. Radial distributions of plasma density, temperature and ambipolar potential are computed for several magnetic field configurations and compared to double Langmuir probe measurements. Evidence for an unmagnetized ion population is seen in the requirement for a convective pinch term in the continuity equation in order to fit the centrally peaked density profile data. The measured slightly hollow electron temperature profiles are reproduced with combinations of on-axis and edge heating which can be interpreted as helicon and Trivelpiece-Gould wave absorption, respectively. Pressure gradient driven radial charged particle diffusion is chosen to describe the diffusive particle flux since the hollowness of the temperature profiles assists the establishment of on-axis density peaking.
NASA Astrophysics Data System (ADS)
Lejosne, Solène; Mozer, F. S.
2016-12-01
The electric drift E × B/B2 plays a fundamental role for the description of plasma flow and particle acceleration. Yet it is not well-known in the inner belt and slot region because of a lack of reliable in situ measurements. In this article, we present an analysis of the electric drifts measured below L 3 by both Van Allen Probes A and B from September 2012 to December 2014. The objective is to determine the typical components of the equatorial electric drift in both radial and azimuthal directions. The dependences of the components on radial distance, magnetic local time, and geographic longitude are examined. The results from Van Allen Probe A agree with Van Allen Probe B. They show, among other things, a typical corotation lag of the order of 5 to 10% below L 2.6, as well as a slight radial transport of the order of 20 m s-1. The magnetic local time dependence of the electric drift is consistent with that of the ionosphere wind dynamo below L 2 and with that of a solar wind-driven convection electric field above L 2. A secondary longitudinal dependence of the electric field is also found. Therefore, this work also demonstrates that the instruments on board Van Allen Probes are able to perform accurate measurements of the electric drift below L 3.
Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings
NASA Astrophysics Data System (ADS)
Shrestha, Suman K.
Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was referenced to the rotor surface speed for radial injection cooling. The mass flow rates for the radial injection were 0.032, 0.0432, 0.054 and 0.068 Kg/min, which result in average injection speed of 150, 200, 250 and 300% of rotor surface speed. Several thermocouples were attached at various circumferential directions of the bearing sleeve, two plenums, bearing holder and ball bearing housings to collect the temperature data of the bearing at 30krpm under 10lb of load. Both axial cooling and radial injection are effective cooling mechanism and effectiveness of both cooling methods is directly proportional to the total mass flow rates. However, axial cooling is slightly more efficient in controlling the average temperature of the bearing sleeve, but results in higher thermal gradient of the shaft along the axial direction and also higher thermal gradient of the bearing sleeve along the circumferential direction compared to the radial injection cooling. The smaller thermal gradient of the radial injection cooling is due to the direct cooling effect of the shaft by impinging jets. While the axial cooling has an effect on only the bearing, the radial injection has a cooling effect on both the bearing sleeve and shaft. It is considered the radial injection cooling needs to be further optimized in terms of number of injection holes and their locations.
NASA Astrophysics Data System (ADS)
Talmage, Gita; Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.
1993-09-01
In homopolar motors and generators, large dc electric currents pass through the sliding electrical contacts between rotating copper disks (rotors) and static copper surfaces shrouding the rotor tips (stators). A liquid metal in the small radial gap between the rotor tip and concentric stator surface can provide a low-resistance, low-drag electrical contact. Since there is a strong magnetic field in the region of the electrical contacts, there are large electromagnetic body forces on the liquid metal. The primary, azimuthal motion consists of simple Couette flow, plus an electromagnetically driven flow with large extremes of the azimuthal velocity near the rotor corners. The secondary flow involves the radial and axial velocity components, is driven by the centrifugal force associated with the primary flow, and is opposed by the electromagnetic body force, so that the circulation varies inversely as the square of the magnetic-field strength. Three flow regimes are identified as the angular velocity Ω of the rotor is increased. For small Ω, the primary flow is decoupled from the secondary flow. As Ω increases, the secondary flow begins to convect the azimuthal-velocity peaks radially outward, which in turn changes the centrifugal force driving the secondary flow. At some critical value of Ω, the flow becomes periodic through the coupling of the primary and secondary flows. The azimuthal-velocity peaks begin to move radially in and out with an accompanying oscillation in the secondary-flow strength.
Edge-core interaction of ITG turbulence in Tokamaks: Is the Tail Wagging the Dog?
NASA Astrophysics Data System (ADS)
Ku, S.; Chang, C. S.; Dif-Pradalier, G.; Diamond, P. H.
2010-11-01
A full-f XGC1 gyrokinetic simulation of ITG turbulence, together with the neoclassical dynamics without scale separation, has been performed for the whole-volume plasma in realistic diverted DIII-D geometry. The simulation revealed that the global structure of the turbulence and transport in tokamak plasmas results from a synergy between edge-driven inward propagation of turbulence intensity and the core-driven outward heat transport. The global ion confinement and the ion temperature gradient then self-organize quickly at turbulence propagation time scale. This synergy results in inward-outward pulse scattering leading to spontaneous production of strong internal shear layers in which the turbulent transport is almost suppressed over several radial correlation lengths. Co-existence of the edge turbulence source and the strong internal shear layer leads to radially increasing turbulence intensity and ion thermal transport profiles.
Particle orbits in a force-balanced, wave-driven, rotating torus
Ochs, I. E.; Fisch, N. J.
2017-09-01
A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less
Particle orbits in a force-balanced, wave-driven, rotating torus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochs, I. E.; Fisch, N. J.
A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less
Particle orbits in a force-balanced, wave-driven, rotating torus
NASA Astrophysics Data System (ADS)
Ochs, I. E.; Fisch, N. J.
2017-09-01
A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in this desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.
[Cyclic fatigue of Vita mark II machinable ceramics under Hertzian's contact].
Liu, Wei-Cai; Zhang, Zhi-Shen; Huang, Cheng-Min; Chao, Yong-Lie; Wan, Qian-Bing
2006-08-01
To investigate the cyclic fatigue modes of Vita mark II machinable ceramics under Hertzian's contact. Hertzian's contact technique (WC spheres r = 3.18 mm) was used to investigate the cyclic fatigue of Vita mark II machinable ceramic. All specimens were fatigued by cyclic loading in moist environment, furthermore, surviving strength was examined by three point test and morphology damage observation. In homogeneous Vita mark II machinable ceramics, two fatigue damage modes existed after cyclic loading with spheres under moist environment, including conventional tensile-driven cone cracking (brittle mode) and shear-driven microdamage accumulation (quasi-plastic mode). The latter generated radial cracks and deeply penetrating secondary cone crack. Initial strength degradation were caused by the cone cracks, subsequent and much more deleterious loss was caused by radial cracks. Cyclic fatigue modes of Vita mark II machinable ceramics includes brittle and quasi-plastic mode.
The magnetically driven plasma jet produces a pressure of 33 GPa on PTS
NASA Astrophysics Data System (ADS)
Xu, Qiang; Dan, Jiakun; Wang, Guilin; Guo, Shuai; Zhang, Siqun; Cai, Hongchun; Ren, Xiao; Wang, Kunlun; Zhou, Shaotong; Zhang, Zhaohui; Huang, Xianbin
2017-01-01
We report on experiments in which a magnetically driven plasma jet was used to hit a 500 μm thick planar aluminum target. The plasma jet was produced by using a 50 μm thick aluminum radial foil, which was subjected to 4 MA, 90 ns rising time current on the primary test stand pulsed power facility. The subsequent magnetic bubbles propagate with radial velocity reaching 200 km/s and an axial velocity of 230 km/s. After the plasma knocks onto the target, a shock forms in the target. When the shock gets to the backside of the target, we measure the velocity of the moving surface using dual laser heterodyne velocimetry. By using the Hugoniot relations, we know that the plasma jet produced a pressure of 33 GPa. According to the measured pressure and the velocity of the plasma jet, the density of the jet can be also roughly estimated.
Modified Anterolateral Portals in Elbow Arthroscopy: A Cadaveric Study on Safety.
Thon, Stephen; Gold, Peter; Rush, Lane; O'Brien, Michael J; Savoie, Felix H
2017-11-01
To evaluate the proximity to the radial nerve on cadaveric specimens of 2 modified anterolateral portals used for elbow arthroscopy. Ten fresh cadaveric elbow specimens were prepared. Four-millimeter Steinman pins were inserted into 3 anterolateral portal sites in relation to the lateral epicondyle: (1) the standard distal anterolateral portal, (2) a modified direct anterolateral portal, and (3) a modified proximal anterolateral portal. These were defined as follows: direct portals 2 cm directly anterior to the lateral epicondyle, and proximal portals 2 cm proximal and 2 cm directly anterior to the lateral epicondyle. Each elbow was then dissected to reveal the course of the radial nerve. Digital photographs were taken of each specimen, and the distance from the Steinman pin to the radial nerve was measured. The modified proximal anterolateral and direct anterolateral portals were found to be a statistically significant distance from the radial nerve compare to the distal portal site (P = .011 and P = .0011, respectively). No significant difference was found in the proximity of the radial nerve between the modified proximal and direct anterolateral portals (P = .25). Inadequate imaging was found at a single portal site for the proximal site; 9 specimens were used for analysis of this portal with 10 complete specimens for the other 2 sites. In cadaveric analysis, both the modified proximal and direct lateral portals provide adequate distance from the radial nerve and may be safe for clinical use. In this study, the distal anterolateral portal was in close proximity of the radial nerve and may result in iatrogenic injury in the clinical setting. This is a cadaveric analysis of 2 modified portal locations at the anterolateral elbow for use in elbow arthroscopy. Further clinical studies are needed prior to determining their absolute safety in comparison to previously identified portal sites. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Apparatus for high speed rotation of electrically operated devices
Williams, Keith E.; Rogus, Arnold J.
1976-10-26
Most high speed centrifuges employ a relatively small diameter elongate flexible drive shaft, sometimes called a "quill" shaft. These relatively slender shafts are flexible to absorb vibration as the assembly passes through speeds of resonance and to permit re-alignment of the axis of rotation of the shaft and the rotor driven thereby in the event the center of mass of the rotor and shaft assembly is displaced from the nominal axis of the rotation. To use such an apparatus for testing electrical devices and components, electrical conductors for wires are passed from a slip ring assembly located at an end of the quill shaft remote from the rotor and longitudinally alongside the quill shaft to the electrical device mounted on the rotor. The longitudinally extending conductors are supported against the radially outward directed centrifugal forces by a plurality of strong, self-lubricating, slightly compressible wafers or washers co-axially stacked on the slender shaft and provided with radially offset longitudinally aligned openings to support the longitudinally extending conductors. The conductors are supported against the centrifugal forces and thus protected from rupture or other damage without restricting or constraining the essential flexure or bending of the drive shaft.
Unsteady Specific Work and Isentropic Efficiency of a Radial Turbine Driven by Pulsed Detonations
2012-06-14
iv AFIT/DS/ENY/12-25 Abstract There has been longstanding government and industry interest in pressure-gain combustion for use in Brayton cycle...10 III.A. Unsteady Flow in Conventional Brayton Cycle Turbines ........................10 III.B. Unsteady Flow in Pulsed Detonation Driven...Szpynda and Nalim 2007) 114 Figure 69. Heiser and Pratt comparison of ideal PDE, Humphrey, and Brayton cycles on a temperature-entropy diagram (Heiser
Method for adhering a coating to a substrate structure
Taxacher, Glenn Curtis; Crespo, Andres Garcia; Roberts, III, Herbert Chidsey
2015-02-17
A method for adhering a coating to a substrate structure comprises selecting a substrate structure having an outer surface oriented substantially parallel to a direction of radial stress, modifying the outer surface to provide a textured region having steps to adhere a coating thereto, and applying a coating to extend over at least a portion of the textured region, wherein the steps are oriented substantially perpendicular to the direction of radial stress to resist deformation of the coating relative to the substrate structure. A rotating component comprises a substrate structure having an outer surface oriented substantially parallel to a direction of radial stress. The outer surface defines a textured region having steps to adhere a coating thereto, and a coating extends over at least a portion of the textured region. The steps are oriented substantially perpendicular to the direction of radial stress to resist creep.
Beer, Janos; Dowdy, Thomas E.; Bachovchin, Dennis M.
1997-01-01
A combustor for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone.
Tree growth response to ENSO in Durango, Mexico
NASA Astrophysics Data System (ADS)
Pompa-García, Marin; Miranda-Aragón, Liliana; Aguirre-Salado, Carlos Arturo
2015-01-01
The dynamics of forest ecosystems worldwide have been driven largely by climatic teleconnections. El Niño-Southern Oscillation (ENSO) is the strongest interannual variation of the Earth's climate, affecting the regional climatic regime. These teleconnections may impact plant phenology, growth rate, forest extent, and other gradual changes in forest ecosystems. The objective of this study was to investigate how Pinus cooperi populations face the influence of ENSO and regional microclimates in five ecozones in northwestern Mexico. Using standard dendrochronological techniques, tree-ring chronologies (TRI) were generated. TRI, ENSO, and climate relationships were correlated from 1950-2010. Additionally, multiple regressions were conducted in order to detect those ENSO months with direct relations in TRI ( p < 0.1). The five chronologies showed similar trends during the period they overlapped, indicating that the P. cooperi populations shared an interannual growth variation. In general, ENSO index showed correspondences with tree-ring growth in synchronous periods. We concluded that ENSO had connectivity with regional climate in northern Mexico and radial growth of P. cooperi populations has been driven largely by positive ENSO values (El Niño episodes).
Tree growth response to ENSO in Durango, Mexico.
Pompa-García, Marin; Miranda-Aragón, Liliana; Aguirre-Salado, Carlos Arturo
2015-01-01
The dynamics of forest ecosystems worldwide have been driven largely by climatic teleconnections. El Niño-Southern Oscillation (ENSO) is the strongest interannual variation of the Earth's climate, affecting the regional climatic regime. These teleconnections may impact plant phenology, growth rate, forest extent, and other gradual changes in forest ecosystems. The objective of this study was to investigate how Pinus cooperi populations face the influence of ENSO and regional microclimates in five ecozones in northwestern Mexico. Using standard dendrochronological techniques, tree-ring chronologies (TRI) were generated. TRI, ENSO, and climate relationships were correlated from 1950-2010. Additionally, multiple regressions were conducted in order to detect those ENSO months with direct relations in TRI (p < 0.1). The five chronologies showed similar trends during the period they overlapped, indicating that the P. cooperi populations shared an interannual growth variation. In general, ENSO index showed correspondences with tree-ring growth in synchronous periods. We concluded that ENSO had connectivity with regional climate in northern Mexico and radial growth of P. cooperi populations has been driven largely by positive ENSO values (El Niño episodes).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firouzjaei, Ali Shekari; Shokri, Babak
In the present paper, we study the wakes known as the donut wake which is generated by Laguerre-Gauss (LG) laser pulses. Effects of the special spatial profile of a LG pulse on the radial and longitudinal wakefields are presented via an analytical model in a weakly non-linear regime in two dimensions. Different aspects of the donut-shaped wakefields have been analyzed and compared with Gaussian-driven wakes. There is also some discussion about the accelerating-focusing phase of the donut wake. Variations of longitudinal and radial wakes with laser amplitude, pulse length, and pulse spot size have been presented and discussed. Finally, wemore » present the optimum pulse duration for such wakes.« less
Robust rotation of rotor in a thermally driven nanomotor
Cai, Kun; Yu, Jingzhou; Shi, Jiao; Qin, Qing-Hua
2017-01-01
In the fabrication of a thermally driven rotary nanomotor with the dimension of a few nanometers, fabrication and control precision may have great influence on rotor’s stability of rotational frequency (SRF). To investigate effects of uncertainty of some major factors including temperature, tube length, axial distance between tubes, diameter of tubes and the inward radial deviation (IRD) of atoms in stators on the frequency’s stability, theoretical analysis integrating with numerical experiments are carried out. From the results obtained via molecular dynamics simulation, some key points are illustrated for future fabrication of the thermal driven rotary nanomotor. PMID:28393898
Suppression of an acoustic mode by an elastic mode of a liquid-filled spherical shell resonator.
Lonzaga, Joel B; Raymond, Jason L; Mobley, Joel; Gaitan, D Felipe
2011-02-01
The purpose of this paper is to report on the suppression of an approximately radial (radially symmetric) acoustic mode by an elastic mode of a water-filled, spherical shell resonator. The resonator, which has a 1-in. wall thickness and a 9.5-in. outer diameter, was externally driven by a small transducer bolted to the external wall. Experiments showed that for the range of drive frequencies (19.7-20.6 kHz) and sound speeds in water (1520-1570 m/s) considered in this paper, a nonradial (radially nonsymmetric) mode was also excited, in addition to the radial mode. Furthermore, as the sound speed in the liquid was changed, the resonance frequency of the nonradial mode crossed with that of the radial one and the amplitude of the latter was greatly reduced near the crossing point. The crossing of the eigenfrequency curves of these two modes was also predicted theoretically. Further calculations demonstrated that while the radial mode is an acoustic one associated with the interior fluid, the nonradial mode is an elastic one associated with the shell. Thus, the suppression of the radial acoustic mode is apparently caused by the overlapping with the nonradial elastic mode near the crossing point.
Evidence for Radial Anisotropy in Earth's Upper Inner Core from Normal Modes
NASA Astrophysics Data System (ADS)
Lythgoe, K.; Deuss, A. F.
2017-12-01
The structure of the uppermost inner core is related to solidification of outer core material at the inner core boundary. Previous seismic studies using body waves indicate an isotropic upper inner core, although radial anisotropy has not been considered since it cannot be uniquely determined by body waves. Normal modes, however, do constrain radial anisotropy in the inner core. Centre frequency measurements indicate 2-5 % radial anisotropy in the upper 100 km of the inner core, with a fast direction radially outwards and a slow direction along the inner core boundary. This seismic structure provides constraints on solidification processes at the inner core boundary and appears consistent with texture predicted due to anisotropic inner core growth.
Radial forces in a misaligned radial face seal
NASA Technical Reports Server (NTRS)
Etsion, I.
1978-01-01
Radial forces on the primary seal ring of a flat misaligned seal are analyzed, taking into account the radial variation in seal clearance. An analytical solution for both hydrostatic and hydrodynamic effects is presented that covers the whole range from zero to full angular misalignment. The net radial force on the primary seal ring is always directed so as to produce a radial eccentricity which generates inward pumping. Although the radial force is usually very small, in some cases it may be one of the reasons for excessive leakage through both the primary and secondary seals of a radial face seal.
Radial forces in a misaligned radial face seal
NASA Technical Reports Server (NTRS)
Etsion, I.
1977-01-01
Radial forces on the primary seal ring of a flat misaligned seal are analyzed, taking into account the radial variation in seal clearance. An analytical solution for both hydrostatic and hydrodynamic effects is presented that covers the whole range from zero to full angular misalignment. The net radial force on the primary seal ring is always directed so as to produce a radial eccentricity which generates inward pumping. Although the radial force is usually very small, in some cases it may be one of the reasons for excessive leakage through both the primary and secondary seals of a radial face seal.
Soulé, Peter T; Knapp, Paul A
2006-01-01
The primary objective of this study was to determine if gradually increasing levels of atmospheric CO2, as opposed to 'step' increases commonly employed in controlled studies, have a positive impact on radial growth rates of ponderosa pine (Pinus ponderosa) in natural environments, and to determine the spatial extent and variability of this growth enhancement. We developed a series of tree-ring chronologies from minimally disturbed sites across a spectrum of environmental conditions. A series of difference of means tests were used to compare radial growth post-1950, when the impacts of rising atmospheric CO2 are best expressed, with that pre-1950. Spearman's correlation was used to relate site stress to growth-rate changes. Significant increases in radial growth rates occurred post-1950, especially during drought years, with the greatest increases generally found at the most water-limited sites. Site harshness is positively related to enhanced radial growth rates. Atmospheric CO2 fertilization is probably operative, having a positive effect on radial growth rates of ponderosa pine through increasing water-use efficiency. A CO2-driven growth enhancement may affect ponderosa pine growing under both natural and controlled conditions.
2005-01-24
Phase Resistance 6 3.5 Required Turns Per Coil 6 3.6 Flux Per Pole Calculation 7 3.7 Slot Area 7 3.8 Stator Core Volume 8...PM) B - Conventional wound radial field C – Conventional surface PM rotor (developed by Gene Aha) D - PM flux squeezing radial field (developed...permanent magnet pole arc and the soft iron poles between the magnets are critical in the design to achieve the balance between the Reluctance and the
Market Assessment and Commercialization Strategy for the Radial Sandia Cooler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Shandross, Richard; Weintraub, Daniel
This market assessment and commercialization report characterizes and assesses the market potential of the rotating heat exchanger technology developed at Sandia National Laboratories (SNL), known as the Radial Sandia Cooler. The RSC is a novel, motor-driven, rotating, finned heat exchanger technology. The RSC was evaluated for the residential, commercial, industrial, and transportation markets. Recommendations for commercialization were made based on assessments of the prototype RSC and the Sandia Cooler technology in general, as well as an in-depth analysis of the six most promising products for initial RSC commercialization.
Electrically driving large magnetic Reynolds number flows on the Madison plasma dynamo experiment
NASA Astrophysics Data System (ADS)
Weisberg, David; Wallace, John; Peterson, Ethan; Endrezzi, Douglass; Forest, Cary B.; Desangles, Victor
2015-11-01
Electrically-driven plasma flows, predicted to excite a large-scale dynamo instability, have been generated in the Madison plasma dynamo experiment (MPDX), at the Wisconsin Plasma Astrophysics Laboratory. Numerical simulations show that certain topologies of these simply-connected flows may be optimal for creating a plasma dynamo and predict critical thresholds as low as Rmcrit =μ0 σLV = 250 . MPDX plasmas are shown to exceed this critical Rm , generating large (L = 1 . 4 m), warm (Te > 10 eV), unmagnetized (MA > 1) plasmas where Rm < 600 . Plasma flow is driven using ten thermally emissive LaB6 cathodes which generate a J × B torque in Helium plasmas. Detailed Mach probe measurements of plasma velocity for two flow topologies will be presented: edge-localized drive using the multi-cusp boundary field, and volumetric drive using an axial Helmholtz field. Radial velocity profiles show that edge-driven flow is established via ion viscosity but is limited by a volumetric neutral drag force (χ ~ 1 / (ντin)), and measurements of velocity shear compare favorably to Braginskii transport theory. Volumetric flow drive is shown to produce stronger velocity shear, and is characterized by the radial potential gradient as determined by global charge balance.
Hybrid simulations of radial transport driven by the Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Delamere, P. A.; Stauffer, B. H.; Ma, X.
2017-12-01
Plasma transport in the rapidly rotating giant magnetospheres is thought to involve a centrifugally-driven flux tube interchange instability, similar to the Rayleigh-Taylor (RT) instability. In three dimensions, the convective flow patterns associated with the RT instability can produce strong guide field reconnection, allowing plasma mass to move radially outward while conserving magnetic flux (Ma et al., 2016). We present a set of hybrid (kinetic ion / fluid electron) plasma simulations of the RT instability using high plasma beta conditions appropriate for Jupiter's inner and middle magnetosphere. A density gradient, combined with a centrifugal force, provide appropriate RT onset conditions. Pressure balance is achieved by initializing two ion populations: one with fixed temperature, but varying density, and the other with fixed density, but a temperature gradient that offsets the density gradient from the first population and the centrifugal force (effective gravity). We first analyze two-dimensional results for the plane perpendicular to the magnetic field by comparing growth rates as a function of wave vector following Huba et al. (1998). Prescribed perpendicular wave modes are seeded with an initial velocity perturbation. We then extend the model to three dimensions, introducing a stabilizing parallel wave vector. Boundary conditions in the parallel direction prohibit motion of the magnetic field line footprints to model the eigenmodes of the magnetodisc's resonant cavity. We again compare growth rates based on perpendicular wave number, but also on the parallel extent of the resonant cavity, which fixes the size of the largest parallel wavelength. Finally, we search for evidence of strong guide field magnetic reconnection within the domain by identifying areas with large parallel electric fields or changes in magnetic field topology.
Revealing the Radial Effect on Orientation Discrimination by Manual Reaction Time
Liang, Lixin; Zhou, Yang; Zhang, Mingsha; Pan, Yujun
2017-01-01
It has been shown that the sensitivity and accuracy of orientation perception in the periphery is significantly better when the orientations are radial with respect to the fixation point than when they are tangential. However, since perception and action may be dissociated, it is unclear whether the perceptual radial effect has a counterpart in reaction time (RT) of motor responses. Furthermore, it is unknown whether or how stimulus-response-compatibility (SRC) effect interacts with the radial effect to determine RT. To address these questions, we measured subjects' manual RT to grating stimuli that appeared across upper visual field (VF). We found that (1) RTs were significantly shorter when a grating was oriented closer to the radial direction than when it was oriented closer to the tangential direction even though the perceptual accuracies for the more radial and more tangential orientations were not significantly different under our experimental condition; (2) This RT version of the radial effect was larger in the left VF than in the right VF; (3) The radial effect and SRC effect interacted with each other to determine the overall RT. These results suggest that the RT radial effect reported here is not a passive reflection of the radial effect in perceptual accuracy, but instead, represents different processing time of radial and tangential orientations along the sensorimotor pathway. PMID:29225564
NASA Astrophysics Data System (ADS)
Dautriat, Jeremie; Gland, Nicolas; Guelard, Jean; Dimanov, Alexandre; Raphanel, Jean L.
2009-07-01
The influence of hydrostatic and uniaxial stress states on the porosity and permeability of sandstones has been investigated. The experimental procedure uses a special triaxial cell which allows permeability measurements in the axial and radial directions. The core sleeve is equipped with two pressure samplers placed distant from the ends. They provide mid-length axial permeability measure as opposed to the overall permeability measure, which is based on the flow imposed through the pistons of the triaxial cell. The core sleeve is also equipped to perform flows in two directions transverse to the axis of the sample. Two independent measures of axial and complementary radial permeability are thus obtained. Both Fontainebleau sandstone specimens with a porosity of about 5.8% to 8% and low permeability ranging from 2.5 mD to 30 mD and Bentheimer sandstone with a porosity of 24% and a high permeability of 3 D have been tested. The initial axial permeability values obtained by each method are in good agreement for the Fontainebleau sandstone. The Bentheimer sandstone samples present an axial mid-length permeability 1.6 times higher than the overall permeability. A similar discrepancy is also observed in the radial direction, also it relates essentially to the shape of flow lines induced by the radial flow. All the tested samples have shown a higher stress dependency of overall and radial permeability than mid-length permeability. The effect of compaction damage at the pistons/sample and radial ports/sample interfaces is discussed. The relevance of directional permeability measurements during continuous uniaxial compression loadings has been shown on the Bentheimer sandstone until the failure of the sample. We can efficiently measure the influence of brittle failure associated to dilatant regime on the permeability: It tends to increase in the failure propagation direction and to decrease strongly in the transverse direction.
New concepts and new design of permanent maglev rotary artificial heart blood pumps.
Qian, K X; Zeng, P; Ru, W M; Yuan, H Y
2006-05-01
According to tradition, permanent maglev cannot achieve stable equilibrium. The authors have developed, to the contrary, two stable permanent maglev impeller blood pumps. The first pump is an axially driven uni-ventricular assist pump, in which the rotor with impeller is radially supported by two passive magnetic bearings, but has one point contact with the stator axially at standstill. As the pump raises its rotating speed, the increasing hydrodynamic force of fluid acting on the impeller will make the rotor taking off from contacting point and disaffiliate from the stator. Then the rotor becomes fully suspended. The second pump is a radially driven bi-ventricular assist pump, i.e., an impeller total artificial heart. Its rotor with two impellers on both ends is supported by two passive magnetic bearings, which counteract the attractive force between rotor magnets and stator coil iron core. The rotor is affiliated to the stator radially at standstill and becomes levitated during rotation. Therefore, the rotor keeps concentric with stator during rotation but eccentric at standstill, as is confirmed by rotor position detection with Honeywell sensors. It concludes that the permanent maglev needs action of a non-magnetic force to achieve stability but a rotating magnetic levitator with high speed and large inertia can maintain its stability merely with passive magnetic bearings.
Effects of orientation on the time decay of magnetization for cobalt-alloy thin film media
NASA Astrophysics Data System (ADS)
Wang, J. P.; Alex, Michael; Tan, L. P.; Yan, M. L.
1999-04-01
The dependence of the time decay of magnetization on orientation ratio was investigated for longitudinal Co-alloy thin film media. The coercivity orientation ratio was controlled by the degree of mechanical texture. For oriented samples, it was found that the remanent magnetization along the circumferential direction decayed faster with time than that along the radial direction when the applied reverse magnetic field was near the remanent coercivity. However, the remanent magnetization along the circumferential direction decayed more slowly with time than that along the radial direction when the applied reverse magnetic field was less than roughly half the remanent coercivity. Anisotropic interactions and magnetic anisotropy distributions appear to be the cause for the different time decay of magnetization along the circumferential and radial directions for oriented media.
Reusable captive blind fastener
NASA Technical Reports Server (NTRS)
Peterson, S. A. (Inventor)
1981-01-01
A one piece reusable fastener capable of joining materials together from one side (blind backside) comprises a screw driven pin ending in a wedge-shaped expander cone. The cone cooperates within a slotted collar end which has a number of tangs on a cylindrical body. The fastener is set by inserting it through aligned holes in the workpieces to be joined. Turning the pin in one direction draws the cone into the collar, deforming the tangs radially outward to mate with tapered back-tapered hold in the workpiece, thus fastening the two pieces together. Reversing the direction of the pin withdraws the cone from the collar, and allows the tangs to resume their contracted configuration without withdrawing the fastener from the insertion hole. The fastener is capable of joining materials together from only one side with substantial strength in tension and shear over many resue attachment cycles, with no special operations on the main assembly parts other than the tapering of the back end of the insertion hole.
NASA Astrophysics Data System (ADS)
Mota, F. L.; Song, Y.; Pereda, J.; Billia, B.; Tourret, D.; Debierre, J.-M.; Trivedi, R.; Karma, A.; Bergeon, N.
2017-08-01
To study the dynamical formation and evolution of cellular and dendritic arrays under diffusive growth conditions, three-dimensional (3D) directional solidification experiments were conducted in microgravity on a model transparent alloy onboard the International Space Station using the Directional Solidification Insert in the DEvice for the study of Critical LIquids and Crystallization. Selected experiments were repeated on Earth under gravity-driven fluid flow to evidence convection effects. Both radial and axial macrosegregation resulting from convection are observed in ground experiments, and primary spacings measured on Earth and microgravity experiments are noticeably different. The microgravity experiments provide unique benchmark data for numerical simulations of spatially extended pattern formation under diffusive growth conditions. The results of 3D phase-field simulations highlight the importance of accurately modeling thermal conditions that strongly influence the front recoil of the interface and the selection of the primary spacing. The modeling predictions are in good quantitative agreements with the microgravity experiments.
Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars
Möstl, Christian; Rollett, Tanja; Frahm, Rudy A.; Liu, Ying D.; Long, David M.; Colaninno, Robin C.; Reiss, Martin A.; Temmer, Manuela; Farrugia, Charles J.; Posner, Arik; Dumbović, Mateja; Janvier, Miho; Démoulin, Pascal; Boakes, Peter; Devos, Andy; Kraaikamp, Emil; Mays, Mona L.; Vršnak, Bojan
2015-01-01
The severe geomagnetic effects of solar storms or coronal mass ejections (CMEs) are to a large degree determined by their propagation direction with respect to Earth. There is a lack of understanding of the processes that determine their non-radial propagation. Here we present a synthesis of data from seven different space missions of a fast CME, which originated in an active region near the disk centre and, hence, a significant geomagnetic impact was forecasted. However, the CME is demonstrated to be channelled during eruption into a direction +37±10° (longitude) away from its source region, leading only to minimal geomagnetic effects. In situ observations near Earth and Mars confirm the channelled CME motion, and are consistent with an ellipse shape of the CME-driven shock provided by the new Ellipse Evolution model, presented here. The results enhance our understanding of CME propagation and shape, which can help to improve space weather forecasts. PMID:26011032
Anomalous - viscosity current drive
Stix, Thomas H.; Ono, Masayuki
1988-01-01
An apparatus and method for maintaining a steady-state current in a toroidal magnetically confined plasma. An electric current is generated in an edge region at or near the outermost good magnetic surface of the toroidal plasma. The edge current is generated in a direction parallel to the flow of current in the main plasma and such that its current density is greater than the average density of the main plasma current. The current flow in the edge region is maintained in a direction parallel to the main current for a period of one or two of its characteristic decay times. Current from the edge region will penetrate radially into the plasma and augment the main plasma current through the mechanism of anomalous viscosity. In another aspect of the invention, current flow driven between a cathode and an anode is used to establish a start-up plasma current. The plasma-current channel is magnetically detached from the electrodes, leaving a plasma magnetically insulated from contact with any material obstructions including the cathode and anode.
Interplanetary Circumstances of Quasi-Perpendicular Interplanetary Shocks in 1996-2005
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.
2010-01-01
The angle (theta(sub Bn)) between the normal to an interplanetary shock front and the upstream magnetic field direction, though often thought of as a property "of the shock," is also determined by the configuration of the magnetic field immediately upstream of the shock. We investigate the interplanetary circumstances of 105 near-Earth quasi-perpendicular shocks during 1996-2005 identified by theta(sub Bn) greater than or equal to 80 degrees and/or by evidence of shock drift particle acceleration. Around 87% of these shocks were driven by interplanetary coronal mass ejections (ICMEs); the remainder were probably the forward shocks of corotating interaction regions. For around half of the shocks, the upstream field was approximately perpendicular to the radial direction, either east-west or west-east or highly inclined to the ecliptic. Such field directions will give quasi-perpendicular configurations for radially propagating shocks. Around 30% of the shocks were propagating through, or closely followed, ICMEs at the time of observation. Another quarter were propagating through the heliospheric plasma sheet (HPS), and a further quarter occurred in slow solar wind that did not have characteristics of the HPS. Around 11% were observed in high-speed streams, and 7% in the sheaths following other shocks. The fraction of shocks found in high-speed streams is around a third of that expected based on the fraction of the time when such streams were observed at Earth. Quasi-perpendicular shocks are found traveling through ICMEs around 2-3 times more frequently than expected. In addition, shocks propagating through ICMEs are more likely to have larger values of theta(sub Bn) than shocks outside ICMEs.
Influence of fast alpha diffusion and thermal alpha buildup on tokamak reactor performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uckan, N.A.; Tolliver, J.S.; Houlberg, W.A.
1987-11-01
The effect of fast alpha diffusion and thermal alpha accumulation on the confinement capability of a candidate Engineering Test Reactor (ETR) plasma (Tokamak Ignition/Burn Experimental Reactor (TIBER-II)) in achieving ignition and steady-state driven operation has been assessed using both global and 1-1/2-D transport models. Estimates are made of the threshold for radial diffusion of fast alphas and thermal alpha buildup. It is shown that a relatively low level of radial transport, when combined with large gradients in the fast alpha density, leads to a significant radial flow with a deleterious effect on plasma performance. Similarly, modest levels of thermal alphamore » concentration significantly influence the ignition and steady-state burn capability. 23 refs., 9 figs., 4 tabs.« less
A unified model for galactic discs: star formation, turbulence driving, and mass transport
NASA Astrophysics Data System (ADS)
Krumholz, Mark R.; Burkhart, Blakesley; Forbes, John C.; Crocker, Roland M.
2018-06-01
We introduce a new model for the structure and evolution of the gas in galactic discs. In the model the gas is in vertical pressure and energy balance. Star formation feedback injects energy and momentum, and non-axisymmetric torques prevent the gas from becoming more than marginally gravitationally unstable. From these assumptions we derive the relationship between galaxies' bulk properties (gas surface density, stellar content, and rotation curve) and their star formation rates, gas velocity dispersions, and rates of radial inflow. We show that the turbulence in discs can be powered primarily by star formation feedback, radial transport, or a combination of the two. In contrast to models that omit either radial transport or star formation feedback, the predictions of this model yield excellent agreement with a wide range of observations, including the star formation law measured in both spatially resolved and unresolved data, the correlation between galaxies' star formation rates and velocity dispersions, and observed rates of radial inflow. The agreement holds across a wide range of galaxy mass and type, from local dwarfs to extreme starbursts to high-redshift discs. We apply the model to galaxies on the star-forming main sequence, and show that it predicts a transition from mostly gravity-driven turbulence at high redshift to star-formation-driven turbulence at low redshift. This transition and the changes in mass transport rates that it produces naturally explain why galaxy bulges tend to form at high redshift and discs at lower redshift, and why galaxies tend to quench inside-out.
Beer, J.; Dowdy, T.E.; Bachovchin, D.M.
1997-06-10
A combustor is described for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone. 14 figs.
Multi-pass cooling for turbine airfoils
Liang, George [Palm City, FL
2011-06-28
An airfoil for a turbine vane of a gas turbine engine. The airfoil includes an outer wall having pressure and suction sides, and a radially extending cooling cavity located between the pressure and suction sides. A plurality of partitions extend radially through the cooling cavity to define a plurality of interconnected cooling channels located at successive chordal locations through the cooling cavity. The cooling channels define a serpentine flow path extending in the chordal direction. Further, the cooling channels include a plurality of interconnected chambers and the chambers define a serpentine path extending in the radial direction within the serpentine path extending in the chordal direction.
TESTING THE EFFECTS OF EXPANSION ON SOLAR WIND TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vech, Daniel; Chen, Christopher H K, E-mail: dvech@umich.edu
2016-11-20
We present a multi-spacecraft approach to test the predictions of recent studies on the effect of solar wind expansion on the radial spectral, variance, and local 3D anisotropies of the turbulence. We found that on small scales (5000–10,000 km) the power levels of the B-trace structure functions do not depend on the sampling direction with respect to the radial suggesting that on this scale the effect of expansion is small possibly due to fast turbulent timescales. On larger scales (110–135 R{sub E}), the fluctuations of the radial magnetic field component are reduced by ∼20% compared to the transverse (perpendicular tomore » radial) ones, which could be due to expansion confining the fluctuations into the plane perpendicular to radial. For the local 3D spectral anisotropy, the B-trace structure functions showed dependence on the sampling direction with respect to radial. The anisotropy in the perpendicular plane is reduced when the increments are taken perpendicular with respect to radial, which could be an effect of expansion.« less
Siracusano, G; Tomasello, R; Giordano, A; Puliafito, V; Azzerboni, B; Ozatay, O; Carpentieri, M; Finocchio, G
2016-08-19
Solitons are very promising for the design of the next generation of ultralow power devices for storage and computation. The key ingredient to achieving this goal is the fundamental understanding of their stabilization and manipulation. Here, we show how the interfacial Dzyaloshinskii-Moriya Interaction (IDMI) is able to lift the energy degeneracy of a magnetic vortex state by stabilizing a topological soliton with radial chirality, hereafter called radial vortex. It has a noninteger Skyrmion number S (0.5<|S|<1) due to both the vortex core polarity and the magnetization tilting induced by the IDMI boundary conditions. Micromagnetic simulations predict that a magnetoresistive memory based on the radial vortex state in both free and polarizer layers can be efficiently switched by a threshold current density smaller than 10^{6} A/cm^{2}. The switching processes occur via the nucleation of topologically connected vortices and vortex-antivortex pairs, followed by spin-wave emissions due to vortex-antivortex annihilations.
The Origin of Radially Aligned Magnetic Fields in Young Supernova Remnants
NASA Astrophysics Data System (ADS)
Inoue, Tsuyoshi; Shimoda, Jiro; Ohira, Yutaka; Yamazaki, Ryo
2013-08-01
It has been suggested by radio observations of polarized synchrotron emissions that downstream magnetic fields in some young supernova remnants (SNRs) are oriented radially. We study the magnetic field distribution of turbulent SNRs driven by the Richtmyer-Meshkov instability (RMI)—in other words, the effect of rippled shock—by using three-dimensional magnetohydrodynamics simulations. We find that the induced turbulence has radially biased anisotropic velocity dispersion that leads to a selective amplification of the radial component of the magnetic field. The RMI is induced by the interaction between the shock and upstream density fluctuations. Future high-resolution polarization observations can distinguish the following candidates responsible for the upstream density fluctuations: (1) inhomogeneity caused by the cascade of large-scale turbulence in the interstellar medium, the so-called big power-law in the sky; (2) structures generated by the Drury instability in the cosmic-ray modified shock; and (3) fluctuations induced by the nonlinear feedback of the cosmic-ray streaming instability.
Task-driven imaging in cone-beam computed tomography.
Gang, G J; Stayman, J W; Ouadah, S; Ehtiati, T; Siewerdsen, J H
Conventional workflow in interventional imaging often ignores a wealth of prior information of the patient anatomy and the imaging task. This work introduces a task-driven imaging framework that utilizes such information to prospectively design acquisition and reconstruction techniques for cone-beam CT (CBCT) in a manner that maximizes task-based performance in subsequent imaging procedures. The framework is employed in jointly optimizing tube current modulation, orbital tilt, and reconstruction parameters in filtered backprojection reconstruction for interventional imaging. Theoretical predictors of noise and resolution relates acquisition and reconstruction parameters to task-based detectability. Given a patient-specific prior image and specification of the imaging task, an optimization algorithm prospectively identifies the combination of imaging parameters that maximizes task-based detectability. Initial investigations were performed for a variety of imaging tasks in an elliptical phantom and an anthropomorphic head phantom. Optimization of tube current modulation and view-dependent reconstruction kernel was shown to have greatest benefits for a directional task (e.g., identification of device or tissue orientation). The task-driven approach yielded techniques in which the dose and sharp kernels were concentrated in views contributing the most to the signal power associated with the imaging task. For example, detectability of a line pair detection task was improved by at least three fold compared to conventional approaches. For radially symmetric tasks, the task-driven strategy yielded results similar to a minimum variance strategy in the absence of kernel modulation. Optimization of the orbital tilt successfully avoided highly attenuating structures that can confound the imaging task by introducing noise correlations masquerading at spatial frequencies of interest. This work demonstrated the potential of a task-driven imaging framework to improve image quality and reduce dose beyond that achievable with conventional imaging approaches.
Open cycle ocean thermal energy conversion system
Wittig, J. Michael
1980-01-01
An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.
Analysis of Voyager Observed High-Energy Electron Fluxes in the Heliosheath Using MHD Simulations
NASA Technical Reports Server (NTRS)
Washimi, Haruichi; Webber, W. R.; Zank, Gary P.; Hu, Qiang; Florinski, Vladimir; Adams, James; Kubo, Yuki
2011-01-01
The Voyager spacecraft (V1 and V2) observed electrons of 6-14 MeV in the heliosheath which showed several incidences of flux variation relative to a background of gradually increasing flux with distance from the Sun. The increasing flux of background electrons is thought to result from inward radial diffusion. We compare the temporal electron flux variation with dynamical phenomena in the heliosheath that are obtained from our MHD simulations. Because our simulation is based on V2 observed plasma data before V2 crossed the termination shock, this analysis is effective up to late 2008, i.e., about a year after the V2-crossing, during which disturbances, driven prior to the crossing time, survived in the heliosheath. Several electron flux variations correspond to times directly associated with interplanetary shock events. One noteworthy example corresponds to various times associated with the March 2006 interplanetary shock, these being the collision with the termination shock, the passage past the V1 spacecraft, and the collision with the region near the heliopause, as identified by W.R. Webber et al. for proton/helium of 7-200 MeV. Our simulations indicate that all other electron flux variations, except one, correspond well to the times when a shock-driven magneto-sonic pulse and its reflection in the heliosheath either passed across V1/V2, or collided with the termination shock or with the plasma sheet near the heliopause. This result suggests that variation in the electron flux should be due to either direct or indirect effects of magnetosonic pulses in the heliosheath driven by interplanetary shocks
NASA Astrophysics Data System (ADS)
Ozeke, L.; Mann, I. R.; Claudepierre, S. G.; Morley, S.; Henderson, M. G.; Baker, D. N.; Kletzing, C.; Spence, H. E.
2017-12-01
We present results showing the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the most intense geomagnetic storm of the last decade which occurred on March 17th 2015. Based on observations of growing local PSD peaks at fixed first and second adiabatic invariants of M=1000 MeV/G and K=0.18 G1/2Re respectively, previous studies argued that the outer radiation belt flux enhancement that occurred during this storm resulted from local acceleration driven by VLF waves. Here we show that the vast majority of the outer radiation belt consisted of electrons with much lower K-values than 0.18 G1/2Re, and that at these lower K-values there is no clear evidence of growing local PSD peaks consistent with that expected from local acceleration. Contrary to prior studies we show that the outer radiation belt flux enhancement is consistent with inward radial diffusion driven by ULF waves and present evidence that the growing local PSD peaks at K=0.18 G1/2Re and M=1000 MeV/G result from pitch-angle scattering of lower-K electrons to K=0.18 G1/2Re. In addition, we also show that the observed outer radiation belt flux enhancement during this geomagnetic storm can be reproduced using a radial diffusion model driven by measured ULF waves without including any local acceleration. These results highlight the importance of careful analysis of the electron PSD profiles as a function of L* over a range of fixed first, M and second K, adiabatic invariants to correctly determine the mechanism responsible for the electron flux enhancements observed in the outer radiation belt.
Loading Deformation Characteristic Simulation Study of Engineering Vehicle Refurbished Tire
NASA Astrophysics Data System (ADS)
Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv
2018-05-01
The paper constructed engineering vehicle refurbished tire computer geometry model, mechanics model, contact model, finite element analysis model, did simulation study on load-deformation property of engineering vehicle refurbished tire by comparing with that of the new and the same type tire, got load-deformation of engineering vehicle refurbished tire under the working condition of static state and ground contact. The analysis result shows that change rules of radial-direction deformation and side-direction deformation of engineering vehicle refurbished tire are close to that of the new tire, radial-direction and side-direction deformation value is a little less than that of the new tire. When air inflation pressure was certain, radial-direction deformation linear rule of engineer vehicle refurbished tire would increase with load adding, however, side-direction deformation showed linear change rule, when air inflation pressure was low; and it would show increase of non-linear change rule, when air inflation pressure was very high.
NASA Astrophysics Data System (ADS)
Ali, A.; Elkington, S. R.; Malaspina, D.
2014-12-01
The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and MHD waves. Waves with frequencies in the ULF range are understood to play an important role in loss and acceleration of energetic particles. We are investigating the contributions from perturbations in both the magnetic and the electric fields in driving radial diffusion of charged particles and wish to probe two unanswered questions about ULF wave driven radial transport. First, how important are the fluctuations in the magnetic field compared with the fluctuations in the electric field in driving radial diffusion? Second, how does ULF wave power distribution in azimuth affect radial diffusion? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth but in situ measurements suggest otherwise. We present results from a study using the electric and magnetic field measurements from the Van Allen Probes to estimate the radial diffusion coefficients as a function of L and Kp. During the lifetime of the RBSP mission to date, there has been a dearth of solar activity. This compels us to consider Kp as the only time and activity dependent parameter instead of solar wind velocity and pressure.
Psychophysical estimation of the effects of aging on direction-of-heading judgments
NASA Astrophysics Data System (ADS)
Raghuram, Aparna; Lakshminarayanan, Vasudevan
2011-11-01
We conducted psychophysical experiments on direction-of-heading judgments using old and young subjects. Subjects estimated heading directions on a translation perpendicular to the vertical plane (frontoparallel); we found that heading judgments were affected by age. Increasing the random dot density in the stimulus from 24 to 400 dots did not improve threshold significantly. Older subjects started performing worse at the highest dots condition of 400. The speed of the radial motion was important, as heading judgments with slower radial motion were difficult to judge than faster radial motion, as the focus of expansion was easier to locate owing to the larger displacement of dots. Gender differences indicated that older women had a higher threshold than older men. This was only significant for the faster simulated radial speed. A general trend of women having a higher threshold than men was noticed.
Arthroscopic direct repair for a complete radial tear of the posterior root of the medial meniscus.
Wang, Kook Hyun; Hwang, Dae Hee; Cho, Jin Ho; Changale, Sachin D; Woo, Sung Jong; Nha, Kyung Wook
2011-12-01
We report here on a new arthroscopic direct repair technique for a radial tear of the posterior root of the medial meniscus (PRMM) using a posterior trans-septal portal. Radial tears of the PRMM are commonly observed in the elderly population of Korea and Japan, and the life style of these people requires squatting and kneeling down in daily life. A radial tear of the PRMM results in the loss of hoop tension and this accelerates degenerative changes in the knee joint and causes early osteoarthritis. Several reports in the medical literature have focused on various repair techniques for these tears by using pull out sutures. These techniques result in nonanatomic fixation of the meniscus, which may lead to disturbed meniscal excursion and failure to restore hoop tension. Arthroscopic direct repair may contribute to restoring hoop tension and preventing accelerated degenerative changes in the knee joint of these patients.
Staged fuel and air injection in combustion systems of gas turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Michael John; Berry, Jonathan Dwight
A gas turbine including a working fluid flowpath extending aftward from a forward injector in a combustor. The combustor may include an inner radial wall, an outer radial wall, and, therebetween, a flow annulus, and a third radial wall formed about the outer radial wall that forms an outer flow annulus. A staged injector may intersect the flow annulus so to attain an injection point within the working fluid flowpath by which aftward and forward annulus sections are defined. Air directing structure may include an aftward intake section corresponding to the aftward annulus section and a forward intake section correspondingmore » to the forward annulus section. The air directing structure may include a switchback coolant flowpath to direct air from the compressor discharge cavity to the staged injector. The switchback coolant flowpath may include an upstream section through the flow annulus, and a downstream section through the outer flow annulus.« less
Arthroscopic Direct Repair for a Complete Radial Tear of the Posterior Root of the Medial Meniscus
Wang, Kook Hyun; Hwang, Dae Hee; Cho, Jin Ho; Changale, Sachin D.; Woo, Sung Jong
2011-01-01
We report here on a new arthroscopic direct repair technique for a radial tear of the posterior root of the medial meniscus (PRMM) using a posterior trans-septal portal. Radial tears of the PRMM are commonly observed in the elderly population of Korea and Japan, and the life style of these people requires squatting and kneeling down in daily life. A radial tear of the PRMM results in the loss of hoop tension and this accelerates degenerative changes in the knee joint and causes early osteoarthritis. Several reports in the medical literature have focused on various repair techniques for these tears by using pull out sutures. These techniques result in nonanatomic fixation of the meniscus, which may lead to disturbed meniscal excursion and failure to restore hoop tension. Arthroscopic direct repair may contribute to restoring hoop tension and preventing accelerated degenerative changes in the knee joint of these patients. PMID:22162797
Rim seal arrangement having pumping feature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ching-Pang; Myers, Caleb
A rim seal arrangement for a gas turbine engine includes a first seal face on a rotor component, and a second seal face on a stationary annular rim centered about a rotation axis of the rotor component. The second seal face is spaced from the first seal face along an axial direction to define a seal gap. The seal gap is located between a radially outer hot gas path and a radially inner rotor cavity. The first seal face has a plurality of circumferentially spaced depressions, each having a depth in an axial direction and extending along a radial extentmore » of the first seal face. The depressions influence flow in the seal gap such that during rotation of the rotor component, fluid in the seal gap is pumped in a radially outward direction to prevent ingestion of a gas path fluid from the hot gas path into the rotor cavity.« less
Contraction driven flow in the extended vein networks of Physarum polycephalum
NASA Astrophysics Data System (ADS)
Alim, Karen; Amselem, Gabriel; Peaudecerf, Francois; Pringle, Anne; Brenner, Michael P.
2011-11-01
The true slime mold Physarum polycephalum is a basal organism that forms an extended network of veins to forage for food. P. polycephalum is renown for its adaptive changes of vein structure and morphology in response to food sources. These rearrangements presumably occur to establish an efficient transport and mixing of resources throughout the networks thus presenting a prototype to design transport networks under the constraints of laminar flow. The physical flows of cytoplasmic fluid enclosed by the veins exhibit an oscillatory flow termed ``shuttle streaming.'' The flow exceed by far the volume required for growth at the margins suggesting that the additional energy cost for generating the flow is spent for efficient and/or targeted redistribution of resources. We show that the viscous shuttle flow is driven by the radial contractions of the veins that accompany the streaming. We present a model for the fluid flow and resource dispersion arising due to radial contractions. The transport and mixing properties of the flow are discussed.
NASA Astrophysics Data System (ADS)
Chen, Yihang; Xiao, Chijie; Yang, Xiaoyi; Wang, Tianbo; Xu, Tianchao; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang
2017-10-01
The Laser-driven Ion beam trace probe (LITP) is a new diagnostic method for measuring poloidal magnetic field (Bp) and radial electric field (Er) in tokamaks. LITP injects a laser-driven ion beam into the tokamak, and Bp and Er profiles can be reconstructed using tomography methods. A reconstruction code has been developed to validate the LITP theory, and both 2D reconstruction of Bp and simultaneous reconstruction of Bp and Er have been attained. To reconstruct from experimental data with noise, Maximum Entropy and Gaussian-Bayesian tomography methods were applied and improved according to the characteristics of the LITP problem. With these improved methods, a reconstruction error level below 15% has been attained with a data noise level of 10%. These methods will be further tested and applied in the following LITP experiments. Supported by the ITER-CHINA program 2015GB120001, CHINA MOST under 2012YQ030142 and National Natural Science Foundation Abstract of China under 11575014 and 11375053.
Radial lean direct injection burner
Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier
2012-09-04
A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.
Influence of trabecular bone quality and implantation direction on press-fit mechanics.
Damm, Niklas B; Morlock, Michael M; Bishop, Nicholas E
2017-02-01
Achieving primary stability of uncemented press-fit prostheses in patients with poor quality bone can involve axial implantation forces large enough to cause bone fracture. Radial implantation eliminates intraoperative impaction forces and could prevent this damage. Platens of two commercial implant surfaces ("Beaded" and "Flaked") were implanted onto trabecular bone specimens of varying quality in a press-fit simulator. Samples were implanted with varying interference, either axially (shear) or radially (normal). Push-in and pull-out forces were measured to assess stability. Microstructural changes in the bone were determined from μCT analysis. For force-defined implantation analysis, push-in and pull-out forces both increased proportionally with increasing radial force, independent of implantation direction, bone quality or implant surface. For position-defined implantation analysis, pull-out forces were generally found to increase with interference and to be greater for radial than axial implantation direction, and to be lower for poor quality bone. Bone density increased locally at the tested interface due to implantation, in particular for the Beaded surface under axial implantation. If a safe radial stress can be determined for cortical bone in a particular patient, the associated implantation force, and pull-out force which represents primary stability, can be directly derived, regardless of implantation direction, bone quality or implant surface. Radial implantation delivers primary stability that is no worse than that for axial implantation and may eliminate potentially damaging impaction forces. Development of implant designs based on this principal might improve implant fixation. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:224-233, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Waelbroeck, F. L.
2012-03-01
Static external resonant magnetic field perturbations (RMPs) have been added to the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186, 545 (2003)]. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr, and the corresponding j→×B→ plasma torque (density) R[jrBp/c], induced by magnetic islands that break the toroidal symmetry of a tokamak. This extends the previous GYRO formulation for the transport of toroidal angular momentum (TAM) [R. E. Waltz, G. M. Staebler, J. Candy, and F. L. Hinton, Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)]. The focus is on electrostatic full torus radial slice simulations of externally induced q =m/n=6/3 islands with widths 5% of the minor radius or about 20 ion gyroradii. Up to moderately strong E ×B rotation, the island torque scales with the radial electric field at the resonant surface Er, the island width w, and the intensity I of the high-n micro-turbulence, as Erw√I . The radial current inside the island is carried (entirely in the n =3 component) and almost entirely by the ion E ×B flux, since the electron E ×B and magnetic flutter particle fluxes are cancelled. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that while the expected magnetic braking of the toroidal plasma rotation occurs at strong co- and counter-current rotation, at null toroidal rotation, there is a small co-directed magnetic acceleration up to the small diamagnetic (ion pressure gradient driven) co-rotation corresponding to the zero Er and null torque. This could be called the residual stress from an externally induced island. At zero Er, the only effect is the expected partial flattening of the electron temperature gradient within the island. Finite-beta GYRO simulations demonstrate almost complete RMP field screening and n =3 mode unlocking at strong Er.
NASA Astrophysics Data System (ADS)
Lario, D.; Roelof, E. C.; Decker, R. B.
2014-05-01
Multi-spacecraft observations of solar energetic particle (SEP) events allow us to estimate the longitudinal distributions of SEP peak intensities. By fitting a Gaussian functional form to the ensemble of SEP peak intensities measured by two or more spacecraft as a function of the longitudinal distance between the associated parent solar flare and the footpoint labels of the magnetic field lines connecting each spacecraft with the Sun, we found that such distributions are not centered at nominal well-connected flare longitudes but slightly offset to the west of the associated flare (Lario et al. 2006, 2013). We offer an interpretation of this result in terms of long-lived particle injection from shocks driven by the associated coronal mass ejections (CMEs). By assuming that (i) CME-driven shocks are centered on the longitude of the associated solar flare, (ii) the injection of shock accelerated particles maximizes at the nose of the shock which propagates radially outward from the Sun, and (iii) SEP particle injection from the shock starts at a certain distance above the solar surface, we infer an average radial distance where shocks are located when peak intensities in the prompt component of the SEP events are observed. We estimate the heliocentric distance of the CME-driven shock when particle injection from the shock maximizes and conclude that the injection of ˜20 MeV protons and near-relativistic electrons maximizes well inside ˜0.2 AU.
Tornadoes and other atmospheric vortices
NASA Technical Reports Server (NTRS)
Deissler, R. G.
1976-01-01
The growth of random vortices in an atmosphere with buoyant instability and vertical wind shear is studied along with the velocities in a single gravity-driven vortex; a frictionless adiabatic model which is supported by laboratory experiments is first considered. The effects of axial drag, heat transfer, and precipitation-induced downdrafts are then calculated. Heat transfer and axial drag tend to have stabilizing effects; they reduce the downdrafts of updrafts due to buoyancy. It is found that downdrafts or tornadic magnitude might occur in negatively-buoyant columns. The radial-inflow velocity required to maintain a given maximum tangential velocity in a tornado is determined by using a turbulent vortex model. Conditions under which radial-inflow velocities become sufficiently large to produce tangential velocities of tornadic magnitude are determined. The radial velocities in the outer regions, as well as the tangential velocities in the inner regions may be large enough to cause damage. The surface boundary layer, which is a region where large radial inflows can occur, is studied, and the thickness of the radial-inflow friction layer is estimated. A tornado model which involves a rotating parent cloud, as well as buoyancy and precipitation effects, is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olshevsky, Vyacheslav; Lapenta, Giovanni; Divin, Andrey
We use kinetic particle-in-cell and MHD simulations supported by an observational data set to investigate magnetic reconnection in clusters of null points in space plasma. The magnetic configuration under investigation is driven by fast adiabatic flux rope compression that dissipates almost half of the initial magnetic field energy. In this phase powerful currents are excited producing secondary instabilities, and the system is brought into a state of “intermittent turbulence” within a few ion gyro-periods. Reconnection events are distributed all over the simulation domain and energy dissipation is rather volume-filling. Numerous spiral null points interconnected via their spines form null linesmore » embedded into magnetic flux ropes; null point pairs demonstrate the signatures of torsional spine reconnection. However, energy dissipation mainly happens in the shear layers formed by adjacent flux ropes with oppositely directed currents. In these regions radial null pairs are spontaneously emerging and vanishing, associated with electron streams and small-scale current sheets. The number of spiral nulls in the simulation outweighs the number of radial nulls by a factor of 5–10, in accordance with Cluster observations in the Earth's magnetosheath. Twisted magnetic fields with embedded spiral null points might indicate the regions of major energy dissipation for future space missions such as the Magnetospheric Multiscale Mission.« less
NASA Astrophysics Data System (ADS)
Hong, R.; Li, J. C.; Hajjar, R.; Chakraborty Thakur, S.; Diamond, P. H.; Tynan, G. R.
2018-05-01
Detailed measurements of intrinsic axial flow generation parallel to the magnetic field in the controlled shear decorrelation experiment linear plasma device with no axial momentum input are presented and compared to theory. The results show a causal link from the density gradient to drift-wave turbulence with broken spectral symmetry and development of the axial mean parallel flow. As the density gradient steepens, the axial and azimuthal Reynolds stresses increase and radially sheared azimuthal and axial mean flows develop. A turbulent axial momentum balance analysis shows that the axial Reynolds stress drives the radially sheared axial mean flow. The turbulent drive (Reynolds power) for the azimuthal flow is an order of magnitude greater than that for axial flow, suggesting that the turbulence fluctuation levels are set by azimuthal flow shear regulation. The direct energy exchange between axial and azimuthal mean flows is shown to be insignificant. Therefore, the axial flow is parasitic to the turbulence-zonal flow system and is driven primarily by the axial turbulent stress generated by that system. The non-diffusive, residual part of the axial Reynolds stress is found to be proportional to the density gradient and is formed due to dynamical asymmetry in the drift-wave turbulence.
Effects of radial direction and eccentricity on acceleration perception.
Mueller, Alexandra S; Timney, Brian
2014-01-01
Radial optic flow can elicit impressions of self-motion--vection--or of objects moving relative to the observer, but there is disagreement as to whether humans have greater sensitivity to expanding or to contracting optic flow. Although most studies agree there is an anisotropy in sensitivity to radial optic flow, it is unclear whether this asymmetry is a function of eccentricity. The issue is further complicated by the fact that few studies have examined how acceleration sensitivity is affected, even though observers and objects in the environment seldom move at a constant speed. To address these issues, we investigated the effects of direction and eccentricity on the ability to detect acceleration in radial optic flow. Our results indicate that observers are better at detecting acceleration when viewing contraction compared with expansion and that eccentricity has no effect on the ability to detect accelerating radial optic flow. Ecological interpretations are discussed.
Direction control of anisotropy in the soft-magnetic underlayer for L10 Fe-Pt perpendicular media
NASA Astrophysics Data System (ADS)
Suzuki, Toshio
2005-05-01
Induced anisotropy of soft-magnetic underlayers (SUL) were pinned to radial and circumferential directions in double-layered perpendicular media, and effects of the directions on recording properties were studied for Fe-Pt media. A medium with the SUL of radial anisotropy showed a sharper cross-track profile than that of a medium with the SUL of circumferential anisotropy. Furthermore, signal-to-noise ratio (SNR) of the former was found to be 4dB higher than that of the latter at 500kfrpi. A SUL of radial anisotropy with an anisotropy-dispersion narrower could result in suppressing the fluctuation of write-field gradient and lead to further high SNR.
Orbay, Jorge L; Mijares, Michael R; Berriz, Cecilia G
2016-01-01
When designing a radial head replacement, the magnitude and direction of forces applied across the proximal radio-ulnar joint (PRUJ) and the radiocapitellar joint must be included. These designs often focus on axial loads transmitted to the radial head by the capitellum; however, the radial head also bears a significant transverse force at the PRUJ. Load transmission by the central band of the interosseous ligament induces a force component in a lateral direction perpendicular to the axis of the limb, which is borne by the articular surfaces of the proximal and distal radio-ulnar joints. The objective of this study is to establish the relationship between distally applied axial forces and proximal transverse reaction forces. Five cadaveric, human forearms with intact interosseous membranes were used to measure the magnitude of transversely-directed forces experienced by the radial head during axial loading of the forearm at the lunate fossa. A Mark-10 test stand applied a gradual and continuous axial load on the articular surface of the distal radius. A Mark-10 force gauge measured the resultant transverse force experienced by the radial head in the proximal radioulnar joint. Classical mechanics and static force analysis were applied in order to predict lateral force values that would occur when the interosseous ligament is treated as the major load transmitter between the radius and ulna. Acquired data show that the radial head bears a force in the transverse direction that averages 18% (SD 3.89%) in magnitude of the axial force applied at the wrist. This figure is in close accordance with the predicted value of 22% that was calculated by way of free-body plotting. Physiologic forearm loading results in a clinically significant transverse force component transmitted through the interosseous ligament complex. The existence of transverse forces in the human forearm may explain clinical problems seen after radial head resection and suggest that radial head implants be designed to sustain substantial transverse forces. Basic science study, anatomical. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of spiral outlet hydraulic passage geometrics on the radial thrust
NASA Astrophysics Data System (ADS)
Lugova, S. O.; Ignateva, P. I.
2017-08-01
The article presents the results of investigation of the effect of geometrics of a double-volute outlet hydraulic passage on the magnitude and direction of acting of the radial reaction forces in a between-bearings single-stage centrifugal pump with a double entry impeller. The investigation has been performed with the use of a computing experiment. Characteristic curves as well as values and directions of the radial thrust have been compared for three variants of outlet hydraulic passages differing in the width at their entrance.
Do ray cells provide a pathway for radial water movement in the stems of conifer trees?
David M. Barnard; Barbara Lachenbruch; Katherine A. McCulloh; Peter Kitin; Frederick C. Meinzer
2013-01-01
The pathway of radial water movement in tree stems presents an unknown with respect to whole-tree hydraulics. Radial profiles have shown substantial axial sap flow in deeper layers of sapwood (that may lack direct connection to transpiring leaves), which suggests the existence of a radial pathway for water movement. Rays in tree stems include ray tracheids and/or ray...
Simulation of Blast Loading on an Ultrastructurally-based Computational Model of the Ocular Lens
2013-10-01
gradient components in the axial ( F22 ) and radial (F11) directions. One can observe the very large deformation (approaching 800%) and 5 Figure 5...and (bottom left) show deformation gradient in axial ( F22 ) and radial (F11) directions. (bottom right) normalized force versus displacement curve for
Mechanically driven centrifugal pyrolyzer
Linck, Martin Brendan [Mount Prospect, IL; Bush, Phillip Vann [Bartlett, IL
2012-03-06
An apparatus for fast pyrolysis of biomass and other solid organic materials including a vertically oriented cylindrical vessel having a solids outlet proximate the bottom thereof, a vapor outlet, a top wall forming at least one opening, and an adjacent heated side wall. Disposed within the cylindrical vessel and extending through the at least one opening in the top wall is a rotor having a rotatable shaft coincident with the longitudinal axis of the cylindrical vessel to which is attached at least one substantially vertically oriented blade having one edge connected directly or indirectly with the rotatable shaft and having an opposite edge spaced apart from the heated side wall, whereby a non-radial, preferably tangential, force is imparted on the feedstock in the cylindrical vessel. Also disclosed is a method for fast pyrolysis of biomass and other solid organic materials.
Drug delivery with microsecond laser pulses into gelatin.
Shangguan, H; Casperson, L W; Shearin, A; Gregory, K W; Prahl, S A
1996-07-01
Photo acoustic drug delivery is a technique for localized drug delivery by laser-induced hydrodynamic pressure following cavitation bubble expansion and collapse. Photoacoustic drug delivery was investigated on gelatin-based thrombus models with planar and cylindrical geometries by use of one microsecond laser pulses. Solutions of a hydrophobic dye in mineral oil permitted monitoring of delivered colored oil into clear gelatin-based thrombus models. Cavitation bubble development and photoacoustic drug delivery were visualized with flash photography. This study demonstrated that cavitation is the governing mechanism for photoacoustic drug delivery, and the deepest penetration of colored oil in gels followed the bubble collapse. Spatial distribution measurements revealed that colored oil could be driven a few millimeters into the gels in both axial and radial directions, and the penetration was less than 500 µm when the gelatin structure was not fractured.
Hall, James E.; Williams, Everett H.
1977-01-01
A system for wetting fine dry powders such as bentonite clay with water or other liquids is described. The system includes a wetting tank for receiving water and a continuous flow of fine powder feed. The wetting tank has a generally square horizontal cross section with a bottom end closure in the shape of an inverted pyramid. Positioned centrally within the wetting tank is a flow control cylinder which is supported from the walls of the wetting tank by means of radially extending inclined baffles. A variable speed motor drives a first larger propeller positioned immediately below the flow control cylinder in a direction which forces liquid filling the tank to flow downward through the flow control cylinder and a second smaller propeller positioned below the larger propeller having a reverse pitch to oppose the flow of liquid being driven downward by the larger propeller.
A mechanically driven switch for decoupling cryocoolers
NASA Astrophysics Data System (ADS)
van der Laan, M. T. G.; Tax, R.; Ten Kate, H. H. J.; van de Klundert, L. J. M.
A superconductive magnet system solely cooled by thermal conduction and two Gifford-McMahon cryocoolers has been developed. One cooler is redundant to obtain reliable and serviceable operation. The magnet operates at a temperature of 12 K. In order to reduce the heat flux into the system when one cooler is out of service, two thermal switches were developed with the following features. In both cases, thermal contact is made by pressing two or more pieces of metal against each other. The first switch is a lathe-chuck type and consists of three metal pieces symmetrically arranged around a metal bar. They are simultaneously pushed in a radial direction thus making mechanical and thermal contact. The second is a bench-vise type. A metal bar is clamped between two metal jaws by means of the action of a screw driven by an external torque. In both cases, relatively fast switching is possible. The thermal resistance obtained in the on-state was better than 0.5 W/K, and in the off-state at least a factor of 1000 less. Thermal and mechanical cycling appeared to have no large influence on the switch performance.
Numerical modeling of the solar wind flow with observational boundary conditions
Pogorelov, N. V.; Borovikov, S. N.; Burlaga, L. F.; ...
2012-11-20
In this paper we describe our group efforts to develop a self-consistent, data-driven model of the solar wind (SW) interaction with the local interstellar medium. The motion of plasma in this model is described with the MHD approach, while the transport of neutral atoms is addressed by either kinetic or multi-fluid equations. The model and its implementation in the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) are continuously tested and validated by comparing our results with other models and spacecraft measurements. In particular, it was successfully applied to explain an unusual SW behavior discovered by the Voyager 1 spacecraft, i.e., the developmentmore » of a substantial negative radial velocity component, flow turning in the transverse direction, while the latitudinal velocity component goes to very small values. We explain recent SW velocity measurements at Voyager 1 in the context of our 3-D, MHD modeling. We also present a comparison of different turbulence models in their ability to reproduce the SW temperature profile from Voyager 2 measurements. Lastly, the boundary conditions obtained at 50 solar radii from data-driven numerical simulations are used to model a CME event throughout the heliosphere.« less
Nonlinear Evolution of Short-wavelength Torsional Alfvén Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shestov, S. V.; Nakariakov, V. M.; Ulyanov, A. S.
2017-05-10
We analyze nonlinear evolution of torsional Alfvén waves in a straight magnetic flux tube filled in with a low- β plasma, and surrounded with a plasma of lower density. Such magnetic tubes model, in particular, a segment of a coronal loop or a polar plume. The wavelength is taken comparable to the tube radius. We perform a numerical simulation of the wave propagation using ideal magnetohydrodynamics. We find that a torsional wave nonlinearly induces three kinds of compressive flows: the parallel flow at the Alfvén speed, which constitutes a bulk plasma motion along the magnetic field, the tube wave, andmore » also transverse flows in the radial direction, associated with sausage fast magnetoacoustic modes. In addition, the nonlinear torsional wave steepens and its propagation speed increases. The latter effect leads to the progressive distortion of the torsional wave front, i.e., nonlinear phase mixing. Because of the intrinsic non-uniformity of the torsional wave amplitude across the tube radius, the nonlinear effects are more pronounced in regions with higher wave amplitudes. They are always absent at the axes of the flux tube. In the case of a linear radial profile of the wave amplitude, the nonlinear effects are localized in an annulus region near the tube boundary. Thus, the parallel compressive flows driven by torsional Alfvén waves in the solar and stellar coronae, are essentially non-uniform in the perpendicular direction. The presence of additional sinks for the wave energy reduces the efficiency of the nonlinear parallel cascade in torsional Alfvén waves.« less
Nonlinear Evolution of Short-wavelength Torsional Alfvén Waves
NASA Astrophysics Data System (ADS)
Shestov, S. V.; Nakariakov, V. M.; Ulyanov, A. S.; Reva, A. A.; Kuzin, S. V.
2017-05-01
We analyze nonlinear evolution of torsional Alfvén waves in a straight magnetic flux tube filled in with a low-β plasma, and surrounded with a plasma of lower density. Such magnetic tubes model, in particular, a segment of a coronal loop or a polar plume. The wavelength is taken comparable to the tube radius. We perform a numerical simulation of the wave propagation using ideal magnetohydrodynamics. We find that a torsional wave nonlinearly induces three kinds of compressive flows: the parallel flow at the Alfvén speed, which constitutes a bulk plasma motion along the magnetic field, the tube wave, and also transverse flows in the radial direction, associated with sausage fast magnetoacoustic modes. In addition, the nonlinear torsional wave steepens and its propagation speed increases. The latter effect leads to the progressive distortion of the torsional wave front, I.e., nonlinear phase mixing. Because of the intrinsic non-uniformity of the torsional wave amplitude across the tube radius, the nonlinear effects are more pronounced in regions with higher wave amplitudes. They are always absent at the axes of the flux tube. In the case of a linear radial profile of the wave amplitude, the nonlinear effects are localized in an annulus region near the tube boundary. Thus, the parallel compressive flows driven by torsional Alfvén waves in the solar and stellar coronae, are essentially non-uniform in the perpendicular direction. The presence of additional sinks for the wave energy reduces the efficiency of the nonlinear parallel cascade in torsional Alfvén waves.
Radiation-pressure-driven sub-Keplerian rotation of the disc around the AGB star L2 Pup
NASA Astrophysics Data System (ADS)
Haworth, Thomas J.; Booth, Richard A.; Homan, Ward; Decin, Leen; Clarke, Cathie J.; Mohanty, Subhanjoy
2018-01-01
We study the sub-Keplerian rotation and dust content of the circumstellar material around the asymptotic giant branch (AGB) star L2 Puppis. We find that the thermal pressure gradient alone cannot explain the observed rotation profile. We find that there is a family of possible dust populations for which radiation pressure can drive the observed sub-Keplerian rotation. This set of solutions is further constrained by the spectral energy distribution (SED) of the system, and we find that a dust-to-gas mass ratio of ∼10-3 and a maximum grain size that decreases radially outwards can satisfy both the rotation curve and SED. These dust populations are dynamically tightly coupled to the gas azimuthally. However, grains larger than ∼ 0.5 μm are driven outwards radially by radiation pressure at velocities ∼5 km s-1, which implies a dust replenishment rate of ∼3 × 10-9 M⊙ yr-1. This replenishment rate is consistent with observational estimates to within uncertainties. Coupling between the radial motion of the dust and gas is weak and hence the gas does not share in this rapid outward motion. Overall, we conclude that radiation pressure is a capable and necessary mechanism to explain the observed rotation profile of L2 Pup, and offers other additional constraints on the dust properties.
Characteristics of Muti-pulsing CHI driven ST plasmas on HIST
NASA Astrophysics Data System (ADS)
Ishihara, M.; Hanao, T.; Ito, K.; Matsumoto, K.; Higashi, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2011-10-01
The flux amplification and sustainment of the ST configurations by operating in Multi-pulsing Coaxial Helicity Injection (M-CHI) method have been demonstrated on HIST. The multi-pulsing experiment was demonstrated in the SSPX spheromak device at LLNL. In the double pulsing discharges, we have observed that the plasma current has been sustained much longer against the resistive decay as compared to the single CHI. We have measured the radial profiles of the flow velocities by using Ion Doppler Spectrometer and Mach probes. The result shows that poloidal shear flow exists between the open flux column and the most outer closed flux surface. The poloidal velocity shear at the interface may be caused by the ion diamagnetic drift, because of a steep density gradient there. The radial electric field is determined by the flow velocities and the ion pressure gradient through the radial momentum balance equation. We have investigated the contribution of ExB or the ion pressure gradient on the poloidal velocity shear by comparing the impurity ion flow obtained from the IDS with the bulk ion flow from the Mach probe. It should be noted that the diamagnetic drift velocity of the impurity is much smaller than ExB drift velocity. We will discuss characteristics of M-CHI-driven ST plasmas by varying TF coil current and the line averaged electron density.
Study on Initiation Mechanisms of Hydraulic Fracture Guided by Vertical Multi-radial Boreholes
NASA Astrophysics Data System (ADS)
Guo, Tiankui; Liu, Binyan; Qu, Zhanqing; Gong, Diguang; Xin, Lei
2017-07-01
The conventional hydraulic fracturing fails in the target oil development zone (remaining oil or gas, closed reservoir, etc.) which is not located in the azimuth of maximum horizontal in situ stress of available wellbores. The technology of directional propagation of hydraulic fracture guided by vertical multi-radial boreholes is innovatively developed. The effects of in situ stress, wellbore internal pressure and fracturing fluid percolation effect on geostress field distribution are taken into account, a mechanical model of two radial boreholes (basic research unit) is established, and the distribution and change rule of the maximum principal stress on the various parameters have been studied. The results show that as the radial borehole azimuth increases, the preferential rock tensile fracturing in the axial plane of radial boreholes becomes increasingly difficult. When the radial borehole azimuth increases to a certain extent, the maximum principal stress no longer appears in the azimuth of the radial boreholes, but will go to other orientations outside the axial plane of radial boreholes and the maximum horizontal stress orientation. Therefore, by reducing the ratio between the distance of the radial boreholes and increasing the diameter of the radial boreholes can enhance the guiding strength. In the axial plane of the radical boreholes, particularly in the radial hole wall, position closer to the radial boreholes is more prone to rock tensile destruction. Even in the case of large radial borehole azimuth, rock still preferentially ruptures in this position. The more the position is perpendicularly far from the axis of the wellbore, the lesser it will be affected by wellbore, and the lesser the tensile stress of each point. Meanwhile, at a certain depth, due to the decrease in the impact of the wellbore and the impact of the two radial boreholes increases accordingly, at the further position from the wellbore axis, the tensile fracture is the most prone to occur and it will be closer to the axial plane of the two radial boreholes. The study provides theoretical support for the technology of directional propagation of hydraulic fracture promoted by radial borehole, which is helpful for planning well-completion parameters in technology of hydraulic fracturing promoted by radial borehole.
Stirling Engine With Radial Flow Heat Exchangers
NASA Technical Reports Server (NTRS)
Vitale, N.; Yarr, George
1993-01-01
Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.
Reversal of radial glow distribution in helicon plasma induced by reversed magnetic field
NASA Astrophysics Data System (ADS)
Wang, Y.; Zhao, G.; Niu, C.; Liu, Z. W.; Ouyang, J. T.; Chen, Q.
2017-02-01
In this work, the reversal of radial glow distribution induced by reversed magnetic field is reported. Based on the Boswell antenna which is symmetric and insensitive to the magnetic field direction, it seems such a phenomenon in theory appears impossible. However, according to the diagnostic of the helicon waves by magnetic probe, it is found that the direction of magnetic field significantly affects the propagation characteristic of helicon waves, i.e., the interchange of the helicon waves at the upper and the lower half of tube was caused by reversing the direction of magnetic field. It is suggested that the variation of helicon wave against the direction of magnetic field causes the reversed radial glow distribution. The appearance of the traveling wave does not only improve the discharge strength, but also determines the transition of the discharge mode.
Zhang, Honglei; Hou, Qingxi; Liu, Wei; Yue, Zhen; Jiang, Xiaoya; Ma, Xixi
2018-07-01
This work investigated the changes in the physical structure of autohydrolyzed poplar sapwood chips and the effect on the subsequent alkali liquor diffusion properties for chemi-mechanical pulping (CMP). An alkali impregnation process was conducted by using the autohydrolyzed poplar sapwood with different levels of autohydrolysis intensity. The results showed that the volume porosity, water constraint capacity, and saturated water absorption of the autohydrolyzed poplar sapwood chips increased. Also, the effective capillary cross-sectional area (ECCSA) in the radial direction and the diffusion coefficients of NaOH solution in both the radial and axial directions all increased. Autohydrolysis pretreatment enhanced the alkali liquor diffusion properties in poplar sapwood chips, and the diffusion coefficient was increased more greatly in the radial direction than that in the axial direction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cooling circuit for a gas turbine bucket and tip shroud
Willett, Fred Thomas
2004-07-13
An open cooling circuit for a gas turbine airfoil and associated tip shroud includes a first group of cooling holes internal to the airfoil and extending in a radially outward direction generally along a leading edge of the airfoil; a second group of cooling holes internal to the airfoil and extending in a radially outward direction generally along a trailing edge of the airfoil. A common plenum is formed in the tip shroud in direct communication with the first and second group of cooling holes, but a second plenum may be provided for the second group of radial holes. A plurality of exhaust holes extends from the plenum(s), through the tip shroud and opening along a peripheral edge of the tip shroud.
Method and system of measuring ultrasonic signals in the plane of a moving web
Hall, Maclin S.; Jackson, Theodore G.; Wink, Wilmer A.; Knerr, Christopher
1996-01-01
An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the machine direction, MD, and a cross direction, CD, generally perpendicular to the direction of the traveling web, therefor, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.
Method and system of measuring ultrasonic signals in the plane of a moving web
Hall, M.S.; Jackson, T.G.; Wink, W.A.; Knerr, C.
1996-02-27
An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like is disclosed. In addition to velocity measurements of ultrasonic signals in the plane of the web in the machine direction, MD, and a cross direction, CD, generally perpendicular to the direction of the traveling web, therefore, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web. 37 figs.
NASA Astrophysics Data System (ADS)
Kawashima, Ryunosuke; Kanemoto, Toshiaki; Sakamoto, Kengo; Uno, Mitsuo
2010-06-01
The authors have proposed the unique centrifugal pump, in which the impeller dose not have the driving shaft but is driven by the magnetic induction, namely Lorentz force, without the stay. Then, the rotating posture of the impeller is not stable, just like UFO. To make the rotating posture of the impeller stable irrespective of the operating condition, the pressure in the impeller casing was investigated experimentally while the impeller rotates at the steady state, as the preliminarily stage. The pressure, as well known, fluctuates periodically in response to the blade number. Besides, the pressure on the impeller shrouds decreases with the increase of the gap between the front shroud and the suction cover where the water leaks to the suction pipe, and is distorted in the peripheral direction. Such pressure conditions contribute directly to the hydraulic force acting on the impeller. The unstable behaviors of the impeller are induced from the above hydraulic forces, which change unsteadily in the radial and the peripheral directions in the impeller casing. The forces are affected by not only the operating condition but also the rotating posture of the impeller.
Core design of a direct-cycle, supercritical-water-cooled fast breeder reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jevremovic, T.; Oka, Yoshiaki; Koshizuka, Seiichi
1994-10-01
The conceptual design of a direct-cycle fast breeder reactor (FBR) core cooled by supercritical water is carried out as a step toward a low-cost FBR plant. The supercritical water does not exhibit change of phase. The turbines are directly driven by the core outlet coolant. In comparison with a boiling water reactor (BWR), the recirculation systems, steam separators, and dryers are eliminated. The reactor system is much simpler than the conventional steam-cooled FBRs, which adopted Loeffler boilers and complicated coolant loops for generating steam and separating it from water. Negative complete and partial coolant void reactivity are provided without muchmore » deterioration in the breeding performances by inserting thin zirconium-hydride layers between the seeds and blankets in a radially heterogeneous core. The net electric power is 1245 MW (electric). The estimated compound system doubling time is 25 yr. The discharge burnup is 77.7 GWd/t, and the refueling period is 15 months with a 73% load factor. The thermal efficiency is high (41.5%), an improvement of 24% relative to a BWR's. The pressure vessel is not thick at 30.3 cm.« less
Goubier, Jean-Noel; Teboul, Frédéric
2011-05-01
Restoring elbow flexion remains the first step in the management of total palsy of the brachial plexus. Non avulsed upper roots may be grafted on the musculocutaneous nerve. When this nerve is entirely grafted, some motor fibres regenerate within the sensory fibres quota. Aiming potential utilization of these lost motor fibres, we attempted suturing the sensory branch of the musculocutaneous nerve onto the deep branch of the radial nerve. The objective of our study was to assess the anatomic feasibility of such direct suturing of the terminal sensory branch of the musculocutaneous nerve onto the deep branch of the radial nerve. The study was carried out with 10 upper limbs from fresh cadavers. The sensory branch of the musculocutaneous muscle was dissected right to its division. The motor branch of the radial nerve was identified and dissected as proximally as possible into the radial nerve. Then, the distance separating the two nerves was measured so as to assess whether direct neurorraphy of the two branches was feasible. The excessive distance between the two branches averaged 6 mm (1-13 mm). Thus, direct neurorraphy of the sensory branch of the musculocutaneous nerve and the deep branch of the radial nerve was possible. When the whole musculocutaneous nerve is grafted, some of its motor fibres are lost amongst the sensory fibres (cutaneous lateral antebrachial nerve). By suturing this sensory branch onto the deep branch of the radial nerve, "lost" fibres may be retrieved, resulting in restoration of digital extension. Copyright © 2011 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, William C.
This report presents a methodology for deriving the equations which can be used for calculating the radially-averaged effective impact area for a theoretical aircraft crash into a structure. Conventionally, a maximum effective impact area has been used in calculating the probability of an aircraft crash into a structure. Whereas the maximum effective impact area is specific to a single direction of flight, the radially-averaged effective impact area takes into consideration the real life random nature of the direction of flight with respect to a structure. Since the radially-averaged effective impact area is less than the maximum effective impact area, themore » resulting calculated probability of an aircraft crash into a structure is reduced.« less
Apparatus for growing HgI.sub.2 crystals
Schieber, Michael M.; Beinglass, Israel; Dishon, Giora
1978-01-01
A method and horizontal furnace for vapor phase growth of HgI.sub.2 crystals which utilizes controlled axial and radial airflow to maintain the desired temperature gradients. The ampoule containing the source material is rotated while axial and radial air tubes are moved in opposite directions during crystal growth to maintain a desired distance and associated temperature gradient with respect to the growing crystal, whereby the crystal interface can advance in all directions, i.e., radial and axial according to the crystallographic structure of the crystal. Crystals grown by this method are particularly applicable for use as room-temperature nuclear radiation detectors.
Inner shell radial pin geometry and mounting arrangement
Leach, David; Bergendahl, Peter Allen
2002-01-01
Circumferentially spaced arrays of support pins are disposed through access openings in an outer turbine shell and have projections received in recesses in forward and aft sections of an inner turbine shell supported from the outer shell. The projections have arcuate sides in a circumferential direction affording line contacts with the side walls of the recesses and are spaced from end faces of the recesses, enabling radial and axial expansion and contraction of the inner shell relative to the outer shell. All loads are taken up in a tangential direction by the outer shell with the support pins taking no radial loadings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ku, S.; Chang, C. S.; Hager, R.
Here, a fast edge turbulence suppression event has been simulated in the electrostatic version of the gyrokinetic particle-in-cell code XGC1 in a realistic diverted tokamak edge geometry under neutral particle recycling. The results show that the sequence of turbulent Reynolds stress followed by neoclassical ion orbit-loss driven together conspire to form the sustaining radial electric field shear and to quench turbulent transport just inside the last closed magnetic flux surface. As a result, the main suppression action is located in a thin radial layer around ψ N≃0.96–0.98, where ψ N is the normalized poloidal flux, with the time scale ~0.1more » ms.« less
Effect of convection on the microstructure of the MnBi/Bi eutectic
NASA Technical Reports Server (NTRS)
Eisa, Gaber Faheem; Wilcox, william R.; Busch, Garrett
1986-01-01
For the quasi-regular fibrous microstructure of MnBi formed at freezing rates of 9 mm/h and above, good agreement between experimental and theoretical results for fiber spacing, freezing rate, radial position, and ampoule rotation rate is found. For the irregular blade-like microstructure formed at lower freezing rates, convection is found to coarsen the microstructure somwhat more than predicted. The volume fraction of MnBi was also shown to depend on ampoule rotation and radial position, even in the absence of ampoule rotation. The two-fold finer microstructure observed in space-processed material could not be explained by the elimination of buoyancy-driven natural convection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philippov, Alexander A.; Rafikov, Roman R., E-mail: sashaph@princeton.edu
Radial transport of particles, elements and fluid driven by internal stresses in three-dimensional (3D) astrophysical accretion disks is an important phenomenon, potentially relevant for the outward dust transport in protoplanetary disks, origin of the refractory particles in comets, isotopic equilibration in the Earth–Moon system, etc. To gain better insight into these processes, we explore the dependence of meridional circulation in 3D disks with shear viscosity on their thermal stratification, and demonstrate a strong effect of the latter on the radial flow. Previous locally isothermal studies have normally found a pattern of the radial outflow near the midplane, switching to inflowmore » higher up. Here we show, both analytically and numerically, that a flow that is inward at all altitudes is possible in disks with entropy and temperature steeply increasing with height. Such thermodynamic conditions may be typical in the optically thin, viscously heated accretion disks. Disks in which these conditions do not hold should feature radial outflow near the midplane, as long as their internal stress is provided by the shear viscosity. Our results can also be used for designing hydrodynamical disk simulations with a prescribed pattern of the meridional circulation.« less
Orbital motions of bubbles in an acoustic field
NASA Astrophysics Data System (ADS)
Shirota, Minori; Yamashita, Ko; Inamura, Takao
2012-09-01
This experimental study aims to clarify the mechanism of orbital motion of two oscillating bubbles in an acoustic field. Trajectory of the orbital motion on the wall of a spherical levitator was observed using a high-speed video camera. Because of a good repeatability in volume oscillation of bubbles, we were also able to observe the radial motion driven at 24 kHz by stroboscopic like imaging technique. The orbital motions of bubbles raging from 0.13 to 0.18 mm were examined with different forcing amplitude and in different viscous oils. As a result, we found that pairs of bubbles revolve along an elliptic orbit around the center of mass of the bubbles. We also found that the two bubbles perform anti-phase radial oscillation. Although this radial oscillation should result in a repulsive secondary Bjerknes force, the bubbles kept a constant separate distance of about 1 mm, which indicates the existence of centripetal primary Bjerknes force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.
2010-05-15
The radial convergence required to reach fusion conditions is considerably higher for cylindrical than for spherical implosions since the volume is proportional to r{sup 2} versus r{sup 3}, respectively. Fuel magnetization and preheat significantly lowers the required radial convergence enabling cylindrical implosions to become an attractive path toward generating fusion conditions. Numerical simulations are presented indicating that significant fusion yields may be obtained by pulsed-power-driven implosions of cylindrical metal liners onto magnetized (>10 T) and preheated (100-500 eV) deuterium-tritium (DT) fuel. Yields exceeding 100 kJ could be possible on Z at 25 MA, while yields exceeding 50 MJ could bemore » possible with a more advanced pulsed power machine delivering 60 MA. These implosions occur on a much shorter time scale than previously proposed implosions, about 100 ns as compared to about 10 mus for magnetic target fusion (MTF) [I. R. Lindemuth and R. C. Kirkpatrick, Nucl. Fusion 23, 263 (1983)]. Consequently the optimal initial fuel density (1-5 mg/cc) is considerably higher than for MTF (approx1 mug/cc). Thus the final fuel density is high enough to axially trap most of the alpha-particles for cylinders of approximately 1 cm in length with a purely axial magnetic field, i.e., no closed field configuration is required for ignition. According to the simulations, an initial axial magnetic field is partially frozen into the highly conducting preheated fuel and is compressed to more than 100 MG. This final field is strong enough to inhibit both electron thermal conduction and the escape of alpha-particles in the radial direction. Analytical and numerical calculations indicate that the DT can be heated to 200-500 eV with 5-10 kJ of green laser light, which could be provided by the Z-Beamlet laser. The magneto-Rayleigh-Taylor (MRT) instability poses the greatest threat to this approach to fusion. Two-dimensional Lasnex simulations indicate that the liner walls must have a substantial initial thickness (10-20% of the radius) so that they maintain integrity throughout the implosion. The Z and Z-Beamlet experiments are now being planned to test the various components of this concept, e.g., the laser heating of the fuel and the robustness of liner implosions to the MRT instability.« less
Laser direct writing of complex radially varying single-mode polymer waveguide structures
NASA Astrophysics Data System (ADS)
Kruse, Kevin; Peng, Jie; Middlebrook, Christopher T.
2015-07-01
Increasing board-to-board and chip-to-chip computational data rates beyond 12.5 Gbs will require the use of single-mode polymer waveguides (WGs) that have high bandwidths and are able to be wavelength division multiplexed. Laser direct writing (LDW) of polymer WGs provides a scalable and reconfigurable maskless procedure compared to common photolithography fabrication. LDW of straights and radial curves are readily achieved using predefined drive commands of the two-axis direct drive linear stage system. Using the laser direct write process for advanced WG structures requires stage-drive programming techniques that account for specified polymer material exposure durations. Creating advanced structures such as WG S-bends into single-mode polymer WG builds provides designers with the ability to affect pitch control, optical coupling, and reduce footprint requirements. Fabrication of single-mode polymer WG segmented radial arcs is achieved through a smooth radial arc user-programmed defined mathematical algorithm. Cosine and raised-sine S-bends are realized through a segmentation method where the optimal incremental step length and bend dimensions are controlled to achieve minimal structure loss. Laser direct written S-bends are compared with previously published photolithographic S-bend results using theoretical bend loss models. Fabrication results show that LDW is a viable method in the fabrication of advanced polymer WG structures.
NASA Astrophysics Data System (ADS)
Zhang, W.; Wang, S.; Ma, Z. W.
2017-06-01
The influences of helical driven currents on nonlinear resistive tearing mode evolution and saturation are studied by using a three-dimensional toroidal resistive magnetohydrodynamic code (CLT). We carried out three types of helical driven currents: stationary, time-dependent amplitude, and thickness. It is found that the helical driven current is much more efficient than the Gaussian driven current used in our previous study [S. Wang et al., Phys. Plasmas 23(5), 052503 (2016)]. The stationary helical driven current cannot persistently control tearing mode instabilities. For the time-dependent helical driven current with f c d = 0.01 and δ c d < 0.04 , the island size can be reduced to its saturated level that is about one third of the initial island size. However, if the total driven current increases to about 7% of the total plasma current, tearing mode instabilities will rebound again due to the excitation of the triple tearing mode. For the helical driven current with time dependent strength and thickness, the reduction speed of the radial perturbation component of the magnetic field increases with an increase in the driven current and then saturates at a quite low level. The tearing mode is always controlled even for a large driven current.
Corrugation Instability of a Coronal Arcade
NASA Astrophysics Data System (ADS)
Klimushkin, D. Y.; Nakariakov, V. M.; Mager, P. N.; Cheremnykh, O. K.
2017-12-01
We analyse the behaviour of linear magnetohydrodynamic perturbations of a coronal arcade modelled by a half-cylinder with an azimuthal magnetic field and non-uniform radial profiles of the plasma pressure, temperature, and the field. Attention is paid to the perturbations with short longitudinal (in the direction along the arcade) wavelengths. The radial structure of the perturbations, either oscillatory or evanescent, is prescribed by the radial profiles of the equilibrium quantities. Conditions for the corrugation instability of the arcade are determined. It is established that the instability growth rate increases with decreases in the longitudinal wavelength and the radial wave number. In the unstable mode, the radial perturbations of the magnetic field are stronger than the longitudinal perturbations, creating an almost circularly corrugated rippling of the arcade in the longitudinal direction. For coronal conditions, the growth time of the instability is shorter than one minute, decreasing with an increase in the temperature. Implications of the developed theory for the dynamics of coronal active regions are discussed.
Jiang, Yuan; Zhang, Wentao; Wang, Mingchang; Kang, Muyi; Dong, Manyu
2014-01-01
North-Central China is a region in which the air temperature has clearly increased for several decades. Picea meyeri and Larix principis-rupprechtii are the most dominant co-occurring tree species within the cold coniferous forest belt ranging vertically from 1800 m to 2800 m a.s.l. in this region. Based on a tree-ring analysis of 292 increment cores sampled from 146 trees at different elevations, this study aimed to examine if the radial growth of the two species in response to climate is similar, whether the responses are consistent along altitudinal gradients and which species might be favored in the future driven by the changing climate. The results indicated the following: (1) The two species grew in different rhythms at low and high elevation respectively; (2) Both species displayed inconsistent relationships between radial growth and climate data along altitudinal gradients. The correlation between radial growth and the monthly mean temperature in the spring or summer changed from negative at low elevation into positive at high elevation, whereas those between the radial growth and the total monthly precipitation displayed a change from positive into negative along the elevation gradient. These indicate the different influences of the horizontal climate and vertical mountainous climate on the radial growth of the two species; (3) The species-dependent different response to climate in radial growth appeared mainly in autumn of the previous year. The radial growth of L. principis-rupprechtii displayed negative responses both to temperature and to precipitation in the previous September, October or November, which was not observed in the radial growth of P. meyeri. (4) The radial growth of both species will tend to be increased at high elevation and limited at low elevation, and L. principis-rupprechtii might be more favored in the future, if the temperature keeps rising.
Pai, C N; Shinshi, T; Shimokohbe, A
2010-01-01
Evaluation of the hydraulic forces in a magnetically levitated (maglev) centrifugal blood pump is important from the point of view of the magnetic bearing design. Direct measurement is difficult due to the absence of a rotor shaft, and computational fluid dynamic analysis demands considerable computational resource and time. To solve this problem, disturbance force observers were developed, using the radial controlled magnetic bearing of a centrifugal blood pump, to estimate the radial forces on the maglev impeller. In order to design the disturbance observer, the radial dynamic characteristics of a maglev impeller were evaluated under different working conditions. It was observed that the working fluid affects the additional mass and damping, while the rotational speed affects the damping and stiffness of the maglev system. Based on these results, disturbance force observers were designed and implemented. The designed disturbance force observers present a bandwidth of 45 Hz. In non-pulsatile conditions, the magnitude of the estimated radial thrust increases in proportion to the flowrate, and the rotational speed has little effect on the force direction. At 5 l/min against 100 mmHg, the estimated radial thrust is 0.95 N. In pulsatile conditions, this method was capable of estimating the pulsatile radial thrust with good response.
Visualization of 3D elbow kinematics using reconstructed bony surfaces
NASA Astrophysics Data System (ADS)
Lalone, Emily A.; McDonald, Colin P.; Ferreira, Louis M.; Peters, Terry M.; King, Graham J. W.; Johnson, James A.
2010-02-01
An approach for direct visualization of continuous three-dimensional elbow kinematics using reconstructed surfaces has been developed. Simulation of valgus motion was achieved in five cadaveric specimens using an upper arm simulator. Direct visualization of the motion of the ulna and humerus at the ulnohumeral joint was obtained using a contact based registration technique. Employing fiducial markers, the rendered humerus and ulna were positioned according to the simulated motion. The specific aim of this study was to investigate the effect of radial head arthroplasty on restoring elbow joint stability after radial head excision. The position of the ulna and humerus was visualized for the intact elbow and following radial head excision and replacement. Visualization of the registered humerus/ulna indicated an increase in valgus angulation of the ulna with respect to the humerus after radial head excision. This increase in valgus angulation was restored to that of an elbow with a native radial head following radial head arthroplasty. These findings were consistent with previous studies investigating elbow joint stability following radial head excision and arthroplasty. The current technique was able to visualize a change in ulnar position in a single DoF. Using this approach, the coupled motion of ulna undergoing motion in all 6 degrees-of-freedom can also be visualized.
The Global and Radial Stellar Mass Assembly of Milky Way-sized Galaxies
NASA Astrophysics Data System (ADS)
Avila-Reese, Vladimir; González-Samaniego, Alejandro; Colín, Pedro; Ibarra-Medel, Héctor; Rodríguez-Puebla, Aldo
2018-02-01
We study the global and radial stellar mass assembly of eight zoomed-in Milky Way (MW)-sized galaxies produced in hydrodynamics cosmological simulations. The disk-dominated galaxies (four) show a fast initial stellar mass growth in the innermost parts, driven mostly by in situ star formation (SF), but since z ∼ 2‑1, the SF has entered a long-term quenching phase. The outer regions follow this trend but more gently, as they are more external. As a result, the radial stellar mass growth is highly inside-out due to both inside-out structural growth and inside-out SF quenching. The half-mass radius evolves fast; for instance, {R}0.5(z = 1) < 0.5 {R}0.5 (z = 0). Two other runs resemble lenticular galaxies. One also shows a pronounced inside-out growth, and the other one presents a nearly uniform radial mass assembly. The other two galaxies suffered late major mergers. Their normalized radial mass growth histories (MGHs) are very close, but with periods of outside-in assembly during or after the mergers. For all of the simulations, the archaeological radial MGHs calculated from the z = 0 stellar particle age distribution are similar to current MGHs, which shows that the mass assembly by ex situ stars and the radial mass transport do not significantly change their radial mass distributions. Our results agree qualitatively with observational inferences from the fossil record method applied to a survey of local galaxies and from look-back observations of progenitors of MW-sized galaxies. However, the inside-out growth mode is more pronounced, and the {R}0.5 growth is faster in simulations than in observational inferences.
High-displacement spiral piezoelectric actuators
NASA Astrophysics Data System (ADS)
Mohammadi, F.; Kholkin, A. L.; Jadidian, B.; Safari, A.
1999-10-01
A high-displacement piezoelectric actuator, employing spiral geometry of a curved piezoelectric strip is described. The monolithic actuators are fabricated using a layered manufacturing technique, fused deposition of ceramics, which is capable of prototyping electroceramic components with complex shapes. The spiral actuators (2-3 cm in diameter) consisted of 4-5 turns of a lead zirconate titanate ceramic strip with an effective length up to 28 cm. The width was varied from 0.9 to 1.75 mm with a height of 3 mm. When driven by the electric field applied across the width of the spiral wall, the tip of the actuator was found to displace in both radial and tangential directions. The tangential displacement of the tip was about 210 μm under the field of 5 kV/cm. Both the displacement and resonant frequency of the spirals could be tailored by changing the effective length and wall width. The blocking force of the actuator in tangential direction was about 1 N under the field of 5 kV/cm. These properties are advantageous for high-displacement low-force applications where bimorph or monomorph actuators are currently employed.
Observation of Magnetic Radial Vortex Nucleation in a Multilayer Stack with Tunable Anisotropy.
Karakas, Vedat; Gokce, Aisha; Habiboglu, Ali Taha; Arpaci, Sevdenur; Ozbozduman, Kaan; Cinar, Ibrahim; Yanik, Cenk; Tomasello, Riccardo; Tacchi, Silvia; Siracusano, Giulio; Carpentieri, Mario; Finocchio, Giovanni; Hauet, Thomas; Ozatay, Ozhan
2018-05-08
Recently discovered exotic magnetic configurations, namely magnetic solitons appearing in the presence of bulk or interfacial Dzyaloshinskii-Moriya Interaction (i-DMI), have excited scientists to explore their potential applications in emerging spintronic technologies such as race-track magnetic memory, spin logic, radio frequency nano-oscillators and sensors. Such studies are motivated by their foreseeable advantages over conventional micro-magnetic structures due to their small size, topological stability and easy spin-torque driven manipulation with much lower threshold current densities giving way to improved storage capacity, and faster operation with efficient use of energy. In this work, we show that in the presence of i-DMI in Pt/CoFeB/Ti multilayers by tuning the magnetic anisotropy (both in-plane and perpendicular-to-plane) via interface engineering and postproduction treatments, we can stabilize a variety of magnetic configurations such as Néel skyrmions, horseshoes and most importantly, the recently predicted isolated radial vortices at room temperature and under zero bias field. Especially, the radial vortex state with its absolute convergence to or divergence from a single point can potentially offer exciting new applications such as particle trapping/detrapping in addition to magnetoresistive memories with efficient switching, where the radial vortex state can act as a source of spin-polarized current with radial polarization.
Spiral waves in driven strongly coupled Yukawa systems
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Das, Amita
2018-06-01
Spiral wave formations are ubiquitous in nature. In the present paper, the excitation of spiral waves in the context of driven two-dimensional dusty plasma (Yukawa system) has been demonstrated at particle level using molecular-dynamics simulations. The interaction amidst dust particles is modeled by the Yukawa potential to take account of the shielding of dust charges by the lighter electron and ion species. The spatiotemporal evolution of these spiral waves has been characterized as a function of the frequency and amplitude of the driving force and dust neutral collisions. The effect of strong coupling has been studied, which shows that the excited spiral wave structures get clearer as the medium gets more strongly coupled. The radial propagation speed of the spiral wave is observed to remain unaltered with the coupling parameter. However, it is found to depend on the screening parameter of the dust medium and decreases when it is increased. In the crystalline phase (with screening parameter κ >0.58 ), the spiral wavefronts are shown to be hexagonal in shape. This shows that the radial propagation speed depends on the interparticle spacing.
Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis
NASA Astrophysics Data System (ADS)
Datta, Abhishek; Elwassif, Maged; Battaglia, Fortunato; Bikson, Marom
2008-06-01
We calculated the electric fields induced in the brain during transcranial current stimulation (TCS) using a finite-element concentric spheres human head model. A range of disc electrode configurations were simulated: (1) distant-bipolar; (2) adjacent-bipolar; (3) tripolar; and three ring designs, (4) belt, (5) concentric ring, and (6) double concentric ring. We compared the focality of each configuration targeting cortical structures oriented normal to the surface ('surface-radial' and 'cross-section radial'), cortical structures oriented along the brain surface ('surface-tangential' and 'cross-section tangential') and non-oriented cortical surface structures ('surface-magnitude' and 'cross-section magnitude'). For surface-radial fields, we further considered the 'polarity' of modulation (e.g. superficial cortical neuron soma hyper/depolarizing). The distant-bipolar configuration, which is comparable with commonly used TCS protocols, resulted in diffuse (un-focal) modulation with bi-directional radial modulation under each electrode and tangential modulation between electrodes. Increasing the proximity of the two electrodes (adjacent-bipolar electrode configuration) increased focality, at the cost of more surface current. At similar electrode distances, the tripolar-electrodes configuration produced comparable peak focality, but reduced radial bi-directionality. The concentric-ring configuration resulted in the highest spatial focality and uni-directional radial modulation, at the expense of increased total surface current. Changing ring dimensions, or use of two concentric rings, allow titration of this balance. The concentric-ring design may thus provide an optimized configuration for targeted modulation of superficial cortical neurons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, David A.; McQuiggan, Gerard; Wasdell, David L.
A midframe portion (213) of a gas turbine engine (210) is presented, and includes a compressor section (212) configured to discharge an air flow (211) directed in a radial direction from an outlet of the compressor section (212). Additionally, the midframe portion (213) includes a manifold (214) to directly couple the air flow (211) from the compressor section (212) outlet to an inlet of a respective combustor head (218) of the midframe portion (213).
Drug delivery with microsecond laser pulses into gelatin
NASA Astrophysics Data System (ADS)
Shangguan, Hanqun; Casperson, Lee W.; Shearin, Alan; Gregory, Kenton W.; Prahl, Scott A.
1996-07-01
Photoacoustic drug delivery is a technique for localized drug delivery by laser-induced hydrodynamic pressure following cavitation bubble expansion and collapse. Photoacoustic drug delivery was investigated on gelatin-based thrombus models with planar and cylindrical geometries by use of one microsecond laser pulses. Solutions of a hydrophobic dye in mineral oil permitted monitoring of delivered colored oil into clear gelatin-based thrombus models. Cavitation bubble development and photoacoustic drug delivery were visualized with flash photography. This study demonstrated that cavitation is the governing mechanism for photoacoustic drug delivery, and the deepest penetration of colored oil in gels followed the bubble collapse. Spatial distribution measurements revealed that colored oil could be driven a few millimeters into the gels in both axial and radial directions, and the penetration was less than 500 mu m when the gelatin structure was not fractured. localized drug delivery, cavitation bubble, laser thrombolysis.
Microtubules negatively regulate insulin secretion in pancreatic β cells
Zhu, Xiaodong; Hu, Ruiying; Brissova, Marcela; Stein, Roland W.; Powers, Alvin C.; Gu, Guoqiang; Kaverina, Irina
2015-01-01
Summary For glucose-stimulated insulin secretion (GSIS) insulin granules have to be localized close to the plasma membrane. The role of microtubule-dependent transport in granule positioning and GSIS has been debated. Here, we report that microtubules, counterintuitively, restrict granule availability for secretion. In β cells, microtubules originate at the Golgi and form a dense non-radial meshwork. Non-directional transport along these microtubules limits granule dwelling at the cell periphery, restricting granule availability for secretion. High glucose destabilizes microtubules, decreasing their density; such local microtubule depolymerization is necessary for GSIS, likely because granule withdrawal from the cell periphery becomes inefficient. Consistently, microtubule depolymerization by nocodazole blocks granule withdrawal, increases their concentration at exocytic sites, and dramatically enhances GSIS in vitro and in mice. Furthermore, glucose-driven MT destabilization is balanced by new microtubule formation, which likely prevents over-secretion. Importantly, microtubule density is greater in dysfunctional β cells of diabetic mice. PMID:26418295
Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators.
Chin, Stacey M; Synatschke, Christopher V; Liu, Shuangping; Nap, Rikkert J; Sather, Nicholas A; Wang, Qifeng; Álvarez, Zaida; Edelbrock, Alexandra N; Fyrner, Timmy; Palmer, Liam C; Szleifer, Igal; Olvera de la Cruz, Monica; Stupp, Samuel I
2018-06-19
Skeletal muscle provides inspiration on how to achieve reversible, macroscopic, anisotropic motion in soft materials. Here we report on the bottom-up design of macroscopic tubes that exhibit anisotropic actuation driven by a thermal stimulus. The tube is built from a hydrogel in which extremely long supramolecular nanofibers are aligned using weak shear forces, followed by radial growth of thermoresponsive polymers from their surfaces. The hierarchically ordered tube exhibits reversible anisotropic actuation with changes in temperature, with much greater contraction perpendicular to the direction of nanofiber alignment. We identify two critical factors for the anisotropic actuation, macroscopic alignment of the supramolecular scaffold and its covalent bonding to polymer chains. Using finite element analysis and molecular calculations, we conclude polymer chain confinement and mechanical reinforcement by rigid supramolecular nanofibers are responsible for the anisotropic actuation. The work reported suggests strategies to create soft active matter with molecularly encoded capacity to perform complex tasks.
Experimental light scattering by small particles: system design and calibration
NASA Astrophysics Data System (ADS)
Maconi, Göran; Kassamakov, Ivan; Penttilä, Antti; Gritsevich, Maria; Hæggström, Edward; Muinonen, Karri
2017-06-01
We describe a setup for precise multi-angular measurements of light scattered by mm- to μm-sized samples. We present a calibration procedure that ensures accurate measurements. Calibration is done using a spherical sample (d = 5 mm, n = 1.517) fixed on a static holder. The ultimate goal of the project is to allow accurate multi-wavelength measurements (the full Mueller matrix) of single-particle samples which are levitated ultrasonically. The system comprises a tunable multimode Argon-krypton laser, with 12 wavelengths ranging from 465 to 676 nm, a linear polarizer, a reference photomultiplier tube (PMT) monitoring beam intensity, and several PMT:s mounted radially towards the sample at an adjustable radius. The current 150 mm radius allows measuring all azimuthal angles except for ±4° around the backward scattering direction. The measurement angle is controlled by a motor-driven rotational stage with an accuracy of 15'.
Diffusive-convective physical vapor transport of PbTe from a Te-rich solid source
NASA Technical Reports Server (NTRS)
Zoutendyk, J.; Akutagawa, W.
1982-01-01
Crystal growth of PbTe by physical vapor transport (sublimation) in a closed ampoule is governed by the vapor species in thermal equilibrium with the solid compound. Deviations from stoichiometry in the source material cause diffusion limitation of the transport rate, which can be modified by natural (gravity-driven) convection. Mass-transport experiments have been performed using Te-rich material wherein sublimation rates have been measured in order to study the effects of natural convection in diffusion-limited vapor transport. Linear velocities for both crystal growth and evaporation (back sublimation) have been measured for transport in the direction of gravity, horizontally, and opposite to gravity. The experimental results are discussed in terms of both the one-dimensional diffusive-advective model and current, more sophisticated theory which includes natural convection. There is some evidence that convection effects from radial temperature gradients and solutal density gradients have been observed.
Ion heating and short wavelength fluctuations in a helicon plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scime, E. E.; Carr, J. Jr.; Galante, M.
2013-03-15
For typical helicon source parameters, the driving antenna can couple to two plasma modes; the weakly damped 'helicon' wave, and the strongly damped, short wavelength, slow wave. Here, we present direct measurements, obtained with two different techniques, of few hundred kHz, short wavelength fluctuations that are parametrically driven by the primary antenna and localized to the edge of the plasma. The short wavelength fluctuations appear for plasma source parameters such that the driving frequency is approximately equal to the lower hybrid frequency. Measurements of the steady-state ion temperature and fluctuation amplitude radial profiles suggest that the anomalously high ion temperaturesmore » observed at the edge of helicon sources result from damping of the short wavelength fluctuations. Additional measurements of the time evolution of the ion temperature and fluctuation profiles in pulsed helicon source plasmas support the same conclusion.« less
Highly supersonic bipolar mass ejection from a red giant OH/IR source - OH 0739 - 14
NASA Technical Reports Server (NTRS)
Cohen, M.; Dopita, M. A.; Schwartz, R. D.; Tielens, A. G. G. M.
1985-01-01
From long-slit spectrophotometry of the bipolar nebula associated with the unusual OH source, OH 0739 - 14, the presence of a blue companion to the M9 III central star was shown and a Herbig-Haro-like knot beyond each nebular lobe was discovered. From differential colors of the lobes and from radial velocities of these knots it was demonstrated that the system inclines its northern lobe in the forward direction. It was also shown that the nebulous knots are shocks being driven into an extensive circumstellar envelope, and that this material is very overabundant in nitrogen, suggesting that it is matter lost from a star of mass greater than 3 solar masses. A model of biconical ejection from a central binary is consistent with the OH observations, and a possible relation of OH 0739 - 14 to the symbiotic stars and to bipolar planetary nebulae is suggested.
Grierson, B. A.; Wang, W. X.; Ethier, S.; ...
2017-01-06
Intrinsic toroidal rotation of the deuterium main ions in the core of the DIII-D tokamak is observed to transition from flat to hollow, forming an off-axis peak, above a threshold level of direct electron heating. Nonlinear gyrokinetic simulations show that the residual stress associated with electrostatic ion temperature gradient turbulence possesses the correct radial location and stress structure to cause the observed hollow rotation profile. Residual stress momentum flux in the gyrokinetic simulations is balanced by turbulent momentum diffusion, with negligible contributions from turbulent pinch. Finally, the prediction of the velocity profile by integrating the momentum balance equation produces amore » rotation profile that qualitatively and quantitatively agrees with the measured main-ion profile, demonstrating that fluctuation-induced residual stress can drive the observed intrinsic velocity profile.« less
(abstract) A Test of the Theoretical Models of Bipolar Outflows: The Bipolar Outflow in Mon R2
NASA Technical Reports Server (NTRS)
Xie, Taoling; Goldsmith, Paul; Patel, Nimesh
1993-01-01
We report some results of a study of the massive bipolar outflow in the central region of the relatively nearby giant molecular cloud Monoceros R2. We make a quantative comparison of our results with the Shu et al. outflow model which incorporates a radially directed wind sweeping up the ambient material into a shell. We find that this simple model naturally explains the shape of this thin shell. Although Shu's model in its simplest form predicts with reasonable parameters too much mass at very small polar angles, as previously pointed out by Masson and Chernin, it provides a reasonable good fit to the mass distribution at larger polar angles. It is possible that this discrepancy is due to inhomogeneities of the ambient molecular gas which is not considered by the model. We also discuss the constraints imposed by these results on recent jet-driven outflow models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flathers, M.B.; Bache, G.E.
1999-10-01
Radial loads and direction of a centrifugal gas compressor containing a high specific speed mixed flow impeller and a single tongue volute were determined both experimentally and computationally at both design and off-design conditions. The experimental methodology was developed in conjunction with a traditional ASME PTC-10 closed-loop test to determine radial load and direction. The experimental study is detailed in Part 1 of this paper (Moore and Flathers, 1998). The computational method employs a commercially available, fully three-dimensional viscous code to analyze the impeller and the volute interaction. An uncoupled scheme was initially used where the impeller and volute weremore » analyzed as separate models using a common vaneless diffuser geometry. The two calculations were then repeated until the boundary conditions at a chosen location in the common vaneless diffuser were nearly the same. Subsequently, a coupled scheme was used where the entire stage geometry was analyzed in one calculation, thus eliminating the need for manual iteration of the two independent calculations. In addition to radial load and direction information, this computational procedure also provided aerodynamic stage performance. The effect of impeller front face and rear face cavities was also quantified. The paper will discuss computational procedures, including grid generation and boundary conditions, as well as comparisons of the various computational schemes to experiment. The results of this study will show the limitations and benefits of Computational Fluid Dynamics (CFD) for determination of radial load, direction, and aerodynamic stage performance.« less
Temperature cycling vapor deposition HgI.sub.2 crystal growth
Schieber, Michael M.; Beinglass, Israel; Dishon, Giora
1977-01-01
A method and horizontal furnace for vapor phase growth of HgI.sub.2 crystals which utilizes controlled axial and radial airflow to maintain the desired temperature gradients. The ampoule containing the source material is rotated while axial and radial air tubes are moved in opposite directions during crystal growth to maintain a desired distance and associated temperature gradient with respect to the growing crystal, whereby the crystal interface can advance in all directions, i.e., radial and axial according to the crystallographic structure of the crystal. Crystals grown by this method are particularly applicable for use as room-temperature nuclear radiation detectors.
1984-09-17
hole at an angle to the radial direction. No 6t.ress intensity factors were developed for a non -radial crack. To circumvent non -radial growth, for which...Structural Lugs 10 6.00 TETM TESX, MARI LOCKHEED L.0 GRUP IIhA AND 2Rii * 2~~~~.0 .RUPINI .01 .05 1 .2 .5. 9 99PROABLTY F*ý,r 1-40 4oprsno R ato nTs rga... controlled and systematically varied. In the fifth column of the table it is shown whether or not the pin is lubricated during testing. Loading directions
Direct generation of abruptly focusing vortex beams using a 3/2 radial phase-only pattern.
Davis, Jeffrey A; Cottrell, Don M; Zinn, Jonathan M
2013-03-20
Abruptly focusing Airy beams have previously been generated using a radial cubic phase pattern that represents the Fourier transform of the Airy beam. The Fourier transform of this pattern is formed using a system length of 2f, where f is the focal length of the Fourier transform lens. In this work, we directly generate these abruptly focusing Airy beams using a 3/2 radial phase pattern encoded onto a liquid crystal display. The resulting optical system is much shorter. In addition, we can easily produce vortex patterns at the focal point of these beams. Experimental results match theoretical predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asahi, Y., E-mail: y.asahi@nr.titech.ac.jp; Tsutsui, H.; Tsuji-Iio, S.
2014-05-15
Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger thanmore » or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.« less
NASA Astrophysics Data System (ADS)
Furno, I.; Fasoli, A.; Avino, F.; Bovet, A.; Gustafson, K.; Iraji, D.; Labit, B.; Loizu, J.; Ricci, P.; Theiler, C.
2012-04-01
TORPEX is a toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. The turbulence driven by magnetic curvature and plasma gradients causes plasma transport in the radial direction while at the same time plasma is progressively lost along the field lines. The relatively simple magnetic geometry and diagnostic access of the TORPEX configuration facilitate the experimental study of low frequency instabilities and related turbulent transport, and make an accurate comparison between simulations and experiments possible. We first present a detailed investigation of electrostatic interchange turbulence, associated structures and their effect on plasma using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Interchange modes nonlinearly develop blobs, radially propagating filaments of enhanced plasma pressure. Blob velocities and sizes are obtained from probe measurements using pattern recognition and are described by an analytical expression that includes ion polarization currents, parallel sheath currents and ion-neutral collisions. Then, we describe recent advances of a non-perturbative Li 6+ miniaturized ion source and a detector for the investigation of the interaction between supra thermal ions and interchange-driven turbulence. We present first measurements of the spatial and energy space distribution of the fast ion beam in different plasma scenarios, in which the plasma turbulence is fully characterized. The experiments are interpreted using two-dimensional fluid simulations describing the low-frequency interchange turbulence, taking into account the plasma source and plasma losses at the torus vessel. By treating fast ions as test particles, we integrate their equations of motion in the simulated electromagnetic fields, and we compare their time-averaged and statistical properties with experimental data. Finally, we discuss future developments including the possibility of closing the magnetic field lines and of performing magnetic reconnection experiments.
Radial nerve dysfunction (image)
The radial nerve travels down the arm and supplies movement to the triceps muscle at the back of the upper arm. ... the wrist and hand. The usual causes of nerve dysfunction are direct trauma, prolonged pressure on the ...
Impact of energetic-particle-driven geodesic acoustic modes on turbulence.
Zarzoso, D; Sarazin, Y; Garbet, X; Dumont, R; Strugarek, A; Abiteboul, J; Cartier-Michaud, T; Dif-Pradalier, G; Ghendrih, Ph; Grandgirard, V; Latu, G; Passeron, C; Thomine, O
2013-03-22
The impact on turbulent transport of geodesic acoustic modes excited by energetic particles is evidenced for the first time in flux-driven 5D gyrokinetic simulations using the Gysela code. Energetic geodesic acoustic modes (EGAMs) are excited in a regime with a transport barrier in the outer radial region. The interaction between EGAMs and turbulence is such that turbulent transport can be enhanced in the presence of EGAMs, with the subsequent destruction of the transport barrier. This scenario could be particularly critical in those plasmas, such as burning plasmas, exhibiting a rich population of suprathermal particles capable of exciting energetic modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Manjit, E-mail: manjit@ipr.res.in; Bose, Sayak; Chattopadhyay, P. K.
2015-09-15
Observation of two well-separated dust vortices in an unmagnetized parallel plate DC glow discharge plasma is reported in this paper. A non-monotonic radial density profile, achieved by an especially designed cathode structure using a concentric metallic disk and ring of different radii, is observed to produce double dust tori between cathode and anode. PIV analysis of the still images of the double tori shows oppositely rotating dust structures between the central disk and the ring. Langmuir probe measurements of background plasma shows a non-uniform plasma density profile between the disk and the ring. Location and sense of rotation of themore » dust vortices coincides with the location and direction of the radial gradient in the ion drag force caused by the radial density gradient. The experimentally observed dust vorticity matches well with the calculated one using hydrodynamic formulations with shear in ion drag dominating over the dust charge gradient. These results corroborate that a radial gradient in the ion drag force directed towards cathode is the principal cause of dust rotation.« less
IMPRINTS OF EXPANSION ON THE LOCAL ANISOTROPY OF SOLAR WIND TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdini, Andrea; Grappin, Roland
2015-08-01
We study the anisotropy of II-order structure functions (SFs) defined in a frame attached to the local mean field in three-dimensional (3D) direct numerical simulations of magnetohydrodynamic turbulence, with the solar wind expansion both included and not included. We simulate spacecraft flybys through the numerical domain by taking increments along the radial (wind) direction that form an angle of 45° with the ambient magnetic field. We find that only when expansion is taken into account do the synthetic observations match the 3D anisotropy observed in the solar wind, including the change of anisotropy with scale. Our simulations also show thatmore » the anisotropy changes dramatically when considering increments oblique to the radial directions. Both results can be understood by noting that expansion reduces the radial component of the magnetic field at all scales, thus confining fluctuations in the plane perpendicular to the radial. Expansion is thus shown to affect not only the (global) spectral anisotropy, but also the local anisotropy of second-order SF by influencing the distribution of the local mean field, which enters this higher-order statistics.« less
Torrent, Daniel; Sánchez-Dehesa, José
2009-08-07
We demonstrate that metamaterials with anisotropic properties can be used to develop a new class of periodic structures that has been named radial wave crystals. They can be sonic or photonic, and wave propagation along the radial directions is obtained through Bloch states like in usual sonic or photonic crystals. The band structure of the proposed structures can be tailored in a large amount to get exciting novel wave phenomena. For example, it is shown that acoustical cavities based on radial sonic crystals can be employed as passive devices for beam forming or dynamically orientated antennas for sound localization.
NASA Astrophysics Data System (ADS)
Jiao, Cheng-Liang; Mineshige, Shin; Takeuchi, Shun; Ohsuga, Ken
2015-06-01
We apply our two-dimensional (2D), radially self-similar steady-state accretion flow model to the analysis of hydrodynamic simulation results of supercritical accretion flows. Self-similarity is checked and the input parameters for the model calculation, such as advective factor and heat capacity ratio, are obtained from time-averaged simulation data. Solutions of the model are then calculated and compared with the simulation results. We find that in the converged region of the simulation, excluding the part too close to the black hole, the radial distributions of azimuthal velocity {{v}φ }, density ρ and pressure p basically follow the self-similar assumptions, i.e., they are roughly proportional to {{r}-0.5}, {{r}-n}, and {{r}-(n+1)}, respectively, where n∼ 0.85 for the mass injection rate of 1000{{L}E}/{{c}2}, and n∼ 0.74 for 3000{{L}E}/{{c}2}. The distribution of vr and {{v}θ } agrees less with self-similarity, possibly due to convective motions in the rθ plane. The distribution of velocity, density, and pressure in the θ direction obtained by the steady model agrees well with the simulation results within the calculation boundary of the steady model. Outward mass flux in the simulations is overall directed toward a polar angle of 0.8382 rad (∼ 48\\buildrel{\\circ}\\over{.} 0) for 1000{{L}E}/{{c}2} and 0.7852 rad (∼ 43\\buildrel{\\circ}\\over{.} 4) for 3000{{L}E}/{{c}2}, and ∼94% of the mass inflow is driven away as outflow, while outward momentum and energy fluxes are focused around the polar axis. Parts of these fluxes lie in the region that is not calculated by the steady model, and special attention should be paid when the model is applied.
Anyfantakis, Manos; Varanakkottu, Subramanyan Namboodiri; Rudiuk, Sergii; Morel, Mathieu; Baigl, Damien
2017-10-25
We have recently devised the evaporative optical Marangoni assembly (eOMA), a novel and versatile interfacial flow-based method for directing the deposition of colloidal nanoparticles (NPs) on solid substrates from evaporating sessile drops along desired patterns using shaped UV light. Here, we focus on a fixed UV spot irradiation resulting in a cylinder-like deposit of assembled particles and show how the geometrical features of the single deposit can be tailored in three dimensions by simply adjusting the optical conditions or the sample composition, in a quantitative and reproducible manner. Sessile drops containing cationic NPs and a photosensitive surfactant at various concentrations are allowed to evaporate under a single UV beam with a diameter much smaller than that of the drop. After complete evaporation, the geometrical characteristics of the NP deposits are precisely assessed using optical profilometry. We show that both the volume and the radial size of the light-directed NP deposit can be adjusted by varying the diameter or the intensity of the UV beam or alternatively by changing the concentration of the photosensitive surfactant. Notably, in all these cases, the deposits display an almost constant median height corresponding to a few layers of particles. Moreover, both the radial and the axial extent of the patterns are tuned by changing the NP concentration. These results are explained by the correlation among the strength of Marangoni flow, the particle trapping efficiency, and the volume of the deposit, and by the role of evaporation-driven flow in strongly controlling the deposit height. Finally, we extend the versatility of eOMA by demonstrating that NPs down to 30 nm in diameter can be effectively patterned on glass or polymeric substrates.
Building Blocks of the Nexin-Dynein Regulatory Complex in Chlamydomonas Flagella*
Lin, Jianfeng; Tritschler, Douglas; Song, Kangkang; Barber, Cynthia F.; Cobb, Jennifer S.; Porter, Mary E.; Nicastro, Daniela
2011-01-01
The directional flow generated by motile cilia and flagella is critical for many processes, including human development and organ function. Normal beating requires the control and coordination of thousands of dynein motors, and the nexin-dynein regulatory complex (N-DRC) has been identified as an important regulatory node for orchestrating dynein activity. The nexin link appears to be critical for the transformation of dynein-driven, linear microtubule sliding to flagellar bending, yet the molecular composition and mechanism of the N-DRC remain largely unknown. Here, we used proteomics with special attention to protein phosphorylation to analyze the composition of the N-DRC and to determine which subunits may be important for signal transduction. Two-dimensional electrophoresis and MALDI-TOF mass spectrometry of WT and mutant flagellar axonemes from Chlamydomonas identified 12 N-DRC-associated proteins, including all seven previously observed N-DRC components. Sequence and PCR analyses identified the mutation responsible for the phenotype of the sup-pf-4 strain, and biochemical comparison with a radial spoke mutant revealed two components that may link the N-DRC and the radial spokes. Phosphoproteomics revealed eight proteins with phosphorylated isoforms for which the isoform patterns changed with the genotype as well as two components that may play pivotal roles in N-DRC function through their phosphorylation status. These data were assembled into a model of the N-DRC that explains aspects of its regulatory function. PMID:21700706
NASA Astrophysics Data System (ADS)
Ku, S.; Chang, C. S.; Hager, R.; Churchill, R. M.; Tynan, G. R.; Cziegler, I.; Greenwald, M.; Hughes, J.; Parker, S. E.; Adams, M. F.; D'Azevedo, E.; Worley, P.
2018-05-01
A fast edge turbulence suppression event has been simulated in the electrostatic version of the gyrokinetic particle-in-cell code XGC1 in a realistic diverted tokamak edge geometry under neutral particle recycling. The results show that the sequence of turbulent Reynolds stress followed by neoclassical ion orbit-loss driven together conspire to form the sustaining radial electric field shear and to quench turbulent transport just inside the last closed magnetic flux surface. The main suppression action is located in a thin radial layer around ψN≃0.96 -0.98 , where ψN is the normalized poloidal flux, with the time scale ˜0.1 ms.
Marceau, Vincent; Varin, Charles; Piché, Michel
2013-03-15
In the study of laser-driven electron acceleration, it has become customary to work within the framework of paraxial wave optics. Using an exact solution to the Helmholtz equation as well as its paraxial counterpart, we perform numerical simulations of electron acceleration with a high-power TM(01) beam. For beam waist sizes at which the paraxial approximation was previously recognized valid, we highlight significant differences in the angular divergence and energy distribution of the electron bunches produced by the exact and the paraxial solutions. Our results demonstrate that extra care has to be taken when working under the paraxial approximation in the context of electron acceleration with radially polarized laser beams.
NASA Astrophysics Data System (ADS)
Hillesheim, Jon
2015-11-01
High spatial resolution measurements with Doppler backscattering in JET have provided new insights into the development of the edge radial electric field during pedestal formation. The characteristics of Er have been studied as a function of density at 2.5 MA plasma current and 3 T toroidal magnetic field. We observe fine-scale spatial structure in the edge Er well prior to the LH transition, consistent with stationary zonal flows. Zonal flows are a fundamental mechanism for the saturation of turbulence and this is the first direct evidence of stationary zonal flows in a tokamak. The radial wavelength of the zonal flows systematically decreases with density. The zonal flows are clearest in Ohmic conditions, weaker in L-mode, and absent in H-mode. Measurements also show that after neutral beam heating is applied, the edge Er builds up at a constant gradient into the core during L-mode, at radii where Er is mainly due to toroidal velocity. The local stability of velocity shear driven turbulence, such as the parallel velocity gradient mode, will be assessed with gyrokinetic simulations. This critical Er shear persists across the LH transition into H-mode. Surprisingly, a reduction in the apparent magnitude of the Er well depth is observed directly following the LH transition at high densities. Establishing the physics basis for the LH transition is important for projecting scalings to ITER and these observations challenge existing models based on increased Er shear or strong zonal flows as the trigger for the transition. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
TSSGNEO suggestions for refinement of safety criteria for dam at the Sayano-Shushenskaya HPP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savich, A. I.; Gaziev, E. G.
2013-09-15
Analysis of radial-displacements of the dam, measured by direct and inverted plumb lines, indicates that curves of the variation in radial displacements of the dam at different elevations make it possible to plot diagrams of increases in the radial displacement over the entire height of the dam, i.e., inclines of the axis of the dam to the vertical.
Integrated axial and tangential serpentine cooling circuit in a turbine airfoil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ching-Pang; Jiang, Nan; Marra, John J
2015-05-05
A continuous serpentine cooling circuit forming a progression of radial passages (44, 45, 46, 47A, 48A) between pressure and suction side walls (52, 54) in a MID region of a turbine airfoil (24). The circuit progresses first axially, then tangentially, ending in a last radial passage (48A) adjacent to the suction side (54) and not adjacent to the pressure side (52). The passages of the axial progression (44, 45, 46) may be adjacent to both the pressure and suction side walls of the airfoil. The next to last radial passage (47A) may be adjacent to the pressure side wall andmore » not adjacent to the suction side wall. The last two radial passages (47A, 48A) may be longer along the pressure and suction side walls respectively than they are in a width direction, providing increased direct cooling surface area on the interiors of these hot walls.« less
NASA Astrophysics Data System (ADS)
Perez, J. C.; Chandran, B. D.
2013-12-01
We present direct numerical simulations of inhomogeneous reduced magnetohydrodynamic (RMHD) turbulence between the Sun and the Alfvén critical point. These are the first such simulations that take into account the solar-wind outflow velocity and the radial inhomogeneity of the background solar wind without approximating the nonlinear terms in the governing equations. Our simulation domain is a narrow magnetic flux tube with a square cross section centered on a radial magnetic field line. We impose periodic boundary conditions in the plane perpendicular to the background magnetic field B0. RMHD turbulence is driven by outward-propagating Alfvén waves (z+ fluctuations) launched from the Sun, which undergo partial non-WKB reflection to produce sunward-propagating Alfvén waves (z- fluctuations). Nonlinear interactions between z+ and z- then cause fluctuation energy to cascade from large scales to small scales and dissipate. We present ten simulations with different values of the correlation time τ+c⊙ and perpendicular correlation length L⊥⊙ of outward-propagating Alfvén waves (AWs) at the coronal base. We find that between 15% and 33% of the z+ energy launched into the corona dissipates between the coronal base and Alfvén critical point, which is at rA = 11.1R⊙ in our model solar wind. Between 33% and 40% of this input energy goes into work on the solar-wind outflow, and between 22% and 36% escapes as z+ fluctuations through the simulation boundary at r=rA. Except in the immediate vicinity of r=R⊙, the z× power spectra scale like k⊥-α×, where k⊥ is the wavenumber in the plane perpendicular to B0. In our simulation with the smallest value of τ+c⊙ (~2 min) and largest value of L⊥⊙ (~2×104 km), we find that α+ decreases approximately linearly with increasing ln(r), reaching a value of~1.3 at r=11.1R⊙. Our simulations with larger values of τ+c⊙ exhibit alignment between the contours of constant Φ× and Ω×, where Φ× are the Elsässer potentials and Ω× are the outer-scale parallel Elsässer vorticities. This alignment reduces the efficiency of nonlinear interactions at r≥2R⊙ to a degree that increases with increasing τ+c⊙.
Investigation on centrifugal impeller in an axial-radial combined compressor with inlet distortion
NASA Astrophysics Data System (ADS)
Li, Du; Yang, Ce; Zhao, Ben; Zhou, Mi; Qi, Mingxu; Zhang, Jizhong
2011-12-01
Assembling an axial rotor and a stator at centrifugal compressor upstream to build an axial-radial combined compressor could achieve high pressure ratio and efficiency by appropriate size augment. Then upstream potential flow and wake effect appear at centrifugal impeller inlet. In this paper, the axial-radial compressor is unsteadily simulated by three-dimensional Reynolds averaged Navier-Stokes equations with uniform and circumferential distorted total pressure inlet condition to investigate upstream effect on radial rotor. The results show that span-wise nonuniform total pressure distribution is generated and radial and circumferential combined distortion is formed at centrifugal rotor inlet. The upstream stator wake deflects to rotor rotation direction and decreases with blade span increases. Circumferential distortion causes different separated flow formations at different pitch positions. The tip leakage vortex is suppressed in centrifugal blade passages. Under distorted inlet condition, flow direction of centrifugal impeller leading edge upstream varies evidently near hub and shroud but varies slightly at mid-span. In addition, compressor stage inlet distortion produces remarkable effect on blade loading of centrifugal blade both along chordwise and pitchwise.
Toda, Haruo; Kawasaki, Keisuke; Sato, Sho; Horie, Masao; Nakahara, Kiyoshi; Bepari, Asim K; Sawahata, Hirohito; Suzuki, Takafumi; Okado, Haruo; Takebayashi, Hirohide; Hasegawa, Isao
2018-05-16
Propagation of oscillatory spike firing activity at specific frequencies plays an important role in distributed cortical networks. However, there is limited evidence for how such frequency-specific signals are induced or how the signal spectra of the propagating signals are modulated during across-layer (radial) and inter-areal (tangential) neuronal interactions. To directly evaluate the direction specificity of spectral changes in a spiking cortical network, we selectively photostimulated infragranular excitatory neurons in the rat primary visual cortex (V1) at a supra-threshold level with various frequencies, and recorded local field potentials (LFPs) at the infragranular stimulation site, the cortical surface site immediately above the stimulation site in V1, and cortical surface sites outside V1. We found a significant reduction of LFP powers during radial propagation, especially at high-frequency stimulation conditions. Moreover, low-gamma-band dominant rhythms were transiently induced during radial propagation. Contrastingly, inter-areal LFP propagation, directed to specific cortical sites, accompanied no significant signal reduction nor gamma-band power induction. We propose an anisotropic mechanism for signal processing in the spiking cortical network, in which the neuronal rhythms are locally induced/modulated along the radial direction, and then propagate without distortion via intrinsic horizontal connections for spatiotemporally precise, inter-areal communication.
Inverted Spring Pendulum Driven by a Periodic Force: Linear versus Nonlinear Analysis
ERIC Educational Resources Information Center
Arinstein, A.; Gitterman, M.
2008-01-01
We analyse the stability of the spring inverted pendulum with the vertical oscillations of the suspension point. An important factor in the stability analysis is the interaction between radial and oscillating modes. In addition to the small oscillations near the upper position, the nonlinearity of the problem leads to the appearance of limit-cycle…
Hybrid simulations of Alfvén modes driven by energetic particles
NASA Astrophysics Data System (ADS)
Zhu, J.; Ma, Z. W.; Wang, S.
2016-12-01
A hybrid kinetic-magnetohydrodynamic code (CLT-K) is developed to study nonlinear dynamics of Alfvén modes driven by energetic particles (EP). A n = 2 toroidicity-induced discrete shear Alfvén eigenmode (TAE)-type energetic particle mode (EPM) with two dominant poloidal harmonics (m = 2 and 3) is first excited and its frequency remains unchanged in the early phase. Later, a new branch of the n = 2 frequency with a single dominant poloidal mode (m = 3) splits from the original TAE-type EPM. The new single m EPM (m = 3) slowly moves radially outward with the downward chirping of the frequency and the mode amplitude remains at a higher level. The original EPM remains at its original position without the frequency chirping, but its amplitude decays with time. Finally, the m = 3 EPM becomes dominant and the frequency falls into the β-induced gap of the Alfvén continuum. The redistribution of the δf in the phase space is consistent with the mode frequency downward chirping and the drifting direction of the resonance region is mainly due to the biased free energy profile. The transition from a TAE-type EPM to a single m EPM is mainly caused by extension of the p = 0 trapped particle resonance in the phase space.
Mathers, Bryan; Agur, Anne; Oliver, Michele; Gordon, Karen
2016-12-01
The transverse carpal ligament is a major component of the carpal tunnel and is an important structure in the etiology of carpal tunnel syndrome. The current study aimed to quantify biaxial elastic moduli of the transverse carpal ligament and compare differences between sex and region (Radial and Ulnar). Biaxial testing of radial and ulnar samples from twenty-two (thirteen male, nine female) human fresh frozen cadaveric transverse carpal ligaments was performed. Elastic moduli and stiffness were calculated and compared. Biaxial elastic moduli of the transverse carpal ligament ranged from 0.76MPa to 3.38MPa, varying based on region (radial and ulnar), testing direction (medial-lateral and proximal-distal) and sex. Biaxial elastic moduli were significantly larger in the medial-lateral direction than the proximal-distal direction (P<0.001). Moduli were significantly larger ulnarly than radially (P=0.001). No significant differences due to gender were noted. The regional variations in biaxial elastic moduli of the transverse carpal ligament may help improve non-invasive treatment methods for carpal tunnel syndrome, specifically manipulative therapy. The smaller biaxial elastic moduli found in the radial region suggests that manipulative therapy should be focused on the radial aspect of the transverse carpal ligament. The trend where female transverse carpal ligaments had larger stiffness in the ulnar location than males suggests that that the increased prevalence of carpal tunnel syndrome in women may be related to an increased stiffness of the transverse carpal ligament, however further work is warranted to evaluate this trend. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shear-driven phase transformation in silicon nanowires
NASA Astrophysics Data System (ADS)
Vincent, L.; Djomani, D.; Fakfakh, M.; Renard, C.; Belier, B.; Bouchier, D.; Patriarche, G.
2018-03-01
We report on an unprecedented formation of allotrope heterostructured Si nanowires by plastic deformation based on applied radial compressive stresses inside a surrounding matrix. Si nanowires with a standard diamond structure (3C) undergo a phase transformation toward the hexagonal 2H-allotrope. The transformation is thermally activated above 500 °C and is clearly driven by a shear-stress relief occurring in parallel shear bands lying on {115} planes. We have studied the influence of temperature and axial orientation of nanowires. The observations are consistent with a martensitic phase transformation, but the finding leads to clear evidence of a different mechanism of deformation-induced phase transformation in Si nanowires with respect to their bulk counterpart. Our process provides a route to study shear-driven phase transformation at the nanoscale in Si.
Shear-driven phase transformation in silicon nanowires.
Vincent, L; Djomani, D; Fakfakh, M; Renard, C; Belier, B; Bouchier, D; Patriarche, G
2018-03-23
We report on an unprecedented formation of allotrope heterostructured Si nanowires by plastic deformation based on applied radial compressive stresses inside a surrounding matrix. Si nanowires with a standard diamond structure (3C) undergo a phase transformation toward the hexagonal 2H-allotrope. The transformation is thermally activated above 500 °C and is clearly driven by a shear-stress relief occurring in parallel shear bands lying on {115} planes. We have studied the influence of temperature and axial orientation of nanowires. The observations are consistent with a martensitic phase transformation, but the finding leads to clear evidence of a different mechanism of deformation-induced phase transformation in Si nanowires with respect to their bulk counterpart. Our process provides a route to study shear-driven phase transformation at the nanoscale in Si.
Plasma Transport and Magnetic Flux Circulation in Saturn's Magnetosphere
NASA Astrophysics Data System (ADS)
Neupane, B. R.; Delamere, P. A.; Ma, X.; Wilson, R. J.
2017-12-01
Radial transport of plasma in the rapidly rotating magnetospheres is an important dynamical process. Radial transport is due to the centrifugally driven interchange instability and magnetodisc reconnection, allowing net mass to be transported outward while conserving magnetic flux. Using Cassini Plasma Spectrometer instrument (CAPS) data products (e.g., Thomsen et al., [2010]; Wilson et al., [2017]) we estimate plasma mass and magnetic flux transport rates as functions of radial distance and local time. The physical requirement for zero net magnetic flux transport provides a key benchmark for assessing the validity of our mass transport estimate. We also evaluate magnetodisc stability using a two-dimensional axisymmetric equilibrium model [Caudal, 1986]. Observed local properties (e.g., specific entropy and estimates of flux tube mass and entropy content) are compared with modeled equilibrium conditions such that departures from equilibrium can be correlated with radial flows and local magnetic field structure. Finally, observations of specific entropy indicate that plasma is non-adiabatic heated during transport. However, the values of specific entropy are well organized in inner magnetosphere (i.e. L<10), and become widely scattered in the middle magnetosphere, suggesting that the transport dynamics of the inner and middle magnetosphere are different.
Radial force on the vacuum chamber wall during thermal quench in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pustovitov, V. D., E-mail: pustovitov-vd@nrcki.ru
The radial force balance during a thermal quench in tokamaks is analyzed. As a rule, the duration τ{sub tp} of such events is much shorter than the resistive time τ{sub w} of the vacuum chamber wall. Therefore, the perturbations of the magnetic field B produced by the evolving plasma cannot penetrate the wall, which makes different the magnetic pressures on its inner and outer sides. The goal of this work is the analytical estimation of the resulting integral radial force on the wall. The plasma is considered axially symmetric; for the description of radial forces on the wall, the resultsmore » of V.D. Shafranov’s classical work [J. Nucl. Energy C 5, 251 (1963)] are used. Developed for tokamaks, the standard equilibrium theory considers three interacting systems: plasma, poloidal field coils, and toroidal field coils. Here, the wall is additionally incorporated with currents driven by ∂B/∂t≠0 accompanying the fast loss of the plasma thermal energy. It is shown that they essentially affect the force redistribution, thereby leading to large loads on the wall. The estimates prove that these loads have to be accounted for in the disruptive scenarios in large tokamaks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty Thakur, S.; Fedorczak, N.; Manz, P.
2012-08-15
Using laser induced fluorescence (LIF), radial profiles of azimuthal ion fluid velocity and ion temperature are measured in the controlled shear de-correlation experiment (CSDX) linear helicon plasma device. Ion velocities and temperatures are derived from the measured Doppler broadened velocity distribution functions of argon ions. The LIF system employs a portable, high power (>300 mW), narrowband ({approx}1 MHz) tunable diode laser-based system operating at 668.614 nm. Previous studies in CSDX have shown the existence of a radially sheared azimuthal flow as measured with time delay estimation methods and Mach probes. Here, we report the first LIF measurements of sheared plasmamore » fluid flow in CSDX. Above a critical magnetic field, the ion fluid flow profile evolves from radially uniform to peaked on axis with a distinct reversed flow region at the boundary, indicating the development of a sheared azimuthal flow. Simultaneously, the ion temperature also evolves from a radially uniform profile to a profile with a gradient. Measurements in turbulent and coherent drift wave mode dominated plasmas are compared.« less
An Idealized, Single Radial Swirler, Lean-Direct-Injection (LDI) Concept Meshing Script
NASA Technical Reports Server (NTRS)
Iannetti, Anthony C.; Thompson, Daniel
2008-01-01
To easily study combustor design parameters using computational fluid dynamics codes (CFD), a Gridgen Glyph-based macro (based on the Tcl scripting language) dubbed BladeMaker has been developed for the meshing of an idealized, single radial swirler, lean-direct-injection (LDI) combustor. BladeMaker is capable of taking in a number of parameters, such as blade width, blade tilt with respect to the perpendicular, swirler cup radius, and grid densities, and producing a three-dimensional meshed radial swirler with a can-annular (canned) combustor. This complex script produces a data format suitable for but not specific to the National Combustion Code (NCC), a state-of-the-art CFD code developed for reacting flow processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amatucci, W.E.
1994-01-01
This laboratory investigation documents the influence of transverse, localized, dc electric fields (TLE) on the excitation of ion-cyclotron waves driven by magnetic field-aligned current (FAC) in a Q-machine plasma device. A segmented disk electrode, located on axis at the end of the plasma column, is used to independently control TLE and FAC in the plasma (potassium plasma, n approximately equals 10(exp 9) cm(exp {minus}3), rho(i) approximately equals 0.2 cm, T(e) = T(i) approximately equals 0.2 eV). Ion-cyclotron waves have been characterized in both the weak-TLE and large-FAC regime and the strong-TLE and small-FAC regime. The existence of a new categorymore » of oscillation identified as the inhomogeneous energy-density driven (IEDD) instability is verified based on the properties of the waves in the latter regime. In the weak-TLE regime, current-driven electrostatic ion-cyclotron (CDEIC) waves with features in qualitative agreement with previous laboratory results have been observed at sufficiently large FAC. These waves have a frequency spectrum with a single narrow spectral feature located slightly above the ion-cyclotron frequency (omega approximately equals 1.2 Omega(i)). The waves are standing in the radial direction with peak oscillation amplitude located in the center of the FAC channel and are azimuthally symmetric (m = 0). Small magnitude TLE were found to have negligible effect on the characteristics of the waves. In the strong-TLE regime, a decrease in the threshold FAC level is observed. This transition in the instability threshold is accompanied by changes in the frequency spectra, propagation characteristics, and mode amplitude profiles. In the presence of strong-TLE, the ion-cyclotron waves propagate azimuthally in the E x B direction with k(theta) rho(i) = 0.4 and m = 1. The frequency spectrum becomes broadband and spiky, and shifts with the applied TLE strength.« less
Compact laser amplifier system
Carr, R.B.
1974-02-26
A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)
77 FR 28240 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-14
... multiple site damage cracks in the radial web lap and tear strap splices of the aft pressure bulkhead at... multiple site damage cracks in the radial web lap and tear strap splices of the aft pressure bulkhead at...
NASA Astrophysics Data System (ADS)
Guo, Zhi; Gao, Xing; Wang, Wei; Yao, Zhenxing
2012-05-01
Through analysis of the Rayleigh wave and Love wave empirical Green's functions recovered from cross-correlation of seismic ambient noise, we image the radial anisotropy and shear wave velocity structure beneath southern Tibet and the central Himalaya. Dense ray path coverage from 22 broadband seismic stations deployed by the Himalayan Nepal Tibet Seismic Experiment project provides the unprecedented opportunity to resolve the spatial distribution of the radial anisotropy within the crust of the central Himalaya and southern Tibet. In the shallow subsurface, the obtained results indicate significant radial anisotropy with negative magnitude (VSV > VSH) mainly associated with the Indus Yarlung Suture and central Himalaya, possibly related to the fossil microcracks or metamorphic foliations formed during the uplifting of the Tibetan Plateau. With increasing depth, the magnitude of radial anisotropy varies from predominantly negative to predominantly positive, and a mid-crustal layer with prominent positive radial anisotropy (VSV < VSH) has been detected. The top of the mid-crustal anisotropic layer correlates nicely with the starting depth of the mid-crustal lower velocity layers detected in our previous study. The spatial correlation of the positive radial anisotropy layers and mid-crustal lower velocity layers might suggest lateral crustal channel flow induced alignment of mineral grains, most likely micas or amphiboles, within the mid-crust of the central Himalaya and southern Tibet. This observation provides independent seismic evidence to support the thermo-mechanical model, which involves the southward extrusion of a low viscosity mid-crustal channel driven by the denudation effect focused at the southern flank of the Tibetan Plateau to explain the tectonic evolution of the Tibetan-Himalayan orogen.
Roberts, Jonathan S; Niu, Jianli; Pastor-Cervantes, Juan A
2017-10-01
Hemostasis following transradial access (TRA) is usually achieved by mechanical compression. We investigated use of the QuikClot Radial hemostasis pad (Z-Medica) compared with the TR Band (Terumo Medical) to shorten hemostasis after TRA. Thirty patients undergoing TRA coronary angiography and/or percutaneous coronary intervention were randomized into three cohorts post TRA: 10 patients received mechanical compression with the TR Band, 10 patients received 30 min of compression with the QuikClot Radial pad, and 10 patients received 60 min of compression with the QuikClot Radial pad. Times to hemostasis and access-site complications were recorded. Radial artery patency was evaluated 1 hour after hemostasis by the reverse Barbeau's test. There were no differences in patient characteristics, mean dose of heparin (7117 ± 1054 IU), or mean activated clotting time value (210 ± 50 sec) at the end of procedure among the three groups. Successful hemostasis was achieved in 100% of patients with both the 30-min and 60-min compression groups using the QuikClot pad. Hemostasis failure occurred in 50% of patients when the TR Band was initially weaned at the protocol-driven time (40 min after sheath removal). Mean compression time for hemostasis with the TR Band was 149.4 min compared with 30.7 min and 60.9 min for the 30-min and 60-min QuikClot groups, respectively. No radial artery occlusion occurred in any subject at the end of the study. Use of the QuikClot Radial pad following TRA in this pilot trial significantly shortened hemostasis times when compared with the TR Band, with no increased complications noted.
On Driving AGB Mass-Loss from Core-Contraction
NASA Astrophysics Data System (ADS)
Lewis, B. M.
1997-12-01
A bulk movement of mass constitutes a momentum flow. An instructive instance occurs in the radial pulsation of stars and white dwarfs, where a symmetric contraction phase implies the existence of an inwardly- directed radial momentum flow, that is followed during the subsequent expansion by an outwardly-directed flow. The key notion here is that an inward flow is effectively transmitted through the center to become in turn an outward flow: in adiabatic processes the momentum flux is not cancelled simply because it arrives at the center. However, during the radial pulsation of AGB stars momentum is cancelled in atmospheric shock-waves and consumed in work against gravity while mass is lifted far enough away from the star for dust to form, whereon radiation pressure drives it away. These momentum-dissipative conditions at the outer boundary therefore require a stellar source of radially directed momentum if pulsation is to continue in an AGB star. A sufficient source is found in the contraction of the whole of the electron-degenerate core of an AGB star under the addition of He ashes from shell-hydrogen burning. This produces an inwardly- directed radial momentum flow that must reach the center. Lewis quantifies the resulting momentum flux (http://xxx.lanl.gov/ps/astro-ph /9707233), and finds that it easily suffices to support the mass-loss of every AGB star. But it is necessary to assume that most of the inwardly directed flux is transmitted through the center to become in turn an outwardly directed flux. The AGB core maintains its virial equilibrium by exporting its excess momentum flux to the stellar envelope. This mechanism explains the dependence of the mass-loss rate from AGB stars on core mass; its generalization to objects with angular momentum and/or strong magnetic fields suggests a novel explanation for the axial symmetry exhibited by most planetary nebulae and proto planetary nebulae. Gravitational contraction can also account for the momentum flux in the solar wind.
NASA Astrophysics Data System (ADS)
Harp, A.; Valentine, G.
2016-12-01
Mafic eruptions along the flanks of stratovolcanoes pose significant hazards to life and property due to the uncertainty linked to new vent locations and their potentially close proximity to inhabited areas. Flank eruptions are often fed by radial dikes with magma supplied either laterally from the central conduit or vertically from a deeper storage location. The highly eroded Oligocene age Summer Coon stratovolcano, Colorado reveals over 700 mafic dikes surrounding a series of intrusive stocks (inferred conduit). The exposure provides an opportunity to study radial dike propagation directions and their relationship with the conduit in the lower portions of a volcanic edifice. Detailed geologic mapping and a geophysical survey revealed that little or no direct connection exists between the mafic radial dikes and the inferred conduit at the current level of exposure. Oriented samples collected from the chilled margins of 29 mafic dikes were analyzed for flow fabrics and emplacement directions. Among them, 20 dikes show flow angles greater than 30 degrees from horizontal, and a single dike had flow fabrics oriented at approximately 20 degrees. Of the dikes with steeper fabrics nine dikes were emplaced up and toward the volcano's center between 30-75 degrees from horizontal, and 11 dikes emplaced up and away from the volcano's center between 35-60 degrees. The two groups of dikes likely responded to the stress field within the edifice, where steepest-emplaced had relatively high magma overpressure and were focused toward the volcano's summit, while dikes with lower overpressures propagated out toward the flanks. At Summer Coon, the lack of connection between mafic dikes and the inferred conduit and presence of only one sub-horizontally emplaced dike implies the stresses within lower edifice impeded lateral dike nucleation and propagation while promoting and influencing the emplacement direction of upward propagating dikes.
NASA Astrophysics Data System (ADS)
Dikpati, M.; Gilman, P. A.
2001-05-01
We propose here an α Ω flux-transport dynamo driven by a tachocline α -effect, produced by the global hydrodynamic instability of tachocline differential rotation as calculated using a shallow-water model (Dikpati & Gilman, 2001, ApJ, Mar.20 issue). Growing, unstable shallow-water modes propagating longitudinally in the tachocline create alternate vortices which correlate with upward/downward radial motion of top boundary, associated with convergence/divergence of the disturbance flow to produce a longitude-averaged net kinetic helicity, and hence an α -effect. We show that a flux-transport dynamo driven by a tachocline α -effect is equally successful as a Babcock-Leighton flux-transport dynamo (Dikpati & Charbonneau 1999, ApJ, 518, 508) in reproducing many large-scale solar cycle features, including the most difficult feature of phase relationship between the subsurface toroidal field and surface radial field. In view of the success of flux-transport dynamos, whether the α -effect is at the surface or in the tachocline, we argue that the solar dynamo should be considered to involve three basic processes, rather than two (α -effect and Ω -effect only). The third important process is the advective transport of flux by meridional circulation. In reality, both α -effects (Babcock-Leighton type and tachocline α -effect) are likely to exist, but it is hard to estimate their relative magnitudes. We show, by extending the simulation in a full spherical shell model that a flux-transport dynamo driven by a tachocline α -effect selects toroidal field that is antisymmetric about the equator, while a Babcock-Leighton flux-transport dynamo selects symmetric toroidal field. Since our present Sun selects antisymmetric toroidal fields, we argue that the flux-transport solar dynamo is primarily driven by a tachocline α -effect. Acknowledgements: This work is supported by NASA grants W-19752 and S-10145-X. National Center for Atmospheric Research is sponsored by National Science Foundation.
Measurements of localized core turbulence & turbulence suppression on DIII-D
NASA Astrophysics Data System (ADS)
Shafer, Morgan W.
The crucial dynamics of turbulent-driven cross-field transport in tokamak plasmas reside in the two-dimensional (2D) radial/poloidal plane. Thus, 2D measurements of turbulence are needed to test theoretical models and validate sophisticated gyrokinetic codes. Furthermore, measurements are important for understanding the role of turbulence suppression in enhanced confinement regimes. The Beam Emission Spectroscopy (BES) diagnostic on the DIII-D tokamak measures localized, long-wavelength (k⊥rho i≤1) density fluctuations in the 2D radial/poloidal plane and is suitable for these studies. Measurements of turbulence amplitude, S(kr,k theta) spectra, correlation lengths, decorrelation rates and group velocities are obtained via BES in the core (0.3< r/a <0.9) and compared to nonlinear gyrokinetic simulations from the GYRO code. The 2D measurements show a tilted eddy structure in the core that is consistent with ExB shear. The S(kr,ktheta) spectra are directly compared to GYRO simulations. These comparisons show the 2D structure is in reasonable agreement at r/a = 0.5 where the predicted turbulence amplitude and heat flux agree well with the measurements. However, the simulations show a strongly tilted eddy structure that extends to high-kr at r/a = 0.75, where the simulations under-predict the turbulence amplitude and heat flux. This is not observed in the experiment and suggests a possible over-exaggeration of an ExB or zonal flow shearing mechanism in the simulations. Measurements demonstrate local turbulence suppression near low-order rational q-surfaces at low magnetic shear. This interaction can lead to an Internal Transport Barrier (ITB) provided sufficient equilibrium ExB shear (largely due to the toroidal rotation of neutral beam heated rotating plasmas) sustains the barrier. Related GYRO simulations suggest these ITBs are triggered by zonal flows that form near the q = 2 surface. Consistent with the simulations, localized measurements demonstrate increased shear in the poloidal turbulence velocity. The resulting shear rate transiently exceeds the decorrelation rate, causing a reduction in turbulence and radial correlation length. The layer of suppressed turbulence moves radially outward, nearly coincident with integer q-surfaces.
Radiation Belt Transport Driven by Solar Wind Dynamic Pressure Fluctuations
NASA Astrophysics Data System (ADS)
Kress, B. T.; Hudson, M. K.; Ukhorskiy, A. Y.; Mueller, H.
2012-12-01
The creation of the Earth's outer zone radiation belts is attributed to earthward transport and adiabatic acceleration of electrons by drift-resonant interactions with electromagnetic fluctuations in the magnetosphere. Three types of radial transport driven by solar wind dynamic pressure fluctuations that have been identified are: (1) radial diffusion [Falthammer, 1965], (2) significant changes in the phase space density radial profile due to a single or few ULF drift-resonant interactions [Ukhorskiy et al., 2006; Degeling et al., 2008], and (3) shock associated injections of radiation belt electrons occurring in less than a drift period [Li et al., 1993]. A progress report will be given on work to fully characterize different forms of radial transport and their effect on the Earth's radiation belts. The work is being carried out by computing test-particle trajectories in electric and magnetic fields from a simple analytic ULF field model and from global MHD simulations of the magnetosphere. Degeling, A. W., L. G. Ozeke, R. Rankin, I. R. Mann, and K. Kabin (2008), Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves, textit{J. Geophys. Res., 113}, A02208, doi:10.1029/2007JA012411. Fälthammar, C.-G. (1965), Effects of Time-Dependent Electric Fields on Geomagnetically Trapped Radiation, J. Geophys. Res., 70(11), 2503-2516, doi:10.1029/JZ070i011p02503. Li, X., I. Roth, M. Temerin, J. R. Wygant, M. K. Hudson, and J. B. Blake (1993), Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, textit{Geophys. Res. Lett., 20}(22), 2423-2426, doi:10.1029/93GL02701. Ukhorskiy, A. Y., B. J. Anderson, K. Takahashi, and N. A. Tsyganenko (2006), Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons, textit{Geophys. Res. Lett., 33}(6), L06111, doi:10.1029/2005GL024380.
Van Allen Probes Observations of the Plasmasphere and Radiation Belts
NASA Astrophysics Data System (ADS)
Goldstein, J.; Jahn, J. M.; De Pascuale, S.; Kletzing, C.; Kurth, W. S.; Genestreti, K. J.; Skoug, R. M.; Larsen, B.; Kistler, L. M.; Mouikis, C.; Spence, H. E.; Reeves, G. D.; Baker, D. N.; Blake, J. B.
2014-12-01
Van Allen Probes (RBSP) observations during 15-20 January 2013 are the basis of this study of the spatial relationship between the plasmasphere and radiation belts, and its influence on energy dependent lifetimes of energetic electrons. We use a convection-driven plasmapause test particle (PTP) simulation to provide contextual information for in situ measurements by RBSP during 15-20 January 2013, and find that the model reproduces the observed plasmapause radial locations to within 0.40 Earth radii (RE). We use analysis of the RBSP data to examine the radial structure of both the plasmasphere and radiation belts for the selected 5-day period, which includes a moderate geomagnetic disturbance on 17 January. RBSP observed three belts (inner, outer, and storage ring) prior to the 17 January disturbance, and two belts (inner and outer) afterward. The plasmapause aligns with the outermost belt. We examine the energy dependence of the radial structure and decay lifetimes of energetic electrons, both inside and outside the plasmasphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi
The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed tomore » sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.« less
Katiyar, Ajit K; Sinha, Arun Kumar; Manna, Santanu; Ray, Samit K
2014-09-10
Well-separated Si/ZnS radial nanowire heterojunction-based light-emitting devices have been fabricated on large-area substrates by depositing n-ZnS film on p-type nanoporous Si nanowire templates. Vertically oriented porous Si nanowires on p-Si substrates have been grown by metal-assisted chemical etching catalyzed using Au nanoparticles. Isolated Si nanowires with needle-shaped arrays have been made by KOH treatment before ZnS deposition. Electrically driven efficient white light emission from radial heterojunction arrays has been achieved under a low forward bias condition. The observed white light emission is attributed to blue and green emission from the defect-related radiative transition of ZnS and Si/ZnS interface, respectively, while the red arises from the porous surface of the Si nanowire core. The observed white light emission from the Si/ZnS nanowire heterojunction could open up the new possibility to integrate Si-based optical sources on a large scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrario, Lorenzo, E-mail: lorenzo.ferrario@polimi.it; Little, Justin M., E-mail: jml@princeton.edu; Choueiri, Edgar Y., E-mail: choueiri@princeton.edu
The plasma flow in a finite-electron-temperature magnetic nozzle, under the influence of an applied azimuthal current at the throat, is modeled analytically to assess its propulsive performance. A correction to the nozzle throat boundary conditions is derived by modifying the radial equilibrium of a magnetized infinite two-population cylindrical plasma column with the insertion of an external azimuthal body force for the electrons. Inclusion of finite-temperature effects, which leads to a modification of the radial density profile, is necessary for calculating the propulsive performance, which is represented by nozzle divergence efficiency and thrust coefficient. The solutions show that the application ofmore » the azimuthal current enhances all the calculated performance parameters through the narrowing of the radial density profile at the throat, and that investing power in this beam focusing effect is more effective than using the same power to pre-heat the electrons. The results open the possibility for the design of a focusing stage between the plasma source and the nozzle that can significantly enhance the propulsive performance of electron-driven magnetic nozzles.« less
Collisional Evolution of the Enceladus Neutral Cloud
NASA Technical Reports Server (NTRS)
Cassidy, T. A.; Johnson, R. E.; Hendrix, A. R.
2011-01-01
Water vapor ejected from Saturn's small moon Enceladus easily escapes its meager gravity to form a Saturn-encircling cloud with a low collision rate. Observations show that the cloud is quite broad in the radial direction, and we show here that collisions, though quite rare, may be largely responsible for this radial spreading. We modeled this cloud using the Direct Simulation Monte Carlo method, as fluid methods would be inappropriate for such a tenuous gas.
Gas turbine engine exhaust diffuser including circumferential vane
Orosa, John A.; Matys, Pawel
2015-05-19
A flow passage defined between an inner and an outer boundary for guiding a fluid flow in an axial direction. A flow control vane is supported at a radial location between the inner and outer boundaries. A fluid discharge opening is provided for discharging a flow of the compressed fluid from a trailing edge of the vane, and a fluid control surface is provided adjacent to the fluid discharge opening and extends in the axial direction at the trailing edge of the vane. The fluid control surface has a curved trailing edge forming a Coanda surface. The fluid discharge opening is selectively provided with a compressed fluid to produce a Coanda effect along the control surface. The Coanda effect has a component in the radial direction effecting a turning of the fluid flow in the flow path radially inward or outward toward one of the inner and outer boundaries.
Modeling the Enceladus Plasma and Neutral Torus in Saturn's Inner Magnetosphere
NASA Astrophysics Data System (ADS)
Jia, Yingdong; Russell, C. T.; Khurana, K. K.; Gombosi, T. I.
2010-10-01
Saturn's moon Enceladus, produces hundreds of kilograms of water vapor every second. These water molecules form a neutral torus which is comparable to the Io torus in the Jovian system. These molecules become ionized producing a plasma disk in the inner magnetosphere of Saturn which exchanges momentum with the "corotating” magnetospheric plasma. To balance the centripetal force of this plasma disk, Saturn's magnetic field is stretched in the radial direction and to accelerate the azimuthal speed to corotational values, the field is stretched in the azimuthal direction. At Enceladus the massive pickup of new ions from its plume slows down the corotating flow and breaks this force balance, causing plasma flows in the radial direction. Such radial flows in the inner magnetosphere of Saturn are supported by Cassini observations using various particle and field instruments. In this study we develop a global model of the inner magnetosphere of Saturn in an attempt to reproduce such processes.
Direct Visualization of Barrier Crossing Dynamics in a Driven Optical Matter System.
Figliozzi, Patrick; Peterson, Curtis W; Rice, Stuart A; Scherer, Norbert F
2018-04-25
A major impediment to a more complete understanding of barrier crossing and other single-molecule processes is the inability to directly visualize the trajectories and dynamics of atoms and molecules in reactions. Rather, the kinetics are inferred from ensemble measurements or the position of a transducer ( e. g., an AFM cantilever) as a surrogate variable. Direct visualization is highly desirable. Here, we achieve the direct measurement of barrier crossing trajectories by using optical microscopy to observe position and orientation changes of pairs of Ag nanoparticles, i. e. passing events, in an optical ring trap. A two-step mechanism similar to a bimolecular exchange reaction or the Michaelis-Menten scheme is revealed by analysis that combines detailed knowledge of each trajectory, a statistically significant number of repetitions of the passing events, and the driving force dependence of the process. We find that while the total event rate increases with driving force, this increase is due to an increase in the rate of encounters. There is no drive force dependence on the rate of barrier crossing because the key motion for the process involves a random (thermal) radial fluctuation of one particle allowing the other to pass. This simple experiment can readily be extended to study more complex barrier crossing processes by replacing the spherical metal nanoparticles with anisotropic ones or by creating more intricate optical trapping potentials.
Vaddiraju, Sreeram; Cebeci, Hülya; Gleason, Karen K; Wardle, Brian L
2009-11-01
A novel method for the fabrication of carbon nanotube (CNT)-conducting polymer composites is demonstrated by conformally coating extremely high aspect ratio vertically aligned-CNT (A-CNT) arrays with conducting polymer via oxidative chemical vapor deposition (oCVD). A mechanical densification technique is employed that allows the spacing of the A-CNTs to be controlled, yielding a range of inter-CNT distances between 20 and 70 nm. Using this morphology control, oCVD is shown to conformally coat 8-nm-diameter CNTs having array heights up to 1 mm (an aspect ratio of 10(5)) at all inter-CNT spacings. Three phase CNT-conducting polymer nanocomposites are then fabricated by introducing an insulating epoxy via capillary-driven wetting. CNT morphology is maintained during processing, allowing quantification of direction-dependent (nonisotropic) composite properties. Electrical conductivity occurs primarily along the CNT axial direction, such that the conformal conducting polymer has little effect on the activation energy required for charge conduction. In contrast, the conducting polymer coating enhanced the conductivity in the radial direction by lowering the activation energy required for the creation of mobile charge carriers, in agreement with variable-range-hopping models. The fabrication strategy introduced here can be used to create many multifunctional materials and devices (e.g., direction-tailorable hydrophobic and highly conducting materials), including a new four-phase advanced fiber composite architecture.
The innate origin of radial and vertical gradients in a simulated galaxy disc
NASA Astrophysics Data System (ADS)
Navarro, Julio F.; Yozin, Cameron; Loewen, Nic; Benítez-Llambay, Alejandro; Fattahi, Azadeh; Frenk, Carlos S.; Oman, Kyle A.; Schaye, Joop; Theuns, Tom
2018-05-01
We examine the origin of radial and vertical gradients in the age/metallicity of the stellar component of a galaxy disc formed in the APOSTLE cosmological hydrodynamical simulations. Some of these gradients resemble those in the Milky Way, where they have sometimes been interpreted as due to internal evolution, such as scattering off giant molecular clouds, radial migration driven by spiral patterns, or orbital resonances with a bar. Secular processes play a minor role in the simulated galaxy, which lacks strong spiral or bar patterns, and where such gradients arise as a result of the gradual enrichment of a gaseous disc that is born thick but thins as it turns into stars and settles into centrifugal equilibrium. The settling is controlled by the feedback of young stars; which links the star formation, enrichment, and equilibration time-scales, inducing radial and vertical gradients in the gaseous disc and its descendent stars. The kinematics of coeval stars evolve little after birth and provide a faithful snapshot of the gaseous disc structure at the time of their formation. In this interpretation, the age-velocity dispersion relation would reflect the gradual thinning of the disc rather than the importance of secular orbit scattering; the outward flaring of stars would result from the gas disc flare rather than from radial migration; and vertical gradients would arise because the gas disc gradually thinned as it enriched. Such radial and vertical trends might just reflect the evolving properties of the parent gaseous disc, and are not necessarily the result of secular evolutionary processes.
NASA Astrophysics Data System (ADS)
Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Parikh, Taniya; Fernández-Trincado, J. G.; Roman-Lopes, Alexandre; Rong, Yu; Tang, Baitian; Yan, Renbin
2018-05-01
In our previous work, we found that only two scenarios are capable of reproducing the observed integrated mass-metallicity relations for the gas and stellar components of local star-forming galaxies simultaneously. One scenario invokes a time-dependent metal outflow loading factor with stronger outflows at early times. The other scenario uses a time-dependent initial mass function (IMF) slope with a steeper IMF at early times. In this work, we extend our study to investigate the radial profile of gas and stellar metallicity in local star-forming galaxies using spatially resolved spectroscopic data from the SDSS-IV MaNGA survey. We find that most galaxies show negative gradients in both gas and stellar metallicity with steeper gradients in stellar metallicity. The stellar metallicity gradients tend to be mass dependent with steeper gradients in more massive galaxies while no clear mass dependence is found for the gas metallicity gradient. Then we compare the observations with the predictions from a chemical evolution model of the radial profiles of gas and stellar metallicities. We confirm that the two scenarios proposed in our previous work are also required to explain the metallicity gradients. Based on these two scenarios, we successfully reproduce the radial profiles of gas metallicity, stellar metallicity, stellar mass surface density, and star formation rate surface density simultaneously. The origin of the negative gradient in stellar metallicity turns out to be driven by either radially dependent metal outflow or IMF slope. In contrast, the radial dependence of the gas metallicity is less constrained because of the degeneracy in model parameters.
Wu, Kaifeng; Zhu, Haiming; Lian, Tianquan
2015-03-17
Colloidal quantum confined one-dimensional (1D) semiconductor nanorods (NRs) and related semiconductor-metal heterostructures are promising new materials for efficient solar-to-fuel conversion because of their unique physical and chemical properties. NRs can simultaneously exhibit quantum confinement effects in the radial direction and bulk like carrier transport in the axial direction. The former implies that concepts well-established in zero-dimensional quantum dots, such as size-tunable energetics and wave function engineering through band alignment in heterostructures, can also be applied to NRs; while the latter endows NRs with fast carrier transport to achieve long distance charge separation. Selective growth of catalytic metallic nanoparticles, such as Pt, at the tips of NRs provides convenient routes to multicomponent heterostructures with photocatalytic capabilities and controllable charge separation distances. The design and optimization of such materials for efficient solar-to-fuel conversion require the understanding of exciton and charge carrier dynamics. In this Account, we summarize our recent studies of ultrafast charge separation and recombination kinetics and their effects on steady-state photocatalytic efficiencies of colloidal CdS and CdSe/CdS NRs and related NR-Pt heterostructures. After a brief introduction of their electronic structure, we discuss exciton dynamics of CdS NRs. By transient absorption and time-resolved photoluminescence decay, it is shown that although the conduction band electrons are long-lived, photogenerated holes in CdS NRs are trapped on an ultrafast time scale (∼0.7 ps), which forms localized excitons due to strong Coulomb interaction in 1D NRs. In quasi-type II CdSe/CdS dot-in-rod NRs, a large valence band offset drives the ultrafast localization of holes to the CdSe core, and the competition between this process and ultrafast hole trapping on a CdS rod leads to three types of exciton species with distinct spatial distributions. The effect of the exciton dynamics on photoreduction reactions is illustrated using methyl viologen (MV(2+)) as a model electron acceptor. The steady-state MV(2+) photoreduction quantum yield of CdSe/CdS dot-in-rod NRs approaches unity under rod excitation, much larger than CdSe QDs and CdSe/CdS core/shell QDs. Detailed time-resolved studies show that in quasi-type II CdSe/CdS NRs and type II ZnSe/CdS NRs strong quantum confinement in the radial direction facilitates fast electron transfer and hole removal, whereas the fast carrier mobility along the axial direction enables long distance charge separation and slow charge recombination, which is essential for efficient MV(2+) photoreduction. The NR/MV(2+) relay system can be coupled to Pt nanoparticles in solution for light-driven H2 generation. Alternatively, Pt-tipped CdS and CdSe/CdS NRs provide fully integrated all inorganic systems for light-driven H2 generation. In CdS-Pt and CdSe/CdS-Pt hetero-NRs, ultrafast hole trapping on the CdS rod surface or in CdSe core enables efficient electron transfer from NRs to Pt tips by suppressing hole and energy transfer. It is shown that the quantum yields of photodriven H2 generation using these heterostructures correlate well with measured hole transfer rates from NRs to sacrificial donors, revealing that hole removal is the key efficiency-limiting step. These findings provide important insights for designing more efficient quantum confined NR and NR-Pt based systems for solar-to-fuel conversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClenaghan, J.; Lin, Z.; Holod, I.
The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface.
Evolution and development of the mammalian cerebral cortex.
Molnár, Zoltán; Kaas, Jon H; de Carlos, Juan A; Hevner, Robert F; Lein, Ed; Němec, Pavel
2014-01-01
Comparative developmental studies of the mammalian brain can identify key changes that can generate the diverse structures and functions of the brain. We have studied how the neocortex of early mammals became organized into functionally distinct areas, and how the current level of cortical cellular and laminar specialization arose from the simpler premammalian cortex. We demonstrate the neocortical organization in early mammals, which helps to elucidate how the large, complex human brain evolved from a long line of ancestors. The radial and tangential enlargement of the cortex was driven by changes in the patterns of cortical neurogenesis, including alterations in the proportions of distinct progenitor types. Some cortical cell populations travel to the cortex through tangential migration whereas others migrate radially. A number of recent studies have begun to characterize the chick, mouse and human and nonhuman primate cortical transcriptome to help us understand how gene expression relates to the development and anatomical and functional organization of the adult neocortex. Although all mammalian forms share the basic layout of cortical areas, the areal proportions and distributions are driven by distinct evolutionary pressures acting on sensory and motor experiences during the individual ontogenies. © 2014 S. Karger AG, Basel.
A large volume 2000 MPA air source for the radiatively driven hypersonic wind tunnel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantino, M
1999-07-14
An ultra-high pressure air source for a hypersonic wind tunnel for fluid dynamics and combustion physics and chemistry research and development must provide a 10 kg/s pure air flow for more than 1 s at a specific enthalpy of more than 3000 kJ/kg. The nominal operating pressure and temperature condition for the air source is 2000 MPa and 900 K. A radial array of variable radial support intensifiers connected to an axial manifold provides an arbitrarily large total high pressure volume. This configuration also provides solutions to cross bore stress concentrations and the decrease in material strength with temperature. [hypersonic,more » high pressure, air, wind tunnel, ground testing]« less
Ku, S.; Chang, C. S.; Hager, R.; ...
2018-04-18
Here, a fast edge turbulence suppression event has been simulated in the electrostatic version of the gyrokinetic particle-in-cell code XGC1 in a realistic diverted tokamak edge geometry under neutral particle recycling. The results show that the sequence of turbulent Reynolds stress followed by neoclassical ion orbit-loss driven together conspire to form the sustaining radial electric field shear and to quench turbulent transport just inside the last closed magnetic flux surface. As a result, the main suppression action is located in a thin radial layer around ψ N≃0.96–0.98, where ψ N is the normalized poloidal flux, with the time scale ~0.1more » ms.« less
Performance of Blowdown Turbine Driven by Exhaust Gas of Nine-Cylinder Radial Engine
NASA Technical Reports Server (NTRS)
Turner, L Richard; Desmon, Leland G
1944-01-01
An investigation was made of an exhaust-gas turbine having four separate nozzle boxes each covering a 90 degree arc of the nozzle diaphragm and each connected to a pair of adjacent cylinders of a nine-cylinder radial engine. This type of turbine has been called a "blowdown" turbine because it recovers the kinetic energy developed in the exhaust stacks during the blowdown period, that is the first part of the exhaust process when the piston of the reciprocating engine is nearly stationary. The purpose of the investigation was to determine whether the blow turbine could develop appreciable power without imposing any large loss in engine power arising from restriction of the engine exhaust by the turbine.
Staub, F.W.; Willett, F.T.
1999-07-20
A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.
Staub, Fred Wolf; Willett, Fred Thomas
1999-07-20
A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.
Staub, Fred Wolf; Willett, Fred Thomas
2000-01-01
A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.
NASA Astrophysics Data System (ADS)
Ohkubo, Toshifumi; Park, Majung; Hirata, Masakazu; Oumi, Manabu; Nakajima, Kunio
In near-field optical recording, the combination of a triangular aperture and a polarized illuminating light is thought to be one of the most promising breakthroughs for improving both spatial resolution and signal-to-noise ratio. In light of this, we have already fabricated a triangular-aperture mounted optical head slider and demonstrated its superior performance while clarifying the influence of the polarization direction on the spatial resolution in the circumferential direction. When the polarization direction was perpendicular to the bottom side (which is parallel to the slider trailing edge) of the aperture, the highest spatial resolution and signal contrast were obtained, in spite of the usage of a fairly large aperture, indicating the presence of clear readout signal waveforms corresponding down to 100 nm line-and-space (L/S) patterns. In this study, we tried to experimentally clarify the influence of the polarization direction of the illuminating light on an aperture's field spread in the radial direction. In order to concretely evaluate the field spread, we prepared 1-mm-long linearly arranged (in the circumferential direction) L/S patterns on a metal-layered medium, and a piezo-electric actuator combined positioner. Intersecting the aperture at two portions of the tracks, directly acquired signal waveforms could be successfully transformed into the waveforms that would be obtained if the aperture had crossed the track at right angles. The field spreads in the radial direction were estimated to be approximately 250 nm when the polarization direction was perpendicular to the bottom side. In contrast, when the polarization direction was 45 degrees, the stationary field spread in the radial direction was estimated to be approximately 350 - 370 nm. It could be confirmed experimentally that both the highest spatial resolution in the circumferential direction and the smallest field spread in the radial direction were realized with the combination of the triangular aperture and the illuminating polarized light whose direction was perpendicular to the bottom side. Based on these results, the signal-to-noise ratio will be evaluated and discussed in the future with respect to the above-mentioned optimum aperture structure and conditions.
Impurity profiles and radial transport in the EXTRAP-T2 reversed field pinch
NASA Astrophysics Data System (ADS)
Sallander, J.
1999-05-01
Radially resolved spectroscopy has been used to measure the radial distribution of impurity ions (O III-O V and C III-CVI) in the EXTRAP-T2 reversed field pinch (RFP). The radial profile of the emission is reconstructed from line emission measured along five lines of sight. The ion density profile is the fitted quantity in the reconstruction of the brightness profile and is thus obtained directly in this process. These measurements are then used to adjust the parameters in transport calculations in order to obtain consistency with the observed ion density profiles. Comparison between model and measurements show that a radial dependence in the diffusion is needed to explain the measured ion densities.
Development of Electric Power Units Driven by Waste Heat
NASA Astrophysics Data System (ADS)
Inoue, Naoyuki; Takeuchi, Takao; Kaneko, Atsushi; Uchimura, Tomoyuki; Irie, Kiichi; Watanabe, Hiroyoshi
For the development of a simple and compact power generator driven by waste heat, working fluids and an expander were studied, then a practical electric power unit was put to test. Many working fluids were calculated with the low temperature power cycle (evaporated at 77°C, condensed at 42°C),and TFE,R123,R245fa were selected to be suitable for the cycle. TFE(Trifluoroethanol CF3CH2OH) was adopted to the actual power generator which was tested. A radial turbine was adopted as an expander, and was newly designed and manufactured for working fluid TFE. The equipment was driven by hot water as heat source and cooling water as cooling source, and generated power was connected with electric utility. Characteristics of the power generating cycle and characteristics of the turbine were obtained experimentally.
Constraint, natural selection, and the evolution of human body form
Savell, Kristen R. R.; Auerbach, Benjamin M.; Roseman, Charles C.
2016-01-01
Variation in body form among human groups is structured by a blend of natural selection driven by local climatic conditions and random genetic drift. However, attempts to test ecogeographic hypotheses have not distinguished between adaptive traits (i.e., those that evolved as a result of selection) and those that evolved as a correlated response to selection on other traits (i.e., nonadaptive traits), complicating our understanding of the relationship between climate and morphological distinctions among populations. Here, we use evolutionary quantitative methods to test if traits previously identified as supporting ecogeographic hypotheses were actually adaptive by estimating the force of selection on individual traits needed to drive among-group differentiation. Our results show that not all associations between trait means and latitude were caused by selection acting directly on each individual trait. Although radial and tibial length and biiliac and femoral head breadth show signs of responses to directional selection matching ecogeographic hypotheses, the femur was subject to little or no directional selection despite having shorter values by latitude. Additionally, in contradiction to ecogeographic hypotheses, the humerus was under directional selection for longer values by latitude. Responses to directional selection in the tibia and radius induced a nonadaptive correlated response in the humerus that overwhelmed its own trait-specific response to selection. This result emphasizes that mean differences between groups are not good indicators of which traits are adaptations in the absence of information about covariation among characteristics. PMID:27482101
Constraint, natural selection, and the evolution of human body form.
Savell, Kristen R R; Auerbach, Benjamin M; Roseman, Charles C
2016-08-23
Variation in body form among human groups is structured by a blend of natural selection driven by local climatic conditions and random genetic drift. However, attempts to test ecogeographic hypotheses have not distinguished between adaptive traits (i.e., those that evolved as a result of selection) and those that evolved as a correlated response to selection on other traits (i.e., nonadaptive traits), complicating our understanding of the relationship between climate and morphological distinctions among populations. Here, we use evolutionary quantitative methods to test if traits previously identified as supporting ecogeographic hypotheses were actually adaptive by estimating the force of selection on individual traits needed to drive among-group differentiation. Our results show that not all associations between trait means and latitude were caused by selection acting directly on each individual trait. Although radial and tibial length and biiliac and femoral head breadth show signs of responses to directional selection matching ecogeographic hypotheses, the femur was subject to little or no directional selection despite having shorter values by latitude. Additionally, in contradiction to ecogeographic hypotheses, the humerus was under directional selection for longer values by latitude. Responses to directional selection in the tibia and radius induced a nonadaptive correlated response in the humerus that overwhelmed its own trait-specific response to selection. This result emphasizes that mean differences between groups are not good indicators of which traits are adaptations in the absence of information about covariation among characteristics.
A radially resolved kinetic model for nonlocal electron ripple diffusion losses in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Scott
A relatively simple radially resolved kinetic model is applied to the ripple diffusion problem for electrons in tokamaks. The distribution function f(r,v) is defined on a two-dimensional grid, where r is the radial coordinate and v is the velocity coordinate. Particle transport in the radial direction is from ripple and banana diffusion and transport in the velocity direction is described by the Fokker-Planck equation. Particles and energy are replaced by source functions that are adjusted to maintain a constant central density and temperature. The relaxed profiles of f(r,v) show that the electron distribution function at the wall contains suprathermal electronsmore » that have diffused from the interior that enhance ripple transport. The transport at the periphery is therefore nonlocal. The energy replacement times from the computational model are near to the experimental replacement times for tokamak discharges in the compilation by Pfeiffer and Waltz [Nucl. Fusion 19, 51 (1979)].« less
Bohling, Geoffrey C.; Butler, J.J.
2001-01-01
We have developed a program for inverse analysis of two-dimensional linear or radial groundwater flow problems. The program, 1r2dinv, uses standard finite difference techniques to solve the groundwater flow equation for a horizontal or vertical plane with heterogeneous properties. In radial mode, the program simulates flow to a well in a vertical plane, transforming the radial flow equation into an equivalent problem in Cartesian coordinates. The physical parameters in the model are horizontal or x-direction hydraulic conductivity, anisotropy ratio (vertical to horizontal conductivity in a vertical model, y-direction to x-direction in a horizontal model), and specific storage. The program allows the user to specify arbitrary and independent zonations of these three parameters and also to specify which zonal parameter values are known and which are unknown. The Levenberg-Marquardt algorithm is used to estimate parameters from observed head values. Particularly powerful features of the program are the ability to perform simultaneous analysis of heads from different tests and the inclusion of the wellbore in the radial mode. These capabilities allow the program to be used for analysis of suites of well tests, such as multilevel slug tests or pumping tests in a tomographic format. The combination of information from tests stressing different vertical levels in an aquifer provides the means for accurately estimating vertical variations in conductivity, a factor profoundly influencing contaminant transport in the subsurface. ?? 2001 Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, S. Y.; Hong, B. B.; Liu, Y.; Lu, W.; Huang, J.; Tang, C. J.; Ding, X. T.; Zhang, X. J.; Hu, Y. J.
2012-11-01
The synergy between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) is investigated numerically with the parameters of the HL-2A tokamak. Based on the understanding of the synergy mechanisms, a high current driven efficiency or a desired radial current profile can be achieved through properly matching the parameters of ECCD and LHCD due to the flexibility of ECCD. Meanwhile, it is found that the total current driven by the electron cyclotron wave (ECW) and the lower hybrid wave (LHW) simultaneously can be smaller than the sum of the currents driven by the ECW and LHW separately, when the power of the ECW is much larger than the LHW power. One of the reasons leading to this phenomenon (referred to as negative synergy in this context) is that fast current-carrying electrons tend to be trapped, when the perpendicular velocity driven by the ECW is large and the parallel velocity decided by the LHW is correspondingly small.
Petawatt pulsed-power accelerator
Stygar, William A.; Cuneo, Michael E.; Headley, Daniel I.; Ives, Harry C.; Ives, legal representative; Berry Cottrell; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, Craig L.; Porter, John L.; Wagoner; Tim C.
2010-03-16
A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.
Forecasted masses for 7000 Kepler Objects of Interest
NASA Astrophysics Data System (ADS)
Chen, Jingjing; Kipping, David M.
2018-01-01
Recent transit surveys have discovered thousands of planetary candidates with directly measured radii, but only a small fraction have measured masses. Planetary mass is crucial in assessing the feasibility of numerous observational signatures, such as radial velocities (RVs), atmospheres, moons and rings. In the absence of a direct measurement, a data-driven, probabilistic forecast enables observational planning, and so here we compute posterior distributions for the forecasted mass of ∼7000 Kepler Objects of Interest (KOIs). Our forecasts reveal that the predicted RV amplitudes of Neptunian planets are relatively consistent, as a result of transit survey detection bias, hovering around a few m s-1 level. We find that mass forecasts are unlikely to improve through more precise planetary radii, with the error budget presently dominated by the intrinsic model uncertainty. Our forecasts identify a couple of dozen KOIs near the Terran-Neptunian divide with particularly large RV semi-amplitudes, which could be promising targets to follow up, particularly in the near-infrared. With several more transit surveys planned in the near-future, the need to quickly forecast observational signatures is likely to grow, and the work here provides a template example of such calculations.
Tracing the phase of focused broadband laser pulses
NASA Astrophysics Data System (ADS)
Hoff, Dominik; Krüger, Michael; Maisenbacher, Lothar; Sayler, A. M.; Paulus, Gerhard G.; Hommelhoff, Peter
2017-10-01
Precise knowledge of the behaviour of the phase of light in a focused beam is fundamental to understanding and controlling laser-driven processes. More than a hundred years ago, an axial phase anomaly for focused monochromatic light beams was discovered and is now commonly known as the Gouy phase. Recent theoretical work has brought into question the validity of applying this monochromatic phase formulation to the broadband pulses becoming ubiquitous today. Based on electron backscattering at sharp nanometre-scale metal tips, a method is available to measure light fields with sub-wavelength spatial resolution and sub-optical-cycle time resolution. Here we report such a direct, three-dimensional measurement of the spatial dependence of the optical phase of a focused, 4-fs, near-infrared pulsed laser beam. The observed optical phase deviates substantially from the monochromatic Gouy phase--exhibiting a much more complex spatial dependence, both along the propagation axis and in the radial direction. In our measurements, these significant deviations are the rule and not the exception for focused, broadband laser pulses. Therefore, we expect wide ramifications for all broadband laser-matter interactions, such as in high-harmonic and attosecond pulse generation, femtochemistry, ophthalmological optical coherence tomography and light-wave electronics.
Effects of spiral arms on star formation in nuclear rings of barred-spiral galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Woo-Young; Kim, Woong-Tae, E-mail: seowy@astro.snu.ac.kr, E-mail: wkim@astro.snu.ac.kr
2014-09-01
We use hydrodynamic simulations to study the effect of spiral arms on the star formation rate (SFR) in nuclear rings of barred-spiral galaxies. We find that spiral arms can be an efficient means of gas transport from the outskirts to the central parts, provided that the arms are rotating slower than the bar. While the ring star formation in models with no arms or corotating arms is active only during around the bar growth phase, arm-driven gas accretion both significantly enhances and prolongs the ring star formation in models with slow-rotating arms. The arm-enhanced SFR is larger by a factormore » of ∼3-20 than in the no-arm model, with larger values corresponding to stronger and slower arms. Arm-induced mass inflows also make dust lanes stronger. Nuclear rings in slow-arm models are ∼45% larger than in the no-arm counterparts. Star clusters that form in a nuclear ring exhibit an age gradient in the azimuthal direction only when the SFR is small, whereas no notable age gradient is found in the radial direction for models with arm-induced star formation.« less
Turbulence-driven anisotropic electron tail generation during magnetic reconnection
NASA Astrophysics Data System (ADS)
DuBois, A. M.; Scherer, A.; Almagri, A. F.; Anderson, J. K.; Pandya, M. D.; Sarff, J. S.
2018-05-01
Magnetic reconnection (MR) plays an important role in particle transport, energization, and acceleration in space, astrophysical, and laboratory plasmas. In the Madison Symmetric Torus reversed field pinch, discrete MR events release large amounts of energy from the equilibrium magnetic field, a fraction of which is transferred to electrons and ions. Previous experiments revealed an anisotropic electron tail that favors the perpendicular direction and is symmetric in the parallel. New profile measurements of x-ray emission show that the tail distribution is localized near the magnetic axis, consistent modeling of the bremsstrahlung emission. The tail appears first near the magnetic axis and then spreads radially, and the dynamics in the anisotropy and diffusion are discussed. The data presented imply that the electron tail formation likely results from a turbulent wave-particle interaction and provides evidence that high energy electrons are escaping the core-localized region through pitch angle scattering into the parallel direction, followed by stochastic parallel transport to the plasma edge. New measurements also show a strong correlation between high energy x-ray measurements and tearing mode dynamics, suggesting that the coupling between core and edge tearing modes is essential for energetic electron tail formation.
NASA Astrophysics Data System (ADS)
Kalmykov, Serge; Englesbe, Alexander; Elle, Jennifer; Domonkos, Matthew; Schmitt-Sody, Andreas
2017-10-01
A tightly focused femtosecond, weakly relativistic laser pulse partially ionizes the ambient gas, creating a string (a ``filament'') of electron density, locally reducing the nonlinear index and compensating for the self-focusing effect caused by bound electrons. While maintaining the filament over many Rayleigh lengths, the pulse drives inside it a three-dimensional (3D) wave of charge separation - the plasma wake. If the pulse waist size is much smaller than the Langmuir wavelength, electron current in the wake is mostly transverse. Electrons, driven by the wake across the sharp radial boundary of the filament, lose coherence within 2-3 periods of wakefield oscillations, and the wake decays. The laser pulse is thus accompanied by a short-lived, almost aperiodic electron current coupled to the sharp index gradient. The comprehensive 3D hydrodynamic model shows that this structure emits a broad-band THz radiation, with the highest power emitted in the near-forward direction. The THz radiation pattern contains information on wake currents surrounding the laser pulse, thus serving as an all-optical diagnostic tool. The results are tested in cylindrical and full 3D PIC simulations using codes WAKE and EPOCH.
A Statistical Study of Interplanetary Type II Bursts: STEREO Observations
NASA Astrophysics Data System (ADS)
Krupar, V.; Eastwood, J. P.; Magdalenic, J.; Gopalswamy, N.; Kruparova, O.; Szabo, A.
2017-12-01
Coronal mass ejections (CMEs) are the primary cause of the most severe and disruptive space weather events such as solar energetic particle (SEP) events and geomagnetic storms at Earth. Interplanetary type II bursts are generated via the plasma emission mechanism by energetic electrons accelerated at CME-driven shock waves and hence identify CMEs that potentially cause space weather impact. As CMEs propagate outward from the Sun, radio emissions are generated at progressively at lower frequencies corresponding to a decreasing ambient solar wind plasma density. We have performed a statistical study of 153 interplanetary type II bursts observed by the two STEREO spacecraft between March 2008 and August 2014. These events have been correlated with manually-identified CMEs contained in the Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) catalogue. Our results confirm that faster CMEs are more likely to produce interplanetary type II radio bursts. We have compared observed frequency drifts with white-light observations to estimate angular deviations of type II burst propagation directions from radial. We have found that interplanetary type II bursts preferably arise from CME flanks. Finally, we discuss a visibility of radio emissions in relation to the CME propagation direction.
Shear-velocity structure, radial anisotropy and dynamics of the Tibetan crust
NASA Astrophysics Data System (ADS)
Agius, Matthew R.; Lebedev, Sergei
2014-12-01
Geophysical and geological data suggest that Tibetan middle crust is a partially molten, mechanically weak layer, but it is debated whether this low-viscosity layer is present beneath the entire plateau, what its properties are, how it deforms, and what role it has played in the plateau's evolution. Broad-band seismic surface waves yield resolution in the entire depth range of the Tibetan crust and can be used to constrain its shear-wave velocity structure (indicative of crustal composition, temperature and partial melting) and radial anisotropy (indicative of the patterns of deformation). We measured Love- and Rayleigh-wave phase-velocity curves in broad period ranges (up to 7-200 s) for a few tens of pairs and groups of stations across Tibet, combining, in each case, hundreds of interstation measurements, made with cross-correlation and waveform-inversion methods. Shear-velocity profiles were then determined by extensive series of non-linear inversions of the data, designed to constrain the depth-dependent ranges of isotropic-average shear speeds and radial anisotropy. Shear wave speeds within the Tibetan middle crust are anomalously low and, also, show strong lateral variations across the plateau. The lowest mid-crustal shear speeds are found in the north and west of the plateau (˜3.1-3.2 km s-1), within a pronounced low-velocity zone. In southeastern Tibet, crustal shear wave speeds increase gradually towards southeast, whereas in the north, the change across the Kunlun Fault is relatively sharp. The lateral variations of shear speeds within the crust are indicative of those in temperature. A mid-crustal temperature of 800 °C, reported previously, can account for the low shear velocities across Lhasa. In the north, the temperature is higher and exceeds the solidus, resulting in partial melting that we estimate at 3-6 per cent. Strong radial anisotropy is required by the data in western-central Tibet (>5 per cent) but not in northeastern Tibet. The amplitude of radial anisotropy in the crust does not correlate with isotropic-average shear speed (and, by inference, with crustal rock viscosity) or with surface elevation. Instead, radial anisotropy is related to the deformation pattern and is the strongest in regions experiencing extension (crustal flattening), as noted previously. The growth of Tibet by the addition of Indian crustal rocks into its crust from the south is reflected in the higher crustal seismic velocities (and, thus, lower temperatures) in the southern compared to northern parts of the plateau (more recently added rocks having had less time to undergo radioactive heating within the thickened Tibetan crust). Gravity-driven flattening-the basic cause of extension and normal faulting in the southern, western and central Tibet-is evidenced by pervasive radial anisotropy in the middle crust beneath the regions undergoing extension; the overall eastward flow of the crust is directed by the boundaries and motions of the lithospheric blocks that surround Tibet.
Vibration analysis and sound field characteristics of a tubular ultrasonic radiator.
Liang, Zhaofeng; Zhou, Guangping; Zhang, Yihui; Li, Zhengzhong; Lin, Shuyu
2006-12-01
A sort of tubular ultrasonic radiator used in ultrasonic liquid processing is studied. The frequency equation of the tubular radiator is derived, and its radiated sound field in cylindrical reactor is calculated using finite element method and recorded by means of aluminum foil erosion. The results indicate that sound field of tubular ultrasonic radiator in cylindrical reactor appears standing waves along both its radial direction and axial direction, and amplitudes of standing waves decrease gradually along its radial direction, and the numbers of standing waves along its axial direction are equal to the axial wave numbers of tubular radiator. The experimental results are in good agreement with calculated results.
Quasi-symmetry and the nature of radial turbulent transport in quasi-poloidal stellarators
NASA Astrophysics Data System (ADS)
Alcuson, J. A.; Reynolds-Barredo, J. M.; Bustos, A.; Sanchez, R.; Tribaldos, V.; Xanthopoulos, P.; Goerler, T.; Newman, D. E.
2016-10-01
Quasi-symmetric configurations have a better neoclassical confinement compared to that of standard stellarators. The reduction of the neoclassical viscosity along the direction of quasi-symmetry should facilitate the self-generation of zonal flows and, consequently, the mitigation of turbulent fluctuations and the ensuing radial transport. Therefore, it is expected that quasi-symmetries should also result in better confinement properties regarding radial turbulent transport. In this paper we show that, at least for quasi-poloidal configurations, the influence of quasi-symmetry on radial transport exceeds the expected reduction of fluctuation levels and associated effective transport coefficients, and that the intimate nature of transport itself is affected. In particular, radial turbulent transport becomes increasingly subdiffusive as the degree of quasi-symmetry becomes larger. This behavior is somewhat reminiscent of what has been previously reported in tokamaks with strong radially sheared zonal flows.
NASA Astrophysics Data System (ADS)
Ozturk, Ugur; Marwan, Norbert; Kurths, Jürgen
2017-04-01
Complex networks are commonly used for investigating spatiotemporal dynamics of complex systems, e.g. extreme rainfall. Especially directed networks are very effective tools in identifying climatic patterns on spatially embedded networks. They can capture the network flux, so as the principal dynamics of spreading significant phenomena. Network measures, such as network divergence, bare the source-receptor relation of the directed networks. However, it is still a challenge how to catch fast evolving atmospheric events, i.e. typhoons. In this study, we propose a new technique, namely Radial Ranks, to detect the general pattern of typhoons forward direction based on the strength parameter of the event synchronization over Japan. We suggest to subset a circular zone of high correlation around the selected grid based on the strength parameter. Radial sums of the strength parameter along vectors within this zone, radial ranks are measured for potential directions, which allows us to trace the network flux over long distances. We employed also the delay parameter of event synchronization to identify and separate the frontal storms' and typhoons' individual behaviors.
Reaction Time Asymmetries between Expansion and Contraction
ERIC Educational Resources Information Center
Lopez-Moliner, Joan
2005-01-01
Different asymmetries between expansion and contraction (radial motions) have been reported in the literature. Often these patterns have been regarded as implying different channels for each type of radial direction (outward versus inwards) operating at a higher level of visual motion processing. In two experiments (detection and discrimination…
Drift-Alfven eigenmodes in inhomogeneous plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vranjes, J.; Poedts, S.
2006-03-15
A set of three nonlinear equations describing drift-Alfven waves in a nonuniform magnetized plasma is derived and discussed both in linear and nonlinear limits. In the case of a cylindric radially bounded plasma with a Gaussian density distribution in the radial direction the linearized equations are solved exactly yielding general solutions for modes with quantized frequencies and with radially dependent amplitudes. The full set of nonlinear equations is also solved yielding particular solutions in the form of rotating radially limited structures. The results should be applicable to the description of electromagnetic perturbations in solar magnetic structures and in astrophysical column-likemore » objects including cosmic tornados.« less
A New Theory of Mix in Omega Capsule Implosions
NASA Astrophysics Data System (ADS)
Knoll, Dana; Chacon, Luis; Rauenzahn, Rick; Simakov, Andrei; Taitano, William; Welser-Sherrill, Leslie
2014-10-01
We put forth a new mix model that relies on the development of a charge-separation electrostatic double-layer at the fuel-pusher interface early in the implosion of an Omega plastic ablator capsule. The model predicts a sizable pusher mix (several atom %) into the fuel. The expected magnitude of the double-layer field is consistent with recent radial electric field measurements in Omega plastic ablator implosions. Our theory relies on two distinct physics mechanisms. First, and prior to shock breakout, the formation of a double layer at the fuel-pusher interface due to fast preheat-driven ionization. The double-layer electric field structure accelerates pusher ions fairly deep into the fuel. Second, after the double-layer mix has occurred, the inward-directed fuel velocity and temperature gradients behind the converging shock transports these pusher ions inward. We first discuss the foundations of this new mix theory. Next, we discuss our interpretation of the radial electric field measurements on Omega implosions. Then we discuss the second mechanism that is responsible for transporting the pusher material, already mixed via the double-layer deep into the fuel, on the shock convergence time scale. Finally we make a connection to recent mix motivated experimental data on. This work conducted under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory, managed by LANS, LLC under Contract DE-AC52-06NA25396.
Rapid Loss of Radiation Belt Relativistic Electrons by EMIC Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan
How relativistic electrons are lost is an important question surrounding the complex dynamics of the Earth's outer radiation belt. Radial loss to the magnetopause and local loss to the atmosphere are two main competing paradigms. Here on the basis of the analysis of a radiation belt storm event on 27 February 2014, we present new evidence for the electromagnetic ion cyclotron (EMIC) wave-driven local precipitation loss of relativistic electrons in the heart of the outer radiation belt. During the main phase of this storm, the radial profile of relativistic electron phase space density was quasi-monotonic, qualitatively inconsistent with the predictionmore » of radial loss theory. The local loss at low L shells was required to prevent the development of phase space density peak resulting from the radial loss process at high L shells. The rapid loss of relativistic electrons in the heart of outer radiation belt was observed as a dip structure of the electron flux temporal profile closely related to intense EMIC waves. Our simulations further confirm that the observed EMIC waves within a quite limited longitudinal region were able to reduce the off-equatorially mirroring relativistic electron fluxes by up to 2 orders of magnitude within about 1.5 h.« less
Electromagnetic Forces in a Hybrid Magnetic-Bearing Switched-Reluctance Motor
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.; Siebert, Mark W.; Ho, Eric J.
2008-01-01
Analysis and experimental measurement of the electromagnetic force loads on the hybrid rotor in a novel hybrid magnetic-bearing switched-reluctance motor (MBSRM) have been performed. A MBSRM has the combined characteristics of a switched-reluctance motor and a magnetic bearing. The MBSRM discussed in this report has an eight-pole stator and a six-pole hybrid rotor, which is composed of circular and scalloped lamination segments. The hybrid rotor is levitated using only one set of four stator poles, while a second set of four stator poles imparts torque to the scalloped portion of the rotor, which is driven in a traditional switched reluctance manner by a processor. Static torque and radial force analysis were done for rotor poles that were oriented to achieve maximum and minimum radial force loads on the rotor. The objective is to assess whether simple one-dimensional magnetic circuit analysis is sufficient for preliminary evaluation of this machine, which may exhibit strong three-dimensional electromagnetic field behavior. Two magnetic circuit geometries, approximating the complex topology of the magnetic fields in and around the hybrid rotor, were employed in formulating the electromagnetic radial force equations. Reasonable agreement between the experimental and the theoretical radial force loads predictions was obtained with typical magnetic bearing derating factors applied to the predictions.
Perpendicular momentum input of lower hybrid waves and its influence on driving plasma rotation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Xiaoyin
The mechanism of perpendicular momentum input of lower hybrid waves and its influence on plasma rotation are studied. Discussion for parallel momentum input of lower hybrid waves is presented for comparison. It is found out that both toroidal and poloidal projections of perpendicular momentum input of lower hybrid waves are stronger than those of parallel momentum input. The perpendicular momentum input of lower hybrid waves therefore plays a dominant role in forcing the changes of rotation velocity observed during lower hybrid current drive. Lower hybrid waves convert perpendicular momentum carried by the waves into the momentum of dc electromagnetic fieldmore » by inducing a resonant-electron flow across flux surfaces therefore charge separation and a radial dc electric field. The dc field releases its momentum into plasma through the Lorentz force acting on the radial return current driven by the radial electric field. Plasma is spun up by the Lorentz force. An improved quasilinear theory with gyro-phase dependent distribution function is developed to calculate the radial flux of resonant electrons. Rotations are determined by a set of fluid equations for bulk electrons and ions, which are solved numerically by applying a finite-difference method. Analytical expressions for toroidal and poloidal rotations are derived using the same hydrodynamic model.« less
Rapid Loss of Radiation Belt Relativistic Electrons by EMIC Waves
Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; ...
2017-08-31
How relativistic electrons are lost is an important question surrounding the complex dynamics of the Earth's outer radiation belt. Radial loss to the magnetopause and local loss to the atmosphere are two main competing paradigms. Here on the basis of the analysis of a radiation belt storm event on 27 February 2014, we present new evidence for the electromagnetic ion cyclotron (EMIC) wave-driven local precipitation loss of relativistic electrons in the heart of the outer radiation belt. During the main phase of this storm, the radial profile of relativistic electron phase space density was quasi-monotonic, qualitatively inconsistent with the predictionmore » of radial loss theory. The local loss at low L shells was required to prevent the development of phase space density peak resulting from the radial loss process at high L shells. The rapid loss of relativistic electrons in the heart of outer radiation belt was observed as a dip structure of the electron flux temporal profile closely related to intense EMIC waves. Our simulations further confirm that the observed EMIC waves within a quite limited longitudinal region were able to reduce the off-equatorially mirroring relativistic electron fluxes by up to 2 orders of magnitude within about 1.5 h.« less
Ultra-wideband, omni-directional, low distortion coaxial antenna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eubanks, Travis Wayne; Gibson, Christopher Lawrence
An antenna for producing an omni-directional pattern, and using all frequencies of a frequency range simultaneously, is provided with first and second electrically conductive elements disposed coaxially relative to a central axis. The first element has a first surface of revolution about the axis, the first surface of revolution tapering radially outwardly while extending axially away from the second element to terminate at a first axial end of the first element. The second element has a second surface of revolution about the axis, the second surface of revolution tapering radially outwardly while extending axially toward the first element to terminatemore » at a first axial end of the second element. The first and second surfaces of revolution overlap one another radially and axially, and are mutually non-conformal.« less
Xu, G S; Wan, B N; Wang, H Q; Guo, H Y; Naulin, V; Rasmussen, J Juul; Nielsen, A H; Wu, X Q; Yan, N; Chen, L; Shao, L M; Chen, R; Wang, L; Zhang, W
2016-03-04
A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L-H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment.
NASA Technical Reports Server (NTRS)
Groom, N. J.; Anderson, W. W.; Phillips, W. H. (Inventor)
1981-01-01
The invention includes an angular momentum control device (AMCD) having a rim and several magnetic bearing stations. The AMCD is in a strapped down position on a spacecraft. Each magnetic bearing station comprises means, including an axial position sensor, for controlling the position of the rim in the axial direction; and means, including a radial position sensor, for controlling the position of the rim in the radial direction. A first computer receives the signals from all the axial position sensors and computes the angular rates about first and second mutually perpendicular axes in the plane of the rim and computes the linear acceleration along a third axis perpendicular to the first and second axes. A second computer receives the signals from all the radial position sensors and computes the linear accelerations along the first and second axes.
Advanced Concepts Theory Annual Report 1984.
1985-06-26
SUBJECT TERMS (Continue on reverse if necessary and identify by block number) - FIELD GROUP SUB-GROUP Radiation Hydrodynamics Plasma Miixtures 1 ABSTRACT...an imploding annular plasma, accelerated radially by the current-driven, azimuthal magnetic field to velocities near 10 7 cm/sec. The on-axis...state consistent 4itn the other level populations, atomic rates, and the ambient r ad iation field . To perform this calculation the critical elements
Radial electron-beam-breakup transit-time oscillator
Kwan, Thomas J. T.; Mostrom, Michael A.
1998-01-01
A radial electron-beam-breakup transit-time oscillator (RBTO) provides a compact high power microwave generator. The RBTO includes a coaxial vacuum transmission line having an outer conductor and an inner conductor. The inner conductor defines an annular cavity with dimensions effective to support an electromagnetic field in a TEM.sub.00m mode. A radial field emission cathode is formed on the outer conductor for providing an electron beam directed toward the annular cavity electrode. Microwave energy is then extracted from the annular cavity electrode.
Equivalent Thermal Conductivities for Twisted Flat Windings
NASA Astrophysics Data System (ADS)
Glises, R.; Bernard, R.; Chamagne, D.; Kauffmann, J. M.
1996-10-01
The authors of this paper intend to develop a method of determination of equivalent thermal conductivities for twisted flat windings. The conductivities determined are radial and parallel to the principal directions of the windings. A design has been realized thanks to the thermal modulus of the computation software Flux2D using a finite elements method. Following that phase, numerical correlations permitting to express the radial conductivities as a function of temperature, filling rate and insulation conductivities are proposed. Les auteurs de cet article se proposent de développer une étude de détermination de conductivités thermiques équivalentes d'empilements de bobinages plats torsadés. Les conductivités sont déterminées dans le plan radial (perpendiculaire à l'axe des bobinages) et parallèlement aux directions principales de la structure. La méthode utilisée est exclusivement numérique et est réalisée à l'aide du logiciel de calculs bidimensionnels par éléments finis Flux2D. Des corrélations numériques exploitables permettent d'obtenir directement les conductivités radiales en fonction du taux de remplissage, de la température du milieu et des conductivités des isolants électriques.
Novitskaya, Ekaterina; Chen, Po-Yu; Lee, Steve; Castro-Ceseña, Ana; Hirata, Gustavo; Lubarda, Vlado A; McKittrick, Joanna
2011-08-01
The mechanical properties of fully demineralized, fully deproteinized and untreated cortical bovine femur bone were investigated by compression testing in three anatomical directions (longitudinal, radial and transverse). The weighted sum of the stress-strain curves of the treated bones was far lower than that of the untreated bone, indicating a strong molecular and/or mechanical interaction between the collagen matrix and the mineral phase. Demineralization and deproteinization of the bone demonstrated that contiguous, stand-alone structures result, showing that bone can be considered an interpenetrating composite material. Structural features of the samples from all groups were studied by optical and scanning electron microscopy. Anisotropic mechanical properties were observed: the radial direction was found to be the strongest for untreated bone, while the longitudinal one was found to be the strongest for deproteinized and demineralized bones. A possible explanation for this phenomenon is the difference in bone microstructure in the radial and longitudinal directions. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Han, Dao-Man; Liu, Yong-Xin; Gao, Fei; Wang, Xiang-Yu; Li, Ang; Xu, Jun; Jing, Zhen-Guo; Wang, You-Nian
2018-06-01
The large-area capacitive discharges driven at very high frequencies have been attracting much attention due to their wide applications in material etching and thin film deposition. However, in the regime, the standing wave effect (SWE) becomes a major limitation for plasma material processing uniformity. In this work, a fiber Bragg grating sensor was utilized for the observation of the SWE in a large-area capacitive discharge reactor by measuring the radial distribution of the neutral gas temperature T g. The influences of the RF power and the working pressure on the radial profiles of T g were studied. At a higher frequency (100 MHz) and a lower pressure (5 Pa), T g presents a center-peaked radial distribution, indicating a significant SWE. As the RF power increases, the central peak of T g becomes more evident due to the enhanced SWE. By contrast, at 100 MHz and a higher pressure (40 Pa), the radial distribution of T g shows an evident peak at the electrode edge and T g decays dramatically towards the discharge center because the electromagnetic waves are strongly damped as they are propagating from the edge to the center. At a lower frequency (27 MHz), only edge-high profiles of T g are observed for various pressures. For the sake of a comparison, a hairpin resonance probe was used to measure the radial distributions of the plasma density n p under the same condition. The radial profiles of T g are found to generally resemble those of n p under various conditions. Based on the experimental results, the neutral gas heating mechanism was analyzed.
Load Weight Classification of The Quayside Container Crane Based On K-Means Clustering Algorithm
NASA Astrophysics Data System (ADS)
Zhang, Bingqian; Hu, Xiong; Tang, Gang; Wang, Yide
2017-07-01
The precise knowledge of the load weight of each operation of the quayside container crane is important for accurately assessing the service life of the crane. The load weight is directly related to the vibration intensity. Through the study on the vibration of the hoist motor of the crane in radial and axial directions, we can classify the load using K-means clustering algorithm and quantitative statistical analysis. Vibration in radial direction is significantly and positively correlated with that in axial direction by correlation analysis, which means that we can use the data only in one of the directions to carry out the study improving then the efficiency without degrading the accuracy of load classification. The proposed method can well represent the real-time working condition of the crane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen-Phan, Thuy -Duong; Luo, Si; Vovchok, Dimitriy
Here, three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO 2 hierarchical architectures composed of radially aligned, densely-packed TiO 2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyzes the formation of the 3D urchin structure and drives the enhanced photocatalytic H 2 production under visible light irradiation, not possible on undoped and bulk rutile TiO 2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m 2 g –1 but alsomore » induces enhanced photoresponse in the regime of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti 3+, significantly below the conduction band of TiO 2, and ruthenium species act as electron donors/acceptors that accelerate the photogenerated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen-Phan, Thuy-Duong; Luo, Si; Vovchok, Dimitriy
Three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO2 hierarchical architectures composed of radially aligned, densely-packed TiO2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyze the formation of the 3D urchin structure and drive the enhanced photocatalytic H2 production under visible light irradiation, not possible on undoped and bulk rutile TiO2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m2 g-1 but also induces enhanced photo response in the regimemore » of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti3+, significantly below the conduction band of TiO2, and ruthenium species act as electron donors/acceptors that accelerate the photogenetated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity.« less
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Feth, S.; Hirschfeld, D.; Smith, T. M.; Wang, Ling Jun; Volz, M. P.; Lehoczky, S. L.
1999-01-01
ZnSe crystals were grown by the physical vapor transport technique under horizontal and vertical (stabilized and destabilized) configurations. Secondary ion mass spectroscopy and photoluminescence measurements were performed on the grown ZnSe samples to map the distributions of [Si], [Fe], [Cu], [Al] and [Li or Na] impurities as well as Zn vacancy, [V (sub Zn)]. Annealings of ZnSe under controlled Zn pressures were studied to correlate the measured photoluminescence emission intensity to the equilibrium Zn partial pressure. In the horizontal grown crystals the segregations of [Si], [Fe], [Al] and [V (sub Zn)] were observed along the gravity vector direction whereas in the vertically stabilized grown crystal the segregation of these point defects was radially symmetrical. No apparent pattern was observed on the measured distributions in the vertically destabilized grown crystal. The observed segregations in the three growth configurations were interpreted based on the possible buoyancy-driven convection in the vapor phase.
The nature of the globular- to fibrous-actin transition.
Oda, Toshiro; Iwasa, Mitsusada; Aihara, Tomoki; Maéda, Yuichiro; Narita, Akihiro
2009-01-22
Actin plays crucial parts in cell motility through a dynamic process driven by polymerization and depolymerization, that is, the globular (G) to fibrous (F) actin transition. Although our knowledge about the actin-based cellular functions and the molecules that regulate the G- to F-actin transition is growing, the structural aspects of the transition remain enigmatic. We created a model of F-actin using X-ray fibre diffraction intensities obtained from well oriented sols of rabbit skeletal muscle F-actin to 3.3 A in the radial direction and 5.6 A along the equator. Here we show that the G- to F-actin conformational transition is a simple relative rotation of the two major domains by about 20 degrees. As a result of the domain rotation, the actin molecule in the filament is flat. The flat form is essential for the formation of stable, helical F-actin. Our F-actin structure model provides the basis for understanding actin polymerization as well as its molecular interactions with actin-binding proteins.
NASA Astrophysics Data System (ADS)
Hartman, Charles
2005-10-01
Formation of a Pulsed Flow Pinch is discussed, based on 2-D, MHD numerical calculations. The PFP utilizes the observed stable, Btheta magnetic ``bubble'' which propagates from breach to muzzle during the run-down phase of the coaxial Marshall gun. We consider two ways of launching a PFP onto a fiber or cylindrical gas cloud: 1) by propagating the bubble to small radius along an exponentially-decreasing-radius center conductor and, 2) by a radial launch to form reflex PFP's propagating in opposite directions along a fiber. We show that the bubble velocity increases to high values as the radius is decreased making the rise time of Btheta at an axial point very short. A bubble, launched into uniform gas is found to undergo unstable pinching of the front. Results will be presented of calculations of a PFP driven, neutron-producing, snow-plow pinch. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Dual RBFNNs-Based Model-Free Adaptive Control With Aspen HYSYS Simulation.
Zhu, Yuanming; Hou, Zhongsheng; Qian, Feng; Du, Wenli
2017-03-01
In this brief, we propose a new data-driven model-free adaptive control (MFAC) method with dual radial basis function neural networks (RBFNNs) for a class of discrete-time nonlinear systems. The main novelty lies in that it provides a systematic design method for controller structure by the direct usage of I/O data, rather than using the first-principle model or offline identified plant model. The controller structure is determined by equivalent-dynamic-linearization representation of the ideal nonlinear controller, and the controller parameters are tuned by the pseudogradient information extracted from the I/O data of the plant, which can deal with the unknown nonlinear system. The stability of the closed-loop control system and the stability of the training process for RBFNNs are guaranteed by rigorous theoretical analysis. Meanwhile, the effectiveness and the applicability of the proposed method are further demonstrated by the numerical example and Aspen HYSYS simulation of distillation column in crude styrene produce process.
N-body simulations of collective effects in spiral and barred galaxies
NASA Astrophysics Data System (ADS)
Zhang, X.
2016-10-01
We present gravitational N-body simulations of the secular morphological evolution of disk galaxies induced by density wave modes. In particular, we address the demands collective effects place on the choice of simulation parameters, and show that the common practice of the use of a large gravity softening parameter was responsible for the failure of past simulations to correctly model the secular evolution process in galaxies, even for those simulations where the choice of basic state allows an unstable mode to emerge, a prerequisite for obtaining the coordinated radial mass flow pattern needed for secular evolution of galaxies along the Hubble sequence. We also demonstrate that the secular evolution rates measured in our improved simulations agree to an impressive degree with the corresponding rates predicted by the recently-advanced theories of dynamically-driven secular evolution of galaxies. The results of the current work, besides having direct implications on the cosmological evolution of galaxies, also shed light on the general question of how irreversibility emerges from a nominally reversible physical system.
Direct numerical simulation of Taylor-Couette flow subjected to a radial temperature gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, Hao; Liu, Nansheng, E-mail: lns@ustc.edu.cn; Lu, Xiyun
Direct numerical simulations have been performed to study the Taylor-Couette (TC) flow between two rotating, coaxial cylinders in the presence of a radial temperature gradient. Specifically, the influence of the buoyant force and the outer cylinder rotation on the turbulent TC flow system with the radius ratio η = 0.912 was examined. For the co-rotating TC flows with Re{sub i} (inner cylinder) =1000 and Re{sub o} (outer cylinder) =100, a transition pathway to highly turbulent flows is realized by increasing σ, a parameter signifying the ratio of buoyant to inertial force. This nonlinear flow transition involves four intriguing states thatmore » emerge in sequence as chaotic wavy vortex flow for σ = 0, wavy interpenetrating spiral flows for σ = 0.02 and 0.05, intermittent turbulent spirals for σ = 0.1 and 0.2, and turbulent spirals for σ = 0.4. Overall, the fluid motion changes from a centrifugally driven flow regime characterized by large-scale wavy Taylor vortices (TVs) to a buoyancy-dominated flow regime characterized by small-scale turbulent vortices. Commensurate changes in turbulence statistics and heat transfer are seen as a result of the weakening of large-scale TV circulations and enhancement of turbulent motions. Additionally, the influence of variation of the outer cylinder rotation, −500 < Re{sub o} < 500 in presence of buoyancy (σ = 0.1) with Re{sub i} = 1000, has been considered. Specifically, it is demonstrated that this variation strongly influences the azimuthal and axial mean flows with a weaker influence on the fluctuating fluid motions. Of special interest, here are the turbulent dynamics near the outer wall where a marked decrease of turbulence intensity and a sign inversion of the Reynolds stress R{sub rz} are observed for the strongly counter-rotating regimes (Re{sub o} = − 300 and −500). To this end, it has been shown that the underlying flow physics for this drastic modification are associated with the modification of the correlation between the radial and axial fluctuating motions. In turn, the intriguing effects of this modification on the mean axial flow, turbulent statistics, force balance, and dynamic processes such as turbulence production and dissipation are discussed.« less
Universality Results for Multi-layer Radial Hele-Shaw Flows
NASA Astrophysics Data System (ADS)
Daripa, Prabir; Gin, Craig; Daripa Research Team
2014-03-01
Saffman-Taylor instability is a well known viscosity driven instability of an interface separating two immiscible fluids. We study linear stability of this displacement process in multi-layer radial Hele-Shaw geometry involving an arbitrary number of immiscible fluid phases. Universal stability results have been obtained and applied to design displacement processes that are considerably less unstable than the pure Saffman-Taylor case. In particular, we derive universal formula which gives specific values of the viscosities of the fluid layers corresponding to smallest unstable band. Other similar universal results will also be presented. The talk is based on ongoing work. Supported by an NPRP Grant # 08-777-1-141 from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors.
NASA Technical Reports Server (NTRS)
Young, A. T.
1974-01-01
An overlooked systematic error exists in the apparent radial velocities of solar lines reflected from regions of Venus near the terminator, owing to a combination of the finite angular size of the Sun and its large (2 km/sec) equatorial velocity of rotation. This error produces an apparent, but fictitious, retrograde component of planetary rotation, typically on the order of 40 meters/sec. Spectroscopic, photometric, and radiometric evidence against a 4-day atmospheric rotation is also reviewed. The bulk of the somewhat contradictory evidence seems to favor slow motions, on the order of 5 m/sec, in the atmosphere of Venus; the 4-day rotation may be due to a traveling wave-like disturbance, not bulk motions, driven by the UV albedo differences.
Comparisons of anomalous and collisional radial transport with a continuum kinetic edge code
NASA Astrophysics Data System (ADS)
Bodi, K.; Krasheninnikov, S.; Cohen, R.; Rognlien, T.
2009-05-01
Modeling of anomalous (turbulence-driven) radial transport in controlled-fusion plasmas is necessary for long-time transport simulations. Here the focus is continuum kinetic edge codes such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory, but the model also has wider application. Our previously developed anomalous diagonal transport matrix model with velocity-dependent convection and diffusion coefficients allows contact with typical fluid transport models (e.g., UEDGE). Results are presented that combine the anomalous transport model and collisional transport owing to ion drift orbits utilizing a Krook collision operator that conserves density and energy. Comparison is made of the relative magnitudes and possible synergistic effects of the two processes for typical tokamak device parameters.
Experimental study of z-pinch driven radiative shocks in low density gases
NASA Astrophysics Data System (ADS)
Skidmore, Jonathan; Lebedev, S. V.; Suzuki-Vidal, F.; Swadling, G.; Bland, S. N.; Burdiak, G.; Chittenden, J. P.; de Grouchy, P.; Hall, G. N.; Pickworth, L.; Suttle, L.; Bennett, M.; Ciardi, A.
2012-10-01
Results of experiments performed on MAGPIE pulsed power facility (1.4MA, 250ns) will be presented. Shocks with velocities of 50-70km/s are driven in Ar, Xe and He gases at density ˜10-5g/cc using radial foil z-pinch configuration [1]. Measurements of the structure of the shocks obtained with laser probing will be presented and observations of the development of instabilities will be discussed. It was found that the structure of the shocks and the development of instabilities strongly depend on the rate of radiative cooling, increasing for gases with higher atomic numbers.[4pt] [1] F. Suzuki-Vidal et al., PoP 19, 022708 (2012)
CEREF: A hybrid data-driven model for forecasting annual streamflow from a socio-hydrological system
NASA Astrophysics Data System (ADS)
Zhang, Hongbo; Singh, Vijay P.; Wang, Bin; Yu, Yinghao
2016-09-01
Hydrological forecasting is complicated by flow regime alterations in a coupled socio-hydrologic system, encountering increasingly non-stationary, nonlinear and irregular changes, which make decision support difficult for future water resources management. Currently, many hybrid data-driven models, based on the decomposition-prediction-reconstruction principle, have been developed to improve the ability to make predictions of annual streamflow. However, there exist many problems that require further investigation, the chief among which is the direction of trend components decomposed from annual streamflow series and is always difficult to ascertain. In this paper, a hybrid data-driven model was proposed to capture this issue, which combined empirical mode decomposition (EMD), radial basis function neural networks (RBFNN), and external forces (EF) variable, also called the CEREF model. The hybrid model employed EMD for decomposition and RBFNN for intrinsic mode function (IMF) forecasting, and determined future trend component directions by regression with EF as basin water demand representing the social component in the socio-hydrologic system. The Wuding River basin was considered for the case study, and two standard statistical measures, root mean squared error (RMSE) and mean absolute error (MAE), were used to evaluate the performance of CEREF model and compare with other models: the autoregressive (AR), RBFNN and EMD-RBFNN. Results indicated that the CEREF model had lower RMSE and MAE statistics, 42.8% and 7.6%, respectively, than did other models, and provided a superior alternative for forecasting annual runoff in the Wuding River basin. Moreover, the CEREF model can enlarge the effective intervals of streamflow forecasting compared to the EMD-RBFNN model by introducing the water demand planned by the government department to improve long-term prediction accuracy. In addition, we considered the high-frequency component, a frequent subject of concern in EMD-based forecasting, and results showed that removing high-frequency component is an effective measure to improve forecasting precision and is suggested for use with the CEREF model for better performance. Finally, the study concluded that the CEREF model can be used to forecast non-stationary annual streamflow change as a co-evolution of hydrologic and social systems with better accuracy. Also, the modification about removing high-frequency can further improve the performance of the CEREF model. It should be noted that the CEREF model is beneficial for data-driven hydrologic forecasting in complex socio-hydrologic systems, and as a simple data-driven socio-hydrologic forecasting model, deserves more attention.
Long-lived plasmaspheric drainage plumes: Where does the plasma come from?
NASA Astrophysics Data System (ADS)
Borovsky, Joseph E.; Welling, Daniel T.; Thomsen, Michelle F.; Denton, Michael H.
2014-08-01
Long-lived (weeks) plasmaspheric drainage plumes are explored. The long-lived plumes occur during long-lived high-speed-stream-driven storms. Spacecraft in geosynchronous orbit see the plumes as dense plasmaspheric plasma advecting sunward toward the dayside magnetopause. The older plumes have the same densities and local time widths as younger plumes, and like younger plumes they are lumpy in density and they reside in a spatial gap in the electron plasma sheet (in sort of a drainage corridor). Magnetospheric-convection simulations indicate that drainage from a filled outer plasmasphere can only supply a plume for 1.5-2 days. The question arises for long-lived plumes (and for any plume older than about 2 days): Where is the plasma coming from? Three candidate sources appear promising: (1) substorm disruption of the nightside plasmasphere which may transport plasmaspheric plasma outward onto open drift orbits, (2) radial transport of plasmaspheric plasma in velocity-shear-driven instabilities near the duskside plasmapause, and (3) an anomalously high upflux of cold ionospheric protons from the tongue of ionization in the dayside ionosphere, which may directly supply ionospheric plasma into the plume. In the first two cases the plume is drainage of plasma from the magnetosphere; in the third case it is not. Where the plasma in long-lived plumes is coming from is a quandary: to fix this dilemma, further work and probably full-scale simulations are needed.
Influence of the normal modes on the plasma uniformity in large scale CCP reactors
NASA Astrophysics Data System (ADS)
Eremin, Denis; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Lane, Barton; Matsukuma, Masaaki; Ventzek, Peter
2016-09-01
Large scale capacitively coupled plasmas (CCP) driven by sources with high frequency components often exhibit phenomena which are absent in relatively well understood small scale CCPs driven at low frequencies. Of particular interest are such phenomena which affect discharge parameters of direct relevance to the plasma processing applications. One of such parameters is plasma uniformity. By using a self-consistent 2d3v Particle-in-cell/Monte-Carlo (PIC/MCC) code parallelized on GPU we have been able to show that uniformity of the plasma generated is influenced predominantly by two factors, the ionization pattern caused by high-energy electrons and the average temperature of low-energy plasma electrons. The heating mechanisms for these two groups of electrons appear to be different leading to different transversal (radial) profiles of the corresponding factors, which is well captured by the kinetic PIC/MCC code. We find that the heating mechanisms are intrinsically connected with excitation of normal modes inherent to a plasma-filled CCP reactor. In this work we study the wave nature of these phenomena, such as their excitation, propagation, and interaction with electrons. Supported by SFB-TR 87 project of the German Research Foundation and by the ``Experimental and numerical analysis of very high frequency capacitively coupled plasma discharges'' mutual research project between RUB and Tokyo Electron Ltd.
Runout and fine-sediment deposits of axisymmetric turbidity currents
NASA Astrophysics Data System (ADS)
Dade, W. Brian; Huppert, Herbert E.
1995-09-01
We develop a model that describes the runout behavior and resulting deposit of a radially spreading, suspension-driven gravity current on a surface of negligible slope. Our analysis considers the separate cases of constant-volume and constant-flux sources. It incorporates expressions for the conservation of volume, a Froude number condition at the current front, and the evolution of the driving suspension due to settling of particles to the underlying bed. The model captures the key features of a range of experimental observations. The analysis also provides important scaling relationships between the geometry of a deposit and the source conditions for the deposit-forming flow, as well as explicit expressions for flow speed and deposit thickness as functions of radial distance from the source. Among the results of our study we find that, in the absence of information regarding flow history, the geometries of relatively well-sorted deposits generated by flows with source conditions of constant volume or constant flux are virtually indistinguishable. The results of our analysis can be used by geologists in the interpretation of some geologically important gravity-surge deposits. Using our analytical results, we consider three previously studied, radially symmetric turbidites of the Hispaniola-Caicos basin in the western Atlantic Ocean. From gross geometry and grain size of the turbidites alone we estimate for the respective deposit-forming events that upon entry into the basin the initial sediment concentrations were approximately 3% by volume and the total volumes were roughly between 30 km3 and 100 km3. Each of the suspension-driven flows is inferred to have spread into the basin with a characteristic speed of 3-5 m s-1, and reached its ultimate runout length of about 60-75 km while laying down a deposit over a period of about 10-12 hours.
Stellar winds driven by Alfven waves
NASA Technical Reports Server (NTRS)
Belcher, J. W.; Olbert, S.
1973-01-01
Models of stellar winds were considered in which the dynamic expansion of a corona is driven by Alfven waves propagating outward along radial magnetic field lines. In the presence of Alfven waves, a coronal expansion can exist for a broad range of reference conditions which would, in the absence of waves, lead to static configurations. Wind models in which the acceleration mechanism is due to Alfven waves alone and exhibit lower mass fluxes and higher energies per particle are compared to wind models in which the acceleration is due to thermal processes. For example, winds driven by Alfven waves exhibit streaming velocities at infinity which may vary between the escape velocity at the coronal base and the geometrical mean of the escape velocity and the speed of light. Upper and lower limits were derived for the allowed energy fluxes and mass fluxes associated with these winds.
Coalescence of Fluid-Driven Fractures
NASA Astrophysics Data System (ADS)
O'Keeffe, Niall; Zheng, Zhong; Huppert, Herbert; Linden, Paul
2017-11-01
We present an experimental study on the coalescence of two in-plane fluid-driven penny-shaped fractures in a brittle elastic medium. Initially, two fluid-driven fractures propagate independently of each other in the same plane. Then when the radial extent of each fracture reaches a certain distance the fractures begin to interact and coalesce. This coalescence forms a bridge between the fractures and then, in an intermediate period following the contact of the two fractures, most growth is observed to focus along this bridge, perpendicular to the line connecting the injection sources. We analyse the growth and shape of this bridge at various stages after coalescence and the transitions between different stages of growth. We also investigate the influence of the injection rate, the distance between two injection points, the viscosity of the fluid and the Young's modulus of the elastic medium on the coalescence of the fractures.
Theoretical issues on the spontaneous rotation of axisymmetric plasmas
NASA Astrophysics Data System (ADS)
Coppi, B.; Zhou, T.
2014-09-01
An extensive series of experiments have confirmed that the observed ‘spontaneous rotation’ phenomenon in axisymmetric plasmas is related to the confinement properties of these plasmas and connected to the excitation of collective modes associated with these properties (Coppi 2000 18th IAEA Fusion Energy Conf. (Sorrento, Italy, 2000) THP 1/17, www-pub.iaea.org/MTCD/publications/PDF/csp_008c/html/node343.htm and Coppi 2002 Nucl. Fusion 42 1). In particular, radially localized modes can extract angular momentum from the plasma column from which they grow while the background plasma has to recoil in the direction opposite to that of the mode phase velocity. In the case of the excitation of the plasma modes at the edge, the loss of their angular momentum can be connected to the directed particle ejection to the surrounding medium. The recoil angular momentum is then redistributed inside the plasma column mainly by the combination of an effective viscous diffusion and an inward angular momentum transport velocity that is connected, for instance, to ion temperature gradient (ITG) driven modes. The linear and quasi-linear theories of the collisionless trapped electron modes and of the toroidal ITG driven modes are re-examined in the context of their influence on angular momentum transport. Internal modes that produce magnetic reconnection and are electromagnetic in nature, acquire characteristic phase velocity directions in high temperature regimes and become relevant to the ‘generation’ of angular momentum. The drift-tearing mode, the ‘complex’ reconnecting mode and the m0 = 1 internal mode belong to this category, the last mode acquiring different features depending on the strength of its driving factor. Toroidal velocity profiles that reproduce the experimental observations are obtained considering a global angular momentum balance equation that includes the localized sources associated with the excited internal electrostatic and electromagnetic modes besides the appropriate diffusive and the inward angular momentum transparent terms.
Influence of pressure driven secondary flows on the behavior of turbofan forced mixers
NASA Technical Reports Server (NTRS)
Anderson, B.; Povinelli, L.; Gerstenmaier, W.
1980-01-01
A finite difference procedure was developed to analyze the three dimensional subsonic turbulent flows in turbofan forced mixer nozzles. The method is based on a decomposition of the velocity field into primary and secondary flow components which are determined by solution of the equations governing primary momentum, secondary vorticity, thermal energy, and continuity. Experimentally, a strong secondary flow pattern was identified which is associated with the radial inflow and outflow characteristics of the core and fan streams and forms a very strong vortex system aligned with the radial interface between the core and fan regions. A procedure was developed to generate a similar generic secondary flow pattern in terms of two constants representing the average radial outflow or inflow in the core and fan streams as a percentage of the local streamwise velocity. This description of the initial secondary flow gave excellent agreement with experimental data. By identifying the nature of large scale secondary flow structure and associating it with characteristic mixer nozzle behavior, it is felt that the cause and effect relationship between lobe design and nozzle performance can be understood.
Gyrokinetic Simulations of Transport Scaling and Structure
NASA Astrophysics Data System (ADS)
Hahm, Taik Soo
2001-10-01
There is accumulating evidence from global gyrokinetic particle simulations with profile variations and experimental fluctuation measurements that microturbulence, with its time-averaged eddy size which scales with the ion gyroradius, can cause ion thermal transport which deviates from the gyro-Bohm scaling. The physics here can be best addressed by large scale (rho* = rho_i/a = 0.001) full torus gyrokinetic particle-in-cell turbulence simulations using our massively parallel, general geometry gyrokinetic toroidal code with field-aligned mesh. Simulation results from device-size scans for realistic parameters show that ``wave transport'' mechanism is not the dominant contribution for this Bohm-like transport and that transport is mostly diffusive driven by microscopic scale fluctuations in the presence of self-generated zonal flows. In this work, we analyze the turbulence and zonal flow statistics from simulations and compare to nonlinear theoretical predictions including the radial decorrelation of the transport events by zonal flows and the resulting probability distribution function (PDF). In particular, possible deviation of the characteristic radial size of transport processes from the time-averaged radial size of the density fluctuation eddys will be critically examined.
Gas driven displacement in a Hele-Shaw cell with chemical reaction
NASA Astrophysics Data System (ADS)
White, Andrew; Ward, Thomas
2011-11-01
Injecting a less viscous fluid into a more viscous fluid produces instabilities in the form of fingering which grow radially from the less viscous injection point (Saffman & Taylor, Proc. R. Soc. Lon. A, 1958). For two non-reacting fluids in a radial Hele-Shaw cell the ability of the gas phase to penetrate the liquid phase is largely dependent on the gap height, liquid viscosity and gas pressure. In contrast combining two reactive fluids such as aqueous calcium hydroxide and carbon dioxide, which form a precipitate, presents a more complex but technically relevant system. As the two species react calcium carbonate precipitates and increases the aqueous phase visocosity. This change in viscosity may have a significant impact on how the gas phase penetrates the liquid phase. Experimental are performed in a radial Hele-Shaw cell with gap heights O(10-100) microns by loading a single drop of aqueous calcium hydroxide and injecting carbon dioxide into the drop. The calcium hydroxide concentration, carbon dioxide pressure and gap height are varied and images of the gas penetration are analyzed to determine residual film thickness and bursting times.
Calculation of the radial electric field with RF sheath boundary conditions in divertor geometry
NASA Astrophysics Data System (ADS)
Gui, B.; Xia, T. Y.; Xu, X. Q.; Myra, J. R.; Xiao, X. T.
2018-02-01
The equilibrium electric field that results from an imposed DC bias potential, such as that driven by a radio frequency (RF) sheath, is calculated using a new minimal two-field model in the BOUT++ framework. Biasing, using an RF-modified sheath boundary condition, is applied to an axisymmetric limiter, and a thermal sheath boundary is applied to the divertor plates. The penetration of the bias potential into the plasma is studied with a minimal self-consistent model that includes the physics of vorticity (charge balance), ion polarization currents, force balance with E× B , ion diamagnetic flow (ion pressure gradient) and parallel electron charge loss to the thermal and biased sheaths. It is found that a positive radial electric field forms in the scrape-off layer and it smoothly connects across the separatrix to the force-balanced radial electric field in the closed flux surface region. The results are in qualitative agreement with the experiments. Plasma convection related to the E× B net flow in front of the limiter is also obtained from the calculation.
Orbital revolution of a pair of bubbles in an acoustic field
NASA Astrophysics Data System (ADS)
Shirota, Minori; Yamashita, Kou; Inamura, Takao
2011-11-01
This experimental study aims to clarify the mechanism of orbital motion of two oscillating bubbles in an acoustic field. Trajectory of the orbital motion was observed using a high-speed video camera. Because of a good repeatability in volume oscillation of bubbles, we were also able to observe the radial motion driven at 24 kHz by stroboscopic like imaging; the cyclic bubble oscillation was appeared to slow down by capturing images at the framing rate close to the forcing frequency. The orbital motions of bubbles raging from 0.13 to 0.18 mm were examined with different forcing amplitude and in different viscous oils. As a result, we found that pairs of bubbles revolve along a circular orbit around the center of mass of the orbiting two bubbles. We also found that the two bubbles perform anti-phase radial oscillation. Although this radial oscillation should result in a repulsive secondary Bjerknes force, the bubbles kept a constant separate distance of about 1 mm, which indicates the existence of centripetal primary Bjerknes force. The angular velocity of orbital revolution increases linearly with the increase in Bjerknes force.
Pazzaglia, Ugo E; Congiu, Terenzio
2013-02-01
A casting technique with methyl-methacrylate (MMA) was applied to the study of the osteon lacunar-canalicular network of human and rabbit cortical bone. The MMA monomer infiltration inside the vascular canals and from these into the lacunar-canalicular system was driven by capillarity, helped by evaporation and the resulting negative pressure in a system of small pipes. There was uniform, centrifugal penetration of the resin inside some osteons, but this was limited to a depth of four to five layers of lacunae. Moreover, not all of the osteon population was infiltrated. This failure can be the result of one of two factors: the incomplete removal of organic debris from the canal and canalicular systems, and lack of drainage at the osteon external border. These data suggest that each secondary osteon is a closed system with a peripheral barrier (represented by the reversal line). As the resin advances into the osteon, the air contained inside the canalicula is compressed and its pressure increases until infiltration is stopped. The casts gave a reliable visualization of the lacunar shape, position and connections between the lacunae without the need for manipulations such as cutting or sawing. Two systems of canalicula could be distinguished, the equatorial, which connected the lacunae (therefore the osteocytes) lying on the same concentric level, and the radial, which established connections between different levels. The equatorial canalicula radiated from the lacunar border forming ramifications on a planar surface around the lacuna, whereas the radial canalicula had a predominantly straight direction perpendicular to the equatorial plane. The mean length of the radial canalicula was 40.12 ± 10.26 μm in rabbits and 38.4 ± 7.35 μm in human osteons; their mean diameter was 174.4 ± 71.12 nm and 195.7 ± 79.58 nm, respectively. The mean equatorial canalicula diameter was 237 ± 66.04 nm in rabbit and 249.7 ± 73.78 nm in human bones, both significantly larger (P < 0.001) than the radial. There were no significant differences between the two species. The lacunar surface measured on the equatorial plane was higher in rabbit than in man, but the difference was not statistically significant. The cast of the lacunar-canalicular network obtained with the reported technique allows a direct, 3-D representation of the system architecture and illustrates how the connections between osteocytes are organized. The comparison with models derived by the assumption of the role of hydraulic conductance and other mechanistic functions provides descriptive, morphological data to the ongoing discussion on the Haversian system biology. © 2012 The Authors Journal of Anatomy © 2012 Anatomical Society.
Macione, J; Depaula, C A; Guzelsu, N; Kotha, S P
2010-07-01
Previous studies indicate that changes in the longitudinal elastic properties of bone due to changes in mineral content are related to the longitudinal strength of bone tissue. Changes in mineral content are expected to affect bone tissue mechanical properties along all directions, albeit to different extents. However, changes in tissue mechanical properties along the different directions are expected to be correlated to one another. In this study, we investigate if radial, circumferential, and longitudinal moduli are related in bone tissue with varying mineral content. Plexiform bovine femoral bone samples were treated in fluoride ion solutions for a period of 3 and 12 days to obtain bones with 20% and 32% lower effective mineral contents. Transmission ultrasound velocities were obtained in the radial, circumferential, and longitudinal axes of bone and combined with measured densities to obtain corresponding tensorial moduli. Results indicate that moduli decreased with fluoride ion treatments and were significantly correlated to one another (r(2) radial vs. longitudinal = 0.80, r(2) circumferential vs. longitudinal = 0.90, r(2) radial vs. circumferential = 0.85). Densities calculated from using ultrasound parameters, acoustic impedance and transmission velocities, were moderately correlated to those measured by the Archimedes principle (r(2)=0.54, p<0.01). These results suggest that radial and circumferential ultrasound measurements could be used to determine the longitudinal properties of bone and that ultrasound may not be able to predict in vitro densities of bones containing unbonded mineral. Published by Elsevier Ltd.
Determining effects of turbine blades on fluid motion
Linn, Rodman Ray [Los Alamos, NM; Koo, Eunmo [Los Alamos, NM
2012-05-01
Disclosed is a technique for simulating wind interaction with wind turbines. A turbine blade is divided into radial sections. The effect that each of these radial sections has on the velocities in Eulerian computational cells they overlap is determined. The effect is determined using Lagrangian techniques such that the calculations need not include wind components in the radial direction. A force on each radial section of turbine blade is determined. This force depends on the axial and azimuthal components of the fluid flow in the computational cell and the geometric properties of the turbine blade. The force on the turbine blade is fed back to effect the fluid flow in the computational cell for the next time step.
Determining effects of turbine blades on fluid motion
Linn, Rodman Ray [Los Alamos, NM; Koo, Eunmo [Los Alamos, NM
2011-05-31
Disclosed is a technique for simulating wind interaction with wind turbines. A turbine blade is divided into radial sections. The effect that each of these radial sections has on the velocities in Eulerian computational cells they overlap is determined. The effect is determined using Lagrangian techniques such that the calculations need not include wind components in the radial direction. A force on each radial section of turbine blade is determined. This force depends on the axial and azimuthal components of the fluid flow in the computational cell and the geometric properties of the turbine blade. The force on the turbine blade is fed back to effect the fluid flow in the computational cell for the next time step.
NASA Astrophysics Data System (ADS)
Ahn, Woo Sang; Park, Sung Ho; Jung, Sang Hoon; Choi, Wonsik; Do Ahn, Seung; Shin, Seong Soo
2014-06-01
The purpose of this study is to determine the radial dose function of HDR 192Ir source based on Monte Carlo simulation using elliptic cylindrical phantom, similar to realistic shape of pelvis, in brachytherapy dosimetric study. The elliptic phantom size and shape was determined by analysis of dimensions of pelvis on CT images of 20 patients treated with brachytherapy for cervical cancer. The radial dose function obtained using the elliptic cylindrical water phantom was compared with radial dose functions for different spherical phantom sizes, including the Williamsion's data loaded into conventional planning system. The differences in the radial dose function for the different spherical water phantoms increase with radial distance, r, and the largest differences in the radial dose function appear for the smallest phantom size. The radial dose function of the elliptic cylindrical phantom significantly decreased with radial distance in the vertical direction due to different scatter condition in comparison with the Williamson's data. Considering doses to ICRU rectum and bladder points, doses to reference points can be underestimated up to 1-2% at the distance from 3 to 6 cm. The radial dose function in this study could be used as realistic data for calculating the brachytherapy dosimetry for cervical cancer.
Radial inflow gas turbine engine with advanced transition duct
Wiebe, David J
2015-03-17
A gas turbine engine (10), including: a turbine having radial inflow impellor blades (38); and an array of advanced transition combustor assemblies arranged circumferentially about the radial inflow impellor blades (38) and having inner surfaces (34) that are adjacent to combustion gases (40). The inner surfaces (34) of the array are configured to accelerate and orient, for delivery directly onto the radial inflow impellor blades (38), a plurality of discrete flows of the combustion gases (40). The array inner surfaces (34) define respective combustion gas flow axes (20). Each combustion gas flow axis (20) is straight from a point of ignition until no longer bound by the array inner surfaces (34), and each combustion gas flow axis (20) intersects a unique location on a circumference defined by a sweep of the radial inflow impellor blades (38).
Aperiodic Photonic-Plasmonic Structures with Broadband Field Enhancement
2012-10-15
monomer, (d and g) dimer, (e and i ) trimer...components of the radial distribution function. (a-d) numerator, (e-h) denominator, ( i -l) entire radial distribution function...in the Y direction is 400 nm. Fig 7 d- i shows the scattering efficiency and maximum field enhancement of each array compared with that of the
NASA Astrophysics Data System (ADS)
Gopalswamy, N.; Makela, P.; Yashiro, S.; Davila, J. M.
2012-08-01
It is difficult to measure the true speed of Earth-directed CMEs from a coronagraph along the Sun-Earth line because of the occulting disk. However, the expansion speed (the speed with which the CME appears to spread in the sky plane) can be measured by such coronagraph. In order to convert the expansion speed to radial speed (which is important for space weather applications) one can use empirical relationship between the two that assumes an average width for all CMEs. If we have the width information from quadrature observations, we can confirm the relationship between expansion and radial speeds derived by Gopalswamy et al. (2009a). The STEREO spacecraft were in qudrature with SOHO (STEREO-A ahead of Earth by 87oand STEREO-B 94obehind Earth) on 2011 February 15, when a fast Earth-directed CME occurred. The CME was observed as a halo by the Large-Angle and Spectrometric Coronagraph (LASCO) on board SOHO. The sky-plane speed was measured by SOHO/LASCO as the expansion speed, while the radial speed was measured by STEREO-A and STEREO-B. In addition, STEREO-A and STEREO-B images measured the width of the CME, which is unknown from Earth view. From the SOHO and STEREO measurements, we confirm the relationship between the expansion speed (Vexp) and radial speed (Vrad) derived previously from geometrical considerations (Gopalswamy et al. 2009a): Vrad=1/2 (1 + cot w)Vexp, where w is the half width of the CME. STEREO-B images of the CME, we found that CME had a full width of 7 6o, so w=3 8o. This gives the relation as Vrad=1.1 4 Vexp. From LASCO observations, we measured Vexp=897 km/s, so we get the radial speed as 10 2 3 km/s. Direct measurement of radial speed yields 945 km/s (STEREO-A) and 105 8 km/s (STEREO-B). These numbers are different only by 7.6 % and 3.4 % (for STEREO-A and STEREO-B, respectively) from the computed value.
NASA Technical Reports Server (NTRS)
Gopalswamy, Nat; Makela, Pertti; Yashiro, Seiji
2011-01-01
It is difficult to measure the true speed of Earth-directed CMEs from a coronagraph along the Sun-Earth line because of the occulting disk. However, the expansion speed (the speed with which the CME appears to spread in the sky plane) can be measured by such coronagraph. In order to convert the expansion speed to radial speed (which is important for space weather applications) one can use empirical relationship between the two that assumes an average width for all CMEs. If we have the width information from quadrature observations, we can confirm the relationship between expansion and radial speeds derived by Gopalswamy et al. (2009, CEAB, 33, 115,2009). The STEREO spacecraft were in quadrature with SOHO (STEREO-A ahead of Earth by 87 and STEREO-B 94 behind Earth) on 2011 February 15, when a fast Earth-directed CME occurred. The CME was observed as a halo by the Large-Angle and Spectrometric Coronagraph (LASCO) on board SOHO. The sky-plane speed was measured by SOHO/LASCO as the expansion speed, while the radial speed was measured by STEREO-A and STEREO-B. In addition, STEREO-A and STEREO-B images measured the width of the CME, which is unknown from Earth view. From the SOHO and STEREO measurements, we confirm the relationship between the expansion speed (Vexp ) and radial speed (Vrad ) derived previously from geometrical considerations (Gopalswamy et al. 2009): Vrad = 1/2 (1 + cot w) Vexp, where w is the half width of the CME. STEREO-B images of the CME, we found that CME had a full width of 75 degrees, so w = 37.5 degrees. This gives the relation as Vrad = 1.15 Vexp. From LASCO observations, we measured Vexp = 897 km/s, so we get the radial speed as 1033 km/s. Direct measurement of radial speed from STEREO gives 945 km/s (STEREO-A) and 1057 km/s (STEREO-B). These numbers are different only by 2.3% and 8.5% (for STEREO-A and STEREO-B, respectively) from the computed value.
NASA Astrophysics Data System (ADS)
Ireland, Peter J.; Collins, Lance R.
2012-11-01
Turbulence-induced collision of inertial particles may contribute to the rapid onset of precipitation in warm cumulus clouds. The particle collision frequency is determined from two parameters: the radial distribution function g (r) and the mean inward radial relative velocity
A Numerical Model of Hercules A by Magnetic Tower
NASA Astrophysics Data System (ADS)
Nakamura, Masanori; Tregillis, I. L.; Li, H.; Li, S.
2009-01-01
We apply magnetohydrodynamic (MHD) modeling to the radio galaxy Hercules A for investigating the jet-driven shock, jet/lobe transition, wiggling, and magnetic field distribution associated with this source. The model consists of magnetic tower jets in a galaxy cluster environment. The profile of underlying ambient gas plays an important role in jet-lobe morphology. The balance between the magnetic pressure generated by axial current and the ambient gas pressure can determine the lobe radius. The jet body is confined jointly by the external pressure and gravity inside the cluster core radius, while outside this radius it expands radially to form fat lobes in a steeply decreasing ambient thermal pressure gradient. The current-carrying jets are responsible for generating a strong, tightly wound helical magnetic field. This magnetic configuration will be unstable against the current-driven kink mode and it visibly grows beyond the cluster core radius where a separation between the jet forward and return currents occurs. The reversed pinch profile of global magnetic field associated with the jet and lobes produces projected magnetic-vector distributions aligned with the jet flow and the lobe edge. AGN-driven shock powered by the expanding magnetic tower jet surrounds the jet/lobe structure and heats the ambient ICM. The lobes expand subsonically; no obvious hot spots are produced at the heads of lobes. Several key features in our MHD modeling may be qualitatively supported by the observations of Hercules A. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. It was supported by the Laboratory Directed Research and Development Program at LANL and by IGPP at LANL.
PHYSICAL CONDITIONS OF CORONAL PLASMA AT THE TRANSIT OF A SHOCK DRIVEN BY A CORONAL MASS EJECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susino, R.; Bemporad, A.; Mancuso, S., E-mail: susino@oato.inaf.it
2015-10-20
We report here on the determination of plasma physical parameters across a shock driven by a coronal mass ejection using white light (WL) coronagraphic images and radio dynamic spectra (RDS). The event analyzed here is the spectacular eruption that occurred on 2011 June 7, a fast CME followed by the ejection of columns of chromospheric plasma, part of them falling back to the solar surface, associated with a M2.5 flare and a type-II radio burst. Images acquired by the Solar and Heliospheric Observatory/LASCO coronagraphs (C2 and C3) were employed to track the CME-driven shock in the corona between 2–12 R{submore » ⊙} in an angular interval of about 110°. In this interval we derived two-dimensional (2D) maps of electron density, shock velocity, and shock compression ratio, and we measured the shock inclination angle with respect to the radial direction. Under plausible assumptions, these quantities were used to infer 2D maps of shock Mach number M{sub A} and strength of coronal magnetic fields at the shock's heights. We found that in the early phases (2–4 R{sub ⊙}) the whole shock surface is super-Alfvénic, while later on (i.e., higher up) it becomes super-Alfvénic only at the nose. This is in agreement with the location for the source of the observed type-II burst, as inferred from RDS combined with the shock kinematic and coronal densities derived from WL. For the first time, a coronal shock is used to derive a 2D map of the coronal magnetic field strength over intervals of 10 R{sub ⊙} altitude and ∼110° latitude.« less
Investigations of a Coherently Driven Semiconductor Optical Cavity QED System
2008-09-30
A. Fiber taper waveguide coupling Two of the primary difficulties in performing resonant optical measurements on the microcavity-QD system are ef...with the predomi- nantly radially polarized cavity mode. As a result, we esti- mate that spatial misalignment is the primary cause for the reduced...Mode splitting circles and peak reflection value diamonds as a fuction of Pd and ncav. Theoretical predic- tions are shown as dashed lines
Propeller/fan-pitch feathering apparatus
NASA Technical Reports Server (NTRS)
Schilling, Jan C. (Inventor); Adamson, Arthur P. (Inventor); Bathori, Julius (Inventor); Walker, Neil (Inventor)
1990-01-01
A pitch feathering system for a gas turbine driven aircraft propeller having multiple variable pitch blades utilizes a counter-weight linked to the blades. The weight is constrained to move, when effecting a pitch change, only in a radial plane and about an axis which rotates about the propeller axis. The system includes a linkage allowing the weight to move through a larger angle than the associated pitch change of the blade.
PIC simulation of a thermal anisotropy-driven Weibel instability in a circular rarefaction wave
NASA Astrophysics Data System (ADS)
Dieckmann, M. E.; Sarri, G.; Murphy, G. C.; Bret, A.; Romagnani, L.; Kourakis, I.; Borghesi, M.; Ynnerman, A.; O'C Drury, L.
2012-02-01
The expansion of an initially unmagnetized planar rarefaction wave has recently been shown to trigger a thermal anisotropy-driven Weibel instability (TAWI), which can generate magnetic fields from noise levels. It is examined here whether the TAWI can also grow in a curved rarefaction wave. The expansion of an initially unmagnetized circular plasma cloud, which consists of protons and hot electrons, into a vacuum is modelled for this purpose with a two-dimensional particle-in-cell (PIC) simulation. It is shown that the momentum transfer from the electrons to the radially accelerating protons can indeed trigger a TAWI. Radial current channels form and the aperiodic growth of a magnetowave is observed, which has a magnetic field that is oriented orthogonal to the simulation plane. The induced electric field implies that the electron density gradient is no longer parallel to the electric field. Evidence is presented here that this electric field modification triggers a second magnetic instability, which results in a rotational low-frequency magnetowave. The relevance of the TAWI is discussed for the growth of small-scale magnetic fields in astrophysical environments, which are needed to explain the electromagnetic emissions by astrophysical jets. It is outlined how this instability could be examined experimentally.
NASA Astrophysics Data System (ADS)
Chang, Xijiang; Kunii, Kazuki; Liang, Rongqing; Nagatsu, Masaaki
2013-04-01
A large-area planar surface-wave plasma (SWP) source driven by a 915 MHz ultrahigh frequency (UHF) wave was developed. To avoid using large, thick dielectric plates as vacuum windows, we propose a cavity launcher consisting of a cylindrical cavity with several small quartz discs at the bottom. Three types of launchers with quartz discs located at different positions were tested to compare their plasma production efficiencies and spatial distributions of electron density. With the optimum launcher, large-area plasma discharges with a radial uniformity within ±10% were obtained in a radius of about 25-30 cm in Ar gas at 8 Pa for incident power in the range 0.5-2.5 kW. The maximum electron density and temperature were approximately (0.95-1.1) × 1011 cm-3 and 1.9-2.0 eV, respectively, as measured by a Langmuir probe located 24 cm below the bottom of the cavity launcher. Using an Ar/NH3 SWP with the optimum launcher, we demonstrated large-area amino-group surface modification of polyurethane sheets. Experimental results indicated that a uniform amino-group modification was achieved over a radius of approximately 40 cm, which is slightly larger than the radial uniformity of the electron density distribution.
NASA Astrophysics Data System (ADS)
Grzegożek, W.; Dobaj, K.; Kot, A.
2016-09-01
The paper includes the analysis of the rubber V-belt cooperation with the CVT transmission pulleys. The analysis of the forces and torques acting in the CVT transmission was conducted basing on calculated characteristics of the centrifugal regulator and the torque regulator. The accurate estimation of the regulator surface curvature allowed for calculation of the relation between the driving wheel axial force, the engine rotational speed and the gear ratio of the CVT transmission. Simplified analytical models of the rubber V-belt- pulley cooperation are based on three basic approaches. The Dittrich model assumes two contact regions on the driven and driving wheel. The Kim-Kim model considers, in addition to the previous model, also the radial friction. The radial friction results in the lack of the developed friction area on the driving pulley. The third approach, formulated in the Cammalleri model, assumes variable sliding angle along the wrap arch and describes it as a result the belt longitudinal and cross flexibility. Theoretical torque on the driven and driving wheel was calculated on the basis of the known regulators characteristics. The calculated torque was compared to the measured loading torque. The best accordance, referring to the centrifugal regulator range of work, was obtained for the Kim-Kim model.
Nonlinear fishbone dynamics in spherical tokamaks
Wang, Feng [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Dalian Univ Technol, Sch Phys & Optoelect Technol, Minist Educ, Key Lab Mat Modificat Laser Ion & Electron Beams, Dalian 116024, Peoples R China.; Fu, G.Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Institute for Fusion Theory and Simulation and Department of Physics Hangzhou, Zhejiang University, Hangzhou, 310027, People's Republic of China; Shen, Wei [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031, People's Republic of China
2017-01-01
Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters with finite toroidal rotation were used. The results show that the fishbone is driven by both trapped and passing particles. The instability drive of passing particles is comparable to that of trapped particles in the linear regime. The effects of rotation are destabilizing and a new region of instability appears at higher q min (>1.5) values, q min being the minimum of safety factor profile. In the nonlinear regime, the mode saturates due to flattening of beam ion distribution, and this persists after initial saturation while mode frequency chirps down in such a way that the resonant trapped particles move out radially and keep in resonance with the mode. Correspondingly, the flattening region of beam ion distribution expands radially outward. A substantial fraction of initially non-resonant trapped particles become resonant around the time of mode saturation and keep in resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant passing particles is significantly smaller than that of trapped particles. Our analysis shows that trapped particles provide the main drive to the mode in the nonlinear regime.
NASA Astrophysics Data System (ADS)
Liu, Rong; Chen, Xue; Ding, Zijing
2018-01-01
We consider the motion of a gravity-driven flow down a vertical fiber subjected to a radial electric field. This flow exhibits rich dynamics including the formation of droplets, or beads, driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the Maxwell stress at the interface. A spatiotemporal stability analysis is performed to investigate the effect of electric field on the absolute-convective instability (AI-CI) characteristics. We performed a numerical simulation on the nonlinear evolution of the film to examine the transition from CI to AI regime. The numerical results are in excellent agreement with the spatiotemporal stability analysis. The blowup behavior of nonlinear simulation predicts the formation of touchdown singularity of the interface due to the effect of electric field. We try to connect the blowup behavior with the AI-CI characteristics. It is found that the singularities mainly occur in the AI regime. The results indicate that the film may have a tendency to form very sharp tips due to the enhancement of the absolute instability induced by the electric field. We perform a theoretical analysis to study the behaviors of the singularities. The results show that there exists a self-similarity between the temporal and spatial distances from the singularities.
Nonlinear fishbone dynamics in spherical tokamaks
Wang, Feng; Fu, G. Y.; Shen, Wei
2016-11-22
Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters with finite toroidal rotation were used. Our results show that the fishbone is driven by both trapped and passing particles. The instability drive of passing particles is comparable to that of trapped particles in the linear regime. The effects of rotation are destabilizing and a new region of instability appears at higher q min (>1.5) values, q min being the minimum of safety factor profile. In the nonlinear regime, the mode saturatesmore » due to flattening of beam ion distribution, and this persists after initial saturation while mode frequency chirps down in such a way that the resonant trapped particles move out radially and keep in resonance with the mode. Correspondingly, the flattening region of beam ion distribution expands radially outward. Furthermore, a substantial fraction of initially non-resonant trapped particles become resonant around the time of mode saturation and keep in resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant passing particles is significantly smaller than that of trapped particles. Finally, our analysis shows that trapped particles provide the main drive to the mode in the nonlinear regime.« less
The Radial Speed - Expansion Speed Relation for Earth-Directed CMEs
NASA Astrophysics Data System (ADS)
Makela, P. A.; Gopalswamy, N.; Yashiro, S.
2013-12-01
The propagation speed of Earth-directed coronal mass ejections (CMEs) is an essential parameter needed in space weather forecasting. However, the true propagation speed of Earth-directed CMEs cannot be measured accurately from coronagraph images taken from Earth's view. In order to circumvent the inaccuracies of speed measurements due to the projection effects, empirical relations expressing the radial speed (Vrad) of the CME as a function of the CME expansion speed (Vexp) have been suggested. Vexp is defined as the apparent speed the CME is spreading in the coronagraph's field of view. During 2010-2012 STEREO spacecraft provided a side view of Earth-directed CMEs, allowing measurements of true CME speeds and widths. In a case study of the 2011 February 15 CME Gopalswamy et al. (2012) compared three Vrad-Vexp relations (flat cone, full or shallow ice cream cone - Gopalswamy et al., 2009) and found the closest match with the observations for the (full ice cream cone) relation Vrad = 1/2(1 + cot w)Vexp, where w is the half width of the CME. Using the STEREO/SECCHI and SOHO/LASCO observations during this opportune period, we expand this analysis to a larger set of Earth-directed CMEs. We compare the computed CME speed estimates with the measured true speeds and estimate the accuracy of the Vrad-Vexp relations. References: Gopalswamy, N. et al. (2009), The expansion and radial speeds of coronal mass ejections, Cent. Eur. Astrophys. Bull., 33, 115. Gopalswamy, N. et al. (2012), The relationship between the expansion speed and radial speed of CMEs confirmed using quadrature observations of the 2011 February 15 CME, Sun and Geosphere, 7(1), 7.
NASA Astrophysics Data System (ADS)
Russell, J. B.; Gaherty, J. B.; Lin, P. P.; Lizarralde, D.; Collins, J. A.; Hirth, G.; Evans, R. L.
2017-12-01
Observations of seismic anisotropy in the ocean basins are important for constraining deformation and melting processes in the upper mantle. The NoMelt OBS array was deployed on relatively pristine, 70 Ma seafloor in the central Pacific with the aim of constraining upper mantle circulation and the evolution of the lithosphere-asthenosphere system. Surface-waves traversing the array provide a unique opportunity to estimate a comprehensive set of anisotropic parameters. Azimuthal variations in Rayleigh-wave velocity over a period band of 15-180 s suggest strong anisotropic fabric both in the lithosphere and deep in the asthenosphere. High-frequency ambient noise (4-10 s) provides constraints on average VSV and VSH as well as azimuthal variations in both VS and VP in the upper ˜10 km of the mantle. Our best fitting models require radial anisotropy in the uppermost mantle with VSH > VSV by 3 - 7% and as much as 2% radial anisotropy in the crust. Additionally, we find a strong azimuthal dependence for Rayleigh- and Love-wave velocities, with Rayleigh 2θ fast direction parallel to the fossil spreading direction (FSD) and Love 2θ and 4θ fast directions shifted 90º and 45º from the FSD, respectively. These are some of the first direct observations of the Love 2θ and 4θ azimuthal signal, which allows us to directly invert for anisotropic terms G, B, and E in the uppermost Pacific lithosphere, for the first time. Together, these observations of radial and azimuthal anisotropy provide a comprehensive picture of oceanic mantle fabric and are consistent with horizontal alignment of olivine with the a-axis parallel to fossil spreading and having an orthorhombic or hexagonal symmetry.
Analysis on Coupled Vibration of a Radially Polarized Piezoelectric Cylindrical Transducer
Xu, Jie; Lin, Shuyu; Ma, Yan; Tang, Yifan
2017-01-01
Coupled vibration of a radially polarized piezoelectric cylindrical transducer is analyzed with the mechanical coupling coefficient method. The method has been utilized to analyze the metal cylindrical transducer and the axially polarized piezoelectric cylindrical transducer. In this method, the mechanical coupling coefficient is introduced and defined as the stress ratio in different directions. Coupled vibration of the cylindrical transducer is regarded as the interaction of the plane radial vibration of a ring and the longitudinal vibration of a tube. For the radially polarized piezoelectric cylindrical transducer, the radial and longitudinal electric admittances as functions of mechanical coupling coefficients and angular frequencies are derived, respectively. The resonance frequency equations are obtained. The dependence of resonance frequency and mechanical coupling coefficient on aspect ratio is studied. Vibrational distributions on the surfaces of the cylindrical transducer are presented with experimental measurement. On the support of experiments, this work is verified and provides a theoretical foundation for the analysis and design of the radially polarized piezoelectric cylindrical transducer. PMID:29292785
Calculation of the Neoclassical Radial Electric Field using a Gyrokinetic δ f Code
NASA Astrophysics Data System (ADS)
Lewandowski, J. L. V.; Boozer, A.; Williams, J.; Lin, Z.; Zarnstorff, M.
2000-10-01
The calculation of the radial electric field in stellarator devices is an important issue in neoclassical transport. The radial electric field, which is also related to the formation of transport barriers, can affect the anomalous transport. In stellarator configurations which depart only weakly from axi-symmetry, a direct Monte Carlo calculations of the radial electric is difficult due to the large statistical fluctuations. We present a novel method based on the evaluation of the perpendicular ( p_⊥ ) and parallel ( p_|| ) pressures. The variation of widehatp ≡ ( p_|| + p_⊥ ) /2 on the magnetic surface provides a low-noise calculation of the radial electric field. The low-noise method has been implemented in a three-dimensional gyro-kinetic particle code [1]. The calculation of the radial electric field for the National Compact Stellarator Experiment [2] will be presented. [ 1 ] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. White Science 281, 1835 (1998). [ 2 ] A. Reiman et al, invited talk (this conference).
NASA Astrophysics Data System (ADS)
Ghods, M.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.
2017-02-01
Hypoeutectic Al-19 wt. % Cu alloys were directionally solidified in cylindrical molds that featured an abrupt cross-section decrease 9.5 to 3.2 mm in diameter). Thermo-solutal convection and cross-section-change-induced shrinkage flow effects on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation was seen, particularly in the larger cross-section before contraction. This alloy shows positive longitudinal macrosegregation near the contraction followed by negative macrosegregation right after it; the extent of macrosegregation, however, decreases with increasing growth speed. The degree of thermo-solutal convection was compared to another study investigating directional solidification of Al-7 wt. % Si [1] in order to study the effect of solutal expansion coefficient on macrosegregation. An interesting change of the radial macrosegregation profile, attributable to the area-change-induced-shrinkage flow, was observed very close to the contraction. A two-dimensional model accounting for both shrinkage and thermo-solutal convection was used to simulate solidification, the resulting steepling as well as axial and radial macrosegregation. The experimentally observed macrosegregation associated with the contraction during directional solidification was well predicted by the numerical simulations.
Bestman, Jennifer E.; Lee-Osbourne, Jane; Cline, Hollis T.
2012-01-01
We analyzed the function of neural progenitors in the developing CNS of Xenopus laevis tadpoles using in vivo time-lapse confocal microscopy to collect images through the tectum at intervals of 2 to 24 hours over 3 days. Neural progenitor cells were labeled with fluorescent protein reporters based on expression of endogenous Sox2 transcription factor. With this construct, we identified Sox2-expressing cells as radial glia and as a component of the progenitor pool of cells in the developing tectum that gives rise to neurons and other radial glia. Lineage analysis of individual radial glia and their progeny demonstrated that less than 10% of radial glia undergo symmetric divisions resulting in two radial glia, while the majority of radial glia divide asymmetrically to generate neurons and radial glia. Time-lapse imaging revealed the direct differentiation of radial glia into neurons. Although radial glia may guide axons as they navigate to superficial tectum, we find no evidence that radial glia function as a scaffold for neuronal migration at early stages of tectal development. Over three days, the number of labeled cells increased 20%, as the fraction of radial glia dropped and the proportion of neuronal progeny increased to approximately 60% of the labeled cells. Tadpoles provided with short-term visual enhancement generated significantly more neurons, with a corresponding decrease in cell proliferation. Together these results demonstrate that radial glial cells are neural progenitors in the developing optic tectum and reveal that visual experience increases the proportion of neurons generated in an intact animal. PMID:22113462
On the predominance of the radial component of the magnetic field in the solar corona
NASA Technical Reports Server (NTRS)
Habbal, S. R.; Woo, R.; Arnaud, J.
2002-01-01
In this paper, the polarized intensity measurements of the Fe XIII 10747 A line described by Arnaud are placed, for the first time, in the context of the corresponding pB images from the HAO Mauna Loa MkIII K-Coronameter, which first became available in 1980. It is shown how the predominance of the radial direction of the coronal magnetic field at solar maximum is consistent with radially expanding magnetic field lines coexisting with the large-scale structures associated with streamers.
Cladding-pumped ytterbium-doped fiber laser with radially polarized output.
Lin, Di; Daniel, J M O; Gecevičius, M; Beresna, M; Kazansky, P G; Clarkson, W A
2014-09-15
A simple technique for directly generating a radially polarized output beam from a cladding-pumped ytterbium-doped fiber laser is reported. Our approach is based on the use of a nanograting spatially variant waveplate as an intracavity polarization-controlling element. The laser yielded ~32 W of output power (limited by available pump power) with a radially polarized TM (01)-mode output beam at 1040 nm with a corresponding slope efficiency of 66% and a polarization purity of 95%. The beam-propagation factor (M(2)) was measured to be ~1.9-2.1.
The orthotropic elastic properties of fibrolamellar bone tissue in juvenile white-tailed deer femora
Barrera, John W.; Le Cabec, Adeline; Barak, Meir M.
2017-01-01
Fibrolamellar bone is a transient primary bone tissue found in fast growing juvenile mammals, several species of birds and large dinosaurs. Despite the fact that this bone tissue is prevalent in many species, the vast majority of bone structural and mechanical studies are focused on humans osteonal bone tissue. Previous research revealed the orthotropic structure of fibrolamellar bone, but only a handful of experiments investigated its elastic properties, mostly in the axial direction. Here we have performed for the first time an extensive biomechanical study to determine the elastic properties of fibrolamellar bone in all three orthogonal directions. We have tested 30 fibrolamellar bone cubes (2×2×2mm) from the femora of five juvenile white-tailed deer (Odocoileus virginianus) in compression. Each bone cube was compressed iteratively, within its elastic region, in the axial, transverse and radial directions and bone stiffness (Young’s modulus) was recorded. Next, the cubes were kept for seven days at 4°C and then compressed again to test whether bone stiffness had significantly deteriorated. Our results demonstrated that bone tissue in the deer femora has orthotropic elastic behavior where the highest stiffness was in the axial direction followed by the transverse and the radial directions respectively (21.6±3.3 GPa, 17.6±3.0 GPa and 14.9±1.9 GPa respectively). Our results also revealed a slight non-significant decrease in bone stiffness after seven days. Finally, our sample size allowed us to establish that population variance was much bigger in the axial direction compared to the radial direction which potentially reflects bone adaptation to the large diversity in loading activity between individuals in the loading direction (axial) compared to the normal (radial) direction. This study confirms that the well mechanically-studied human transverse-isotropic osteonal bone is just one possible functional adaptation of bone tissue and that other vertebrate species use an orthotropic bone tissue structure which is more suitable for their mechanical requirements. PMID:27231028
Modeling multivariate time series on manifolds with skew radial basis functions.
Jamshidi, Arta A; Kirby, Michael J
2011-01-01
We present an approach for constructing nonlinear empirical mappings from high-dimensional domains to multivariate ranges. We employ radial basis functions and skew radial basis functions for constructing a model using data that are potentially scattered or sparse. The algorithm progresses iteratively, adding a new function at each step to refine the model. The placement of the functions is driven by a statistical hypothesis test that accounts for correlation in the multivariate range variables. The test is applied on training and validation data and reveals nonstatistical or geometric structure when it fails. At each step, the added function is fit to data contained in a spatiotemporally defined local region to determine the parameters--in particular, the scale of the local model. The scale of the function is determined by the zero crossings of the autocorrelation function of the residuals. The model parameters and the number of basis functions are determined automatically from the given data, and there is no need to initialize any ad hoc parameters save for the selection of the skew radial basis functions. Compactly supported skew radial basis functions are employed to improve model accuracy, order, and convergence properties. The extension of the algorithm to higher-dimensional ranges produces reduced-order models by exploiting the existence of correlation in the range variable data. Structure is tested not just in a single time series but between all pairs of time series. We illustrate the new methodologies using several illustrative problems, including modeling data on manifolds and the prediction of chaotic time series.
Control of radial propagation and polarity in a plasma jet in surrounding Ar
NASA Astrophysics Data System (ADS)
Gong, W.; Yue, Y.; Ma, F.; Yu, F.; Wan, J.; Nie, L.; Bazaka, K.; Xian, Y.; Lu, X.; Ostrikov, K.
2018-01-01
In recent years, the use of shielding gas to prevent the diffusion of the ambient air, particularly oxygen and nitrogen species, into the effluent of the atmospheric pressure plasma jet, and thus control the nature of chemical species used in the plasma treatment has increased. In this paper, the radial propagation of a plasma jet in ambient Ar is examined to find the key determinants of the polarity of plasma jets. The dynamics of the discharge reveal that the radial diffusion discharge is a special phenomenon observed only at the falling edge of the pulses. The radial transport of electrons, which is driven by the radial component of the applied electric field at the falling edge of the pulse, is shown to play an important role in increasing the seed electron density in the surrounding Ar. This result suggests a method to provide seed electrons at atmospheric pressure with a negative discharge. The polarity of the plasma jet is found to be determined by the pulse width rather than the polarity of the applied voltage, as it dictates the relative difference in the intensity of the two discharges in a single pulse, where the stronger discharge in a pulse dominates the behavior of the plasma jet. Accordingly, a method to control the polarity of a plasma jet through varying the pulse width is developed. Since plasma jets of different polarities differ remarkably in terms of their characteristics, the method to control the polarity reported in this paper will be of use for such applications as plasma-enhanced processing of materials and plasma biomedicine.
NASA Astrophysics Data System (ADS)
Ghods, M.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.
2017-10-01
Hypoeutectic Al-19 wt.% Cu alloys were directionally solidified at two different growth speeds in cylindrical molds that featured an abrupt increase in cross-section, from 3.2 to 9.5 mm in diameter. The effects of thermosolutal convection and shrinkage flow induced by the cross-section change on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation were seen, particularly in the larger cross-section after expansion. Negative longitudinal macrosegregation right after the cross-section increase was observed; the extent of macrosegregation, however, decreases with increasing growth speed. Both thermal and flow effects due to cross-section change were seen to influence the radial macrosegregation immediately before, and after the expansion. Radial macrosegregation pattern was found to be changing as the mushy zone enters the larger cross-section region above the cross-section change where the solidification is in its unsteady state. The effect of the solutal expansion coefficient on macrosegregation was studied by comparing the degree of thermosolutal convection in Al-19 wt.% Cu with a previous study in which we investigated Al-7 wt.% Si. A two-dimensional model accounting for both shrinkage and thermosolutal convection was used to simulate the resulting steepling, as well as the axial and radial macrosegregation. The experimentally observed macrosegregation associated with the expansion during directional solidification is well predicted by the numerical simulations.
Li, Ronny X; Ip, Ada; Sanz-Miralles, Elena; Konofagou, Elisa E
2017-06-01
The routine assessment and monitoring of hypertension may benefit from the evaluation of arterial pulse pressure (PP) at more central locations (e.g. the aorta) rather solely at the brachial artery. Pulse Wave Ultrasound Manometry (PWUM) was previously developed by our group to provide direct, noninvasive aortic PP measurements using ultrasound elasticity imaging. Using PWUM, radial applanation tonometry, and brachial sphygmomanometry, this study investigated the feasibility of noninvasively obtaining direct PP measurements at multiple arterial locations in normotensive, pre-hypertensive, and hypertensive human subjects. Two-way ANOVA indicated a significantly higher aortic PP in the hypertensive subjects, while radial and brachial PP were not significantly different among the subject groups. No strong correlation (r 2 < 0.45) was observed between aortic and radial/brachial PP in normal and pre-hypertensive subjects, suggesting that increases in PP throughout the arterial tree may not be uniform in relatively compliant arteries. However, there was a relatively strong positive correlation between aortic PP and both radial and brachial PP in hypertensive subjects (r 2 = 0.68 and 0.87, respectively). PWUM provides a low-cost, non-invasive, and direct means of measuring the pulse pressure in large central arteries such as the aorta. When used in conjunction with peripheral measurement devices, PWUM allows for the routine screening of hypertension and monitoring of BP-lowering drugs based on the PP from multiple arterial sites.
76 FR 59590 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-27
... web lap and tear strap splices of the aft pressure bulkhead at STA 1582 due to fatigue. We are... radial web lap and tear strap splices of the aft pressure bulkhead at station (STA) 1582 due to fatigue... prompted by reports of multiple site damage cracks in the radial web lap and tear strap splices of the aft...
NASA Astrophysics Data System (ADS)
Lieberman, M. A.; Lichtenberg, A. J.; Kawamura, Emi; Marakhtanov, A. M.
2015-09-01
It is well known that standing waves having radially center-high rf voltage profiles exist in high frequency capacitive discharges. It is also known that in radially uniform discharges, the capacitive sheath nonlinearities excite strong nonlinear series resonance harmonics that enhance the electron power deposition. In this work, we consider the coupling of the series resonance-enhanced harmonics to the standing waves. A one-dimensional, asymmetric radial transmission line model is developed incorporating the wave and nonlinear sheath physics and a self-consistent dc potential. The resulting coupled pde equation set is solved numerically to determine the discharge voltages and currents. A 10 mT argon base case is chosen with plasma density 2 ×1016 m-3, gap width 2 cm and conducting electrode radius 15 cm, driven by a high frequency 500 V source with source resistance 0.5 ohms. We find that nearby resonances lead to an enhanced ratio of 4.5 of the electron power per unit area on axis, compared to the average. The radial dependence of electron power with frequency shows significant variations, with the central enhancement and sharpness of the spatial resonances depending in a complicated way on the harmonic structure. Work supported by DOE Fusion Energy Science Contract DE-SC000193 and by a gift from the Lam Research Corporation.
Symmetry of priapulids (Priapulida). 1. Symmetry of adults.
Adrianov, A V; Malakhov, V V
2001-02-01
Priapulids possess a radial symmetry that is remarkably reflected in both external morphology and internal anatomy. It results in the appearance of 25-radial (a number divisible by five) symmetry summarized as a combination of nonaradial, octaradial, and octaradial (9+8+8) symmetries of scalids. The radial symmetry is a secondary appearance considered as an evolutionary adaptation to a lifestyle within the three-dimensional environment of bottom sediment. The eight anteriormost, or primary, scalids retain their particular position because of their innervation directly from the circumpharyngeal brain. As a result of a combination of the octaradial symmetry of primary scalids, pentaradial symmetry of teeth, and the 25-radial symmetry of scalids, the initial bilateral symmetry remains characterized by the single sagittal plane. Copyright 2001 Wiley-Liss, Inc.
Collagen Fiber Orientation and Dispersion in the Upper Cervix of Non-Pregnant and Pregnant Women
Myers, Kristin M.; Vink, Joy Y.; Wapner, Ronald J.; Hendon, Christine P.
2016-01-01
The structural integrity of the cervix in pregnancy is necessary for carrying a pregnancy until term, and the organization of human cervical tissue collagen likely plays an important role in the tissue’s structural function. Collagen fibers in the cervical extracellular matrix exhibit preferential directionality, and this collagen network ultrastructure is hypothesized to reorient and remodel during cervical softening and dilation at time of parturition. Within the cervix, the upper half is substantially loaded during pregnancy and is where the premature funneling starts to happen. To characterize the cervical collagen ultrastructure for the upper half of the human cervix, we imaged whole axial tissue slices from non-pregnant and pregnant women undergoing hysterectomy or cesarean hysterectomy respectively using optical coherence tomography (OCT) and implemented a pixel-wise fiber orientation tracking method to measure the distribution of fiber orientation. The collagen fiber orientation maps show that there are two radial zones and the preferential fiber direction is circumferential in a dominant outer radial zone. The OCT data also reveal that there are two anatomic regions with distinct fiber orientation and dispersion properties. These regions are labeled: Region 1—the posterior and anterior quadrants in the outer radial zone and Region 2—the left and right quadrants in the outer radial zone and all quadrants in the inner radial zone. When comparing samples from nulliparous vs multiparous women, no differences in these fiber properties were noted. Pregnant tissue samples exhibit an overall higher fiber dispersion and more heterogeneous fiber properties within the sample than non-pregnant tissue. Collectively, these OCT data suggest that collagen fiber dispersion and directionality may play a role in cervical remodeling during pregnancy, where distinct remodeling properties exist according to anatomical quadrant. PMID:27898677
Surface oscillation and jetting from surface attached acoustic driven bubbles.
Prabowo, Firdaus; Ohl, Claus-Dieter
2011-01-01
We report on an experimental study of the onset of surface oscillation and jetting of bubbles attached to a rigid surface. The driving frequency is 16.27 kHz and the radius of the spherical capped bubble is 160 ± 5 μm. The acoustic amplitude is increased from 0 to 0.085 bar while the oscillation is recorded with a high-speed camera at 180,000 frames/s over 8100 periods of oscillations. The radial and surface modes are analyzed from a Fourier decomposition. With increasing pressure amplitude we find three regimes: pure radial oscillation, development of surface oscillations, and a chaotic surface oscillation regime. These regimes appear abrupt and are repeatable. In the chaotic regime, fast liquid jetting towards the rigid surface is observed. Copyright © 2010 Elsevier B.V. All rights reserved.
CfRadial - CF NetCDF for Radar and Lidar Data in Polar Coordinates.
NASA Astrophysics Data System (ADS)
Dixon, M. J.; Lee, W. C.; Michelson, D.; Curtis, M.
2016-12-01
Since 1990, NCAR has supported over 20 different data formats for radar and lidar data in polar coordinates. Researchers, students and operational users spend unnecessary time handling a multitude of unique formats. CfRadial grew out of the need to simplify the use of these data and thereby to improve efficiency in research and operations. CfRadial adopts the well-known NetCDF framework, along with the Climate and Forecasting (CF) conventions such that data and metadata are accurately represented. Mobile platforms are also supported. The first major release, CfRadial version 1.1, occurred in February 2011, followed by minor updates. CfRadial has been adopted by NCAR as well as other agencies in the US and the UK. CfRadial development was boosted in 2015 through a two-year NSF EarthCube grant to improve CF in general. Version 1.4 was agreed upon in May 2016, adding explicit support for quality control fields and spectra. In Europe and Australia, EUMETNET OPERA's HDF5-based ODIM_H5 standard has been rapidly embraced as the modern standard for exchanging weather radar data for operations. ODIM_H5 exploits data groups, hierarchies, and built-in compression, characteristics that have been added to NetCDF4. A meeting of the WMO Task Team on Weather Radar Data Exchange (TT-WRDE) was held at NCAR in Boulder in July 2016, with a goal of identifying a single global standard for radar and lidar data in polar coordinates. CfRadial and ODIM_H5 were considered alongside the older and more rigid table-driven WMO BUFR and GRIB2 formats. TT-WRDE recommended that CfRadial 1.4 be merged with the sweep-oriented structure of ODIM_H5, making use of NetCDF groups, to produce a single format that will encompass the best ideas of both formats. That has led to the emergence of the CfRadial 2.0 standard. This format should meet the objectives of both the NSF EarthCube CF 2.0 initiative and the WMO TT-WRDE. It has the added benefit of improving data exchange between operational and research users, making operational data more readily available to researchers, and research algorithms more accessible to operational agencies.
Scrape-off layer tokamak plasma turbulence
NASA Astrophysics Data System (ADS)
Bisai, N.; Singh, R.; Kaw, P. K.
2012-05-01
Two-dimensional (2D) interchange turbulence in the scrape-off layer of tokamak plasmas and their subsequent contribution to anomalous plasma transport has been studied in recent years using electron continuity, current balance, and electron energy equations. In this paper, numerically it is demonstrated that the inclusion of ion energy equation in the simulation changes the nature of plasma turbulence. Finite ion temperature reduces floating potential by about 15% compared with the cold ion temperature approximation and also reduces the radial electric field. Rotation of plasma blobs at an angular velocity about 1.5×105 rad/s has been observed. It is found that blob rotation keeps plasma blob charge separation at an angular position with respect to the vertical direction that gives a generation of radial electric field. Plasma blobs with high electron temperature gradients can align the charge separation almost in the radial direction. Influence of high ion temperature and its gradient has been presented.
Rotational microfluidic motor for on-chip microcentrifugation
NASA Astrophysics Data System (ADS)
Shilton, Richie J.; Glass, Nick R.; Chan, Peggy; Yeo, Leslie Y.; Friend, James R.
2011-06-01
We report on the design of a surface acoustic wave (SAW) driven fluid-coupled micromotor which runs at high rotational velocities. A pair of opposing SAWs generated on a lithium niobate substrate are each obliquely passed into either side of a fluid drop to drive rotation of the fluid, and the thin circular disk set on the drop. Using water for the drop, a 5 mm diameter disk was driven with rotation speeds and start-up torques up to 2250 rpm and 60 nN m, respectively. Most importantly for lab-on-a-chip applications, radial accelerations of 172 m/s2 was obtained, presenting possibilities for microcentrifugation, flow sequencing, assays, and cell culturing in truly microscale lab-on-a-chip devices.
NASA Astrophysics Data System (ADS)
Contopoulos, I.; Kazanas, D.; Fukumura, K.
2017-11-01
Observations of X-ray absorption lines in magnetically driven disc winds around black hole binaries and active galactic nuclei yield a universal radial density profile ρ ∝ r-1.2 in the wind. This is in disagreement with the standard Blandford and Payne profile ρBP ∝ r-1.5 expected when the magnetic field is neither advected nor diffusing through the accretion disc. In order to account for this discrepancy, we establish a new paradigm for magnetically driven astrophysical winds according to which the large-scale ordered magnetic field that threads the disc is continuously generated by the Cosmic Battery around the inner edge of the disc and continuously diffuses outward. We obtain self-similar solutions of such magnetically advected winds (MAW) and discuss their observational ramifications.
The Role of Radial Clearance on the Performance of Foil Air Bearings
NASA Technical Reports Server (NTRS)
Radil, Kevin; Howard, Samuel; Dykas, Brian
2002-01-01
Load capacity tests were conducted to determine how radial clearance variations affect the load capacity coefficient of foil air bearings. Two Generation III foil air bearings with the same design but possessing different initial radial clearances were tested at room temperature against an as-ground PS304 coated journal operating at 30,000 rpm. Increases in radial clearance were accomplished by reducing the journal's outside diameter via an in-place grinding system. From each load capacity test the bearing load capacity coefficient was calculated from the rule-of-thumb (ROT) model developed for foil air bearings. The test results indicate that, in terms of the load capacity coefficient, radial clearance has a direct impact on the performance of the foil air bearing. Each test bearing exhibited an optimum radial clearance that resulted in a maximum load capacity coefficient. Relative to this optimum value are two separate operating regimes that are governed by different modes of failure. Bearings operating with radial clearances less than the optimum exhibit load capacity coefficients that are a strong function of radial clearance and are prone to a thermal runaway failure mechanism and bearing seizure. Conversely, a bearing operating with a radial clearance twice the optimum suffered only a 20 percent decline in its maximum load capacity coefficient and did not experience any thermal management problems. However, it is unknown to what degree these changes in radial clearance had on other performance parameters, such as the stiffness and damping properties of the bearings.
Nearly spherical constant power detonation waves driven by focused radiation
NASA Technical Reports Server (NTRS)
George, Y. H.
1973-01-01
Shape and inner flow of a tridimensional spark are studied. The spark is created by focusing a laser beam in a gas. A second order fully non-linear equation is derived for the radial velocity on the axis of symmetry in the neighborhood of the origin. Solutions to that equation display the existence of a forbidden region near the focus, thus indicating the limits of applicability of a small perturbation solution.
Vibration Problems of Rotating Machinery due to Coupling Misalignments
1988-05-01
driven couplings in which parallel but radially offset shafts are Joined, quite often through speed increasing or decreasing wheel ratios; 3) flexible...specified as offset or total indicator runout (TIR). Offset is defined as the amount one shaft is physically displaced from its *truely" aligned...position when measured from the other 0 shaft. Total indicator runout is the difference in dial indicator readings taken in a particular plane when the
Evidence for dust-driven, radial plasma transport in Saturn's inner radiation belts
NASA Astrophysics Data System (ADS)
Roussos, E.; Krupp, N.; Kollmann, P.; Paranicas, C.; Mitchell, D. G.; Krimigis, S. M.; Andriopoulou, M.
2016-08-01
A survey of Cassini MIMI/LEMMS data acquired between 2004 and 2015 has led to the identification of 13 energetic electron microsignatures that can be attributed to particle losses on one of the several faint rings of the planet. Most of the signatures were detected near L-shells that map between the orbits of Mimas and Enceladus or near the G-ring. Our analysis indicates that it is very unlikely for these signatures to have originated from absorption on Mimas, Enceladus or unidentified Moons and rings, even though most were not found exactly at the L-shells of the known rings of the saturnian system (G-ring, Methone, Anthe, Pallene). The lack of additional absorbers is apparent in the L-shell distribution of MeV ions which are very sensitive for tracing the location of weakly absorbing material permanently present in Saturn's radiation belts. This sensitivity is demonstrated by the identification, for the first time, of the proton absorption signatures from the asteroid-sized Moons Pallene, Anthe and/or their rings. For this reason, we investigate the possibility that the 13 energetic electron events formed at known saturnian rings and the resulting depletions were later displaced radially by one or more magnetospheric processes. Our calculations indicate that the displacement magnitude for several of those signatures is much larger than the one that can be attributed to radial flows imposed by the recently discovered noon-to-midnight electric field in Saturn's inner magnetosphere. This observation is consistent with a mechanism where radial plasma velocities are enhanced near dusty obstacles. Several possibilities are discussed that may explain this observation, including a dust-driven magnetospheric interchange instability, mass loading by the pick-up of nanometer charged dust grains and global magnetospheric electric fields induced by perturbed orbits of charged dust due to the act of solar radiation pressure. Indirect evidence for a global scale interaction between the magnetosphere and Saturn's faint rings that may drive such radial transport processes may also exist in previously reported measurements of plasma density by Cassini. Alternative explanations that do not involve enhanced plasma transport near the rings require the presence of a transient absorbing medium, such as E-ring clumps. Such clumps may form at the L-shell range where microsignatures have been observed due to resonances between charged dust and corotating magnetospheric structures, but remote imaging observations of the E-ring are not consistent with such a scenario.
Staged fuel and air injection in combustion systems of gas turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Michael John; Berry, Jonathan Dwight
A gas turbine that includes a working fluid flowpath extending aftward from a forward injector in a combustor. The combustor may include an inner radial wall, an outer radial wall, and, therebetween, a flow annulus. A staged injector may intersect the flow annulus so to attain an injection point within the working fluid flowpath by which aftward and forward annulus sections are defined. Air directing structure may include an aftward intake section that corresponds to the aftward annulus section and a forward intake section that corresponds to the forward annulus section. The air directing structure may be configured to: directmore » air entering through the aftward intake section through the aftward annulus section in a forward direction to the staged injector; and direct air entering through the forward intake section through the forward annulus section in a forward direction to the forward injector.« less
Staged fuel and air injection in combustion systems of gas turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Michael John; Berry, Jonathan Dwight
A gas turbine that includes a working fluid flowpath extending aftward from a forward injector in a combustor. The combustor may include an inner radial wall, an outer radial wall, and, therebetween, a flow annulus. A staged injector may intersect the flow annulus so to attain an injection point within the working fluid flowpath by which aftward and forward annulus sections are defined. Air directing structure may include an aftward intake section that corresponds to the aftward annulus section and a forward intake section that corresponds to the forward annulus section. The air directing structure may be configured to: directmore » air entering through the aftward intake section through the aftward annulus section in a forward direction to the staged injector; and direct air entering through the forward intake section through the forward annulus section in an aftward direction to the staged injector.« less
Tuning porosity and radial mechanical properties of DNA origami nanotubes via crossover design
NASA Astrophysics Data System (ADS)
Ma, Zhipeng; Kawai, Kentaro; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu
2017-06-01
DNA origami nanotubes are utilized as structural platforms for the fabrication of various micro/nanosystems for drug delivery, optical or biological sensing, and even nanoscale robots. Their radial structural and mechanical properties, which play a crucial role in the effective use of micro/nanosystems, have not been fully studied. In particular, the effects of crossovers, which are basic structures for rationally assembling double-stranded DNA (dsDNA) helices into a nanotube configuration, have not yet been characterized experimentally. To investigate the effects of crossovers on the porosity and the radial mechanical properties of DNA origami nanotubes, we fabricated a DNA origami nanotube with varied crossover designs along the nanotube axis. The radial geometry of the DNA origami nanotube is experimentally characterized by both atomic force microscopy (AFM) and electron cryomicroscopy (cryo-EM). Moreover, the radial mechanical properties of the DNA origami nanotube including the radial modulus are directly measured by force-distance-based AFM. These measurements reveal that the porosity and the radial modulus of DNA origami nanotubes can be tuned by adjusting the crossover design, which enables the optimal design and construction of DNA origami nanostructures for various applications.
Saturn's Auroral Response to the Solar Wind: Centrifugal Instability Model
NASA Technical Reports Server (NTRS)
Sittler, Edward C.; Blanc, Michel F.; Richardson, J. D.
2008-01-01
We describe a model initially presented by Sittler et al. [2006] which attempts to explain the global response of Saturn's magnetosphere and its corresponding auroral behavior to variations in the solar wind. The model was derived from published simultaneous Hubble Space Telescope (HST) auroral images and Cassini upstream measurements taken during the month of January 2004. These observations show a direct correlation between solar wind dynamic pressure and (1) auroral brightening toward dawn local time, (2) an increase of rotational movement of auroral features to as much as 75% of the corotation speed, (3) the movement of the auroral oval to higher latitudes and (4) an increase in the intensity of Saturn Kilometric Radiation (SKR). This model is an alternative to the reconnection model of Cowley et al. [2004a,b; 2005] which is more Earth-like while ours stresses rotation. If angular momentum is conserved in a global sense, then when compressed the magnetosphere will tend to spin up and when it expands will tend to spin down. With the plasma sheet outer boundary at L approximates 15 we argue this region to be the dominant source region for the precipitating particles. If radial transport is dominated by centrifugal driven flux tube interchange motions, then when the magnetosphere spins up, outward transport will increase, the precipitating particles will move radially outward and cause the auroral oval to move to higher latitudes as observed. The Kelvin-Helmholtz instability may contribute to the enhanced emission along the dawn meridian as observed by HST. We present this model in the context of presently published observations by Cassini.
Evolution of protoplanetary discs with magnetically driven disc winds
NASA Astrophysics Data System (ADS)
Suzuki, Takeru K.; Ogihara, Masahiro; Morbidelli, Alessandro; Crida, Aurélien; Guillot, Tristan
2016-12-01
Aims: We investigate the evolution of protoplanetary discs (PPDs) with magnetically driven disc winds and viscous heating. Methods: We considered an initially massive disc with 0.1 M⊙ to track the evolution from the early stage of PPDs. We solved the time evolution of surface density and temperature by taking into account viscous heating and the loss of mass and angular momentum by the disc winds within the framework of a standard α model for accretion discs. Our model parameters, turbulent viscosity, disc wind mass-loss, and disc wind torque, which were adopted from local magnetohydrodynamical simulations and constrained by the global energetics of the gravitational accretion, largely depends on the physical condition of PPDs, particularly on the evolution of the vertical magnetic flux in weakly ionized PPDs. Results: Although there are still uncertainties concerning the evolution of the vertical magnetic flux that remains, the surface densities show a large variety, depending on the combination of these three parameters, some of which are very different from the surface density expected from the standard accretion. When a PPD is in a wind-driven accretion state with the preserved vertical magnetic field, the radial dependence of the surface density can be positive in the inner region <1-10 au. The mass accretion rates are consistent with observations, even in the very low level of magnetohydrodynamical turbulence. Such a positive radial slope of the surface density strongly affects planet formation because it inhibits the inward drift or even causes the outward drift of pebble- to boulder-sized solid bodies, and it also slows down or even reversed the inward type-I migration of protoplanets. Conclusions: The variety of our calculated PPDs should yield a wide variety of exoplanet systems.
Robertson-Shersby-Harvie, R.B.; Mullett, L.B.
1957-04-23
This patent presents a particular arrangement for delectric loading of a wave-guide carrying an electromagnetic wave in the E or TM mode of at least the second order, to reduce the power dissipated as the result of conduction loss in the wave-guide walls. To achieve this desirabie result, the effective dielectric constants in the radial direction of adjacent coaxial tubular regions bounded approximateiy by successive nodai surfaces within the electromagnetic field are of two different values alternating in the radial direction, the intermost and outermost regions being of the lower value, and the dielectric constants between nodes are uniform.
Development of high-vacuum planar magnetron sputtering using an advanced magnetic field geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohno, Takahiro; Yagyu, Daisuke; Saito, Shigeru, E-mail: saito@ee.kagu.tus.ac.jp
2015-11-15
A permanent magnet in a new magnetic field geometry (namely, with the magnetization in the radial direction) was fabricated and used for high-vacuum planar magnetron sputtering using Penning discharge. Because of the development of this magnet, the discharge current and deposition rate were increased two to three times in comparison with the values attainable with a magnet in the conventional geometry. This improvement was because the available space for effective discharge of the energetic electrons for the ionization increased because the magnetic field distribution increased in both the axial and radial directions of discharge.
Cell vertices as independent actors during cell intercalation in epithelial morphogenesis
NASA Astrophysics Data System (ADS)
Loerke, Dinah
Epithelial sheets form the lining of organ surfaces and body cavities, and it is now appreciated that these sheets are dynamic structures that can undergo significant reorganizing events, e.g. during wound healing or morphogenesis. One of the key morphogenetic mechanisms that is utilized during development is tissue elongation, which is driven by oriented cell intercalation. In the Drosophila embryonic epithelium, this occurs through the contraction of vertical T1 interfaces and the subsequent resolution of horizontal T3 interfaces (analogous to so-called T1 transitions in soap foams), where the symmetry breaking behaviors are created by a system of planar polarity of actomyosin and adhesion complexes within the cell layer. The dominant physical model for this process posits that the anisotropy of line tension directs T1 contraction. However, this model is inconsistent with the in vivo observation that cell vertices of T1 interfaces lack physical coupling, and instead show independent movements. Thus, we propose that a more useful explanation of intercalary behaviors will be possible through a description of the radially-directed and adhesion-coupled force events that lead to vertex movements and produce subsequent dependent changes in interface lengths. This work is supported by NIH R15 GM117463-01 and by a Research Corporation for Science Advancement (RCSA) Cottrell Scholar Award.
Two-dimensional surface river flow patterns measured with paired RiverSondes
Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.
2007-01-01
Two RiverSondes were operated simultaneously in close proximity in order to provide a two-dimensional map of river surface velocity. The initial test was carried out at Threemile Slough in central California. The two radars were installed about 135 m apart on the same bank of the channel. Each radar used a 3-yagi antenna array and determined signal directions using direction finding. The slough is approximately 200 m wide, and each radar processed data out to about 300 m, with a range resolution of 15 m and an angular resolution of 1 degree. Overlapping radial vector data from the two radars were combined to produce total current vectors at a grid spacing of 10 m, with updates every 5 minutes. The river flow in the region, which has a maximum velocity of about 0.8 m/s, is tidally driven with flow reversals every 6 hours, and complex flow patterns were seen during flow reversal. The system performed well with minimal mutual interference. The ability to provide continuous, non-contact two-dimensional river surface flow measurements will be useful in several unique settings, such as studies of flow at river junctions where impacts to juvenile fish migration are significant. Additional field experiments are planned this year on the Sacramento River. ?? 2007 IEEE.
Two-dimensional surface river flow patterns measured with paired RiverSondes
Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.
2008-01-01
Two RiverSondes were operated simultaneously in close proximity in order to provide a two-dimensional map of river surface velocity. The initial test was carried out at Threemile Slough in central California. The two radars were installed about 135 m apart on the same bank of the channel. Each radar used a 3-yagi antenna array and determined signal directions using direction finding. The slough is approximately 200 m wide, and each radar processed data out to about 300 m, with a range resolution of 15 m and an angular resolution of 1 degree. Overlapping radial vector data from the two radars were combined to produce total current vectors at a grid spacing of 10 m, with updates every 5 minutes. The river flow in the region, which has a maximum velocity of about 0.8 m/s, is tidally driven with flow reversals every 6 hours, and complex flow patterns were seen during flow reversal. The system performed well with minimal mutual interference. The ability to provide continuous, non-contact two-dimensional river surface flow measurements will be useful in several unique settings, such as studies of flow at river junctions where impacts to juvenile fish migration are significant. Additional field experiments are planned this year on the Sacramento River. ?? 2007 IEEE.
Disturbance Driven Colony Fragmentation as a Driver of a Coral Disease Outbreak
Brandt, Marilyn E.; Smith, Tyler B.; Correa, Adrienne M. S.; Vega-Thurber, Rebecca
2013-01-01
In September of 2010, Brewer's Bay reef, located in St. Thomas (U.S. Virgin Islands), was simultaneously affected by abnormally high temperatures and the passage of a hurricane that resulted in the mass bleaching and fragmentation of its coral community. An outbreak of a rapid tissue loss disease among coral colonies was associated with these two disturbances. Gross lesion signs and lesion progression rates indicated that the disease was most similar to the Caribbean coral disease white plague type 1. Experiments indicated that the disease was transmissible through direct contact between colonies, and five-meter radial transects showed a clustered spatial distribution of disease, with diseased colonies being concentrated within the first meter of other diseased colonies. Disease prevalence and the extent to which colonies were bleached were both significantly higher on unattached colony fragments than on attached colonies, and disease occurred primarily on fragments found in direct contact with sediment. In contrast to other recent studies, disease presence was not related to the extent of bleaching on colonies. The results of this study suggest that colony fragmentation and contact with sediment played primary roles in the initial appearance of disease, but that the disease was capable of spreading among colonies, which suggests secondary transmission is possible through some other, unidentified mechanism. PMID:23437335
Illusory object motion in the centre of a radial pattern: The Pursuit-Pursuing illusion.
Ito, Hiroyuki
2012-01-01
A circular object placed in the centre of a radial pattern consisting of thin sectors was found to cause a robust motion illusion. During eye-movement pursuit of a moving target, the presently described stimulus produced illusory background-object motion in the same direction as that of the eye movement. In addition, the display induced illusory stationary perception of a moving object against the whole display motion. In seven experiments, the characteristics of the illusion were examined in terms of luminance relationships and figural characteristics of the radial pattern. Some potential explanations for these findings are discussed.
ExoSOFT: Exoplanet Simple Orbit Fitting Toolbox
NASA Astrophysics Data System (ADS)
Mede, Kyle; Brandt, Timothy D.
2017-08-01
ExoSOFT provides orbital analysis of exoplanets and binary star systems. It fits any combination of astrometric and radial velocity data, and offers four parameter space exploration techniques, including MCMC. It is packaged with an automated set of post-processing and plotting routines to summarize results, and is suitable for performing orbital analysis during surveys with new radial velocity and direct imaging instruments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, J.J.; Flathers, M.B.
1998-04-01
Net radial loading arising from asymmetric pressure fields in the volutes of centrifugal pumps during off-design operation is well known and has been studied extensively. In order to achieve a marked improvement in overall efficiency in centrifugal gas compressors, vaneless volute diffusers are matched to specific impellers to yield improved performance over a wide application envelope. As observed in centrifugal pumps, nonuniform pressure distributions that develop during operation above and below the design flow create static radial loads on the rotor. In order to characterize these radial forces, a novel experimental measurement and post-processing technique is employed that yields bothmore » the magnitude and direction of the load by measuring the shaft centerline locus in the tilt-pad bearings. The method is applicable to any turbomachinery operating on fluid film radial bearings equipped with proximity probes. The forces are found to be a maximum near surge and increase with higher pressures and speeds. The results are nondimensionalized, allowing the radial loading for different operating conditions to be predicted.« less
Lean direct injection diffusion tip and related method
Varatharajan, Balachandar [Cincinnati, OH; Ziminsky, Willy S [Simpsonville, SC; Lipinski, John [Simpsonville, SC; Kraemer, Gilbert O [Greer, SC; Yilmaz, Ertan [Niskayuna, NY; Lacy, Benjamin [Greer, SC
2012-08-14
A nozzle for a gas turbine combustor includes a first radially outer tube defining a first passage having an inlet and an outlet, the inlet adapted to supply air to a reaction zone of the combustor. A center body is located within the first radially outer tube, the center body including a second radially intermediate tube for supplying fuel to the reaction zone and a third radially inner tube for supplying air to the reaction zone. The second intermediate tube has a first outlet end closed by a first end wall that is formed with a plurality of substantially parallel, axially-oriented air outlet passages for the additional air in the third radially inner tube, each air outlet passage having a respective plurality of associated fuel outlet passages in the first end wall for the fuel in the second radially intermediate tube. The respective plurality of associated fuel outlet passages have non-parallel center axes that intersect a center axis of the respective air outlet passage to locally mix fuel and air exiting said center body.
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.; Siebert, Mark W.; Ho, Eric J.
2007-01-01
Analysis and experimental measurement of the electromagnet force loads on the hybrid rotor in a novel bearingless switched-reluctance motor (BSRM) have been performed. A BSRM has the combined characteristics of a switched-reluctance motor and a magnetic bearing. The BSRM has an eight-pole stator and a six-pole hybrid rotor, which is composed of circular and scalloped lamination segments. The hybrid rotor is levitated using only one set of stator poles. A second set of stator poles imparts torque to the scalloped portion of the rotor, which is driven in a traditional switched reluctance manner by a processor. Analysis was done for nonrotating rotor poles that were oriented to achieve maximum and minimum radial force loads on the rotor. The objective is to assess whether simple one-dimensional magnetic circuit analysis is sufficient for preliminary evaluation of this machine, which may exhibit strong three-dimensional electromagnetic field behavior. Two magnetic circuit geometries, approximating the complex topology of the magnetic fields in and around the hybrid rotor, were employed in formulating the electromagnetic radial force equations. Reasonable agreement between the experimental results and the theoretical predictions was obtained with typical magnetic bearing derating factors applied to the predictions.
Kaslin, Jan; Kroehne, Volker; Ganz, Julia; Hans, Stefan; Brand, Michael
2017-04-15
Zebrafish can regenerate after brain injury, and the regenerative process is driven by resident stem cells. Stem cells are heterogeneous in the vertebrate brain, but the significance of having heterogeneous stem cells in regeneration is not understood. Limited availability of specific stem cells might impair the regeneration of particular cell lineages. We studied regeneration of the adult zebrafish cerebellum, which contains two major stem and progenitor cell types: ventricular zone and neuroepithelial cells. Using conditional lineage tracing we demonstrate that cerebellar regeneration depends on the availability of specific stem cells. Radial glia-like cells are thought to be the predominant stem cell type in homeostasis and after injury. However, we find that radial glia-like cells play a minor role in adult cerebellar neurogenesis and in recovery after injury. Instead, we find that neuroepithelial cells are the predominant stem cell type supporting cerebellar regeneration after injury. Zebrafish are able to regenerate many, but not all, cell types in the cerebellum, which emphasizes the need to understand the contribution of different adult neural stem and progenitor cell subtypes in the vertebrate central nervous system. © 2017. Published by The Company of Biologists Ltd.
Modification of turbulence and turbulent transport associated with a confinement transition in LAPD
NASA Astrophysics Data System (ADS)
Carter, Troy
2009-11-01
Azimuthal flow is driven in the edge of the Large Plasma Device (LAPD) through biasing a section of the vacuum vessel relative to the plasma source cathode. As the applied bias exceeds a threshold, a transition in radial particle confinement is observed, evidenced by a dramatic steepening in the density profile, similar to the L- to H-mode transition in toroidal confinement devices. The threshold behavior and dynamic behavior of radial transport is related to flow penetration and the degree of spatial overlap between the flow shear and density gradient profiles. An investigation of the changes in turbulence and turbulent particle transport associated with the confinement transition is presented. Two-dimensional cross-correlation measurements show that the spatial coherence of edge turbulence in LAPD changes significantly with biasing. The azimuthal correlation in the turbulence increases dramatically, while the radial correlation length is little altered. Turbulent amplitude is reduced at the transition, particularly in electric field fluctuations, but the dominant change observed is in the cross-phase between density and electric field fluctuations. The changes in cross-phase lead to a suppression and then apparent reversal of turbulent particle flux as the threshold is exceeded.
Gaggero, D; Grasso, D; Marinelli, A; Taoso, M; Urbano, A
2017-07-21
We present a novel interpretation of the γ-ray diffuse emission measured by Fermi-LAT and H.E.S.S. in the Galactic center (GC) region and the Galactic ridge (GR). In the first part we perform a data-driven analysis based on PASS8 Fermi-LAT data: We extend down to a few GeV the spectra measured by H.E.S.S. and infer the primary cosmic-ray (CR) radial distribution between 0.1 and 3 TeV. In the second part we adopt a CR transport model based on a position-dependent diffusion coefficient. Such behavior reproduces the radial dependence of the CR spectral index recently inferred from the Fermi-LAT observations. We find that the bulk of the GR emission can be naturally explained by the interaction of the diffuse steady-state Galactic CR sea with the gas present in the central molecular zone. Although we confirm the presence of a residual radial-dependent emission associated with a central source, the relevance of the large-scale diffuse component prevents to claim a solid evidence of GC pevatrons.
Sims, J A; Giorgi, M C; Oliveira, M A; Meneghetti, J C; Gutierrez, M A
2018-04-01
Extract directional information related to left ventricular (LV) rotation and torsion from a 4D PET motion field using the Discrete Helmholtz Hodge Decomposition (DHHD). Synthetic motion fields were created using superposition of rotational and radial field components and cardiac fields produced using optical flow from a control and patient image. These were decomposed into curl-free (CF) and divergence-free (DF) components using the DHHD. Synthetic radial components were present in the CF field and synthetic rotational components in the DF field, with each retaining its center position, direction of motion and diameter after decomposition. Direction of rotation at apex and base for the control field were in opposite directions during systole, reversing during diastole. The patient DF field had little overall rotation with several small rotators. The decomposition of the LV motion field into directional components could assist quantification of LV torsion, but further processing stages seem necessary. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McGovern, P. J., Jr.; Grosfils, E. B.; Le Corvec, N.; Ernst, R. E.; Galgana, G. A.
2017-12-01
Over 200 giant radial dike swarms have been identified on Venus using Magellan data, yielding insight into morphological characteristics long since erased by erosion and other processes on Earth. Since such radial dike systems are typically associated with magma reservoirs, large volcanoes and/or larger-scale plume activity—and because dike geometry reflects stress conditions at the time of intrusion—assessing giant radial dike formation in the context of swarm morphology can place important constraints upon this fundamental volcanotectonic process. Recent numerical models reveal that, contrary to what is reported in much of the published literature, it is not easy, mechanically, to produce either large or small radial dike systems. After extensive numerical examination of reservoir inflation, however, under conditions ranging from a simple halfspace to complex flexural loading, we have thus far identified four scenarios that produce radial dike systems. Two of these scenarios yield dike systems akin to those often associated with shield and stratocone volcanoes on Earth, while the other two, our focus here, are more consistent with the giant radial dike system geometries catalogued on Venus. In this presentation we will (a) review key morphological characteristics of the giant radial systems identified on Venus, (b) briefly illustrate why it is not easy, mechanically, to produce a radial dike system, (c) present the two volcanological circumstances we have identified that do allow a giant radial dike system to form, and (d) discuss current model limitations and potentially fruitful directions for future research.
NASA Astrophysics Data System (ADS)
Li, Zhao; Hudson, Mary; Patel, Maulik; Wiltberger, Michael; Boyd, Alex; Turner, Drew
2017-07-01
The 17 March 2015 St. Patrick's Day Storm is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward interplanetary magnetic field Bz causing loss; however, a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. The 17 March 2013 storm also shows similar effects on outer zone electrons: first, a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the prestorm level early in the recovery phase and a slow increase over the next 12 days. These phases can be seen in temporal evolution of the electron phase space density measured by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instruments on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD model driven by upstream solar wind measurements, we simulated both St. Patrick's Day 2013 and 2015 events, analyzing Lyon-Fedder-Mobarry electric and magnetic fields to calculate radial diffusion coefficients. These coefficients have been implemented in a radial diffusion code, using the measured electron phase space density following the local heating as the initial radial profile and outer boundary condition for subsequent temporal evolution over the next 12 days, beginning 18 March. Agreement with electron phase space density at 1000 MeV/G measured by the MagEIS component of the ECT instrument suite on Van Allen Probes was much improved using radial diffusion coefficients from the MHD simulations relative to coefficients parameterized by a global geomagnetic activity index.
NASA Astrophysics Data System (ADS)
Naumann, Robert J.; Baugher, Charles
1992-08-01
Estimates of the convective flows driven by horizontal temperature gradients in the vertical Bridgman configuration are made for dilute systems subject to the low level accelerations typical of the residual accelerations experienced by a spacecraft in low Earth orbit. The estimates are made by solving the Navier-Stokes momentum equation in one dimension. The mass transport equation is then solved in two dimensions using a first-order perturbation method. This approach is valid provided the convective velocities are small compared to the growth velocity which generally requires a reduced gravity environment. If this condition is satisfied, there will be no circulating cells, and hence no convective transport along the vertical axis. However, the variations in the vertical velocity with radius will give rise to radial segregation. The approximate analytical model developed here can predict the degree of radial segregation for a variety of material and processing parameters to an accuracy well within a factor of two as compared against numerical computations of the full set of Navier-Stokes equations for steady accelerations. It has the advantage of providing more insight into the complex interplay of the processing parameters and how they affect the solute distribution in the grown crystal. This could be extremely valuable in the design of low-gravity experiments in which the intent is to control radial segregation. Also, the analysis can be extended to consider transient and periodic accelerations, which is difficult and costly to do numerically. Surprisingly, it was found that the relative radial segregation falls as the inverse cube of the frequency for periodic accelerations whose periods are short compared with the characteristic diffusion time.
NASA Astrophysics Data System (ADS)
Li, Z.; Hudson, M. K.; Chen, Y.
2013-12-01
The outer boundary energetic electron flux is used as a driver in radial diffusion calculations, and its precise determination is critical to the solution. A new model was proposed recently based on THEMIS measurements to express the boundary flux as three fit functions of solar wind parameters in a response window, that depend on energy and which solar parameter is used: speed, density, or both (Shin and Lee, 2013). The Dartmouth radial diffusion model has been run using LANL geosynchronous satellite measurements as the outer boundary for a one-month interval in July to August 2004 and the calculated phase space density (PSD) is compared with GPS measurements at the GPS orbit (L=4.16), at magnetic equatorial plane crossings, as a test of the model. We also used the outer boundary generated from the Shin and Lee model and examined this boundary condition by computing the error relative to the simulation using a LANL geosynchronous spacecraft data-driven outer boundary. The calculation shows that there is overestimation and underestimation at different times, however the new boundary condition can be used to drive the radial diffusion model generally, producing the phase space density increase and dropout during a storm with a relatively small error. Having this new method based on a solar wind parametrized data set, we can run the radial diffusion model for storms when particle measurements are not available at the outer boundary. We chose the Whole Heliosphere Interval (WHI) as an example and compared the result with MHD/test-particle simulations (Hudson et al., 2012), obtaining much better agreement with PSD based on GPS measurements at L=4.16 using the diffusion model, which incorporates atmospheric losses.
NASA Astrophysics Data System (ADS)
Li, Z.; Hudson, M.; Paral, J.; Wiltberger, M. J.; Boyd, A. J.; Turner, D. L.
2016-12-01
The 17 March 2015 `St. Patrick's Day Storm' is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward IMF Bz causing loss, however a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. Local heating has been modeled by other groups for this and the 17 March 2013 storm, only slightly weaker and showing a similar effect on electrons: first a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the pre-storm level and an even greater slow increase likely due to radial diffusion. The latter can be seen in temporal evolution of the electron phase space density measured by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instrument on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD model driven by upstream solar wind measurements with the Magneotsphere-Ionosphere Coupler (MIX), we have simulated both `St. Patrick's Day'events, analyzing LFM electric and magnetic fields to calculate radial diffusion coefficients. These coefficients have been implemented in a radial diffusion code using the measured electron phase space density profile following the local heating and as the outer boundary condition for subsequent temporally evolution over the next 12 days, beginning 18 March 2015. Agreement with electron phase space density at 1000 MeV/G measured by the MagEIS component of the ECT instrument on Van Allen Probes (30 keV - 4 MeV) was much improved using radial diffusion coefficients from the MHD simulations relative to coefficients parametrized by a global geomagnetic activity index.
The role of turbulence-flow interactions in L- to H-mode transition dynamics: recent progress
NASA Astrophysics Data System (ADS)
Schmitz, L.
2017-02-01
Recent experimental and simulation work has substantially advanced the understanding of L-mode plasma edge turbulence and plasma flows and their mutual interaction across the L-H transition. Flow acceleration and E × B shear flow amplification via the turbulent Reynolds stress have been directly observed in multiple devices, using multi-tip probe arrays, Doppler backscattering, beam emission spectroscopy, and gas puff imaging diagnostics. L-H transitions characterized by limit-cycle oscillations (LCO) allow probing of the trigger dynamics and the synergy of turbulence-driven and pressure-gradient-driven flows with high spatio-temporal resolution. L-mode turbulent structures exhibit characteristic changes in topology (tilting) and temporal and radial correlation preceding the L-H transition. Long-range toroidal flow correlations increase preceding edge-transport-barrier formation. The energy transfer from the turbulence spectrum to large-scale axisymmetric flows has been quantified in L-LCO and fast L-H transitions in several devices. After formation of a transient barrier, the increasing ion pressure gradient (via the E × B flow shear associated with diamagnetic flow) sustains fluctuation suppression and secures the transition to H-mode. Heuristic models of the L-H trigger dynamics have progressed from 0D predator-prey models to 1D extended models, including neoclassical ion flow-damping and pressure-gradient evolution. Initial results from 2D and 3D reduced fluid models have been obtained for high-collisionality regimes.
Initial Comparison of Direct and Legacy Modeling Approaches for Radial Core Expansion Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shemon, Emily R.
2016-10-10
Radial core expansion in sodium-cooled fast reactors provides an important reactivity feedback effect. As the reactor power increases due to normal start up conditions or accident scenarios, the core and surrounding materials heat up, causing both grid plate expansion and bowing of the assembly ducts. When the core restraint system is designed correctly, the resulting structural deformations introduce negative reactivity which decreases the reactor power. Historically, an indirect procedure has been used to estimate the reactivity feedback due to structural deformation which relies upon perturbation theory and coupling legacy physics codes with limited geometry capabilities. With advancements in modeling andmore » simulation, radial core expansion phenomena can now be modeled directly, providing an assessment of the accuracy of the reactivity feedback coefficients generated by indirect legacy methods. Recently a new capability was added to the PROTEUS-SN unstructured geometry neutron transport solver to analyze deformed meshes quickly and directly. By supplying the deformed mesh in addition to the base configuration input files, PROTEUS-SN automatically processes material adjustments including calculation of region densities to conserve mass, calculation of isotopic densities according to material models (for example, sodium density as a function of temperature), and subsequent re-homogenization of materials. To verify the new capability of directly simulating deformed meshes, PROTEUS-SN was used to compute reactivity feedback for a series of contrived yet representative deformed configurations for the Advanced Burner Test Reactor design. The indirect legacy procedure was also performed to generate reactivity feedback coefficients for the same deformed configurations. Interestingly, the legacy procedure consistently overestimated reactivity feedbacks by 35% compared to direct simulations by PROTEUS-SN. This overestimation indicates that the legacy procedures are in fact not conservative and could be overestimating reactivity feedback effects that are closely tied to reactor safety. We conclude that there is indeed value in performing direct simulation of deformed meshes despite the increased computational expense. PROTEUS-SN is already part of the SHARP multi-physics toolkit where both thermal hydraulics and structural mechanical feedback modeling can be applied but this is the first comparison of direct simulation to legacy techniques for radial core expansion.« less
BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki-Vidal, F.; Lebedev, S. V.; Pickworth, L. A.
The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counterstreaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame, and the experiments are driven over many times the characteristic cooling timescale. The initially smooth bow shock rapidly develops small-scale nonuniformities over temporal and spatial scalesmore » that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.« less
NASA Technical Reports Server (NTRS)
Catell, C. A.; Mozer, F. S.; Roth, I.; Anderson, R. R.; Elphic, R. C.
1991-01-01
Quasi-monochromatic waves at about the hydrogen cyclotron frequency were observed as the ISEE 1 satellite traversed auroral field lines at radial distances of about 2.5-4.5 R(E) near midnight on June 19, 1981. Waves and both lower and higher frequencies were observed at higher altitudes, and possible electrostatic helium cyclotron and oxygen cyclotron waves occurred at lower altitudes. Upflowing hydrogen and oxygen beams and field-aligned currents occurred simultaneously. The features of the waves are most consistent with the current-driven mode. In addition, numerical studies of the linear dispersion relation, using parameters based on the observations, show that both the parallel and oblique two-stream modes and the ion-beam-driven modes were stable while oblique current-driven modes were unstable. The O(+) and H(+) distributions provide evidence for interactions with local electrostatic ion cyclotron waves and for the H(+)-O(+) two-stream instability at altitudes below the satellite.
High-quality electron beam generation in a proton-driven hollow plasma wakefield accelerator
NASA Astrophysics Data System (ADS)
Li, Y.; Xia, G.; Lotov, K. V.; Sosedkin, A. P.; Hanahoe, K.; Mete-Apsimon, O.
2017-10-01
Simulations of proton-driven plasma wakefield accelerators have demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to the energy frontier in a single plasma stage. However, due to the strong intrinsic transverse fields varying both radially and in time, the witness beam quality is still far from suitable for practical application in future colliders. Here we demonstrate the efficient acceleration of electrons in proton-driven wakefields in a hollow plasma channel. In this regime, the witness bunch is positioned in the region with a strong accelerating field, free from plasma electrons and ions. We show that the electron beam carrying the charge of about 10% of 1 TeV proton driver charge can be accelerated to 0.6 TeV with a preserved normalized emittance in a single channel of 700 m. This high-quality and high-charge beam may pave the way for the development of future plasma-based energy frontier colliders.
Recent progress of the Laser-driven Ion-beam Trace Probe
NASA Astrophysics Data System (ADS)
Yang, Xiaoyi; Xiao, Chijie; Chen, Yihang; Xu, Tianchao; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang
2017-10-01
The Laser-driven Ion-beam Trace Probe (LITP) is a new method to diagnose the poloidal magnetic field and radial electric field in tokamaks. Recently significant progresses have been made as follows. 1) The experimental system has been set up on the PKU Plasma Test (PPT) linear device and begun to validate the principle of LITP, including the ion source, the ion detector and the poloidal magnetic field cable. Preliminary experimental results matched the theoretical prediction well. 2) The reconstruction principle has been improved including the nonlinear effect. 3) Tomography methods have been applied in the reconstruction codes. Now the laser-driven ion-beam accelerator has been setup on the PPT device, and further test of LITP will start soon. After that a prototype of LITP system will be designed and setup on the HL-2A tokamak device. This work was supported by the CHINA MOST under 2012YQ030142, ITER-CHINA program 2015GB120001 and National Natural Science Foundation of China under 11575014 and 11375053.
NASA Astrophysics Data System (ADS)
Sasaki, Youhei; Takehiro, Shin-ichi; Ishiwatari, Masaki; Yamada, Michio
2018-03-01
Linear stability analysis of anelastic thermal convection in a rotating spherical shell with entropy diffusivities varying in the radial direction is performed. The structures of critical convection are obtained in the cases of four different radial distributions of entropy diffusivity; (1) κ is constant, (2) κT0 is constant, (3) κρ0 is constant, and (4) κρ0T0 is constant, where κ is the entropy diffusivity, T0 is the temperature of basic state, and ρ0 is the density of basic state, respectively. The ratio of inner and outer radii, the Prandtl number, the polytropic index, and the density ratio are 0.35, 1, 2, and 5, respectively. The value of the Ekman number is 10-3 or 10-5 . In the case of (1), where the setup is same as that of the anelastic dynamo benchmark (Jones et al., 2011), the structure of critical convection is concentrated near the outer boundary of the spherical shell around the equator. However, in the cases of (2), (3) and (4), the convection columns attach the inner boundary of the spherical shell. A rapidly rotating annulus model for anelastic systems is developed by assuming that convection structure is uniform in the axial direction taking into account the strong effect of Coriolis force. The annulus model well explains the characteristics of critical convection obtained numerically, such as critical azimuthal wavenumber, frequency, Rayleigh number, and the cylindrically radial location of convection columns. The radial distribution of entropy diffusivity, or more generally, diffusion properties in the entropy equation, is important for convection structure, because it determines the distribution of radial basic entropy gradient which is crucial for location of convection columns.
Outburst Activity Driven by Evolved Pulsating Star in the Symbiotic Binary AG Dra
NASA Astrophysics Data System (ADS)
Gális, R.; Hric, L.; Leedjärv, L.
2015-12-01
The symbiotic system AG Dra regularly undergoes quiescent and active stages which consist of the series of individual outbursts. The period analysis of new and historical photometric data, as well as radial velocities, confirmed the presence of the two periods. The longer one around ≈ 550 d is related to the orbital motion and the shorter one ≈355 d could be due to pulsation of the cool component of AG Dra.
Density waves in Saturn's rings
NASA Technical Reports Server (NTRS)
Cuzzi, J. N.; Lissauer, J. J.; Shu, F. H.
1981-01-01
Certain radial brightness variations in the outer Cassini division of Saturn's rings may be spiral density waves driven by Saturn's large moon Iapetus, in which case a value of approximately 16 g/sq cm for the surface density is calculated in the region where the waves are seen. The kinematic viscosity in the same region is approximately 170 sq cm/s and the vertical scale height of the ring is estimated to be a maximum of approximately 40 m.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmore, Mark Allen
Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that themore » levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.« less
Simultaneously driven linear and nonlinear spatial encoding fields in MRI.
Gallichan, Daniel; Cocosco, Chris A; Dewdney, Andrew; Schultz, Gerrit; Welz, Anna; Hennig, Jürgen; Zaitsev, Maxim
2011-03-01
Spatial encoding in MRI is conventionally achieved by the application of switchable linear encoding fields. The general concept of the recently introduced PatLoc (Parallel Imaging Technique using Localized Gradients) encoding is to use nonlinear fields to achieve spatial encoding. Relaxing the requirement that the encoding fields must be linear may lead to improved gradient performance or reduced peripheral nerve stimulation. In this work, a custom-built insert coil capable of generating two independent quadratic encoding fields was driven with high-performance amplifiers within a clinical MR system. In combination with the three linear encoding fields, the combined hardware is capable of independently manipulating five spatial encoding fields. With the linear z-gradient used for slice-selection, there remain four separate channels to encode a 2D-image. To compare trajectories of such multidimensional encoding, the concept of a local k-space is developed. Through simulations, reconstructions using six gradient-encoding strategies were compared, including Cartesian encoding separately or simultaneously on both PatLoc and linear gradients as well as two versions of a radial-based in/out trajectory. Corresponding experiments confirmed that such multidimensional encoding is practically achievable and demonstrated that the new radial-based trajectory offers the PatLoc property of variable spatial resolution while maintaining finite resolution across the entire field-of-view. Copyright © 2010 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Gopalswamy, Nat; Yashiro, Seiji
2011-01-01
We determine the coronal magnetic field strength in the heliocentric distance range 6-23 solar radii (Rs) by measuring the shock standoff distance and the radius of curvature of the flux rope during the 2008 March 25 coronal mass ejection imaged by white-light coronagraphs. Assuming the adiabatic index, we determine the Alfven Mach number, and hence the Alfven speed in the ambient medium using the measured shock speed. By measuring the upstream plasma density using polarization brightness images, we finally get the magnetic field strength upstream of the shock. The estimated magnetic field decreases from approximately 48 mG around 6 Rs to 8 mG at 23 Rs. The radial profile of the magnetic field can be described by a power law in agreement with other estimates at similar heliocentric distances.
Vortex Ring Dynamics in Radially Confined Domains
NASA Astrophysics Data System (ADS)
Stewart, Kelley; Niebel, Casandra; Jung, Sunghwan; Vlachos, Pavlos
2010-11-01
Vortex ring dynamics have been studied extensively in semi-infinite quiescent volumes. However, very little is known about vortex-ring formation in wall-bounded domains where vortex wall interaction will affect both the vortex ring pinch-off and propagation velocity. This study addresses this limitation and studies vortex formation in radially confined domains to analyze the affect of vortex-ring wall interaction on the formation and propagation of the vortex ring. Vortex rings were produced using a pneumatically driven piston cylinder arrangement and were ejected into a long cylindrical tube which defined the confined downstream domain. A range of confinement domains were studied with varying confinement diameters Velocity field measurements were performed using planar Time Resolved Digital Particle Image Velocimetry (TRDPIV) and were processed using an in-house developed cross-correlation PIV algorithm. The experimental analysis was used to facilitate the development of a theoretical model to predict the variations in vortex ring circulation over time within confined domains.
NASA Astrophysics Data System (ADS)
Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group
2018-04-01
A deuterium experiment was initiated to achieve higher-temperature and higher-density plasmas in March 2017 in the Large Helical Device (LHD). The central ion temperature notably increases compared with that in hydrogen experiments. However, an energetic particle mode called the helically-trapped energetic-ion-driven resistive interchange (EIC) mode is often excited by intensive perpendicular neutral beam injections on high ion-temperature discharges. The mode leads to significant decrease of the ion temperature or to limiting the sustainment of the high ion-temperature state. To understand the effect of EIC on the energetic ion confinement, the radial transport of energetic ions is studied by means of the neutron flux monitor and vertical neutron camera newly installed on the LHD. Decreases of the line-integrated neutron profile in core channels show that helically-trapped energetic ions are lost from the plasma.
Dead Zone Accretion Flows in Protostellar Disks
NASA Technical Reports Server (NTRS)
Turner, Neal; Sano, T.
2008-01-01
Planets form inside protostellar disks in a dead zone where the electrical resistivity of the gas is too high for magnetic forces to drive turbulence. We show that much of the dead zone nevertheless is active and flows toward the star while smooth, large-scale magnetic fields transfer the orbital angular momentum radially outward. Stellar X-ray and radionuclide ionization sustain a weak coupling of the dead zone gas to the magnetic fields, despite the rapid recombination of free charges on dust grains. Net radial magnetic fields are generated in the magnetorotational turbulence in the electrically conducting top and bottom surface layers of the disk, and reach the midplane by ohmic diffusion. A toroidal component to the fields is produced near the midplane by the orbital shear. The process is similar to the magnetization of the solar tachocline. The result is a laminar, magnetically driven accretion flow in the region where the planets form.
Conjunction Assessment Late-Notice High-Interest Event Investigation: Space Weather Aspects
NASA Technical Reports Server (NTRS)
Pachura, D.; Hejduk, M. D.
2016-01-01
Late-notice events usually driven by large changes in primary (protected) object or secondary object state. Main parameter to represent size of state change is component position difference divided by associated standard deviation (epsilon divided by sigma) from covariance. Investigation determined actual frequency of large state changes, in both individual and combined states. Compared them to theoretically expected frequencies. Found that large changes ( (epsilon divided by sigma) is greater than 3) in individual object states occur much more frequently than theory dictates. Effect is less pronounced in radial components and in events with probability of collision (Pc) greater than 1 (sup -5) (1e-5). Found combined state matched much closer to theoretical expectation, especially for radial and cross-track. In-track is expected to be the most vulnerable to modeling errors, so not surprising that non-compliance largest in this component.
LS IV — 14°116 : A Time-Resolved Spectroscopic Study
NASA Astrophysics Data System (ADS)
Martin, Pamela; Jeffery, C. Simon
2017-12-01
LSIV-14 116 is a very unusual subdwarf B star. It pulsates non-radially with high-order g-modes, these pulsations are unexpected and unexplained, as the effective temperature is 6 000K hotter than the blue edge of the hot subdwarf g-mode instability strip. Its spectrum is enriched in helium which is not seen in either the V361 Hya (p-mode pulsators) or the V1093 Her stars (g-mode pulsators). Even more unusual is the 4 dex overabundance of zirconium, yttrium, and strontium. It is proposed that these over-abundances are a result of extreme chemical stratification driven by radiative levitation. We have over 20hrs of VLT/UVES spectroscopy from which we have obtained radial velocity curves for individual absorption lines. We are currently exploring ways in which to resolve the photospheric motion as a function of optical depth.
Impacts of raindrop evaporative cooling on tropical cyclone secondary eyewall formation
NASA Astrophysics Data System (ADS)
Ge, Xuyang; Guan, Liang; Yan, Ziyu
2018-06-01
The impacts of raindrop evaporative cooling on secondary eyewall formation (SEF) of simulated tropical cyclones are investigated using idealized numerical experiments. The results suggest that the raindrop evaporative cooling effect is beneficial to the development of secondary eyewall through the planetary boundary layer (PBL) cold pool process. The evaporative cooling-driven downdrafts bring about the surface cold pool beneath a precipitation cloud. This cold pool dynamics act as a lifting mechanism to trigger the outer convection. The radially outward propagation of spiral rainbands broadens the TC size, by which modifies the surface heat fluxes and thus outer convection. Furthermore, the unbalanced PBL process contributes to the SEF. The radially outward surface outflows forces convection at outer region and thus favors a larger TC size. A larger TC implies an enhanced inertial stability at the outer region, which favors a higher conversion efficiency of diabatic heating to kinetic energy.
Modeling anomalous radial transport in kinetic transport codes
NASA Astrophysics Data System (ADS)
Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.
2009-11-01
Anomalous transport is typically the dominant component of the radial transport in magnetically confined plasmas, where the physical origin of this transport is believed to be plasma turbulence. A model is presented for anomalous transport that can be used in continuum kinetic edge codes like TEMPEST, NEO and the next-generation code being developed by the Edge Simulation Laboratory. The model can also be adapted to particle-based codes. It is demonstrated that the model with a velocity-dependent diffusion and convection terms can match a diagonal gradient-driven transport matrix as found in contemporary fluid codes, but can also include off-diagonal effects. The anomalous transport model is also combined with particle drifts and a particle/energy-conserving Krook collision operator to study possible synergistic effects with neoclassical transport. For the latter study, a velocity-independent anomalous diffusion coefficient is used to mimic the effect of long-wavelength ExB turbulence.
Structure of the Jovian Magnetodisk Current Sheet: Initial Galileo Observations
NASA Technical Reports Server (NTRS)
Russell, C. T.; Huddleston, D. E.; Khurana, K. K.; Kivelson, M. G.
2001-01-01
The ten-degree tilt of the Jovian magnetic dipole causes the magnetic equator to move back and forth across Jupiter's rotational equator and tile Galileo orbit that lies therein. Beyond about 24 Jovian radii, the equatorial current sheet thins and tile magnetic structure changes from quasi-dipolar into magnetodisk-like with two regions of nearly radial but antiparallel magnetic field separated by a strong current layer. The magnetic field at the center of the current sheet is very weak in this region. Herein we examine tile current sheet at radial distances from 24 55 Jovian radii. We find that the magnetic structure very much resembles tile structure seen at planetary magnetopause and tail current sheet crossings. Tile magnetic field variation is mainly linear with little rotation of the field direction, At times there is almost no small-scale structure present and the normal component of the magnetic field is almost constant through the current sheet. At other times there are strong small-scale structures present in both the southward and northward directions. This small-scale structure appears to grow with radial distance and may provide the seeds for tile explosive reconnection observed at even greater radial distances oil tile nightside. Beyond about 40 Jovian radii, the thin current sheet also appears to be almost constantly in oscillatory motion with periods of about 10 min. The amplitude of these oscillations also appears to grow with radial distance. The source of these fluctuations may be dynamical events in tile more distant magnetodisk.
Radial Domany-Kinzel models with mutation and selection
NASA Astrophysics Data System (ADS)
Lavrentovich, Maxim O.; Korolev, Kirill S.; Nelson, David R.
2013-01-01
We study the effect of spatial structure, genetic drift, mutation, and selective pressure on the evolutionary dynamics in a simplified model of asexual organisms colonizing a new territory. Under an appropriate coarse-graining, the evolutionary dynamics is related to the directed percolation processes that arise in voter models, the Domany-Kinzel (DK) model, contact process, and so on. We explore the differences between linear (flat front) expansions and the much less familiar radial (curved front) range expansions. For the radial expansion, we develop a generalized, off-lattice DK model that minimizes otherwise persistent lattice artifacts. With both simulations and analytical techniques, we study the survival probability of advantageous mutants, the spatial correlations between domains of neutral strains, and the dynamics of populations with deleterious mutations. “Inflation” at the frontier leads to striking differences between radial and linear expansions. For a colony with initial radius R0 expanding at velocity v, significant genetic demixing, caused by local genetic drift, occurs only up to a finite time t*=R0/v, after which portions of the colony become causally disconnected due to the inflating perimeter of the expanding front. As a result, the effect of a selective advantage is amplified relative to genetic drift, increasing the survival probability of advantageous mutants. Inflation also modifies the underlying directed percolation transition, introducing novel scaling functions and modifications similar to a finite-size effect. Finally, we consider radial range expansions with deflating perimeters, as might arise from colonization initiated along the shores of an island.
Minimizing masses in explosively driven two-shockwave physics applications
NASA Astrophysics Data System (ADS)
Buttler, William; Cherne, Frank; Furlanetto, Michael; Payton, Jeremy; Stone, Joseph; Tabaka, Leonard; Vincent, Samuel
2015-06-01
We have experimentally investigated different two-shockwave high-explosives (HE) physics package designs to maximize the variability of the second shockwave peak stress, while minimizing the total HE load of the physics tool. A critical requirement is to also have a large radial diameter of the second shockwave to maintain its value as an HE driven two-shockwave drive. We have previously shown that we could vary the peak-stress of the second-shockwave with a 76 mm diameter HE lens driving different composite boosters of PBX 9501 and TNT. Here we report on our results with a 56- and 50-mm diameter HE lens driving Baritol. The results indicate that the 56-mm diameter HE lens works well, as does the Baritol, giving total HE loads of about 250 mg TNT equivalent explosives.
Sensitivity of alpha-particle-driven Alfvén eigenmodes to q-profile variation in ITER scenarios
NASA Astrophysics Data System (ADS)
Rodrigues, P.; Figueiredo, A. C. A.; Borba, D.; Coelho, R.; Fazendeiro, L.; Ferreira, J.; Loureiro, N. F.; Nabais, F.; Pinches, S. D.; Polevoi, A. R.; Sharapov, S. E.
2016-11-01
A perturbative hybrid ideal-MHD/drift-kinetic approach to assess the stability of alpha-particle-driven Alfvén eigenmodes in burning plasmas is used to show that certain foreseen ITER scenarios, namely the {{I}\\text{p}}=15 MA baseline scenario with very low and broad core magnetic shear, are sensitive to small changes in the background magnetic equilibrium. Slight variations (of the order of 1% ) of the safety-factor value on axis are seen to cause large changes in the growth rate, toroidal mode number, and radial location of the most unstable eigenmodes found. The observed sensitivity is shown to proceed from the very low magnetic shear values attained throughout the plasma core, raising issues about reliable predictions of alpha-particle transport in burning plasmas.
Babelay, E.F.
1962-02-13
A flexible shaft coupling for operation at speeds in excess of 14,000 rpm is designed which requires no lubrication. A driving sleeve member and a driven sleeve member are placed in concentric spaced relationship. A torque force is transmitted to the driven member from the driving member through a plurality of nylon balls symmetrically disposed between the spaced sleeves. The balls extend into races and recesses within the respective sleeve members. The sleeve members have a suitable clearance therebetween and the balls have a suitable radial clearance during operation of the coupling to provide a relatively loose coupling. These clearances accommodate for both parallel and/or angular misalignments and avoid metal-tometal contact between the sleeve members during operation. Thus, no lubrication is needed, and a minimum of vibrations is transmitted between the sleeve members. (AEC)
NASA Astrophysics Data System (ADS)
Bugti, M. N.; Mann, P.
2016-12-01
Previous workers have described the effects both downslope motion of salt and shale along straight margins and the more complex three-dimensional cases of downslope salt motion and deformation: 1) radial, divergent gliding off of coastal salients accompanied by strike-parallel extension increasing downslope; and 2) radial, convergent gliding into coastal reentrants or "corners" accompanied by strike-parallel contraction and differential loading increasing downslope. The northwestern Gulf of Mexico (GOM) forms a sharp, right-angle corner defined northeastern shelf of Mexico and South Texas and the shelf of the northern GOM; in a similar way the northwestern GOM forms a sharp, right-angle corner defined by the northern shelf of the GOM and the shelf of west Florida. Despite their physical separation by over 700 km, both the NW and NE GOM corners exhibit similar salt structures not observed in adjacent areas outside of the two corners. These corner-related features include: 1) detached salt stocks with positive surface expression; we interpret the detached salt stocks as reflecting a higher degree of radial convergent gliding and compression from three sides into the bend areas; 2) slightly elongate, surficial, diapir shapes with positive bathymetric expression and ranging in diameter from 2 to 22 km and localized fold axes with the long diapiric axes and fold axes aligned parallel to the bisector of the bend; these features are also attributed to radial convergent gliding into the bend areas; 3) zones of deformation at depth that occupy the corner areas: the northwestern GOM corresponds to the Port Isabel passive-margin fold and thrust belt and the northeastern GOM corresponds to the Mississippi Canyon fold and thrust belt; while these are older convergent features we propose that they are being reactivated by the corner-centric, gravity-driven process of radial, convergent gliding; and 4) salt welds in both corner areas record more intensive and complete salt extrusion of salt; outside the corner areas salt canopies and the lack of salt welds indicates a less convergent environment for salt. These two proposed areas of radial convergent gliding are compared to other examples of radial, convergent gliding described by previous workers in the Gulf of Lions and Santos basins.
Asama, Junichi; Shinshi, Tadahiko; Hoshi, Hideo; Takatani, Setsuo; Shimokohbe, Akira
2006-03-01
A magnetically levitated (maglev) centrifugal blood pump (CBP), intended for use as a ventricular assist device, needs to be highly durable and reliable for long-term use without any mechanical failure. Furthermore, maglev CBPs should be small enough to be implanted into patients of various size and weight. We have developed a compact maglev CBP employing a two-degree-of-freedom controlled magnetic bearing, with a magnetically suspended impeller directly driven by an internal brushless direct current (DC) motor. The magnetic bearing actively controls the radial motion of the impeller and passively supports axial and angular motions using a permanent magnet embedded in the impeller. The overall dimensions of the maglev CBP are 65 mm in diameter and 40 mm in height. The total power consumption and pump efficiency for pumping 6 L/min against a head pressure of 105 mm Hg were 6.5 W and 21%, respectively. To evaluate the characteristics of the maglev CBP when subjected to a disturbance, excitation of the base, simulating the movement of the patient in various directions, and the sudden interception of the outlet tube connected with the pump in a mock circulatory loop, simulating an unexpected kink and emergent clamp during a heart surgery, were tested by monitoring the five-degree-of-freedom motion of the impeller. Furthermore, the hemolytic characteristics of the maglev CBP were compared with those of the Medtronic Biomedicus BPX-80, which demonstrated the superiority of the maglev CBP.
Structure Line Detection from LIDAR Point Clouds Using Topological Elevation Analysis
NASA Astrophysics Data System (ADS)
Lo, C. Y.; Chen, L. C.
2012-07-01
Airborne LIDAR point clouds, which have considerable points on object surfaces, are essential to building modeling. In the last two decades, studies have developed different approaches to identify structure lines using two main approaches, data-driven and modeldriven. These studies have shown that automatic modeling processes depend on certain considerations, such as used thresholds, initial value, designed formulas, and predefined cues. Following the development of laser scanning systems, scanning rates have increased and can provide point clouds with higher point density. Therefore, this study proposes using topological elevation analysis (TEA) to detect structure lines instead of threshold-dependent concepts and predefined constraints. This analysis contains two parts: data pre-processing and structure line detection. To preserve the original elevation information, a pseudo-grid for generating digital surface models is produced during the first part. The highest point in each grid is set as the elevation value, and its original threedimensional position is preserved. In the second part, using TEA, the structure lines are identified based on the topology of local elevation changes in two directions. Because structure lines can contain certain geometric properties, their locations have small relieves in the radial direction and steep elevation changes in the circular direction. Following the proposed approach, TEA can be used to determine 3D line information without selecting thresholds. For validation, the TEA results are compared with those of the region growing approach. The results indicate that the proposed method can produce structure lines using dense point clouds.
Three-dimensional flow measurements in a vaneless radial turbine scroll
NASA Technical Reports Server (NTRS)
Tabakoff, W.; Wood, B.; Vittal, B. V. R.
1982-01-01
The flow behavior in a vaneless radial turbine scroll was examined experimentally. The data was obtained using the slant sensor technique of hot film anemometry. This method used the unsymmetric heat transfer characteristics of a constant temperature hot film sensor to detect the flow direction and magnitude. This was achieved by obtaining a velocity vector measurement at three sensor positions with respect to the flow. The true magnitude and direction of the velocity vector was then found using these values and a Newton-Raphson numerical technique. The through flow and secondary flow velocity components are measured at various points in three scroll sections.
Comment on "A note on generalized radial mesh generation for plasma electronic structure"
NASA Astrophysics Data System (ADS)
Pain, J.-Ch.
2011-12-01
In a recent note, B.G. Wilson and V. Sonnad [1] proposed a very useful closed form expression for the efficient generation of analytic log-linear radial meshes. The central point of the note is an implicit equation for the parameter h, involving Lambert's function W[x]. The authors mention that they are unaware of any direct proof of this equation (they obtained it by re-summing the Taylor expansion of h[α] using high-order coefficients obtained by analytic differentiation of the implicit definition using symbolic manipulation). In the present comment, we propose a direct proof of that equation.
Wave Augmented Diffusers for Centrifugal Compressors
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Skoch, Gary J.
1998-01-01
A conceptual device is introduced which would utilize unsteady wave motion to slow and turn flows in the diffuser section of a centrifugal compressor. The envisioned device would substantially reduce the size of conventional centrifugal diffusers by eliminating the relatively large ninety degree bend needed to turn the flow from the radial/tangential to the axial direction. The bend would be replaced by a wall and the flow would instead exit through a series of rotating ports located on a disk, adjacent to the diffuser hub, and fixed to the impeller shaft. The ports would generate both expansion and compression waves which would rapidly transition from the hub/shroud (axial) direction to the radial/tangential direction. The waves would in turn induce radial/tangential and axial flow. This paper presents a detailed description of the device. Simplified cycle analysis and performance results are presented which were obtained using a time accurate, quasi-one-dimensional CFD code with models for turning, port flow conditions, and losses due to wall shear stress. The results indicate that a periodic wave system can be established which yields diffuser performance comparable to a conventional diffuser. Discussion concerning feasibility, accuracy, and integration follow.
NASA Astrophysics Data System (ADS)
Kondrashova, Daria; Valiullin, Rustem; Kärger, Jörg; Bunde, Armin
2017-07-01
Nanoporous silicon consisting of tubular pores imbedded in a silicon matrix has found many technological applications and provides a useful model system for studying phase transitions under confinement. Recently, a model for mass transfer in these materials has been elaborated [Kondrashova et al., Sci. Rep. 7, 40207 (2017)], which assumes that adjacent channels can be connected by "bridges" (with probability pbridge) which allows diffusion perpendicular to the channels. Along the channels, diffusion can be slowed down by "necks" which occur with probability pneck. In this paper we use Monte-Carlo simulations to study diffusion along the channels and perpendicular to them, as a function of pbridge and pneck, and find remarkable correlations between the diffusivities in longitudinal and radial directions. For clarifying the diffusivity in radial direction, which is governed by the concentration of bridges, we applied percolation theory. We determine analytically how the critical concentration of bridges depends on the size of the system and show that it approaches zero in the thermodynamic limit. Our analysis suggests that the critical properties of the model, including the diffusivity in radial direction, are in the universality class of two-dimensional lattice percolation, which is confirmed by our numerical study.
Anisotropic tomography of the Atlantic ocean
NASA Astrophysics Data System (ADS)
Silveira, G.; Stutzmann, E.
2003-04-01
We present a regional tri-dimensional model of the Atlantic Ocean with anisotropy. The model, derived from Rayleigh and Love phase velocity measurements, is defined from the Moho down to 300 km depth with a lateral resolution of about 500 km and is presented in terms of average isotropic S-wave velocity, azimuthal anisotropy and transverse isotropy. The cratons beneath North America, Brazil and Africa are clearly associated with fast S-wave velocity anomalies. The Mid Atlantic Ridge is a shallow structure in the North Atlantic corresponding to a negative velocity anomaly down to about 150 km depth. In contrast, the ridge negative signature is visible in the South Atlantic down to the deepest depth inverted, that is 300~km depth. This difference is probably related to the presence of hot-spots along or close to the ridge axis in the South Atlantic and may indicate a different mechanism for the ridge between the North and South Atlantic. Negative velocity anomalies are clearly associated with hot-spots from the surface down to at least 300km depth, they are much broader that the supposed size of the hot-spots and seem to be connected along a North-South direction. Down to 100 km depth, a fast S-wave velocity anomaly is extenting from Africa into the Atlantic Ocean within the zone defined as the Africa superswell area. This result indicates that the hot material rising from below does not reach the surface in this area but may be pushing the lithosphere upward. In most parts of the Atlantic, the azimuthal anisotropy directions remain stable with increasing depth. Close to the ridge, the fast S-wave velocity direction is roughly parallel to the sea floor spreading direction. The hot-spot anisotropy signature is striking beneath Bermuda, Cape Verde and Fernando Noronha islands where the fast S-wave velocity direction seems to diverge radially from the hot-spots. The Atlantic average radial anisotropy is similar to that of the PREM model, that is positive down to about 220 km, but with slightly smaller amplitude and null deeper. Cratons have a lower than average radial anisotropy. As for the velocities, there is a difference between North and South Atlantic. Most hot-spots and the South Atlantic ridge are associated with positive radial anisotropy perturbation whereas the North atlantic ridge corresponds to negative radial anisotropy perturbation.
Validating precision estimates in horizontal wind measurements from a Doppler lidar
Newsom, Rob K.; Brewer, W. Alan; Wilczak, James M.; ...
2017-03-30
Results from a recent field campaign are used to assess the accuracy of wind speed and direction precision estimates produced by a Doppler lidar wind retrieval algorithm. The algorithm, which is based on the traditional velocity-azimuth-display (VAD) technique, estimates the wind speed and direction measurement precision using standard error propagation techniques, assuming the input data (i.e., radial velocities) to be contaminated by random, zero-mean, errors. For this study, the lidar was configured to execute an 8-beam plan-position-indicator (PPI) scan once every 12 min during the 6-week deployment period. Several wind retrieval trials were conducted using different schemes for estimating themore » precision in the radial velocity measurements. Here, the resulting wind speed and direction precision estimates were compared to differences in wind speed and direction between the VAD algorithm and sonic anemometer measurements taken on a nearby 300 m tower.« less
Durability of filament-wound composite flywheel rotors
NASA Astrophysics Data System (ADS)
Koyanagi, Jun
2012-02-01
This paper predicts the durability of two types of flywheels, one assumes to fail in the radial direction and the other assumes to fail in the circumferential direction. The flywheel failing in the radial direction is a conventional filament-wound composite flywheel and the one failing in the circumferential direction is a tailor-made type. The durability of the former is predicted by Micromechanics of Failure (MMF) (Ha et al. in J. Compos. Mater. 42:1873-1875, 2008), employing time-dependent matrix strength, and that of the latter is predicted by Simultaneous Fiber Failure (SFF) (Koyanagi et al. in J. Compos. Mater. 43:1901-1914, 2009), employing identical time-dependent matrix strength. The predicted durability of the latter is much greater than that of the former, depending on the interface strength. This study suggests that a relatively weak interface is necessary for high-durability composite flywheel fabrication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuzumi, Satoshi; Hirose, Shigenobu, E-mail: okuzumi@nagoya-u.jp
Turbulence driven by magnetorotational instability (MRI) affects planetesimal formation by inducing diffusion and collisional fragmentation of dust particles. We examine conditions preferred for planetesimal formation in MRI-inactive 'dead zones' using an analytic dead-zone model based on our recent resistive MHD simulations. We argue that successful planetesimal formation requires not only a sufficiently large dead zone (which can be produced by tiny dust grains) but also a sufficiently small net vertical magnetic flux (NVF). Although often ignored, the latter condition is indeed important since the NVF strength determines the saturation level of turbulence in MRI-active layers. We show that direct collisionalmore » formation of icy planetesimal across the fragmentation barrier is possible when the NVF strength is lower than 10 mG (for the minimum-mass solar nebula model). Formation of rocky planetesimals via the secular gravitational instability is also possible within a similar range of the NVF strength. Our results indicate that the fate of planet formation largely depends on how the NVF is radially transported in the initial disk formation and subsequent disk accretion processes.« less
NASA Astrophysics Data System (ADS)
Nield, G.; Whitehouse, P. L.; Blank, B.; van der Wal, W.; O'Donnell, J. P.; Stuart, G. W.; Lloyd, A. J.; Wiens, D.
2017-12-01
Accurate models of Glacial Isostatic Adjustment (GIA) are required for correcting satellite measurements of ice-mass change and for interpretation of geodetic data at the location of present and former ice sheets. Global models of GIA tend to adopt a 1-D representation of Earth structure, varying in the radial direction only. In some regions rheological parameters may differ significantly from this global average leading to bias in model predictions of present-day deformation, geoid change rates and sea-level change. The advancement of 3-D GIA modelling techniques in recent years has led to improvements in the representation of the Earth via the incorporation of laterally varying structure. This study investigates the influence of 3-D Earth structure on deformation rates in West Antarctica using a finite element GIA model with power-law rheology. We utilise datasets of seismic velocity and temperature for the crust and upper mantle with the aim of determining a data-driven Earth model, and consider the differences when compared to deformation predicted from an equivalent 1-D Earth structure.
Density driven structural transformations in amorphous semiconductor clathrates
Tulk, Christopher A.; dos Santos, Antonio M.; Neuefeind, Joerg C.; ...
2015-01-16
The pressure induced crystalline collapse at 14.7 GPa and polyamorphic structures of the semiconductor clathrate Sr8Ga16Ge30 are reported up to 35 GPa. In-situ total scattering measurements under pressure allow the direct microscopic inspection of the mechanisms associated with pressure induced amorphization in these systems, as well as the structure of the recovered phase. It is observed that, between 14.7 and 35 GPa the second peak in the structure factor function gradually disappears. Analysis of the radial distribution function extracted from those data indicate that this feature is associated with gradual cage collapse and breakdown of the tetrahedral structure with themore » consequent systematic lengthening of the nearest-neighbor framework bonds. This suggests an overall local coordination change to an even higher density amorphous form. Upon recovery from high pressure, the sample remains amorphous, and while there is some indication of the guest-host cage reforming, it doesn't seem that the tetrahedral coordination is recovered. As such, the compresion-decompression process in this systems gives rise to three distict amorphous forms.« less
Flux-driven algebraic damping of m = 1 diocotron mode
NASA Astrophysics Data System (ADS)
Chim, Chi Yung; O'Neil, Thomas M.
2016-07-01
Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius r = Rw at the wall of the trap. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This paper explains with analytic theory the new algebraic damping due to particle transport by both mobility and diffusion. As electrons are swept around the "cat's eye" orbits of the resonant wave-particle interaction, they form a dipole (m = 1) density distribution. From this distribution, the electric field component perpendicular to the core displacement produces E × B-drift of the core back to the axis, that is, damps the m = 1 mode. The parallel component produces drift in the azimuthal direction, that is, causes a shift in the mode frequency.
Numerical modeling of the Madison Dynamo Experiment.
NASA Astrophysics Data System (ADS)
Bayliss, R. A.; Wright, J. C.; Forest, C. B.; O'Connell, R.
2002-11-01
Growth, saturation and turbulent evolution of the Madison dynamo experiment is investigated numerically using a 3-D pseudo-spectral simulation of the MHD equations; results of the simulations will be compared to results obtained from the experiment. The code, Dynamo (Fortran90), allows for full evolution of the magnetic and velocity fields. The induction equation governing B and the curl of the momentum equation governing V are separately or simultaneously solved. The code uses a spectral representation via spherical harmonic basis functions of the vector fields in longitude and latitude, and fourth order finite differences in the radial direction. The magnetic field evolution has been benchmarked against the laminar kinematic dynamo predicted by M.L. Dudley and R.W. James (M.L. Dudley and R.W. James, Time-dependent kinematic dynamos with stationary flows, Proc. R. Soc. Lond. A 425, p. 407 (1989)). Power balance in the system has been verified in both mechanically driven and perturbed hydrodynamic, kinematic, and dynamic cases. Evolution of the vacuum magnetic field has been added to facilitate comparison with the experiment. Modeling of the Madison Dynamo eXperiment will be presented.
Stress-intensity factors for cracks emanating from the loaded fastener hole
NASA Technical Reports Server (NTRS)
Shivakumar, V.; Hsu, Y. C.
1977-01-01
Using a series approach and the Muskhelishvili formulation in the two-dimensional theory of elasticity, stress-intensity factors K are derived for problems in which cracks emanate radially from the boundary of an arbitrarily loaded internal circular hole in an infinite plate. Numerical values are obtained for K(I) and K(II) for radial cracks from a hole containing a loose-fitted pin or rivet that is pulled perpendicular to the crack direction in the plane of the plate. The method is a general one for determining K for a set of symmetrically emanating radial cracks for a variety of concentrated or distributed tractions on the circular hole.
Illusory object motion in the centre of a radial pattern: The Pursuit–Pursuing illusion
Ito, Hiroyuki
2012-01-01
A circular object placed in the centre of a radial pattern consisting of thin sectors was found to cause a robust motion illusion. During eye-movement pursuit of a moving target, the presently described stimulus produced illusory background-object motion in the same direction as that of the eye movement. In addition, the display induced illusory stationary perception of a moving object against the whole display motion. In seven experiments, the characteristics of the illusion were examined in terms of luminance relationships and figural characteristics of the radial pattern. Some potential explanations for these findings are discussed. PMID:23145267
The CERES/NA45 radial drift Time Projection Chamber
NASA Astrophysics Data System (ADS)
Adamová, D.; Agakichiev, G.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielčíková, J.; Braun-Munzinger, P.; Campagnolo, R.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Hering, G.; Holeczek, J.; Kushpil, V.; Marín, A.; Milošević, J.; Milov, A.; Miśkowiec, D.; Musa, L.; Panebrattsev, Y.; Pechenova, O.; Petráček, V.; Pfeiffer, A.; Rak, J.; Ravinovich, I.; Richter, M.; Sako, H.; Schäfer, E.; Schmitz, W.; Schukraft, J.; Seipp, W.; Sharma, A.; Shimansky, S.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Wessels, J. P.; Wienold, T.; Windelband, B.; Wurm, J. P.; Xie, W.; Yurevich, S.; Yurevich, V.
2008-08-01
The design, calibration, and performance of the first radial drift Time Projection Chamber (TPC) are presented. The TPC was built and installed at the CERES/NA45 experiment at the CERN SPS in the late nineties, with the objective to improve the momentum resolution of the spectrometer. The upgraded experiment took data twice, in 1999 and in 2000. After a detailed study of residual distortions a spatial resolution of 340 μm in the azimuthal and 640 μm in the radial direction was achieved, corresponding to a momentum resolution of Δp/p=√{(1%·p/GeV)2+(2%)2}.
SEISMIC DIAGNOSTICS OF RED GIANTS: FIRST COMPARISON WITH STELLAR MODELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montalban, J.; Miglio, A.; Noels, A.
2010-10-01
The clear detection with CoRoT and KEPLER of radial and non-radial solar-like oscillations in many red giants paves the way for seismic inferences on the structure of such stars. We present an overview of the properties of the adiabatic frequencies and frequency separations of radial and non-radial oscillation modes for an extended grid of models. We highlight how their detection allows a deeper insight into the internal structure and evolutionary state of red giants. In particular, we find that the properties of dipole modes constitute a promising seismic diagnostic tool of the evolutionary state of red giant stars. We comparemore » our theoretical predictions with the first 34 days of KEPLER data and predict the frequency diagram expected for red giants in the CoRoT exofield in the galactic center direction.« less
NASA Astrophysics Data System (ADS)
Simonov, M. Yu.; Simonov, Yu. N.; Shaimanov, G. S.
2018-01-01
The structure, dynamic cracking resistance, and micromechanisms of crack growth in initially highly tempered pipe billets made of structural carbon steel are studied after thermomechanical treatment, including cold plastic deformation by radial forging followed by annealing, under various conditions. The strength is found to be maximum after cold radial forging followed by annealing at 300°C. Cold radial forging and annealing at 600°C are shown to cause the formation of an ultrafine-grained structure with an average grain/subgrain size of 900 nm. The structural features formed in both the axial and the transverse direction after cold radial forging have been revealed. The mechanism of crack growth after heat treatment and thermomechanical treatment has been studied. The fracture surface elements formed during dynamic-crackingresistance tests have been qualitatively analyzed.
Performance and environmental impact assessment of pulse detonation based engine systems
NASA Astrophysics Data System (ADS)
Glaser, Aaron J.
Experimental research was performed to investigate the feasibility of using pulse detonation based engine systems for practical aerospace applications. In order to carry out this work a new pulse detonation combustion research facility was developed at the University of Cincinnati. This research covered two broad areas of application interest. The first area is pure PDE applications where the detonation tube is used to generate an impulsive thrust directly. The second focus area is on pulse detonation based hybrid propulsion systems. Within each of these areas various studies were performed to quantify engine performance. Comparisons of the performance between detonation and conventional deflagration based engine cycles were made. Fundamental studies investigating detonation physics and flow dynamics were performed in order to gain physical insight into the observed performance trends. Experimental studies were performed on PDE-driven straight and diverging ejectors to determine the system performance. Ejector performance was quantified by thrust measurements made using a damped thrust stand. The effects of PDE operating parameters and ejector geometric parameters on thrust augmentation were investigated. For all cases tested, the maximum thrust augmentation is found to occur at a downstream ejector placement. The optimum ejector geometry was determined to have an overall length of LEJECT/DEJECT =5.61, including an intermediate-straight section length of LSTRT /DEJECT=2, and diverging exhaust section with 4 deg half-angle. A maximum thrust augmentation of 105% was observed while employing the optimized ejector geometry and operating the PDE at a fill-fraction of 0.6 and a frequency of 10 Hz. When operated at a fill-fraction of 1.0 and a frequency of 30 Hz, the thrust augmentation of the optimized PDE-driven ejector system was observed to be 71%. Static pressure was measured along the interior surface of the ejector, including the inlet and exhaust sections. The diverging ejector pressure distribution shows that the diverging section acts as a subsonic diffuser. To provide a better explanation of the observed performance trends, shadowgraph images of the detonation wave and starting vortex interacting with the ejector inlet were obtained. The acoustic signature of a pulse detonation engine was characterized in both the near-field and far-field regimes. Experimental measurements were performed in an anechoic test facility designed for jet noise testing. Both shock strength and speed were mapped as a function of radial distance and direction from the PDE exhaust plane. It was found that the PDE generated pressure field can be reasonably modeled by a theoretical point-source explosion. The effect of several exit nozzle configurations on the PDE acoustic signature was studies. These included various chevron nozzles, a perforated nozzle, and a set of proprietary noise attenuation mufflers. Experimental studies were carried out to investigate the performance of a hybrid propulsion system integrating an axial flow turbine with multiple pulse detonation combustors. The integrated system consisted of a circular array of six pulse detonation combustor (PDC) tubes exhausting through an axial flow turbine. Turbine component performance was quantified by measuring the amount of power generated by the turbine section. Direct comparisons of specific power output and turbine efficiency between a PDC-driven turbine and a turbine driven by steady-flow combustors were made. It was found that the PDC-driven turbine had comparable performance to that of a steady-burner-driven turbine across the operating map of the turbine.
NASA Astrophysics Data System (ADS)
Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.
2016-05-01
Hypoeutectic Al-7 wt% Si and Al-19 wt% Cu alloys were directionally solidified upward in a Bridgman furnace through a range of constant growth speeds and thermal gradients. Though processing is thermo-solutally stable, flow initiated by gravity-independent advection at, slightly leading, central dendrites moves rejected solute out ahead and across the advancing interface. Here any lagging dendrites are further suppressed which promotes a curved solid-liquid interface and the eventual dendrite "clustering" seen in transverse sections (dendrite "steepling" in longitudinal orientations) as well as extensive radial macrosegregation. Both aluminum alloys showed considerable macrosegregation at the low growth speeds (10 and 30 μm s-1) but not at higher speed (72 μm s-1). Distribution of the fraction eutectic-constituent on transverse sections was determined in order to quantitatively describe radial macrosegregation. The convective mechanisms leading to dendrite-steepling were elucidated with numerical simulations, and their results compared with the experimental observations.
Numerical Study of the Performance Effect of Varying Vaneless Space in He Turboexpander Nozzles
NASA Astrophysics Data System (ADS)
Meng, Y. R.; Xiong, L. Y.; Liu, L. Q.; Peng, N.; Ke, C. L.; Li, K. R.; Wang, H. R.
2017-02-01
A numerical analysis has been carried out on a 16 mm tip diameter radial-axial flow cryogenic turboexpander using He, in order to directly compare performance characteristics by varying the vaneless space. A reference nozzle with radial clearance 0.1 mm was used in the helium liquefaction system, and six other nozzles were designed with radial clearance of 0.3 mm, 0.5 mm, 0.8 mm, 1.0 mm, 1.2 mm and 1.5 mm. As part of the design process a series of CFD simulations were carried out in order to guide design iterations towards achieving a matched flow capacity for each design. In this way the variations in the stage efficiency could be attributed to the different vaneless space only, thus allowing direct comparisons to be made. The variation in computed efficiency was used to recommend optimum value of the ratio of the nozzle vane trailing edge radius to the rotor leading edge radius (R te/r le).
Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator.
Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu
2015-09-01
In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.
Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator
NASA Astrophysics Data System (ADS)
Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu
2015-09-01
In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.
Monkey extensor digitorum communis motoneuron pool: Proximal dendritic trees and small motoneurons.
Jenny, Arthur B; Cheney, Paul D; Jenny, Andrew K
2018-05-14
Transverse sections of the monkey cervical spinal cord from a previous study (Jenny and Inukai, 1983) were reanalyzed using Neurolucida to create a three-dimensional display of extensor digitorum communis (EDC) motoneurons and proximal dendrites that had been labeled with horse radish peroxidase (HRP). The EDC motoneuron pool was located primarily in the C8 and T1 segments of the spinal cord. Small motoneurons (cell body areas less than 500 μm 2 and presumed to be gamma motoneurons) comprised about ten percent of the motoneurons and were located throughout the length of the motoneuron pool. Most small motoneurons were oblong in shape and had one or two major dendrites originating from the cell body in the transverse plane of section. The majority of the HRP labeled dendritic trees were directed either superiorly, dorsal-medially to the mid zone area between the base of the dorsal horn and the upper portion of the ventral horn, or medially to the ventromedial gray matter. The longer HRP labeled dendrites usually continued in the same radial direction as when originating from the cell body. As such we considered the radial direction of the longer proximal HRP labeled dendrites to be a reasonable estimate of the radial direction of the more distal dendritic tree. Our data suggest that the motoneuron dendritic tree as seen in transverse section has direction-oriented dendrites that extend toward functional terminal regions. Copyright © 2018 Elsevier B.V. All rights reserved.
Novel Integration Radial and Axial Magnetic Bearing
NASA Technical Reports Server (NTRS)
Blumenstock, Kenneth; Brown, Gary
2000-01-01
Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics; separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and magnetic field modeling results will be presented.
Novel Integrated Radial and Axial Magnetic Bearing
NASA Technical Reports Server (NTRS)
Blumenstock, Kenneth A.; Brown, Gary L.; Powers, Edward I. (Technical Monitor)
2000-01-01
Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics, separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and analysis results will be presented.
NASA Technical Reports Server (NTRS)
Langer, S. H.; Petrosian, V.
1976-01-01
The spectrum, directivity and state of polarization is presented of the bremsstrahlung radiation expected from a beam of high energy electrons spiraling along radial magnetic field lines toward the photosphere. The results are used for calculation of the characteristics of the reflected plus direct flux.
Tsuda, S.; Sato, T.; Ogawa, T.
2016-01-01
The frequency distribution of the lineal energy, y, of a 30-MeV proton beam was measured as a function of the radial distance from the beam path, and the dosed mean of y,y¯D, was obtained to investigate the radial dependence of y¯D. A wall-less tissue-equivalent proportional counter, in a cylindrical volume with simulated diameters of 0.36, 0.72 and 1.44 µm was used for the measurement of y distributions, yf(y). The measured values of yf(y) summed in the radial direction agreed fairly well with the corresponding data taken from the microdosimetric calculations using the PHITS code. The y¯D value of the 30-MeV proton beam presented its smallest value at r = 0.0 and gradually increased with radial distance, and the y¯D values of heavy ions such as iron showed rapid decrease with radial distance. This experimental result demonstrated that the stochastic deposited energy distribution of high-energy protons in the microscopic region is rather constant in the core as well as in the penumbra region of the track structure. PMID:25956785
Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields
NASA Technical Reports Server (NTRS)
Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.
1979-01-01
Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.
Understanding the true shape of Au-catalyzed GaAs nanowires.
Jiang, Nian; Wong-Leung, Jennifer; Joyce, Hannah J; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati
2014-10-08
With increasing interest in nanowire-based devices, a thorough understanding of the nanowire shape is required to gain tight control of the quality of nanowire heterostructures and improve the performance of related devices. We present a systematic study of the sidewalls of Au-catalyzed GaAs nanowires by investigating the faceting process from the beginning with vapor-liquid-solid (VLS) nucleation, followed by the simultaneous radial growth on the sidewalls, and to the end with sidewall transformation during annealing. The VLS nucleation interface of our GaAs nanowires is revealed by examining cross sections of the nanowire, where the nanowire exhibits a Reuleaux triangular shape with three curved surfaces along {112}A. These curved surfaces are not thermodynamically stable and adopt {112}A facets during radial growth. We observe clear differences in radial growth rate between the ⟨112⟩A and ⟨112⟩B directions with {112}B facets forming due to the slower radial growth rate along ⟨112⟩B directions. These sidewalls transform to {110} facets after high temperature (>500 °C) annealing. A nucleation model is proposed to explain the origin of the Reuleaux triangular shape of the nanowires, and the sidewall evolution is explained by surface kinetic and thermodynamic limitations.
Bumbasirevic, Marko; Palibrk, Tomislav; Lesic, Aleksandar; Atkinson, Henry DE
2016-01-01
As a result of its proximity to the humeral shaft, as well as its long and tortuous course, the radial nerve is the most frequently injured major nerve in the upper limb, with its close proximity to the bone making it vulnerable when fractures occur. Injury is most frequently sustained during humeral fracture and gunshot injuries, but iatrogenic injuries are not unusual following surgical treatment of various other pathologies. Treatment is usually non-operative, but surgery is sometimes necessary, using a variety of often imaginative procedures. Because radial nerve injuries are the least debilitating of the upper limb nerve injuries, results are usually satisfactory. Conservative treatment certainly has a role, and one of the most important aspects of this treatment is to maintain a full passive range of motion in all the affected joints. Surgical treatment is indicated in cases when nerve transection is obvious, as in open injuries or when there is no clinical improvement after a period of conservative treatment. Different techniques are used including direct suture or nerve grafting, vascularised nerve grafts, direct nerve transfer, tendon transfer, functional muscle transfer or the promising, newer treatment of biological therapy. Cite this article: Bumbasirevic M, Palibrk T, Lesic A, Atkinson HDE. Radial nerve palsy. EFORT Open Rev 2016;1:286-294. DOI: 10.1302/2058-5241.1.000028. PMID:28461960
Analysis and interpretation of satellite fragmentation data
NASA Technical Reports Server (NTRS)
Tan, Arjun
1987-01-01
The velocity perturbations of the fragments of a satellite can shed valuable information regarding the nature and intensity of the fragmentation. A feasibility study on calculating the velocity perturbations from existing equations was carried out by analyzing 23 major documented fragmentation events. It was found that whereas the calculated values of the radial components of the velocity change were often unusually high, those in the two other orthogonal directions were mostly reasonable. Since the uncertainties in the radial component necessarily translate into uncertainties in the total velocity change, it is suggested that alternative expressions for the radial component of velocity be sought for the purpose of determining the cause of the fragmentation from the total velocity change. The calculated variances in the velocity perturbations in the two directions orthogonal to the radial vector indicate that they have the smallest values for collision induced breakups and the largest values for low-intensity explosion induced breakups. The corresponding variances for high-intensity explosion induced breakups generally have values intermediate between those of the two extreme categories. A three-dimensional plot of the variances in the two orthogonal velocity perturbations and the plane change angle shows a clear separation between the three major types of breakups. This information is used to reclassify a number of satellite fragmentation events of unknown category.
Meng, Leng; Lin, Kai; Collins, Jeremy; Markl, Michael; Carr, James C
2017-08-01
The purpose of this article is to test the hypothesis that heart deformation analysis can automatically quantify regional myocardial motion patterns in patients with cardiac amyloidosis. Eleven patients with cardiac amyloidosis and 11 healthy control subjects were recruited to undergo cardiac MRI. Cine images were analyzed using heart deformation analysis and feature tracking. Heart deformation analysis-derived myocardial motion indexes in radial and circumferential directions, including radial and circumferential displacement, radial and circumferential velocity, radial and circumferential strain, and radial and circumferential strain rate, were compared between the two groups. The heart deformation analysis tool required a shorter mean (± SD) processing time than did the feature-tracking tool (1.5 ± 0.3 vs 5.1 ± 1.2 minutes). Patients with cardiac amyloidosis had lower peak radial displacement (4.32 ± 1.37 vs 5.62 ± 1.19 mm), radial velocity (25.50 ± 7.70 vs 33.41 ± 5.43 mm/s), radial strain (23.32% ± 10.24% vs 31.21% ± 8.71%), circumferential strain (-13.44% ± 4.21% vs -17.84% ± 2.84%), radial strain rate (1.14 ± 0.46 vs 1.58 ± 0.41 s -1 ), and circumferential strain rate (-0.78 ± 0.22 vs -1.08 ± 0.20 s -1 ) than did healthy control subjects. Heart deformation analysis-derived indexes correlated with feature tracking-derived indexes (r = 0.411 and 0.552). Heart deformation analysis is able to automatically quantify regional myocardial motion in patients with cardiac amyloidosis without the need for operator interaction.
NASA Astrophysics Data System (ADS)
Yang, Xiaojun; Lu, Dun; Liu, Hui; Zhao, Wanhua
2018-06-01
The complicated electromechanical coupling phenomena due to different kinds of causes have significant influences on the dynamic precision of the direct driven feed system in machine tools. In this paper, a novel integrated modeling and analysis method of the multiple electromechanical couplings for the direct driven feed system in machine tools is presented. At first, four different kinds of electromechanical coupling phenomena in the direct driven feed system are analyzed systematically. Then a novel integrated modeling and analysis method of the electromechanical coupling which is influenced by multiple factors is put forward. In addition, the effects of multiple electromechanical couplings on the dynamic precision of the feed system and their main influencing factors are compared and discussed, respectively. Finally, the results of modeling and analysis are verified by the experiments. It finds out that multiple electromechanical coupling loops, which are overlapped and influenced by each other, are the main reasons of the displacement fluctuations in the direct driven feed system.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Aboudi, Jacob
2000-01-01
The objective of this two-year project was to develop and deliver to the NASA-Glenn Research Center a two-dimensional higher-order theory, and related computer codes, for the analysis and design of cylindrical functionally graded materials/structural components for use in advanced aircraft engines (e.g., combustor linings, rotor disks, heat shields, brisk blades). To satisfy this objective, two-dimensional version of the higher-order theory, HOTCFGM-2D, and four computer codes based on this theory, for the analysis and design of structural components functionally graded in the radial and circumferential directions were developed in the cylindrical coordinate system r-Theta-z. This version of the higher-order theory is a significant generalization of the one-dimensional theory, HOTCFGM-1D, developed during the FY97 for the analysis and design of cylindrical structural components with radially graded microstructures. The generalized theory is applicable to thin multi-phased composite shells/cylinders subjected to steady-state thermomechanical, transient thermal and inertial loading applied uniformly along the axial direction such that the overall deformation is characterized by a constant average axial strain. The reinforcement phases are uniformly distributed in the axial direction, and arbitrarily distributed in the radial and circumferential direction, thereby allowing functional grading of the internal reinforcement in the r-Theta plane. The four computer codes fgmc3dq.cylindrical.f, fgmp3dq.cylindrical.f, fgmgvips3dq.cylindrical.f, and fgmc3dq.cylindrical.transient.f are research-oriented codes for investigating the effect of functionally graded architectures, as well as the properties of the multi-phase reinforcement, in thin shells subjected to thermomechanical and inertial loading, on the internal temperature, stress and (inelastic) strain fields. The reinforcement distribution in the radial and circumferential directions is specified by the user. The thermal and inelastic properties of the individual phases can vary with temperature. The inelastic phases are presently modeled by the power-law creep model generalized to multi-directional loading (within fgmc3dq.cylindrical.f and fgmc3dq.cylindrical.transient.f for steady-state and transient thermal loading, respectively), and incremental plasticity and GVIPS unified viscoplasticity theories (within the steady-state loading versions fgmp3dq.cylindrical.f and fgmgvips3dq.cylindrical.f).
Insights into asthenospheric anisotropy and deformation in Mainland China
NASA Astrophysics Data System (ADS)
Zhu, Tao
2018-03-01
Seismic anisotropy can provide direct constraints on asthenospheric deformation which also can be induced by the inherent mantle flow within our planet. Mantle flow calculations thus have been an effective tool to probe asthenospheric anisotropy. To explore the source of seismic anisotropy, asthenospheric deformation and the effects of mantle flow on seismic anisotropy in Mainland China, mantle flow models driven by plate motion (plate-driven) and by a combination of plate motion and mantle density heterogeneity (plate-density-driven) are used to predict the fast polarization direction of shear wave splitting. Our results indicate that: (1) plate-driven or plate-density-driven mantle flow significantly affects the predicted fast polarization direction when compared with simple asthenospheric flow commonly used in interpreting the asthenospheric source of seismic anisotropy, and thus new insights are presented; (2) plate-driven flow controls the fast polarization direction while thermal mantle flow affects asthenospheric deformation rate and local deformation direction significantly; (3) asthenospheric flow is an assignable contributor to seismic anisotropy, and the asthenosphere is undergoing low, large or moderate shear deformation controlled by the strain model, the flow plane/flow direction model or both in most regions of central and eastern China; and (4) the asthenosphere is under more rapid extension deformation in eastern China than in western China.
Molecular clouds in galaxies with different Z - Fragmentation of diffuse clouds driven by opacity
NASA Technical Reports Server (NTRS)
Franco, Jose; Cox, Donald P.
1986-01-01
Molecular clouds are formed from diffuse interstellar clouds when the external ultraviolet radiation field is prevented from penetrating into the cloud. The opacity is provided mainly by dust grains and the required column density to the cloud center is larger than about 5 x 10 to the 20th (solar Z/Z)/sq cm. This high-opacity criterion could have a significant impact on the radial trends observed in spiral galaxies, and on the distinctions between spiral and dwarf irregular galaxies.
Gamma source for active interrogation
Leung, Ka-Ngo; Lou, Tak Pui; Barletta, William A.
2012-10-02
A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.
Gamma source for active interrogation
Leung, Ka-Ngo [Hercules, CA; Lou, Tak Pui [Berkeley, CA; Barletta, William A [Oakland, CA
2009-09-29
A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.
Turbulence in core-collapse supernovae
NASA Astrophysics Data System (ADS)
Radice, David; Abdikamalov, Ernazar; Ott, Christian D.; Mösta, Philipp; Couch, Sean M.; Roberts, Luke F.
2018-05-01
Multidimensional simulations show that non-radial, turbulent, fluid motion is a fundamental component of the core-collapse supernova explosion mechanism. Neutrino-driven convection, the standing accretion shock instability, and relic-perturbations from advanced nuclear burning stages can all impact the outcome of core collapse in a qualitative and quantitative way. Here, we review the current understanding of these phenomena and their role in the explosion of massive stars. We also discuss the role of protoneutron star convection and of magnetic fields in the context of the delayed neutrino mechanism.
Radiatively-driven general relativistic jets
NASA Astrophysics Data System (ADS)
Vyas, Mukesh K.; Chattopadhyay, Indranil
2018-02-01
We use moment formalism of relativistic radiation hydrodynamics to obtain equations of motion of radial jets and solve them using polytropic equation of state of the relativistic gas. We consider curved space-time around black holes and obtain jets with moderately relativistic terminal speeds. In addition, the radiation field from the accretion disc, is able to induce internal shocks in the jet close to the horizon. Under combined effect of thermal as well as radiative driving, terminal speeds up to 0.75 (units of light speed) are obtained.
Intrinsic rotation from a residual stress at the boundary of a cylindrical laboratory plasma.
Yan, Z; Xu, M; Diamond, P H; Holland, C; Müller, S H; Tynan, G R; Yu, J H
2010-02-12
An azimuthally symmetric radially sheared azimuthal flow is driven by a nondiffusive, or residual, turbulent stress localized to a narrow annular region at the boundary of a cylindrical magnetized helicon plasma device. A no-slip condition, imposed by ion-neutral flow damping outside the annular region, combined with a diffusive stress arising from turbulent and collisional viscous damping in the central plasma region, leads to net plasma rotation in the absence of momentum input.
Energetic-particle-induced geodesic acoustic mode.
Fu, G Y
2008-10-31
A new energetic particle-induced geodesic acoustic mode (EGAM) is shown to exist. The mode frequency and mode structure are determined nonperturbatively by energetic particle kinetic effects. In particular the EGAM frequency is found to be substantially lower than the standard GAM frequency. The radial mode width is determined by the energetic particle drift orbit width and can be fairly large for high energetic particle pressure and large safety factor. These results are consistent with the recent experimental observation of the beam-driven n=0 mode in DIII-D.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawood, Mahmoud S.; Hamdan, Ahmad, E-mail: ahmad.ba.hamdan@gmail.com, E-mail: Joelle.margot@umontreal.ca; Margot, Joëlle, E-mail: ahmad.ba.hamdan@gmail.com, E-mail: Joelle.margot@umontreal.ca
2015-11-15
The spatial variation of the characteristics of an aluminum plasma induced by a pulsed nanosecond XeCl laser is studied in this paper. The electron density and the excitation temperature are deduced from time- and space- resolved Stark broadening of an ion line and from a Boltzmann diagram, respectively. The influence of the gas pressure (from vacuum up to atmospheric pressure) and compositions (argon, nitrogen and helium) on these characteristics is investigated. It is observed that the highest electron density occurs near the laser spot and decreases by moving away both from the target surface and from the plume center tomore » its edge. The electron density increases with the gas pressure, the highest values being occurred at atmospheric pressure when the ambient gas has the highest mass, i.e. in argon. The excitation temperature is determined from the Boltzmann plot of line intensities of iron impurities present in the aluminum target. The highest temperature is observed close to the laser spot location for argon at atmospheric pressure. It decreases by moving away from the target surface in the axial direction. However, no significant variation of temperature occurs along the radial direction. The differences observed between the axial and radial direction are mainly due to the different plasma kinetics in both directions.« less
ULF Waves and Diffusive Radial Transport of Charged Particles
NASA Astrophysics Data System (ADS)
Ali, Ashar Fawad
The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and magnetohydrodynamic (MHD) waves. Waves in the ultra low-frequency (ULF) range play an important role in the loss and acceleration of energetic particles. Considering the geometry of the geomagnetic field, charged particles trapped in the inner magnetosphere undergo three distinct types of periodic motions; an adiabatic invariant is associated with each type of motion. The evolution of the phase space density of charged particles in the magnetosphere in the coordinate space of the three adiabatic invariants is modeled by the Fokker-Planck equation. If we assume that the first two adiabatic invariants are conserved while the third invariant is violated, then the general Fokker-Planck equation reduces to a radial diffusion equation with the radial diffusion coefficient quantifying the rate of the radial diffusion of charged particles, including contributions from perturbations in both the magnetic and the electric fields. This thesis investigates two unanswered questions about ULF wave-driven radial transport of charged particles. First, how important are the ULF fluctuations in the magnetic field compared with the ULF fluctuations in the electric field in driving the radial diffusion of charged particles in the Earth's inner magnetosphere? It has generally been accepted that magnetic field perturbations dominate over electric field perturbations, but several recently published studies suggest otherwise. Second, what is the distribution of ULF wave power in azimuth, and how does ULF wave power depend upon radial distance and the level of geomagnetic activity? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth, but in situ measurements suggest that this may not be the case. We used the magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) and the electric and the magnetic field data from the Radiation Belt Storm Probes (RBSP) to compute the electric and the magnetic component of the radial diffusion coefficient using the Fei et al. [2006] formulation. We conclude that contrary to prior notions, the electric component is dominant in driving radial diffusion of charged particles in the Earth's inner magnetosphere instead of the magnetic component. The electric component can be up to two orders of magnitude larger than the magnetic component. In addition, we see that ULF wave power in both the electric and the magnetic fields has a clear dependence on Kp with wave power decreasing as radial distance decreases. For both fields, the noon sectors generally contain more ULF wave power than the dawn, dusk, and the midnight magnetic local time (MLT) sectors. There is no significant difference between ULF wave power in the dawn, dusk, and the midnight sectors.
O-space with high resolution readouts outperforms radial imaging.
Wang, Haifeng; Tam, Leo; Kopanoglu, Emre; Peters, Dana C; Constable, R Todd; Galiana, Gigi
2017-04-01
While O-Space imaging is well known to accelerate image acquisition beyond traditional Cartesian sampling, its advantages compared to undersampled radial imaging, the linear trajectory most akin to O-Space imaging, have not been detailed. In addition, previous studies have focused on ultrafast imaging with very high acceleration factors and relatively low resolution. The purpose of this work is to directly compare O-Space and radial imaging in their potential to deliver highly undersampled images of high resolution and minimal artifacts, as needed for diagnostic applications. We report that the greatest advantages to O-Space imaging are observed with extended data acquisition readouts. A sampling strategy that uses high resolution readouts is presented and applied to compare the potential of radial and O-Space sequences to generate high resolution images at high undersampling factors. Simulations and phantom studies were performed to investigate whether use of extended readout windows in O-Space imaging would increase k-space sampling and improve image quality, compared to radial imaging. Experimental O-Space images acquired with high resolution readouts show fewer artifacts and greater sharpness than radial imaging with equivalent scan parameters. Radial images taken with longer readouts show stronger undersampling artifacts, which can cause small or subtle image features to disappear. These features are preserved in a comparable O-Space image. High resolution O-Space imaging yields highly undersampled images of high resolution and minimal artifacts. The additional nonlinear gradient field improves image quality beyond conventional radial imaging. Copyright © 2016 Elsevier Inc. All rights reserved.
Goal-driven modulation of stimulus-driven attentional capture in multiple-cue displays.
Richard, Christian M; Wright, Richard D; Ward, Lawrence M
2003-08-01
Six location-cuing experiments were conducted to examine the goal-driven control of attentional capture in multiple-cue displays. In most of the experiments, the cue display consisted of the simultaneous presentation of a red direct cue that was highly predictive of the target location (the unique cue) and three gray direct cues (the standard cues) that were not predictive of the location. The results indicated that although target responses were faster at all cued locations relative to uncued locations, they were significantly faster at the unique-cue location than at the standard-cue locations. Other results suggest that the faster responses produced by direct cues may be associated with two different components: an attention-related component that can be modulated by goal-driven factors and a nonattentional component that occurs in parallel at multiple direct-cue locations and is minimally affected by the same goal-driven factors.
MRI Measurements and Granular Dynamics Simulation of Segregation of Granular Mixture
NASA Technical Reports Server (NTRS)
Nakagawa, M.; Moss, Jamie L.; Altobelli, Stephen A.
1999-01-01
A counter intuitive axial segregation phenomenon in a rotating horizontal cylinder has recently captured attention of many researchers in different disciplines. There is a growing consensus that the interplay between the particle dynamics and the evolution of the internal structure during the segregation process must be carefully investigated. Magnetic resonance imaging (MRI) has been used to non-invasively obtain much needed dynamic/static information such as velocity and concentration profiles, and it has proven to be capable of depicting the evolution of segregation processes. Segregation in a rotating cylinder involves two processes: the first is to transport small particles in the radial direction to form a radial core, and the second is to transform the radial core into axially segregated bands. Percolation and/or "stopping" have been proposed as mechanisms for the radial segregation. As to mechanisms for axial band formation, much less is known. The difference in the dynamic angle of repose has been proposed to segregate different components in the axial direction. Recently, Hill and Kakalios have reported that particles mix or demix depending upon the competition between diffusion and preferential drift whose order can be determined by the dynamic angle of repose through the adjustment of the rotation rate. We claim that the dynamic angle of repose could be one of the causes, however, it fails to offer reasonable explanations for certain aspects of the axial migration. For example, we always observe that the radial segregation precedes the axial segregation and small particles migrate in the radial direction to form an axially extended radial core. It then transforms into axially segregated bands. By definition, the effects of the dynamic angle of repose are restricted near the free surface where the flowing layer is present. However, during the process of transforming from the radially segregated core to axially segregated bands, small particles located in the deep core region, which is untouched by the flowing layer, also completely disappear. Usually, the dynamics angle of repose are uniquely defined for individual species to characterize particle properties, and the dynamic angle of repose thus defined provides little information for the dynamic angle of repose of the mixture since the concentration ratio and the internal packing structure do not remain the same during the segregation processes. Under microgravity environment, the dynamics angle of repose argument does not hold since there is simply no flowing layer to influence/determine the preferred directions of segregation. We have thus designed an experiment so that the effects of the dynamic angle of repose can be minimized by filling the cylinder almost completely full. Small particles still formed a radial core and also migrated to form axial bands. As ground based experiments we have designed and conducted both 2D and 3D segregation experiments. The 2D experiments are performed using a thin cylinder (the gap between two end caps is about 5 mm) filled with different combinations of particles. The 3D experiments are conducted with a long cylinder of its length and diameter of 27cm and 7cm, respectively. Results of 2D experiments indicate that different mechanisms govern particle motion in regions near and far from the axis of rotation. Results of 3D experiments indicate that a series of collapses of microstructures of particle packing (micro-collapses) may be responsible for the creation of voids for small particles to migrate through in the axial direction. We have successfully eliminated the dynamic angle of repose as a cause for segregation, however, by almost completely filling the cylinder with the particles, we have lost an opportunity to investigate a possibility of particle "mobility" being a cause for segregation which requires a flowing surface but not the difference in the angle of repose. This is currently being investigated.
Peinado, Charles O.; Koutz, Stanley L.
1985-01-01
A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure. If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel. A metal liner covers the entire inside concrete surfaces of the concrete pressure vessel, and cooling tubes are welded to the exterior or concrete side of the metal liner. The gas coolant is in direct contact with the interior surface of the metal liner and transfers its heat through the metal liner to the liquid coolant flowing through the cooling tubes. The cooler gas is more dense and creates a downward convection flow in the region between the core and the sidewall until it reaches the bottom of the concrete pressure vessel when it flows radially inward and up into the core for another pass. Water is forced to flow through the cooling tubes to absorb heat from the core at a sufficient rate to remove enough of the decay heat created in the core to prevent overheating of the core or the vessel.
Characterizing the plasma of the Rotating Wall Machine
NASA Astrophysics Data System (ADS)
Hannum, David A.
The Rotating Wall Machine (RoWM) is a line-tied linear screw pinch built to study current-driven external kink modes. The plasma column is formed by an array of seven electrostatic washer guns which can also be biased to drive plasma current. The array allows independent control over the electron density ne and current density Jz profiles of the column. Internal measurements of the plasma have been made with singletip Langmuir and magnetic induction ("B-dot") probes for a range of bias currents (Ib = 0, 300, 500 A/gun). Streams from the individual guns are seen to merge at a distance of z ≈ 36 cm from the guns; the exact distance depends on the value of Ib. The density of the column is directly proportional to the Ohmic dissipation power, but the temperature stays at a low, uniform value (Te ≈ 3.5 eV) for each bias level. Electron densities are on the order of ne ˜10 20 m-3. The electron density expands radially (across the Bz guide field) as the plasma moves along the column, though the current density Jz mainly stays parallel to the field lines. The singletip Langmuir probe diagnostic is difficult to analyze for Ib = 500 A/gun plasmas and fails as Ib is raised beyond this level. Spectrographic analysis of the Halpha line indicates that the hydrogen plasmas are nearly fully ionized at each bias level. Azimuthal E x B rotation is axially and radially sheared; rotation slows as the plasma reaches the anode. Perpendicular diffusivity is consistent with the classical value, D⊥ ≈ 5 m2/sec, while parallel resistivity is seen to be twice the classical Spitzer value, 2 x 10-4 O m.
Directional power absorption in helicon plasma sources excited by a half-helix antenna
NASA Astrophysics Data System (ADS)
Afsharmanesh, Mohsen; Habibi, Morteza
2017-10-01
This paper deals with the investigation of the power absorption in helicon plasma excited through a half-helix antenna driven at 13.56 {{MHz}}. The simulations were carried out by means of a code, HELIC. They were carried out by taking into account different inhomogeneous radial density profiles and for a wide range of plasma densities, from {10}11 {{{cm}}}-3 to {10}13 {{{cm}}}-3. The magnetic field was 200, 400, 600 and 1000 {{G}}. A three-parameter function was used for generating various density profiles with different volume gradients, edge gradients and density widths. The density profile had a large effect on the efficient Trivelpiece-Gould (TG) and helicon mode excitation and antenna coupling to the plasma. The fraction of power deposition via the TG mode was extremely dependent on the plasma density near the plasma boundary. Interestingly, the obtained efficient parallel helicon wavelength was close to the anticipated value for Gaussian radial density profile. Power deposition was considerably asymmetric when the \\tfrac{n}{{B}0} ratio was more than a specific value for a determined density width. The longitudinal power absorption was symmetric at approximately {n}0={10}11 {{{cm}}}-3, irrespective of the magnetic field supposed. The asymmetry became more pronounced when the plasma density was {10}12 {{{cm}}}-3. The ratio of density width to the magnetic field was an important parameter in the power coupling. At high magnetic fields, the maximum of the power absorption was reached at higher plasma density widths. There was at least one combination of the plasma density, magnetic field and density width for which the RF power deposition at both side of the tube reached its maximum value.