Science.gov

Sample records for direct dyes effluent

  1. Bioremediation of direct dyes in simulated textile effluents by a paramorphogenic form of Aspergillus oryzae.

    PubMed

    Corso, C R; Almeida, E J R; Santos, G C; Morão, L G; Fabris, G S L; Mitter, E K

    2012-01-01

    Azo dyes are extensively used for coloring textiles, paper, food, leather, drinks, pharmaceutical products, cosmetics and inks. The textile industry consumes the largest amount of azo dyes, and it is estimated that approximately 10-15% of dyes used for coloring textiles may be lost in waste streams. Almost all azo dyes are synthetic and resist biodegradation, however, they can readily be reduced by a number of chemical and biological reducing systems. Biological treatment has advantages over physical and chemical methods due to lower costs and minimal environmental effect. This research focuses on the utilization of Aspergillus oryzae to remove some types of azo dyes from aqueous solutions. The fungus, physically induced in its paramorphogenic form (called 'pellets'), was used in the dye biosorption studies with both non-autoclaved and autoclaved hyphae, at different pH values. The goals were the removal of dyes by biosorption and the decrease of their toxicity. The dyes used were Direct Red 23 and Direct Violet 51. Their spectral stability (325-700 nm) was analyzed at different pH values (2.50, 4.50 and 6.50). The best biosorptive pH value and the toxicity limit, (which is given by the lethal concentration (LC(100)), were then determined. Each dye showed the same spectrum at different pH values. The best biosorptive pH was 2.50, for both non- autoclaved and autoclaved hyphae of A. oryzae. The toxicity level of the dyes was determined using the Trimmed Spearman-Karber Method, with Daphnia similis in all bioassays. The Direct Violet 51 (LC(100) 400 mg · mL(-1)) was found to be the most toxic dye, followed by the Direct Red 23 (LC(100) 900 mg · mL(-1)). The toxicity bioassays for each dye have shown that it is possible to decrease the toxicity level to zero by adding a small quantity of biomass from A. oryzae in its paramorphogenic form. The autoclaved biomass had a higher biosorptive capacity for the dye than the non-autoclaved biomass. The results show that

  2. Exploring the ability of Sphingobacterium sp. ATM to degrade textile dye Direct Blue GLL, mixture of dyes and textile effluent and production of polyhydroxyhexadecanoic acid using waste biomass generated after dye degradation.

    PubMed

    Tamboli, Dhawal P; Kurade, Mayur B; Waghmode, Tatoba R; Joshi, Swati M; Govindwar, Sanjay P

    2010-10-15

    The degradation of textile effluent using microorganisms has been studied extensively, but disposal of generated biomass after dye degradation is a serious problem. Among all tested microorganisms, isolated Sphingobacterium sp. ATM effectively decolorized (100%) the dye Direct Blue GLL (DBGLL) and simultaneously it produced (64%) polyhydroxyhexadecanoic acid (PHD). The organism decolorized DBGLL at 300 mg l(-1) concentration within 24 h of dye addition and gave optimum production of PHD. The organism also decolorized three combinations of mixture of dyes. The organism decolorized textile effluent too when it was combined with medium. The organism produced a maximum of 66% and 61% PHD while decolorizing mixture of dyes and textile effluent respectively. Molasses was found to be more significant within all carbon sources used. The activity of polyhydroxyalkanoate (PHA) synthase was found to be higher after 24 h of addition of DBGLL. The enzymes responsible for dye degradation, viz. veratryl alcohol oxidase, laccase, DCIP (2,6-dichlorophenol-indophenol) reductase, riboflavin reductase, and azo reductase were found to be induced during decolorization process of DBGLL and mixture of dyes. There was significant reduction in chemical oxygen demand (COD) and biological oxygen demand (BOD). FTIR analysis of samples before and after decolorization of dye confirmed the biotransformation of DBGLL.

  3. Exploring the ability of Sphingobacterium sp. ATM to degrade textile dye Direct Blue GLL, mixture of dyes and textile effluent and production of polyhydroxyhexadecanoic acid using waste biomass generated after dye degradation.

    PubMed

    Tamboli, Dhawal P; Kurade, Mayur B; Waghmode, Tatoba R; Joshi, Swati M; Govindwar, Sanjay P

    2010-10-15

    The degradation of textile effluent using microorganisms has been studied extensively, but disposal of generated biomass after dye degradation is a serious problem. Among all tested microorganisms, isolated Sphingobacterium sp. ATM effectively decolorized (100%) the dye Direct Blue GLL (DBGLL) and simultaneously it produced (64%) polyhydroxyhexadecanoic acid (PHD). The organism decolorized DBGLL at 300 mg l(-1) concentration within 24 h of dye addition and gave optimum production of PHD. The organism also decolorized three combinations of mixture of dyes. The organism decolorized textile effluent too when it was combined with medium. The organism produced a maximum of 66% and 61% PHD while decolorizing mixture of dyes and textile effluent respectively. Molasses was found to be more significant within all carbon sources used. The activity of polyhydroxyalkanoate (PHA) synthase was found to be higher after 24 h of addition of DBGLL. The enzymes responsible for dye degradation, viz. veratryl alcohol oxidase, laccase, DCIP (2,6-dichlorophenol-indophenol) reductase, riboflavin reductase, and azo reductase were found to be induced during decolorization process of DBGLL and mixture of dyes. There was significant reduction in chemical oxygen demand (COD) and biological oxygen demand (BOD). FTIR analysis of samples before and after decolorization of dye confirmed the biotransformation of DBGLL. PMID:20591565

  4. Biosorption of synthetic dyes (Direct Red 89 and Reactive Green 12) as an ecological refining step in textile effluent treatment.

    PubMed

    Guendouz, Samira; Khellaf, Nabila; Zerdaoui, Mostefa; Ouchefoun, Moussa

    2013-06-01

    With the use of cost-effective natural materials, biosorption is considered as an ecological tool that is applied worldwide for the remediation of pollution. In this study, we proposed Lemna gibba biomass (LGB), a lignocellulosic sorbent material, for the removal of two textile dyes, Direct Red 89 (DR-89) and Reactive Green 12 (RG-12). These azo dyes commonly used in dying operations of natural and synthetic fibres are the most important pollutants produced in textile industry effluents. For this purpose, batch biosorption experiments were carried out to assess the efficacy of LGB on dye treatment by evaluating the effect of contact time, biomass dosage, and initial dye concentration. The results indicated that the bioremoval efficiency of 5 mg L(-1) DR-89 and RG-12 reached approximately 100 % after 20 min of the exposure time; however, the maximum biosorption of 50 mg L(-1) DR-89 and 15 mg L(-1) RG-12 was determined to be about 60 and 47 %, respectively. Fourier transform infrared spectroscopy used to explain the sorption mechanism showed that the functional groups of carboxylic acid and hydroxyl played a major role in the retention of these pollutants on the biomass surface. The modelling results using Freundlich, Langmuir, Temkin, Elovich, and Dubini Radushkevich (D-R) isotherms demonstrated that the DR-89 biosorption process was better described with the Langmuir theory (R (2) =0.992) while the RG-12 biosorption process fitted well by the D-R isotherm equation (R (2) =0.988). The maximum biosorption capacity was found to be 20.0 and 115.5 mg g(-1) for DR-89 and RG-12, respectively, showing a higher ability of duckweed biomass for the bioremoval of the green dye. The thermodynamic study showed that the dye biosorption was a spontaneous and endothermic process. The efficacy of using duckweed biomass for the bioremoval of the two dyes was limited to concentrations ≤50 mg L(-1), indicating that L. gibba biomass may be suitable in the refining step

  5. Decolorization of water soluble azo dyes by bacterial cultures, isolated from dye house effluent.

    PubMed

    Modi, H A; Rajput, Garima; Ambasana, Chetan

    2010-08-01

    The aim of this work is to isolate and characterize bacterial isolates form dye house effluent, and to check their ability of decolorizing sulfonated azo dyes, and also to study influence of various environmental parameters on same process. Among seven Gram positive bacterial isolates obtained form dye house effluent, M1 (Bacillus cereus) and M6 were proved to be more potent for decolorizing sulfonated azo dyes under aerobic conditions. Maltose as carbon source and peptone as nitrogen source enhanced decolorization efficiency of M1 (B. cereus). HPTLC studies proved that more than 97% of the dye (Reactive Red 195) was degraded by bacteria after 72 h of incubation. These results along with spectrophotometric data prove the efficiency of bacteria suggesting their possible use in treating dye containing effluents.

  6. Treatment of textile dye plant effluent by nanofiltration membrane

    SciTech Connect

    Xu, Y.; Lebrun, R.E.; Gallo, P.J.; Blond, P.

    1999-09-01

    The study was concerned primarily with characterization of the NF45 membrane. Its pure water permeability, the mass transfer coefficient of NaCl, and the mean radius of the membrane pores were determined. Experiments run with five pure dye solutions and an industrial dye pulp solution confirmed the potential of nanofiltration membrane separation for the treatment of textile dye plant effluent. The effects of such significant parameters as initial solution concentration, transmembrane pressure, and type of dye on two fundamental characteristics of nanofiltration (flux and separation factor) were studied.

  7. White-rot fungi and their enzymes for the treatment of industrial dye effluents.

    PubMed

    Wesenberg, Dirk; Kyriakides, Irene; Agathos, Spiros N

    2003-12-01

    White-rot fungi produce various isoforms of extracellular oxidases including laccase, Mn peroxidase and lignin peroxidase (LiP), which are involved in the degradation of lignin in their natural lignocellulosic substrates. This ligninolytic system of white-rot fungi (WRF) is directly involved in the degradation of various xenobiotic compounds and dyes. This review summarizes the state of the art in the research and prospective use of WRF and their enzymes (lignin-modifying enzymes, LME) for the treatment of industrial effluents, particularly dye containing effluents. The textile industry, by far the most avid user of synthetic dyes, is in need of ecoefficient solutions for its colored effluents. The decolorization and detoxification potential of WRF can be harnessed thanks to emerging knowledge of the physiology of these organisms as well as of the biocatalysis and stability characteristics of their enzymes. This knowledge will need to be transformed into reliable and robust waste treatment processes.

  8. Effluent treatment in the textile industry: Dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    1995-09-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents containing dyes. The citations explore bacteria that absorb dyes, neutralization of dye effluents, decolorization by ozonization or ultraviolet radiation, flocculation treatment, and dye absorption methods and materials. Membrane treatment, electrolysis, and ultrafiltration methods of removing dyes from wastewater are considered, as well as reuse of dye-containing effluents. Textile effluents that do not contain dyes are discussed in another bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Effluent treatment in the textile industry: Dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents containing dyes. The citations explore bacteria that absorb dyes, neutralization of dye effluents, decolorization by ozonization or ultraviolet radiation, flocculation treatment, and dye absorption methods and materials. Membrane treatment, electrolysis, and ultrafiltration methods of removing dyes from wastewater are considered, as well as reuse of dye-containing effluents. Textile effluents that do not contain dyes are discussed in another bibliography. (Contains 250 citations and includes a subject term index and title list.)

  10. Effluent treatment in the textile industry: Dyes. (Latest citations from World Textile Abstracts). Published Search

    SciTech Connect

    Not Available

    1992-06-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents containing dyes. The citations explore bacteria that absorb dyes, neutralization of dye effluents, color removal by ozonization and by treatment with manganese solid waste, flocculation treatment, and dye absorption methods and materials. Membrane treatment, electrolysis, and ultrafiltration methods of removing dyes from wastewater are considered, as well as reuse of dye-containing effluents. Textile effluents that do not contain dyes are discussed in another bibliography. (Contains a minimum of 244 citations and includes a subject term index and title list.)

  11. Pre-ozonation coupled with UV/H2O2 process for the decolorization and mineralization of cotton dyeing effluent and synthesized C.I. Direct Black 22 wastewater.

    PubMed

    Shu, Hung-Yee; Chang, Ming-Chin

    2005-05-20

    The decolorization and mineralization of cotton dyeing effluent containing C.I. Acid Black 22 as well as synthesized C.I. Acid Black 22 wastewater by means of advanced oxidation processes (AOPs), such as UV/H2O2, O3 and pre-ozonation coupled with UV/H2O2 processes, were evaluated in this study. It was observed that the UV/H2O2 process took longer retention time than ozonation for color removal of dye bath effluent. Reversely, the total organic carbon (TOC) removal showed different phenomena that ozonation and UV/H2O2 process obtained 33 and 90% of removal efficiency for 160 min of retention time, respectively. Additionally, laboratory synthesized dye wastewater was substantially more efficient in the decolorization process than dye bath effluent. Therefore, in this work, pre-ozonation coupled with UV/H2O2 process was employed to enhance the reduction of both color and TOC in dye bath effluent at the same time. At the same time, the retention time demand was reduced to less than 115 min for 90% removal of TOC and color by this combined process. PMID:15885413

  12. Dye removal from textile industrial effluents by adsorption on exfoliated graphite nanoplatelets: kinetic and equilibrium studies.

    PubMed

    Carvallho, Marilda N; da Silva, Karolyne S; Sales, Deivson C S; Freire, Eleonora M P L; Sobrinho, Maurício A M; Ghislandi, Marcos G

    2016-01-01

    The concept of physical adsorption was applied for the removal of direct and reactive blue textile dyes from industrial effluents. Commercial graphite nanoplatelets were used as substrate, and the quality of the material was characterized by atomic force and transmission electron microscopies. Dye/graphite nanoplatelets water solutions were prepared varying their pH and initial dye concentration. Exceptionally high values (beyond 100 mg/L) for adsorptive capacity of graphite nanoplatelets could be achieved without complicated chemical modifications, and equilibrium and kinetic experiments were performed. Our findings were compared with the state of the art, and compared with theoretical models. Agreement between them was satisfactory, and allowed us to propose novel considerations describing the interactions of the dyes and the graphene planar structure. The work highlights the important role of these interactions, which can govern the mobility of the dye molecules and the amount of layers that can be stacked on the graphite nanoplatelets surface. PMID:27148721

  13. Dye removal from textile industrial effluents by adsorption on exfoliated graphite nanoplatelets: kinetic and equilibrium studies.

    PubMed

    Carvallho, Marilda N; da Silva, Karolyne S; Sales, Deivson C S; Freire, Eleonora M P L; Sobrinho, Maurício A M; Ghislandi, Marcos G

    2016-01-01

    The concept of physical adsorption was applied for the removal of direct and reactive blue textile dyes from industrial effluents. Commercial graphite nanoplatelets were used as substrate, and the quality of the material was characterized by atomic force and transmission electron microscopies. Dye/graphite nanoplatelets water solutions were prepared varying their pH and initial dye concentration. Exceptionally high values (beyond 100 mg/L) for adsorptive capacity of graphite nanoplatelets could be achieved without complicated chemical modifications, and equilibrium and kinetic experiments were performed. Our findings were compared with the state of the art, and compared with theoretical models. Agreement between them was satisfactory, and allowed us to propose novel considerations describing the interactions of the dyes and the graphene planar structure. The work highlights the important role of these interactions, which can govern the mobility of the dye molecules and the amount of layers that can be stacked on the graphite nanoplatelets surface.

  14. Decolourisation of Red 5 MB dye by microbes isolated from textile dye effluent.

    PubMed

    Subashini, P; Hiranmaiyadav, R; Premalatha, M S

    2010-07-01

    One of the major environmental problems is the presence of dye materials in textile wastewater, which need to be removed before releasing into the environment. Some dyes are toxic and carcinogenic in nature. The discharge of the textile effluent into rivers and lakes leads to higher BOD causing threat to aquatic life. Development of efficient dye degradation requires suitable strain and its use under favorable condition to realize the degradation potential. In this study, three microorganisms were isolated from the Red 5 MB dye containing textile wastewater. They were identified and tested for the dye decolourisation provided with different sugars as carbon source. The percentage of dye decolorized by Bacillus subtilis, Aspergillus flavus and Aspergillus fumigatus were found to be about 40%, 75% and 53.8% respectively.

  15. Effluent treatment in the textile industry: Excluding dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    Not Available

    1993-01-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents exclusive of dyes. Topics include the recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. Effluents that contain dyes are discusssed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  16. Effluent treatment in the textile industry: Excluding dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    Not Available

    1994-01-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents exclusive of dyes. Topics include the recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. Effluents that contain dyes are discusssed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  17. Spectral Studies of UV and Solar Photocatalytic Degradation of AZO Dye and Textile Dye Effluents Using Green Synthesized Silver Nanoparticles

    PubMed Central

    Mariselvam, R.; Ranjitsingh, A. J. A.; Mosae Selvakumar, P.; Alarfaj, Abdullah A.; Munusamy, Murugan A.

    2016-01-01

    The photocatalytic degradation of the chemical dye AZO and dye effluents in different time duration has been investigated using biologically synthesized silver nanoparticles. Dye industry effluents and AZO dye undergo degradation to form harmless intermediate and colourless products following irradiation by UV and solar light in the presence of green synthesized silver nanoparticles. The degree of degradation was tested under the experimental conditions such as PH, temperature, and absorbance of the dye in UV and solar light was measured. The degradation was higher in the UV light source than in the solar light source. Green synthesized silver nanoparticles in the UV light source were found to expedite the dye degradation process. PMID:27382364

  18. Laboratory studies of electrochemical treatment of industrial azo dye effluent.

    PubMed

    Vaghela, Sanjay S; Jethva, Ashok D; Mehta, Bhavesh B; Dave, Sunil P; Adimurthy, Subbarayappa; Ramachandraiah, Gadde

    2005-04-15

    Removal of color and reduction of chemical oxygen demand (COD) in an industrial azo dye effluent containing chiefly reactive dyes were investigated under single-pass conditions at a dimensionally stable anode (DSA) in a thin electrochemical flow reactor at different current densities, flow rates, and dilutions. With 50% diluted effluent, decolorization was achieved up to 85-99% at 10-40 mA/ cm2 at 5 mL/min flow rate and 50-88% at 30-40 mA/ cm2 at high (10-15 mL/min) flow rates. The COD reduction was maximum (81%) at 39.9 mA/cm2 or above when solution-electrode contact time (Ct) was as high as 21.7 s/cm2 and decreased as Ct declined at a given current density. Cyclic voltammetric studies suggesting an indirect oxidation of dye molecules over the anode surface were carried out at a glassy carbon electrode. The effect of pH on decolorization and COD reduction was determined. An electrochemical mechanism mediated by OCl- operating in the decolorization and COD reduction processes was suggested. The effluent was further treated with NaOCI. The oxidized products from the treated effluents were isolated and confirmed to be free from chlorine-substituted products by IR spectroscopy. From the apparent pseudo-first-order rate data, the second-order rate coefficients were evaluated to be 2.9 M(-1) s(-1) at 5 mL/ min, 76.2 M(-1) s(-1) at 10 mL/min, and 156.1 M(-1) s(-1) at 15 mL/ min for color removal, and 1.19 M(-1) s(-1) at 5 mL/min, 1.79 M(-1) s(-1) at 10 mL/min, and 3.57 M(-1) s(-1) at 15 mL/min for COD reduction. Field studies were also carried out with a pilot-scale cell at the source of effluent generation of different plants corresponding to the industry. Decolorization was achieved to about 94-99% with azo dye effluents at 0.7-1.0 L/min flow costing around Indian Rupees 0.02-0.04 per liter, and to about 54-75% in other related effluents at 0.3-1.0 L/min flow under single-pass conditions. PMID:15884385

  19. Phytoremediation of textile effluent and mixture of structurally different dyes by Glandularia pulchella (Sweet) Tronc.

    PubMed

    Kabra, Akhil N; Khandare, Rahul V; Waghmode, Tatoba R; Govindwar, Sanjay P

    2012-04-01

    Plants of Glandularia pulchella (Sweet) Tronc. performed decolorization of structurally different dyes to varying extent because of induction of different set of enzymes in response to specific dyes. Differential pattern of enzyme induction with respect to time was obtained for lignin peroxidase, veratryl alcohol oxidase, tyrosinase and dichlorophenolindophenol reductase during the decolorization of dye mixture, whose combined action resulted in greater and faster decolorization of dyes. HPLC, FTIR and High Performance Thin Layer Chromatography (HPTLC) analysis confirmed degradation of dyes from textile effluent and mixture. HPTLC demonstrated progressive decolorization of dye mixture along with preferential degradation of the dyes. G. pulchella showed reduction in American Dye Manufacturer's Institute from 405 to 21 and 418 to 22, in case of textile effluent and mixture of dyes respectively. The non-toxic nature of the metabolites of degraded textile dye effluent and mixture of dyes was revealed by phytotoxicity studies.

  20. Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability.

    PubMed

    Rani, Babita; Kumar, Vivek; Singh, Jagvijay; Bisht, Sandeep; Teotia, Priyanku; Sharma, Shivesh; Kela, Ritu

    2014-01-01

    Biodegradation and detoxification of dyes, Malachite green, Nigrosin and Basic fuchsin have been carried out using two fungal isolates Aspergillus niger, and Phanerochaete chrysosporium, isolated from dye effluent soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25 °C. Aspergillus niger recorded maximum decolorization of the dye Basic fuchsin (81.85%) followed by Nigrosin (77.47%), Malachite green (72.77%) and dye mixture (33.08%) under shaking condition. Whereas, P. chrysosporium recorded decolorization to the maximum with the Nigrosin (90.15%) followed by Basic fuchsin (89.8%), Malachite green (83.25%) and mixture (78.4%). The selected fungal strains performed better under shaking conditions compared to stationary method; moreover the inoculation of fungus also brought the pH of the dye solutions to neutral from acidic. Seed germination bioassay study exhibited that when inoculated dye solutions were used, seed showed germination while uninoculated dyes inhibited germination even after four days of observation. Similarly, microbial growth was also inhibited by uninoculated dyes. The excellent performance of A. niger and P. chrysporium in the biodegradation of textile dyes of different chemical structures suggests and reinforces the potential of these fungi for environmental decontamination.

  1. Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability.

    PubMed

    Rani, Babita; Kumar, Vivek; Singh, Jagvijay; Bisht, Sandeep; Teotia, Priyanku; Sharma, Shivesh; Kela, Ritu

    2014-01-01

    Biodegradation and detoxification of dyes, Malachite green, Nigrosin and Basic fuchsin have been carried out using two fungal isolates Aspergillus niger, and Phanerochaete chrysosporium, isolated from dye effluent soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25 °C. Aspergillus niger recorded maximum decolorization of the dye Basic fuchsin (81.85%) followed by Nigrosin (77.47%), Malachite green (72.77%) and dye mixture (33.08%) under shaking condition. Whereas, P. chrysosporium recorded decolorization to the maximum with the Nigrosin (90.15%) followed by Basic fuchsin (89.8%), Malachite green (83.25%) and mixture (78.4%). The selected fungal strains performed better under shaking conditions compared to stationary method; moreover the inoculation of fungus also brought the pH of the dye solutions to neutral from acidic. Seed germination bioassay study exhibited that when inoculated dye solutions were used, seed showed germination while uninoculated dyes inhibited germination even after four days of observation. Similarly, microbial growth was also inhibited by uninoculated dyes. The excellent performance of A. niger and P. chrysporium in the biodegradation of textile dyes of different chemical structures suggests and reinforces the potential of these fungi for environmental decontamination. PMID:25477943

  2. Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability

    PubMed Central

    Rani, Babita; Kumar, Vivek; Singh, Jagvijay; Bisht, Sandeep; Teotia, Priyanku; Sharma, Shivesh; Kela, Ritu

    2014-01-01

    Biodegradation and detoxification of dyes, Malachite green, Nigrosin and Basic fuchsin have been carried out using two fungal isolates Aspergillus niger, and Phanerochaete chrysosporium, isolated from dye effluent soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25 °C. Aspergillus niger recorded maximum decolorization of the dye Basic fuchsin (81.85%) followed by Nigrosin (77.47%), Malachite green (72.77%) and dye mixture (33.08%) under shaking condition. Whereas, P. chrysosporium recorded decolorization to the maximum with the Nigrosin (90.15%) followed by Basic fuchsin (89.8%), Malachite green (83.25%) and mixture (78.4%). The selected fungal strains performed better under shaking conditions compared to stationary method; moreover the inoculation of fungus also brought the pH of the dye solutions to neutral from acidic. Seed germination bioassay study exhibited that when inoculated dye solutions were used, seed showed germination while uninoculated dyes inhibited germination even after four days of observation. Similarly, microbial growth was also inhibited by uninoculated dyes. The excellent performance of A. niger and P. chrysporium in the biodegradation of textile dyes of different chemical structures suggests and reinforces the potential of these fungi for environmental decontamination. PMID:25477943

  3. Treatment of a textile effluent from dyeing with cochineal extracts using Trametes versicolor fungus.

    PubMed

    Arroyo-Figueroa, Gabriela; Ruiz-Aguilar, Graciela M L; López-Martínez, Leticia; González-Sánchez, Guillermo; Cuevas-Rodríguez, Germán; Rodríguez-Vázquez, Refugio

    2011-01-01

    Trametes versicolor (Tv) fungus can degrade synthetic dyes that contain azo groups, anthraquinone, triphenylmethane polymers, and heterocyclic groups. However, no references have been found related to the degradation of natural dyes, such as the carminic acid that is contained in the cochineal extract. Experiments to determine the decolorization of the effluent used in the cotton dyeing process with cochineal extract by means of Tv fungus were done. Treatments to determine decolorization in the presence or absence of Kirk's medium, glucose, and fungus, with an addition of 50% (v v-1) of nonsterilized effluent were performed. Physicochemical characterization was performed at the start and end of the treatment. Degradation kinetics were determined. A direct relationship was found between the dry weight of fungi, pH, and the decolorization system, with higher decolorization at lower pH levels (pH ~4.3). High decolorization (81% ± 0.09; 88% ± 0.17; and 99% ± 0.04) for three of the eight treatments (Kirk's medium without glucose, Kirk's medium with glucose, and without medium with glucose, respectively) was found. Toxicity tests determined an increase in the initial effluent toxicity (7.33 TU) compared with the final treatment (47.73 TU) in a period of 11 days. For this system, a degradation sequence of the carminic acid structure present in the effluent by the Tv fungus is suggested, in which it is seen that metabolites still containing aromatic structures are generated. PMID:21552764

  4. Reduction of acute toxicity and genotoxicity of dye effluent using Fenton-coagulation process.

    PubMed

    Zhang, Jing; Chen, Shuo; Zhang, Ying; Quan, Xie; Zhao, Huimin; Zhang, Yaobin

    2014-06-15

    Dye wastewater exhibits significant ecotoxicity even though its physico-chemical parameters meet the discharge standards. In this work, the acute toxicity and genotoxicity of dye effluent were tested, and the Fenton-coagulation process was carried out to detoxify this dye effluent. The acute toxicity was evaluated according to the mortality rate of zebrafish, and genotoxicity was evaluated by micronucleus (MN) and comet assays. Removal of color and chemical oxygen demand (COD) was also investigated. The results indicated that the dye effluent showed strong acute toxicity and genotoxicity to zebrafish. After 4h of treatment by Fenton-coagulation process, the dye effluent exhibited no significant acute toxicity and genotoxicity to zebrafish. In addition, its COD was less than 50mg/L, which met the discharge standard. It demonstrates that Fenton-coagulation process can comprehensively reduce the acute toxicity and genotoxicity as well as the COD of the dye effluent.

  5. Decolourization of azo dyes and a dye industry effluent by a white rot fungus Thelephora sp.

    PubMed

    Selvam, K; Swaminathan, K; Chae, Keon-Sang

    2003-06-01

    A white rot fungus Thelephora sp. was used for decolourization of azo dyes such as orange G (50 microM), congo red (50 microM), and amido black 10B (25 microM). Decolourization using the fungus was 33.3%, 97.1% and 98.8% for orange G, congo red and amido black 10B, respectively. An enzymatic dye decolourization study showed that a maximum of 19% orange G was removed by laccase at 15 U/ml whereas lignin peroxidase (LiP) and manganese dependent peroxidase (MnP) at the same concentration decolourized 13.5% and 10.8%, orange G, respectively. A maximum decolourization of 12.0% and 15.0% for congo red and amido black 10B, respectively, was recorded by laccase. A dye industry effluent was treated by the fungus in batch and continuous modes. A maximum decolourization of 61% was achieved on the third day in the batch mode and a maximum decolourization of 50% was obtained by the seventh day in the continuous mode. These results suggest that the batch mode of treatment using Thelephora sp. may be more effective than the continuous mode for colour removal from dye industry effluents.

  6. Decolorization of textile dye by Candida albicans isolated from industrial effluents.

    PubMed

    Vitor, Vivian; Corso, Carlos Renato

    2008-11-01

    The aim of the present work was to observe microbial decolorization and biodegradation of the Direct Violet 51 azo dye by Candida albicans isolated from industrial effluents and study the metabolites formed after degradation. C. albicans was used in the removal of the dye in order to further biosorption and biodegradation at different pH values in aqueous solutions. A comparative study of biodegradation analysis was carried out using UV-vis and FTIR spectroscopy, which revealed significant changes in peak positions when compared to the dye spectrum. Theses changes in dye structure appeared after 72 h at pH 2.50; after 240 h at pH 4.50; and after 280 h at pH 6.50, indicating the different by-products formed during the biodegradation process. Hence, the yeast C. albicans was able to remove the color substance, demonstrating a potential enzymatic capacity to modify the chemical structure of pigments found in industrial effluents.

  7. Effluent treatment in the textile industry: Excluding dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    1996-09-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents exclusive of dyes. Topics include the recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. Effluents that contain dyes are discusssed in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  8. Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium

    PubMed Central

    Lalnunhlimi, Sylvine; Krishnaswamy, Veenagayathri

    2016-01-01

    Removal of synthetic dyes is one of the main challenges before releasing the wastes discharged by textile industries. Biodegradation of azo dyes by alkaliphilic bacterial consortium is one of the environmental-friendly methods used for the removal of dyes from textile effluents. Hence, this study presents isolation of a bacterial consortium from soil samples of saline environment and its use for the decolorization of azo dyes, Direct Blue 151 (DB 151) and Direct Red 31 (DR 31). The decolorization of azo dyes was studied at various concentrations (100–300 mg/L). The bacterial consortium, when subjected to an application of 200 mg/L of the dyes, decolorized DB 151 and DR 31 by 97.57% and 95.25% respectively, within 5 days. The growth of the bacterial consortium was optimized with pH, temperature, and carbon and nitrogen sources; and decolorization of azo dyes was analyzed. In this study, the decolorization efficiency of mixed dyes was improved with yeast extract and sucrose, which were used as nitrogen and carbon sources, respectively. Such an alkaliphilic bacterial consortium can be used in the removal of azo dyes from contaminated saline environment. PMID:26887225

  9. Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium.

    PubMed

    Lalnunhlimi, Sylvine; Krishnaswamy, Veenagayathri

    2016-01-01

    Removal of synthetic dyes is one of the main challenges before releasing the wastes discharged by textile industries. Biodegradation of azo dyes by alkaliphilic bacterial consortium is one of the environmental-friendly methods used for the removal of dyes from textile effluents. Hence, this study presents isolation of a bacterial consortium from soil samples of saline environment and its use for the decolorization of azo dyes, Direct Blue 151 (DB 151) and Direct Red 31 (DR 31). The decolorization of azo dyes was studied at various concentrations (100-300mg/L). The bacterial consortium, when subjected to an application of 200mg/L of the dyes, decolorized DB 151 and DR 31 by 97.57% and 95.25% respectively, within 5 days. The growth of the bacterial consortium was optimized with pH, temperature, and carbon and nitrogen sources; and decolorization of azo dyes was analyzed. In this study, the decolorization efficiency of mixed dyes was improved with yeast extract and sucrose, which were used as nitrogen and carbon sources, respectively. Such an alkaliphilic bacterial consortium can be used in the removal of azo dyes from contaminated saline environment.

  10. Spectral Studies of UV and Solar Photocatalytic Degradation of AZO Dye and Textile Dye Effluents Using Green Synthesized Silver Nanoparticles.

    PubMed

    Mariselvam, R; Ranjitsingh, A J A; Mosae Selvakumar, P; Alarfaj, Abdullah A; Munusamy, Murugan A

    2016-01-01

    The photocatalytic degradation of the chemical dye AZO and dye effluents in different time duration has been investigated using biologically synthesized silver nanoparticles. Dye industry effluents and AZO dye undergo degradation to form harmless intermediate and colourless products following irradiation by UV and solar light in the presence of green synthesized silver nanoparticles. The degree of degradation was tested under the experimental conditions such as P(H), temperature, and absorbance of the dye in UV and solar light was measured. The degradation was higher in the UV light source than in the solar light source. Green synthesized silver nanoparticles in the UV light source were found to expedite the dye degradation process. PMID:27382364

  11. Treatment of simulated Reactive Yellow 22 (azo) dye effluents using Spirogyra species.

    PubMed

    Mohan, S Venkata; Rao, N Chandrasekhar; Srinivas, S; Prasad, K Krishna; Karthikeyan, J

    2002-01-01

    The potential of commonly available green algae belonging to Spirogyra species was investigated as viable biomaterials for biological treatment of simulated synthetic azo dye (Reactive Yellow 22) effluents. The results obtained from the batch experiments revealed the ability of the algal species in removing the dye colour and was dependent both on the dye concentration and algal biomass. Maximum dye colour removal was observed on the third day for all the system conditions. Monitoring of ORP values helped to understand the overlying biochemical mechanism of algal-dye system. Based upon the results, the dye-algal treatment mechanism was attributed to biosorption (sorption of dye molecules over the surface of algal cells), bioconversion (diffusion of dye molecules into the algal cells and subsequent conversion) and biocoagulation (coagulation of dye molecules present in the aqueous phase onto the biopolymers released as metabolic intermediates during metabolic conversion of dye and subsequent settlement).

  12. Box behnken design based optimization of solar induced photo catalytic decolourization of textile dye effluent

    NASA Astrophysics Data System (ADS)

    Senthilkumar, Shanmugam; Perumalsamy, Muthiah; Prabhu, Harinarayan; AhmedBasha, Chiya; Swaminathan, G.

    2013-03-01

    Box-Behnken design was employed for the decolourization of synthetic dye bath effluent using solar induced photo catalytic degradation with mixed semi conductor catalysts. Four independent variables namely concentration of dye effluent, catalyst loading, pH and irradiation time was chosen as process variables. The optimum concentrations of dye effluent, catalyst dosage, pH, and irradiation time were found to be 60 mg L-1, 200 mg L-1, 7 and 100 min, respectively, for maximum decolourization of dye effluent (91.24%). Predicted values were found to be in good agreement with experimental values and as a result reflected the precision and the applicability of Response Surface Methodology (RSM) (R2=0.9785 and Adj R2= 0.9569).

  13. Decolorization of direct dyes by immobilized turnip peroxidase in batch and continuous processes.

    PubMed

    Matto, Mahreen; Husain, Qayyum

    2009-03-01

    An inexpensive immobilized turnip peroxidase has been employed for the decolorization of some direct dyes in batch and continuous reactors. Wood shaving was investigated as an inexpensive material for the preparation of bioaffinity support. Concanavalin A-wood shaving bound turnip peroxidase exhibited 67% of the original enzyme activity. Both soluble and immobilized turnip peroxidase could effectively remove more than 50% color from dyes in the presence of metals/salt and 0.6mM 1-hydroxybenzotriazole, after 1h of incubation. The columns containing immobilized peroxidase could decolorize 64% direct red 23% and 50% mixture of direct dyes at 4 and 3 months of operation, respectively. Total organic carbon analysis of treated dye or mixture of dyes revealed that these results were quite comparable to the loss of color from solutions. Thus, this study showed that the immobilized enzyme could be efficiently used for the removal of synthetic dyes from industrial effluents. PMID:18423852

  14. Decolourization of dye-containing effluent using mineral coagulants produced by electrocoagulation.

    PubMed

    Zidane, Fatiha; Drogui, Patrick; Lekhlif, Brahim; Bensaid, Jalila; Blais, Jean-François; Belcadi, Said; El Kacemi, Kacem

    2008-06-30

    The colour and colour causing-compounds has always been undesirable in water for any use, be it industrial or domestic wastewaters. The discharge of such effluents causes excessive oxygen demand in the receiving water and then a treatment is required before discharge into ecosystems. This study examined the possibility to remove colour causing-compounds from effluent by chemical coagulation, in comparison with direct electrocoagulation. The inorganic coagulants (C1, C2 and C3) in the form of dry powder tested, were respectively produced from electrolysis of S1=[NaOH (7.5 x 10(-3)M)], S2=[NaCl (10(-2)M)], and S3=[NaOH (7.5 x 10(-3)M)+NaCl (10(-2)M)] solutions, using sacrificial aluminium electrodes operated at an electrical potential of 12 V. Reactive textile dye (CI Reactive Red 141) was used as model of colour-causing compound prepared at a concentration of 50 mgl(-1). The best performances of dye removal were obtained with C(2) having a chemical structure comprised of a mixture of polymeric specie (Al45O45(OH)45Cl) and monomeric species (AlCl(OH)2.2H2O and Al(OH)3). The removal efficiency (R(A)) evaluated by measuring the yields of 540 nm-absorbance removal varied from 41 to 96% through 60 min of treatment by imposing a concentration of C2 ranging from 100 to 400 mg l(-1). The effectiveness of the treatment increased and the effluent became more and more transparent while increasing C(2) concentration. The comparison of chemical treatment using C2 coagulant and direct electrocoagulation of CI Reactive Red 141 containing synthetic solution demonstrated the advantage of chemical treatment during the first few minutes of treatment. A yield of 88% of absorbance removal was recorded using C2 coagulant (400 mg l(-1)) over the first 10 min of treatment, compared to 60% measured using direct electrocoagulation while imposing either 10 or 15 V of electrical potential close to the value (12 V) required during C2 production. However, at the end of the treatment (after 60

  15. Decolorization of salt-alkaline effluent with industrial reactive dyes by laccase-producing Basidiomycetes strains.

    PubMed

    Moreira-Neto, S L; Mussatto, S I; Machado, K M G; Milagres, A M F

    2013-04-01

    The discharge of highly coloured synthetic dye effluents into rivers and lakes is harmful to the water bodies, and therefore, intensive researches have been focussed on the decolorization of wastewater by biological, physical or chemical treatments. In the present study, 12 basidiomycetes strains from the genus Pleurotus, Trametes, Lentinus, Peniophora, Pycnoporus, Rigidoporus, Hygrocybe and Psilocybe were evaluated for decolorization of the reactive dyes Cibacron Brilliant Blue H-GR and Cibacron Red FN-2BL, both in solid and liquid media. Among the evaluated fungi, seven showed great ability to decolorize the synthetic textile effluent, both in vivo (74-77%) or in vitro (60-74%), and laccase was the main ligninolytic enzyme involved on dyes decolorization. Pleurotus ostreatus, Trametes villosa and Peniophora cinerea reduced near to 60% of the effluent colour after only 1 h of treatment. The decolorization results were still improved by establishing the nitrogen source and amount to be used during the fungal strains cultivation in synthetic medium previous their action on the textile effluent, with yeast extract being a better nitrogen source than ammonium tartarate. These results contribute for the development of an effective microbiological process for decolorization of dye effluents with reduced time of treatment.

  16. Decolorization and removal of textile and non-textile dyes from polluted wastewater and dyeing effluent by using potato (Solanum tuberosum) soluble and immobilized polyphenol oxidase.

    PubMed

    Khan, Amjad Ali; Husain, Qayyum

    2007-03-01

    Celite bound potato polyphenol oxidase preparation was employed for the treatment of wastewater/dye effluent contaminated with reactive textile and non-textile dyes, Reactive Blue 4 and Reactive Orange 86. The maximum decolorization was found at pH 3.0 and 4.0 in case of Reactive Blue 4 and Reactive Orange 86, respectively. Immobilized potato polyphenol oxidase was significantly more effective in decolorizing the individual dye and complex mixtures of dyes as compared to soluble enzyme. The absorption spectra of the treated and untreated dye mixture and dyeing effluent exhibited a marked difference in the absorption value at various wavelengths. The polluted water contaminated with an individual dye or mixtures of dyes treated with soluble and immobilized potato polyphenol oxidase resulted in the remarkable loss in total organic carbon.

  17. Decolorization and removal of textile and non-textile dyes from polluted wastewater and dyeing effluent by using potato (Solanum tuberosum) soluble and immobilized polyphenol oxidase.

    PubMed

    Khan, Amjad Ali; Husain, Qayyum

    2007-03-01

    Celite bound potato polyphenol oxidase preparation was employed for the treatment of wastewater/dye effluent contaminated with reactive textile and non-textile dyes, Reactive Blue 4 and Reactive Orange 86. The maximum decolorization was found at pH 3.0 and 4.0 in case of Reactive Blue 4 and Reactive Orange 86, respectively. Immobilized potato polyphenol oxidase was significantly more effective in decolorizing the individual dye and complex mixtures of dyes as compared to soluble enzyme. The absorption spectra of the treated and untreated dye mixture and dyeing effluent exhibited a marked difference in the absorption value at various wavelengths. The polluted water contaminated with an individual dye or mixtures of dyes treated with soluble and immobilized potato polyphenol oxidase resulted in the remarkable loss in total organic carbon. PMID:16765044

  18. Novel physico-biological treatment for the remediation of textile dyes-containing industrial effluents.

    PubMed

    Álvarez, M S; Moscoso, F; Rodríguez, A; Sanromán, M A; Deive, F J

    2013-10-01

    In this work, a novel remediation strategy consisting of a sequential biological and physical process is proposed to remove dyes from a textile polluted effluent. The decolorization ability of Anoxybacillus flavithermus in an aqueous effluent containing two representative textile finishing dyes (Reactive Black 5 and Acid Black 48, as di-azo and antraquinone class, respectively) was proved. The decolorization efficiency for a mixture of both dyes reached almost 60% in less than 12h, which points out the suitability of the selected microorganism. In a sequential stage, an aqueous biphasic system consisting of non-ionic surfactants and a potassium-based organic salt, acting as the salting out agent, was investigated. The phase segregation potential of the selected salts was evaluated in the light of different thermodynamic models, and remediation levels higher than 99% were reached.

  19. Phytoremediation of textile dyes and effluents: Current scenario and future prospects.

    PubMed

    Khandare, Rahul V; Govindwar, Sanjay P

    2015-12-01

    Phytoremediation has emerged as a green, passive, solar energy driven and cost effective approach for environmental cleanup when compared to physico-chemical and even other biological methods. Textile dyes and effluents are condemned as one of the worst polluters of our precious water bodies and soils. They are well known mutagenic, carcinogenic, allergic and cytotoxic agents posing threats to all life forms. Plant based treatment of textile dyes is relatively new and hitherto has remained an unexplored area of research. Use of macrophytes like Phragmites australis and Rheum rhabarbarum have shown efficient removal of Acid Orange 7 and sulfonated anthraquinones, respectively. Common garden and ornamental plants namely Aster amellus, Portulaca grandiflora, Zinnia angustifolia, Petunia grandiflora, Glandularia pulchella, many ferns and aquatic plants have also been advocated for their dye degradation potential. Plant tissue cultures like suspension cells of Blumea malcolmii and Nopalea cochenillifera, hairy roots of Brassica juncea and Tagetes patula and whole plants of several other species have confirmed their role in dye degradation. Plants' oxidoreductases such as lignin peroxidase, laccase, tyrosinase, azo reductase, veratryl alcohol oxidase, riboflavin reductase and dichlorophenolindophenol reductase are known as key biodegrading enzymes which break the complex structures of dyes. Schematic metabolic pathways of degradation of different dyes and their environmental fates have also been proposed. Degradation products of dyes and their fates of metabolism have been reported to be validated by UV-vis spectrophotometry, high performance liquid chromatography, high performance thin layer chromatography, Fourier Transform Infrared Spectroscopy, gas chromatograph-mass spectroscopy and several other analytical tools. Constructed wetlands and various pilots scale reactors were developed independently using the plants of P. australis, Portulaca grandiflora, G. pulchella

  20. Phytoremediation of textile dyes and effluents: Current scenario and future prospects.

    PubMed

    Khandare, Rahul V; Govindwar, Sanjay P

    2015-12-01

    Phytoremediation has emerged as a green, passive, solar energy driven and cost effective approach for environmental cleanup when compared to physico-chemical and even other biological methods. Textile dyes and effluents are condemned as one of the worst polluters of our precious water bodies and soils. They are well known mutagenic, carcinogenic, allergic and cytotoxic agents posing threats to all life forms. Plant based treatment of textile dyes is relatively new and hitherto has remained an unexplored area of research. Use of macrophytes like Phragmites australis and Rheum rhabarbarum have shown efficient removal of Acid Orange 7 and sulfonated anthraquinones, respectively. Common garden and ornamental plants namely Aster amellus, Portulaca grandiflora, Zinnia angustifolia, Petunia grandiflora, Glandularia pulchella, many ferns and aquatic plants have also been advocated for their dye degradation potential. Plant tissue cultures like suspension cells of Blumea malcolmii and Nopalea cochenillifera, hairy roots of Brassica juncea and Tagetes patula and whole plants of several other species have confirmed their role in dye degradation. Plants' oxidoreductases such as lignin peroxidase, laccase, tyrosinase, azo reductase, veratryl alcohol oxidase, riboflavin reductase and dichlorophenolindophenol reductase are known as key biodegrading enzymes which break the complex structures of dyes. Schematic metabolic pathways of degradation of different dyes and their environmental fates have also been proposed. Degradation products of dyes and their fates of metabolism have been reported to be validated by UV-vis spectrophotometry, high performance liquid chromatography, high performance thin layer chromatography, Fourier Transform Infrared Spectroscopy, gas chromatograph-mass spectroscopy and several other analytical tools. Constructed wetlands and various pilots scale reactors were developed independently using the plants of P. australis, Portulaca grandiflora, G. pulchella

  1. Dyeing industry effluent system as lipid production medium of Neochloris sp. for biodiesel feedstock preparation.

    PubMed

    Gopalakrishnan, Vidyadharani; Ramamurthy, Dhandapani

    2014-01-01

    Microalgae lipid feedstock preparation cost was an important factor in increasing biodiesel fuel hikes. This study was conducted with the concept of implementing an effluent wastewater as lipid production medium for microalgae cultivation. In our study textile dyeing industry effluent was taken as a lipid production medium for Neochloris sp. cultivation. The changes in physicochemical analysis of effluent before and after Neochloris sp. treatment were recorded using standard procedures and AAS analysis. There was especially a reduction in heavy metal like lead (Pb) concentration from 0.002 ppm to 0.001 ppm after Neochloris sp. treatment. Neochloris sp. cultivated in Bold Basal Medium (BBM) (specific algal medium) produced 41.93% total lipid and 36.69% lipid was produced in effluent based cultivation. Surprisingly Neochloris sp. cultivated in effluent was found with enhanced neutral lipid content, and it was confirmed by Nile red fluorescence assay. Further the particular enrichment in oleic acid content of the cells was confirmed with thin layer chromatography (TLC) with oleic acid pure (98%) control. The overall results suggested that textile dyeing industry effluent could serve as the best lipid productive medium for Neochloris sp. biodiesel feedstock preparation. This study was found to have a significant impact on reducing the biodiesel feedstock preparation cost with simultaneous lipid induction by heavy metal stress to microalgae.

  2. Dyeing Industry Effluent System as Lipid Production Medium of Neochloris sp. for Biodiesel Feedstock Preparation

    PubMed Central

    Ramamurthy, Dhandapani

    2014-01-01

    Microalgae lipid feedstock preparation cost was an important factor in increasing biodiesel fuel hikes. This study was conducted with the concept of implementing an effluent wastewater as lipid production medium for microalgae cultivation. In our study textile dyeing industry effluent was taken as a lipid production medium for Neochloris sp. cultivation. The changes in physicochemical analysis of effluent before and after Neochloris sp. treatment were recorded using standard procedures and AAS analysis. There was especially a reduction in heavy metal like lead (Pb) concentration from 0.002 ppm to 0.001 ppm after Neochloris sp. treatment. Neochloris sp. cultivated in Bold Basal Medium (BBM) (specific algal medium) produced 41.93% total lipid and 36.69% lipid was produced in effluent based cultivation. Surprisingly Neochloris sp. cultivated in effluent was found with enhanced neutral lipid content, and it was confirmed by Nile red fluorescence assay. Further the particular enrichment in oleic acid content of the cells was confirmed with thin layer chromatography (TLC) with oleic acid pure (98%) control. The overall results suggested that textile dyeing industry effluent could serve as the best lipid productive medium for Neochloris sp. biodiesel feedstock preparation. This study was found to have a significant impact on reducing the biodiesel feedstock preparation cost with simultaneous lipid induction by heavy metal stress to microalgae. PMID:25247176

  3. Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates.

    PubMed

    Buthelezi, Simphiwe P; Olaniran, Ademola O; Pillay, Balakrishna

    2012-11-30

    Bioflocculant-producing bacteria were isolated from activated sludge of a wastewater treatment plant located in Durban, South Africa, and identified using standard biochemical tests as well as the analysis of their 16S rRNA gene sequences. The bioflocculants produced by these organisms were ethanol precipitated, purified using 2% (w/v) cetylpyridinium chloride solution and evaluated for removal of wastewater dyes under different pH, temperature and nutritional conditions. Bioflocculants from these indigenous bacteria were very effective for decolourizing the different dyes tested in this study, with a removal rate of up to 97.04%. The decolourization efficiency was largely influenced by the type of dye, pH, temperature, and flocculant concentration. A pH of 7 was found to be optimum for the removal of both whale and mediblue dyes, while the optimum pH for fawn and mixed dye removal was found to be between 9 and 10. Optimum temperature for whale and mediblue dye removal was 35 °C, and that for fawn and mixed dye varied between 40–45 °C and 35–40 °C, respectively. These bacterial bioflocculants may provide an economical and cleaner alternative to replace or supplement present treatment processes for the removal of dyes from wastewater effluents, since they are biodegradable and easily sustainable.

  4. Treatment of azo dye-containing synthetic textile dye effluent using sulfidogenic anaerobic baffled reactor.

    PubMed

    Ozdemir, Sebnem; Cirik, Kevser; Akman, Dilek; Sahinkaya, Erkan; Cinar, Ozer

    2013-10-01

    This study aims at investigating azo dye reduction performance of a sulfidogenic anaerobic baffled reactor (ABR) for around 400 days. ABR was operated at 30 °C in a temperature-controlled room and hydraulic retention time (HRT) was kept constant at 2 days. The robustness of ABR was assessed under varying azo dye loadings and COD/sulfate ratios. Additionally, oxygen was supplied (1-2 L air/m(3)reactor min) to the last compartment to investigate the removal of azo dye breakdown products. ABR performed well in terms of COD, sulfate and azo dye removals throughout the reactor operation. Maximum azo dye, COD and sulfate removals were 98%, 98% and 93%, respectively, at COD/sulfate ratio of 0.8. Aeration created different redox conditions in last compartment, which enhanced the removal of COD and breakdown products. The adverse effects of aeration on azo dye reduction were eliminated thanks to the compartmentalized structure of the ABR.

  5. Improved biodegradation of textile dye effluent by coculture.

    PubMed

    Vijayalakshmidevi, S R; Muthukumar, Karuppan

    2015-04-01

    The present study demonstrates the de-colorization and degradation of textile effluent by coculture consisting of three bacterial species isolated from textile effluent contaminated environment with an aim to reduce the treatment time. The isolates were identified as Ochrobactrum sp., Pseudomonas aeruginosa and Providencia vermicola by 16S rRNA analysis. Their secondary structure was predicted and GC content of the sequence was found to be 54.39, 52.10, and 52.53%. The co-culture showed a prominent increase in the degradation activity due to the action of oxidoreductase enzymatic mechanism of laccase, NADH-DCIP reductase and azoreductase activity. The biodegradability index of 0.75 was achieved with 95% chemical oxygen demand (COD) reduction in 16 h and 78 and 85% reduction in total organic carbon (TOC) and total solids was observed. Bioaccumulation of metals was identified by X-ray diffraction (XRD) analysis. The effective decolorization was confirmed from the results of UV-vis spectroscopy, high performance liquid chromatography and Fourier transformed infrared spectrometer analyzes. The possible degradation pathway was obtained from the analysis of liquid chromatography-mass spectroscopy analysis and the metabolites such as 2-amino naphthalene and N-phenyl-1.3,5 triazine were observed. The toxic nature of the effluent was analyzed using phyto-toxicity, cell-death assay and geno-toxicity tests.

  6. Improved biodegradation of textile dye effluent by coculture.

    PubMed

    Vijayalakshmidevi, S R; Muthukumar, Karuppan

    2015-04-01

    The present study demonstrates the de-colorization and degradation of textile effluent by coculture consisting of three bacterial species isolated from textile effluent contaminated environment with an aim to reduce the treatment time. The isolates were identified as Ochrobactrum sp., Pseudomonas aeruginosa and Providencia vermicola by 16S rRNA analysis. Their secondary structure was predicted and GC content of the sequence was found to be 54.39, 52.10, and 52.53%. The co-culture showed a prominent increase in the degradation activity due to the action of oxidoreductase enzymatic mechanism of laccase, NADH-DCIP reductase and azoreductase activity. The biodegradability index of 0.75 was achieved with 95% chemical oxygen demand (COD) reduction in 16 h and 78 and 85% reduction in total organic carbon (TOC) and total solids was observed. Bioaccumulation of metals was identified by X-ray diffraction (XRD) analysis. The effective decolorization was confirmed from the results of UV-vis spectroscopy, high performance liquid chromatography and Fourier transformed infrared spectrometer analyzes. The possible degradation pathway was obtained from the analysis of liquid chromatography-mass spectroscopy analysis and the metabolites such as 2-amino naphthalene and N-phenyl-1.3,5 triazine were observed. The toxic nature of the effluent was analyzed using phyto-toxicity, cell-death assay and geno-toxicity tests. PMID:25594688

  7. Electroadsorption of acilan blau dye from textile effluents by using activated carbon-perlite mixtures.

    PubMed

    Koparal, A S; Yavuz, Y; Bakir Ogütveren, U

    2002-01-01

    The feasibility of the removal of dye stuffs from textile effluents by electroadsorption has been investigated. An activated carbon-perlite mixture with a ratio of 8:1 for bipolarity has been used as the adsorbent. Conventional adsorption experiments have also been conducted for comparison. A bipolar trickle reactor has been used in the electroadsorption experiments. The model wastewater has been prepared by using acilan blau dye. Initial dye concentration, bed height between the electrodes, applied potential, flowrate, and the supporting electrolyte concentration have been examined as the parameters affecting the removal efficiency. A local textile plant effluent has been treated in the optimum values of these parameters obtained from the experimental studies. Adsorption kinetics and the amount of adsorbent required to reach the maximum removal efficiency have also been investigated and mass-transfer coefficients have been calculated for adsorption and electroadsorption. The results showed that a removal efficiency of up to 100% can be achieved with energy consumption values of 1.58 kWh/m3 of wastewater treated. However, energy consumption decreases to 0.09 kWh/m3 if an exit dye concentration of 4.65 mg/L is accepted. It can be concluded from this work that this method combines all of the advantages of the activated-carbon adsorption and electrolytic methods for the removal of dyes from wastewater.

  8. Biodecolorization of Textile Dye Effluent by Biosorption on Fungal Biomass Materials

    NASA Astrophysics Data System (ADS)

    Kabbout, Rana; Taha, Samir

    Colored industrial effluents have become a vital source of water pollution, and because water is the most important natural source; its treatment is a responsibility. Usually colored wastewater is treated by physical and chemical processes. But these technologies are ineffective in removing dyes, expensive and not adaptable to a wide range of colored water. Biosorption was identified as the preferred technique for bleaching colored wastewater by giving the best results. This treatment was based on the use of dead fungal biomass as new material for treating industrial colored effluents by biosorption. We studied the ability of biosorption of methylene blue (MB) by Aspergillus fumigatus and optimize the conditions for better absorption. Biosorption reaches 68% at 120 min. Similarly, the biosorbed amount increases up to 65% with pH from 4 to 6, and it's similar and around 90% for pH from 7 to 13. At ambient temperature 20-22 °C, the percentage of biosorption of methylene blue was optimal. The kinetic of biosorption is directly related to the surface of biosorbent when the particle size is also an important factor affecting the ability of biosorption. Also the biosorption of methylene blue increases with the dose of biosorbent due to an augmentation of the adsorption surface. In this study, for an initial concentration of 12 mg/L of MB (biosorbent/solution ratio=2g/L) buffered to alkaline pH, and a contact time of 120 min, biosorption takes place at an ambient temperature and reaches 93.5% under these conditions.

  9. Development of a bioreactor for remediation of textile effluent and dye mixture: a plant-bacterial synergistic strategy.

    PubMed

    Kabra, Akhil N; Khandare, Rahul V; Govindwar, Sanjay P

    2013-03-01

    The objective of the present work was to develop a plant-bacterial synergistic system for efficient treatment of the textile effluents. Decolorization of the dye Scarlet RR and a dye mixture was studied under in vitro conditions using Glandularia pulchella (Sweet) Tronc., Pseudomonas monteilii ANK and their consortium. Four reactors viz. soil, bacteria, plant and consortium were developed that were subjected for treatment of textile effluents and dye mixture. Under in vitro conditions G. pulchella and P. monteilii showed decolorization of the dye Scarlet RR (SRR) by 97 and 84%, within 72 and 96 h respectively, while their consortium showed 100% decolorization of the dye within 48 h. In case of dye mixture G. pulchella, P. monteilii and consortium-PG showed an ADMI removal of 78, 67 and 92% respectively within 96 h. During decolorization of SRR G. pulchella showed induction in the activities of enzymes lignin peroxidase and DCIP reductase while P. monteilii showed induction of laccase, DCIP reductase and tyrosinase, indicating their involvement in the dye metabolism. High Performance Liquid Chromatography (HPLC), Fourier Transform Infra Red Spectroscopy (FTIR) and High Performance Thin Layer Chromatography (HPTLC) confirmed the biotransformation of SRR and dye mixture into different metabolites. Soil, bacteria, plant and consortium reactors performed an ADMI removal of 42, 46, 62 and 93% in the first decolorization cycle while it showed an average ADMI removal of 21, 27, 59 and 93% in the next three (second, third and fourth) decolorization cycles respectively for the dye mixture within 24 h. Consortium reactor showed an average ADMI removal of 95% within 48 and 60 h for textile effluents A and B respectively for three decolorization cycles, while it showed an average TOC, COD and BOD removal of 74, 70 and 70%, 66, 72 and 67%, and 70, 70 and 66% for three decolorization cycles of the dye mixture (second, third and fourth decolorization cycles), effluent A and

  10. Decolorization of dye-containing textile industry effluents using Ganoderma lucidum IBL-05 in still cultures.

    PubMed

    Asgher, Muhammad; Noreen, Sadia; Bhatti, Haq Nawaz

    2010-04-01

    A locally isolated white rot fungus Ganoderma lucidum IBL-05 was used for development of a bioremediation process for original textile industry effluents. Dye-containing effluents of different colors were collected from the Arzoo (maroon), Ayesha (yellow), Ittemad (green), Crescent (navy blue) and Magna (yellowish) textile industries of Faisalabad, Pakistan. G. lucidum IBL-05 was screened for its decolorization potential on all the effluents. Maximum decolorization (49.5 %) was observed in the case of the Arzoo textile industry (ART) effluent (lambda(max) = 515 nm) on the 10th day of incubation. Therefore, the ART effluent was selected for optimization of its decolorization process. Process optimization could improve color removal efficiency of the fungus to 95% within only 2 days, catalyzed by manganese peroxidase (1295 U/mL) as the main enzyme activity at pH 3 and 35 degrees C using 1% starch supplemented Kirk's basal medium. Nitrogen addition inhibited enzyme formation and effluent decolorization. The economics and effectiveness of the process can be improved by further process optimization.

  11. Potential of immobilized bitter gourd (Momordica charantia) peroxidases in the decolorization and removal of textile dyes from polluted wastewater and dyeing effluent.

    PubMed

    Akhtar, Suhail; Khan, Amjad Ali; Husain, Qayyum

    2005-07-01

    Immobilized peroxidases from Momordica charantia were highly effective in decolorizing reactive textile dyes compared to its soluble counterpart. Dye solutions, 50-200 mg/l, were treated with soluble and immobilized bitter gourd peroxidases (specific activity of 99.0 EU per mg protein). The decolorization of dyes with soluble and immobilized enzyme was maximum in the range of pH 3.0-4.0. The effect of different temperatures on the dye decolorization was monitored and it was observed that all the dyes were maximally decolorized at 40 degrees C. In order to examine the operational stability of the immobilized preparation, the enzyme was repeatedly exploited for the decolorization of the dyes from fresh batch of dye solutions. Even after 10 cycles in each case the immobilized preparation retained nearly 50% of the initial enzyme activity. The immobilized enzyme exhibited more than 90% of the original activity while the soluble enzyme lost 33% of the initial activity when stored for 40 d at room temperature. Mixtures of three, four and eight dyes were prepared and treated with soluble and immobilized bitter gourd peroxidase. Each mixture was decolorized by more than 80% when treated with immobilized enzyme. Dyeing effluent collected from local dyers was treated with both types of enzyme preparations. Immobilized enzyme was capable of removing remarkably high concentration of color from the effluent. TOC content of soluble and immobilized enzyme treated individual dyes, mixture of dyes and dyeing effluent was determined and it was observed that higher TOC was removed after treatment with immobilized enzyme.

  12. Removal of methylene blue from dye effluent using ageratum conyzoide leaf powder (ACLP)

    NASA Astrophysics Data System (ADS)

    Ezechi, Ezerie Henry; Kutty, Shamsul Rahman bin Mohamed; Malakahmad, Amirhossein; Isa, Mohamed Hasnain; Aminu, Nasiru; Salihi, Ibrahim Umar

    2015-07-01

    Methylene blue (MB), a common environmental pollutant discharged from dye effluents were removed from synthetic effluents in this study using ageratum conyzoide leaf powder. Effects of operating parameters such as pH, initial Methylene blue concentration, adsorbent weight and contact time were examined on methylene blue removal whereas stirring speed was constant at 100 rpm. Results show that low pH (3-4) had more Methylene blue removal than high pH. Methylene blue removal decreased when initial concentration was increased but increased when adsorbent weight was increased. Removal of Methylene blue by Ageratum conyzoide leaf powder was rapid and significantly above 80% in all initial concentrations examined. At optimum conditions of pH 3, 20 minutes contact time and adsorbent weight of 60 mg for Methylene blue initial concentration of 20 mg/L, 40 mg/L and 60 mg/L, Methylene blue removal of 84.7%, 83.9% and 81.2% were obtained respectively. Results suggest that Ageratum conyzoide leaf powder could be potential adsorbents for Methylene blue removal from dye effluents.

  13. Physicochemical characterization and Bioremediation perspective of textile effluent, dyes and metals by indigenous Bacteria.

    PubMed

    Ali, Naeem; Hameed, Abdul; Ahmed, Safia

    2009-05-15

    Physicochemical and bacteriological status of a local textile mill effluent showed considerably high values of temperature (40 degrees C), pH (9.50), EC (3.57mus/m), BOD (548mgl(-1)), COD (1632mgl(-1)), TSS (5496mgl(-1)), TDS (2512mgl(-1)), heavy metals ions (0.28-6.36mgl(-1)) and color above the prescribed fresh water limits. However, a considerable decline in almost all pollution indicators from source to sink indicated signs of natural remediation. Ten bacteria strains isolated from effluent showed comparatively higher resistance (MRL) (mgl(-1)) (average) for 10 heavy metals than against four structurally different dyes tested on solid media of mineral salt. Overall bacterial resistance was quite high against Fe(3+) (2820), Cr(3+) (1203), Zn(2+) (1122), Mn(2+) (804) and Pb(2+) (435), whereas, it varied amid 300-500 in four dyes. Bacterial decolorization/degradation of dyes indicated on solid media was confirmed through experiments carried out in liquid broth.

  14. Study on quality of effluent discharge by the Tiruppur textile dyeing units and its impact on river Noyyal, Tamil Nadu (India).

    PubMed

    Rajkumar, A Samuel; Nagan, S

    2010-10-01

    In Tiruppur, 729 textile dyeing units are under operation and these units generate 96.1 MLD of wastewater. The untreated effluent was discharged into the Noyyal River till 1997. After the issuance of directions by Tamil Nadu Pollution Control Board (TNPCB) in 1997, these units have installed 8 common effluent treatment plants (CETP) consisting of physical, chemical and biological treatment units. Some of the units have installed individual ETP (IETP). The treated effluent was finally discharged into the river. The dyeing units use sodium chloride in the dyeing process for efficient fixing of dye in the fabric efficiently. This contributes high total dissolved solids (TDS) and chlorides in the effluent. CETPs and IETPs failed to meet discharge standards of TDS and chlorides and thereby significantly affected the river water quality. TDS level in the river water was in the range of 900 - 6600 mg/L, and chloride was in the range of 230 - 2700 mg/L. Orathupalayam dam is located across Noyyal river at 32 km down stream of Tiruppur. The pollutants carried by the river were accumulated in the dam. TDS in the dam water was in the range of 4250 - 7900 mg/L and chloride was in the range of 1600 - 2700 mg/L. The dam sediments contain heavy metals of chromium, copper, zinc and lead. In 2006, the High Court has directed the dyeing units to install zero liquid discharge (ZLD) plant and to stop discharging of effluent into the river. Accordingly, the industries have installed and commissioned the ZLD plant consisting of RO plant and reject management system in 2010. The effluent after secondary treatment from the CETP is further treated in RO plant. The RO permeate is reused by the member units. The RO reject is concentrated in multiple effect evaporator (MEE)/ mechanical vacuum re-compressor (MVR). The concentrate is crystallized and centrifuged to recover salt. The salt recovered is reused. The liquid separated from the centrifuge is sent to solar evaporation pan. The salt

  15. Process parameters for decolorization and biodegradation of orange II (Acid Orange 7) in dye-simulated minimal salt medium and subsequent textile effluent treatment by Bacillus cereus (MTCC 9777) RMLAU1.

    PubMed

    Garg, Satyendra Kumar; Tripathi, Manikant

    2013-11-01

    In this study, Bacillus cereus isolate from tannery effluent was employed for orange II dye decolorization in simulated minimal salt broth and textile effluent. Most of the physicochemical parameters of textile effluent were above the permissible limits. The strain was highly tolerant to dye up to 500 mg l(-1). Increasing dye concentration exerted inhibitory effect on the bacterial growth and decolorization. The maximum decolorization of initial 100 mg dye l(-1) was achieved at optimum pH 8.0 and 33 °C under static culture conditions during 96-h incubation. Supplementation with optimized glucose (0.4%, w/v) and ammonium sulfate (0.1%, w/v) with 3.0% B. cereus inoculum further enhanced dye decolorization to highest 68.5% within 96-h incubation. A direct correlation was evident between bacterial growth and dye decolorization. Under above optimized conditions, 24.3% decolorization of unsterilized real textile effluent by native microflora was achieved. The effluent decolorization enhanced substantially to 37.1% with B. cereus augmentation and to 40.5% when supplemented with glucose and ammonium sulfate without augmentation. The maximum decolorization of 52.5% occurred when textile effluent was supplemented with optimized exogenous carbon and nitrogen sources along with B. cereus augmentation. Gas chromatography-mass spectrometry identified sulfanilic acid as orange II degradation product. Fourier transform infra red spectroscopy of metabolic products indicated the presence of amino and hydroxyl functional groups. This strain may be suitably employed for in situ decolorization of textile industrial effluent under broad environmental conditions.

  16. Significant reduction in toxicity, BOD, and COD of textile dyes and textile industry effluent by a novel bacterium Pseudomonas sp. LBC1.

    PubMed

    Telke, Amar A; Kim, Seon-Won; Govindwar, Sanjay P

    2012-03-01

    The 16S rRNA sequence analysis and biochemical characteristics were confirmed that the isolated bacterium is Pseudomonas sp. LBC1. The commonly used textile dye, Direct Brown MR has been used to study the fate of biodegradation. Pseudomonas sp. LBC1 showed 90% decolorization of Direct Brown MR (100 mg/L) and textile industry effluent with significant reduction in COD and BOD. The optimum condition for decolorization was 7.0 pH and 40°C. Significant increase in a activity of extracellular laccase suggested their possible involvement in decolorization of Direct Brown MR. Biodegradation metabolites viz. 3,6-dihydroxy benzoic acid, 2-hydroxy-7-aminonaphthol-3-sulfonic acid, and p-dihydroperoxybenzene were identified on the basis of mass spectra and using the 1.10 beta Shimadzu NIST GC-MS library. The Direct Brown MR and textile industry effluent were toxic to Sorghum bicolor and Vigna radiata plants as compared to metabolites obtained after decolorization. The Pseudomonas sp. LBC1 could be useful strain for decolorization and detoxification of textile dyes as well as textile industry effluent.

  17. Direct dyes removal using modified magnetic ferrite nanoparticle

    PubMed Central

    2014-01-01

    The magnetic adsorbent nanoparticle was modified using cationic surface active agent. Zinc ferrite nanoparticle and cetyl trimethylammonium bromide were used as an adsorbent and a surface active agent, respectively. Dye removal ability of the surface modified nanoparticle as an adsorbent was investigated. Direct Green 6 (DG6), Direct Red 31 (DR31) and Direct Red 23 (DR23) were used. The characteristics of the adsorbent were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of adsorbent dosage, initial dye concentration and salt was evaluated. In ternary system, dye removal of the adsorbent at 90, 120, 150 and 200 mg/L dye concentration was 63, 45, 30 and 23% for DR23, 97, 90, 78 and 45% for DR31 and 51, 48, 42 and 37% for DG6, respectively. It was found that dye adsorption onto the adsorbent followed Langmuir isotherm. The adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. PMID:24991427

  18. Aerobic decolorization and detoxification of a disperse dye in textile effluent by a new isolate of Bacillus sp.

    PubMed

    Pourbabaee, A A; Malekzadeh, F; Sarbolouki, M N; Najafi, F

    2006-03-01

    A number of aerobic species capable of decolorizing some of the dyes in a textile mill effluent were isolated. One of the isolates was able to decolorize Terasil black dye under aerobic conditions in the presence of an exogenous carbon source after 5 days. Glucose or starch (%1 ea) are essential for decolorization but the process proceeds faster in the presence of 0.5% yeast extract. Results of the BOD(5) show that the untreated effluent samples have a low BOD value, whereas treated samples show an initial increase in BOD up to 15 days followed by a decrease after 20 days. FT-IR and GC-MS data also reveal that the initial components in the untreated effluent disappear after 20 days of treatment, confirming biodegradation of the dye. Phytotoxicity tests on the untreated effluent samples using the seeds of Lens orientalis, Triticum aestivum, and Triticum boeoticum indicate that the first one is the most sensitive while the last one is the most resistant. On the other hand the treated effluent allows 90% germination in Triticum boeoticum seeds and 100% germination in the other two.

  19. Applicability and costs of nanofiltration in combination with photocatalysis for the treatment of dye house effluents

    PubMed Central

    Samhaber, Wolfgang M

    2014-01-01

    Summary Nanofiltration (NF) is a capable method for the separation of dyes, which can support and even improve the applicability of photocatalysis in effluent-treatment processes. The membrane process usually will need a special pre-treatment to avoid precipitation and fouling on the membrane surface. Conceptually NF can be applied in the pre-treatment prior to the catalytic reactor or in connection with the reactor to separate the liquid phase from the reaction system and to recycle finely suspended catalysts and/or organic compounds. When concerning such reaction systems on a bigger scale, cost figures will prove the usefulness of those concepts. Different applications of photocatalysis on the lab-scale have been published in recent years. Membrane technology is used almost in all those processes and an overview will be given of those recently published systems that have been reported to be potentially useful for a further scale-up. NF membranes are mostly used for the more sophisticated separation step of these processes and the additional costs of the NF treatment, without any associated equipments, will be described and illustrated. The total specific costs of industrial NF treatment processes in usefully adjusted and designed plants range from 1 to 6 US$/m3 treated effluent. Combination concepts will have a good precondition for further development and upscaling, if the NF costs discussed here in detail will be, together with the costs of photocatalysis, economically acceptable. PMID:24778974

  20. Applicability and costs of nanofiltration in combination with photocatalysis for the treatment of dye house effluents.

    PubMed

    Samhaber, Wolfgang M; Nguyen, Minh Tan

    2014-01-01

    Nanofiltration (NF) is a capable method for the separation of dyes, which can support and even improve the applicability of photocatalysis in effluent-treatment processes. The membrane process usually will need a special pre-treatment to avoid precipitation and fouling on the membrane surface. Conceptually NF can be applied in the pre-treatment prior to the catalytic reactor or in connection with the reactor to separate the liquid phase from the reaction system and to recycle finely suspended catalysts and/or organic compounds. When concerning such reaction systems on a bigger scale, cost figures will prove the usefulness of those concepts. Different applications of photocatalysis on the lab-scale have been published in recent years. Membrane technology is used almost in all those processes and an overview will be given of those recently published systems that have been reported to be potentially useful for a further scale-up. NF membranes are mostly used for the more sophisticated separation step of these processes and the additional costs of the NF treatment, without any associated equipments, will be described and illustrated. The total specific costs of industrial NF treatment processes in usefully adjusted and designed plants range from 1 to 6 US$/m(3) treated effluent. Combination concepts will have a good precondition for further development and upscaling, if the NF costs discussed here in detail will be, together with the costs of photocatalysis, economically acceptable.

  1. Treatment of direct blending dye wastewater and recycling of dye sludge.

    PubMed

    Xu, Xin-Hui; Li, Ming-Li; Yuan, Yuan

    2012-01-01

    A new sorbent material, barium sulfate-Direct Blending Yellow D-3RNL hybrid (BSD), was synthesized and characterized by various methods. Both the anionic dyes, Reactive Brilliant Red X-3B and Weak Acid Green GS were hardly adsorbed by the BSD material, while the sorption of Ethyl Violet (EV) and Victoria Blue B were extremely obvious. The sorption of cationic dyes obeyed the Langmuir isotherm model, which depended on the electric charge attraction. The saturation amount of EV adsorbed onto the BSD material approached to 39.36 mg/g. The sorption of EV changed little with pH from 3 to 12 while it increased with increasing levels of electrolyte. A dye wastewater sampled from Jinjiang Chemicals was treated, and the color removal rate was more than the COD removal rate. In addition, the cationic dye-BSD sludge was utilized as a colorant fill-in coating. The light stability and thermal stability of the colorant was measured and exhibited good features. This work provided a simple and eco-friendly method for dye wastewater treatment with recycling of waste.

  2. An improved method for removal of azo dye orange II from textile effluent using albumin as sorbent.

    PubMed

    Ohashi, Tadashi; Jara, Alícia M T; Batista, Anabelle C L; Franco, Luciana O; Barbosa Lima, Marcos A; Benachour, Mohand; Alves da Silva, Carlos A; Campos-Takaki, Galba M

    2012-11-30

    Azo dyes are generally resistant to biodegradation due to their complex structures. Acid orange II is one of the most widely used dyes in the textile industry. The influence of bovine serum albumin (BSA) in different concentrations, pH, and time of contact on Orange II was investigated using kinetics and adsorption-isotherm experiments. The results showed that the maximum colour removed from dye/albumin was 99.50% and that a stable dye-protein complex had been formed at pH 3.5 and in a proportion of 1:3 (v/v), respectively. The synthetic effluent did not show toxicity to the microcrustacean Artemia salina, and showed a CL₅₀ equal to 97 µg/mL to azo dye orange II. Additionally, the methodology was effective in removing the maximum of orange II using BSA by adsorption at pH 3.5 which mainly attracted ions to the azo dye during the adsorption process. This suggests that this form of treatment is economical and easy to use which potentially could lead to bovine serum albumin being used as a sorbent for azo dyes.

  3. Effect of mercerization and gamma irradiation on the dyeing behaviour of cotton using stilbene based direct dye

    NASA Astrophysics Data System (ADS)

    Bhatti, Ijaz Ahmad; Adeel, Shahid; Fazal-ur-Rehman; Irshad, Misbah; Abbas, Muhammad

    2012-07-01

    The dyeing behaviour of mercerized and gamma irradiated cotton fabric using stilbene based direct dye has been investigated. The fabric was treated with different concentrations of alkali to optimize the mercerization. The optimum mercerized cotton fabric was irradiated to absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. Dyeing was performed using irradiated and un-irradiated cotton with dye solutions. The dyeing parameters such as temperature, time of dyeing, pH of dyeing solutions and salt concentration were optimized. The colour strength values of dyed fabrics were evaluated by comparing irradiated and un-irradiated cotton in CIE Lab system using Spectra flash SF650. Methods suggested by International Standard Organization (ISO) were employed to study the effect of gamma irradiation on the colourfastness properties of dyed fabric. It was found that mercerized and irradiated cotton have not only improved the colour strength but enhanced the rating of fastness properties also.

  4. Abatements of reduced sulphur compounds, colour, and organic matter from indigo dyeing effluents by electrocoagulation.

    PubMed

    Tünay, Olcay; Simşeker, Merve; Kabdaşli, Isik; Olmez-Hanci, Tugba

    2014-08-01

    In the present study, the treatability of indigo dyeing effluents by the electrocoagulation (EC) process using stainless steel electrodes was experimentally investigated. The samples used were concentrated with main pollutant parameters of chemical oxygen demand (COD) (1000-1100 mg/L), reduced sulphur species (over 2000 mg SO2-(3)/L), and colour (0.12-0.13 1/cm). The study focused on the effect of main operation parameters on the EC process performance in terms of abatement of reduced sulphur compounds as well as decolourization and organic matter reduction. Results indicated that the performance of EC proved to be high providing total oxidation of the reduced sulphur compounds, almost complete decolourization, and COD removal up to 90%. Increasing applied current density from 22.5 to 45 mA/cm2 appreciably improved abatement of the reduced sulphur compounds for Sample I, but a further increase in the applied current density to 67.5 mA/cm2 did not accelerate the conversion rate to sulphate. The process performance was adversely affected by increasing initial concentration of the reduced sulphur compounds. Decolourization and organic matter removal efficiency enhanced with increasing applied current density. The main removal mechanism of the reduced sulphur compounds by EC was explained as conversion to sulphate via oxidation. Conversion rate to sulphate fitted pseudo-first-order kinetics very well.

  5. Decolorization and detoxification of sulfonated azo dye C.I. Remazol Red and textile effluent by isolated Lysinibacillus sp. RGS.

    PubMed

    Saratale, Rijuta G; Gandhi, Soniya S; Purankar, Madhavi V; Kurade, Mayur B; Govindwar, Sanjay P; Oh, Sang Eun; Saratale, Ganesh D

    2013-06-01

    A novel bacterium was isolated from the soil of Ichalkaranji textile industrial area. Through 16S rRNA sequence matching and morphological observation it was identified as Lysinibacillus sp. RGS. This strain has ability to decolorize various industrial dyes among which, it showed complete decolorization and degradation of toxic sulfonated azo dye C.I. Remazol Red (at 30°C, pH 7.0, under static condition) with higher chemical oxygen demand (COD) reduction (92%) within 6 h of incubation. Various parameters like agitation, pH, temperature and initial dye concentrations were optimized to develop faster decolorization process. The supplementation of cheap co-substrates (e.g., extracts of agricultural wastes) could enhance the decolorization performance of Lysinibacillus sp. RGS. Induction in oxidoreductive enzymes presumably indicates involvement of these enzymes in the decolorization/degradation process. Analytical studies of the extracted metabolites confirmed the significant degradation of Remazol Red into various metabolites. The phytotoxicity assay (with respect to plants Phaseolus mungo and Sorghum vulgare) revealed that the degradation of Remazol Red produced nontoxic metabolites. Finally Lysinibacillus sp. RGS was applied to decolorize mixture of dyes and actual industrial effluent showing 87% and 72% decolorization (in terms of decrease in ADMI value) with 69% and 62% COD reduction within 48 h and 96 h, respectively. The foregoing result increases the applicability of the strain for the treatment of industrial wastewaters containing dye pollutants.

  6. Decolorization and detoxification of sulfonated toxic diazo dye C.I. Direct Red 81 by Enterococcus faecalis YZ 66.

    PubMed

    Sahasrabudhe, Madhuri M; Saratale, Rijuta G; Saratale, Ganesh D; Pathade, Girish R

    2014-01-01

    Isolated Enterococcus faecalis YZ 66 strain shows ability to decolorize various industrial dyes among which, it showed complete decolorization and degradation of toxic, sulfonated recalcitrant diazo dye Direct Red 81 (50 mg/L) within 1.5 h of incubation under static anoxic condition. The optimum pH and temperature for decolorization was 7.0 and 40°C, respectively. Significant induction in the activity of intracellular oxidoreductive enzymes suggested its involvement in the decolorization of Direct Red 81. The biodegradation of Direct Red 81 was monitored by UV-Visible, FT-IR spectroscopy and HPLC. The final products were characterized by GC-MS and possible pathway of the degradation of the dye was proposed. The phytotoxicity assay (with respect to plants Sorghum vulgare and Phaseolus mungo) revealed that the degradation of Direct Red 81 produced nontoxic metabolites. Finally E. faecalis was employed to decolorize actual industrial effluent showing decolorization (in terms of ADMI value) with moderate COD and BOD reduction. Moreover the result increases the applicability of the strain for the treatment of industrial wastewaters containing dye pollutants. PMID:25649265

  7. Decolorization and detoxification of sulfonated toxic diazo dye C.I. Direct Red 81 by Enterococcus faecalis YZ 66.

    PubMed

    Sahasrabudhe, Madhuri M; Saratale, Rijuta G; Saratale, Ganesh D; Pathade, Girish R

    2014-01-01

    Isolated Enterococcus faecalis YZ 66 strain shows ability to decolorize various industrial dyes among which, it showed complete decolorization and degradation of toxic, sulfonated recalcitrant diazo dye Direct Red 81 (50 mg/L) within 1.5 h of incubation under static anoxic condition. The optimum pH and temperature for decolorization was 7.0 and 40°C, respectively. Significant induction in the activity of intracellular oxidoreductive enzymes suggested its involvement in the decolorization of Direct Red 81. The biodegradation of Direct Red 81 was monitored by UV-Visible, FT-IR spectroscopy and HPLC. The final products were characterized by GC-MS and possible pathway of the degradation of the dye was proposed. The phytotoxicity assay (with respect to plants Sorghum vulgare and Phaseolus mungo) revealed that the degradation of Direct Red 81 produced nontoxic metabolites. Finally E. faecalis was employed to decolorize actual industrial effluent showing decolorization (in terms of ADMI value) with moderate COD and BOD reduction. Moreover the result increases the applicability of the strain for the treatment of industrial wastewaters containing dye pollutants.

  8. Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source.

    PubMed

    Alves de Lima, Rodrigo Otávio; Bazo, Ana Paula; Salvadori, Daisy Maria Fávero; Rech, Célia Maria; de Palma Oliveira, Danielle; de Aragão Umbuzeiro, Gisela

    2007-01-10

    Recently a textile azo dye processing plant effluent was identified as one of the sources of mutagenic activity detected in the Cristais River, a drinking water source in Brazil [G.A. Umbuzeiro, D.A. Roubicek, C.M. Rech, M.I.Z. Sato, L.D. Claxton, Investigating the sources of the mutagenic activity found in a river using the Salmonella assay and different water extraction procedures, Chemosphere 54 (2004) 1589-1597]. Besides presenting high mutagenic activity in the Salmonella/microsome assay, the mutagenic nitro-aminoazobenzenes dyes CI Disperse Blue 373, CI Disperse Violet 93, and CI Disperse Orange 37 [G.A. Umbuzeiro, H.S. Freeman, S.H. Warren, D.P. Oliveira, Y. Terao, T. Watanabe, L.D. Claxton, The contribution of azo dyes in the mutagenic activity of the Cristais river, Chemosphere 60 (2005) 55-64] as well as benzidine, a known carcinogenic compound [T.M. Mazzo, A.A. Saczk, G.A. Umbuzeiro, M.V.B. Zanoni, Analysis of aromatic amines in surface waters receiving wastewater from textile industry by liquid chromatographic with eletrochemical detection, Anal. Lett., in press] were found in this effluent. After approximately 6 km from the discharge of this effluent, a drinking water treatment plant treats and distributes the water to a population of approximate 60,000. As shown previously, the mutagens in the DWTP intake water are not completely removed by the treatment. The water used for human consumption presented mutagenic activity related to nitro-aromatics and aromatic amines compounds probably derived from the cited textile processing plant effluent discharge [G.A. Umbuzeiro, D.A. Roubicek, C.M. Rech, M.I.Z. Sato, L.D. Claxton, Investigating the sources of the mutagenic activity found in a river using the Salmonella assay and different water extraction procedures, Chemosphere 54 (2004) 1589-1597; G.A. Umbuzeiro, H.S. Freeman, S.H. Warren, D.P. Oliveira, Y. Terao, T. Watanabe, L.D. Claxton, The contribution of azo dyes in the mutagenic activity of the Cristais

  9. Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by Aeromonas hydrophila Isolated from Industrial Effluent

    PubMed Central

    Ogugbue, Chimezie Jason; Sawidis, Thomas

    2011-01-01

    Economical and bio-friendly approaches are needed to remediate dye-contaminated wastewater from various industries. In this study, a novel bacterial strain capable of decolorizing triarylmethane dyes was isolated from a textile wastewater treatment plant in Greece. The bacterial isolate was identified as Aeromonas hydrophila and was shown to decolorize three triarylmethane dyes tested within 24 h with color removal in the range of 72% to 96%. Decolorization efficiency of the bacterium was a function of operational parameters (aeration, dye concentration, temperature, and pH) and the optimal operational conditions obtained for decolorization of the dyes were: pH 7-8, 35°C and culture agitation. Effective color removal within 24 h was obtained at a maximum dye concentration of 50 mg/L. Dye decolorization was monitored using a scanning UV/visible spectrophotometer which indicated that decolorization was due to the degradation of dyes into non-colored intermediates. Phytotoxicity studies carried out using Triticum aestivum, Hordeum vulgare, and Lens esculenta revealed the triarylmethane dyes exerted toxic effects on plant growth parameters monitored. However, significant reduction in toxicity was obtained with the decolorized dye metabolites thus, indicating the detoxification of the dyes following degradation by Aeromonas hydrophila. PMID:21808740

  10. Comparative analysis of bioremediation potential of adapted and non-adapted fungi on azo dye containing textile effluent.

    PubMed

    Rajendran, R; Karthik Sundaram, S; Prabhavathi, P; Sridevi, B V; Gopi, V

    2011-06-01

    About 4 different predominant adapted fungal strains (screened from effluent sample) Aspergillus sp., Penicillium sp., Fusarium sp. and Mucor sp. and 4 predominant non-adapted strains (screened from soil, water and fungal fruiting bodies) Aspergillus sp., Penicillium sp., Fusarium sp. and Rhizopus sp., with potential dye decolorization ability on Reactive black 5, Amido black-10B, Red 5B, Reactive red 120 and Anthraquinone violet R were isolated. These organisms were used to develop a consortium which was used in analyzing the bioremediation efficiency on textile effluents containing a mixture of azo dyes. There was about 67% of reduction in color along with 34% of COD reduction by non-adapted fungal consortium while effective bioremediation efficiency was observed in adapted fungal consortium (Color 75% and COD 50%). The regression co-efficient for Langmuir and Freundlich adsorption isotherms were found to be higher for adapted fungal consortium (R2 = 0.97 and R2 = 0.92) than the non-adapted consortium (R2 = 0.97 and R2 = 0.85) proving that both monolayer and multilayer adsorption of dyes were observed on treating the samples with the adapted fungal consortium. On analyzing the results observed through chi-square test, the calculated value (28.712) was higher than the tabulated value (9.49) at a 4 degree freedom hence the hypothesis was rejected. So, there was an association between adapted fungal consortium and non-adapted fungal consortium and hence the adapted fungal consortium could be considered potentially useful for the bioremediation of textile effluent.

  11. Decolorization and degradation of xenobiotic azo dye Reactive Yellow-84A and textile effluent by Galactomyces geotrichum.

    PubMed

    Govindwar, Sanjay P; Kurade, Mayur B; Tamboli, Dhawal P; Kabra, Akhil N; Kim, Pil Joo; Waghmode, Tatoba R

    2014-08-01

    Galactomyces geotrichum MTCC 1360 exhibited 86% decolorization of azo dye Reactive Yellow-84A (50mgL(-1)) within 30h at 30°C and pH 7.0 under static condition. Examination of azoreductase, laccase and tyrosinase enzyme activities confirmed their prominent role in Reactive Yellow-84A degradation. Considerable reduction of COD (73%) and TOC (62%) during degradation of the dye was indicative of conversion of complex dye into simple products, which were further analyzed by HPLC, FTIR, GC-MS and HPTLC. The degradation products were identified as 4(5-hydroxy, 4-amino cyclopentane) sulfobenzene and 4(5-hydroxy cyclopentane) sulfobenzene by GC-MS. In addition, when G. geotrichum was applied to decolorize textile effluent, it showed 85% of true color removal (ADMI removal) within 72h, along with a significant reduction in TOC and COD. Phytotoxicity studies revealed the less toxic nature of degraded Reactive Yellow-84A as compared to original dye.

  12. Treatability studies with granular activated carbon (GAC) and sequencing batch reactor (SBR) system for textile wastewater containing direct dyes.

    PubMed

    Sirianuntapiboon, Suntud; Sansak, Jutarat

    2008-11-30

    The GAC-SBR efficiency was decreased with the increase of dyestuff concentration or the decrease of bio-sludge concentration. The system showed the highest removal efficiency with synthetic textile wastewater (STWW) containing 40 mg/L direct red 23 or direct blue 201 under MLSS of 3,000 mg/L and hydraulic retention time (HRT) of 7.5 days. But, the effluent NO(3)(-) was higher than that of the influent. Direct red 23 was more effective than direct blue 201 to repress the GAC-SBR system efficiency. The dyes removal efficiency of the system with STWW containing direct red 23 was reduced by 30% with the increase of direct red 23 from 40 mg/L to 160 mg/L. The system with raw textile wastewater (TWW) showed quite low BOD(5) TKN and dye removal efficiencies of only 64.7+/-4.9% and 50.2+/-6.9%, respectively. But its' efficiencies could be increased by adding carbon sources (BOD(5)). The dye removal efficiency with TWW was increased by 30% and 20% by adding glucose (TWW+glucose) or Thai rice noodle wastewater (TWW+TRNWW), respectively. SRT of the systems were 28+/-1 days and 31+/-2 days with TWW+glucose and TWW+TRNWW, respectively.

  13. Exploiting the efficacy of Lysinibacillus sp. RGS for decolorization and detoxification of industrial dyes, textile effluent and bioreactor studies.

    PubMed

    Saratale, Rijuta G; Saratale, Ganesh D; Govindwar, Sanjay P; Kim, Dong S

    2015-01-01

    Complete decolorization and detoxification of Reactive Orange 4 within 5 h (pH 6.6, at 30°C) by isolated Lysinibacillus sp. RGS was observed. Significant reduction in TOC (93%) and COD (90%) was indicative of conversion of complex dye into simple products, which were identified as naphthalene moieties by various analytical techniques (HPLC, FTIR, and GC-MS). Supplementation of agricultural waste extract considered as better option to make the process cost effective. Oxido-reductive enzymes were found to be involved in the degradation mechanism. Finally Loofa immobilized Lysinibacillus sp. cells in a fixed-bed bioreactor showed significant decolorization with reduction in TOC (51 and 64%) and COD (54 and 66%) for synthetic and textile effluent at 30 and 35 mL h(-1) feeding rate, respectively. The degraded metabolites showed non-toxic nature revealed by phytotoxicity and photosynthetic pigments content study for Sorghum vulgare and Phaseolus mungo. In addition nitrogen fixing and phosphate solubilizing microbes were less affected in treated wastewater and thus the treated effluent can be used for the irrigation purpose. This work could be useful for the development of efficient and ecofriendly technologies to reduce dye content in the wastewater to permissible levels at affordable cost.

  14. Effective decolorization and adsorption of contaminant from industrial dye effluents using spherical surfaced magnetic (Fe3O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Suriyaprabha, R.; Khan, Samreen Heena; Pathak, Bhawana; Fulekar, M. H.

    2016-04-01

    Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe3O4, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from the industrial effluent. Fe3O4 is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe3O4 nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe3O4 nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe3O4 proved to be the potential material for the adsorption of corresponding

  15. Dissolved organic matter removal using magnetic anion exchange resin treatment on biological effluent of textile dyeing wastewater.

    PubMed

    Fan, Jun; Li, Haibo; Shuang, Chendong; Li, Wentao; Li, Aimin

    2014-08-01

    This study investigated the removal of dissolved organic matter (DOM) from real dyeing bio-treatment effluents (DBEs) with the use of a novel magnetic anion exchange resin (NDMP). DOMs in two typical DBEs were fractionized using DAX-8/XAD-4 resin and ultrafiltration membranes. The hydrophilic fractions and the low molecular weight (MW) (<3kDa) DOM fractions constituted a major portion (>50%) of DOMs for the two effluents. The hydrophilic and low MW fractions of both effluents were the greatest contributors of specific UV254 absorbance (SUVA254), and the SUVA254 of DOM fractions decreased with hydrophobicity and MW. Two DBEs exhibited acute and chronic biotoxicities. Both acute and chronic toxicities of DOM fractions increased linearly with the increase of SUVA254 value. Kinetics of dissolved organic carbon (DOC) removal via NDMP treatment was performed by comparing it with that of particle active carbon (PAC). Results indicated that the removal of DOC from DBEs via NDMP was 60%, whereas DOC removals by PAC were lower than 15%. Acidic organics could be significantly removed with the use of NDMP. DOM with large MW in DBE could be removed significantly by using the same means. Removal efficiency of NDMP for DOM decreased with the decrease of MW. Compared with PAC, NDMP could significantly reduce the acute and chronic bio-toxicities of DBEs. NaCl/NaOH mixture regenerants, with selected concentrations of 10% NaCl (m/m)/1% NaOH (m/m), could improve desorption efficiency. PMID:25108712

  16. Degradation of disperse dye from textile effluent by free and immobilized Cucurbita pepo peroxidase

    NASA Astrophysics Data System (ADS)

    Boucherit, N.; Abouseoud, M.; Adour, L.

    2012-06-01

    Disperse dyes constitute the largest group of dyes used in local textile industry. This work evaluates the potential of the Cucurbita peroxidase(C-peroxidase) extracted from courgette in the decolourization of disperse dye in free and immobilized form. The optimal conditions for immobilization of C-peroxidase in Ca-alginate were identified. The immobilization was optimized at 2%(w/v) of sodium alginate and 0.2 M of calcium chloride. After optimization of treatment parameters, the results indicate that at pH 2, dye concentration: 80 mg/L(for FCP) and 180 mg/L(for ICP), H2O2 dose: 0,02M (for FCP) and 0,12M(for ICP), the decolourization by free and immobilized C-peroxidase were 72.02% and 69.71 % respectively. The degradation pathway and the metabolic products formed after the degradation were also predicted using UV-vis spectroscopy analysis.

  17. Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor.

    PubMed

    Lade, Harshad; Govindwar, Sanjay; Paul, Diby

    2015-06-01

    A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L-1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L-1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h-l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents. PMID:26086710

  18. Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor

    PubMed Central

    Lade, Harshad; Govindwar, Sanjay; Paul, Diby

    2015-01-01

    A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L−1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L−1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h−l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents. PMID:26086710

  19. Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor.

    PubMed

    Lade, Harshad; Govindwar, Sanjay; Paul, Diby

    2015-06-16

    A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L-1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L-1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h-l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents.

  20. Decolorization of Anthraquinonic Dyes from Textile Effluent Using Horseradish Peroxidase: Optimization and Kinetic Study

    PubMed Central

    Šekuljica, Nataša Ž.; Prlainović, Nevena Ž.; Stefanović, Andrea B.; Žuža, Milena G.; Čičkarić, Dragana Z.; Mijin, Dušan Ž.; Knežević-Jugović, Zorica D.

    2015-01-01

    Two anthraquinonic dyes, C.I. Acid Blue 225 and C.I. Acid Violet 109, were used as models to explore the feasibility of using the horseradish peroxidase enzyme (HRP) in the practical decolorization of anthraquinonic dyes in wastewater. The influence of process parameters such as enzyme concentration, hydrogen peroxide concentration, temperature, dye concentration, and pH was examined. The pH and temperature activity profiles were similar for decolorization of both dyes. Under the optimal conditions, 94.7% of C.I. Acid Violet 109 from aqueous solution was decolorized (treatment time 15 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.4 mM, dye concentration 30 mg/L, pH 4, and temperature 24°C) and 89.36% of C.I. Acid Blue 225 (32 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.04 mM, dye concentration 30 mg/L, pH 5, and temperature 24°C). The mechanism of both reactions has been proven to follow the two substrate ping-pong mechanism with substrate inhibition, revealing the formation of a nonproductive or dead-end complex between dye and HRP or between H2O2 and the oxidized form of the enzyme. Both chemical oxygen demand and total organic carbon values showed that there was a reduction in toxicity after the enzymatic treatment. This study verifies the viability of use of horseradish peroxidase for the wastewaters treatment of similar anthraquinonic dyes. PMID:25685837

  1. Decolorization of anthraquinonic dyes from textile effluent using horseradish peroxidase: optimization and kinetic study.

    PubMed

    Šekuljica, Nataša Ž; Prlainović, Nevena Ž; Stefanović, Andrea B; Žuža, Milena G; Čičkarić, Dragana Z; Mijin, Dušan Ž; Knežević-Jugović, Zorica D

    2015-01-01

    Two anthraquinonic dyes, C.I. Acid Blue 225 and C.I. Acid Violet 109, were used as models to explore the feasibility of using the horseradish peroxidase enzyme (HRP) in the practical decolorization of anthraquinonic dyes in wastewater. The influence of process parameters such as enzyme concentration, hydrogen peroxide concentration, temperature, dye concentration, and pH was examined. The pH and temperature activity profiles were similar for decolorization of both dyes. Under the optimal conditions, 94.7% of C.I. Acid Violet 109 from aqueous solution was decolorized (treatment time 15 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.4 mM, dye concentration 30 mg/L, pH 4, and temperature 24°C) and 89.36% of C.I. Acid Blue 225 (32 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.04 mM, dye concentration 30 mg/L, pH 5, and temperature 24°C). The mechanism of both reactions has been proven to follow the two substrate ping-pong mechanism with substrate inhibition, revealing the formation of a nonproductive or dead-end complex between dye and HRP or between H2O2 and the oxidized form of the enzyme. Both chemical oxygen demand and total organic carbon values showed that there was a reduction in toxicity after the enzymatic treatment. This study verifies the viability of use of horseradish peroxidase for the wastewaters treatment of similar anthraquinonic dyes.

  2. Phytoremediation of sulfonated Remazol Red dye and textile effluents by Alternanthera philoxeroides: An anatomical, enzymatic and pilot scale study.

    PubMed

    Rane, Niraj R; Chandanshive, Vishal V; Watharkar, Anuprita D; Khandare, Rahul V; Patil, Tejas S; Pawar, Pankaj K; Govindwar, Sanjay P

    2015-10-15

    Alternanthera philoxeroides Griseb. a macrophyte was found to degrade a highly sulfonated textile dye Remazol Red (RR) completely within 72 h at a concentration of 70 mg L(-1). An induction in the activities of azoreductase and riboflavin reductase was observed in root and stem tissues; while the activities of lignin peroxidase, laccase and DCIP reductase were induced in leaf tissues. Some enzymes namely tyrosinase, veratryl alcohol oxidase, catalase and superoxide dismutase displayed an increase in their activity in all the tissues in response of 72 h exposure to Remazol Red. There was a marginal reduction in contents of chlorophyll a (20%), chlorophyll b (5%) and carotenoids (16%) in the leaves when compared to control plants. A detailed anatomical study of the stem during uptake and treatment revealed a stepwise mechanism of dye degradation. UV-vis spectrophotometric and high performance thin layer chromatographic analyses confirmed the removal of parent dye from solution. Based on the enzymes activities and gas chromatography-mass spectroscopic analysis of degradation products, a possible pathway of phytotransformation of RR was proposed which revealed the formation of 4-(phenylamino)-1,3,5-triazin-2-ol, naphthalene-1-ol and 3-(ethylsulfonyl)phenol. Toxicity study on Devario aequipinnatus fishes showed that the anatomy of gills of fishes exposed to A. philoxeroides treated RR was largely protected. The plants were further explored for rhizofiltration experiments in a pilot scale reactor. A. philoxeroides could decolorize textile industry effluent of varying pH within 96 h of treatment which was evident from the significant reductions in the values of American dye manufacturers' institute color, chemical oxygen demand, biological oxygen demand, total dissolved and total suspended solids.

  3. Phytoremediation of sulfonated Remazol Red dye and textile effluents by Alternanthera philoxeroides: An anatomical, enzymatic and pilot scale study.

    PubMed

    Rane, Niraj R; Chandanshive, Vishal V; Watharkar, Anuprita D; Khandare, Rahul V; Patil, Tejas S; Pawar, Pankaj K; Govindwar, Sanjay P

    2015-10-15

    Alternanthera philoxeroides Griseb. a macrophyte was found to degrade a highly sulfonated textile dye Remazol Red (RR) completely within 72 h at a concentration of 70 mg L(-1). An induction in the activities of azoreductase and riboflavin reductase was observed in root and stem tissues; while the activities of lignin peroxidase, laccase and DCIP reductase were induced in leaf tissues. Some enzymes namely tyrosinase, veratryl alcohol oxidase, catalase and superoxide dismutase displayed an increase in their activity in all the tissues in response of 72 h exposure to Remazol Red. There was a marginal reduction in contents of chlorophyll a (20%), chlorophyll b (5%) and carotenoids (16%) in the leaves when compared to control plants. A detailed anatomical study of the stem during uptake and treatment revealed a stepwise mechanism of dye degradation. UV-vis spectrophotometric and high performance thin layer chromatographic analyses confirmed the removal of parent dye from solution. Based on the enzymes activities and gas chromatography-mass spectroscopic analysis of degradation products, a possible pathway of phytotransformation of RR was proposed which revealed the formation of 4-(phenylamino)-1,3,5-triazin-2-ol, naphthalene-1-ol and 3-(ethylsulfonyl)phenol. Toxicity study on Devario aequipinnatus fishes showed that the anatomy of gills of fishes exposed to A. philoxeroides treated RR was largely protected. The plants were further explored for rhizofiltration experiments in a pilot scale reactor. A. philoxeroides could decolorize textile industry effluent of varying pH within 96 h of treatment which was evident from the significant reductions in the values of American dye manufacturers' institute color, chemical oxygen demand, biological oxygen demand, total dissolved and total suspended solids. PMID:26164661

  4. Production of polyhydroxyhexadecanoic acid by using waste biomass of Sphingobacterium sp. ATM generated after degradation of textile dye Direct Red 5B.

    PubMed

    Tamboli, Dhawal P; Kagalkar, Anuradha N; Jadhav, Mital U; Jadhav, Jyoti P; Govindwar, Sanjay P

    2010-04-01

    The degradation of textile effluent using microorganisms has been studied extensively, but disposal of generated biomass after dye degradation is a serious problem. The isolated Sphingobacterium sp. ATM was found to decolorize dye Direct Red 5B (DR5B) and simultaneously it produced polyhydroxyhexadecanoic acid (PHD). The organism decolorized DR5B at 500mgl(-1) concentration within 24h of dye addition and gave optimum production of PHD. The medium contains carbon source as a molasses which was found to be more significant within all carbon sources used. The Nuclear Magnetic Resonance spectroscopy (NMR), Fourier Transform Infrared spectroscopy (FTIR) and Gas Chromatography-Mass Spectroscopy (GC-MS) characterization of polyhydroxyalkanoates obtained revealed the compound as a polyhydroxyhexadecanoic acid. The activity of PHA synthase was found more at 24h after dye addition. The enzymes responsible for dye degradation include veratrol oxidase, laccase, DCIP (2,6-dichlorophenol-indophenol) reductase, riboflavin reductase and azo reductase was found to be induced during decolorization process. The FTIR analysis of samples before and after decolorization of dye confirmed the biotransformation of DR5B. The GC-MS analysis of product obtained led to the identification of two metabolites after biotransformation of dye as p-amino benzenesulfonic acid and naphthalene-1-ol.

  5. Production of polyhydroxyhexadecanoic acid by using waste biomass of Sphingobacterium sp. ATM generated after degradation of textile dye Direct Red 5B.

    PubMed

    Tamboli, Dhawal P; Kagalkar, Anuradha N; Jadhav, Mital U; Jadhav, Jyoti P; Govindwar, Sanjay P

    2010-04-01

    The degradation of textile effluent using microorganisms has been studied extensively, but disposal of generated biomass after dye degradation is a serious problem. The isolated Sphingobacterium sp. ATM was found to decolorize dye Direct Red 5B (DR5B) and simultaneously it produced polyhydroxyhexadecanoic acid (PHD). The organism decolorized DR5B at 500mgl(-1) concentration within 24h of dye addition and gave optimum production of PHD. The medium contains carbon source as a molasses which was found to be more significant within all carbon sources used. The Nuclear Magnetic Resonance spectroscopy (NMR), Fourier Transform Infrared spectroscopy (FTIR) and Gas Chromatography-Mass Spectroscopy (GC-MS) characterization of polyhydroxyalkanoates obtained revealed the compound as a polyhydroxyhexadecanoic acid. The activity of PHA synthase was found more at 24h after dye addition. The enzymes responsible for dye degradation include veratrol oxidase, laccase, DCIP (2,6-dichlorophenol-indophenol) reductase, riboflavin reductase and azo reductase was found to be induced during decolorization process. The FTIR analysis of samples before and after decolorization of dye confirmed the biotransformation of DR5B. The GC-MS analysis of product obtained led to the identification of two metabolites after biotransformation of dye as p-amino benzenesulfonic acid and naphthalene-1-ol. PMID:20031399

  6. Application of novel consortium TSR for treatment of industrial dye manufacturing effluent with concurrent removal of ADMI, COD, heavy metals and toxicity.

    PubMed

    Patel, Tallika L; Patel, Bhargav C; Kadam, Avinash A; Tipre, Devayani R; Dave, Shailesh R

    2015-01-01

    The present study was aimed towards the effective bio-treatment of actual industrial effluent containing as high as 42,000 mg/L COD (chemical oxygen demand), >28,000 ADMI (American Dye Manufacturers Institute) color value and four heavy metals using indigenous developed bacterial consortium TSR. Mineral salt medium supplemented with as low as 0.02% (w/v) yeast extract and glucose was found to remove 70% ADMI, 69% COD and >99% sorption of heavy metals in 24 h from the effluent by consortium TSR. The biodegradation of effluent was monitored by UV-vis light, HPLC (high performance liquid chromatography), HPTLC (high performance thin layer chromotography) and FTIR (Fourier transform infrared spectroscopy) and showed significant differences in spectra of untreated and treated effluent, confirming degradation of the effluent. Induction of intracellular azoreductase (107%) and NADH-DCIP reductase (128%) in addition to extracellular laccase (489%) indicates the vital role of the consortium TSR in the degradation process. Toxicity study of the effluent using Allium cepa by single cell gel electrophoresis showed detoxification of the effluent. Ninety per cent germination of plant seeds, Triticum aestivum and Phaseolus mungo, was achieved after treatment by consortium TSR in contrast to only 20% and 30% germination of the respective plants in case of untreated effluent. PMID:25945844

  7. Application of novel consortium TSR for treatment of industrial dye manufacturing effluent with concurrent removal of ADMI, COD, heavy metals and toxicity.

    PubMed

    Patel, Tallika L; Patel, Bhargav C; Kadam, Avinash A; Tipre, Devayani R; Dave, Shailesh R

    2015-01-01

    The present study was aimed towards the effective bio-treatment of actual industrial effluent containing as high as 42,000 mg/L COD (chemical oxygen demand), >28,000 ADMI (American Dye Manufacturers Institute) color value and four heavy metals using indigenous developed bacterial consortium TSR. Mineral salt medium supplemented with as low as 0.02% (w/v) yeast extract and glucose was found to remove 70% ADMI, 69% COD and >99% sorption of heavy metals in 24 h from the effluent by consortium TSR. The biodegradation of effluent was monitored by UV-vis light, HPLC (high performance liquid chromatography), HPTLC (high performance thin layer chromotography) and FTIR (Fourier transform infrared spectroscopy) and showed significant differences in spectra of untreated and treated effluent, confirming degradation of the effluent. Induction of intracellular azoreductase (107%) and NADH-DCIP reductase (128%) in addition to extracellular laccase (489%) indicates the vital role of the consortium TSR in the degradation process. Toxicity study of the effluent using Allium cepa by single cell gel electrophoresis showed detoxification of the effluent. Ninety per cent germination of plant seeds, Triticum aestivum and Phaseolus mungo, was achieved after treatment by consortium TSR in contrast to only 20% and 30% germination of the respective plants in case of untreated effluent.

  8. Microbial Populations Associated with Treatment of an Industrial Dye Effluent in an Anaerobic Baffled Reactor

    PubMed Central

    Plumb, Jason J.; Bell, Joanne; Stuckey, David C.

    2001-01-01

    Fluorescent in situ hybridization (FISH) using 16S and 23S rRNA-targeted probes together with construction of an archaeal 16S ribosomal DNA (rDNA) clone library was used to characterize the microbial populations of an anaerobic baffled reactor successfully treating industrial dye waste. Wastewater produced during the manufacture of food dyes containing several different azo and other dye compounds was decolorized and degraded under sulfidogenic and methanogenic conditions. Use of molecular methods to describe microbial populations showed that a diverse group of Bacteria and Archaea was involved in this treatment process. FISH enumeration showed that members of the gamma subclass of the class Proteobacteria and bacteria in the Cytophaga-Flexibacter-Bacteroides phylum, together with sulfate-reducing bacteria, were prominent members of a mixed bacterial population. A combination of FISH probing and analysis of 98 archaeal 16S rDNA clone inserts revealed that together with the bacterial population, a methanogenic population dominated by Methanosaeta species and containing species of Methanobacterium and Methanospirillum and a relatively unstudied methanogen, Methanomethylovorans hollandica, contributed to successful anaerobic treatment of the industrial waste. We suggest that sulfate reducers, or more accurately sulfidogenic bacteria, together with M. hollandica contribute considerably to the treatment process through metabolism of dye-associated sulfonate groups and subsequent conversion of sulfur compounds to carbon dioxide and methane. PMID:11425746

  9. The flocculation performance of Tamarindus mucilage in relation to removal of vat and direct dyes.

    PubMed

    Mishra, Anuradha; Bajpai, Malvika

    2006-05-01

    A food grade natural mucilage, extracted from the seeds of Tamarindus indica pods, is used as a flocculant for removal of solubilised vat (golden yellow) and direct dye (direct fast scarlet) in aqueous solutions. The maximum removal obtained was 60% for golden yellow after 2 h and was 25% for direct fast scarlet after 1 h. The optimum mucilage dose was 10 mg/l and 15 mg/l for golden yellow and direct fast scarlet, respectively. The pH values also seem to affect the percent removal of both the dyes significantly. In case of vat dye, the pH value of the test samples affected the percent removal significantly. The change was highly significant between neutral and alkaline pH. In case of direct dye, there was no significant change in percent removal at pH 7 and pH 4 whereas a significant change in percent removal was observed between pH 7 and pH 9.2. The plausible mucilage-dye interaction and flocculation mechanism has been discussed. This new flocculant works better in the case of vat dye removal compared with the direct dye.

  10. Microflora involved in textile dye waste removal.

    PubMed

    Abd El-Rahim, Wafaa M; Moawad, Hassan; Khalafallah, M

    2003-01-01

    Textile dyes are heavily used in factories for coloring different cloth materials. This work was designed to identify microorganisms capable of removing textile dyes, either by biodegradation or by biosorption. We expected to isolate microorganisms adapted to high dye concentrations from sites near textile industry complex. An experiment was conducted to study the efficiency of the isolates in removing textile dyes. The tested dyes were used as carbon and nitrogen sources for isolation of soil and/or water microorganisms capable of removing textile dyes wastes from factories effluent. The results indicated the low efficiency of both bacteria and actinomycetes in clean-up the effluent from the waste dyes in 10-21 days. On the other hand six fungal isolates were obtained by plating factory effluent on Martin's medium and media containing dyes as the sole source of carbon and nitrogen for growth. These isolates fell in two genera, Aspergillus and Trichoderma. Results of these studies revealed the potential capacity of these fungi to decolorize the tested dyes in comparatively short time (2-24 hours) indicating strong efficiency of dye bioremediation by the fungal isolates. Since the process involved is mostly fast interaction between the fungal mycelium and the dye in the media, the possible mechanism could be based on a biosorption of such chemicals on the intact fungal biomass, rather than direct biodegradation of the compounds. PMID:12761767

  11. Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent.

    PubMed

    Jadhav, J P; Kalyani, D C; Telke, A A; Phugare, S S; Govindwar, S P

    2010-01-01

    A microbial consortium DAS consisting three bacterial sp. originally obtained from dye contaminated sites of Solapur, India was selected because it was capable of decolorizing textile effluent and dye faster than the individual bacteria under static conditions. Identification of the isolates by 16S rRNA techniques revealed the isolates to be Pseudomonas species. The concerted metabolic activity of these isolates led to complete decolorization of textile effluent as well as Reactive Orange 16 (100 mg l(-1)) within 48-h at pH 7 and 30 degrees C. Studies involving Reactive Orange 16 (RO16) dye were carried with the bacterial consortium DAS to elucidate the mechanism of biodegradation. Induction of the laccase and reductase enzyme during RO16 decolorization indicated their role in biodegradation. The biodegradation of RO16 was monitored by using IR spectroscopy, HPLC and GC-MS analysis. Cytotoxicity, genotoxicity and phytotoxicity studies carried out before and after decolorization of the textile effluent revealed the nontoxic nature of the biotreated sample.

  12. Bacterial bioluminescence response to long-term exposure to reverse osmosis treated effluents from dye industries.

    PubMed

    Ravindran, J; Manikandan, B; Shirodkar, P V; Francis, K X; Mani Murali, R; Vethamony, P

    2014-10-01

    The bacterial bioluminescence assay is one of the novel means for toxicity detection. The bioluminescence response of 2 marine bioluminescent bacteria was tested upon their long-term exposure to 9 different reverse osmosis (RO) rejects with varying chemical composition sampled from various dye industries. Bioluminescent bacteria were cultured in the RO reject samples, at different concentrations, and their growth rate and luminescence was measured for 24 h. The RO reject samples caused sublethal effects upon exposure and retarded the growth of bacteria, confirming their toxic nature. Further, continuation of the exposure showed that the initial luminescence, though reduced, recovered and increased beyond the control cultures irrespective of cell density, and finally decreased once again. The present study emphasizes the need of evolving a long-term exposure assay and shows that the method followed in this study is suitable to evaluate the toxicants that exert delayed toxicity, using lower concentrations of toxicants as well as coloured samples.

  13. Biodegradation of direct blue 129 diazo dye by Spirodela polyrrhiza: An artificial neural networks modeling.

    PubMed

    Movafeghi, A; Khataee, A R; Moradi, Z; Vafaei, F

    2016-01-01

    Phytoremediation potential of the aquatic plant Spirodela polyrrhiza was examined for direct blue 129 (DB129) azo dye. The dye removal efficiency was optimized under the variable conditions of the operational parameters including removal time, initial dye concentration, pH, temperature and amount of plant. The study reflected the significantly enhanced dye removal efficiency of S. polyrrhiza by increasing the temperature, initial dye concentration and amount of plant. Intriguingly, artificial neural network (ANN) predicted the removal time as the most dominant parameter on DB129 removal efficiency. Furthermore, the effect of dye treatment on some physiologic indices of S. polyrrhiza including growth rate, photosynthetic pigments content, lipid peroxidation and antioxidant enzymes were studied. The results revealed a reduction in photosynthetic pigments content and in multiplication of fronds after exposure to dye solution. In contrast, malondialdehyde content as well as catalase (CAT) and peroxidase (POD) activities significantly increased that was probably due to the ability of plant to overcome oxidative stress. As a result of DB129 biodegradation, a number of intermediate compounds were identified by gas chromatography-mass spectroscopy (GC-MS) analysis. Accordingly, the probable degradation pathway of DB129 in S. polyrrhiza was postulated.

  14. Biodegradation of direct blue 129 diazo dye by Spirodela polyrrhiza: An artificial neural networks modeling.

    PubMed

    Movafeghi, A; Khataee, A R; Moradi, Z; Vafaei, F

    2016-01-01

    Phytoremediation potential of the aquatic plant Spirodela polyrrhiza was examined for direct blue 129 (DB129) azo dye. The dye removal efficiency was optimized under the variable conditions of the operational parameters including removal time, initial dye concentration, pH, temperature and amount of plant. The study reflected the significantly enhanced dye removal efficiency of S. polyrrhiza by increasing the temperature, initial dye concentration and amount of plant. Intriguingly, artificial neural network (ANN) predicted the removal time as the most dominant parameter on DB129 removal efficiency. Furthermore, the effect of dye treatment on some physiologic indices of S. polyrrhiza including growth rate, photosynthetic pigments content, lipid peroxidation and antioxidant enzymes were studied. The results revealed a reduction in photosynthetic pigments content and in multiplication of fronds after exposure to dye solution. In contrast, malondialdehyde content as well as catalase (CAT) and peroxidase (POD) activities significantly increased that was probably due to the ability of plant to overcome oxidative stress. As a result of DB129 biodegradation, a number of intermediate compounds were identified by gas chromatography-mass spectroscopy (GC-MS) analysis. Accordingly, the probable degradation pathway of DB129 in S. polyrrhiza was postulated. PMID:26540563

  15. Advanced treatment of textile dyeing secondary effluent using magnetic anion exchange resin and its effect on organic fouling in subsequent RO membrane.

    PubMed

    Yang, Cheng; Li, Li; Shi, Jialu; Long, Chao; Li, Aimin

    2015-03-01

    Strict regulations are forcing dyeing factory to upgrade existing waste treatment system. In this study, advanced treatment of dyeing secondary effluent by magnetic anion exchange resin (NDMP) was investigated and compared with ultrafiltration (UF); NDMP as a pre-treatment of reverse osmosis (RO) was also studied. NDMP resin (20 mL/L) gave higher removal of dissolved organic carbon (DOC) (83.9%) and colority (94.9%) than UF with a cut-off of 10 kDa (only 48.6% and 44.1%, respectively), showing that NDMP treatment was effective to meet the stringent discharge limit of DOC and colority. Besides, NDMP resin (20 mL/L) as a pretreatment of RO increased the permeate flux by 12.5% and reduced irreversible membrane fouling by 6.6%, but UF pretreatment did not mitigate RO membrane fouling. The results of excitation-emission matrix fluorescence spectra and resin fractions showed that NDMP had more efficient removal than UF for transphilic acid and hydrophilic fraction, such as protein-like organic matters and soluble microbial products, which contributed to a significant proportion of RO membrane fouling. In sum, NDMP resin treatment not only gave effective removal of DOC and colority of dyeing secondary effluent, but exhibited some improvement for RO membrane flux and irreversible fouling. PMID:25463217

  16. Advanced treatment of textile dyeing secondary effluent using magnetic anion exchange resin and its effect on organic fouling in subsequent RO membrane.

    PubMed

    Yang, Cheng; Li, Li; Shi, Jialu; Long, Chao; Li, Aimin

    2015-03-01

    Strict regulations are forcing dyeing factory to upgrade existing waste treatment system. In this study, advanced treatment of dyeing secondary effluent by magnetic anion exchange resin (NDMP) was investigated and compared with ultrafiltration (UF); NDMP as a pre-treatment of reverse osmosis (RO) was also studied. NDMP resin (20 mL/L) gave higher removal of dissolved organic carbon (DOC) (83.9%) and colority (94.9%) than UF with a cut-off of 10 kDa (only 48.6% and 44.1%, respectively), showing that NDMP treatment was effective to meet the stringent discharge limit of DOC and colority. Besides, NDMP resin (20 mL/L) as a pretreatment of RO increased the permeate flux by 12.5% and reduced irreversible membrane fouling by 6.6%, but UF pretreatment did not mitigate RO membrane fouling. The results of excitation-emission matrix fluorescence spectra and resin fractions showed that NDMP had more efficient removal than UF for transphilic acid and hydrophilic fraction, such as protein-like organic matters and soluble microbial products, which contributed to a significant proportion of RO membrane fouling. In sum, NDMP resin treatment not only gave effective removal of DOC and colority of dyeing secondary effluent, but exhibited some improvement for RO membrane flux and irreversible fouling.

  17. Characterization of Pharmaceuticals and Personal Care products in hospital effluent and waste water influent/effluent by direct-injection LC-MS-MS.

    PubMed

    Oliveira, Tiago S; Murphy, Mark; Mendola, Nicholas; Wong, Virginia; Carlson, Doreen; Waring, Linda

    2015-06-15

    Two USEPA Regional Laboratories developed direct-injection LC/MS/MS methods to measure Pharmaceuticals and Personal Care Products (PPCPs) in water matrices. Combined, the laboratories were prepared to analyze 185 PPCPs (with 74 overlapping) belonging to more than 20 therapeutical categories with reporting limits at low part-per-trillion. In partnership with Suffolk County in NY, the laboratories conducted PPCP analysis on 72 samples belonging to 4 Water Systems (WS). Samples were collected at different stages of the WS (hospital effluents, WWTP influents/effluents) to assess PPCP relevance in hospital discharges, impact on WWTP performance and potential ecological risk posed by analytes not eliminated during treatment. Major findings include: a) acceptable accuracy between the two laboratories for most overlapping PPCPs with better agreement for higher concentrations; b) the measurement of PPCPs throughout all investigated WS with total PPCP concentrations ranging between 324 and 965 μg L(-1) for hospital effluent, 259 and 573 μg L(-1) for WWTP influent and 19 and 118 μg L(-1) for WWTP effluent; c) the variable contribution of hospital effluents to the PPCP loads into the WWTP influents (contribution ranging between 1% (WS-2) and 59% (WS-3); d) the PPCP load reduction after treatment for all WS reaching more than 95% for WS using activated sludge processes (WS-2 and WS-4), with inflow above 6500 m(3) d(-1), and having a lower percentage of hospital effluent in the WWTP influent; e) the relevance of four therapeutical categories for the PPCP load in WWTP effluents (analgesics, antidiabetics, antiepileptics and psychoanaleptics); and f) the risk quotients calculated using screening-level Predicted Non Effect Concentration indicate that WWTP effluents contain 33 PPCPs with potential medium to high ecological risk. To our knowledge no other monitoring investigation published in the scientific literature uses direct-injection methods to cover as many PPCPs and

  18. Processing of effluent salt from the direct oxide reduction process

    SciTech Connect

    Mishra, B.; Olson, D.L. . Kroll Inst. for Extractive Metallurgy); Averill, W.A. )

    1992-01-01

    The production of reactive metals by Direct Oxide Reduction (DOR) process using calcium in a molten calcium salt system generates significant amount of contaminated waste as calcium oxide saturated calcium chloride salt mix with calcium oxide content of up to 15 wt. pct. Fused salt electrolysis of a simulated salt mix has been carried out to electrowin calcium, which can be recycled to the DOR reactor along with the calcium chloride salt or may be used in-situ in a combined DOR and electrowinning process. Many reactive metal oxides could thus be reduced in a one-step process without generating a significant amount of waste. The process has been optimized in terms of the calcium solubility, cell temperature, current density and the cell design to maximize the current efficiency. Based on the information available regarding the solubility of calcium in calcium chloride salt in the presence of calcium oxide, and the back reactions occurring in-situ between the electrowon calcium and other components present in the cell, e.g. carbon, oxygen, carbon dioxide and calcium oxide, it is difficult to recover elemental calcium within the system. However, a liquid cathode or a rising cathode has been used in the past to recover calcium. The solubility has also been found to depend on the use of graphite as the anode material as evidenced by the presence of calcium carbonate in the final salt. The rate of recovery for metallic calcium has to be enhanced to levels that overcome the back reactions in a system where quick removal of anodic gases is achieved. Calcium has been detected by the hydrogen evolution technique and the amount of calcia has been determined by titration. A porous ceramic sheath has been used in the cell to prevent the chemical reaction of electrowon calcium to produce oxide or carbonate and to prevent the contamination of salt by the anodic carbon.

  19. Processing of effluent salt from the direct oxide reduction process

    SciTech Connect

    Mishra, B.; Olson, D.L.; Averill, W.A.

    1992-05-01

    The production of reactive metals by Direct Oxide Reduction (DOR) process using calcium in a molten calcium salt system generates significant amount of contaminated waste as calcium oxide saturated calcium chloride salt mix with calcium oxide content of up to 15 wt. pct. Fused salt electrolysis of a simulated salt mix has been carried out to electrowin calcium, which can be recycled to the DOR reactor along with the calcium chloride salt or may be used in-situ in a combined DOR and electrowinning process. Many reactive metal oxides could thus be reduced in a one-step process without generating a significant amount of waste. The process has been optimized in terms of the calcium solubility, cell temperature, current density and the cell design to maximize the current efficiency. Based on the information available regarding the solubility of calcium in calcium chloride salt in the presence of calcium oxide, and the back reactions occurring in-situ between the electrowon calcium and other components present in the cell, e.g. carbon, oxygen, carbon dioxide and calcium oxide, it is difficult to recover elemental calcium within the system. However, a liquid cathode or a rising cathode has been used in the past to recover calcium. The solubility has also been found to depend on the use of graphite as the anode material as evidenced by the presence of calcium carbonate in the final salt. The rate of recovery for metallic calcium has to be enhanced to levels that overcome the back reactions in a system where quick removal of anodic gases is achieved. Calcium has been detected by the hydrogen evolution technique and the amount of calcia has been determined by titration. A porous ceramic sheath has been used in the cell to prevent the chemical reaction of electrowon calcium to produce oxide or carbonate and to prevent the contamination of salt by the anodic carbon.

  20. Direct dye binding--a quantitative assay for solid-phase immobilized protein.

    PubMed

    Bonde, M; Pontoppidan, H; Pepper, D S

    1992-01-01

    A direct dye-binding procedure was established for the quantification of protein after its immobilization on a solid phase, using IgG and BSA as model proteins. The assay, which in the range 0-5 mg protein/ml gel correlates well with indirect protein determination by A280 as well as determination of protein hydrolyzed from the gel, is based on a modified Bradford dye-binding assay. As the protein coupled to the gel binds the dye, a decrease in A465 of the supernatant is measured. Three solid supports commonly used for protein immobilization (Sepharose, Sephadex, Sephacryl) were found to be compatible with the dye-binding assay while nonspecific dye binding was found to HEMA gels. Protein was coupled to Sephacryl S-1000 using three different activation methods (aldehyde, hydrazine, and adipic acid dihydrazide). Artifactual dye-binding was not observed using any of the three different "linkers." The assay is easily carried out and represents a useful tool, e.g., when optimizing procedures for protein immobilization. PMID:1595895

  1. Direct Analysis of Textile Fabrics and Dyes Using IR Matrix-Assisted Laser Desorption Electrospray Ionization (MALDESI) Mass Spectrometry

    PubMed Central

    Cochran, Kristin H.; Barry, Jeremy A.; Muddiman, David C.; Hinks, David

    2012-01-01

    The forensic analysis of textile fibers uses a variety of techniques from microscopy to spectroscopy. One such technique that is often used to identify the dye(s) within the fiber is mass spectrometry (MS). In the traditional MS method, the dye must be extracted from the fabric and the dye components are separated by chromatography prior to mass spectrometric analysis. Direct analysis of the dye from the fabric allows the omission of the lengthy sample preparation involved in extraction, thereby significantly reducing the overall analysis time. Herein, a direct analysis of dyed textile fabric was performed using the infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source for MS. In MALDESI, an IR laser with wavelength tuned to 2.94 μm is used to desorb the dye from the fabric sample with the aid of water as the matrix. The desorbed dye molecules are then post-ionized by electrospray ionization (ESI). A variety of dye classes were analyzed from various fabrics with little to no sample preparation allowing for the identification of the dye mass and in some cases the fiber polymer. Those dyes that were not detected using MALDESI were also not observed by direct infusion ESI of the dye standard. PMID:23237031

  2. Direct analysis of textile fabrics and dyes using infrared matrix-assisted laser desorption electrospray ionization mass spectrometry.

    PubMed

    Cochran, Kristin H; Barry, Jeremy A; Muddiman, David C; Hinks, David

    2013-01-15

    The forensic analysis of textile fibers uses a variety of techniques from microscopy to spectroscopy. One such technique that is often used to identify the dye(s) within the fiber is mass spectrometry (MS). In the traditional MS method, the dye must be extracted from the fabric and the dye components are separated by chromatography prior to mass spectrometric analysis. Direct analysis of the dye from the fabric allows the omission of the lengthy sample preparation involved in extraction, thereby significantly reducing the overall analysis time. Herein, a direct analysis of dyed textile fabric was performed using the infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source for MS. In MALDESI, an IR laser with wavelength tuned to 2.94 μm is used to desorb the dye from the fabric sample with the aid of water as the matrix. The desorbed dye molecules are then postionized by electrospray ionization (ESI). A variety of dye classes were analyzed from various fabrics with little to no sample preparation allowing for the identification of the dye mass and in some cases the fiber polymer. Those dyes that were not detected using MALDESI were also not observed by direct infusion ESI of the dye standard. PMID:23237031

  3. Direct analysis of textile fabrics and dyes using infrared matrix-assisted laser desorption electrospray ionization mass spectrometry.

    PubMed

    Cochran, Kristin H; Barry, Jeremy A; Muddiman, David C; Hinks, David

    2013-01-15

    The forensic analysis of textile fibers uses a variety of techniques from microscopy to spectroscopy. One such technique that is often used to identify the dye(s) within the fiber is mass spectrometry (MS). In the traditional MS method, the dye must be extracted from the fabric and the dye components are separated by chromatography prior to mass spectrometric analysis. Direct analysis of the dye from the fabric allows the omission of the lengthy sample preparation involved in extraction, thereby significantly reducing the overall analysis time. Herein, a direct analysis of dyed textile fabric was performed using the infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source for MS. In MALDESI, an IR laser with wavelength tuned to 2.94 μm is used to desorb the dye from the fabric sample with the aid of water as the matrix. The desorbed dye molecules are then postionized by electrospray ionization (ESI). A variety of dye classes were analyzed from various fabrics with little to no sample preparation allowing for the identification of the dye mass and in some cases the fiber polymer. Those dyes that were not detected using MALDESI were also not observed by direct infusion ESI of the dye standard.

  4. Removal of textile dye, direct red 23, with glutaraldehyde cross-linked magnetic chitosan beads.

    PubMed

    Sanlier, Senay Hamarat; Ak, Güliz; Yilmaz, Habibe; Ozbakir, Gizem; Cagliyan, Oguzhan

    2013-01-01

    One of the most important classes of pollutants is dyes, and today there are more than 100,000 commercial dyes. Conventional treatment processes are very expensive, so it is essential to develop low-cost sorbent materials with high adsorption capacities. The aim of this study is to prepare magnetic microsized adsorbents that have high adsorption capacity for removal of direct red 23. Through this objective, glutaraldehyde cross-linked magnetic chitosan beads were formed in order to remove the textile dye direct red 23. Barium ferrite was used to give a magnetic property so that the beads could easily be separated from the water after treatment. The effects of barium ferrite, pH, incubation time, dye concentration, and glutaraldehyde amounts were investigated. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. The adsorption capacity had a very large value: 1250 mg/g at pH 4.0, at room temperature. Compared with activated carbon, magnetic cross-linked chitosan exhibits excellent performance in the adsorption of anionic dyes and the magnetic properties of beads enable us to remove the beads from the water after treatment. Pseudo-second-order and intraparticle diffusion kinetic models were applied.

  5. Environmental assessment of the degradation potential of mushroom fruit bodies of Pleurotus ostreatus (Jacq.: Fr.) P. Kumm. towards synthetic azo dyes and contaminating effluents collected from textile industries in Karnataka, India.

    PubMed

    Skariyachan, Sinosh; Prasanna, Apoorva; Manjunath, Sirisha P; Karanth, Soujanya S; Nazre, Ambika

    2016-02-01

    Pleurotus ostreatus (Jacq.: Fr.) P. Kumm. is one of the edible mushrooms currently gaining attention as environmental restorer. The present study explores the potential of P. ostreatus (Jacq.: Fr.) P. Kumm. in degradation of textile dyes and effluents. The mushroom cultivation was carried out using paddy bed as substrate. The fully grown mushroom fruit bodies were used as a bioremediation agent against two industrially important azo dyes such as nylon blue and cotton yellow and few effluents collected from various textile industries in Karnataka, India. The ideal growth parameters such as temperature, pH, and dye concentrations for effective degradation were carried out. One of the main enzymes, laccase, responsible for biodegradation, was partially characterized. The degradation was found to be ideal at pH 3.0 and temperature at 26-28 °C. This study demonstrated a percentage degradation of 78.10, 90.81, 82.5, and 64.88 for dye samples such as nylon blue (50 ppm), cotton yellow (350 ppm), KSIC effluents, and Ramanagar effluents at 28 °C within 15th days respectively in comparison with other temperature conditions. Similarly, a percentage degradation of 35.99, 33.33, 76.13 and 25.8 for nylon blue (50 ppm), cotton yellow (350 ppm), Karnataka Silk Industries Corporation (KSIC) effluents and Ramnagar effluents were observed at pH 3.0 within 15 days, respectively (p < 0.05). Thus, the current study concluded that the utilization of P. ostreatus (Jacq.: Fr.) P. Kumm. at ideal environmental conditions is a cost-effective and eco-friendly approach for the degradation of various azo dyes and textile effluents which are harmful to the ecosystem. PMID:26818015

  6. Environmental assessment of the degradation potential of mushroom fruit bodies of Pleurotus ostreatus (Jacq.: Fr.) P. Kumm. towards synthetic azo dyes and contaminating effluents collected from textile industries in Karnataka, India.

    PubMed

    Skariyachan, Sinosh; Prasanna, Apoorva; Manjunath, Sirisha P; Karanth, Soujanya S; Nazre, Ambika

    2016-02-01

    Pleurotus ostreatus (Jacq.: Fr.) P. Kumm. is one of the edible mushrooms currently gaining attention as environmental restorer. The present study explores the potential of P. ostreatus (Jacq.: Fr.) P. Kumm. in degradation of textile dyes and effluents. The mushroom cultivation was carried out using paddy bed as substrate. The fully grown mushroom fruit bodies were used as a bioremediation agent against two industrially important azo dyes such as nylon blue and cotton yellow and few effluents collected from various textile industries in Karnataka, India. The ideal growth parameters such as temperature, pH, and dye concentrations for effective degradation were carried out. One of the main enzymes, laccase, responsible for biodegradation, was partially characterized. The degradation was found to be ideal at pH 3.0 and temperature at 26-28 °C. This study demonstrated a percentage degradation of 78.10, 90.81, 82.5, and 64.88 for dye samples such as nylon blue (50 ppm), cotton yellow (350 ppm), KSIC effluents, and Ramanagar effluents at 28 °C within 15th days respectively in comparison with other temperature conditions. Similarly, a percentage degradation of 35.99, 33.33, 76.13 and 25.8 for nylon blue (50 ppm), cotton yellow (350 ppm), Karnataka Silk Industries Corporation (KSIC) effluents and Ramnagar effluents were observed at pH 3.0 within 15 days, respectively (p < 0.05). Thus, the current study concluded that the utilization of P. ostreatus (Jacq.: Fr.) P. Kumm. at ideal environmental conditions is a cost-effective and eco-friendly approach for the degradation of various azo dyes and textile effluents which are harmful to the ecosystem.

  7. Biodegradation of benzidine based dye Direct Blue-6 by Pseudomonas desmolyticum NCIM 2112.

    PubMed

    Kalme, S D; Parshetti, G K; Jadhav, S U; Govindwar, S P

    2007-05-01

    Pseudomonas desmolyticum NCIM 2112 was able to degrade a diazo dye Direct Blue-6 (100 mg l(-1)) completely within 72 h of incubation with 88.95% reduction in COD in static anoxic condition. Induction in the activity of oxidative enzymes (LiP, laccase) and tyrosinase while decolorization in the batch culture represents their role in degradation. Dye also induced the activity of aminopyrine N-demethylase, one of the enzyme of mixed function oxidase system. The biodegradation was monitored by UV-Vis, IR spectroscopy and HPLC. The final products, 4-amino naphthalene and amino naphthalene sulfonic acid were characterized by GC-mass spectroscopy.

  8. Decolorization of direct dyes by salt fractionated turnip proteins enhanced in the presence of hydrogen peroxide and redox mediators.

    PubMed

    Matto, Mahreen; Husain, Qayyum

    2007-09-01

    The present paper demonstrates the effect of salt fractionated turnip (Brassica rapa) proteins on the decolorization of direct dyes, used in textile industry, in the presence of various redox mediators. The rate and extent of decolorization of dyes was significantly enhanced by the presence of different types of redox mediators. Six out of 10 investigated compounds have shown their potential in enhancing the decolorization of direct dyes. The performance was evaluated at different concentrations of mediator and enzyme. The efficiency of each natural mediator depends on the type of dye treated. The decolorization of all tested direct dyes was maximum in the presence of 0.6mM redox mediator at pH 5.5 and 30 degrees C. Complex mixtures of dyes were also maximally decolorized in the presence of 0.6mM redox mediator (1-hydroxybenzotriazole/violuric acid). In order to examine the operational stability of the enzyme preparation, the enzyme was exploited for the decolorization of mixtures of dyes for different times in a stirred batch process. There was no further change in decolorization of an individual dye or their mixtures after 60 min; the enzyme caused more than 80% decolorization of all dyes in the presence of 1-hydroxybenzotriazole/violuric acid. However, there was no desirable increase in dye decolorization of the mixtures on overnight stay. Total organic carbon analysis of treated dyes or their mixtures showed that these results were quite comparable to the loss of color from solutions. However, the treatment of such polluted water in the presence of redox mediators caused the formation of insoluble precipitate, which could be removed by the process of centrifugation. The results suggested that catalyzed oxidative coupling reactions might be important for natural transformation pathways for dyes and indicate their potential use as an efficient means for removal of dyes color from waters and wastewaters.

  9. Biodegradation of azo dyes acid red 183, direct blue 15 and direct red 75 by the isolate Penicillium oxalicum SAR-3.

    PubMed

    Saroj, Samta; Kumar, Karunesh; Pareek, Nidhi; Prasad, R; Singh, R P

    2014-07-01

    Soils contaminated with dyes were collected and screened for obtaining potential fungal strains for the degradation of azo dyes. A strain that demonstrated broad spectrum ability for catabolizing different azo dyes viz. Acid Red 183 (AR 183), Direct Blue 15 (DB 15) and Direct Red 75 (DR 75) at 100 mg L(-1) concentration was subsequently identified as Penicillium oxalicum SAR-3 based on 18S and internal transcribed spacer (ITS) rDNA gene sequence analysis. The strain has shown remarkably higher levels of degradation (95-100%) for almost all the dyes within 120 h at 30°C at pH 7.0. Notable levels of manganese peroxidase (659.4 ± 20 UL(-1)) during dye decolorization indicated the involvement of this enzyme in the decolorization process. The dyes following decolorization were catabolized as evident by spectroscopic analyses.

  10. Response surface methodology for optimization of medium for decolorization of textile dye Direct Black 22 by a novel bacterial consortium.

    PubMed

    Mohana, Sarayu; Shrivastava, Shalini; Divecha, Jyoti; Madamwar, Datta

    2008-02-01

    Decolorization and degradation of polyazo dye Direct Black 22 was carried out by distillery spent wash degrading mixed bacterial consortium, DMC. Response surface methodology (RSM) involving a central composite design (CCD) in four factors was successfully employed for the study and optimization of decolorization process. The hyper activities and interactions between glucose concentration, yeast extract concentration, dye concentration and inoculum size on dye decolorization were investigated and modeled. Under optimized conditions the bacterial consortium was able to decolorize the dye almost completely (>91%) within 12h. Bacterial consortium was able to decolorize 10 different azo dyes. The optimum combination of the four variables predicted through RSM was confirmed through confirmatory experiments and hence this bacterial consortium holds potential for the treatment of industrial waste water. Dye degradation products obtained during the course of decolorization were analyzed by HPTLC.

  11. Dye Painting with Fiber Reactive Dyes

    ERIC Educational Resources Information Center

    Benjamin-Murray, Betsy

    1977-01-01

    In her description of how to use dyes directly onto fabrics the author lists materials to be used, directions for mixing dyes, techniques for applying dyes, references for additional reading and sources for dye materials. Preceding the activity with several lessons in design and other textile techniques with the dye process will ensure a…

  12. Draft Genome Sequence of Textile Azo Dye-Decolorizing and -Degrading Pseudomonas aeruginosa Strain PFK10, Isolated from the Common Effluent Treatment Plant of the Ankleshwar Industrial Area of Gujarat, India

    PubMed Central

    Faldu, P. R.; Kothari, V. V.; Kothari, C. R.; Rawal, C. M.; Domadia, K. K.; Patel, P. A.; Bhimani, H. D.; Raval, V. H.; Parmar, N. R.; Nathani, N. M.; Koringa, P. G.; Joshi, C. G.

    2014-01-01

    Here, we report the draft genome sequence of Pseudomonas aeruginosa strain PFK10, isolated from the common effluent treatment plant (CETP) of the Ankleshwar industrial area of Gujarat, India. The 6.04-Mb draft genome sequence of strain PFK10 provides information about the genes encoding enzymes that enable the strain to decolorize and degrade textile azo dye. PMID:24503984

  13. Metabolism of the benzidine-based azo dye Direct Black 38 by human intestinal microbiota

    SciTech Connect

    Manning, B.W.; Cerniglia, C.E.; Federle, T.W.

    1985-07-01

    Benzidine-based azo dyes are proven mutagens and have been linked to bladder cancer. Previous studies have indicated that their initial reduction is the result of the azo reductase activity of the intestinal microbiota. Metabolism of the benzidine-based dye Direct Black 38 was examined by using a semicontinuous culture system that simulates the lumen of the human large intestine. The system was inoculated with freshly voided feces, and an active flora was maintained as evidenced by volatile fatty acid and gas production. Within 7 days after exposure to the dye, the following metabolites were isolated and identified by gas chromatography - mass spectrometry: benzidine, 4-aminobiphenyl, monoacetylbenzidine, and acetylaminobiphenyl. Benzidine reached its peak level after 24 h, accounting for 39.1% of the added dye. Its level began to decline, and by day 7 the predominant metabolite was acetylaminobiphenyl, which accounted for 51.1% of the parent compound. Formation of the deaminated and N-acetylated analogs of benzidine, which have enhanced mutagenicity and lipophilicity, previously has not been attributed to the intestinal microbiota.

  14. Study of excitation transfer in laser dye mixtures by direct measurement of fluorescence lifetime

    NASA Technical Reports Server (NTRS)

    Lin, C.; Dienes, A.

    1973-01-01

    By directly measuring the donor fluorescence lifetime as a function of acceptor concentration in the laser dye mixture Rhodamine 6G-Cresyl violet, we found that the Stern-Volmer relation is obeyed, from which the rate of excitation transfer is determined. The experimental results indicate that the dominant mechanism responsible for the efficient excitation transfer is that of resonance transfer due to long range dipole-dipole interaction.

  15. Self-sustainable Chlorella pyrenoidosa strain NCIM 2738 based photobioreactor for removal of Direct Red-31 dye along with other industrial pollutants to improve the water-quality.

    PubMed

    Sinha, Surbhi; Singh, Rachana; Chaurasia, Akhilesh K; Nigam, Subhasha

    2016-04-01

    The genotoxic and carcinogenic effects of diazo dyes from industrial effluents pose a serious environmental threat by contaminating aquatic ecosystem and consequently impact human health. The potential of a diazo dye resistant, self-sustainable photosynthetic green alga Chlorella pyrenoidosa NCIM 2738 provides a viable green technology for an efficient biodegradation of diazo dye Direct Red-31 (DR-31) and overall improvement of water quality. Herein, we for the first time report the degradation of DR-31 using C. pyrenoidosa. Batch experiments were performed to optimize the effect of initial pH, contact time and toxicity-range of DR-31 in order to achieve the optimal conditions for maximum decolourization in continuous cyclic photobioreactor. In batch culture, C. pyrenoidosa exhibited 96% decolourization with 40mgL(-1) dye at pH3. The equilibrium was attained within 30min and the maximum uptake of 30.53mgg(-1) algal biomass was observed during this period. This was found to be fitted well with Langmuir and Freundlich adsorption isotherm. The FT-IR spectra showed a change from -N=N- to N-H suggesting the possible involvement of the azoreductase enzyme. The application of C. pyrenoidosa not only degraded the DR-31 but also improved the quality of water by reducing COD (82.73%), BOD (56.44%), sulphate (54.54%), phosphate (19.88%), and TDS (84.18%) which was further enhanced in continuous cyclic bioreactor treatment. The results clearly showed that C. pyrenoidosa provides an efficient, self-sustainable green technology for decolourization of DR-31 and improved the water quality.

  16. Adsorption of direct dye on palm ash: kinetic and equilibrium modeling.

    PubMed

    Ahmad, A A; Hameed, B H; Aziz, N

    2007-03-01

    Palm ash, an agriculture waste residue from palm-oil industry in Malaysia, was investigated as a replacement for the current expensive methods of removing direct blue 71 dye from an aqueous solution. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with Freundlich model in the range of 50-600mg/L. The equilibrium adsorption capacity of the palm ash was determined with the Langmuir equation and found to be 400.01mg dye per gram adsorbent at 30 degrees C. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The results indicate that the palm ash could be employed as a low-cost alternative to commercial activated carbon.

  17. [Study on removal effect of different organic fractions from bio-treated effluent of dye wastewater by UV/H2O2 process].

    PubMed

    Li, Xin; Liu, Yong-di; Sun, Xian-bo; Xu, Hong-yong; Qian, Fei-yue; Li, Xin-jue; Li, Mu

    2012-08-01

    The pretreatment of bio-treated effluent of dye wastewater by UV/H2O2 process was studied. The influencing factors, such as H2O2 dosage, reaction time and pH values were evaluated for the removal efficiency of UV254, ADMI7.6, DOC and DOC of dye wastewater by UV/H2O2 process. The experimental results showed that,the optimal conditions determined were as follows: initial pH 7.4-8.1, H2O2 dosage 4.5 mmol x L(-1) and UV irradiation time of 50 min. Under the optimal conditions, UV254, ADMI7.6, DOC and COD removal rate could reach 77%, 94%, 40% and 69%. Removal effects of four different DOM fractions, hydrophobic acids, non-acid hydrophobics, tasnsphilics and hydrophilics separated by XAD-8 and XAD-4 resins. The experimental results show that: hydrophobic material was the main substance causing color, when it was characterized by ADMI7.6, the proportion could reach 92%, of which 53% was non-acid hydrophobics. It indicated that removal efficiencies of tasnsphilics, hydrophobic acids and non-acid hydrophobics were high through UV/H2O2, process, while hydrophilics' efficiencies were lower. The experimental results showed that organic molecules with molecular weight over 10,000 contributed greatly to UV254, ADMI7.6 and DOC removal rate. PMID:23213897

  18. [Study on removal effect of different organic fractions from bio-treated effluent of dye wastewater by UV/H2O2 process].

    PubMed

    Li, Xin; Liu, Yong-di; Sun, Xian-bo; Xu, Hong-yong; Qian, Fei-yue; Li, Xin-jue; Li, Mu

    2012-08-01

    The pretreatment of bio-treated effluent of dye wastewater by UV/H2O2 process was studied. The influencing factors, such as H2O2 dosage, reaction time and pH values were evaluated for the removal efficiency of UV254, ADMI7.6, DOC and DOC of dye wastewater by UV/H2O2 process. The experimental results showed that,the optimal conditions determined were as follows: initial pH 7.4-8.1, H2O2 dosage 4.5 mmol x L(-1) and UV irradiation time of 50 min. Under the optimal conditions, UV254, ADMI7.6, DOC and COD removal rate could reach 77%, 94%, 40% and 69%. Removal effects of four different DOM fractions, hydrophobic acids, non-acid hydrophobics, tasnsphilics and hydrophilics separated by XAD-8 and XAD-4 resins. The experimental results show that: hydrophobic material was the main substance causing color, when it was characterized by ADMI7.6, the proportion could reach 92%, of which 53% was non-acid hydrophobics. It indicated that removal efficiencies of tasnsphilics, hydrophobic acids and non-acid hydrophobics were high through UV/H2O2, process, while hydrophilics' efficiencies were lower. The experimental results showed that organic molecules with molecular weight over 10,000 contributed greatly to UV254, ADMI7.6 and DOC removal rate.

  19. Dye Painting!

    ERIC Educational Resources Information Center

    Johnston, Ann

    This resource provides practical instructions for applying color and design directly to fabric. Basic information about the dye painting process is given. The guide addresses the technical aspects of fabric dye and color use and offers suggestions for fabric manipulation and dye application in order to achieve various design effects. This…

  20. 10 CFR 72.104 - Criteria for radioactive materials in effluents and direct radiation from an ISFSI or MRS.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... radiation from an ISFSI or MRS. 72.104 Section 72.104 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED... materials in effluents and direct radiation from an ISFSI or MRS. (a) During normal operations and... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct...

  1. 10 CFR 72.104 - Criteria for radioactive materials in effluents and direct radiation from an ISFSI or MRS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... radiation from an ISFSI or MRS. 72.104 Section 72.104 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED... materials in effluents and direct radiation from an ISFSI or MRS. (a) During normal operations and... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct...

  2. 10 CFR 72.104 - Criteria for radioactive materials in effluents and direct radiation from an ISFSI or MRS.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... radiation from an ISFSI or MRS. 72.104 Section 72.104 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED... materials in effluents and direct radiation from an ISFSI or MRS. (a) During normal operations and... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct...

  3. 10 CFR 72.104 - Criteria for radioactive materials in effluents and direct radiation from an ISFSI or MRS.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... radiation from an ISFSI or MRS. 72.104 Section 72.104 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED... materials in effluents and direct radiation from an ISFSI or MRS. (a) During normal operations and... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct...

  4. 10 CFR 72.104 - Criteria for radioactive materials in effluents and direct radiation from an ISFSI or MRS.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... radiation from an ISFSI or MRS. 72.104 Section 72.104 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED... materials in effluents and direct radiation from an ISFSI or MRS. (a) During normal operations and... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct...

  5. Degradation of organic dyes via bismuth silver oxide initiated direct oxidation coupled with sodium bismuthate based visible light photocatalysis.

    PubMed

    Yu, Kai; Yang, Shaogui; Liu, Cun; Chen, Hongzhe; Li, Hui; Sun, Cheng; Boyd, Stephen A

    2012-07-01

    Organic dye degradation was achieved via direct oxidation by bismuth silver oxide coupled with visible light photocatalysis by sodium bismuthate. Crystal violet dye decomposition by each reagent proceeded via two distinct pathways, each involving different active oxygen species. A comparison of each treatment method alone and in combination demonstrated that using the combined methods in sequence achieved a higher degree of degradation, and especially mineralization, than that obtained using either method alone. In the combined process direct oxidation acts as a pretreatment to rapidly bleach the dye solution which substantially facilitates subsequent visible light photocatalytic processes. The integrated sequential direct oxidation and visible light photocatalysis are complementary manifesting a > 100% increase in TOC removal, compared to either isolated method. The combined process is proposed as a novel and effective technology based on one primary material, sodium bismuthate, for treating wastewaters contaminated by high concentrations of organic dyes.

  6. Direct Imaging of ER Calcium with Targeted-Esterase Induced Dye Loading (TED)

    PubMed Central

    Samtleben, Samira; Jaepel, Juliane; Fecher, Caroline; Andreska, Thomas; Rehberg, Markus; Blum, Robert

    2013-01-01

    Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca2+ indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca2+ indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca2+ indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca2+ indicator and a hydrophilic fluorescent dye/Ca2+ complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0. PMID:23685703

  7. Biological and oxidative treatment of cotton textile dye-bath effluents by fixed and fluidized bed reactors.

    PubMed

    Baban, A; Yediler, A; Avaz, G; Hostede, S S

    2010-02-01

    A treatability study for highly polluted and recalcitrant azo reactive dye-baths from cotton textile dyeing processes was conducted by using fixed and up-flow fluidized bed type reactors packed with brown coal. Ozone oxidation was carried out to assess the combination of biological and chemical oxidation. COD removal efficiencies ranged from 70% to 93%, and up to 99% color removal was attained. At a COD loading rate of 25.5 x 10(-6) gCOD/m(2)-d, COD removal was 85%. Breakthrough of the brown coal used occurred at total organic loading of 0.090 gCOD/g coal. Biodegradable and inert COD fractions of the remazol dye-bath were assessed by BOD(28) and oxygen uptake rate (OUR) measurements. 50% of total COD was initially inert. The inert fraction was reduced by adsorption and ozone oxidation by 65% and 40%, respectively. Brown coal is an inexpensive material and the system has economical and operational advantages as compared to treatment options such as advanced oxidation processes (AOPs) using UV, O(3), H(2)O(2) or electrocoagulation.

  8. Selective fluorescence functionalization of dye-doped polymerized structures fabricated by direct laser writing (DLW) lithography

    NASA Astrophysics Data System (ADS)

    de Miguel, Gustavo; Vicidomini, Giuseppe; Duocastella, Martí; Diaspro, Alberto

    2015-11-01

    The continuous development of the vast arsenal of fabrication techniques is a pivotal factor in the breakthrough of nanotechnology. Although the broad interest is generally focused on the reduction of the dimensions of the fabricated structures, localized functionalization of the nanomaterials emerges as a key factor closely linked to their potential applications. In particular, fabrication of spatially selective fluorescence nanostructures is highly demanded in nanophotonics, as for example in three-dimensional (3D) optical data storage (ODS), where massive storage capacity and fast writing-reading processes are promised. We have developed an innovative method to control the location and intensity of the fluorescence signal in dye-doped photopolymerized structures fabricated with Direct Laser Writing (DLW) lithography. Well-defined fluorescent pixels (area = 0.24 μm2) were written inside a polymer matrix with the help of a femtosecond pulsed laser (multiphoton absorption) via a thermally-induced di-aggregation of a fluorescent dye. Moreover, we have accomplished a fine control of the fluorescence intensity which can increase the storage capacity of ODS systems fabricated with this approach.The continuous development of the vast arsenal of fabrication techniques is a pivotal factor in the breakthrough of nanotechnology. Although the broad interest is generally focused on the reduction of the dimensions of the fabricated structures, localized functionalization of the nanomaterials emerges as a key factor closely linked to their potential applications. In particular, fabrication of spatially selective fluorescence nanostructures is highly demanded in nanophotonics, as for example in three-dimensional (3D) optical data storage (ODS), where massive storage capacity and fast writing-reading processes are promised. We have developed an innovative method to control the location and intensity of the fluorescence signal in dye-doped photopolymerized structures fabricated

  9. Biosafety and containment plan & design for direct sampling of operating effluent decontamination tanks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, Southeast Poultry Research Laboratory (SEPRL) uses an effluent decontamination system (EDS) that serves as an enhancement, or extra barrier for biocontainment. Wastewater effluent from (A)BSL-3E and (A)BSL-2E laboratories is collected in tanks for thermal inactivation (180°F for 30 minut...

  10. Decolorization and detoxification of two textile industry effluents by the laccase/1-hydroxybenzotriazole system.

    PubMed

    Benzina, Ouafa; Daâssi, Dalel; Zouari-Mechichi, Héla; Frikha, Fakher; Woodward, Steve; Belbahri, Lassaad; Rodriguez-Couto, Susana; Mechichi, Tahar

    2013-08-01

    The aim of this work was to determine the optimal conditions for the decolorization and the detoxification of two effluents from a textile industry-effluent A (the reactive dye bath Bezactive) and effluent B (the direct dye bath Tubantin)-using a laccase mediator system. Response surface methodology (RSM) was applied to optimize textile effluents decolorization. A Box-Behnken design using RSM with the four variables pH, effluent concentration, 1-hydroxybenzotriazole (HBT) concentration, and enzyme (laccase) concentration was used to determine correlations between the effects of these variables on the decolorization of the two effluents. The optimum conditions for pH and concentrations of HBT, effluent and laccase were 5, 1 mM, 50 % and 0.6 U/ml, respectively, for maximum decolorization of effluent A (68 %). For effluent B, optima were 4, 1 mM, 75 %, and 0.6 U/ml, respectively, for maximum decolorization of approximately 88 %. Both effluents were treated at 30 °C for 20 h. A quadratic model was obtained for each decolorization through this design. The experimental and predicted values were in good agreement and both models were highly significant. In addition, the toxicity of the two effluents was determined before and after laccase treatment using Saccharomyces cerevisiae, Bacillus cereus, and germination of tomato seeds.

  11. Direct laser interference patterning of polystyrene films doped with azo dyes, using 355 nm laser light

    NASA Astrophysics Data System (ADS)

    Broglia, M. F.; Suarez, S.; Soldera, F.; Mücklich, F.; Barbero, C. A.; Bellingeri, R.; Alustiza, F.; Acevedo, D.

    2014-05-01

    The generation of line-like periodic patterns by direct laser interference patterning (DLIP) of polystyrene films (PS) at a wavelength of 355 nm has been investigated. No structuration is achieved in plain PS due to the weak absorption of the polymer at 355 nm. On the other hand, patterning is achieved on films doped (PSd) with an azo dye (2-anisidine → 2-anisidine) which is incorporated in the polymer solution used for film preparation. Periodic micro-structures are generated. DLIP on PSd results in the swelling of the surface at low fluences, while at high laser intensities it causes the ablation of the regions at the interference maxima positions. The results contrast with the usual process of DLIP on PS (at shorter wavelengths, like 266 nm) where only ablation is detected. The results suggest that decomposition of the azo dye is the driving force of the patterning which therefore differ from the patterning obtained when plain PS is irradiated with laser light able to be absorbed by the aromatic ring in PS (e.g. 266 nm). The biocompatibility of these materials and adhesion of cells was tested, the data from in vitro assays shows that fibroblast cells are attached and proliferate extensively on the PSd films.

  12. Selective fluorescence functionalization of dye-doped polymerized structures fabricated by direct laser writing (DLW) lithography.

    PubMed

    de Miguel, Gustavo; Vicidomini, Giuseppe; Duocastella, Martí; Diaspro, Alberto

    2015-12-21

    The continuous development of the vast arsenal of fabrication techniques is a pivotal factor in the breakthrough of nanotechnology. Although the broad interest is generally focused on the reduction of the dimensions of the fabricated structures, localized functionalization of the nanomaterials emerges as a key factor closely linked to their potential applications. In particular, fabrication of spatially selective fluorescence nanostructures is highly demanded in nanophotonics, as for example in three-dimensional (3D) optical data storage (ODS), where massive storage capacity and fast writing-reading processes are promised. We have developed an innovative method to control the location and intensity of the fluorescence signal in dye-doped photopolymerized structures fabricated with Direct Laser Writing (DLW) lithography. Well-defined fluorescent pixels (area = 0.24 μm(2)) were written inside a polymer matrix with the help of a femtosecond pulsed laser (multiphoton absorption) via a thermally-induced di-aggregation of a fluorescent dye. Moreover, we have accomplished a fine control of the fluorescence intensity which can increase the storage capacity of ODS systems fabricated with this approach. PMID:26572098

  13. Direct identification of early synthetic dyes: FT-Raman study of the illustrated broadside prints of José Gaudalupe Posada (1852-1913)

    NASA Astrophysics Data System (ADS)

    Casadio, F.; Mauck, K.; Chefitz, M.; Freeman, R.

    2010-09-01

    Fourier Transform (FT)-Raman spectroscopy was used for the non-invasive, direct identification of colorants used to dye historical printed papers, overcoming obstacles such as low concentration of the dye, faded colors and fluorescence interference of the aged paper substrate. Based on a newly created FT-Raman reference database of 20 widely used dyes in the 19th century paper industry, the detectability of these dyes on aged biomaterials was determined by studying dyed paper samples from contemporary dye manuals, and identifying diagnostic peaks detectable on those substrates. Lastly, the method was applied to analyze the colorants used to dye the papers of a group of prints illustrated by the influential Mexico City artist José Guadalupe Posada, active 1876-1913. Unambiguous identification of the synthetic organic colorants Malachite Green (a triarylmethane dye), Orange II and Metanil Yellow (two acid monoazo dyes), Cotton Scarlet (an acid diazo dye), Phloxine (a xanthene dye) and Victoria Blue (a triarylmethane dye) in several of Posada’s prints challenged previous art-historical assumptions that these artworks were colored with natural dyes. The acquired knowledge has important conservation implications given that aniline dyes are sensitive to light and to aqueous treatments otherwise commonly carried out on works of art on paper.

  14. Direct contact membrane distillation for the concentration of saline dairy effluent.

    PubMed

    Kezia, Kezia; Lee, Judy; Weeks, Mike; Kentish, Sandra

    2015-09-15

    The ability of direct contact membrane distillation to concentrate the waste effluent from salty whey, a by-product from the cheese making industry has been investigated. The effect of trace protein in the feed, cross-flow velocity and feed acidity were the factors examined. Flat Sheet PTFE membranes of nominal pore sizes 0.05, 0.22 and 0.45 μm were utilised. A decline in feed flux in the presence of trace protein in the feed was observed, but liquid penetration through the membrane could still be prevented by utilization of a membrane of smaller pore size, to achieve a final total solids concentration of ±30% w/w with water recovery from 37 to 83 %. The pressure-drop across the channel length was also predicted accounting for the feed spacer. To increase the channel length up to 1 m will require operation using the smallest pore size of 0.05 μm, unless very low cross-flow velocities are used. The fouling of the membrane is primarily governed by precipitation of a calcium phosphate salt. However, operation at low pH does not improve the flux or the final salt concentration significantly. PMID:26057264

  15. Direct contact membrane distillation for the concentration of saline dairy effluent.

    PubMed

    Kezia, Kezia; Lee, Judy; Weeks, Mike; Kentish, Sandra

    2015-09-15

    The ability of direct contact membrane distillation to concentrate the waste effluent from salty whey, a by-product from the cheese making industry has been investigated. The effect of trace protein in the feed, cross-flow velocity and feed acidity were the factors examined. Flat Sheet PTFE membranes of nominal pore sizes 0.05, 0.22 and 0.45 μm were utilised. A decline in feed flux in the presence of trace protein in the feed was observed, but liquid penetration through the membrane could still be prevented by utilization of a membrane of smaller pore size, to achieve a final total solids concentration of ±30% w/w with water recovery from 37 to 83 %. The pressure-drop across the channel length was also predicted accounting for the feed spacer. To increase the channel length up to 1 m will require operation using the smallest pore size of 0.05 μm, unless very low cross-flow velocities are used. The fouling of the membrane is primarily governed by precipitation of a calcium phosphate salt. However, operation at low pH does not improve the flux or the final salt concentration significantly.

  16. 40 CFR Table 5 to Part 455 - BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That Do Not Use End-of-Pipe Biological Treatment 5 Table 5 to Part 455 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS...

  17. 40 CFR Table 5 to Part 455 - BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That Do Not Use End-of-Pipe Biological Treatment 5 Table 5 to Part 455 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS...

  18. 40 CFR Table 5 to Part 455 - BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That Do Not Use End-of-Pipe Biological Treatment 5 Table 5 to Part 455 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS...

  19. 40 CFR Table 5 to Part 455 - BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That Do Not Use End-of-Pipe Biological Treatment 5 Table 5 to Part 455 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE...

  20. Connecting Direct C-H Arylation Reactions with Dye-Sensitized Solar Cells: A Shortcut to D-A-π-A Organic Dyes.

    PubMed

    Lin, Po-Han; Lu, Te-Jui; Cai, Deng-Jhou; Lee, Kun-Mu; Liu, Ching-Yuan

    2015-10-12

    A step-economical synthetic strategy is developed to target thieno[3,4-c]pyrrole-4,6-dione (TPD)-based D-A-π-A organic dyes for dye-sensitized solar cells (DSSCs). Through sequential Pd-catalyzed direct C-H (hetero)arylation reaction, synthesis of the push-pull-type small molecules is reduced from the traditional six steps to two steps. In this report, we focus on the optimization of the key C-H monoarylation of TPD by screening ligands, acid additives, bases, and solvents. The reaction proves versatile toward new D-A-π-A organic dyes with a variety of different donor groups, and several derivatives are efficiently prepared under optimum reaction conditions. The sensitive aldehyde functionality that is a required intermediate for conversion into anchoring groups for TiO2 is well tolerated. Based on our synthetic study, DSSCs are fabricated and characterized using two designed sensitizers. The photovoltaic characterization of the devices affords an open-circuit voltage of 0.60-0.69 V, a short-circuit current density of 10.85-11.07 mA cm(-2), and a fill factor of 69.9-70.8 %, which corresponds to an overall power conversion efficiency of 4.61-5.33 %.

  1. Direct quantitation of Mg2+ - RNA interactions by use of a fluorescent dye

    PubMed Central

    Grilley, Dan; Soto, Ana Maria; Draper, David

    2010-01-01

    The ionic composition of a solution strongly influences the folding of an RNA into its native structure; of particular importance, the stabilities of RNA tertiary structures are sharply dependent on the concentration of Mg2+. Most measurements of the extent of Mg2+ interaction with an RNA have relied on equilibrium dialysis or indirect measurements. Here we describe an approach, based on titrations in the presence of a fluorescent indicator dye, that accurately measures the excess Mg2+ ion neutralizing the charge of an RNA (the interaction or Donnan coefficient, Γ2+) and the total free energy of Mg2+ - RNA interactions (ΔGRNA-2+). Automated data collection with computer-controlled titrators enables the collection of much larger data sets in a short time, compared to equilibrium dialysis. Γ2+ and ΔGRNA-2+ are thermodynamically rigorous quantities that are directly comparable with the results of theoretical calculations and simulations. In the event that RNA folding is coupled to the addition of MgCl2, the method directly monitors the uptake of Mg2+ associated with the folding transition. PMID:19289203

  2. Reflective Direct-View Displays Using a Dye-Doped Dual-Frequency Liquid Crystal Gel

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Ren, Hongwen; Gauza, Sebastian; Wu, Yung-Hsun; Liang, Xiao; Wu, Shin-Tson

    2005-12-01

    A high-contrast, fast-response, and polarizer-free reflective display using a dye-doped dual-frequency liquid crystal gel is demonstrated. The high contrast ratio originates from the combination of light scattering from the microdomain polymer gel and absorption from the black dyes. The fast response is due to the frequency modulation of the dual-frequency liquid crystal.

  3. Electrochemical wastewater treatment directly powered by photovoltaic panels: electrooxidation of a dye-containing wastewater.

    PubMed

    Valero, David; Ortiz, Juan M; Expósito, Eduardo; Montiel, Vicente; Aldaz, Antonio

    2010-07-01

    Electrochemical technologies have proved to be useful for the treatment of wastewater, but to enhance their green characteristics it seems interesting to use a green electric energy such as that provided by photovoltaic (PV) cells, which are actually under active research to decrease the economic cost of solar kW. The aim of this work is to demonstrate the feasibility and utility of using an electrooxidation system directly powered by a photovoltaic array for the treatment of a wastewater. The experimental system used was an industrial electrochemical filter press reactor and a 40-module PV array. The influence on the degradation of a dye-containing solution (Remazol RB 133) of different experimental parameters such as the PV array and electrochemical reactor configurations has been studied. It has been demonstrated that the electrical configuration of the PV array has a strong influence on the optimal use of the electric energy generated. The optimum PV array configuration changes with the intensity of the solar irradiation, the conductivity of the solution, and the concentration of pollutant in the wastewater. A useful and effective methodology to adjust the EO-PV system operation conditions to the wastewater treatment is proposed.

  4. Electrochemical wastewater treatment directly powered by photovoltaic panels: electrooxidation of a dye-containing wastewater.

    PubMed

    Valero, David; Ortiz, Juan M; Expósito, Eduardo; Montiel, Vicente; Aldaz, Antonio

    2010-07-01

    Electrochemical technologies have proved to be useful for the treatment of wastewater, but to enhance their green characteristics it seems interesting to use a green electric energy such as that provided by photovoltaic (PV) cells, which are actually under active research to decrease the economic cost of solar kW. The aim of this work is to demonstrate the feasibility and utility of using an electrooxidation system directly powered by a photovoltaic array for the treatment of a wastewater. The experimental system used was an industrial electrochemical filter press reactor and a 40-module PV array. The influence on the degradation of a dye-containing solution (Remazol RB 133) of different experimental parameters such as the PV array and electrochemical reactor configurations has been studied. It has been demonstrated that the electrical configuration of the PV array has a strong influence on the optimal use of the electric energy generated. The optimum PV array configuration changes with the intensity of the solar irradiation, the conductivity of the solution, and the concentration of pollutant in the wastewater. A useful and effective methodology to adjust the EO-PV system operation conditions to the wastewater treatment is proposed. PMID:20540540

  5. Textile dye decolorization using cyanobacteria.

    PubMed

    Parikh, Amit; Madamwar, Datta

    2005-03-01

    Cyanobacterial cultures isolated from sites polluted by industrial textile effluents were screened for their ability to decolorize cyclic azo dyes. Gloeocapsa pleurocapsoides and Phormidium ceylanicum decolorized Acid Red 97 and FF Sky Blue dyes by more than 80% after 26 days. Chroococcus minutus was the only culture which decolorized Amido Black 10B (55%). Chlorophyll a synthesis in all cultures was strongly inhibited by the dyes. Visible spectroscopy and TLC confirmed that color removal was due to degradation of the dyes.

  6. Ecological impact and recovery of a Mediterranean river after receiving the effluent from a textile dyeing industry.

    PubMed

    Colin, Nicole; Maceda-Veiga, Alberto; Flor-Arnau, Núria; Mora, Josep; Fortuño, Pau; Vieira, Cristiana; Prat, Narcís; Cambra, Jaume; de Sostoa, Adolfo

    2016-10-01

    The textile industry is one of the largest sectors globally, representing up to 20% of industrial water pollution. However, there is limited insight into how fluvial ecosystems respond and recover from this impact. From summer 2012 to spring 2013, we examined water quality and ecological status upstream and 1.5km downstream the input of a textile industry wastewater treatment plant (WWTP) in Ripoll River, NE Spain. The ecological status was determined via diversity measures and 10 biotic indices based on diatoms, macrophytes, macroinvertebrates and fish. Our results showed that the WWTP severely deteriorated water quality and biological communities at the discharge site, but that they improved at 1.5km downstream. Severity also varied across taxa and seasons, being fish the most affected taxa and spring the season with the best ecological status. The strong correlation amongst water quality variables and many biotic indices across taxa indicated that this is a chronic pollution event affecting multiple trophic levels. Thus, this study suggests that there is an urgent need to invest in wastewater treatment in this industry to preserve the ecological integrity of Ripoll River and especially its fish fauna. Likewise, it illustrates the diagnostic power of biotic indices based on diatoms, macroinvertebrates and fish, as driven by the European Water Framework Directive. PMID:27344397

  7. Can luminescent Ru(II) polypyridyl dyes measure pH directly?

    PubMed

    Tormo, Laura; Bustamante, Nelia; Colmenarejo, Gonzalo; Orellana, Guillermo

    2010-06-15

    Two molecularly engineered Ru(II) complexes for direct pH optosensing in environmental or physiological media based on luminescence lifetime measurements-namely, Na(2)[Ru(bpds)(2)(F(15)ap)] and Na(2)[Ru(pbbs)(2)(pyim)] (where bpds = 2,2'-bipyridine-4,4'-disulfonate, F(15)ap = 5-perfluorooctanamide-1,10-phenanthroline, pbbs = 1,10-phenanthroline-4,7-(diyl)bis(benzenesulfonate), and pyim = 2-(2'-pyridyl)imidazole)-have been prepared. The suitability of these two luminophores as general-purpose pH indicators has been assessed to determine the general features of Ru(II) dyes required for such application. Their photochemical properties were investigated at different pH values in various buffer solutions using absorption spectroscopy, as well as steady-state and time-resolved luminescence. Both dyes display a parallel absorption and emission behavior as a function of pH (2-10), namely, higher luminescence in acidic solutions together with a 8-10 nm bathochromic shift in their (blue) absorption and 6-39 nm bathochromic shift in their (red) luminescence maxima in basic media, respectively. Similar ground-state acidity values (pK(a)) of 6.5 +/- 0.2 for the amide group of the F(15)ap complex and 6.9 +/- 0.2 for the imidazole NH moiety of the pyim complex have been measured. However, dramatic differences in their luminescence lifetimes as a function of pH were found. The HA and A(-) forms of *[Ru(bpds)(2)(F(15)ap)](2-) conveniently display lifetimes of 372 and 263 ns, respectively, regardless of the solution acidity and buffer nature. Their relative contributions to the overall decay (0%-100%) are dependent on the solution pH indicating excited-state proton exchange rates well below the decay rates of the acidic and basic forms. However, *[Ru(pbbs)(2)(pyim)](2-) deactivation kinetics show a pH-independent component of 80 ns at high pH and an acidity-sensitive one that varies from 610 ns (at pH 2) to 170 ns (at pH 10). Both components are also dependent on the buffer nature

  8. Textile dye degradation using nano zero valent iron: A review.

    PubMed

    Raman, Chandra Devi; Kanmani, S

    2016-07-15

    Water soluble unfixed dyes and inorganic salts are the major pollutants in textile dyeing industry wastewater. Existing treatment methods fail to degrade textile dyes and have limitations too. The inadequate treatment of textile dyeing wastewater is a major concern when effluent is directly discharged into the nearby environment. Long term disposal threatens the environment, which needs reclamation. This article reviews the current knowledge of nano zero valent iron (nZVI) technique in the degradation of textile dyes. The application of nZVI on textile dye degradation is receiving great attention in the recent years because nZVI particles are highly reactive towards the pollutant, less toxic, and economical. The nZVI particles aggregate quickly with respect to time and the addition of supports such as resin, nickel, zinc, bentonite, biopolymer, kaolin, rectorite, nickel-montmorillonite, bamboo, cellulose, biochar, graphene, and clinoptilolite enhanced the stability of iron nanoparticles. Inclusion of supports may in turn introduce additional toxic pollutants, hence green supports are recommended. The majority of investigations concluded dye color removal as textile dye compound removal, which is not factual. Very few studies monitored the removal of total organic carbon and observed the products formed. The results revealed that partial mineralization of the textile dye compound was achieved. Instead of stand alone technique, nZVI can be integrated with other suitable technique to achieve complete degradation of textile dye and also to treat multiple pollutants in the real textile dyeing wastewater. It is highly recommended to perform more bench-scale and pilot-scale studies to apply this technique to the textile effluent contaminated sites. PMID:27115482

  9. Some properties of a granular activated carbon-sequencing batch reactor (GAC-SBR) system for treatment of textile wastewater containing direct dyes.

    PubMed

    Sirianuntapiboon, Suntud; Sadahiro, Ohmomo; Salee, Paneeta

    2007-10-01

    Resting (living) bio-sludge from a domestic wastewater treatment plant was used as an adsorbent of both direct dyes and organic matter in a sequencing batch reactor (SBR) system. The dye adsorption capacity of the bio-sludge was not increased by acclimatization with direct dyes. The adsorption of Direct Red 23 and Direct Blue 201 onto the bio-sludge was almost the same. The resting bio-sludge showed higher adsorption capacity than the autoclaved bio-sludge. The resting bio-sludge that was acclimatized with synthetic textile wastewater (STWW) without direct dyes showed the highest Direct Blue 201, COD, and BOD(5) removal capacities of 16.1+/-0.4, 453+/-7, and 293+/-9 mg/g of bio-sludge, respectively. After reuse, the dye adsorption ability of deteriorated bio-sludge was recovered by washing with 0.1% sodium dodecyl sulfate (SDS) solution. The direct dyes in the STWW were also easily removed by a GAC-SBR system. The dye removal efficiencies were higher than 80%, even when the system was operated under a high organic loading of 0.36kgBOD(5)/m(3)-d. The GAC-SBR system, however, showed a low direct dye removal efficiency of only 57+/-2.1% with raw textile wastewater (TWW) even though the system was operated with an organic loading of only 0.083kgBOD(5)/m(3)-d. The dyes, COD, BOD(5), and total kjeldalh nitrogen removal efficiencies increased up to 76.0+/-2.8%, 86.2+/-0.5%, 84.2+/-0.7%, and 68.2+/-2.1%, respectively, when 0.89 g/L glucose (organic loading of 0.17kgBOD(5)/m(3)-d) was supplemented into the TWW.

  10. Biodegradation of benzidine based azodyes Direct red and Direct blue by the immobilized cells of Pseudomonas fluorescens D41.

    PubMed

    Puvaneswari, N; Muthukrishnan, J; Gunasekaran, P

    2002-10-01

    Benzidine based azodyes are proven carcinogens, mutagens and have been linked to bladder cancer of human beings and laboratory animals. The textile and dyestuff manufacturing industry are the two major sources that released azodyes in their effluents. The dye, Direct blue contains two carcinogenic compounds namely benzidine (BZ), 4-amino biphenyl (4-ABP), while the dye Direct red has benzidine (BZ). Among 40 isolates of Pseudomonas fluorescens screened, one isolate designated as D41 was found to be capable of extensively degrading the dyes Direct blue and Direct red. Immobilized cells of P. fluorescens D41 efficiently degraded Direct red (82%) and Direct blue (71%) in the presence of glucose.

  11. Removal of direct dyes from aqueous solution by oxidized starch cross-linked chitosan/silica hybrid membrane.

    PubMed

    He, Xuemei; Du, Mei; Li, Hui; Zhou, Tianchi

    2016-01-01

    In this research, chitosan/oxidized starch/silica (CS/OSR/Silica) hybrid membrane was prepared by using oxidized starch and 3-aminopropyltriethoxysilane (APTES) as cross-linking agents. The characterizations of the hybrid membrane were investigated by using attenuated total reflection (ATR) spectroscopy, scanning electron microscopy (SEM), thermogravimetry (TG) analysis and swelling measurement. The CS/OSR/Silica hybrid membrane exhibited the improved thermal stability and low degree of swelling in water. The adsorption properties of the CS/OSR/Silica hybrid membrane were studied by using two direct dyes (Blue 71 and Red 31). The results indicated the adsorption capacity of the CS/OSR/Silica hybrid membrane was found optimal at pH 9.82 and temperature 60°C for Blue 71 and Red 31. The adsorption kinetic data followed pseudo-second order kinetic model and the adsorption behavior of the two dyes on the hybrid membrane fitted well with the Freundlich model. The CS/OSR/Silica hybrid membrane can be used as an appropriate biosorbent for removal of direct dyes from colored wastewater.

  12. Comparison of Moringa stenopetala seed extract as a clean coagulant with Alum and Moringa stenopetala-Alum hybrid coagulant to remove direct dye from Textile Wastewater.

    PubMed

    Dalvand, Arash; Gholibegloo, Elham; Ganjali, Mohammad Reza; Golchinpoor, Najmeh; Khazaei, Mohammad; Kamani, Hossein; Hosseini, Sara Sadat; Mahvi, Amir Hossein

    2016-08-01

    In this study, the efficiency of Moringa stenopetala seed extract was compared with alum and M. stenopetala-alum hybrid coagulant to remove Direct Red 23 azo dye from textile wastewater. The effects of parameters such as pH, coagulant dose, type of salt used for the extraction of coagulant and initial dye concentration on dye removal efficiency were investigated. Moreover, the existing functional groups on the structure of M. stenopetala coagulant (MSC) were determined by Fourier transform infrared spectroscopy, and the morphology of sludge produced by MSC, alum, and hybrid coagulant was characterized by scanning electron microscopy. Ninhydrin test was also used to determine the quantity of primary amines in the MSC and Moringa oleifera coagulant (MOC). According to the results, with increasing the coagulant dose and decreasing the initial dye concentration, dye removal efficiency has increased. The maximum dye removal of 98.5, 98.2, and 98.3 % were obtained by using 240, 120, and 80 mg/L MSC, alum and hybrid coagulant at pH 7, respectively. The results also showed MSC was much more effective than MOC for dye removal. The volume of sludge produced by MSC was one fourth and half of those produced by alum and hybrid coagulant, respectively. Based on the results, hybrid coagulant was the most efficient coagulant for direct dye removal from colored wastewater. PMID:27164876

  13. Comparison of Moringa stenopetala seed extract as a clean coagulant with Alum and Moringa stenopetala-Alum hybrid coagulant to remove direct dye from Textile Wastewater.

    PubMed

    Dalvand, Arash; Gholibegloo, Elham; Ganjali, Mohammad Reza; Golchinpoor, Najmeh; Khazaei, Mohammad; Kamani, Hossein; Hosseini, Sara Sadat; Mahvi, Amir Hossein

    2016-08-01

    In this study, the efficiency of Moringa stenopetala seed extract was compared with alum and M. stenopetala-alum hybrid coagulant to remove Direct Red 23 azo dye from textile wastewater. The effects of parameters such as pH, coagulant dose, type of salt used for the extraction of coagulant and initial dye concentration on dye removal efficiency were investigated. Moreover, the existing functional groups on the structure of M. stenopetala coagulant (MSC) were determined by Fourier transform infrared spectroscopy, and the morphology of sludge produced by MSC, alum, and hybrid coagulant was characterized by scanning electron microscopy. Ninhydrin test was also used to determine the quantity of primary amines in the MSC and Moringa oleifera coagulant (MOC). According to the results, with increasing the coagulant dose and decreasing the initial dye concentration, dye removal efficiency has increased. The maximum dye removal of 98.5, 98.2, and 98.3 % were obtained by using 240, 120, and 80 mg/L MSC, alum and hybrid coagulant at pH 7, respectively. The results also showed MSC was much more effective than MOC for dye removal. The volume of sludge produced by MSC was one fourth and half of those produced by alum and hybrid coagulant, respectively. Based on the results, hybrid coagulant was the most efficient coagulant for direct dye removal from colored wastewater.

  14. "Molecular beacon"-directed fluorescence of Hoechst dyes for visual detection of Hg(II) and biothiols and its application for a logic gate.

    PubMed

    Zhang, Min; Le, Huynh-Nhu; Jiang, Xiao-Qin; Ye, Bang-Ce

    2013-03-14

    A molecular beacon (MB)-like DNA hairpin biosensor based on the reversible directing fluorescence of Hoechst dyes was developed for fluorescent detection of Hg(2+) and biothiols and furthermore for logic operation.

  15. Direct Observation and Control of Ultrafast Photoinduced Twisted Intramolecular Charge Transfer (TICT) in Triphenyl-Methane Dyes

    PubMed Central

    Li, Guifeng; Magana, Donny; Dyer, R. Brian

    2012-01-01

    Femtosecond time-resolved infrared spectroscopy was employed to study intramolecular charge transfer in triphenylmethane dyes, including malachite green (MG), malachite green carbinol base (MGCB), and leucomalachite green (LMG). A local excited state (LE) and a twisted intramolecular charge-transfer (TICT) state have been observed directly in MG. Furthermore, solvent-controlled TICT measurements in a series of linear alcohols indicate that the transition time (4–11 ps) from LE to TICT is strongly dependent on alcohol viscosity, which is due to rotational hindrance of dimethylaniline in high-viscosity solvents. For LMG, no TICT is observed due to steric hindrance caused by the sp3-hybridized central carbon atom. However, for MGCB, TICT is rescued by the addition of the electron-donating hydroxyl group to the bridge. These results for MG and its analogues provide new insight regarding the dynamics and mechanism of twisted intramolecular charge transfer (TICT) in triphenylmethane dyes. PMID:23009668

  16. Estimation and modeling of direct rapid sand filtration for total fecal coliform removal from secondary clarifier effluents.

    PubMed

    Li, Yi; Yu, Jingjing; Liu, Zhigang; Ma, Tian

    2012-01-01

    The filtration of fecal coliform from a secondary clarifier effluent was investigated using direct rapid sand filters as tertiary wastewater treatment on a pilot scale. The effect of the flocculation dose, flow loading rate, and grain size on fecal coliform removal was determined. Direct rapid sand filters can remove 0.6-1.5 log-units of fecal coliform, depending on the loading rate and grain size distribution. Meanwhile, the flocculation dose has little effect on coliform removal, and increasing the loading rate and/or grain size decreases the bacteria removal efficiency. A model was then developed for the removal process. Bacteria elimination and inactivation both in the water phase and the sand bed can be described by first-order kinetics. Removal was successfully simulated at different loading rates and grain size distributions and compared with the data obtained using pilot-scale filters. PMID:22508124

  17. 40 CFR 414.91 - Toxic pollutant effluent limitations and standards for direct discharge point sources that use...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., production, and sampling and analysis information. Effluent characteristics Effluent limitations BAT and NSPS...-Dinitrophenol 123 71 2,4-Dinitrotoluene 285 113 2,6-Dinitrotoluene 641 255 Ethylbenzene 108 32 Fluoranthene...

  18. 40 CFR 414.101 - Toxic pollutant effluent limitations and standards for direct discharge point sources that do not...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., production, and sampling and analysis information. Effluent characteristics BAT effluent limitations and NSPS... phthalate 47 19 4,6-Dinitro-o-cresol 277 78 2,4-Dinitrophenol 4,291 1,207 Ethylbenzene 380 142...

  19. 40 CFR 414.101 - Toxic pollutant effluent limitations and standards for direct discharge point sources that do not...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., production, and sampling and analysis information. Effluent characteristics BAT effluent limitations and NSPS... phthalate 47 19 4,6-Dinitro-o-cresol 277 78 2,4-Dinitrophenol 4,291 1,207 Ethylbenzene 380 142...

  20. 40 CFR 414.91 - Toxic pollutant effluent limitations and standards for direct discharge point sources that use...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., production, and sampling and analysis information. Effluent characteristics Effluent limitations BAT and NSPS...-Dinitrophenol 123 71 2,4-Dinitrotoluene 285 113 2,6-Dinitrotoluene 641 255 Ethylbenzene 108 32 Fluoranthene...

  1. Improving the decolorization for textile dyes of a metagenome-derived alkaline laccase by directed evolution.

    PubMed

    Liu, Yu Huan; Ye, Mao; Lu, Yi; Zhang, Xia; Li, Gang

    2011-08-01

    To obtain better performing laccases for textile dyes decolorization, random mutagenesis of Lac591, a metagenome-derived alkaline laccase, was carried out. After three rounds of error-prone PCR and high-throughput screening by assaying enzymatic activity toward the phenolic substrate 2,6-dimethoxyphenol (2,6-DMP), a mutant (Lac3T93) with remarkably improved enzymatic activity was obtained. Sequence analysis revealed that four amino acid substitutions (N40S, V55A, F62L, and E316V) were accumulated in the Lac3T93. Compared to the wild-type enzyme, the specific activity of Lac3T93 toward 2,6-DMP was increased to 4.8-fold (61.22 U/mg), and its optimal temperature and pH were changed to 60°C and 8.0 from 55°C and 7.5 of the wild-type enzyme, respectively. Furthermore, the degradation ability of Lac3T93 for textile dyes was investigated, and the new variant represented improved decolorization percentage for four industrial dyes with complex phenyl structure (Basic Blue 3, Methylene Blue, Bromophenol Blue, and Crystal Violet) and higher decolorization efficiency for Indigo Carmine than that of the parent enzyme. Furthermore, the decolorization percentage of Lac3T93 for five dyes in the absence of hydroxybenzotrizole (HBT) is clearly higher than those of the wild-type enzyme with 1 mM HBT, and HBT can further improve its decolorization ability.

  2. Textile dye dermatitis.

    PubMed

    Hatch, K L; Maibach, H I

    1995-04-01

    The literature concerning textile dye dermatitis published during the last decade was reviewed. Sixty-one cases of dye-allergic contact dermatitis in which the presentation or course of the dermatitis was unusual or the dye allergen was one not previously reported have been described. The four new dye allergens discovered were Disperse Blue 106, Disperse Blue 85, Disperse Brown 1, and Basic Red 46. The incidence of dye dermatitis varied from 1% to 15.9% depending on the country, patient sample, and number of dyes in the patch test series. The 10 new dye allergens discovered in these studies were Disperse Blue 153, Disperse Orange 13, Basic Black 1, Basic Brown 1, the acid dyes Supramine Yellow and Supramine Red, the direct dye Diazol Orange, the basic dye Brilliant Green, Turquoise Reactive, and Neutrichrome Red. Disperse Blue 106 and Disperse Blue 124 were shown to be the strongest clothing dye sensitizers to date. Standard screening patch test series were found to be inadequate for the detection of textile dye sensitivity; therefore textile dye patch test series should be used. It is difficult to determine whether the incidence of dye dermatitis is increasing or decreasing because controlled epidemiologic studies are lacking, but data suggest that textile dye sensitivity is more common than previously believed.

  3. Impact of textile dyeing industries effluent on groundwater quality in Karur Amaravathi River basin, Tamil Nadu (India)--a field study.

    PubMed

    Rajamanickam, R; Nagan, S

    2010-10-01

    Karur is an industrial town located on the bank of river Amaravathi. There are 487 textile processing units in operation and discharge about 14610 kilo litres per day of treated effluent into the river. The groundwater quality in the downstream is deteriorated due to continuous discharge of effluent. In order to assess the present quality of groundwater, 13 open wells were identified in the river basin around Karur and samples were collected during pre-monsoon, post monsoon and summer, and analyzed for physico-chemical parameters. TDS, total alkalinity, total hardness, calcium, chlorides and sulphates exceeded the desirable limit. Amaravathi River water samples were also colleted at the upstream and downstream of Karur and the result shows the river is polluted. During summer season, there is no flow in the river and the river acts as a drainage for the effluent. Hence, there is severe impact on the groundwater quality in the downstream. The best option to protect the groundwater quality in the river basin is that the textile processing units should adopt zero liquid discharge (ZLD) system and completely recycle the treated effluent.

  4. 40 CFR Table 4 to Part 455 - BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That use End-of-Pipe Biological Treatment 4 Table 4... AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Pt. 455, Table 4 Table 4 to Part 455—BAT and...

  5. 40 CFR Table 4 to Part 455 - BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That use End-of-Pipe Biological Treatment 4 Table 4... AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Pt. 455, Table 4 Table 4 to Part 455—BAT and...

  6. 40 CFR Table 4 to Part 455 - BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That use End-of-Pipe Biological Treatment 4 Table 4... Biological Treatment Pollutant Daily maximum shall not exceed Monthly average shall not exceed...

  7. Direct measurement of efflux in Pseudomonas aeruginosa using an environment-sensitive fluorescent dye.

    PubMed

    Iyer, Ramkumar; Erwin, Alice L

    2015-01-01

    Resistance-Nodulation-Division (RND) family pumps AcrB and MexB are the major efflux routes in Escherichia coli and Pseudomonas aeruginosa respectively. Fluorescent environment-sensitive dyes provide a means to study efflux pump function in live bacterial cells in real-time. Recently, we demonstrated the utility of this approach using the dye Nile Red to quantify AcrB-mediated efflux and measured the ability of antibiotics and other efflux pump substrates to compete with efflux of Nile Red, independent of antibacterial activity. Here, we extend this method to P. aeruginosa and describe a novel application that permits the comparison and rank-ordering of bacterial strains by their inherent efflux potential. We show that glucose and l-malate re-energize Nile Red efflux in P. aeruginosa, and we highlight differences in the glucose dependence and kinetics of efflux between P. aeruginosa and E. coli. We quantify the differences in efflux among a set of P. aeruginosa laboratory strains, which include PAO1, the hyper-sensitive strain ATCC 35151 and its parent, ATCC 12055. Efflux of Nile Red in P. aeruginosa is mediated by MexAB-OprM and is slower than in E. coli. In conclusion, we describe an efflux measurement tool for use in antibacterial drug discovery and basic research on P. aeruginosa efflux pumps.

  8. A label-free impedimetric immunosensor for direct determination of the textile dye Disperse Orange 1.

    PubMed

    Yang, Jing; da Rocha, Carolina Gomes; Wang, Shengfu; Ferreira, Antonio Aparecido Pupim; Yamanaka, Hideko

    2015-09-01

    A strategy for a label-free impedimetric immunosensor is described for detection of the textile dye Disperse Orange 1 (DO1). The compounds 1,12-diaminododecane (DADD) and then 1,7-diaminoheptane (DAH) were firstly successively grafted onto a glassy carbon electrode (GCE) surface by electro-oxidation of one amino group, while the other terminal amino group was modified with the antibody anti-DO1. The construction process of the immunosensor was characterized by cyclic voltammetry, electrochemical impedance spectroscopy and capacitance measurements. The electron transfer resistance (Rct) exhibited an effective response to the affinity between the immobilized antibody and the antigen in solution. The linear range for the target compound was from 5.0 nmol L(-1) to 0.5 μmol L(-1) (R=0.9980), and the limit of detection (LOD) was 7.56 nmol L(-1). The proposed impedimetric immunosensor has the advantages of simplicity, cost-effectiveness, and sensitivity.

  9. Ipomoea dasysperma seed gum: an effective natural coagulant for the decolorization of textile dye solutions.

    PubMed

    Sanghi, Rashmi; Bhattacharya, Bani; Dixit, Awantika; Singh, Vandana

    2006-10-01

    An investigation of dye decolorization from synthetic dye solutions using the non-ionic, water-soluble, high molecular weight seed gums Ipomoea dasysperma and guar gum as coagulants was undertaken. The use of galactomannans derived from plants in this system presents a sustainable method of textile effluent treatment. These natural coagulants extracted from plants proved to be workable alternatives to conventional coagulants like polyaluminum chloride, as they are biodegradable, safe to human health, are cost effective when compared to imported chemicals and have a wider effective dosage range for flocculation of various colloidal suspensions. Coagulant dose and coagulation pH are important factors influencing the mechanism of coagulation. Also the type and chemical structure of the dye plays an important role in the coagulation process. The seed gums alone were found to be effective for decolorization of direct dye and in combination with PAC their coagulation efficiency was well extended even for reactive and acid dyes.

  10. Textile dyes induce toxicity on zebrafish early life stages.

    PubMed

    de Oliveira, Gisele Augusto Rodrigues; de Lapuente, Joaquín; Teixidó, Elisabet; Porredón, Constança; Borràs, Miquel; de Oliveira, Danielle Palma

    2016-02-01

    Textile manufacturing is one of the most polluting industrial sectors because of the release of potentially toxic compounds, such as synthetic dyes, into the environment. Depending on the class of the dyes, their loss in wastewaters can range from 2% to 50% of the original dye concentration. Consequently, uncontrolled use of such dyes can negatively affect human health and the ecological balance. The present study assessed the toxicity of the textile dyes Direct Black 38 (DB38), Reactive Blue 15 (RB15), Reactive Orange 16 (RO16), and Vat Green 3 (VG3) using zebrafish (Danio rerio) embryos for 144 h postfertilization (hpf). At the tested conditions, none of the dyes caused significant mortality. The highest RO16 dose significantly delayed or inhibited the ability of zebrafish embryos to hatch from the chorion after 96 hpf. From 120 hpf to 144 hpf, all the dyes impaired the gas bladder inflation of zebrafish larvae, DB38 also induced curved tail, and VG3 led to yolk sac edema in zebrafish larvae. Based on these data, DB38, RB15, RO16, and VG3 can induce malformations during embryonic and larval development of zebrafish. Therefore, it is essential to remove these compounds from wastewater or reduce their concentrations to safe levels before discharging textile industry effluents into the aquatic environment.

  11. Production of bioethanol by direct bioconversion of oil-palm industrial effluent in a stirred-tank bioreactor.

    PubMed

    Alam, Md Zahangir; Kabbashi, Nassereldeen A; Hussin, S Nahdatul I S

    2009-06-01

    The purpose of this study was to evaluate the feasibility of producing bioethanol from palm-oil mill effluent generated by the oil-palm industries through direct bioconversion process. The bioethanol production was carried out through the treatment of compatible mixed cultures such as Thrichoderma harzianum, Phanerochaete chrysosporium, Mucor hiemalis, and yeast, Saccharomyces cerevisiae. Simultaneous inoculation of T. harzianum and S. cerevisiae was found to be the mixed culture that yielded the highest ethanol production (4% v/v or 31.6 g/l). Statistical optimization was carried out to determine the operating conditions of the stirred-tank bioreactor for maximum bioethanol production by a two-level fractional factorial design with a single central point. The factors involved were oxygen saturation level (pO(2)%), temperature, and pH. A polynomial regression model was developed using the experimental data including the linear, quadratic, and interaction effects. Statistical analysis showed that the maximum ethanol production of 4.6% (v/v) or 36.3 g/l was achieved at a temperature of 32 degrees C, pH of 6, and pO(2) of 30%. The results of the model validation test under the developed optimum process conditions indicated that the maximum production was increased from 4.6% (v/v) to 6.5% (v/v) or 51.3 g/l with 89.1% chemical-oxygen-demand removal.

  12. Direct probing of ion pair formation using a symmetric triangulenium dye.

    PubMed

    Westerlund, Fredrik; Elm, Jonas; Lykkebo, Jacob; Carlsson, Nils; Thyrhaug, Erling; Akerman, Björn; Sørensen, Thomas Just; Mikkelsen, Kurt V; Laursen, Bo W

    2011-12-01

    The 2,6,10-tris(dialkylamino)trioxatriangulenium dyes (ATOTA(+)) are highly stabilised cationic chromophores with D(3h) symmetry. The symmetry gives rise to a degeneracy of the main electronic transition. In low polarity solvents significant splitting of this degenerate transition is observed and assigned to ion pair formation. Ion pairing of the 2,6,10-tris(dioctylamino)trioxatriangulenium ion with Cl(-), BF(4)(-), PF(6)(-) and TRISPHAT anions was studied using absorption spectroscopy. A clear correlation is found between the size of the anion and the splitting of the ATOTA(+) transitions. In benzene the Cl(-) salt displays a splitting of 1955 cm(-1), while the salt of the much larger TRISPHAT ion has a splitting of 1543 cm(-1). TD-DFT calculations confirm the splitting of the states and provide a detailed insight into the electronic structure of the ion pairs. The different degree of splitting in different ion pairs is found to correlate with the magnitude of the electric field generated in each ion pair, thus leading to the conclusion that the effect seen is an internal Stark effect. By insertion of an amphiphilic derivative of the ATOTA(+) chromophore in an oriented lamellar liquid crystal, it was possible to resolve the two bands of the double peak spectrum and show their perpendicular orientation in the molecular framework, as predicted by the calculations.

  13. Comparison of textile dye treatment by biosorption and membrane bioreactor.

    PubMed

    Chamam, B; Heran, M; Amar, R Ben; Grasmick, A

    2007-12-01

    The Cassulfon CMR is a sulphuric textile dye mainly used to colour "jeans". It has a dark black-blue colour, with high intensity of colour and high mineral compounds (71% of dry matter). Direct filtration experiments were carried out to quantity the capacity of macro porous membranes (1.2, 0.2 or 0.1 microm) to separate organic matter and colour from the effluent. The results show that no direct membrane filtration was efficient. To evaluate the capacity of a biological way for the elimination of this dye, batch experiments were performed to quantify the dye sorption capacity on activated sludge. Results show the high capacity of the biomass to adsorb colour (more than 4gCOD gMLVSS(-1)) while 15% of COD remain in the soluble fraction. To evaluate the biodegradability potential of the sludge, continuous operations were carried out in a membrane bioreactor (MBR). Results confirm the very high MBR potential to treat such dye effluents. During operations, the organic load was progressively increased from 0.33 to 1.33 kg m(-3) d(-1) and the permeate quality was always free of suspended solids or turbidity. Moreover, the permeate COD values were always lower than 60 mg l(-1) and small permeate coloration only appeared during malfunctioning periods.

  14. Accelerated decolorization of structurally different azo dyes by newly isolated bacterial strains.

    PubMed

    Khalid, Azeem; Arshad, Muhammad; Crowley, David E

    2008-02-01

    Wastewater effluents from the textile and other dye-stuff industries contain significant amounts of synthetic dyes that require treatment to prevent groundwater contamination. In research aimed at biotechnology for treatment of azo dyes, this study examined 288 strains of azo-dye degrading bacteria to identify efficient strains and determine incubation times required for decolorization. Initial enrichment cultures were carried out using a mixture of four structurally different dyes (Acid Red 88, Reactive Black 5, Direct Red 81, and Disperse Orange 3) as the sole source of C and N to isolate the bacteria from soil, activated sludge, and natural asphalt. Six strains were selected for further study based on their prolific growth and ability to rapidly decolorize the dyes individually or in mixtures. Treatment times required by the most efficient strain, AS96 (Shewanella putrefaciens) were as short as 4 h for complete decolorization of 100 mg l(-1) of AR-88 and DR-81 dyes under static conditions, and 6 and 8 h, respectively, for complete decolorization of RB-5 and DO-3. To our knowledge, these bacterial strains are the most efficient azo-dye degrading bacteria that have been described and may have practical application for biological treatment of dye-polluted wastewater streams.

  15. Directional laserlike emission from a dye-doped polymer containing rutile nanoparticles

    NASA Astrophysics Data System (ADS)

    Alencar, Márcio A. R. C.; Gomes, Anderson S. L.; de Araújo, Cid B.

    2003-03-01

    A novel scheme for generation of laserlike emission from highly scattering media is presented. A high degree of directionality is obtained owing to the excitation of surface plasmons in a silver film. The electromagnetic energy coupled to surface plasmons is transferred to a polymeric disk containing Rhodamine and TiO2 nanospheres placed in close contact with the film. The fluorescence produced in the disk, outcoupled through a prism, displays features of a ``laser paint'' plus a high directionality.

  16. Reduction of COD and color of dyeing effluent from a cotton textile mill by adsorption onto bamboo-based activated carbon.

    PubMed

    Ahmad, A A; Hameed, B H

    2009-12-30

    In this work, activated carbon was prepared from bamboo waste by chemical activation method using phosphoric acid as activating agent. The activated carbon was evaluated for chemical oxygen demand (COD) and color reduction of a real textile mill effluent. A maximum reduction in color and COD of 91.84% and 75.21%, respectively was achieved. As a result, the standard B discharge limit of color and COD under the Malaysian Environmental Quality act 1974 was met. The Freundlich isotherm model was found best to describe the obtained equilibrium adsorption data at 30 degrees C. The Brunauer-Emmett-Teller (BET) surface area, total pore volume and the average pore diameter were 988.23 m(2)/g, 0.69 cm(3)/g and 2.82 nm, respectively. Various functional groups on the prepared bamboo activated carbon (BAC) were determined from the FTIR results.

  17. Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes

    NASA Astrophysics Data System (ADS)

    Attri, Pankaj; Yusupov, Maksudbek; Park, Ji Hoon; Lingamdinne, Lakshmi Prasanna; Koduru, Janardhan Reddy; Shiratani, Masaharu; Choi, Eun Ha; Bogaerts, Annemie

    2016-10-01

    Purified water supply for human use, agriculture and industry is the major global priority nowadays. The advanced oxidation process based on atmospheric pressure non-thermal plasma (NTP) has been used for purification of wastewater, although the underlying mechanisms of degradation of organic pollutants are still unknown. In this study we employ two needle-type atmospheric pressure non-thermal plasma jets, i.e., indirect (ID-APPJ) and direct (D-APPJ) jets operating at Ar feed gas, for the treatment of methylene blue, methyl orange and congo red dyes, for two different times (i.e., 20 min and 30 min). Specifically, we study the decolorization/degradation of all three dyes using the above mentioned plasma sources, by means of UV-Vis spectroscopy, HPLC and a density meter. We also employ mass spectroscopy to verify whether only decolorization or also degradation takes place after treatment of the dyes by the NTP jets. Additionally, we analyze the interaction of OH radicals with all three dyes using reactive molecular dynamics simulations, based on the density functional-tight binding method. This investigation represents the first report on the degradation of these three different dyes by two types of NTP setups, analyzed by various methods, and based on both experimental and computational studies.

  18. Decolorization and mineralization of a phthalocyanine dye C.I. Direct Blue 199 using UV/H2O2 process.

    PubMed

    Shu, Hung-Yee; Chang, Ming-Chin

    2005-10-17

    In this study, the successful decolorization and mineralization of phthalocyanine dye (C.I. Direct Blue 199, DB 199) by an advanced oxidation process (AOP), UV/H2O2, were observed while the experimental variables such as hydrogen peroxide dosage, UV dosage, initial dye concentration and pH were evaluated. The operating conditions for 90% decolorization of C.I. DB 199 and 74% removal of total organic carbon (TOC) were obtained for initial dye concentration of 20 mgl(-1), hydrogen peroxide dosage of 116.32 mM, UV dosage of 560 W and pH of 8.9 in 30 min. The pseudo-first order rate constant is a linear function of reverse of initial dye concentration. They linearly increased by incrementing UV dosage, yet were non-linear enhancement by increasing the hydrogen peroxide concentration. A higher pseudo-first order rate constant about 0.15 min(-1) was observed while hydrogen peroxide concentration within 5.82-116.32 mM. Moreover, the decolorization of C.I. DB 199 was observed to be more difficult than that of an azo dye, C.I. Acid Black 1, under the same operating conditions.

  19. Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes

    PubMed Central

    Attri, Pankaj; Yusupov, Maksudbek; Park, Ji Hoon; Lingamdinne, Lakshmi Prasanna; Koduru, Janardhan Reddy; Shiratani, Masaharu; Choi, Eun Ha; Bogaerts, Annemie

    2016-01-01

    Purified water supply for human use, agriculture and industry is the major global priority nowadays. The advanced oxidation process based on atmospheric pressure non-thermal plasma (NTP) has been used for purification of wastewater, although the underlying mechanisms of degradation of organic pollutants are still unknown. In this study we employ two needle-type atmospheric pressure non-thermal plasma jets, i.e., indirect (ID-APPJ) and direct (D-APPJ) jets operating at Ar feed gas, for the treatment of methylene blue, methyl orange and congo red dyes, for two different times (i.e., 20 min and 30 min). Specifically, we study the decolorization/degradation of all three dyes using the above mentioned plasma sources, by means of UV-Vis spectroscopy, HPLC and a density meter. We also employ mass spectroscopy to verify whether only decolorization or also degradation takes place after treatment of the dyes by the NTP jets. Additionally, we analyze the interaction of OH radicals with all three dyes using reactive molecular dynamics simulations, based on the density functional-tight binding method. This investigation represents the first report on the degradation of these three different dyes by two types of NTP setups, analyzed by various methods, and based on both experimental and computational studies. PMID:27708352

  20. Reuse of reactive dyes for dyeing of jute fabric.

    PubMed

    Chattopadhyay, S N; Pan, N C; Day, A

    2006-01-01

    The aim of the work was to find out suitable method of dyeing so that costly reactive dye can be reused without draining them. The bleached jute fabric was dyed with four different class of reactive dyes namely, cold brand, hot brand, vinyl sulphone and high exhaustion (HE) brand. It is found that the two-step two-bath method of reactive dyeing, where exhaustion and fixation step is separated, is most ideal for reuse of dye bath. Separate original samples produced K/S value same as that of original sample and the K/S value of separate reuse sample varied from 50% to 80% of the original sample depending on the class of dye. In case of same bath method, colour yield of original reuse samples varies from only 10% to maximum 30% of the original samples depending on the class of dyes. Reuse of reactive dyes following separate bath method is particularly suitable for higher depth of shade (4% and above). This process not only utilises costly reactive dyes to the maximum extent but it also produces low water pollution as the effluent contain minimum amount of dye. So the process is economic and eco-friendly as well.

  1. Decolorization of synthetic brilliant green carpet industry dye through fungal co-culture technology.

    PubMed

    Kumari, Simpal; Naraian, Ram

    2016-09-15

    Aim of the present study was to evaluate the efficiency of fungal co-culture for the decolorization of synthetic brilliant green carpet industry dye. For this purpose two lignocellulolytic fungi Pleurotus florida (PF) and Rhizoctonia solani (RS) were employed. The study includes determination of enzyme profiles (laccase and peroxidase), dye decolorization efficiency of co-culture and crude enzyme extracts. Both fungi produced laccase and Mn peroxidase and successfully decolorized solutions of different concentrations (2.0, 4.0, 6.0, & 8.0(w/v) of dye. The co-culture resulted highest 98.54% dye decolorization at 2% (w/v) of dye as compared to monocultures (82.12% with PF and 68.89% with RS) during 12 days of submerged fermentation. The lower levels of dyes were rapidly decolorized, while higher levels in slow order as 87.67% decolorization of 8% dye. The promising achievement of the study was remarkable decolorizing efficiency of co-culture over monocultures. The direct treatment of the mono and co-culture enzyme extracts to dye also influenced remarkable. The highest enzymatic decolorization was through combined (PF and RS) extracts, while lesser by monoculture extracts. Based on the observations and potentiality of co-culture technology; further it can be exploited for the bioremediation of areas contaminated with hazardous environmental pollutants including textile and other industry effluents.

  2. The potential for human exposure, direct and indirect, to the suspected carcinogenic triphenylmethane dye Brilliant Green from green paper towels.

    PubMed

    Oplatowska, Michalina; Donnelly, Ryan F; Majithiya, Rita J; Glenn Kennedy, D; Elliott, Christopher T

    2011-08-01

    Triphenylmethanes - Malachite Green (MG), Crystal Violet (CV) and Brilliant Green (BG) are dyes with known genotoxic and carcinogenic properties. Apart from being illegally used in aquaculture for treatment of fish diseases they are also applied in industry such as paper production to colour paper towels widely used in hospitals, factories and other locations for hand drying after washing. The present study provides evidence that the triphenylmethane dye (BG) present in green paper towels can migrate through the skin even when the exposure time is short (30-300 s). The transfer of the dye from the towel to food (fish) was also studied and a high amount of colour was found to migrate during overnight exposure. The risk to humans associated with these two dye transfer studies was assessed using a 'margin of exposure approach' on the basis of the toxicological data available for the closely related dye MG and its metabolite Leucomalachite Green. The data indicated that the risk associated with the use of triphenylmethane containing paper towels is of a similar proportion to the risk associated with consumption of fish contaminated with these dyes due to the illegal application in aquaculture. PMID:21596089

  3. Electrocoagulation for the treatment of textile industry effluent--a review.

    PubMed

    Khandegar, V; Saroha, Anil K

    2013-10-15

    Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical are used for the treatment of industrial effluent. The commonly used conventional biological treatment processes are time consuming, need large operational area and are not effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation has recently attracted attention as a potential technique for treating industrial effluent due to its versatility and environmental compatibility. This technique uses direct current source between metal electrodes immersed in the effluent, which causes the dissolution of electrode plates into the effluent. The metal ions, at an appropriate pH, can form wide range of coagulated species and metal hydroxides that destabilize and aggregate particles or precipitate and adsorb the dissolved contaminants. Therefore, the objective of the present manuscript is to review the potential of electrocoagulation for the treatment of industrial effluents, mainly removal of dyes from textile effluent.

  4. Batchwise dyeing of bamboo cellulose fabric with reactive dye using ultrasonic energy.

    PubMed

    Larik, Safdar Ali; Khatri, Awais; Ali, Shamshad; Kim, Seong Hun

    2015-05-01

    Bamboo is a regenerated cellulose fiber usually dyed with reactive dyes. This paper presents results of the batchwise dyeing of bamboo fabric with reactive dyes by ultrasonic (US) and conventional (CN) dyeing methods. The study was focused at comparing the two methods for dyeing results, chemicals, temperature and time, and effluent quality. Two widely used dyes, CI Reactive Black 5 (bis-sulphatoethylsulphone) and CI Reactive Red 147 (difluorochloropyrimidine) were used in the study. The US dyeing method produced around 5-6% higher color yield (K/S) in comparison to the CN dyeing method. A significant savings in terms of fixation temperature (10°C) and time (15 min), and amounts of salt (10 g/L) and alkali (0.5-1% on mass of fiber) was realized. Moreover, the dyeing effluent showed considerable reductions in the total dissolved solids content (minimum around 29%) and in the chemical oxygen demand (minimum around 13%) for the US dyebath in comparison to the CN dyebath. The analysis of colorfastness tests demonstrated similar results by US and CN dyeing methods. A microscopic examination on the field emission scanning electron microscope revealed that the US energy did not alter the surface morphology of the bamboo fibers. It was concluded that the US dyeing of bamboo fabric produces better dyeing results and is a more economical and environmentally sustainable method as compared to CN dyeing method. PMID:25575805

  5. Batchwise dyeing of bamboo cellulose fabric with reactive dye using ultrasonic energy.

    PubMed

    Larik, Safdar Ali; Khatri, Awais; Ali, Shamshad; Kim, Seong Hun

    2015-05-01

    Bamboo is a regenerated cellulose fiber usually dyed with reactive dyes. This paper presents results of the batchwise dyeing of bamboo fabric with reactive dyes by ultrasonic (US) and conventional (CN) dyeing methods. The study was focused at comparing the two methods for dyeing results, chemicals, temperature and time, and effluent quality. Two widely used dyes, CI Reactive Black 5 (bis-sulphatoethylsulphone) and CI Reactive Red 147 (difluorochloropyrimidine) were used in the study. The US dyeing method produced around 5-6% higher color yield (K/S) in comparison to the CN dyeing method. A significant savings in terms of fixation temperature (10°C) and time (15 min), and amounts of salt (10 g/L) and alkali (0.5-1% on mass of fiber) was realized. Moreover, the dyeing effluent showed considerable reductions in the total dissolved solids content (minimum around 29%) and in the chemical oxygen demand (minimum around 13%) for the US dyebath in comparison to the CN dyebath. The analysis of colorfastness tests demonstrated similar results by US and CN dyeing methods. A microscopic examination on the field emission scanning electron microscope revealed that the US energy did not alter the surface morphology of the bamboo fibers. It was concluded that the US dyeing of bamboo fabric produces better dyeing results and is a more economical and environmentally sustainable method as compared to CN dyeing method.

  6. Azoreductase and dye detoxification activities of Bacillus velezensis strain AB.

    PubMed

    Bafana, Amit; Chakrabarti, Tapan; Devi, Sivanesan Saravana

    2008-01-01

    Azo dyes are known to be a very important and widely used class of toxic and carcinogenic compounds. Although lot of research has been carried out for their removal from industrial effluents, very little attention is given to changes in their toxicity and mutagenicity during the treatment processes. Present investigation describes isolation of a Bacillus velezensis culture capable of degrading azo dye Direct Red 28 (DR28). Azoreductase enzyme was isolated from it, and its molecular weight was found to be 60 kDa. The enzyme required NADH as cofactor and was oxygen-insensitive. Toxicity and mutagenicity of the dye during biodegradation was monitored by using a battery of carefully selected in vitro tests. The culture was found to degrade DR28 to benzidine and 4-aminobiphenyl, both of which are potent mutagens. However, on longer incubation, both the compounds were degraded further, resulting in reduction in toxicity and mutagenicity of the dye. Thus, the culture seems to be a suitable candidate for further study for both decolourization and detoxification of azo dyes, resulting in their safe disposal.

  7. High-resolution periodically poled structure in diazo-dye-substituted polymer film based on direct electron-beam writing technique

    NASA Astrophysics Data System (ADS)

    Sugihara, Okihiro; Che, Yanlong; Okamoto, Naomichi; Fujimura, Hisashi; Egami, Chikara; Umegaki, Shinsuke

    1998-11-01

    A periodically poled pattern in diazo-dye-substituted nonlinear optical polymer film is fabricated by direct electron-beam (EB) writing. It is found that the second-order nonlinearity of corona-poled polymer thin film is erased after EB irradiation. Moreover, the exposed region can be easily removed by conventional wet development. A high-resolution periodically poled structure (i.e., χ(2) grating) with a period of 0.60 μm is demonstrated based on the direct EB writing technique.

  8. Electrolysis within anaerobic bioreactors stimulates breakdown of toxic products from azo dye treatment.

    PubMed

    Gavazza, Sávia; Guzman, Juan J L; Angenent, Largus T

    2015-04-01

    Azo dyes are the most widely used coloring agents in the textile industry, but are difficult to treat. When textile effluents are discharged into waterways, azo dyes and their degradation products are known to be environmentally toxic. An electrochemical system consisting of a graphite-plate anode and a stainless-steel mesh cathode was placed into a lab-scale anaerobic bioreactor to evaluate the removal of an azo dye (Direct Black 22) from synthetic textile wastewater. At applied potentials of 2.5 and 3.0 V when water electrolysis occurs, no improvement in azo dye removal efficiency was observed compared to the control reactor (an integrated system with electrodes but without an applied potential). However, applying such electric potentials produces oxygen via electrolysis and promoted the aerobic degradation of aromatic amines, which are toxic, intermediate products of anaerobic azo dye degradation. The removal of these amines indicates a decrease in overall toxicity of the effluent from a single-stage anaerobic bioreactor, which warrants further optimization in anaerobic digestion.

  9. Directional genetic selection by pulp mill effluent on multiple natural populations of three-spined stickleback (Gasterosteus aculeatus).

    PubMed

    Lind, Emma E; Grahn, Mats

    2011-05-01

    Contamination can cause a rapid environmental change which may require populations to respond with evolutionary changes. To evaluate the effects of pulp mill effluents on population genetics, we sampled three-spined sticklebacks (Gasterosteus aculeatus) near four pulp mills and four adjacent reference sites and analyzed Amplified Fragment Length Polymorphism (AFLP) to compare genetic variability. A fine scale genetic structure was detected and samples from polluted sites separated from reference sites in multidimensional scaling plots (P<0.005, 1000 permutations) and locus-by-locus Analysis of Molecular Variance (AMOVA) further confirmed that habitats are significantly separated (F(ST)=0.021, P<0.01, 1023 permutations). The amount of genetic variation between populations did not differ between habitats, and populations from both habitats had similar levels of heterozygosity (polluted sites Nei's Hs=0.11, reference sites Nei's Hs=0.11). Still, pairwise F(ST): s between three, out of four, pairs of polluted-reference sites were significant. A F(ST)-outlier analysis showed that 21 (8.4%) loci were statistically different from a neutral distribution at the P<0.05 level and therefore indicated to be under divergent selection. When removing 13 F(ST)-outlier loci, significant at the P<0.01 level, differentiation between habitats disappeared in a multidimensional scaling plot. In conclusion, pulp mill effluence has acted as a selective agent on natural populations of G. aculeatus, causing a convergence in genotype composition change at multiple sites in an open environment.

  10. Optimization and kinetics evaluation of biodegradation of synthetic azo reactive dye by fungal consortium.

    PubMed

    Chitradevi, V; Sivakumar, V

    2011-10-01

    Wastewater containing direct dyes discharged from various industries, in particular, textile industry, often cause many environmental problems. Among the various effluent treatment methods, biological methods found to be cost effective and do not end up in secondary pollutants. In this study, an attempt has been made to study the decolorization of cibacron yellow S-3R, an azo reactive dye by using fungal cultures such as Coriolus versicolor, Phanerochaete chrysosporium, Pleurotus ostreatus, and Myrothecium verrucaria. The fungi were able to decolorize individually the azo reactive dye cibacron yellow S-3R to an extent of nearly in the range 75 - 85%, whereas the mixed fungal consortium was able to decolorize to an extent of nearly 95%.The study is extended with the kinetics of decolorization of Cibacron yellow S-3R using mixed fungal consortium containing equal proportions of the cultures. The experimental results show that decolorization kinetics follow second order rate equation.

  11. Remediation of textile effluent using agricultural residues.

    PubMed

    Chandran, Chandrashekar B; Singh, Dalel; Nigam, Poonam

    2002-01-01

    The sorption of artificial dye effluent made from two different dyes, Solar orange 7 GLL and Solar Jade Green FFB from Clariant, onto three different agricultural residues--barley husk, sugarcane bagasse, and wheat straw--was studied. Twenty percent of 600-microm particle size of these agricultural residues was used as substrates and studied individually. The percentage of dye removal was observed in concentrations of dye varying from 50 to 200 mg/L. The effect of temperature ranging from 25 to 50 degrees C and pH from 6.0 to 12.0 on the dye removal by the substrates was also studied. The effective adsorption of the substrates was calculated.

  12. Synthetic dye decolourization by white rot fungi.

    PubMed

    Murugesan, K; Kalaichelvan, P T

    2003-09-01

    Synthetic dyes are integral part of many industrial products. The effluents generated from textile dyeing units create major environmental problems and issues both in public and textile units. Industrial wastewater treatment is one of the major problems in the present scenario. Though, the physical and chemical methods offer some solutions to the problems, it is not affordable by the unit operators. Biological degradation is recognized as the most effective method for degrading the dye present in the waste. Research over a period of two decades had provided insight into the various aspects of biological degradation of dyes. It is observed that the white rot fungi have a non-specific enzyme system, which oxidizes the recalcitrant dyes. Detailed and extensive studies have been made and process developed for treatment of dye containing wastewaters by white rot fungi and their enzyme systems. An attempt is made to summarize the detailed research contributions on these lines.

  13. Catalytic surface radical in dye-decolorizing peroxidase: a computational, spectroscopic and site-directed mutagenesis study

    PubMed Central

    Linde, Dolores; Pogni, Rebecca; Cañellas, Marina; Lucas, Fátima; Guallar, Victor; Baratto, Maria Camilla; Sinicropi, Adalgisa; Sáez-Jiménez, Verónica; Coscolín, Cristina; Romero, Antonio; Medrano, Francisco Javier; Ruiz-Dueñas, Francisco J.; Martínez, Angel T.

    2014-01-01

    Dye-decolorizing peroxidase (DyP) of Auricularia auricula-judae has been expressed in Escherichia coli as a representative of a new DyP family, and subjected to mutagenic, spectroscopic, crystallographic and computational studies. The crystal structure of DyP shows a buried haem cofactor, and surface tryptophan and tyrosine residues potentially involved in long-range electron transfer from bulky dyes. Simulations using PELE (Protein Energy Landscape Exploration) software provided several binding-energy optima for the anthraquinone-type RB19 (Reactive Blue 19) near the above aromatic residues and the haem access-channel. Subsequent QM/MM (quantum mechanics/molecular mechanics) calculations showed a higher tendency of Trp-377 than other exposed haem-neighbouring residues to harbour a catalytic protein radical, and identified the electron-transfer pathway. The existence of such a radical in H2O2-activated DyP was shown by low-temperature EPR, being identified as a mixed tryptophanyl/tyrosyl radical in multifrequency experiments. The signal was dominated by the Trp-377 neutral radical contribution, which disappeared in the W377S variant, and included a tyrosyl contribution assigned to Tyr-337 after analysing the W377S spectra. Kinetics of substrate oxidation by DyP suggests the existence of high- and low-turnover sites. The high-turnover site for oxidation of RB19 (kcat> 200 s−1) and other DyP substrates was assigned to Trp-377 since it was absent from the W377S variant. The low-turnover site/s (RB19 kcat ~20 s−1) could correspond to the haem access-channel, since activity was decreased when the haem channel was occluded by the G169L mutation. If a tyrosine residue is also involved, it will be different from Tyr-337 since all activities are largely unaffected in the Y337S variant. PMID:25495127

  14. Enzymatic biotransformation of synthetic dyes.

    PubMed

    Rodríguez-Couto, S

    2009-11-01

    Environmental pollution by discharge of dye-containing effluents represents a serious ecological concern in many countries. Public demands for colour-free discharges to receiving waters have made decolouration of a variety of industrial wastewater a top priority. The current existing techniques for dye removal have several drawbacks such as high cost, low efficiency, use of large amounts of chemicals and formation of toxic sub-products. This has impelled the search for alternative methods such as those based on oxidative enzymes. This approach is believed to be a promising technology since it is cost-effective, environmentally friendly and does not produce sludge. Enzymatic transformation of synthetic dyes can be described as the conversion of dye molecules by enzymes into simpler and generally colourless molecules. Detailed characterisation of the metabolites produced during enzymatic transformation of synthetic dyes as well as ecotoxicity studies is of great importance to assess the effectiveness of the biodegradation process. However, most reports on the biotreatment of dyes mainly deal with decolouration and there are few reports on the reduction in toxicity or on the identification of the biodegradation products. This implies a limitation to assess their true technical potential.

  15. Enzymatic biotransformation of synthetic dyes.

    PubMed

    Rodríguez-Couto, S

    2009-11-01

    Environmental pollution by discharge of dye-containing effluents represents a serious ecological concern in many countries. Public demands for colour-free discharges to receiving waters have made decolouration of a variety of industrial wastewater a top priority. The current existing techniques for dye removal have several drawbacks such as high cost, low efficiency, use of large amounts of chemicals and formation of toxic sub-products. This has impelled the search for alternative methods such as those based on oxidative enzymes. This approach is believed to be a promising technology since it is cost-effective, environmentally friendly and does not produce sludge. Enzymatic transformation of synthetic dyes can be described as the conversion of dye molecules by enzymes into simpler and generally colourless molecules. Detailed characterisation of the metabolites produced during enzymatic transformation of synthetic dyes as well as ecotoxicity studies is of great importance to assess the effectiveness of the biodegradation process. However, most reports on the biotreatment of dyes mainly deal with decolouration and there are few reports on the reduction in toxicity or on the identification of the biodegradation products. This implies a limitation to assess their true technical potential. PMID:20214593

  16. Dye removal by immobilised fungi.

    PubMed

    Rodríguez Couto, Susana

    2009-01-01

    Dyes are widely used within the food, pharmaceutical, cosmetic, printing, textile and leather industries. This has resulted in the discharge of highly coloured effluents that affect water transparency and gas solubility in water bodies. Furthermore, they pose a problem because of their carcinogenicity and toxicity. Therefore, removal of such dyes before discharging them into natural water streams is essential. For this, appropriate treatment technologies are required. The treatment of recalcitrant and toxic dyes with traditional technologies is not always effective or may not be environmentally friendly. This has impelled the search for alternative technologies such as biodegradation with fungi. In particular, ligninolytic fungi and their non-specific oxidative enzymes have been reported to be responsible for the decolouration of different synthetic dyes. Thus, the use of such fungi is becoming a promising alternative to replace or complement the current technologies for dye removal. Processes using immobilised growing cells seem to be more promising than those with free cells, since the immobilisation allows using the microbial cells repeatedly and continuously. This paper reviews the application of fungal immobilisation to dye removal. PMID:19211032

  17. Coal fly ash as adsorptive material for treatment of a real textile effluent: operating parameters and treatment efficiency.

    PubMed

    Zaharia, Carmen; Suteu, Daniela

    2013-04-01

    The experimental results performed after the application of one single-stage treatment by sorption onto coal fly ash are evaluated in order to decolorize a real textile effluent of a private company specializing in manufacturing of cotton fabrics (i.e., sorption performance applied for a real textile effluent collected after the fabric dyeing, rinsing, and final finishing steps). The experiments are focused on studying the effect of initial textile effluent pH, adsorbent dose, temperature and adsorption time, considered as operating parameters of sorption process for high pollutant removals (e.g., organic pollutants as dyes, phenols, polymeric, and degradation compounds), and decoloration. The results indicate high values of decoloration degree (55.42-83.00%) and COD removal (44.44-61.11%) when it is worked at pH ≤2 with coal ash dose of 12-40 g/L, temperature higher than 20-25 °C, and continuous static operating regime (with an initial agitation step of 3-5 min). The treated textile effluent fulfills the quality demand, and is recyclable, inside reused or discharged after a stage of neutralization (standard pH of 6.5-8.5 for all textile effluent discharges). Also, the final effluent is able to follow the common path to the central biological treatment plant (i.e., a centralized treatment plant for all companies acting in the industrial site area with mechanical-biological steps for wastewater treatment) or may be directly discharged in the nearly watercourse.

  18. Coal fly ash as adsorptive material for treatment of a real textile effluent: operating parameters and treatment efficiency.

    PubMed

    Zaharia, Carmen; Suteu, Daniela

    2013-04-01

    The experimental results performed after the application of one single-stage treatment by sorption onto coal fly ash are evaluated in order to decolorize a real textile effluent of a private company specializing in manufacturing of cotton fabrics (i.e., sorption performance applied for a real textile effluent collected after the fabric dyeing, rinsing, and final finishing steps). The experiments are focused on studying the effect of initial textile effluent pH, adsorbent dose, temperature and adsorption time, considered as operating parameters of sorption process for high pollutant removals (e.g., organic pollutants as dyes, phenols, polymeric, and degradation compounds), and decoloration. The results indicate high values of decoloration degree (55.42-83.00%) and COD removal (44.44-61.11%) when it is worked at pH ≤2 with coal ash dose of 12-40 g/L, temperature higher than 20-25 °C, and continuous static operating regime (with an initial agitation step of 3-5 min). The treated textile effluent fulfills the quality demand, and is recyclable, inside reused or discharged after a stage of neutralization (standard pH of 6.5-8.5 for all textile effluent discharges). Also, the final effluent is able to follow the common path to the central biological treatment plant (i.e., a centralized treatment plant for all companies acting in the industrial site area with mechanical-biological steps for wastewater treatment) or may be directly discharged in the nearly watercourse. PMID:22814960

  19. Aromatic amine degradation in a UASB/CSTR sequential system treating Congo Red dye.

    PubMed

    Işik, Mustafa; Sponza, Delia Teresa

    2003-01-01

    In this study an anaerobic (upflow anaerobic sludge blanket reactor)/aerobic (completely stirred tank reactor) sequential system was used to treat a synthetic wastewater with minerals and co-substrate together with 100-4000 mg L(-1) of Congo Red dye (Direct red 28) (CR), which is a banned azo dye in Turkey. The effect of hydraulic retention time (HRT) on the decolorization and the COD removal efficiency was investigated at constant 100 mg L(-1) Congo Red concentration. 77% of COD and 95% of color was removed at a HRT of 0.486 days and a maximum organic loading rate of 6.656 kg COD m(-3) day(-1) in the anaerobic/aerobic stage. In the continuous operations, 88% of COD, 99% of color and 91% of total aromatic amine (TAA) were removed at a HRT of 3.60 days and at a CR concentration of 4000 mg L(-1). This corresponds to an organic loading rate of 1.81 kg COD m(-3) day(-1), and a CR dye loading rate of 46.37 g dye m(-3) h(-1), respectively, in the whole system. The TAA produced under anaerobic conditions was ultimately removed in the aerobic stage, resulting in very low aromatic amine recoveries (5-18%) in the last one. Therefore the aerobic effluents exhibited higher IC50 and specific methanogenic activities (SMA) compared to anaerobic and dye containing samples, indicating the reduced toxicity. PMID:14524683

  20. Carcinogenicity of hair dye components.

    PubMed

    Van Duuren, B L

    1980-03-01

    The available animal carcinogenicity data on hair dye components was reviewed. From this review it became clear that certain hair dye components, some of which are still in hair dye formulations now on the market, are animal carcinogens. The compounds of concern that are still in use are: 3-amino-4-methoxyaniline, 2-nitro-4-aminoaniline and 3-nitro-4-hydroxyaniline. Certain azo dyes formerly used, and related compounds still in use, contain the benzidine moiety. Two of these compounds, Direct Blue 6 and Direct Black 38, have been shown to be metabolized in animals to the human carcinogen benzidine. Furthermore, skin absorption studies carried out with radiolabeled hair dye components applied to animal or human skin have conclusively shown that these compounds are systemically absorbed and excreted. Known cocarcinogens such as catechol and pyrogallol, which enhance benzo(a)pyrene carcinogenicity on mouse skin, are used as hair dye components. It is not known whether such compounds will enhance the carcinogenicity of substituted aniline hair dye chemicals. The available epidemiologic data are not sufficient to link hair dye use with an increased incidence in human cancer. PMID:6993608

  1. Carcinogenicity of hair dye components.

    PubMed

    Van Duuren, B L

    1980-03-01

    The available animal carcinogenicity data on hair dye components was reviewed. From this review it became clear that certain hair dye components, some of which are still in hair dye formulations now on the market, are animal carcinogens. The compounds of concern that are still in use are: 3-amino-4-methoxyaniline, 2-nitro-4-aminoaniline and 3-nitro-4-hydroxyaniline. Certain azo dyes formerly used, and related compounds still in use, contain the benzidine moiety. Two of these compounds, Direct Blue 6 and Direct Black 38, have been shown to be metabolized in animals to the human carcinogen benzidine. Furthermore, skin absorption studies carried out with radiolabeled hair dye components applied to animal or human skin have conclusively shown that these compounds are systemically absorbed and excreted. Known cocarcinogens such as catechol and pyrogallol, which enhance benzo(a)pyrene carcinogenicity on mouse skin, are used as hair dye components. It is not known whether such compounds will enhance the carcinogenicity of substituted aniline hair dye chemicals. The available epidemiologic data are not sufficient to link hair dye use with an increased incidence in human cancer.

  2. Toxicology of dyes used in the textile industry. (Latest citations from World Textile Abstracts). Published Search

    SciTech Connect

    Not Available

    1992-06-01

    The bibliography contains citations concerning the health hazards of dyes used in the textile industry. Safety measures for dye handling, storage, and application are discussed. Toxicology of vapor and dust from dyes is examined, and suggestions for safe, effective ventilation are made. Studies concerning mutations and cancers caused by dyes are briefly cited, and the scarcity of research in this area is noted. The trend toward increased regulations to control the health and environmental impact of dyes is examined. Effluent treatment of dyes is discussed in another bibliography. (Contains a minimum of 70 citations and includes a subject term index and title list.)

  3. Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye.

    PubMed

    Edison, Thomas Nesakumar Jebakumar Immanuel; Lee, Yong Rok; Sethuraman, Mathur Gopalakrishnan

    2016-05-15

    Facile green synthesis of silver nanoparticles (AgNPs) using aqueous bark extract of Terminalia cuneata has been reported in this article. The effects of concentration of the extract, reaction time and pH were studied by UV-Vis spectroscopy. Appearance of yellow color with λmax around ~420 nm suggested the formation of AgNPs. The stable AgNPs were further characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS) with zeta potential and high resolution transmission electron microscopy (HR-TEM) with energy dispersive X-ray spectroscopy (EDS) analysis. The synthesized AgNPs were in the size range of 25-50 nm with a distorted spherical shape identified from HR-TEM analysis. The catalytic activity of AgNPs on the reduction of direct yellow-12 using NaBH4 was analyzed using a UV-Vis spectrophotometer. This study showed the efficacy of biogenic AgNPs in catalyzing the reduction of direct yellow-12. PMID:26967513

  4. Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye

    NASA Astrophysics Data System (ADS)

    Edison, Thomas Nesakumar Jebakumar Immanuel; Lee, Yong Rok; Sethuraman, Mathur Gopalakrishnan

    2016-05-01

    Facile green synthesis of silver nanoparticles (AgNPs) using aqueous bark extract of Terminalia cuneata has been reported in this article. The effects of concentration of the extract, reaction time and pH were studied by UV-Vis spectroscopy. Appearance of yellow color with λmax around ~ 420 nm suggested the formation of AgNPs. The stable AgNPs were further characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS) with zeta potential and high resolution transmission electron microscopy (HR-TEM) with energy dispersive X-ray spectroscopy (EDS) analysis. The synthesized AgNPs were in the size range of 25-50 nm with a distorted spherical shape identified from HR-TEM analysis. The catalytic activity of AgNPs on the reduction of direct yellow-12 using NaBH4 was analyzed using a UV-Vis spectrophotometer. This study showed the efficacy of biogenic AgNPs in catalyzing the reduction of direct yellow-12.

  5. TiO2 film decorated with highly dispersed polyoxometalate nanoparticles synthesized by micelle directed method for the efficiency enhancement of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    He, Lifei; Chen, Li; Zhao, Yue; Chen, Weilin; Shan, Chunhui; Su, Zhongmin; Wang, Enbo

    2016-10-01

    In this work, two kinds of polyoxometalate (POM) nanoparticles with controlled shapes and structures were synthesized by micelle directed method and then composited with TiO2 via calcination to remove the surfactants owing to the excellent electronic storage and transmission ability of POM, finally obtaining two kinds of TiO2 composites with highly dispersed and small-sized POM nanoparticles (∼1 nm). The TiO2 composites were then induced into the photoanodes of dye-sensitized (N719) solar cells (DSSCs). The separation of electron-holes becomes more favorable due to the nanostructure and high dispersion of POM which provide more active sites than pure POM tending to agglomeration. The TiO2 composite photoanodes finally yielded the power conversion efficiency (PCE) of 8.4% and 8.2%, respectively, which were 42% and 39% higher than the pristine TiO2 based anodes. In addition, the mechanisms of POM in DSSC are proposed.

  6. Sacrificial template-directed synthesis of mesoporous magnesium oxide architectures with superior performance for organic dye adsorption [corrected].

    PubMed

    Ai, Lunhong; Yue, Haitao; Jiang, Jing

    2012-09-01

    Mesoporous MgO architectures were successfully synthesized by the direct thermal transformation of the sacrificial oxalate template. The as-prepared mesoporous architectures were characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), transmission electron microscopy (TEM), X-ray energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption-desorption techniques. The MgO architectures showed extraordinary adsorption capacity and rapid adsorption rate for removal of Congo red (CR) from water. The maximum adsorption capacity of the MgO architectures toward CR reached 689.7 mg g⁻¹, much higher than most of the previously reported hierarchical adsorbents. The CR removal process was found to obey the Langmuir adsorption model and its kinetics followed pseudo-second-order rate equation. The superior adsorption performance of the mesoporous MgO architectures could be attributed to the unique mesoporous structure, high specific surface area as well as strong electrostatic interaction.

  7. Carbonaceous material production from vegetable residue and their use in the removal of textile dyes present in wastewater

    NASA Astrophysics Data System (ADS)

    Peláez-Cid, A. A.; Tlalpa-Galán, M. A.; Herrera-González, A. M.

    2013-06-01

    This paper presents the adsorption results of acid, basic, direct, vat, and reactive-type dyes on carbonaceous adsorbent materials prepared starting off vegetable residue such as Opuntia ficus indica and Casimiroa edulis fruit wastes. The adsorbents prepared from Opuntia ficus indica waste were designated: TunaAsh, CarTunaT, and CarTunaQ. The materials obtained from Casimiroa edulis waste were named: CenZAP, CarZAPT, and CarZAPQ. TunaAsh and CenZAP consist of ashes obtained at 550 °C CarTunaT and CarZAPT consist of the materials carbonized at 400 °C lastly, CarTunaQ and CarZAPQ consist of chemically activated carbons using H3PO4 at 400 °C. Only the chemically activated materials were washed with distilled water until a neutral pH was obtained after their carbonization. All materials were ground and sieved to obtain a particle size ranging from 0.25 to 0.84 mm. The static adsorption results showed that both ashes and chemically activated carbon are more efficient at dye removal for both vegetable residues. For TunaAsh and CarTunaQ, removal rates of up to 100% in the cases of basic, acid, and direct dyes were achieved. Regarding wastewater containing reactive dyes, the efficiency ranged from 60 to 100%. For vat effluents, it ranged from 42 to 52%. In the case of CenZAP and CarZAPQ, it was possible to treat reactive effluents with rates ranging between 63 and 91%. Regarding vat effluents, it ranged from 57 to 68%. The process of characterization for all materials was done using scanning electron microscopy and infrared spectroscopy.

  8. Decolorisation of synthetic dyes and textile wastewater using Polyporus rubidus.

    PubMed

    Dayaram, Poonam; Dasgupta, Debjani

    2008-11-01

    Effluent from textile industries were treated with enzyme from white rot fungi isolated from outskirts of Mumbai and identified as Polyporus rubidus in our laboratory. Decolorisation of 4 Reactive dyes commonly found in the effluents such as Reactive bue, Reactive orange, Ramazol black and Congo red was examined by treatment with enzyme from Polyporus rubidus. Treatment of effluent was done in a laboratory scale bioreactor constructed with laccase immobilized Na-alginate beads. Greater than 80% of dyes were degraded within 5 days under stationary incubation conditions. The enzyme had a maxmimum activity of 17.1U after 3 days and was found to be secreted extracellularly by Polyporus rubidus. In this study the Polyporus rubidus has been reported for the first time to have laccase activity offering a promising possibility to develop an easy and cost effective method for degradation of dangerous dyes.

  9. Characterizing the genotoxicity of hazardous industrial wastes and effluents using short-term bioassays

    SciTech Connect

    Houk, V.S.; DeMarini, D.M.

    1989-01-01

    This paper demonstrates that short-term bioassays can reliably and expeditiously measure the genotoxic potential of hazardous industrial wastes and effluents. Petrochemical wastes have been studied in detail, especially discharges from chemical manufacturing plants and textile and dye effluents. However, there is little information on effluents from pesticide manufacturers. The most extensive evaluations have been conducted on effluents from pulp and paper mills. These studies have shown which pulping plants generate the most genotoxic effluents, which process wastes are most hazardous, have isolated and identified the compounds responsible for the genotoxic activity, have described the environmental fate of these compounds, have evaluated the types of genetic damage likely to occur upon exposure to the effluents, and have identified several treatment methods that effectively reduce the genotoxicity of the effluents. The coupling of bioassays for biological analysis with chemical evaluation provides the most powerful approach to assessing the overall health effects of complex industrial wastes and effluents.

  10. Studies on the influence of power ultrasound on dye penetration in leather dyeing using photomicrographic analysis.

    PubMed

    Sivakumar, V; Swaminathan, G; Rao, P G

    2005-10-01

    The use of power ultrasound in enhancing diffusion rate in various chemical as well as physical processes is gaining in importance. The influence of power ultrasound in the leather dyeing process on enhancing the penetration of dye through the leather matrix was studied. The penetration of dye through a leather cross-section for a given time in the presence and absence of an ultrasonic field (33 kHz, 150 W) was studied by photomicrographic analysis using a stereomicroscope. Different types of black dyes, such as Acid black 1, Metal complex black 194 and Direct black 155, were used for dyeing leather in the present study. Photomicrographic analysis of a cross-section of dyed leather indicated better penetration of dyes through the leather matrix with the use of ultrasound than without it. Therefore, the results indicate that ultrasound helps to improve the diffusion of dye and to reduce diffusional resistance in the leather dyeing process.

  11. Enhanced degradation of eletrooxidized textile effluent by petroleum degrading Pseudomonas aeruginosa (MTCC No.1201) at compressed gas pressure.

    PubMed

    Santhanam, Manikandan; Annamalai, Sivasankar; Umarkatha, Sayera Banu; Sundaram, Maruthamuthu

    2015-03-01

    The textile dyeing industry produces large volumes of wastewater during dyeing processes where the major step includes the color removal and COD removal. In the present study, the combined electrooxidation process and a novel biological degradation at high compressed gas pressure were studied. The removal of color in the real textile dye effluent was achieved by electrooxidation with Titanium Substrate Insoluble anode and titanium as cathode through generation of hypochlorite. The hypochlorite produced during the electrooxidation was removed by exposing the solution to direct sunlight. The impact of compressed atmospheric condition on the degradation of organics by Pseudomonas aeruginosa (MTCC No.1201, GenBank Acc. No KC545414) was studied. The compressed gas pressure condition increases the level of dissolved gas in the liquid phase and exerts the pressure on the growing cells in the liquid phase. Interesting synchronization between the utilization of oxygen by active microbial cells and the dissolution of oxygen in the water from gas phase was observed which enhanced the bacterial degradation process. It should be mentioned here that the P. aeruginosa was grown without addition of nutrients. The compressed atmospheric pressure enhances the bacterial proliferation, EPS production and COD reduction in the electrooxidized effluent. FTIR and HPLC reveal the degradation of organics in the compressed pressure condition.

  12. Study of the release of a microencapsulated acid dye in polyamide dyeing using mixed cationic liposomes.

    PubMed

    de Sousa, Isabel S C; Castanheira, Elisabete M S; Rocha Gomes, Jaime I N; Real Oliveira, M Elisabete C D

    2011-06-01

    The main objective of this work was to increase the retarding effect of the acid dye Telon(®) Blue RR (C.I. Acid Blue 62; DyStar, Frankfurt, Germany) release on polyamide fibres dyeing by encapsulation of the dye in liposomes as an alternative to synthetic auxiliaries, in order to reduce effluent pollution. The retarding effect achieved with the use of mixed cationic liposomes of dioctadecyldimethylammonium bromide (DODAB)/soybean lecithin (containing a 10% molar fraction of DODAB) was better in comparison with either pure soybean lecithin liposomes or synthetic auxiliaries. The retarding effect of liposomes on the dye release was analysed through changes in the absorption and fluorescence spectra of the acid dye at different conditions. The effect of temperature (in the range of 25 °C - 70 °C) on the spectroscopic behaviour of the dye in the absence and in presence of polyamide was also studied, in order to simulate the dyeing conditions. Exhaustion curves obtained in dyeing experiments showed that, below 45 °C, the retarding effect of the mixed liposomes (lecithin/DODAB (9:1)) was similar to that of the auxiliaries, but better than the one of pure lecithin liposomes. At higher temperatures (above 45 °C), the system lecithin/DODAB presents a better performance, achieving a higher final exhaustion level when compared with the commercial leveling agent without losing the smoothing effect of lecithin.

  13. Electro-Fenton decolourisation of dyes in an airlift continuous reactor using iron alginate beads.

    PubMed

    Iglesias, O; Rosales, E; Pazos, M; Sanromán, M A

    2013-04-01

    In this study, electro-Fenton dye degradation was performed in an airlift continuous reactor configuration by harnessing the catalytic activity of Fe alginate gel beads. Electro-Fenton experiments were carried out in an airlift reactor with a working volume of 1.5 L, air flow of 1.5 L/min and 115 g of Fe alginate gel beads. An electric field was applied by two graphite bars connected to a direct current power supply with a constant potential drop. In this study, Lissamine Green B and Reactive Black 5 were selected as model dyes. Fe alginate gel beads can be used as an effective heterogeneous catalyst for the degradation of organic dyes in the electro-Fenton process, as they are more efficient than the conventional electrochemical techniques. At optimal working conditions (3 V and pH 2), the continuous process was performed. For both dyes, the degree of decolourisation increases when the residence time augments. Taking into account hydrodynamic and kinetic behaviour, a model to describe the reactor profile was obtained, and the standard deviation between experimental and theoretical data was lower than 6%. The results indicate the suitability of the electro-Fenton technique to oxidise polluted effluents in the presence of Fe alginate gel beads. Moreover, the operation is possible in a continuous airlift reactor, due to the entrapment of iron in the alginate matrix. PMID:22851224

  14. Electro-Fenton decolourisation of dyes in an airlift continuous reactor using iron alginate beads.

    PubMed

    Iglesias, O; Rosales, E; Pazos, M; Sanromán, M A

    2013-04-01

    In this study, electro-Fenton dye degradation was performed in an airlift continuous reactor configuration by harnessing the catalytic activity of Fe alginate gel beads. Electro-Fenton experiments were carried out in an airlift reactor with a working volume of 1.5 L, air flow of 1.5 L/min and 115 g of Fe alginate gel beads. An electric field was applied by two graphite bars connected to a direct current power supply with a constant potential drop. In this study, Lissamine Green B and Reactive Black 5 were selected as model dyes. Fe alginate gel beads can be used as an effective heterogeneous catalyst for the degradation of organic dyes in the electro-Fenton process, as they are more efficient than the conventional electrochemical techniques. At optimal working conditions (3 V and pH 2), the continuous process was performed. For both dyes, the degree of decolourisation increases when the residence time augments. Taking into account hydrodynamic and kinetic behaviour, a model to describe the reactor profile was obtained, and the standard deviation between experimental and theoretical data was lower than 6%. The results indicate the suitability of the electro-Fenton technique to oxidise polluted effluents in the presence of Fe alginate gel beads. Moreover, the operation is possible in a continuous airlift reactor, due to the entrapment of iron in the alginate matrix.

  15. Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel.

    PubMed

    Nemr, Ahmed El; Abdelwahab, Ola; El-Sikaily, Amany; Khaled, Azza

    2009-01-15

    The use of low-cost, easy obtained, high efficiency and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This study investigates the potential use of activated carbon prepared from orange peel for the removal of direct blue-86 (DB-86) (Direct Fast Turquoise Blue GL) dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH and contact time were studied. The results showed that as the amount of the adsorbent increased, the percentage of dye removal increased accordingly. Optimum pH value for dye adsorption was determined as approximately 2.0. Maximum dye was sequestered within 30min after the beginning for every experiment. The adsorption of direct blue-86 followed a pseudo-second-order rate equation and fit well Langmuir, Tempkin and Dubinin-Radushkevich (D-R) equations better than Freundlich and Redlich-Peterson equations. The maximum removal of direct blue-86 was obtained at pH 2 as 92% for adsorbent dose of 6gL(-1) and 100mgL(-1) initial dye concentration at room temperature. The maximum adsorption capacity obtained from Langmuir equation was 33.78mgg(-1). Furthermore, adsorption kinetics of DB-86 was studied and the rate of adsorption was found to conform to pseudo-second-order kinetics with a good correlation (R2>0.99) with intraparticle diffusion as one of the rate determining steps. Activated carbon developed from orange peel can be attractive options for dye removal from diluted industrial effluents since test reaction made on simulated dyeing wastewater show better removal percentage of DB-86.

  16. The azo dyes Disperse Red 1 and Disperse Orange 1 increase the micronuclei frequencies in human lymphocytes and in HepG2 cells.

    PubMed

    Chequer, Farah Maria Drumond; Angeli, José Pedro Friedmann; Ferraz, Elisa Raquel Anastácio; Tsuboy, Marcela Stefanini; Marcarini, Juliana Cristina; Mantovani, Mário Sérgio; de Oliveira, Danielle Palma

    2009-05-31

    The use of azo dyes by different industries can cause direct and/or indirect effects on human and environmental health due to the discharge of industrial effluents that contain these toxic compounds. Several studies have demonstrated the genotoxic effects of various azo dyes, but information on the DNA damage caused by Disperse Red 1 and Disperse Orange 1 is unavailable, although these dyes are used in dyeing processes in many countries. The aim of the present study was to evaluate the mutagenic activity of Disperse Red 1 and Disperse Orange 1 using the micronucleus (MN) assay in human lymphocytes and in HepG2 cells. In the lymphocyte assay, it was found that the number of MN induced by the lowest concentration of each dye (0.2 microg/mL) was similar to that of the negative control. At the other concentrations, a dose response MN formation was observed up to 1.0 microg/mL. At higher dose levels, the number of MN decreased. For the HepG2 cells the results were similar. With both dyes a dose dependent increase in the frequency of MN was detected. However for the HepG2, the threshold for this increase was 2.0 microg/mL, while at higher doses a reduction in the MN number was observed. The proliferation index was also calculated in order to evaluate acute toxicity during the test. No differences were detected between the different concentrations tested and the negative control.

  17. Biodecolorization of recalcitrant dye as the sole sourceof nutrition using Curvularia clavata NZ2 and decolorization ability of its crude enzymes.

    PubMed

    Neoh, Chin Hong; Lam, Chi Yong; Lim, Chi Kim; Yahya, Adibah; Bay, Hui Han; Ibrahim, Zaharah; Noor, Zainura Zainon

    2015-08-01

    Extensive use of recalcitrant azo dyes in textile and paper industries poses a direct threat to the environment due to the carcinogenicity of their degradation products. The aim of this study was to investigate the efficiency of Curvularia clavata NZ2 in decolorization of azo dyes. The ability of the fungus to decolorize azo dyes can be evaluated as an important outcome as existing effluent treatment is unable to remove the dyes effectively. C. clavata has the ability to decolorize Reactive Black 5 (RB5), Acid Orange 7 (AO7), and Congo Red azo dyes, utilizing these as sole sources of carbon and nitrogen. Ultraviolet-visible (UV-vis) spectroscopy and Fourier infrared spectroscopy (FTIR) analysis of the extracted RB5's metabolites along with desorption tests confirmed that the decolorization process occurred due to degradation and not merely by adsorption. Enzyme activities of extracellular enzymes such as carboxymethylcellulase (CMCase), xylanase, laccase, and manganese peroxidase (MnP) were also detected during the decolorization process. Toxicity expressed as inhibition of germination was reduced significantly in fungal-treated azo dye solution when compared with the control. The cultivation of C. clavata under sequential batch system also recorded a decolorization efficiency of above 90%. The crude enzyme secreted by C. clavata also showed excellent ability to decolorize RB5 solutions with concentrations of 100 ppm (88-92%) and 1000 ppm (70-77%) without redox mediator. This proved that extracellular enzymes produced by C. clavata played a major role in decolorization of RB5.

  18. The physics of dye laser amplifiers

    NASA Astrophysics Data System (ADS)

    Jensen, C. C.

    This paper describes a method for the complete analysis of the optical properties of a laser dye. The analysis uses direct measurements of the saturation intensities for absorption and emission. The complete analysis of an ultraviolet laser dye, 3,5,3,5-Tetra-t-butyl-p-sexiphenyl, demonstrates the power of the saturation analysis method. The dye TBS exhibits some unique optical properties which affect its emission wavelength range and photochemistry.

  19. Decolorization of textile plant effluent by Citrobacter sp. strain KCTC 18061P.

    PubMed

    Jang, Moon-Sun; Jung, Byung-Gil; Sung, Nak-Chang; Lee, Young-Choon

    2007-12-01

    Citrobacter sp. strain KCTC 18061P was found to be able to decolorize textile plant effluent containing different types of reactive dyes. Effects of physico-chemical parameters, such as aeration, nitrogen source, glucose and effluent concentrations on the color removal of real dye effluent by this strain were investigated. The observed changes in the visible spectra indicated color removal by the absorption of dye to cells during incubation with the strain. This strain showed higher decolorization ability under aerobic than static culture conditions. With 1% glucose, this strain removed 70% of effluent color within 5 days. Decolorization was not significantly dependent on the nitrogen sources tested. Chemical oxygen demand (COD) and biological oxygen demand (BOD) were decreased in proportion to incubation times, and their removal rates were about 35% and 50%, respectively, at 7 days of culture.

  20. Facility effluent monitoring

    SciTech Connect

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  1. Degradation of azo dyes by environmental microorganisms and helminths

    SciTech Connect

    Kingthom Chung; Stevens, S.E. Jr. . Dept. of Biology)

    1993-11-01

    The degradation of azo dyes by environmental microorganisms, fungi, and helminths is reviewed. Azo dyes are used in a wide variety of products and can be found in the effluent of most sewage treatment facilities. Substantial quantities of these dyes have been deposited in the environment, particularly in streams and rivers. Azo dyes were shown to affect microbial activities and microbial population sizes in the sediments and in the water columns of aquatic habitats. Only a few aerobic bacteria have been found to reduce azo dyes under aerobic conditions, and little is known about the process. A substantial number of anaerobic bacteria capable of azo dye reduction have been reported. The enzyme responsible for azo dye reduction has been partially purified, and characterization of the enzyme is proceeding. The nematode Ascaris lumbricoides and the cestode Moniezia expanza have been reported to reduce azo dyes anaerobically. Recently the fungus Phanerochaete chrysoporium was reported to mineralize azo dyes via a peroxidation-mediated pathway. A possible degradation pathway for the mineralization of azo dye is proposed and future research needs are discussed.

  2. Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase

    PubMed Central

    2012-01-01

    Background Microbial laccases are highly useful in textile effluent dye biodegradation. However, the bioavailability of cellularly expressed or purified laccases in continuous operations is usually limited by mass transfer impediment or enzyme regeneration difficulty. Therefore, this study develops a regenerable bacterial surface-displaying system for industrial synthetic dye decolorization, and evaluates its effects on independent and continuous operations. Results A bacterial laccase (WlacD) was engineered onto the cell surface of the solvent-tolerant bacterium Pseudomonas putida to construct a whole-cell biocatalyst. Ice nucleation protein (InaQ) anchor was employed, and the ability of 1 to 3 tandemly aligned N-terminal repeats to direct WlacD display were compared. Immobilized WlacD was determined to be surface-displayed in functional form using Western blot analysis, immunofluorescence microscopy, flow cytometry, and whole-cell enzymatic activity assay. Engineered P. putida cells were then applied to decolorize the anthraquinone dye Acid Green (AG) 25 and diazo-dye Acid Red (AR) 18. The results showed that decolorization of both dyes is Cu2+- and mediator-independent, with an optimum temperature of 35°C and pH of 3.0, and can be stably performed across a temperature range of 15°C to 45°C. A high activity toward AG25 (1 g/l) with relative decolorization values of 91.2% (3 h) and 97.1% (18 h), as well as high activity to AR18 (1 g/l) by 80.5% (3 h) and 89.0% (18 h), was recorded. The engineered system exhibited a comparably high activity compared with those of separate dyes in a continuous three-round shake-flask decolorization of AG25/AR18 mixed dye (each 1 g/l). No significant decline in decolorization efficacy was noted during first two-rounds but reaction equilibriums were elongated, and the residual laccase activity eventually decreased to low levels. However, the decolorizing capacity of the system was easily retrieved via a subsequent 4-h

  3. Power ultrasound-assisted cleaner leather dyeing technique: influence of process parameters.

    PubMed

    Sivakumar, Venkatasubramanian; Rao, Paruchuri Gangadhar

    2004-03-01

    The application of power ultrasound to leather processing has a significant role in the concept of "clean technology" for leather production. The effect of power ultrasound in leather dyeing has been compared with dyeing in the absence of ultrasound and conventional drumming. The power ultrasound source used in these experiments was ultrasonic cleaner (150 W and 33 kHz). The effect of various process parameters such as amount of dye offer, temperature, and type of dye has been experimentally found out. The effect of presonication of dye solution as well as leather has been studied. Experiments at ultrasonic bath temperature were carried out to find out the combined thermal as well as stirring effects of ultrasound. Dyeing in the presence of ultrasound affords about 37.5 (1.8 times) difference as increase in % dye exhaustion or about 50% decrease in the time required for dyeing compared to dyeing in the absence of ultrasound for 4% acid red dye. About 29 (1.55 times) increase in % dye exhaustion or 30% reduction in time required for dyeing was observed using ultrasound at stationary condition compared with conventional dynamic drumming conditions. The effect of ultrasound at constant temperature conditions with a control experiment has also been studied. The dye exhaustion increases as the temperature increases (30-60 degrees C) and better results are observed at higher temperature due to the use of ultrasound. Presonication of dye solution or crust leather prior to the dyeing process has no significant improvement in dye exhaustion, suggesting ultrasound effect is realized when it is applied during the dyeing process. The results indicate that 1697 and 1416 ppm of dye can be reduced in the spent liquor due to the use of ultrasound for acid red (for 100 min) and acid black (for 3 h) dyes, respectively, thereby reducing the pollution load in the effluent stream. The color yield of the leather as inferred from the reflectance measurement indicates that dye offer can

  4. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, Steve A.; Seppala, Lynn G.

    1986-01-01

    A dye laser oscillator in which one light beam is used to pump a continuous tream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  5. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, S.A.; Seppala, L.G.

    1984-06-13

    A dye laser oscillator in which one light beam is used to pump a continuous stream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  6. Alkali, thermo and halo tolerant fungal isolate for the removal of textile dyes.

    PubMed

    Kaushik, Prachi; Malik, Anushree

    2010-11-01

    In the present study potential of a fungal isolate Aspergillus lentulusFJ172995, was investigated for the removal of textile dyes. The removal percentages of dyes such as Acid Navy Blue, Orange-HF, Fast Red A, Acid Sulphone Blue and Acid Magenta were determined as 99.43, 98.82, 98.75, 97.67 and 69.98, respectively. None of the dyes inhibited the growth of A. lentulus. Detailed studies on growth kinetics, mechanism of dye removal and effect of different parameters on dye removal were conducted using Acid Navy Blue dye. It was observed that A. lentulus could completely remove Acid Navy Blue even at high initial dye concentrations, up to 900 mg/L. Highest uptake capacity of 212.92 mg/g was observed at an initial dye concentration of 900 mg/L. Dye removing efficiency was not altered with the variation of pH; and biomass production as well as dye removal was favored at higher temperatures. Dye removal was also efficient even at high salt concentration. Through growth kinetics studies it was observed that the initial exponential growth phase coincided with the phase of maximal dye removal. Microscopic studies suggest that bioaccumulation along with biosorption is the principle mechanism involved in dye removal by A. lentulus. Thus, it is concluded that being alkali, thermo and halo tolerant, A. lentulus isolate has a great potential to be utilized for the treatment of dye bearing effluents which are usually alkaline, hot and saline.

  7. Salt-free reactive dyeing of cotton hosiery fabrics by exhaust application of cationic agent.

    PubMed

    Nallathambi, Arivithamani; Venkateshwarapuram Rengaswami, Giri Dev

    2016-11-01

    Reactive dyes are most preferred dyes for dyeing of cellulosic fibres as they are chemically bonded to the fibre which is being dyed and also inexpensive to apply. But the application of reactive dyes onto the cellulosic materials requires a very high concentration of salt since fibre and dyes are anionic in nature. Even with required amount of salt only 65-70% of reactive dyes are exhausted, remaining 25-30% of dyes are removed as a coloured effluent after dyeing. The present work aims to eliminate salt usage in the reactive dyeing of cellulosic material, especially in cotton hosiery fabrics dyeing industry. In this study, the cationization of cotton fabric was carried out by varying concentration of cationic agent from 20 to 60g/L by an exhaust method with the goal to achieve 100% dye utilization and fixation during the salt-free reactive dyeing process. All the dyes taken for the study showed excellent dye exhaustion, fixation and colour strength properties on the cotton fabrics. PMID:27516243

  8. Photoelectrocatalytic decolorization and degradation of textile effluent using ZnO thin films.

    PubMed

    Sapkal, R T; Shinde, S S; Mahadik, M A; Mohite, V S; Waghmode, T R; Govindwar, S P; Rajpure, K Y; Bhosale, C H

    2012-09-01

    Zinc oxide (ZnO) thin films have been successfully deposited onto fluorine doped tin oxide coated glass at substrate temperature of 400 °C and used as electrode in photoelectrocatalytic reactor. The untreated textile effluent was circulated through photoelectrocatalytic reactor under UVA illumination for the decolorization and degradation. Textile effluent was decolorized by 93% within 3h at room temperature with significant reduction in COD (69%). High performance liquid chromatography (HPLC) and Fourier transform infrared spectroscopy (FTIR) analysis of samples before and after decolorization confirmed the degradation of dyes molecules from textile effluent into simpler oxidizable products. Phytotoxicity study revealed reduction in toxic nature of textile effluent after treatment.

  9. Bioremediation of textile azo dyes by an aerobic bacterial consortium using a rotating biological contactor.

    PubMed

    Abraham, T Emilia; Senan, Resmi C; Shaffiqu, T S; Roy, Jegan J; Poulose, T P; Thomas, P P

    2003-01-01

    The degradation of an azo dye mixture by an aerobic bacterial consortium was studied in a rotating biological reactor. Laterite pebbles of particle size 850 microm to 1.44 mm were fixed on gramophone records using an epoxy resin on which the developed consortium was immobilized. Rate of degradation, BOD, biomass determination, enzymes involved, and fish bioassay were studied. The RBC has a high efficiency for dye degradation even at high dye concentrations (100 microg/mL) and high flow rate (36 L/h) at alkaline pH and salinity conditions normally encountered in the textile effluents. Bioassays (LD-50) using Thilapia fish in treated effluent showed that the percentage mortality was zero over a period of 96 h, whereas the mortality was 100% in untreated dye water within 26 h. Fish bioassay confirms that the effluent from RBC can be discharged safely to the environment. PMID:12892505

  10. Bioremediation of textile azo dyes by an aerobic bacterial consortium using a rotating biological contactor.

    PubMed

    Abraham, T Emilia; Senan, Resmi C; Shaffiqu, T S; Roy, Jegan J; Poulose, T P; Thomas, P P

    2003-01-01

    The degradation of an azo dye mixture by an aerobic bacterial consortium was studied in a rotating biological reactor. Laterite pebbles of particle size 850 microm to 1.44 mm were fixed on gramophone records using an epoxy resin on which the developed consortium was immobilized. Rate of degradation, BOD, biomass determination, enzymes involved, and fish bioassay were studied. The RBC has a high efficiency for dye degradation even at high dye concentrations (100 microg/mL) and high flow rate (36 L/h) at alkaline pH and salinity conditions normally encountered in the textile effluents. Bioassays (LD-50) using Thilapia fish in treated effluent showed that the percentage mortality was zero over a period of 96 h, whereas the mortality was 100% in untreated dye water within 26 h. Fish bioassay confirms that the effluent from RBC can be discharged safely to the environment.

  11. Mutagenicity assessment of textile dyes from Sanganer (Rajasthan).

    PubMed

    Mathur, Nupur; Bhatnagar, Pradeep

    2007-01-01

    Sanganer town, district Jaipur (Rajasthan, India) is famous worldwide for its hand block dyeing and textile printing industries. These industries use a variety of chemicals and dyes during processing and finishing of raw materials. Most of the textile dyes used by these industries have not been evaluated for their impact on health and the environment. The workers in these industries are exposed to such dyes with no control over the length and frequency of exposure. Further, untreated and sometimes even treated effluents from these industries are released into surface waters of Amani Shah drainage or through the drainage systems, seep into the ground water and adjoining water bodies. Since many textile dyes are known carcinogens and mutagens, a complete evaluation of the safety of these dyes in the human environment must include an evaluation of their genotoxicity or mutagenicity. A total of 12 textile dyes from Sanganer were tested for their mutagenicity, by Ames Salmonella reversion assay using strain TA 100 of Salmonella typhimurium. Only 1 dye, Red 12 B showed absence of mutagenic activity. The remaining 11 dyes were all positively mutagenic.

  12. Effect of textile auxiliaries on the biodegradation of dyehouse effluent in activated sludge.

    PubMed

    Arslan Alaton, Idil; Insel, Güçlü; Eremektar, Gülen; Germirli Babuna, Fatos; Orhon, Derin

    2006-03-01

    The textile industry is confronted with serious environmental problems associated with its immense wastewater discharge, substantial pollution load, extremely high salinity, and alkaline, heavily coloured effluent. Particular sources of recalcitrance and toxicity in dyehouse effluent are two frequently used textile auxiliaries; i.e. dye carriers and biocidal finishing agents. The present experimental work reports the observation of scientific and practical significance related with the effect of two commercially important textile dye carriers and two biocidal finishing agents on biological activated sludge treatment at a textile preparation, dyeing and finishing plant in Istanbul. Respirometric measurements of the dyehouse effluent spiked with the selected textile chemicals were carried out for the assessment of the "readily biodegradable COD fraction" of the wastewater. The respirometric data obtained to visualize the effect of the selected textile auxiliaries on biomass activity was evaluated by an adopted activated sludge model. Results have indicated that the tested biocides did not exert any significant inhibitory effect on the treatment performance of the activated sludge reactor at the concentrations usually encountered in the final, total dyehouse effluent. The situation with the dye carriers was inherently different; one dye carrier appeared to be highly toxic and caused serious inhibition of the microbial respirometric activity, whereas the other dye carrier, also known as the more ecological alternative, i.e. the "Eco-Carrier", appeared to be biodegradable. Finally, the respirometric profile obtained for the Eco-Carrier was described by a simplified respirometric model. PMID:16098558

  13. Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium.

    PubMed

    Saratale, R G; Saratale, G D; Chang, J S; Govindwar, S P

    2010-11-01

    A bacterial consortium (consortium GR) consisting of Proteus vulgaris NCIM-2027 and Micrococcus glutamicus NCIM-2168 could rapidly decolorize and degrade commonly-used sulfonated reactive dye Green HE4BD and many other reactive dyes. Consortium GR shows markedly higher decolorization activity than that of the individual strains. The preferable physicochemical parameters were identified to achieve higher dye degradation and decolorization efficiency. The supplementation of cheap co-substrates (e.g., extracts of agricultural wastes) could enhance the decolorization performance of consortium GR. Extent of mineralization was determined with TOC and COD measurements, showing nearly complete mineralization of Green HE4BD by consortium GR (up to 90% TOC and COD reduction) within 24 h. Oxidoreductive enzymes seemed to be involved in fast decolorization/degradation process with the evidence of enzymes induction in the bacterial consortium. Phytotoxicity and microbial toxicity studies confirm that the biodegraded products of Green HE4BD by consortium GR are non-toxic. Consortium GR also shows significant biodegradation and decolorization activities for mixture of reactive dyes as well as the effluent from actual dye manufacturing industry. This confers the possibility of applying consortium GR for the treatment of industrial wastewaters containing dye pollutants.

  14. Screening of filamentous fungi for the decolorization of a commercial reactive dye.

    PubMed

    dos Santos, Alessandra Zacarias; Cândido Neto, José Maximiano; Tavares, Célia Regina Granhen; da Costa, Sandra Maria Gomes

    2004-01-01

    The aim of this work is to verify the ability of 19 isolates of 13 different fungal species to decolorize the reactive dye blue-BF-R. The isolates of Pleurotus pulmonarius, P. ostreatus, P. ëous, P. citrinopileatus, Lentinus edodes, Phanerochaete chrysosporium, Schizophyllum commune, Agaricus blazei, Ganoderma sp. and four isolates obtained from textile effluent were evaluated in minimum liquid medium. In addition, seven of them were also evaluated on solid medium, and both media were both added 0.5 g dye/l. All isolates evaluated on solid medium decolorized the dye. The isolates Phanerochaete chrysosporium CCB478 and Lentinus edodes CCB047 were the ones that presented the fastest and slowest growth, respectively. Despite the isolate of the textile effluent had grown on solid medium, it did not decolorize the dye. All the isolates of the genus Pleurotus, except the isolate Pleurotus ëous CCB440, decolorized the dye in liquid medium. They presented decolorization percentage ranging from 39% to 51%. The absorbance ratio (Abs590/Abs455) of the culture medium inoculated with these isolates decreased throughout the experiment indicating the fungal dye degradation. The others presented decolorization percent below 8%. The isolates of Pleurotus, except the isolate Pleurotus ëous CCB440, were able to decolorize and to degrade the commercial reactive dye blue-BF-R. The results indicate their potential to be used in the treatment of effluents containing this dye. PMID:15266601

  15. The role of Aster amellus Linn. in the degradation of a sulfonated azo dye Remazol Red: a phytoremediation strategy.

    PubMed

    Khandare, Rahul V; Kabra, Akhil N; Tamboli, Dhawal P; Govindwar, Sanjay P

    2011-02-01

    Phytoremediation is a novel and promising approach for the treatment of pollutants. This study did explore the potential of Aster amellus Linn. to decolorize a sulfonated azo dye Remazol Red (RR), a mixture of dyes and a textile effluent. Induction in the activities of lignin peroxidase, tyrosinase, veratryl alcohol oxidase and riboflavin reductase was observed during RR decolorization, suggesting their involvement in the metabolism of RR. UV-Visible absorption spectrum, HPLC and FTIR analysis confirmed the degradation of RR. Four metabolites after the degradation of the dye were identified as 2-[(3-diazenylphenyl) sulfonyl] ethanesulfonate, 4-amino-5-hydroxynaphthalene-2,7-disulfonate, naphthalene-2-sulfonate and 3-(1,3,5-triazin-2-ylamino)benzenesulfonate by using GC/MS. Textile effluent and mixture of dyes showed 47% and 62% decrease respectively in American Dye Manufacturers Institute value. BOD of textile effluent and mixture of dyes were reduced by 75% and 48% respectively, COD of industrial effluent and mixture of dyes was reduced by 60% and 75% and TOC was reduced by 54% and 69% respectively after the treatment by A. amellus for 60 h; this indicated that the plant can be used for cleaning textile effluents. Toxicity study revealed the phytotransformation of RR into non-toxic products.

  16. Wastewater effluent dispersal in Southern California Bays

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yusuke; Idica, Eileen Y.; McWilliams, James C.; Stolzenbach, Keith D.

    2014-03-01

    The dispersal and dilution of urban wastewater effluents from offshore, subsurface outfalls is simulated with a comprehensive circulation model with downscaling in nested grid configurations for San Pedro and Santa Monica Bays in Southern California during Fall of 2006. The circulation is comprised of mean persistent currents, mesoscale and submesoscale eddies, and tides. Effluent volume inflow rates at Huntington Beach and Hyperion are specified, and both their present outfall locations and alternative nearshore diversion sites are assessed. The effluent tracer concentration fields are highly intermittent mainly due to eddy currents, and their probability distribution functions have long tails of high concentration. The dilution rate is controlled by submesoscale stirring and straining in tracer filaments. The dominant dispersal pattern is alongshore in both directions, approximately along isobaths, over distances of more than 10 km before dilution takes over. The current outfall locations mostly keep the effluent below the surface and away from the shore, as intended, but the nearshore diversions do not.

  17. Biodegradation of azo dyes in a sequential anaerobic-aerobic system.

    PubMed

    Rajaguru, P; Kalaiselvi, K; Palanivel, M; Subburam, V

    2000-08-01

    A sequential anaerobic aerobic treatment process based on mixed culture of bacteria isolated from textile dye effluent-contaminated soil was used to degrade sulfonated azo dyes Orange G (OG), Amido black 10B (AB), Direct red 4BS (DR) and Congo red (CR). Under anaerobic conditions in a fixed-bed column using glucose as co-substrate, the azo dyes were reduced and amines were released by the bacterial biomass. The amines were completely mineralized in a subsequent aerobic treatment using the same isolates. The maximum degradation rate observed in the treatment system for OG was 60.9 mg/l per day (16.99 mg/g glucose utilized), for AB 571.3 mg/l per day (14.46 mg/g glucose utilized), for DR 112.5 mg/l per day (32.02 mg/g glucose utilized) and for CR 134.9 mg/l per day (38.9 mg/g glucose utilized).

  18. Kinetics of decolourisation and biotransformation of direct black 38 by C. hominis and P. stutzeri.

    PubMed

    Bafana, Amit; Devi, Sivanesan Saravana; Krishnamurthi, Kannan; Chakrabarti, Tapan

    2007-04-01

    In the present study, a consortium of Cardiobacterium hominis and Pseudomonas stutzeri was isolated from an effluent treatment plant of a textile industry, based on its ability to decolourise azo dyes including direct black 38 (DB38), a benzidine-based azo dye. The role of each culture in the decolourisation process was elucidated, and C. hominis was found to decolourise the dye. Although P. stutzeri could not decolourise the dye, it was found to synergistically enhance dye decolourisation activity of C. hominis by scavenging oxygen in the medium and creating an anaerobic condition (oxidation/reduction potential -440 mV), which is known to be necessary for azo dye decolourisation. Together, the cultures could decolourise 90.5% of 100 mg l(-1) DB38 within 24 h. Kinetics of DB38 decolourisation was also examined, and P. stutzeri was found to increase V (max) and K (m) of decolourisation activity of C. hominis by 3.6- and 3-fold, respectively. The study also revealed a pathway of DB38 degradation with the release of benzidine from DB38 and subsequent degradation of benzidine to 4-aminobiphenyl by the cultures.

  19. Decolorization of azo dyes by Shewanella sp. under saline conditions.

    PubMed

    Khalid, Azeem; Arshad, Muhammad; Crowley, David E

    2008-07-01

    Wastewaters from textile processing and dye-stuff manufacture industries contain substantial amounts of salts in addition to azo dye residues. To examine salinity effects on dye-degrading bacteria, a study was carried out with four azo dyes in the presence of varying concentrations of NaCl (0-100 g l(-1)) with a previously isolated bacterium, Shewanella putrefaciens strain AS96. Under static, low oxygen conditions, the bacterium decolorized 100 mg dye l(-1) at salt concentrations up to 60 g NaCl l(-1). There was an inverse relationship between the velocity of the decolorization reaction and salt concentration over the range between 5 and 60 g NaCl l(-1) and at dye concentrations between 100 and 500 mg l(-1). The addition of either glucose (C source) or NH(4)NO(3) (N source) to the medium strongly inhibited the decolorization process, while yeast extract (4 g l(-1)) and Ca(H(2)PO(4))(2).H(2)O (1 g l(-1)) both enhanced decolorization rates. High-performance liquid chromatography analysis demonstrated the presence of 1-amino-2-naphthol, sulfanilic acid and nitroaniline as the major metabolic products of the azo dyes, which could be further degraded by a shift to aerobic conditions. These findings show that Shewanella could be effective for the treatment of dye-containing industrial effluents containing high concentrations of salt.

  20. Cloth dye poisoning

    MedlinePlus

    ... poisonous ingredient in most household cloth dyes. Most common household cloth dyes are made from nonpoisonous substances, such as: Mild soaps Pigments Salts Although these substances are generally considered not dangerous, ...

  1. Partially purified bitter gourd (Momordica charantia) peroxidase catalyzed decolorization of textile and other industrially important dyes.

    PubMed

    Akhtar, Suhail; Ali Khan, Amjad; Husain, Qayyum

    2005-11-01

    The aim of this study was to evaluate the enzymatic action of partially purified bitter gourd peroxidase for the degradation/decolorization of complex aromatic structures. Twenty-one dyes, with a wide spectrum of chemical groups, currently being used by the textile and other important industries have been selected for the study. Here, for the first time we have shown peroxidases from Momordica charantia (300 EU/gm of vegetable) to be highly effective in decolorizing industrially important dyes. Dye solutions, containing 50-200 mg dye/l, were used for the treatment with bitter gourd peroxidase (specific activity of 99.0 EU/mg protein). M. charantia peroxidases were able to decolorize most of the textile dyes by forming insoluble precipitate. When the textile dyes were treated with increasing concentration of enzyme, it was observed that greater fraction of the color was removed but four out of eight reactive dyes were recalcitrant to decolorization by bitter gourd peroxidase. Step-wise addition of enzyme to the decolorizing reaction mixture at the interval of 1h further enhanced the dye decolorization. The rate of decolorization was enhanced when the dyes were incubated with fixed quantity of enzyme for increasing times. Decolorization of non-textile dyes resulted in the degradation and removal of dyes from the solution without any precipitate formation. Decolorization rate was drastically increased when the textile and other industrially important non-textile dyes were treated with bitter gourd peroxidase in presence of 1.0 mM 1-hydroxybenzotriazole. Complex mixtures of dyes were prepared by taking three to four reactive textile and non-textile dyes in equal proportions. Each mixture was decolorized by more than 80% when treated with the enzyme in presence of 1.0 mM 1-hydroxybenzotriazole. Our data suggest that the peroxidase/mediator system is an effective biocatalyst for the treatment of effluents containing recalcitrant dyes from textile, dye manufacturing

  2. Human percutaneous absorption of a direct hair dye comparing in vitro and in vivo results: implications for safety assessment and animal testing.

    PubMed

    Lademann, J; Richter, H; Jacobi, U; Patzelt, A; Hueber-Becker, F; Ribaud, C; Benech-Kieffer, F; Dufour, E K; Sterry, W; Schaefer, H; Leclaire, J; Toutain, H; Nohynek, G J

    2008-06-01

    Although in vitro skin absorption studies often detect small residues of applied test material in the epidermis/dermis, it is uncertain whether the residue is within the living skin. We studied the dermal absorption of a hair dye hydroxyanthraquinone-aminopropyl methyl morpholinium methosulphate (HAM) in human skin in vivo and in vitro. In vivo, skin (back and scalp) received 0.5% HAM in a commercial formulation at 20microg/cm2 After 0.5 or 48h, skin was tape stripped, followed by cyanoacrylate biopsies (CAB). Sebum from scalp sites was collected for 48h. In vitro, skin was treated with 20mg/cm2 dye for 0.5h, penetration determined after 24h. In vivo, at 0.5h, total recovery (back) was 0.67microg/cm2 (tape strips+CAB). Fluorescence microscopy showed HAM in the hair follicle openings (HFO). At 0.5h, scalp tape strips contained 1.80microg/cm2, HFO 0.82microg/cm2. At 48h, HFO contained 0.21microg/cm2, sebum 0.80microg/cm2. In vivo, skin residues were in the non-living skin and eliminated via desquamation and sebum secretion. In vitro, the SC contained 1.50microg/cm2, epidermis/dermis 0.86microg/cm2, receptor fluid<0.04microg/cm2, a total of 0.90microg/cm2 was considered to be bioavailable. In vitro epidermis/dermis residues were nearly identical to those located in non-living skin in vivo. In conclusion, in vitro percutaneous penetration studies may produce seemingly bioavailable material , which raises the need for a Threshold of Skin Absorption (TSA) addressing a negligible dermal absorption in order to avoid unnecessary in vivo toxicity studies on substances that produce no significant human systemic exposure. PMID:18417263

  3. INEEL Liquid Effluent Inventory

    SciTech Connect

    Major, C.A.

    1997-06-01

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  4. Decolourisation of simulated reactive dyebath effluents by electrochemical oxidation assisted by UV light.

    PubMed

    López-Grimau, V; Gutiérrez, M C

    2006-01-01

    This study is focused on the optimisation of the electrochemical decolourisation of textile effluents containing reactive dyes with the aim of making feasible-technically and economically-this method at industrial scale. Coloured waters were treated in continuous at low current density, to reduce the electrical consumption. Ti/PtO(x) electrodes were used to oxidize simulated dyebaths prepared with an azo/dichlorotriazine reactive dye (C.I. Reactive Orange 4). The decolourisation yield was dependent on the dyeing electrolyte (NaCl or Na(2)SO(4)). Dyeing effluents which contained from 0.5 to 20 gl(-1) of NaCl reached a high decolourisation yield, depending on the current density, immediately after the electrochemical process. These results were improved when the effluents were stored for several hours under solar light. After the electrochemical treatment the effluents were stored in a tank and exposed under different lighting conditions: UV light, solar light and darkness. The evolution of the decolourisation versus the time of storage was reported and kinetic constants were calculated. The time of storage was significantly reduced by the application of UV light. A dye mineralization study was also carried out on a concentrated dyebath. A TOC removal of 81% was obtained when high current density was applied for a prolonged treatment with recirculation. This treatment required a high electrical consumption.

  5. A simple 2-directional high-performance thin-layer chromatographic method for the simultaneous determination of curcumin, metanil yellow, and sudan dyes in turmeric, chili, and curry powders.

    PubMed

    Dixit, Sumita; Khanna, Subhash K; Das, Mukul

    2008-01-01

    A method using simple extraction and 2-directional high-performance thin-layer chromatography (HPTLC) was developed for the simultaneous determination of curcumin, metanil yellow, and sudan dyes in turmeric, chili, and various mixed curry powder formulations. The method offers resolution (Rf) of turmeric pigments, namely, curcumin (0.77), demethoxycurcumin (0.69), bis(demethoxy)curcumin (0.61), and the synthetic dye metanil yellow (0.05) by the first-directional mobile phase, chloroform-methanol (9 + 1, v/v). The resolution (Rf) of sudan I (0.30) and sudan IV (0.23) was achieved by the second-directional mobile phase, toluene-hexane-acetic acid (50 + 50 + 1, v/v/v). Natural pigments of both turmeric and chili showed no interference in the detection and quantification of synthetic colors. The limit of detection and limit of quantification values for curcumin, metanil yellow, sudan I, and sudan IV were 17.39, 42.90, 15.45, and 7.01 and 52.71,130.0, 46.80, and 21.24 ng/spot, respectively. Analysis of a few market samples showed the presence of metanil yellow (1.5-4.6 mg/g), sudan I (4.8-12.1 mg/g), and sudan IV (0.9-2.0 mg/g) in loose turmeric and chili samples, whereas the curcumin content in turmeric and mixed curry powder samples ranged from 6.5 to 36.4 and from 0.3 to 1.9 mg/g, respectively. The method is relatively simple, offers reasonable sensitivity, and can be used to screen a large number of samples.

  6. Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta.

    PubMed

    Abadulla, E; Tzanov, T; Costa, S; Robra, K H; Cavaco-Paulo, A; Gübitz, G M

    2000-08-01

    Trametes hirsuta and a purified laccase from this organism were able to degrade triarylmethane, indigoid, azo, and anthraquinonic dyes. Initial decolorization velocities depended on the substituents on the phenolic rings of the dyes. Immobilization of the T. hirsuta laccase on alumina enhanced the thermal stabilities of the enzyme and its tolerance against some enzyme inhibitors, such as halides, copper chelators, and dyeing additives. The laccase lost 50% of its activity at 50 mM NaCl while the 50% inhibitory concentration (IC(50)) of the immobilized enzyme was 85 mM. Treatment of dyes with the immobilized laccase reduced their toxicities (based on the oxygen consumption rate of Pseudomonas putida) by up to 80% (anthraquinonic dyes). Textile effluents decolorized with T. hirsuta or the laccase were used for dyeing. Metabolites and/or enzyme protein strongly interacted with the dyeing process indicated by lower staining levels (K/S) values than obtained with a blank using water. However, when the effluents were decolorized with immobilized laccase, they could be used for dyeing and acceptable color differences (DeltaE*) below 1.1 were measured for most dyes.

  7. Estimating effluent COD

    SciTech Connect

    Eckenfelder, W.W.; Landine, R.

    1995-06-01

    In many parts of the world, chemical oxygen demand (COD) is a primary effluent parameter. Unlike BOD, which considers only biodegradable organics, COD also includes non-degradable organics and non-degradable biological oxidation by-products, generally referred to as soluble microbial products (SMP). The SMP can vary from 2% to 10% of the influent degradable COD. If the technology is limited to biological treatment only, the degradable COD will be removed. Further reductions in COD will require physical chemical treatments such as activated carbon. Effluent COD values for several industrial wastewaters are presented. Effluent characteristics from the anaerobic treatment of industrial wastewaters are also discussed.

  8. Nuclear reactor effluent monitoring

    SciTech Connect

    Minns, J.L.; Essig, T.H.

    1993-12-31

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC`s program results.

  9. Draft Genome Sequence of Commercial Textile Dye-Decolorizing and -Degrading Bacillus subtilis Strain C3 Isolated in India.

    PubMed

    Kunadia, Khushbu; Nathani, Neelam M; Kothari, Vishal; Kotadia, Rohit J; Kothari, Charmy R; Joshi, Anjali; Rank, Jalpa K; Faldu, Priti R; Shekar, M Chandra; Viroja, Mitkumar J; Patel, Priyank A; Jadeja, Divyarajsinh; Reddy, Bhaskar; Pal Singh, Ravindra; Koringa, Prakash G; Joshi, Chaitanya G; Kothari, Ramesh K

    2016-03-10

    Bacillus subtilis C3, a commercial textile dye-decolorizing and -degrading bacterium, was isolated from the common effluent treatment plant (CEPT) of the Jetpur textile dyeing and printing industrial sector situated in the district of Rajkot, Gujarat, India. Here, we present the annotated 4.18-Mb draft genome sequence of B. subtilis C3, providing information about the metabolic pathways involved in decolorization and degradation of several commercial textile azo dyes. Thus, we confirm B. subtilis C3 as a potential candidate for bioremediation of textile effluents.

  10. Draft Genome Sequence of Commercial Textile Dye-Decolorizing and -Degrading Bacillus subtilis Strain C3 Isolated in India.

    PubMed

    Kunadia, Khushbu; Nathani, Neelam M; Kothari, Vishal; Kotadia, Rohit J; Kothari, Charmy R; Joshi, Anjali; Rank, Jalpa K; Faldu, Priti R; Shekar, M Chandra; Viroja, Mitkumar J; Patel, Priyank A; Jadeja, Divyarajsinh; Reddy, Bhaskar; Pal Singh, Ravindra; Koringa, Prakash G; Joshi, Chaitanya G; Kothari, Ramesh K

    2016-01-01

    Bacillus subtilis C3, a commercial textile dye-decolorizing and -degrading bacterium, was isolated from the common effluent treatment plant (CEPT) of the Jetpur textile dyeing and printing industrial sector situated in the district of Rajkot, Gujarat, India. Here, we present the annotated 4.18-Mb draft genome sequence of B. subtilis C3, providing information about the metabolic pathways involved in decolorization and degradation of several commercial textile azo dyes. Thus, we confirm B. subtilis C3 as a potential candidate for bioremediation of textile effluents. PMID:26966205

  11. Draft Genome Sequence of Commercial Textile Dye-Decolorizing and -Degrading Bacillus subtilis Strain C3 Isolated in India

    PubMed Central

    Kunadia, Khushbu; Nathani, Neelam M.; Kothari, Vishal; Kotadia, Rohit J.; Kothari, Charmy R.; Joshi, Anjali; Rank, Jalpa K.; Faldu, Priti R.; Shekar, M. Chandra; Viroja, Mitkumar J.; Patel, Priyank A.; Jadeja, Divyarajsinh; Reddy, Bhaskar; Pal Singh, Ravindra; Koringa, Prakash G.; Joshi, Chaitanya G.

    2016-01-01

    Bacillus subtilis C3, a commercial textile dye-decolorizing and -degrading bacterium, was isolated from the common effluent treatment plant (CEPT) of the Jetpur textile dyeing and printing industrial sector situated in the district of Rajkot, Gujarat, India. Here, we present the annotated 4.18-Mb draft genome sequence of B. subtilis C3, providing information about the metabolic pathways involved in decolorization and degradation of several commercial textile azo dyes. Thus, we confirm B. subtilis C3 as a potential candidate for bioremediation of textile effluents. PMID:26966205

  12. Assessment of the impact of textile effluents on microbial diversity in Tirupur district, Tamil Nadu

    NASA Astrophysics Data System (ADS)

    Prabha, Shashi; Gogoi, Anindita; Mazumder, Payal; Ramanathan, AL.; Kumar, Manish

    2016-03-01

    The expedited advent of urbanization and industrialization for economic growth has adversely affected the biological diversity, which is one of the major concerns of the developing countries. Microbes play a crucial role in decontaminating polluted sites and degrades pollution load of textile effluent. The present study was based on identification of microbial diversity along the Noyaal river of Tirupur area. River water samples from industrial and non-industrial sites and effluent samples of before and after treatment were tested and it was found that microbial diversity was higher in the river water at the industrial site (Kasipalayam) as compared to the non-industrial site (Perur). Similarly, the microbial populations were found to be high in the untreated effluent as compared to the treated one by conventional treatment systems. Similar trends were observed for MBR treatment systems as well. Pseudomonas sp., Achromobacter sp. (bacterial species) and Aspergillus fumigates (fungal species), found exclusively at the industrial site have been reported to possess decolorization potential of dye effluent, thus can be used for treatment of dye effluent. The comparison of different microbial communities from different dye wastewater sources and textile effluents was done, which showed that the microbes degrade dyestuffs, reduce toxicity of wastewaters, etc. From the study, it can be concluded that the microbial community helps to check on the pollutants and minimize their affect. Therefore, there is a need to understand the systematic variation in microbial diversity with the accumulation of pollution load through monitoring.

  13. Laser ablation of dyes

    NASA Astrophysics Data System (ADS)

    Späth, M.; Stuke, M.

    1992-01-01

    High density 50 μs pulses of the UV dyes PPF, POPOP and BBO and of two dyes in the visible region, Xanthen N92 and Fluorol 7GA were generated by laser ablation. Dye powders were pressed with 7800 kp/cm 2 in round pellets which were ablated by exposure to KrF excimer laser radiation (248 nm) at a fluence of 100 mJ/cm 2. The ablation cloud was optically activated with a XeCl excimer laser. Its fluorescence spectrum was measured and was identified as a dye vapour fluorescence spectrum by comparison to conventional dye solution and dye vapour spectra. The dye cloud is not deflected in an electric field (10 6 V/m). By changing the delay time between the ablation laser and the focused activation laser, the velocity distribution of the ablated dye was measured. Its maximum is at 600 m/s for PPF. Knowing the thickness of the ablated dye layer per shot (300 Å) and the size of the ablation cloud (pictures of a video camera), one can estimate the maximum density of the dye in the gas pulse to be 10 -5 mol/ l in the range of concentration of lasing dyes. However, no lasing was observed up to now.

  14. Decolorization of different dyes by a newly isolated white-rot fungi strain Ganoderma sp.En3 and cloning and functional analysis of its laccase gene.

    PubMed

    Zhuo, Rui; Ma, Li; Fan, Fangfang; Gong, Yangmin; Wan, Xia; Jiang, Mulan; Zhang, Xiaoyu; Yang, Yang

    2011-08-30

    A laccase-producing white-rot fungi strain Ganoderma sp.En3 was newly isolated from the forest of Tzu-chin Mountain in China. Ganoderma sp.En3 had a strong ability of decolorizing four synthetic dyes, two simulated dye bath effluents and the real textile dye effluent. Induction in the activity of laccase during the decolorization process indicated that laccase played an important role in the efficient decolorization of different dyes by this fungus. Phytotoxicity study with respect to Triticum aestivum and Oryza sativa demonstrated that Ganoderma sp.En3 was able to detoxify four synthetic dyes, two simulated dye effluents and the real textile dye effluent. The laccase gene lac-En3-1 and its corresponding full-length cDNA were then cloned and characterized from Ganoderma sp.En3. The deduced protein sequence of LAC-En3-1 contained four copper-binding conserved domains of typical laccase protein. The functionality of lac-En3-1 gene encoding active laccase was verified by expressing this gene in the yeast Pichia pastoris successfully. The recombinant laccase produced by the yeast transformant could decolorize the synthetic dyes, simulated dye effluents and the real textile dye effluent. The ability of decolorizing different dyes was positively related to the laccase activity. In addition, the 5'-flanking sequence upstream of the start codon ATG in lac-En3-1 gene was obtained. Many putative cis-acting responsive elements were predicted in the promoter region of lac-En3-1.

  15. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing. PMID:26964959

  16. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing.

  17. Degradation of various dyes using Laccase enzyme.

    PubMed

    Dhaarani, S; Priya, A K; Rajan, T Vel; Kartic, D Navamani

    2012-10-01

    Disposal of untreated dyeing effluent in water bodies, from textile industries, cause serious environmental and health hazards. The chemical structures of dye molecules are designed to resist fading on exposure to light or chemical attack, and they prove to be quite resistant towards microbial degradation. Therefore, current conventional biological processes may not be able to meet wastewater discharge criteria and reuse. An enzymatic treatment undergoes oxidative cleavage avoiding formation of toxic amines. Laccase is a multi-copper containing protein that catalyzes the oxidation of a wide range of aromatic substrates concomitantly with the reduction of molecular oxygen to water. UV visible spectral analysis of various synthetic dyes was performed in the study and wavelengths of maximum absorbance determined. Laccase enzyme was obtained from the fungi Pleorotus ostreatus. The enzyme showed high efficiency against Malachite Green, Basic Red and Acid Majanta with decolorization capacities of 97%, 94% and 94% respectively. Further, these dyes can be used for optimization of degradation parameters and analysis of degradation products.

  18. NATIONAL WWTP EFFLUENT STUDY

    EPA Science Inventory

    Reports of potential wildlife risk from exposure to environmental estrogens emphasize the need to better understand both estrogenic presence and persistence in treated wastewater effluents. In addition to wildlife exposure, human exposure should also be examined, especially in si...

  19. Genotoxicity of swine effluents.

    PubMed

    Techio, V H; Stolberg, J; Kunz, A; Zanin, E; Perdomo, C C

    2011-01-01

    This study aimed at the investigation of genotoxic effects of swine effluents from different stages of a treatment system for swine wastes through bioassay of stamen hairs and micronuclei in Tradescantia (clone BNL 4430). No significant differences (p≥0.05) regarding the genic mutations were found in the bioassay of stamen hairs, independently of the effluent analysed. For the genotoxicity test with micronuclei, the plants exposed to raw wastes, to sludge, and to effluent of the biodigester have presented higher rates of chromosomal damages (micronuclei), with significant differences in relation to the control group and other effluent of the waste treatment system (p≤0.05). The association between the chemical parameters and the genotoxicity data have shown that the variables COD and TKN have presented significant correlation (p≤0.05) with the number of mutagenic events in the tetrads.

  20. Ozonation of tannery effluent for removal of cod and color.

    PubMed

    Preethi, V; Kalyani, K S Parama; Iyappan, K; Srinivasakannan, C; Balasubramaniam, N; Vedaraman, N

    2009-07-15

    Ozonation of leather dye effluent for removal of color and COD reduction covering wide range in operating parameters forms the scope of the present work. The influence of parameters such as influent pH, ozone flow rate and initial effluent concentration on ozonation efficiency has been critically examined. It has been observed from the present investigation that a maximum of COD removal efficiency of 92% has been achieved under optimum operating conditions. Further the biodegradability index of the tannery effluent has increased from an initial value of 0.18 to 0.49 during ozonation indicating favorable adaptation of ozonation as a primer to the biochemical technique to enhance the efficiency of biochemical treatment. PMID:19118944

  1. Novel CoS2 embedded carbon nanocages by direct sulfurizing metal-organic frameworks for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Cui, Xiaodan; Xie, Zhiqiang; Wang, Ying

    2016-06-01

    Owing to its excellent electrocatalytic properties, cobalt disulfide (CoS2) is regarded as a promising counter electrode (CE) material for dye-sensitized solar cells (DSSCs). However, hindered by its relatively poor electrical conductivity and chemical instability, it remains a challenge to apply it into high-performance DSSCs. In this work, we have developed novel CoS2 embedded carbon nanocages as a CE in DSSCs, using ZIF-67 (zeolitic imidazolate framework 67, Co(mim)2, mim = 2-methylimidolate) as a template. The CoS2 samples sulfurized for different time lengths are prepared through a facile solution process. It is found that the sulfurization time can be optimized to maximize the DSSC efficiency and the DSSC based on the CoS2 embedded carbon nanocages sulfurized for 4 hours exhibits the highest photovoltaic conversion efficiency (PCE) of 8.20%, higher than those of DSSCs consisting of other CoS2 CEs and Pt-based DSSC (7.88%). The significantly improved DSSC PCE is contributed by the synergic effect of inner CoS2 nanoparticles and an amorphous carbon matrix, leading to a CE with high catalytic activity, good electrical conductivity and excellent durability. This study demonstrates that the CE based on inexpensive CoS2 embedded carbon nanocages is a prospective substitute to expensive platinum and provides a new approach for commercializing high-efficiency DSSCs.

  2. Toxicity assessment and microbial degradation of azo dyes.

    PubMed

    Puvaneswari, N; Muthukrishnan, J; Gunasekaran, P

    2006-08-01

    Toxic effluents containing azo dyes are discharged from various industries and they adversely affect water resources, soil fertility, aquatic organisms and ecosystem integrity. They pose toxicity (lethal effect, genotoxicity, mutagenicity and carcinogenicity) to aquatic organisms (fish, algae, bacteria, etc.) as well as animals. They are not readily degradable under natural conditions and are typically not removed from waste water by conventional waste water treatment systems. Benzidine based dyes have long been recognized as a human urinary bladder carcinogen and tumorigenic in a variety of laboratory animals. Several microorganisms have been found to decolourize, transform and even to completely mineralize azo dyes. A mixed culture of two Pseudomonas strains efficiently degraded mixture of 3-chlorobenzoate (3-CBA) and phenol/cresols. Azoreductases of different microorganisms are useful for the development of biodegradation systems as they catalyze reductive cleavage of azo groups (-N=N-) under mild conditions. In this review, toxic impacts of dyeing factory effluents on plants, fishes, and environment, and plausible bioremediation strategies for removal of azo dyes have been discussed.

  3. Halogen Bonding Promotes Higher Dye-Sensitized Solar Cell Photovoltages.

    PubMed

    Simon, Sarah J C; Parlane, Fraser G L; Swords, Wesley B; Kellett, Cameron W; Du, Chuan; Lam, Brian; Dean, Rebecca K; Hu, Ke; Meyer, Gerald J; Berlinguette, Curtis P

    2016-08-24

    We report here an enhancement in photovoltage for dye-sensitized solar cells (DSSCs) where halogen-bonding interactions exist between a nucleophilic electrolyte species (I(-)) and a photo-oxidized dye immobilized on a TiO2 surface. The triarylamine-based dyes under investigation showed larger rate constants for dye regeneration (kreg) by the nucleophilic electrolyte species when heavier halogen substituents were positioned on the dye. The open-circuit voltages (VOC) tracked these kreg values. This analysis of a homologous series of dyes that differ only in the identity of two halogen substituents provides compelling evidence that the DSSC photovoltage is sensitive to kreg. This study also provides the first direct evidence that halogen-bonding interactions between the dye and the electrolyte can bolster DSSC performance.

  4. Using dyes for evaluating photocatalytic properties: a critical review.

    PubMed

    Rochkind, Malka; Pasternak, Sagi; Paz, Yaron

    2014-12-23

    This brief review aims at analyzing the use of dyestuffs for evaluating the photocatalytic properties of novel photocatalysts. It is shown that the use of dyes as predictors for photocatalytic activity has its roots in the pre visible-light activity era, when the aim was to treat effluents streams containing hazardous dyes. The main conclusion of this review is that, in general, dyes are inappropriate as model compounds for the evaluation of photocatalytic activity of novel photocatalysts claimed to operate under visible light. Their main advantage, the ability to use UV-Vis spectroscopy, is severely limited by a variety of factors, most of which are related to the presence of other species. The presence of a second mechanism, sensitization, diminishes the generality required from a model contaminant used for testing a novel photocatalyst. While it is recommended not to use dyes for general testing of novel photocatalysts, it is still understandable that a model system consisting of a dye and a semiconductor can be of large importance if the degradation of a specific dye is the main aim of the research, or, alternatively, if the abilities of a specific dye to induce the degradation of a different type of contaminant are under study.

  5. Basic dye decomposition kinetics in a photocatalytic slurry reactor.

    PubMed

    Wu, Chun-Hsing; Chang, Hung-Wei; Chern, Jia-Ming

    2006-09-01

    Wastewater effluent from textile plants using various dyes is one of the major water pollutants to the environment. Traditional chemical, physical and biological processes for treating textile dye wastewaters have disadvantages such as high cost, energy waste and generating secondary pollution during the treatment process. The photocatalytic process using TiO2 semiconductor particles under UV light illumination has been shown to be potentially advantageous and applicable in the treatment of wastewater pollutants. In this study, the dye decomposition kinetics by nano-size TiO2 suspension at natural solution pH was experimentally studied by varying the agitation speed (50-200 rpm), TiO2 suspension concentration (0.25-1.71 g/L), initial dye concentration (10-50 ppm), temperature (10-50 degrees C), and UV power intensity (0-96 W). The experimental results show the agitation speed, varying from 50 to 200 rpm, has a slight influence on the dye decomposition rate and the pH history; the dye decomposition rate increases with the TiO2 suspension concentration up to 0.98 g/L, then decrease with increasing TiO2 suspension concentration; the initial dye decomposition rate increases with the initial dye concentration up to a certain value depending upon the temperature, then decreases with increasing initial dye concentration; the dye decomposition rate increases with the UV power intensity up to 64 W to reach a plateau. Kinetic models have been developed to fit the experimental kinetic data well. PMID:16563618

  6. Bacterial Decolorization of Textile Azo Dye Acid Orange by Staphylococcus hominis RMLRT03

    PubMed Central

    Singh, Rajat Pratap; Singh, Pradeep Kumar; Singh, Ram Lakhan

    2014-01-01

    A bacterial strain RMLRT03 with ability to decolorize textile dye Acid Orange dye was isolated from textile effluent contaminated soil of Tanda, Ambedkar Nagar, Uttar Pradesh (India). The decolorization studies were performed in Bushnell and Haas medium (BHM) amended with Acid Orange dye. The bacterial strain was identified as Staphylococcus hominis on the basis of 16S rDNA sequence. The bacterial strain exhibited good decolorization ability with glucose and yeast extract supplementation as cosubstrate in static conditions. The optimal condition for the decolorization of Acid Orange dye by Staphylococcus hominis RMLRT03 strain were at pH 7.0 and 35°C in 60 h of incubation. The bacterial strain could tolerate high concentrations of Acid Orange dye up to 600 mg l-1. The high decolorizing activity under natural environmental conditions indicates that the bacterial strain has practical application in the treatment of dye containing wastewaters. PMID:25253925

  7. Bacterial Decolorization of Textile Azo Dye Acid Orange by Staphylococcus hominis RMLRT03.

    PubMed

    Singh, Rajat Pratap; Singh, Pradeep Kumar; Singh, Ram Lakhan

    2014-05-01

    A bacterial strain RMLRT03 with ability to decolorize textile dye Acid Orange dye was isolated from textile effluent contaminated soil of Tanda, Ambedkar Nagar, Uttar Pradesh (India). The decolorization studies were performed in Bushnell and Haas medium (BHM) amended with Acid Orange dye. The bacterial strain was identified as Staphylococcus hominis on the basis of 16S rDNA sequence. The bacterial strain exhibited good decolorization ability with glucose and yeast extract supplementation as cosubstrate in static conditions. The optimal condition for the decolorization of Acid Orange dye by Staphylococcus hominis RMLRT03 strain were at pH 7.0 and 35°C in 60 h of incubation. The bacterial strain could tolerate high concentrations of Acid Orange dye up to 600 mg l(-1). The high decolorizing activity under natural environmental conditions indicates that the bacterial strain has practical application in the treatment of dye containing wastewaters.

  8. Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode.

    PubMed

    Vidal, Jorge; Villegas, Loreto; Peralta-Hernández, Juan M; Salazar González, Ricardo

    2016-01-01

    Application of an electrocoagulation process (EC) for the elimination of AB194 textile dye from synthetic and textile wastewater (effluent) contaminated with AB194 dye, was carried out using aluminum anodes at two different initial pH values. Tafel studies in the presence and absence of the dye were performed. The aluminum species formed during the electrolysis were quantified by atomic absorption, and the flocs formed in the process were analyzed by HPLC-MS. Complete removal of AB194 from 1.0 L of solution was achieved applying low densities current at initial pH values of 4.0 and 8.0. The removal of AB194 by EC was possible with a short electrolysis time, removing practically 100% of the total organic carbon content and chemical oxygen demand. The final result was completely discolored water lacking dye and organic matter. An effluent contaminated with 126 mg L(-1) AB194 dye from a Chilean textile industry was also treated by EC under optimized experimental conditions, yielding discolored water and considerably decreasing the presence of organic compounds (dye + dyeing additives), with very low concentrations of dissolved Al(3+). Analysis of flocs showed the presence of the original dye without changes in its chemical structure.

  9. Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode.

    PubMed

    Vidal, Jorge; Villegas, Loreto; Peralta-Hernández, Juan M; Salazar González, Ricardo

    2016-01-01

    Application of an electrocoagulation process (EC) for the elimination of AB194 textile dye from synthetic and textile wastewater (effluent) contaminated with AB194 dye, was carried out using aluminum anodes at two different initial pH values. Tafel studies in the presence and absence of the dye were performed. The aluminum species formed during the electrolysis were quantified by atomic absorption, and the flocs formed in the process were analyzed by HPLC-MS. Complete removal of AB194 from 1.0 L of solution was achieved applying low densities current at initial pH values of 4.0 and 8.0. The removal of AB194 by EC was possible with a short electrolysis time, removing practically 100% of the total organic carbon content and chemical oxygen demand. The final result was completely discolored water lacking dye and organic matter. An effluent contaminated with 126 mg L(-1) AB194 dye from a Chilean textile industry was also treated by EC under optimized experimental conditions, yielding discolored water and considerably decreasing the presence of organic compounds (dye + dyeing additives), with very low concentrations of dissolved Al(3+). Analysis of flocs showed the presence of the original dye without changes in its chemical structure. PMID:26745322

  10. COD and Color Removal from Real Dyeing Wastewater by Ozonation.

    PubMed

    Yang, De-min; Yuan, Jian-mei

    2016-05-01

    Ozonation of real dye wastewater for removal of color and COD reduction covering a wide range in operating parameters forms the scope of the present work. The influence of parameters such as influent pH, ozone flow rate and initial effluent concentration on ozonation efficiency has been critically examined. It has been observed from the present investigation that a maximum of COD removal efficiency of 92.5% has been achieved under optimum operating conditions (pH=11; ozone flow rate: 6×10(-3) m(3)/minute). Further the biodegradability index of the dye effluent has increased from an initial value of 0.18 to 0.49 during ozonation indicating favorable adaptation of ozonation as a primer to the biochemical technique to enhance the efficiency of biochemical treatment. PMID:27131304

  11. Long-term natural remediation process in textile dye-polluted river sediment driven by bacterial community changes.

    PubMed

    Ito, Tsukasa; Adachi, Yusuke; Yamanashi, Yu; Shimada, Yosuke

    2016-09-01

    The textile and dyeing industries are major sources of environmental water pollution all over the world. The textile wastewater effluents discharged into rivers often appear dark red-purple in color due to azo dyes, which can be transformed into carcinogenic aromatic amines. The chemicals used in dyeing are not readily degraded in nature and thus precipitate in river sediment. However, little is known about how dyeing chemicals affect river sediment and river water or how long they persist because they are difficult to monitor. To assess undetectable dyes and byproducts in river sediments, we evaluated the potential of river sediment bacteria to degrade dyes and aromatic amines. We describe the natural remediation of river sediment long-contaminated by textile dyeing effluent. After cessation of wastewater discharge, the dye-degradation potential decreased, and the aromatic amine-degradation potential increased initially and then declined over time. The changes in degradation potential were consistent with changes in the sediment bacterial community. The transition occurred on the order of years. Our data strongly suggest that dyes remained in the river sediment and that aromatic amines were produced even in transparent- and no longer colored-river water, but these chemicals were degraded by the changing sediment bacteria. Time-course monitoring of the degradation activities of key bacteria thus enables assessment of the fate of dye pollutants in river sediments.

  12. Long-term natural remediation process in textile dye-polluted river sediment driven by bacterial community changes.

    PubMed

    Ito, Tsukasa; Adachi, Yusuke; Yamanashi, Yu; Shimada, Yosuke

    2016-09-01

    The textile and dyeing industries are major sources of environmental water pollution all over the world. The textile wastewater effluents discharged into rivers often appear dark red-purple in color due to azo dyes, which can be transformed into carcinogenic aromatic amines. The chemicals used in dyeing are not readily degraded in nature and thus precipitate in river sediment. However, little is known about how dyeing chemicals affect river sediment and river water or how long they persist because they are difficult to monitor. To assess undetectable dyes and byproducts in river sediments, we evaluated the potential of river sediment bacteria to degrade dyes and aromatic amines. We describe the natural remediation of river sediment long-contaminated by textile dyeing effluent. After cessation of wastewater discharge, the dye-degradation potential decreased, and the aromatic amine-degradation potential increased initially and then declined over time. The changes in degradation potential were consistent with changes in the sediment bacterial community. The transition occurred on the order of years. Our data strongly suggest that dyes remained in the river sediment and that aromatic amines were produced even in transparent- and no longer colored-river water, but these chemicals were degraded by the changing sediment bacteria. Time-course monitoring of the degradation activities of key bacteria thus enables assessment of the fate of dye pollutants in river sediments. PMID:27232990

  13. Study of Influence of Effluent on Ground Water Using Remote Sensing, GIS and Modeling Techniques

    NASA Astrophysics Data System (ADS)

    Pathak, S.; Bhadra, B. K.; Sharma, J. R.

    2012-07-01

    The area lies in arid zone of western Rajasthan having very scanty rains and very low ground water reserves. Some of the other problems that are faced by the area are disposal of industrial effluent posing threat to its sustainability of water resource. Textiles, dyeing and printing industries, various mechanical process and chemical/synthetic dyes are used and considerable wastewater discharged from these textile units contains about high amount of the dyes into the adjoining drainages. This has caused degradation of water quality in this water scarce semi-arid region of the country. Pali city is located South-West, 70 Kms from Jodhpur in western Rajasthan (India). There are four Common Effluent Treatment Plant (CETP) treating wastewater to meet the pollutant level permissible to river discharge, a huge amount of effluent water of these factories directly meets the into the river Bandi - a tributary of river Luni. In order to monitor the impact of industrial effluents on the environment, identifying the extent of the degradation and evolving possible means of minimizing the impacts studies on quality of effluents, polluted river water and water of adjoining wells, the contamination migration of the pollutants from the river to ground water were studied. Remote sensing analysis has been carried out using Resourcesat -1 multispectral satellite data along with DEM derived from IRS P5 stereo pair. GIS database generated of various thematic layers viz. base layer - inventorying all waterbodies in the vicinity, transport network and village layer, drainage, geomorphology, structure, land use. Analysis of spatial distribution of the features and change detection in land use/cover carried out. GIS maps have been used to help factor in spatial location of source and hydro-geomorphological settings. DEM & elevation contour helped in delineation of watershed and identifying flow modelling boundaries. Litholog data analysis carried out for aquifer boundaries using specialized

  14. Concepts, tools, and strategies for effluent testing: An international survey

    EPA Science Inventory

    Whole effluent testing (also called Direct Toxicity Assessment) remains a critical long-term assessment tool for aquatic environmental protection. Use of animal alternative approaches for wastewater testing is expected to increase as more regulatory authorities routinely require ...

  15. Spatial Trends of Pharmaceuticals in an Urbanized Estuary: Influence of Wastewater Effluents in Narragansett Bay, RI, USA

    EPA Science Inventory

    For years, pharmaceuticals have been routinely detected in wastewater treatment plant effluents and freshwater systems. Wastewater effluent serves as a primary source of pharmaceutical compounds to natural waters. Many marine and estuarine systems receive inputs either directly...

  16. SYNTHESIS AND MUTAGENICITY OF DIRECT DYES FROM 4,4'-DIAMINO-PARA-TERPHENYL AND 4,4'-DIAMINO-PARA-QUATERPHENYL

    EPA Science Inventory

    DBPs in drinking water can be controlled by the type of treatment and by knowing and controlling major sources of DBP toxicant precursors and toxicants that "evade" treatment processes. Efforts are being directed at one category at a time. The initial precursor categories to be c...

  17. Oxazine laser dyes

    DOEpatents

    Hammond, Peter R.; Field, George F.

    1992-01-01

    New oxazine compounds useful as dye laser media in solution, are superiior to prior art materials. The oxazine dyes useful when pumped by the 578.2 nm copper line to operate in the 700-800 nm range are described by formula I ##STR1##

  18. Alkali, thermo and halo tolerant fungal isolate for the removal of textile dyes.

    PubMed

    Kaushik, Prachi; Malik, Anushree

    2010-11-01

    In the present study potential of a fungal isolate Aspergillus lentulusFJ172995, was investigated for the removal of textile dyes. The removal percentages of dyes such as Acid Navy Blue, Orange-HF, Fast Red A, Acid Sulphone Blue and Acid Magenta were determined as 99.43, 98.82, 98.75, 97.67 and 69.98, respectively. None of the dyes inhibited the growth of A. lentulus. Detailed studies on growth kinetics, mechanism of dye removal and effect of different parameters on dye removal were conducted using Acid Navy Blue dye. It was observed that A. lentulus could completely remove Acid Navy Blue even at high initial dye concentrations, up to 900 mg/L. Highest uptake capacity of 212.92 mg/g was observed at an initial dye concentration of 900 mg/L. Dye removing efficiency was not altered with the variation of pH; and biomass production as well as dye removal was favored at higher temperatures. Dye removal was also efficient even at high salt concentration. Through growth kinetics studies it was observed that the initial exponential growth phase coincided with the phase of maximal dye removal. Microscopic studies suggest that bioaccumulation along with biosorption is the principle mechanism involved in dye removal by A. lentulus. Thus, it is concluded that being alkali, thermo and halo tolerant, A. lentulus isolate has a great potential to be utilized for the treatment of dye bearing effluents which are usually alkaline, hot and saline. PMID:20708386

  19. Asymptomatic Effluent Protozoa Colonization in Peritoneal Dialysis Patients.

    PubMed

    Simões-Silva, Liliana; Correia, Inês; Barbosa, Joana; Santos-Araujo, Carla; Sousa, Maria João; Pestana, Manuel; Soares-Silva, Isabel; Sampaio-Maia, Benedita

    Currently, chronic kidney disease (CKD) is a global health problem. Considering the impaired immunity of CKD patients, the relevance of infection in peritoneal dialysis (PD), and the increased prevalence of parasites in CKD patients, protozoa colonization was evaluated in PD effluent from CKD patients undergoing PD. Overnight PD effluent was obtained from 49 asymptomatic stable PD patients. Protozoa analysis was performed microscopically by searching cysts and trophozoites in direct wet mount of PD effluent and after staining smears. Protozoa were found in PD effluent of 10.2% of evaluated PD patients, namely Blastocystis hominis, in 2 patients, and Entamoeba sp., Giardia sp., and Endolimax nana in the other 3 patients, respectively. None of these patients presented clinical signs or symptoms of peritonitis at the time of protozoa screening. Our results demonstrate that PD effluent may be susceptible to asymptomatic protozoa colonization. The clinical impact of this finding should be further investigated. PMID:27659930

  20. Asymptomatic Effluent Protozoa Colonization in Peritoneal Dialysis Patients.

    PubMed

    Simões-Silva, Liliana; Correia, Inês; Barbosa, Joana; Santos-Araujo, Carla; Sousa, Maria João; Pestana, Manuel; Soares-Silva, Isabel; Sampaio-Maia, Benedita

    Currently, chronic kidney disease (CKD) is a global health problem. Considering the impaired immunity of CKD patients, the relevance of infection in peritoneal dialysis (PD), and the increased prevalence of parasites in CKD patients, protozoa colonization was evaluated in PD effluent from CKD patients undergoing PD. Overnight PD effluent was obtained from 49 asymptomatic stable PD patients. Protozoa analysis was performed microscopically by searching cysts and trophozoites in direct wet mount of PD effluent and after staining smears. Protozoa were found in PD effluent of 10.2% of evaluated PD patients, namely Blastocystis hominis, in 2 patients, and Entamoeba sp., Giardia sp., and Endolimax nana in the other 3 patients, respectively. None of these patients presented clinical signs or symptoms of peritonitis at the time of protozoa screening. Our results demonstrate that PD effluent may be susceptible to asymptomatic protozoa colonization. The clinical impact of this finding should be further investigated.

  1. Solvatochromic dyes detect the presence of homeopathic potencies.

    PubMed

    Cartwright, Steven J

    2016-02-01

    A systematic approach to the design of simple, chemical systems for investigating the nature of homeopathic medicines has led to the development of an experimental protocol in which solvatochromic dyes are used as molecular probes of serially diluted and agitated solutions. Electronic spectroscopy has been used to follow changes in the absorbance of this class of dyes across the visible spectrum in the presence of homeopathic potencies. Evidence is presented using six different solvatochromic dyes in three different solvent systems. In all cases homeopathic potencies produce consistent and reproducible changes in the spectra of the dyes. Results suggest that potencies influence the supramolecular chemistry of solvatochromic dyes, enhancing either dye aggregation or disaggregation, depending upon dye structure. Comparable dyes lacking the intramolecular charge transfer feature of solvatochromic dyes are unaffected by homeopathic potencies, suggesting potencies require the oscillating dipole of solvatochromic dyes for effective interaction. The implications of the results presented, both for an eventual understanding of the nature of homeopathic medicines and their mode of action, together with future directions for research in this area, are discussed.

  2. Decolorization of azo dyes in bioelectrochemical systems.

    PubMed

    Mu, Yang; Rabaey, Korneel; Rozendal, René A; Yuan, Zhiguo; Keller, Jürg

    2009-07-01

    Azo dyes are ubiquitously used in the textile industry. These dyes need to be removed from the effluent prior to discharge to sewage due to their intense color and toxicity. In this study we investigated the use of a bioelectrochemical system (BES) to abioticlly cathodic decolorization of a model azo dye, Acid Orange 7 (AO7), where the process was driven by microbial oxidation of acetate atthe anode. Effective decolorization of AO7 at rates up to 264 +/- 0.03 mol m(-3) NCC d(-1) (net cathodic compartment, NCC) was achieved at the cathode, with concomitant energy recovery. The AO7 decolorization rate was significantly enhanced when the BES was supplied with power, reaching 13.18 +/- 0.05 mol m(-3) NCC d(-1) at an energy consumption 0.012 +/- 0.001 kWh mol(-1) AO7 (at a controlled cathode potential of -400 mV vs SHE). Compared with conventional anaerobic biological methods, the required dosage of organic cosubstrate was significantly reduced in the BES. A possible cathodic reaction mechanism for the decolorization of AO7 is suggested based on the decolorization products identified: the azo bond of AO7 was cleaved at the cathode, resulting in the formation of the colorless sulfanilic acid and 1-amino-2-naphthol.

  3. Adsorption of methylene blue dye from aqueous solutions using Eichhornia crassipes.

    PubMed

    Wanyonyi, Wycliffe Chisutia; Onyari, John Mmari; Shiundu, Paul Mwanza

    2013-09-01

    Adsorption of methylene blue (MB) from aqueous solution using dried roots, stems, and leaves of Eichhornia crassipes biomass obtained from Lake Victoria was studied. Batch experimental results revealed that the adsorption process was highly dependent on adsorbent dosage, initial MB concentration, E. crassipes particle size and aqueous solution temperature. The isotherm data fitted Freundlich mathematical models with maximum dye adsorption of 35.37 mg g(-1). Roots adsorbed over 99 % of the MB in <5 min. Sorption kinetics followed a pseudo-second-order model. Results provide evidence that E. crassipes is an effective and inexpensive biomaterial for dye removal from aqueous dye solutions and industrial effluents.

  4. Dye removal using modified copper ferrite nanoparticle and RSM analysis.

    PubMed

    Mahmoodi, Niyaz Mohammad; Soltani-Gordefaramarzi, Sajjad; Sadeghi-Kiakhani, Moosa

    2013-12-01

    In this paper, copper ferrite nanoparticle (CFN) was synthesized, modified by cetyl trimethylammonium bromide, and characterized. Dye removal ability of the surface modified copper ferrite nanoparticle (SMCFN) from single system was investigated. The physical characteristics of SMCFN were studied using Fourier transform infrared, scanning electron microscopy, and X-ray diffraction. Acid Blue 92, Direct Green 6, Direct Red 23, and Direct Red 80 were used as model compounds. The effect of operational parameters (surfactant concentration, adsorbent dosage, dye concentration, and pH) on dye removal was evaluated. Response surface methodology (RSM) was used for the analysis of the dye removal data. The experimental checking in these optimal conditions confirms good agreements with RSM results. The results showed that the SMCFN being a magnetic adsorbent might be a suitable alternative to remove dyes from colored aqueous solutions. PMID:23852534

  5. Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton's reagent.

    PubMed

    El-Desoky, Hanaa S; Ghoneim, Mohamed M; El-Sheikh, Ragaa; Zidan, Naglaa M

    2010-03-15

    The indirect electrochemical removal of pollutants from effluents has become an attractive method in recent years. Removal (decolorization and mineralization) of Levafix Blue CA and Levafix Red CA reactive azo-dyes from aqueous media by electro-generated Fenton's reagent (Fe(2+)/H(2)O(2)) using a reticulated vitreous carbon cathode and a platinum gauze anode was optimized. Progress of oxidation (decolorization and mineralization) of the investigated azo-dyes with time of electro-Fenton's reaction was monitored by UV-visible absorbance measurements, Chemical oxygen demand (COD) removal and HPLC analysis. The results indicated that the electro-Fenton's oxidation system is efficient for treatment of such types of reactive dyes. Oxidation of each of the investigated azo-dyes by electro-generated Fenton's reagent up to complete decolorization and approximately 90-95% mineralization was achieved. Moreover, the optimized electro-Fenton's oxidation was successfully applied for complete decolorization and approximately 85-90% mineralization of both azo-dyes in real industrial wastewater samples collected from textile dyeing house at El-Mahalla El-Kobra, Egypt.

  6. Four marine-derived fungi for bioremediation of raw textile mill effluents.

    PubMed

    Verma, Ashutosh Kumar; Raghukumar, Chandralata; Verma, Pankaj; Shouche, Yogesh S; Naik, Chandrakant Govind

    2010-04-01

    Textile dye effluents pose environmental hazards because of color and toxicity. Bioremediation of these has been widely attempted. However, their widely differing characteristics and high salt contents have required application of different microorganisms and high dilutions. We report here decolorization and detoxification of two raw textile effluents, with extreme variations in their pH and dye composition, used at 20-90% concentrations by each of the four marine-derived fungi. Textile effluent A (TEA) contained an azo dye and had a pH of 8.9 and textile effluent B (TEB) with a pH of 2.5 contained a mixture of eight reactive dyes. The fungi isolated from mangroves and identified by 18S and ITS sequencing corresponded to two ascomycetes and two basidiomycetes. Each of these fungi decolorized TEA by 30-60% and TEB by 33-80% used at 20-90% concentrations and salinity of 15 ppt within 6 days. This was accompanied by two to threefold reduction in toxicity as measured by LC(50) values against Artemia larvae and 70-80% reduction in chemical oxygen demand and total phenolics. Mass spectrometric scan of effluents after fungal treatment revealed degradation of most of the components. The ascomycetes appeared to remove color primarily by adsorption, whereas laccase played a major role in decolorization by basidiomycetes. A process consisting of a combination of sorption by fungal biomass of an ascomycete and biodegradation by laccase from a basidiomycete was used in two separate steps or simultaneously for bioremediation of these two effluents.

  7. Integrated treatment of farm effluents in New Zealand's dairy operations.

    PubMed

    Bolan, N S; Laurenson, S; Luo, J; Sukias, J

    2009-11-01

    Maintaining growth through intensification in the New Zealand dairy industry is a challenge for various reasons, in particular sustainably managing the large volumes of effluent. Dairy farm effluents have traditionally been treated using two-pond systems that are effective in the removal of carbon and suspended solids, however limited in their ability to remove nutrients. In the past these nutrient-rich two-pond treated effluents were disposed of in surface waters. Current environmental concerns associated with the direct discharge of these effluents to surface waters has prompted in developing technologies to either minimise the nutrient content of the effluent or apply effluents to land. Here, we discuss various approaches and methods of treatment that enable producers to sustainably manage farm effluents, including advanced pond treatment systems, stripping techniques to reduce nutrient concentration, land application strategies involving nutrient budgeting models to minimise environmental degradation and enhance fodder quality. We also discuss alternative uses of farm effluents to produce energy and animal feed.

  8. Decolorization and degradation of textile dyes with biosulfidogenic hydrogenases.

    PubMed

    Mutambanengwe, C C Z; Togo, C A; Whiteley, C G

    2007-01-01

    Successful decolorization of azo dyes (Orange II, Amido Black 10, Reactive Black 5, and Reactive Red 120) and industrial textile dye influents and effluents with sulfate-reducing bacteria from within a biosulfidogenic reactor was achieved with decolorizations ranging from 96% to 49% over 144 h. Concomitant with the decrease in absorbance of the dye in the visible region (480-620 nm) was an increase in the absorbance at 280 nm, over 48 h, suggesting an increase in concentration of single aromatic amines. With an extended period of time there was a subsequent decrease in the absorbance at 280 nm indicating that the aromatic amines had been degraded. The anthraquinone dye, Reactive Blue 2, remained unchanged after 144 h of incubation in the biosulfidogenic reactor and was only rapidly decolored at 192 h, implying that certain factors are induced in the reactor to break down this non-azo dye. The fastest decolorization/degradation rates and highest hydrogenase enzyme production were observed with Orange II, while the slowest decolorization/degradation rate and least enzyme production were with Reactive Blue 2, suggesting that these processes are controlled, to a certain degree, by an enzymatic mechanism. With sulfate-reducing bacteria that had been cultured on a lactate medium, there was complete decolorization of both authentic dyes and industrial influents and effluents as monitored by the decrease of absorbance in the visible region (480-620 nm). There was, however, very little breakdown of the single aromatic compounds as the absorbance at 280 nm remained fairly significant. This supports the suggestion that, within the biosulfidogenic reactor, there are factors other than the identified hydrogenases that are responsible for degradation of the aromatic compounds.

  9. Accelerated decolorization of reactive azo dyes under saline conditions by bacteria isolated from Arabian seawater sediment.

    PubMed

    Khalid, Azeem; Kausar, Farzana; Arshad, Muhammad; Mahmood, Tariq; Ahmed, Iftikhar

    2012-12-01

    Presence of huge amount of salts in the wastewater of textile dyeing industry is one of the major limiting factors in the development of an effective biotreatment system for the removal of azo dyes from textile effluents. Bacterial spp. capable of thriving under high salt conditions could be employed for the treatment of saline dyecontaminated textile wastewaters. The present study was aimed at isolating the most efficient bacterial strains capable of decolorizing azo dyes under high saline conditions. Fiftyeight bacterial strains were isolated from seawater, seawater sediment, and saline soil, using mineral salt medium enriched with 100 mg l−1 Reactive Black-5 azo dye and 50 g NaCl l−1 salt concentration. Bacterial strains KS23 (Psychrobacter alimentarius) and KS26 (Staphylococcus equorum) isolated from seawater sediment were able to decolorize three reactive dyes including Reactive Black 5, Reactive Golden Ovifix, and Reactive Blue BRS very efficiently in liquid medium over a wide range of salt concentration (0-100 g NaCl l)⁻¹. Time required for complete decolorization of 100 mg dye l ⁻¹ varied with the type of dye and salt concentration. In general, there was an inverse linear relationship between the velocity of the decolorization reaction (V) and salt concentration. This study suggested that bacteria isolated from saline conditions such as seawater sediment could be used in designing a bioreactor for the treatment of textile effluent containing high concentration of salts.

  10. Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris.

    PubMed

    Hernández-Zamora, Miriam; Cristiani-Urbina, Eliseo; Martínez-Jerónimo, Fernando; Perales-Vela, Hugo Virgilio; Ponce-Noyola, Teresa; Montes-Horcasitas, María del Carmen; Cañizares-Villanueva, Rosa Olivia

    2015-07-01

    Discharge of dye-containing wastewater by the textile industry can adversely affect aquatic ecosystems and human health. Bioremoval is an alternative to industrial processes for detoxifying water contaminated with dyes. In this work, active and inactive biomass of the microalga Chlorella vulgaris was assayed for the ability to remove Congo Red (CR) dye from aqueous solutions. Through biosorption and biodegradation processes, Chlorella vulgaris was able to remove 83 and 58 % of dye at concentrations of 5 and 25 mg L(-1), respectively. The maximum adsorption capacity at equilibrium was 200 mg g(-1). The Langmuir model best described the experimental equilibrium data. The acute toxicity test (48 h) with two species of cladocerans indicated that the toxicity of the dye in the effluent was significantly decreased compared to the initial concentrations in the influent. Daphnia magna was the species less sensitive to dye (EC50 = 17.0 mg L(-1)), followed by Ceriodaphnia dubia (EC50 = 3.32 mg L(-1)). These results show that Chlorella vulgaris significantly reduced the dye concentration and toxicity. Therefore, this method may be a viable option for the treatment of this type of effluent.

  11. Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris.

    PubMed

    Hernández-Zamora, Miriam; Cristiani-Urbina, Eliseo; Martínez-Jerónimo, Fernando; Perales-Vela, Hugo Virgilio; Ponce-Noyola, Teresa; Montes-Horcasitas, María del Carmen; Cañizares-Villanueva, Rosa Olivia

    2015-07-01

    Discharge of dye-containing wastewater by the textile industry can adversely affect aquatic ecosystems and human health. Bioremoval is an alternative to industrial processes for detoxifying water contaminated with dyes. In this work, active and inactive biomass of the microalga Chlorella vulgaris was assayed for the ability to remove Congo Red (CR) dye from aqueous solutions. Through biosorption and biodegradation processes, Chlorella vulgaris was able to remove 83 and 58 % of dye at concentrations of 5 and 25 mg L(-1), respectively. The maximum adsorption capacity at equilibrium was 200 mg g(-1). The Langmuir model best described the experimental equilibrium data. The acute toxicity test (48 h) with two species of cladocerans indicated that the toxicity of the dye in the effluent was significantly decreased compared to the initial concentrations in the influent. Daphnia magna was the species less sensitive to dye (EC50 = 17.0 mg L(-1)), followed by Ceriodaphnia dubia (EC50 = 3.32 mg L(-1)). These results show that Chlorella vulgaris significantly reduced the dye concentration and toxicity. Therefore, this method may be a viable option for the treatment of this type of effluent. PMID:25772869

  12. Detoxification of azo dyes in the context of environmental processes.

    PubMed

    Rawat, Deepak; Mishra, Vandana; Sharma, Radhey Shyam

    2016-07-01

    environmental processes has been developed. Based on past 3 decades of research on microbial dye detoxification, the current state of knowledge has been analyzed, environmental relevance of these studies was ascertained, research gaps in microbe-mediated azo dye detoxification have been identified and a research framework emphasizing a better understanding of complex interactions between dye-microbe and environmental processes has been proposed. It provides directions for undertaking environmentally sound microbial dye detoxification research. PMID:27155475

  13. Detoxification of azo dyes in the context of environmental processes.

    PubMed

    Rawat, Deepak; Mishra, Vandana; Sharma, Radhey Shyam

    2016-07-01

    environmental processes has been developed. Based on past 3 decades of research on microbial dye detoxification, the current state of knowledge has been analyzed, environmental relevance of these studies was ascertained, research gaps in microbe-mediated azo dye detoxification have been identified and a research framework emphasizing a better understanding of complex interactions between dye-microbe and environmental processes has been proposed. It provides directions for undertaking environmentally sound microbial dye detoxification research.

  14. Dye system for dye laser applications

    SciTech Connect

    Hammond, P.R.

    1991-05-21

    This patent describes a dye of the DCM family, (2-methyl-6-(2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl)-4H-pyran-4-ylidene)-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.

  15. Dye system for dye laser applications

    DOEpatents

    Hammond, Peter R.

    1991-01-01

    A dye of the DCM family, [2-methyl-6-[2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl]-4H-pyran -4-ylidene]-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.

  16. Effect of Substituents in Catechol Dye Sensitizers on Photovoltaic Performance of Type II Dye-Sensitized Solar Cells.

    PubMed

    Ooyama, Yousuke; Kanda, Masahiro; Uenaka, Koji; Ohshita, Joji

    2015-10-01

    In order to provide a direction in molecular design of catechol (Cat) dyes for type II dye-sensitized solar cells (DSSCs), the dye-to-TiO2 charge-transfer (DTCT) characteristics of Cat dyes with various substituents and their photovoltaic performance in DSSCs are investigated. The Cat dyes with electron-donating or moderately electron-withdrawing substituents exhibit a broad absorption band corresponding to DTCT upon binding to TiO2 films, whereas those with strongly electron-withdrawing substituents exhibit weak DTCT. This study indicates that the introduction of a moderately electron-withdrawing substituent on the Cat moiety leads to not only an increase in the DTCT efficiency, but also the retardation of back electron transfer. This results in favorable conditions for the type II electron-injection pathway from the ground state of the Cat dye to the conduction band of the TiO2 electrode by the photoexcitation of DTCT bands.

  17. Decolorization and degradation of reactive dye during the dyed cotton fabric rinsing process.

    PubMed

    Luo, Deng-Hong; Zheng, Qing-Kang; Chen, Sheng; Liu, Qing-Shu; Wang, Xiu-Xing; Guan, Yu; Pu, Zong-Yao

    2010-01-01

    Dyeing process of textile consumes large quantities of water, which results in huge amounts of colored wastewater. Most of the dye wastewater treating methods focused on the treatment of wastewater after the rinsing process of dyed textile. In this paper, tetraacetylethylenediamine/hydrogen peroxide (TAED/H₂O₂) active oxidation (AO) system was developed to rinse dyed textile and decolorize the rinsing wastewater simultaneously. The results indicated that the decolorization ratio of the rinse effluent obtained by AO method were in the range of 51.72%-84.15% according to different dyes and the COD value decreased more than 30% compared with that of traditional rinsing process. The decolorization kinetics investigation showed that the decolorization of dyes during AO rinsing process followed the law of pseudo-first order kinetics. The result of UV-Vis and UPLC-MS analysis demonstrated that the dye was degraded into colorless organic molecular fragments and partly mineralized during the AO rinsing process.

  18. Biological decolorization of industrial dyes by Candida tropicalis and Bacillus firmus.

    PubMed

    Arora, Sucharita; Saini, Harvinder Singh; Singh, Kamaljit

    2011-01-01

    Disperse dyes are chiefly used by textile industries for the coloration of polyester and cellulose triacetate and their blended fibres. Their extensive use and recalcitrant nature, high tinctorial strength renders the voluminous textile effluents intensively colored and causes environmental concerns. Decolorization of representative members of Dianix CC and Dianix S brands (DyStar Pvt. Ltd.) of disperse dyes were tested with Candida tropicalis and Bacillus firmus isolated respectively from contaminated soil samples and sludge of a domestic sewage drain. While both the cultures efficiently remove color from the aqueous solutions of the dyes, the yeast culture was found to decolorize most of the tested disperse dyes through biotransformation, the bacterial culture showed color removal mainly by adsorption on the cell pellets. Formation of cleavage products such as p-nitroaniline was observed in the case of Dianix Orange E-3R, indicating reductive cleavage of the azo linkage of the dye.

  19. Comprehensive review and compilation of treatment for azo dyes using microbial fuel cells.

    PubMed

    Murali, V; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Hamidin, Nasrul

    2013-03-01

    Microbial fuel cells (MFCs) represent an emerging technology that focuses on power generation and effluent treatment. This review compiles articles related to MFCs using azo dye as the substrate. The significance of the general components in MFCs and systems of MFCs treating azo dye is depicted in this review. In addition, degradation of azo dyes such as Congo red, methyl orange, active brilliant red X-3B, amaranth, reactive blue 221, and acid orange 7 in MFCs are summarized. Further exploration and operational modification are suggested to address the challenges of complete removal of azo dye with maximum power generation in an MFC. In addition, a sequential treatment system with MFCs is suggested for complete mineralization of azo dye.

  20. Construction of an integrated enzyme system consisting azoreductase and glucose 1-dehydrogenase for dye removal.

    PubMed

    Yang, Yuyi; Wei, Buqing; Zhao, Yuhua; Wang, Jun

    2013-02-01

    Azo dyes are toxic and carcinogenic and are often present in industrial effluents. In this research, azoreductase and glucose 1-dehydrogenase were coupled for both continuous generation of the cofactor NADH and azo dye removal. The results show that 85% maximum relative activity of azoreductase in an integrated enzyme system was obtained at the conditions: 1U azoreductase:10U glucose 1-dehydrogenase, 250mM glucose, 1.0mM NAD(+) and 150μM methyl red. Sensitivity analysis of the factors in the enzyme system affecting dye removal examined by an artificial neural network model shows that the relative importance of enzyme ratio between azoreductase and glucose 1-dehydrogenase was 22%, followed by dye concentration (27%), NAD(+) concentration (23%) and glucose concentration (22%), indicating none of the variables could be ignored in the enzyme system. Batch results show that the enzyme system has application potential for dye removal.

  1. Efficient p-type dye-sensitized solar cells with all-nano-electrodes: NiCo2S4 mesoporous nanosheet counter electrodes directly converted from NiCo2O4 photocathodes

    PubMed Central

    2014-01-01

    We report the successful growth of NiCo2S4 nanosheet films converted from NiCo2O4 nanosheet films on fluorine-doped tin oxide substrates by a low-temperature solution process. Low-cost NiCo2S4 and NiCo2O4 nanosheet films were directly used for replacing conventional Pt and NiO as counter electrodes and photocathodes, respectively, to construct all-nano p-type dye-sensitized solar cells (p-DSSCs) with high performance. Compared to Pt, NiCo2S4 showed higher catalytic activity towards the I-/I3- redox in electrolyte, resulting in an improved photocurrent density up to 2.989 mA/cm2, which is the highest value in reported p-DSSCs. Present p-DSSCs demonstrated a cell efficiency of 0.248 % that is also comparable with typical NiO-based p-DSSCs. PMID:25489277

  2. In situ direct growth of single crystalline metal (Co, Ni) selenium nanosheets on metal fibers as counter electrodes toward low-cost, high-performance fiber-shaped dye-sensitized solar cells.

    PubMed

    Chen, Liang; Yin, Hexing; Zhou, Yong; Dai, Hui; Yu, Tao; Liu, Jianguo; Zou, Zhigang

    2016-01-28

    Highly crystalline metal (Co, Ni) selenium (Co0.85Se or Ni0.85Se) nanosheets were in situ grown on metal (Co, Ni) fibers (M-M0.85Se). Both M-M0.85Se (Co-Co0.85Se and Ni-Ni0.85Se) fibers prove to function as excellent, low-cost counter electrodes (CEs) in fiber-shaped dye-sensitized solar cells (FDSSCs) with high power conversion efficiency (Co-Co0.85Se 6.55% and Ni-Ni0.85Se 7.07%), comparable or even superior to a Pt fiber CE (6.54%). The good performance of the present Pt-free CE-based solar cell was believed to originate from: (1) the intrinsic electrocatalytic properties of the single-crystalline M-M0.85Se; (2) the enough void space among M0.85Se nanosheets that allows easier redox ion diffusion; (3) the two-dimensional morphology that provides a large contact area between the CE catalytic material and electrolyte; (4) in situ direct growth of the M0.85Se on metal fibers that renders good electrical contact between the active material and the electron collector.

  3. Dyeing of Polyester with Disperse Dyes: Part 2. Synthesis and Dyeing Characteristics of Some Azo Disperse Dyes for Polyester Fabrics.

    PubMed

    Al-Etaibi, Alya M; Alnassar, Huda S; El-Apasery, Morsy Ahmed

    2016-01-01

    The goal of this study was to utilize carrier for accelerating the rate of dyeing not only to enhance dyeing of polyester fabrics dyed with disperse dyes 3a,b, but also to save energy. Both the color strength expressed as dye uptake and the fastness properties of the dyed fabrics were evaluated. PMID:27367659

  4. Relationship of Cotton Fiber Calcium and Magnesium Contents on Dye Uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton from a single bale was processed into knit fabrics and prepared for dyeing. Following scouring, fabrics were soaked in either a metal sequestering solution or a water solution, bleached and dyed using 5 dye shades from both reatice and direct dye classes. Results indicate that removal of re...

  5. Silage effluent management: a review.

    PubMed

    Gebrehanna, M M; Gordon, R J; Madani, A; VanderZaag, A C; Wood, J D

    2014-10-01

    Silage effluent is a potent wastewater that can be produced when ensiling crops that have a high moisture content (MC). Silage effluent can cause fish-kills and eutrophication due to its high biochemical oxygen demand (BOD) and nutrient content, respectively. It has a high acidity (pH ≈ 3.5-5) making it corrosive to steel and damaging to concrete, which makes handling, storage and disposal a challenge. Although being recognized as a concentrated wastewater, most research has focused on preventing its production. Despite noted imprecision in effluent production models-and therefore limited ability to predict when effluent will flow-there has been little research aimed at identifying effective reactive management options, such as containment and natural treatment systems. Increasing climate variability and intensifying livestock agriculture are issues that will place a greater importance on developing comprehensive, multi-layered management strategies that include both preventative and reactive measures. This paper reviews important factors governing the production of effluent, approaches to minimize effluent flows as well as treatment and disposal options. The challenges of managing silage effluent are reviewed in the context of its chemical constituents. A multi-faceted approach should be utilized to minimize environmental risks associated with silage effluent. This includes: (i) managing crop moisture content prior to ensiling to reduce effluent production, (ii) ensuring the integrity of silos and effluent storages, and (iii) establishing infrastructure for effluent treatment and disposal. A more thorough investigation of constructed wetlands and vegetated infiltration areas for treating dilute silage effluent is needed. In particular, there should be efforts to improve natural treatment system design criteria by identifying pre-treatment processes and appropriate effluent loading rates. There is also a need for research aimed at understanding the effects of

  6. Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP).

    PubMed

    Ulson de Souza, Selene Maria Arruda Guelli; Forgiarini, Eliane; Ulson de Souza, Antônio Augusto

    2007-08-25

    The enzyme peroxidase is known for its capacity to remove phenolic compounds and aromatic amines from aqueous solutions and also to decolorize textile effluents. This study evaluates the potential of the enzyme horseradish peroxidase (HRP) in the decolorization of textile dyes and effluents. Some factors such as pH and the amount of H(2)O(2) and the enzyme were evaluated in order to determine the optimum conditions for the enzyme performance. For the dyes tested, the results indicated that the decolorization of the dye Remazol Turquoise Blue G 133% was approximately 59%, and 94% for the Lanaset Blue 2R; for the textile effluent, the decolorization was 52%. The tests for toxicity towards Daphnia magna showed that there was a reduction in toxicity after the enzymatic treatment. However, the toxicity of the textile effluent showed no change towards Artemia salina after the enzyme treatment. This study verifies the viability of the use of the enzyme horseradish peroxidase in the biodegradation of textile dyes.

  7. AZO DYES ARE MAJOR CONTRIBUTORS TO THE MUTAGENIC ACTIVITY DETECTED IN THE CRISTAIS RIVER WATERS

    EPA Science Inventory

    To determine if compounds from a dye processing plant were contributing to the mutagenicity repeatedly found in the Cristais River, Sao Paulo, Brazil, we chemically characterized the treated industrial effluent, raw and treated water, and the sludge produced by a Drinking Water T...

  8. THE CONTRIBUTION OF AZO DYES TO THE MUTAGENIC ACTIVITY OF THE CRISTAIS RIVER

    EPA Science Inventory

    To verify if compounds within the discharge of a dye processing plant were contributing to the mutagenicity repeatedly found in the Cristais River, Sao Paulo, Brazil, we chemically characterized the treated industrial effluent, raw and treated water, and the sludge produced by a ...

  9. Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration

    PubMed Central

    2012-01-01

    Currently, biological method has been utilized in the treatment of wastewater -containing synthetic dyes used by textile industries in Iraq. The present work was devoted to study the operating feasibility using reverse osmosis (RO) and nanofiltration (NF) membrane systems as an alternative treatment method of wastewater discharged from Iraqi textile mills. Acid red, reactive black and reactive blue dyes were selected, based on the usage rate in Iraq. Effects of dye concentration, pH of solution, feed temperature, dissolved salts and operating pressure on permeate flux and dye rejection were studied. Results at operating conditions of dye concentration = 65 mg/L, feed temperature = 39°C and pressure = 8 bar showed the final dye removal with RO membrane as 97.2%, 99.58% and 99.9% for acid red, reactive black and reactive blue dyes, respectively. With NF membrane, the final dye removal were as 93.77%, 95.67%, and 97% for red, black and blue dyes, respectively. The presence of salt (particularly NaCl) in the dye solution resulted in a higher color removal with a permeate flux decline. It was confirmed that pH of solution had a positive impact on dye removal while feed temperature showed a different image. A comparison was made between the results of dye removal in biological and membrane methods. The results showed that membrane method had higher removal potential with lower effective cost. The present study indicates that the use of NF membrane in dye removal from the effluent of Iraqi textile mills is promising. PMID:23369335

  10. Developmental validation of the GlobalFiler(®) Express PCR Amplification Kit: A 6-dye multiplex assay for the direct amplification of reference samples.

    PubMed

    Wang, Dennis Y; Gopinath, Siddhita; Lagacé, Robert E; Norona, Wilma; Hennessy, Lori K; Short, Marc L; Mulero, Julio J

    2015-11-01

    In order to increase the power of discrimination, reduce the possibility of adventitious matches, and expand global data sharing, the CODIS Core Loci Working Group made a recommendation to expand the CODIS core loci from the "required" 13 loci to 20 plus three additional "highly recommended" loci. The GlobalFiler(®) Express Kit was designed to incorporate all 20 required and 3 highly recommended loci along with a novel male-specific Y insertion/deletion marker. The GlobalFiler(®) Express Kit allows simultaneous amplification of the following loci: D3S1358, vWA, D16S539, CSF1PO, TPOX, Yindel, AMEL, D8S1179, D21S11, D18S51, DYS391, D2S441, D19S433, TH01, FGA, D22S1045, D5S818, D13S317, D7S820, SE33, D10S1248, D1S1656, D12S391, and D2S1338. The kit enables direct amplification from blood and buccal samples stored on paper or swab and the chemistry features an optimized PCR protocol that yields time to results in less than an hour. Developmental validation testing followed SWGDAM guidelines and demonstrated the quality and robustness of the GlobalFiler(®) Express Kit over a number of variables. The validation results demonstrate that the 24-locus multiplex kit is a robust and reliable identification assay as required for forensic DNA typing and databasing.

  11. Diode-pumped dye laser

    NASA Astrophysics Data System (ADS)

    Burdukova, O. A.; Gorbunkov, M. V.; Petukhov, V. A.; Semenov, M. A.

    2016-10-01

    This letter reports diode pumping for dye lasers. We offer a pulsed dye laser with an astigmatism-compensated three-mirror cavity and side pumping by blue laser diodes with 200 ns pulse duration. Eight dyes were tested. Four dyes provided a slope efficiency of more than 10% and the highest slope efficiency (18%) was obtained for laser dye Coumarin 540A in benzyl alcohol.

  12. Hair dye poisoning

    MedlinePlus

    ... are: Arsenic Bismuth Denatured alcohol Lead ( lead poisoning ) Mercury Pyrogallol Silver Hair dyes may contain other harmful ... bleeding and infection. Continued exposure to lead or mercury can lead to permanent brain and nervous system ...

  13. Phytoremediation of dye contaminated soil by Leucaena leucocephala (subabul) seed and growth assessment of Vigna radiata in the remediated soil.

    PubMed

    Jayanthy, V; Geetha, R; Rajendran, R; Prabhavathi, P; Karthik Sundaram, S; Dinesh Kumar, S; Santhanam, P

    2014-09-01

    The present study was investigated for soil bioremediation through sababul plant biomass (Leucaena leucocephala). The soil contaminated with textile effluent was collected from Erode (chithode) area. Various physico-chemical characterizations like N, P, and K and electrical conductivity were assessed on both control and dye contaminated soils before and after remediation. Sababul (L. leucocephala) powder used as plant biomass for remediation was a tool for textile dye removal using basic synthetic dyes by column packing and eluting. The concentration of the dye eluted was compared with its original concentration of dye and were analyzed by using UV-vis spectrophotometer. Sababul plant biomass was analyzed for its physico-chemical properties and active compounds were detected by GC-MS, HPTLC and FTIR. Plant growth was assessed with green gram on the textile contaminated soil and sababul had the potential of adsorbing the dye as the contaminated soil and also check the growth of green gram. PMID:25183943

  14. Phytoremediation of dye contaminated soil by Leucaena leucocephala (subabul) seed and growth assessment of Vigna radiata in the remediated soil

    PubMed Central

    Jayanthy, V.; Geetha, R.; Rajendran, R.; Prabhavathi, P.; Karthik Sundaram, S.; Dinesh Kumar, S.; Santhanam, P.

    2013-01-01

    The present study was investigated for soil bioremediation through sababul plant biomass (Leucaena leucocephala). The soil contaminated with textile effluent was collected from Erode (chithode) area. Various physico-chemical characterizations like N, P, and K and electrical conductivity were assessed on both control and dye contaminated soils before and after remediation. Sababul (L. leucocephala) powder used as plant biomass for remediation was a tool for textile dye removal using basic synthetic dyes by column packing and eluting. The concentration of the dye eluted was compared with its original concentration of dye and were analyzed by using UV–vis spectrophotometer. Sababul plant biomass was analyzed for its physico-chemical properties and active compounds were detected by GC–MS, HPTLC and FTIR. Plant growth was assessed with green gram on the textile contaminated soil and sababul had the potential of adsorbing the dye as the contaminated soil and also check the growth of green gram. PMID:25183943

  15. Ecofriendly degradation, decolorization and detoxification of textile effluent by a developed bacterial consortium.

    PubMed

    Phugare, Swapnil S; Kalyani, Dayanand C; Surwase, Shripad N; Jadhav, Jyoti P

    2011-07-01

    Present study illustrates the effectual decolorization and degradation of the textile effluent using a developed bacterial consortium SDS, consisted of bacterial species Providencia sp. SDS and Pseudomonas aeuroginosa strain BCH, originally isolated from dye contaminated soil. The intensive metabolic activity of the consortium SDS led to complete decolorization of textile effluent within 20 h at pH 7 and temperature 30°C. Significant induction in the activities of veratryl alcohol oxidase, laccase, azoreductase and DCIP reductase were observed during decolorization, which indicates their involvement in decolorization and degradation process. The decolorization and biodegradation was monitored using UV-vis spectroscopy, IR spectroscopy, HPLC and HPTLC analysis. Toxicological analysis of effluent before and after treatment was performed using classical Allium cepa test. Investigations of various toxicological parameters viz, oxidative stress response, cytotoxicity, genotoxicity and phytotoxicity, collectively concludes that, the toxicity of effluent reduces significantly after treatment with consortium SDS.

  16. Rapid degradation of azo dye Direct Black BN by magnetic MgFe2O4-SiC under microwave radiation

    NASA Astrophysics Data System (ADS)

    Gao, Jia; Yang, Shaogui; Li, Na; Meng, Lingjun; Wang, Fei; He, Huan; Sun, Cheng

    2016-08-01

    A novel microwave (MW) catalyst, MgFe2O4 loaded on SiC (MgFe2O4-SiC), was successfully synthesized by sol-gel method, and pure MgFe2O4 was used as reference. The MgFe2O4 and MgFe2O4-SiC catalysts were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), N2 adsorption analyzer (BET specific surface area), X-ray photoelectron spectroscopy (XPS). The electromagnetic parameters of the prepared catalysts were measured by vector network analyzer. The reflection loss (RL) based on the electromagnetic parameters calculated in Matlab showed MgFe2O4-SiC attained the maximum absorbing value of 13.32 dB at 2.57 GHz, which reached extremely high RL value at low frequency range, revealing the excellent MW absorption property of MgFe2O4-SiC. MW-induced degradation of Direct Black BN (DB BN) over as-synthesized MgFe2O4-SiC indicated that degradation efficiency of DB BN (20 mg L-1) in 5 min reached 96.5%, the corresponding TOC removal was 65%, and the toxicity of DB BN after degradation by MgFe2O4-SiC obviously decreased. The good stability and applicability of MgFe2O4-SiC on the degradation process were also discovered. Moreover, the ionic chromatogram during degradation of DB BN demonstrated that the C-S, C-N and azo bonds in the DB BN molecule were destroyed gradually. MW-induced rad OH and holes could be responsible for the efficient removal involved in the system. These findings make MgFe2O4-SiC become an excellent MW absorbent as well as an effective MW catalyst with rapid degradation of DB BN. Therefore, it may be promising for MgFe2O4-SiC under MW radiation to deal with various dyestuffs and other toxic organic pollutants.

  17. Dye tracers as a tool for outfall studies: dilution measurement approach.

    PubMed

    Pecly, J O G; Roldão, J S F

    2013-01-01

    Dye tracer technique is well established and of wide application for assessment of outfalls and for delineation of near field and far field extensions. Common goals of a tracer study include the measurement of the dilution factor, estimation of the dispersion coefficients, measurement of the effluent discharge and calibration of a contaminant transport model. This paper presents a brief review of the methods involving the use of dye tracer for outfall assessment and illustrates the methods of slug release and continuous injection based on two real cases of campaigns carried out on Brazilian coastal waters. Slug injection on the surface of the water body was used for preliminary dispersion studies aiming at outfall positioning. During the operational phase of an outfall, the continuous injection of dye tracer was used to determine effluent dilution in different seasons. In coastal waters of Rio de Janeiro city, sea current pattern, tidal modulation and thermal stratification explained the main features of the dilution field.

  18. Dye Application, Manufacture of Dye Intermediates and Dyes

    NASA Astrophysics Data System (ADS)

    Freeman, H. S.; Mock, G. N.

    It is difficult if not impossible to determine when mankind first systematically applied color to a textile substrate. The first colored fabrics were probably nonwoven felts painted in imitation of animal skins. The first dyeings were probably actually little more than stains from the juice of berries. Ancient Greek writers described painted fabrics worn by the tribes of Asia Minor. But just where did the ancient craft have its origins? Was there one original birthplace or were there a number of simultaneous beginnings around the world?

  19. Simultaneous chromate reduction and azo dye decolourization by Brevibacterium casei: azo dye as electron donor for chromate reduction.

    PubMed

    Ng, Tsz Wai; Cai, Qinhong; Wong, Chong-Kim; Chow, Alex T; Wong, Po-Keung

    2010-10-15

    Chromate [Cr(VI)] and azo dyes are common pollutants which may co-exist in some industrial effluents. Hence studies of biological treatment of industrial wastewater should include investigation of the co-removal of these two pollutants. Brevibacterium casei, which can reduce Cr(VI) in the presence of the azo dye Acid Orange 7 (AO7) under nutrient-limiting condition, was isolated from a sewage sludge sample of a dyeing factory. Response surface methodology, which is commonly used to optimize growth conditions for food microorganisms to maximize product(s) yield, was used to determine the optimal conditions for chromate reduction and dye decolourization by B. casei. The optimal conditions were 0.24 g/L glucose, 3.0 g/L (NH(4))(2)SO(4) and 0.2 g/L peptone at pH 7 and 35 degrees C. The predicted maximum chromate reduction efficiencies and dye decolourization were 83.4+/-0.6 and 40.7+/-1.7%, respectively. A new mechanism was proposed for chromate reduction coupling with AO7 decolourization by B. casei. Under nutrient-limiting condition, AO7 was used as an e(-) donor by the reduction enzyme(s) of B. casei for the reduction of Cr(VI). The resulted Cr(III) then complexed with the oxidized AO7 to form a purple coloured intermediate.

  20. Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes

    PubMed Central

    Muhd Julkapli, Nurhidayatullaili; Bagheri, Samira; Bee Abd Hamid, Sharifah

    2014-01-01

    During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag) and organic matter (C, N, Cl, and F) showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes. PMID:25054183

  1. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes.

    PubMed

    Muhd Julkapli, Nurhidayatullaili; Bagheri, Samira; Bee Abd Hamid, Sharifah

    2014-01-01

    During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag) and organic matter (C, N, Cl, and F) showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes. PMID:25054183

  2. The enzymatic decolorization of textile dyes by the immobilized polyphenol oxidase from quince leaves.

    PubMed

    Arabaci, Gulnur; Usluoglu, Ayse

    2014-01-01

    Water pollution due to release of industrial wastewater has already become a serious problem in almost every industry using dyes to color its products. In this work, polyphenol oxidase enzyme from quince (Cydonia Oblonga) leaves immobilized on calcium alginate beads was used for the successful and effective decolorization of textile industrial effluent. Polyphenol oxidase (PPO) enzyme was extracted from quince (Cydonia Oblonga) leaves and immobilized on calcium alginate beads. The kinetic properties of free and immobilized PPO were determined. Quince leaf PPO enzyme stability was increased after immobilization. The immobilized and free enzymes were employed for the decolorization of textile dyes. The dye solutions were prepared in the concentration of 100 mg/L in distilled water and incubated with free and immobilized quince (Cydonia Oblonga) leaf PPO for one hour. The percent decolorization was calculated by taking untreated dye solution. Immobilized PPO was significantly more effective in decolorizing the dyes as compared to free enzyme. Our results showed that the immobilized quince leaf PPO enzyme could be efficiently used for the removal of synthetic dyes from industrial effluents.

  3. Using SPE-LC-ESI-MS/MS Analysis to Assess Disperse Dyes in Environmental Water Samples.

    PubMed

    Zocolo, Guilherme Julião; Pilon dos Santos, Glauco; Vendemiatti, Josiane; Vacchi, Francine Inforçato; Umbuzeiro, Gisela de Aragão; Zanoni, Maria Valnice Boldrin

    2015-09-01

    We have optimized an SPE-LC-ESI-MS/MS method and used it to monitor disperse azo dyes in environmental aquatic samples. Calibration curves constructed for nine disperse dyes-Red 1, Violet 93, Blue 373, Orange 1, Orange 3, Orange 25, Yellow 3, Yellow 7 and Red 13-in aqueous solution presented good linearity between 2.0 and 100.0 ng mL(-1). The method provided limits of detection and quantification around 2.0 and 8.0 ng L(-1), respectively. For dyes at concentrations of 25.0 ng mL(-1), the intra- and interday analyses afforded relative standard deviation lower than 6 and 13%, respectively. The recovery values obtained for each target analyte in Milli-Q water, receiving waters and treated water samples spiked with the nine studied dyes at concentrations of 8.0, 25.0 and 50.0 ng L(-1) (n = 3) gave average recoveries greater than 70%, with RSD <20%. Statistical evaluation aided method validation. The validated method proved to be useful for analysis of organic extracts from effluents and receiving water samples after an SPE extraction step. More specifically, the method enabled detection of the dyes Disperse Red 1, Disperse Blue 373 and Disperse Violet 93 at concentrations ranging from 84 to 3452 ng L(-1) in the treated effluent (TE), affluent and points collected upstream and downstream of the drinking water treatment plant of a textile dye industry in Brazil.

  4. The Enzymatic Decolorization of Textile Dyes by the Immobilized Polyphenol Oxidase from Quince Leaves

    PubMed Central

    Arabaci, Gulnur; Usluoglu, Ayse

    2014-01-01

    Water pollution due to release of industrial wastewater has already become a serious problem in almost every industry using dyes to color its products. In this work, polyphenol oxidase enzyme from quince (Cydonia Oblonga) leaves immobilized on calcium alginate beads was used for the successful and effective decolorization of textile industrial effluent. Polyphenol oxidase (PPO) enzyme was extracted from quince (Cydonia Oblonga) leaves and immobilized on calcium alginate beads. The kinetic properties of free and immobilized PPO were determined. Quince leaf PPO enzyme stability was increased after immobilization. The immobilized and free enzymes were employed for the decolorization of textile dyes. The dye solutions were prepared in the concentration of 100 mg/L in distilled water and incubated with free and immobilized quince (Cydonia Oblonga) leaf PPO for one hour. The percent decolorization was calculated by taking untreated dye solution. Immobilized PPO was significantly more effective in decolorizing the dyes as compared to free enzyme. Our results showed that the immobilized quince leaf PPO enzyme could be efficiently used for the removal of synthetic dyes from industrial effluents. PMID:24587743

  5. Evaluation of bioremediation potentiality of ligninolytic Serratia liquefaciens for detoxification of pulp and paper mill effluent.

    PubMed

    Haq, Izharul; Kumar, Sharad; Kumari, Vineeta; Singh, Sudheer Kumar; Raj, Abhay

    2016-03-15

    Due to high pollution load and colour contributing substances, pulp and paper mill effluents cause serious aquatic and soil pollution. A lignin-degrading bacterial strain capable of decolourising Azure-B dye was identified as lignin peroxidase (LiP) producing strain LD-5. The strain was isolated from pulp and paper mill effluent contaminated site. Biochemical and 16S rDNA gene sequence analysis suggested that strain LD-5 belonged to the Serratia liquefaciens. The strain LD-5 effectively reduced pollution parameters (colour 72%, lignin 58%, COD 85% and phenol 95%) of real effluent after 144h of treatment at 30°C, pH 7.6 and 120rpm. Extracellular LiP produced by S. liquefaciens during effluent decolourisation was purified to homogeneity using ammonium sulfate (AMS) precipitation and DEAE cellulose column chromatography. The molecular weight of the purified lignin peroxidase was estimated to be ∼28kDa. Optimum pH and temperature for purified lignin peroxidase activity were determined as pH 6.0 and 40°C, respectively. Detoxified effluent was evaluated for residual toxicity by alkaline single cell (comet) gel electrophoresis (SCGE) assay using Saccharomyces cerevisiae MTCC 36 as model organism. The toxicity reduction to treated effluent was 49.4%. These findings suggest significant potential of S. liquefaciens for bioremediation of pulp and paper mill effluent.

  6. Rapid Dye Regeneration Mechanism of Dye-Sensitized Solar Cells.

    PubMed

    Jeon, Jiwon; Park, Young Choon; Han, Sang Soo; Goddard, William A; Lee, Yoon Sup; Kim, Hyungjun

    2014-12-18

    During the light-harvesting process of dye-sensitized solar cells (DSSCs), the hole localized on the dye after the charge separation yields an oxidized dye, D(+). The fast regeneration of D(+) using the redox pair (typically the I(-)/I3(-) couple) is critical for the efficient DSSCs. However, the kinetic processes of dye regeneration remain uncertain, still promoting vigorous debates. Here, we use molecular dynamics simulations to determine that the inner-sphere electron-transfer pathway provides a rapid dye regeneration route of ∼4 ps, where penetration of I(-) next to D(+) enables an immediate electron transfer, forming a kinetic barrier. This explains the recently reported ultrafast dye regeneration rate of a few picoseconds determined experimentally. We expect that our MD based comprehensive understanding of the dye regeneration mechanism will provide a helpful guideline in designing TiO2-dye-electrolyte interfacial systems for better performing DSSCs. PMID:26273975

  7. Cationic starch (Q-TAC) pre-treatment of cotton fabric: influence on dyeing with reactive dye.

    PubMed

    Ali, Shamshad; Mughal, Mohsin Ali; Shoukat, Umair; Baloch, Mansoor Ali; Kim, Seong Hun

    2015-03-01

    Reactive dyes require high concentrations of an electrolyte to improve dye-fiber interaction, leading to the discharge of harmful effluent. One approach to reduce this unsafe release is treatment of the cotton fabric with cationic chemical reagents. This paper reports on the treatment of cotton fabric with cationic starch (Q-TAC), a commercial product, by batchwise method and pad batch method for the first time prior to reactive dyeing process. Furthermore,three commercial reactive dyes, based on monochloro triazine, vinyl sulfone and monochlorotriazine + vinyl sulfonechemistry, was applied on the cotton fabrics by continuous (pad-dry-cure) method. The treated cotton fabric by batchwise method produced 70% higher color yield (K/S) and 20% enhanced dye fixation (%F) than the untreated cotton fabric. X-ray photoelectron spectrometer (XPS) analysis revealed the presence of N1s peaks in the treated cotton fabrics. The crystallinity of treated cotton fabrics was reduced in comparison to untreated cotton fabric as revealed by wide angle X-ray diffraction (WAXD) measurements. Field Emission Scanning Electron Microscopy (FE-SEM) showed that the surface of treated cotton fabrics was rougher than untreated cotton fabric due to the deposition of cationic starch. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum confirmed the existence of quaternary ammonium groups, N(+)(CH3)3, in the treated cotton fabrics. The analysis of color fastness tests demonstrated good to excellent ratings for treated cotton fabrics. In this way, cationic starch treatment of cotton fabric before reactive dyeing process has been proven potentially a more environmentally sustainable method than conventional dyeing method.

  8. Cationic starch (Q-TAC) pre-treatment of cotton fabric: influence on dyeing with reactive dye.

    PubMed

    Ali, Shamshad; Mughal, Mohsin Ali; Shoukat, Umair; Baloch, Mansoor Ali; Kim, Seong Hun

    2015-03-01

    Reactive dyes require high concentrations of an electrolyte to improve dye-fiber interaction, leading to the discharge of harmful effluent. One approach to reduce this unsafe release is treatment of the cotton fabric with cationic chemical reagents. This paper reports on the treatment of cotton fabric with cationic starch (Q-TAC), a commercial product, by batchwise method and pad batch method for the first time prior to reactive dyeing process. Furthermore,three commercial reactive dyes, based on monochloro triazine, vinyl sulfone and monochlorotriazine + vinyl sulfonechemistry, was applied on the cotton fabrics by continuous (pad-dry-cure) method. The treated cotton fabric by batchwise method produced 70% higher color yield (K/S) and 20% enhanced dye fixation (%F) than the untreated cotton fabric. X-ray photoelectron spectrometer (XPS) analysis revealed the presence of N1s peaks in the treated cotton fabrics. The crystallinity of treated cotton fabrics was reduced in comparison to untreated cotton fabric as revealed by wide angle X-ray diffraction (WAXD) measurements. Field Emission Scanning Electron Microscopy (FE-SEM) showed that the surface of treated cotton fabrics was rougher than untreated cotton fabric due to the deposition of cationic starch. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum confirmed the existence of quaternary ammonium groups, N(+)(CH3)3, in the treated cotton fabrics. The analysis of color fastness tests demonstrated good to excellent ratings for treated cotton fabrics. In this way, cationic starch treatment of cotton fabric before reactive dyeing process has been proven potentially a more environmentally sustainable method than conventional dyeing method. PMID:25498635

  9. Decolorization and detoxification of Congo red and textile industry effluent by an isolated bacterium Pseudomonas sp. SU-EBT.

    PubMed

    Telke, Amar A; Joshi, Swati M; Jadhav, Sheetal U; Tamboli, Dhawal P; Govindwar, Sanjay P

    2010-04-01

    The 16S rRNA sequence and biochemical characteristics revealed the isolated organism as Pseudomonas sp. SU-EBT. This strain showed 97 and 90% decolorization of a recalcitrant dye, Congo red (100 mg l(-1)) and textile industry effluent with 50% reduction in COD within 12 and 60 h, respectively. The optimum pH and temperature for the decolorization was 8.0 and 40 degrees C, respectively. Pseudomonas sp. SU-EBT was found to tolerate the dye concentration up to 1.0 g l(-1). Significant induction in the activity of intracellular laccase suggested its involvement in the decolorization of Congo red. The metabolites formed after decolorization of Congo red, such as p-dihydroxy biphenyl, 8-amino naphthol 3-sulfonic acid and 3-hydroperoxy 8-nitrosonaphthol were characterized using FTIR and GC-MS. Phytotoxicity study revealed nontoxic nature of the degradation metabolites to Sorghum bicolor, Vigna radiata, Lens culinaris and Oryza sativa plants as compared to Congo red and textile industry effluent. Pseudomonas sp. SU-EBT decolorized several individual textile dyes, dye mixtures and textile industry effluent, thus it is a useful strain for the development of effluent treatment methods in textile processing industries.

  10. Synthesis of magnetic carbon nanotube and photocatalytic dye degradation ability.

    PubMed

    Mahmoodi, Niyaz Mohammad

    2014-09-01

    In this paper, magnetic carbon nanotube (M-CNT) was synthesized. The photocatalytic dye degradation ability of M-CNT in the presence of hydrogen peroxide (H2O2) from colored wastewater was studied. Manganese ferrite (MnFe2O4) was synthesized in the presence of multiwalled carbon nanotube. Direct Red 23 (DR23), Direct Red 31 (DR31), and Direct Red 81 (DR81) were used as anionic dyes. The characteristics of M-CNT were investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). The photocatalytic dye degradation using M-CNT was studied by UV-vis spectrophotometer and ion chromatography (IC). The effects of M-CNT dosage, initial dye concentration, and salt on the degradation of dye were evaluated. Formate, acetate, and oxalate anions were detected as dominant aliphatic intermediates. Inorganic anions (nitrate and sulfate anions) were detected and quantified as the mineralization products of dyes during the degradation process. The results indicated that the M-CNT could be used as a magnetic catalyst to degrade anionic dyes from colored wastewater.

  11. Decolourisation of Synthetic Dyes by Endophytic Fungal Flora Isolated from Senduduk Plant (Melastoma malabathricum)

    PubMed Central

    Ngieng, Ngui Sing

    2013-01-01

    A total of twenty endophytic fungi successfully isolated from Melastoma malabathricum (Senduduk) were examined for their ability to decolourise azo dyes: Congo red, Orange G, and Methyl red and an anthraquinone dye, Remazol Brilliant Blue R. Initial screening on the glucose minimal media agar plates amended with 200 mg L−1 of each respective dye showed that only isolate MS8 was able to decolourise all of the four dyes. The isolate decolourised completely both the RBBR and Orange G in the agar medium within 8 days. Further quantitative analysis of the dye decolourisation by isolate MS8 in aqueous minimal medium showed that isolate MS8 was able to decolourise all the tested dyes at varying levels. Dye decolourisation by the isolate MS8 was determined to be 97% for RBBR, 33% for Orange G, 48% for Congo red, and 56% for Methyl red, respectively, within a period of 16 days. Molecular identification of the fungal isolate MS8 using primer ITS1 and ITS4 showed that isolate MS8 shared 99% sequence similarity with Marasmius cladophyllus, a Basidiomycete. The ability to decolourise different types of dyes by isolate MS8 thus suggested a possible application of this fungus in the decolourisation of dyestuff effluents. PMID:25937973

  12. Characterization of Plant Peroxidases and Their Potential for Degradation of Dyes: a Review.

    PubMed

    Kalsoom, Umme; Bhatti, Haq Nawaz; Asgher, Muhammad

    2015-07-01

    Peroxidases are ubiquitously found in all vascular plants and are promising biocatalysts for oxidization of wide range of aromatic substrates including various industrial dyes. Peroxidases can catalyze degradation of chemical structure of aromatic dyes either by precipitation or by opening the aromatic ring structure. Both soluble and immobilized peroxidases have been successfully used in batches as well as in continuous processes for the treatment of aromatic dyes present in industrial effluents. Plant peroxidases are stable catalysts that retain their activities over a broad range of pH and temperatures. The performance of an enzyme for degradation process depends upon the structure of dyes and the operational parameters like concentration of enzyme, H2O2 and dye, incubation time, pH, and temperature. Recalcitrant dyes can also be mineralized by plant peroxidases in the presence of redox mediators. Thus, plant peroxidases are easily available, inexpensive, and ecofriendly biocatalysts for the treatment of wastewaters containing a wide spectrum of textile and non-textile synthetic dyes. This article reviews the recent developments in isolation and characterization of plant peroxidases and their applications for bioremediation of synthetic dyes.

  13. Biochemical response to exposure to six textile dyes in early developmental stages of Xenopus laevis.

    PubMed

    Güngördü, Abbas; Birhanli, Ayse; Ozmen, Murat

    2013-01-01

    The present study was undertaken to determine the toxic effect of a lethal concentration of six different commercially used textile dyes on the 46th stage of Xenopus laevis tadpoles. The tadpoles were exposed to Astrazon Red FBL, Astrazon Blue FGRL, Remazol Red RR, Remazol Turquoise Blue G-A, Cibacron Red FN-3G, and Cibacron Blue FN-R for 168 h in static test conditions, and thus, 168-h median lethal concentrations (LC(50)s) of each dye were determined to be 0.35, 0.13, 112, 7, 359, and 15.8 mg/L, respectively. Also, to evaluate the sublethal effects of each dye, tadpoles were exposed to different concentrations of dyes (with respect to 168-h LC(50)s) for 24 h. The alteration of selected enzyme activities was tested. For this aim, glutathione S-transferase (GST), carboxylesterase, and lactate dehydrogenase (LDH) were assayed. After dye exposure, the GST induction or inhibition and LDH induction indicated some possible mechanisms of oxidative stress and deterioration in aerobic respiration processes induced by the tested dyes. Findings of the study suggest that selected biomarker enzymes are useful in understanding the toxic mechanisms of these dyes in X. laevis tadpoles as early warning indicators. Therefore, these selected biomarkers may evaluate the effect of environmental factors, such as textile dye effluents and other industrial pollutants, on amphibians in biomonitoring studies.

  14. Removal of textile dyes and metallic ions using polyelectrolytes and macroelectrolytes containing sulfonic acid groups.

    PubMed

    Caldera Villalobos, M; Peláez Cid, A A; Herrera González, Ana M

    2016-07-15

    This work reports the removal of textile dyes and metallic ions by means of adsorption and coagulation-flocculation using two polyelectrolytes and two macroelectrolytes containing sulfonic acid groups. The adsorption of textile dyes was studied in aqueous solutions containing cationic dyes and in wastewater containing a vat dye. Also, removal of vat and naphthol dyes was studied using the process of coagulation-flocculation. The results show these materials possess elevated adsorption capacity, and they accomplished removal rates above 97% in aqueous solutions. The removal of the vat dye improved the quality of the wastewater notably, and an uncolored effluent was obtained at the end of the treatment. The treatment using adsorption decreased the values for coloration, conductivity, suspended solids, and pH. The removal of vat and naphthol dyes by means of coagulation-flocculation was studied as well, and removal rates of 90% were obtained. The polyelectrolytes and macroelectrolytes also proved effective in the adsorption of metallic ions in wastewater. The treatment using adsorption accomplished high removal rates of metallic ions, and it showed greater selectivity towards Cu(2+), Fe(3+) and Pb(2+). A decrease in the content of solids as well as the values for COD and conductivity was observed in the wastewater as well. The analyses of FT-IR indicated that cationic dyes and metallic ions were chemisorbed by means of ionic exchange.

  15. Biochemical response to exposure to six textile dyes in early developmental stages of Xenopus laevis.

    PubMed

    Güngördü, Abbas; Birhanli, Ayse; Ozmen, Murat

    2013-01-01

    The present study was undertaken to determine the toxic effect of a lethal concentration of six different commercially used textile dyes on the 46th stage of Xenopus laevis tadpoles. The tadpoles were exposed to Astrazon Red FBL, Astrazon Blue FGRL, Remazol Red RR, Remazol Turquoise Blue G-A, Cibacron Red FN-3G, and Cibacron Blue FN-R for 168 h in static test conditions, and thus, 168-h median lethal concentrations (LC(50)s) of each dye were determined to be 0.35, 0.13, 112, 7, 359, and 15.8 mg/L, respectively. Also, to evaluate the sublethal effects of each dye, tadpoles were exposed to different concentrations of dyes (with respect to 168-h LC(50)s) for 24 h. The alteration of selected enzyme activities was tested. For this aim, glutathione S-transferase (GST), carboxylesterase, and lactate dehydrogenase (LDH) were assayed. After dye exposure, the GST induction or inhibition and LDH induction indicated some possible mechanisms of oxidative stress and deterioration in aerobic respiration processes induced by the tested dyes. Findings of the study suggest that selected biomarker enzymes are useful in understanding the toxic mechanisms of these dyes in X. laevis tadpoles as early warning indicators. Therefore, these selected biomarkers may evaluate the effect of environmental factors, such as textile dye effluents and other industrial pollutants, on amphibians in biomonitoring studies. PMID:22802115

  16. Removal of textile dyes and metallic ions using polyelectrolytes and macroelectrolytes containing sulfonic acid groups.

    PubMed

    Caldera Villalobos, M; Peláez Cid, A A; Herrera González, Ana M

    2016-07-15

    This work reports the removal of textile dyes and metallic ions by means of adsorption and coagulation-flocculation using two polyelectrolytes and two macroelectrolytes containing sulfonic acid groups. The adsorption of textile dyes was studied in aqueous solutions containing cationic dyes and in wastewater containing a vat dye. Also, removal of vat and naphthol dyes was studied using the process of coagulation-flocculation. The results show these materials possess elevated adsorption capacity, and they accomplished removal rates above 97% in aqueous solutions. The removal of the vat dye improved the quality of the wastewater notably, and an uncolored effluent was obtained at the end of the treatment. The treatment using adsorption decreased the values for coloration, conductivity, suspended solids, and pH. The removal of vat and naphthol dyes by means of coagulation-flocculation was studied as well, and removal rates of 90% were obtained. The polyelectrolytes and macroelectrolytes also proved effective in the adsorption of metallic ions in wastewater. The treatment using adsorption accomplished high removal rates of metallic ions, and it showed greater selectivity towards Cu(2+), Fe(3+) and Pb(2+). A decrease in the content of solids as well as the values for COD and conductivity was observed in the wastewater as well. The analyses of FT-IR indicated that cationic dyes and metallic ions were chemisorbed by means of ionic exchange. PMID:27082258

  17. Estimation of Fluorescent Dye Amount in Tracer Dye Test

    NASA Astrophysics Data System (ADS)

    Pekkan, Emrah; Balkan, Erman; Balkan, Emir

    2015-04-01

    Karstic groundwater is more influenced by human than the groundwater that disperse in pores. On the other hand karstic groundwater resources, in addition to providing agricultural needs, livestock breeding, drinking and domestic water in most of the months of the year, they also supply drinking water to the wild life at high altitudes. Therefore sustainability and hydrogeological investigation of karstic resources is critical. Tracing techniques are widely used in hydrologic and hydrogeologic studies to determine water storage, flow rate, direction and protection area of groundwater resources. Karanfil Mountain (2800 m), located in Adana, Turkey, is one of the karstic recharge areas of the natural springs spread around its periphery. During explorations of the caves of Karanfil mountain, a 600 m deep cave was found by the Turkish and Polish cavers. At the bottom of the cave there is an underground river with a flow rate of approximately 0.5 m3/s during August 2014. The main spring is located 8 km far from the cave's entrance and its mean flow rate changes between 3.4 m3/s and 0.21 m3/s in March and September respectively according to a flowrate observation station of Directorate of Water Works of Turkey. As such frequent storms, snowmelt and normal seasonal variations in rainfall have a significant and rapid effect on the volume of this main spring resource. The objective of our research is to determine and estimate dye amount before its application on the field inspired from the previously literature on the subject. This estimation is intended to provide a preliminary application of a tracer test of a karstic system. In this study dye injection, inlet point will be an underground river located inside the cave and the observation station will be the spring that is approximately 8 km far from the cave entrance. On the other hand there is 600 meter elevation difference between cave entrance and outlet spring. In this test Rodamin-WT will be used as tracer and the

  18. Water soluble laser dyes

    DOEpatents

    Hammond, Peter R.; Feeman, James F.; Field, George F.

    1998-01-01

    Novel water soluble dyes of the formula I are provided ##STR1## wherein R.sup.1 and R.sup.4 are alkyl of 1 to 4 carbon atoms or hydrogen; or R.sup.1 -R.sup.2 or R.sup.2 -R.sup.4 form part of aliphatic heterocyclic rings; R.sup.2 is hydrogen or joined with R.sup.1 or R.sup.4 as described above; R.sup.3 is --(CH.sub.2).sub.m --SO.sub.3.sup.-, where m is 1 to 6; X is N, CH or ##STR2## where Y is 2 --SO.sub.3.sup.- ; Z is 3, 4, 5 or 6 --SO.sub.3.sup.-. The novel dyes are particularly useful as the active media in water solution dye lasers.

  19. Water soluble laser dyes

    DOEpatents

    Hammond, P.R.; Feeman, J.F.; Field, G.F.

    1998-08-11

    Novel water soluble dyes of the formula 1 are provided by the formula described in the paper wherein R{sup 1} and R{sup 4} are alkyl of 1 to 4 carbon atoms or hydrogen; or R{sup 1}--R{sup 2} or R{sup 2}--R{sup 4} form part of aliphatic heterocyclic rings; R{sup 2} is hydrogen or joined with R{sup 1} or R{sup 4} as described above; R{sup 3} is --(CH{sub 2}){sub m}--SO{sub 3}{sup {minus}}, where m is 1 to 6; X is N, CH or formula 2 given in paper where Y is 2 --SO{sub 3}{sup {minus}} ; Z is 3, 4, 5 or 6 --SO{sub 3}{sup {minus}}. The novel dyes are particularly useful as the active media in water solution dye lasers.

  20. Laser dye technology

    SciTech Connect

    Hammond, P R

    1999-09-01

    The author has worked with laser dyes for a number of years. A first interest was in the Navy blue-green program where a flashlamp pumped dye laser was used as an underwater communication and detection device. It made use of the optical window of sea-water--blue for deep ocean, green for coastal water. A major activity however has been with the Atomic Vapor Laser Isotope Separation Program (AVLIS) at the Lawrence Livermore National Laboratory. The aim here has been enriching isotopes for the nuclear fuel cycle. The tunability of the dye laser is utilized to selectively excite one isotope in uranium vapor, and this isotope is collected electrostatically as shown in Figure 1. The interests in the AVLIS program have been in the near ultra-violet, violet, red and deep-red.

  1. Hair Dye and Hair Relaxers

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  2. Hair care and dyeing.

    PubMed

    Draelos, Zoe Diana

    2015-01-01

    Alopecia can be effectively camouflaged or worsened through the use of hair care techniques and dyeing. Proper hair care, involving hair styling and the use of mild shampoos and body-building conditioners, can amplify thinning scalp hair; however, chemical processing, including hair dyeing, permanent waving, and hair straightening, can encourage further hair loss through breakage. Many patients suffering from alopecia attempt to improve their hair through extensive manipulation, which only increases problems. Frequent haircuts to minimize split ends, accompanied by gentle handling of the fragile fibers, is best. This chapter offers the dermatologist insight into hair care recommendations for the alopecia patient. PMID:26370650

  3. Hair care and dyeing.

    PubMed

    Draelos, Zoe Diana

    2015-01-01

    Alopecia can be effectively camouflaged or worsened through the use of hair care techniques and dyeing. Proper hair care, involving hair styling and the use of mild shampoos and body-building conditioners, can amplify thinning scalp hair; however, chemical processing, including hair dyeing, permanent waving, and hair straightening, can encourage further hair loss through breakage. Many patients suffering from alopecia attempt to improve their hair through extensive manipulation, which only increases problems. Frequent haircuts to minimize split ends, accompanied by gentle handling of the fragile fibers, is best. This chapter offers the dermatologist insight into hair care recommendations for the alopecia patient.

  4. Dye filled security seal

    DOEpatents

    Wilson, Dennis C. W.

    1982-04-27

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member.

  5. Anaerobic treatment of textile dyeing wastewater.

    PubMed

    Stern, S R; Szpyrkowicz, L; Rodighiero, I

    2003-01-01

    Aerobic treatment commonly applied to textile wastewater results in good or even excellent removal of organic load. This is not, however, accompanied by an equally good removal of colour. Traditional or advanced chemical methods of decolourisation are costly and not always reliable in justifying an interest in microbial decolourisation. Among several processes anaerobic methods seem most promising. In this paper, the results of a study conducted in two pilot-scale plants comprising anaerobic fixed bed biofilters of 15 L and 5 m3 operating as continuous reactors are presented, along with evaluation of the microbial kinetics. As is shown the process proved efficient in a long-term study with no stability problems of the biofilters. The six-month performance of the pilot plant confirmed also that the pre-treated wastewater could be applied in the operation of dyeing. For the majority of the colours applied in the factory no problems were encountered when the dyeing baths were prepared by substituting 90% of fresh water to the effluent treated by a sequence of activated sludge processes: anaerobic-aerobic.

  6. Hair Dyes and Cancer Risk

    MedlinePlus

    ... including aromatic amines that were found to cause cancer in animals. In the mid- to late 1970s, however, manufacturers changed the components in dye products to eliminate some of these chemicals ... in hair dyes can cause cancer. Given the widespread use of hair dye products, ...

  7. Removal of dyes using agricultural waste as low-cost adsorbents: a review

    NASA Astrophysics Data System (ADS)

    Bharathi, K. S.; Ramesh, S. T.

    2013-12-01

    Color removal from wastewater has been a matter of concern, both in the aesthetic sense and health point of view. Color removal from textile effluents on a continuous industrial scale has been given much attention in the last few years, not only because of its potential toxicity, but also mainly due to its visibility problem. There have been various promising techniques for the removal of dyes from wastewater. However, the effectiveness of adsorption for dye removal from wastewater has made it an ideal alternative to other expensive treatment methods. In this review, an extensive list of sorbent literature has been compiled. The review evaluates different agricultural waste materials as low-cost adsorbents for the removal of dyes from wastewater. The review also outlines some of the fundamental principles of dye adsorption on to adsorbents.

  8. Choline-based ionic liquids-enhanced biodegradation of azo dyes.

    PubMed

    Sekar, Sudharshan; Surianarayanan, Mahadevan; Ranganathan, Vijayaraghavan; MacFarlane, Douglas R; Mandal, Asit Baran

    2012-05-01

    Industrial wastewaters such as tannery and textile processing effluents are often characterized by a high content of dissolved organic dyes, resulting in large values of chemical and biological oxygen demand (COD and BOD) in the aquatic systems into which they are discharged. Such wastewater streams are of rapidly growing concern as a major environmental issue in developing countries. Hence there is a need to mitigate this challenge by effective approaches to degrade dye-contaminated wastewater. In this study, several choline-based salts originally developed for use as biocompatible hydrated ionic liquids (i.e., choline sacchrinate (CS), choline dihydrogen phosphate (CDP), choline lactate (CL), and choline tartarate (CT)) have been successfully employed as the cosubstrate with S. lentus in the biodegradation of an azo dye in aqueous solution. We also demonstrate that the azo dye has been degraded to less toxic components coupled with low biomass formation.

  9. Effect of pH on the control release of microencapsulated dye in lecithin liposomes. II.

    PubMed

    Baptista, A L F; Coutinho, P J G; Real Oliveira, M E C D; Gomes, J I N Rocha

    2003-05-01

    The objective of our work has been the microencapsulation of dyes with lecithin from soybean, with the formation of liposomes, as a substitute for synthetic auxiliaries so as to improve the quality of the effluent. Current scenarios promote the disintegration and leakage of the liposomes, such as, changes in temperature, pH, and the use of surfactants. Since dyeing process is a mix of all these parameters, we pretended to study each one separately. Changes in pH at constant temperature induce a release of dye similar with changes in temperature. In acid conditions, we found a very fast initial dye release which doesn't occur in basic conditions. Using carboxyfluorescein, as a pH fluorescence probe, we concluded that the liposome membrane doesn't protect the liposome interior from changes on the external pH.

  10. Electrokinetic remediation of inorganic and organic pollutants in textile effluent contaminated agricultural soil.

    PubMed

    Annamalai, Sivasankar; Santhanam, Manikandan; Sundaram, Maruthamuthu; Curras, Marta Pazos

    2014-12-01

    The discharge from the dyeing industries constitutes unfixed dyes, inorganic salts, heavy metal complexes etc., which spoil the surrounding areas of industrial sites. The present article reports the use of direct current electrokinetic technique for the treatment of textile contaminated soil. Impressed direct current voltage of 20 V facilitates the dye/metal ions movement in the naturally available dye contaminated soil towards the opposite electrode by electromigration. IrO2–RuO2–TiO2/Ti was used as anode and Ti used as cathode. UV–Visible spectrum reveals that higher dye intensity was nearer to the anode. Ni, Cr and Pb migration towards the cathode and migration of Cu, SO42− and Cl− towards anode were noticed. Chemical oxygen demand in soil significantly decreased upon employing electrokinetic. This technology may be exploited for faster and eco-friendly removal of dye in soil environment. PMID:25461934

  11. Phytoremediation potential of Petunia grandiflora Juss., an ornamental plant to degrade a disperse, disulfonated triphenylmethane textile dye Brilliant Blue G.

    PubMed

    Watharkar, Anuprita D; Khandare, Rahul V; Kamble, Apurva A; Mulla, Asma Y; Govindwar, Sanjay P; Jadhav, Jyoti P

    2013-02-01

    Phytoremediation provides an ecofriendly alternative for the treatment of pollutants like textile dyes. The purpose of this study was to explore phytoremediation potential of Petunia grandiflora Juss. by using its wild as well as tissue-cultured plantlets to decolorize Brilliant Blue G (BBG) dye, a sample of dye mixture and a real textile effluent. In vitro cultures of P. grandiflora were obtained by seed culture method. The decolorization experiments were carried out using wild as well as tissue-cultured plants independently. The enzymatic analysis of the plant roots was performed before and after decolorization of BBG. Metabolites formed after dye degradation were analyzed using UV-vis spectroscopy, high-performance liquid chromatography, Fourier transform infrared spectroscopy, and gas chromatography-mass spectrometry. Phytotoxicity studies were performed. Characterization of dye mixture and textile effluent was also studied. The wild and tissue-cultured plants of P. grandiflora showed the decolorized BBG up to 86 %. Significant increase in the activities of lignin peroxidase, laccase, NADH-2,6-dichlorophenol-indophenol reductase, and tyrosinase was found in the roots of the plants. Three metabolites of BBG were identified as 3-{[ethyl(phenyl)amino]methyl}benzenesulfonic acid, 3-{[methyl (phenyl)amino]methyl}benzenesulfonic amino acid, and sodium-3-[(cyclohexa-2,5-dien-1-ylideneamino)methyl]benzenesulfonate. Textile effluent sample and a synthetic mixture of dyes were also decolorized by P. grandiflora. Phytotoxicity test revealed the nontoxic nature of metabolites. P. grandiflora showed the potential to decolorize and degrade BBG to nontoxic metabolites. The plant has efficiently treated a sample of dye mixture and textile effluent.

  12. Alzheimer's Dye Test?

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Massachusetts Institute of Technology (MIT) scientists have developed a new dye that could offer noninvasive early diagnosis of Alzheimer's disease, a discovery that could aid in monitoring the progression of the disease and in studying the efficacy of new treatments to stop it. The work is published in Angewandte Chemie. Today, doctors can only…

  13. A biosorption isotherm model for the removal of reactive azo dyes by inactivated mycelia of Cunninghamella elegans UCP542.

    PubMed

    Ambrósio, Sandra T; Vilar, José C; Silva, Carlos A Alves da; Okada, Kaoru; Nascimento, Aline E; Longo, Ricardo L; Campos-Takaki, Galba M

    2012-01-04

    The biosorption of three reactive azo dyes (red, black and orange II) found in textile effluents by inactive mycelium of Cunninghamella elegans has been investigated. It was found that after 120 hours of contact the adsorption led to 70%, 85%, 93% and 88% removal of reactive orange II, reactive black, reactive red and a mixture of them, respectively. The mycelium surface was found to be selective towards the azo dyes in the following order: reactive red > reactive black > orange II. Dye removal from a mixture solution resulted in 48.4 mg/g retention by mycelium and indicated a competition amongst the dyes for the cellular surface. A Freundlich adsorption isotherm model exhibited a better fit, thus suggesting the presence of heterogeneous binding sites. Electrondense deposits observed on the mycelium ultrastructure suggest that the dyes are mainly retained under the cellular surface of the inactive biomass of C. elegans.

  14. Measurement and removal of bioconcentratable compounds in refinery effluents

    SciTech Connect

    Gala, W.R.; Dorn, P.B.; Means, J.C.; Jenkins, K.D.; Folwarkow, S.

    1994-12-31

    Public concern regarding the presence of persistent, bioconcentratable compounds in fish and shellfish has led the petroleum industry to investigate methods for the measurement of bioconcentratable compounds in refinery effluents. Research has focused on developing methods to measure polycyclic aromatic hydrocarbons (PAHs) and other hydrocarbons directly in the effluent and in bivalves exposed to refinery effluents in the field and in the laboratory. Results from a multi-refinery study in the San Francisco Bay Area using selective ion monitoring GC/MS-MS indicated that alkylated and non-substituted 2--3 ring PAHs are rarely present in refinery effluents at concentrations greater than 100 ng/L. Higher MW PAHs were rarely detected. PAHs did not substantially bioconcentrate in bivalves exposed in the laboratory to refinery effluent and reference sea water. Total PAHs were generally less than 50 {mu}g/g in the effluent-exposed bivalves. A comparison of the waste water treatment facilities at each refinery suggest that biological treatment already required by existing regulations is sufficient to reduce PAH concentrations to these low levels.

  15. Blue to near-IR energy transfer cascade within a dye-doped polymer matrix, mediated by a photochromic molecular switch.

    PubMed

    Dryza, Viktoras; Smith, Trevor A; Bieske, Evan J

    2016-02-21

    The spectroscopic properties of a poly(methyl methacrylate) matrix doped with a coumarin dye, a cyanine dye, and a photochromic spiropyran dye have been investigated. Before UV irradiation of the matrix, excitation of the coumarin dye results in minimal energy transfer to the cyanine dye. The energy transfer is substantially enhanced following UV irradiation of the matrix, which converts the colourless spiropyran isomer to the coloured merocyanine isomer, which then acts as an intermediate bridge by accepting energy from the coumarin dye and then donating energy to the cyanine dye. This demonstration of a switchable energy transfer cascade should help initiate new research directions in molecular photonics.

  16. Liquid Effluent Retention Facility/Effluent Treatment Facility Hazards Assessment

    SciTech Connect

    Simiele, G.A.

    1994-09-29

    This document establishes the technical basis in support of Emergency Planning activities for the Liquid Effluent Retention Facility and Effluent Treatment Facility the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  17. Facility effluent monitoring plan for WESF

    SciTech Connect

    SIMMONS, F.M.

    1999-09-01

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the effluent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability.

  18. Synthetic reactive dye wastewater treatment by narrow-leaved cattails (Typha angustifolia Linn.): effects of dye, salinity and metals.

    PubMed

    Nilratnisakorn, S; Thiravetyan, P; Nakbanpote, W

    2007-10-01

    Narrow-leaved cattails were studied in synthetic reactive dye wastewater (SRDW) under caustic conditions. The effects of the toxic dye were expressed in terms of relative plant growth rate and the appearance of symptoms such as necrosis, and chronic or acute wilting. The dye toxicity was 25.33 mg l(-1) which was close to approximate the concentration of dye residue from the textile effluent in the public stream. The system pH and % color removal were decreased, indicating that narrow-leaved cattail can treat wastewater. The average system pH decreased from 9 to 7. The maximum color removal was approximately 60% when cultured under soil conditions. The SEM image of narrow-leaved cattail root after treatment with SRDW indicated that the root cortex was damaged and the crystalline sodium salts deposited in the root cells which caused evaporation and transpiration decreased in SRDW. The salinity under caustic conditions also affects the growth of the plants. The maximum sodium removal was approximately 44% and was found in the SRDW under soil conditions within 14 days. A small amount of sodium could enhance the relative growth rate. However, the sodium removal of the plants was limited after the third week of treatment. It should be noted that narrow-leaved cattails are known to avoid the textile dye and salt stress conditions during SRDW treatment through special mechanisms such as salt accumulation in the roots or shedding of older leaves. In addition, elements such as silicon, calcium and iron in plants might help the plant to detoxify by forming complexes with dye molecules.

  19. Synthetic reactive dye wastewater treatment by narrow-leaved cattails (Typha angustifolia Linn.): effects of dye, salinity and metals.

    PubMed

    Nilratnisakorn, S; Thiravetyan, P; Nakbanpote, W

    2007-10-01

    Narrow-leaved cattails were studied in synthetic reactive dye wastewater (SRDW) under caustic conditions. The effects of the toxic dye were expressed in terms of relative plant growth rate and the appearance of symptoms such as necrosis, and chronic or acute wilting. The dye toxicity was 25.33 mg l(-1) which was close to approximate the concentration of dye residue from the textile effluent in the public stream. The system pH and % color removal were decreased, indicating that narrow-leaved cattail can treat wastewater. The average system pH decreased from 9 to 7. The maximum color removal was approximately 60% when cultured under soil conditions. The SEM image of narrow-leaved cattail root after treatment with SRDW indicated that the root cortex was damaged and the crystalline sodium salts deposited in the root cells which caused evaporation and transpiration decreased in SRDW. The salinity under caustic conditions also affects the growth of the plants. The maximum sodium removal was approximately 44% and was found in the SRDW under soil conditions within 14 days. A small amount of sodium could enhance the relative growth rate. However, the sodium removal of the plants was limited after the third week of treatment. It should be noted that narrow-leaved cattails are known to avoid the textile dye and salt stress conditions during SRDW treatment through special mechanisms such as salt accumulation in the roots or shedding of older leaves. In addition, elements such as silicon, calcium and iron in plants might help the plant to detoxify by forming complexes with dye molecules. PMID:17688914

  20. Role of livestock effluent suspended particulate in sealing effluent ponds.

    PubMed

    Bennett, J McL; Warren, B R

    2015-05-01

    Intensive livestock feed-lots have become more prevalent in recent years to help in meeting the predicted food production targets based on expected population growth. Effluent from these is stored in ponds, representing a potential concern for seepage and contamination of groundwater. Whilst previous literature suggests that effluent particulate can limit seepage adequately in combination with a clay liner, this research addresses potential concerns for sealing of ponds with low concentration fine and then evaluates this against proposed filter-cake based methodologies to describe and predict hydraulic reduction. Short soil cores were compacted to 98% of the maximum dry density and subject to ponded head percolation with unfiltered-sediment-reduced effluent, effluent filtered to <3 μm, and chemically synthesized effluent. Reduction in hydraulic conductivity was observed to be primarily due to the colloidal fraction of the effluent, with larger particulate fractions providing minimal further reduction. Pond sealing was shown to follow mathematical models of filter-cake formation, but without the formation of a physical seal on top of the soil surface. Management considerations based on the results are presented.

  1. Dairy shed effluent treatment and recycling: Effluent characteristics and performance.

    PubMed

    Fyfe, Julian; Hagare, Dharma; Sivakumar, Muttucumaru

    2016-09-15

    Dairy farm milking operations produce considerable amounts of carbon- and nutrient-rich effluent that can be a vital source of nutrients for pasture and crops. The study aim was to characterise dairy shed effluent from a commercial farm and examine the changes produced by treatment, storage and recycling of the effluent through a two-stage stabilisation pond system. The data and insights from the study are broadly applicable to passive pond systems servicing intensive dairy and other livestock operations. Raw effluent contained mostly poorly biodegradable particulate organic material and organically bound nutrients, as well as a large fraction of fixed solids due to effluent recycling. The anaerobic pond provided effective sedimentation and biological treatment, but hydrolysis of organic material occurred predominantly in the sludge and continually added to effluent soluble COD, nutrients and cations. Sludge digestion also suppressed pH in the pond and increased salt levels through formation of alkalinity. High sludge levels significantly impaired pond treatment performance. In the facultative pond, BOD5 concentrations were halved; however smaller reductions in COD showed the refractory nature of incoming organic material. Reductions in soluble N and P were proportional to reductions in respective particulate forms, suggesting that respective removal mechanisms were not independent. Conditions in the ponds were unlikely to support biological nutrient removal. Recycling caused conservative inert constituents to accumulate within the pond system. Material leaving the system was mostly soluble (86% TS) and inert (65% TS), but salt concentrations remained below thresholds for safe land application. PMID:27213866

  2. Thiocyanation of BODIPY dyes and their conversion to thioalkylated derivatives.

    PubMed

    de Rezende, Lucas Cunha Dias; de Melo, Shaiani Maria Gil; Boodts, Stijn; Verbelen, Bram; Dehaen, Wim; da Silva Emery, Flavio

    2015-06-01

    A high-yielding method for the direct thiocyanation of BODIPY dyes is described. In 1,3-dimethyl BODIPYs, the thiocyanato group adds at position 2, whereas the insertion occurs at position 5 in 3-amino BODIPYs. The transformation of the thiocyanato group enables the synthesis of thioalkylated BODIPYs. 2-Thioalkylated BODIPYs and 3-thiocyanato-5-piperidino BODIPYs exhibit interesting spectroscopical features. Hence, the described synthetic methodology can be used for the photophysical tuning of BODIPY dyes. PMID:25946645

  3. Liquid Effluent Monitoring Program at the Pacific Northwest Laboratory

    SciTech Connect

    Ballinger, M.Y.

    1995-05-01

    Pacific Northwest Laboratory (PNL) is conducting a program to monitor the waste water from PNL-operated research and development facilities on the Hanford Site. The purpose of the program is to collect data to assess administrative controls and to determine whether discharges to the process sewer meet sewer criteria. Samples have been collected on a regular basis from the major PNL facilities on the Hanford Site since March 1994. A broad range of analyses has been performed to determine the primary constituents in the liquid effluent. The sampling program is briefly summarized in the paper. Continuous monitoring of pH, conductivity, and flow also provides data on the liquid effluent streams. In addition to sampling and monitoring, the program is evaluating the dynamics of the waste stream with dye studies and is evaluating the use of newer technologies for potential deployment in future sampling/monitoring efforts. Information collected to date has been valuable in determining sources of constituents that may be higher than the Waste Acceptance Criteria (WAC) for the Treated Effluent Disposal Facility (TEDF). This facility treats the waste streams before discharge to the Columbia River.

  4. Evaluation of in vitro efficacy for decolorization and degradation of commercial azo dye RB-B by Morganella sp. HK-1 isolated from dye contaminated industrial landfill.

    PubMed

    Pathak, Hilor; Soni, Dhaval; Chauhan, Kishor

    2014-06-01

    Reactive Black-B (RB-B) - one of the multi-sulphonated reactive azo dye - is being used extensively in textile as well as paper industries. Reactive azo dyes comprise of a significant group of synthetic compounds categorized as xenobiotics and its abatement from the environment still remains a challenge. In the present study, a newly isolated indigenous bacterial strain Morganella sp. HK-1 was exploited for its ability to decolorize and degrade RB-B dye. The isolate completely degraded RB-B (20 g L(-1)) within 24h under static conditions. Furthermore, the visible and FTIR spectral analysis established the bio-degradation of RB-B. The degraded metabolites of RB-B by Morganella sp. HK-1 were identified by GC-MS analysis as disodium 3,4,6-triamino-5-hydroxynaphthalene-2,7-disulfonate, 4-aminophenylsulfonylethyl hydrogen sulfate, naphthalene-1-ol, aniline and benzene. Based on this information, a putative pathway of degradation of RB-B by Morganella sp. HK-1 has been proposed. This study is the first report on elucidation of mechanism of bacterial degradation of RB-B dye. Furthermore, phytotoxicity, genotoxicity and aquatic acute toxicity studies of the parent dye and the bio-degraded dye products revealed drastic reduction in the toxicity of metabolites as compared to the parent dye. This implies that the biotreatment of the dye is of non-toxic nature. This study thus indicates the effectiveness of Morganella sp. HK-1 for the treatment of textile effluents containing sulphonated azo dyes.

  5. Early Evolution of the Toxicity Identification Evaluation Process: Contributions from the USEPA Effluent Testing Program

    EPA Science Inventory

    As part of its whole effluent testing program, the USEPA developed an effects-directed analysis (EDA) approach to identifying the cause of toxicity in toxic effluents or ambient waters, an EDA process termed a “Toxicity Identification Evaluation” (TIE), which is the focus of this...

  6. Comparative Toxicity of Chlorinated Saline and Freshwater Wastewater Effluents to Marine Organisms.

    PubMed

    Yang, Mengting; Liu, Jiaqi; Zhang, Xiangru; Richardson, Susan D

    2015-12-15

    Toilet flushing with seawater results in saline wastewater, which may contain approximately 33-50% seawater. Halogenated disinfection byproducts (DBPs), especially brominated and iodinated DBPs, have recently been found in chlorinated saline wastewater effluents. With the occurrence of brominated and iodinated DBPs, the adverse effects of chlorinated saline wastewater effluents to marine ecology have been uncertain. By evaluating the developmental effects in the marine polychaete Platynereis dumerilii directly exposed to chlorinated saline/freshwater wastewater effluents, we found surprisingly that chlorinated saline wastewater effluents were less toxic than a chlorinated freshwater wastewater effluent. This was also witnessed by the marine alga Tetraselmis marina. The toxicity of a chlorinated wastewater effluent to the marine species was dominated by its relatively low salinity compared to the salinity in seawater. The organic matter content in a chlorinated wastewater effluent might be partially responsible for the toxicity. The adverse effects of halogenated DBPs on the marine species were observed pronouncedly only in the "concentrated" chlorinated wastewater effluents. pH and ammonia content in a wastewater effluent caused no adverse effects on the marine species. The results suggest that using seawater to replace freshwater for toilet flushing might mitigate the "direct" acute detrimental effect of wastewater to the marine organisms.

  7. Comparative Toxicity of Chlorinated Saline and Freshwater Wastewater Effluents to Marine Organisms.

    PubMed

    Yang, Mengting; Liu, Jiaqi; Zhang, Xiangru; Richardson, Susan D

    2015-12-15

    Toilet flushing with seawater results in saline wastewater, which may contain approximately 33-50% seawater. Halogenated disinfection byproducts (DBPs), especially brominated and iodinated DBPs, have recently been found in chlorinated saline wastewater effluents. With the occurrence of brominated and iodinated DBPs, the adverse effects of chlorinated saline wastewater effluents to marine ecology have been uncertain. By evaluating the developmental effects in the marine polychaete Platynereis dumerilii directly exposed to chlorinated saline/freshwater wastewater effluents, we found surprisingly that chlorinated saline wastewater effluents were less toxic than a chlorinated freshwater wastewater effluent. This was also witnessed by the marine alga Tetraselmis marina. The toxicity of a chlorinated wastewater effluent to the marine species was dominated by its relatively low salinity compared to the salinity in seawater. The organic matter content in a chlorinated wastewater effluent might be partially responsible for the toxicity. The adverse effects of halogenated DBPs on the marine species were observed pronouncedly only in the "concentrated" chlorinated wastewater effluents. pH and ammonia content in a wastewater effluent caused no adverse effects on the marine species. The results suggest that using seawater to replace freshwater for toilet flushing might mitigate the "direct" acute detrimental effect of wastewater to the marine organisms. PMID:26505276

  8. Microscopic observation of dye molecules for solar cells on a titania surface

    PubMed Central

    Koshiya, Shogo; Yamashita, Shunsuke; Kimoto, Koji

    2016-01-01

    The lateral distribution and coverage of Ru-based dye molecules, which are used for dye-sensitized solar cells (DSCs), were directly examined on a titania surface using high-resolution scanning transmission electron microscopy (STEM). The clean surface of a free-standing titania nanosheet was first confirmed with atomic resolution, and then, the nanosheet was used as a substrate. A single dye molecule on the titania nanosheet was visualized for the first time. The quantitative STEM images revealed an inhomogeneous dye-molecule distribution at the early stage of its absorption, i.e., the aggregation of the dye molecules. The majority of the titania surface was not covered by dye molecules, suggesting that optimization of the dye molecule distribution could yield further improvement of the DSC conversion efficiencies. PMID:27087005

  9. Microscopic observation of dye molecules for solar cells on a titania surface

    NASA Astrophysics Data System (ADS)

    Koshiya, Shogo; Yamashita, Shunsuke; Kimoto, Koji

    2016-04-01

    The lateral distribution and coverage of Ru-based dye molecules, which are used for dye-sensitized solar cells (DSCs), were directly examined on a titania surface using high-resolution scanning transmission electron microscopy (STEM). The clean surface of a free-standing titania nanosheet was first confirmed with atomic resolution, and then, the nanosheet was used as a substrate. A single dye molecule on the titania nanosheet was visualized for the first time. The quantitative STEM images revealed an inhomogeneous dye-molecule distribution at the early stage of its absorption, i.e., the aggregation of the dye molecules. The majority of the titania surface was not covered by dye molecules, suggesting that optimization of the dye molecule distribution could yield further improvement of the DSC conversion efficiencies.

  10. Decolorization of azo dyes and simulated dye bath wastewater using acclimatized microbial consortium--biostimulation and halo tolerance.

    PubMed

    Dafale, Nishant; Rao, N Nageswara; Meshram, Sudhir U; Wate, Satish R

    2008-05-01

    Anaerobic acclimatization of activated sludge from a textile effluent treatment plant to high concentration of RB5 could effectively decolorize RB5 dye solution. The strains viz. Pseudomonas aeruginosa and Bacillus circulans and other unidentified laboratory isolates (NAD1 and NAD6) were predominantly present in the microbial consortium. The conditions for efficient decolorization, biostimulation to increase effectiveness of microbial consortium, its tolerance to high salt concentration and non-specific ability towards decolorization of eight azo dyes, are reported. The optimum inoculums concentration for maximum decolorization were found to be 1-5 ml of 1800+/-50 mg l(-1) MLSS and 37 degrees C, respectively. The decolorization efficiency was 70-90% during 48 h. The biomass showed efficient decolorization even in the presence of 10% NaCl, as tested with RB5. In the presence of flavin adenine dinucleotide (FAD) more than 99% decolorization occurred in 8h. The decolorization of RB5 was traced to extracellular enzymes. The effectiveness of acclimatized biomass under optimized conditions towards decolorization of two types of synthetic dye bath wastewaters that were prepared using chosen azo dyes is reported.

  11. Characterising dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Tobin, Laura L.; O'Reilly, Thomas; Zerulla, Dominic; Sheridan, John T.

    2009-08-01

    With growing energy and environmental concerns due to fossil fuel depletion and global warming there is an increasing attention being attracted by alternative and/or renewable sources of power such as biomass, hydropower, geothermal, wind and solar energy. In today's society there is a vast and in many cases not fully appreciated dependence on electrical power for everyday life and therefore devices such as PV cells are of enormous importance. The more widely used and commercially available silicon (semiconductor) based cells currently have the greatest efficiencies, however the manufacturing of these cells is complex and costly due to the cost and difficulty of producing and processing pure silicon. One new direction being explored is the development of dye-sensitised solar cells (DSSC). The SFI Strategic Research Centre for Solar Energy Conversion is a new research cluster based in Ireland, formed with the express intention of bringing together industry and academia to produce renewable energy solutions. Our specific area of research is in biomimetic dye sensitised solar cells and their electrical properties. We are currently working to develop test equipment, and optoelectronic models describing the performance and behaviors of dye-sensitised solar cells (Grätzel Cells). In this paper we describe some of the background to our work and also some of our initial experimental results. Based on these results we intend to characterise the opto-electrical properties and bulk characteristics of simple dye-sensitised solar cells and then to proceed to test new cell compositions.

  12. Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria.

    PubMed

    Asad, S; Amoozegar, M A; Pourbabaee, A A; Sarbolouki, M N; Dastgheib, S M M

    2007-08-01

    Studies were carried out on the decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Among the 27 strains of halophilic and halotolerant bacteria isolated from effluents of textile industries, three showed remarkable ability in decolorizing the widely utilized azo dyes. Phenotypic characterization and phylogenetic analysis based on 16S rDNA sequence comparisons indicate that these strains belonged to the genus Halomonas. The three strains were able to decolorize azo dyes in a wide range of NaCl concentration (up to 20%w/v), temperature (25-40 degrees C), and pH (5-11) after 4 days of incubation in static culture. They could decolorize the mixture of dyes as well as pure dyes. These strains also readily grew in and decolorized the high concentrations of dye (5000 ppm) and could tolerate up to 10,000 ppm of the dye. UV-Vis analyses before and after decolorization and the colorless bacterial biomass after decolorization suggested that decolorization was due to biodegradation, rather than inactive surface adsorption. Analytical studies based on HPLC showed that the principal decolorization was reduction of the azo bond, followed by cleavage of the reduced bond.

  13. Treatment of textile dyeing wastewater by biomass of Lactobacillus: Lactobacillus 12 and Lactobacillus rhamnosus.

    PubMed

    Sayilgan, Emine; Cakmakci, Ozgur

    2013-03-01

    The main purpose of this study was to investigate the effectiveness of Lactobacillus 12 and Lactobacillus rhamnosus as both cells and biomasses for the removal of dye from real textile dyeing wastewater. The removal experiments were conducted according to the Box-Behnken experimental design, and the regression equations for the removal of dye were determined by the Minitab 14 program. The optimum variables were found to be 10 g/L biomass concentration for biomasses, 3 for initial pH of the solution, and 20 °C for temperature with an observed dye removal efficiency of about 60 and 80 % with L. 12 and L. rhamnosus biomasses, respectively. Scanning electron microscopy and Fourier transform infrared spectroscopy images also showed that the biomass characteristics studied were favored by the sorption of the dye from the textile industry wastewater. Consequently, these biomasses may be considered as good biosorbents due to their effective yields and the lower cost of the removal of dyes from the effluents of the textile dyeing house.

  14. Probing horseradish peroxidase catalyzed degradation of azo dye from tannery wastewater.

    PubMed

    Preethi, Sadhanandam; Anumary, Ayyappan; Ashokkumar, Meiyazhagan; Thanikaivelan, Palanisamy

    2013-01-01

    Biocatalysis based effluent treatment has outclassed the presently favored physico-chemical treatments due to nil sludge production and monetary savings. Azo dyes are commonly employed in the leather industry and pose a great threat to the environment. Here, we show the degradation of C. I. Acid blue 113 using horseradish peroxidase (HRP) assisted with H2O2 as a co-substrate. It was observed that 0.08 U HRP can degrade 3 mL of 30 mg/L dye up to 80% within 45 min with the assistance of 14 μL of H2O2 at pH 6.6 and 30°C. The feasibility of using the immobilized HRP for dye degradation was also examined and the results show up to 76% dye degradation under similar conditions to that of free HRP with the exception of longer contact time of 240 min. Recycling studies reveal that the immobilized HRP can be recycled up to 3 times for dye degradation. Kinetics drawn for the free HRP catalyzed reaction marked a lower K m and higher V max values, which denotes a proper and faster affinity of the enzyme towards the dye, when compared to the immobilized HRP. The applicability of HRP for treating the actual tannery dye-house wastewater was also demonstrated. PMID:23961406

  15. Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents.

    PubMed

    He, Yaozhong; Wang, Xiaojun; Xu, Jinling; Yan, Jinli; Ge, Qilong; Gu, Xiaoyang; Jian, Lei

    2013-04-01

    A combined process including integrated ozone-BAFs (ozone biological aerated filters) and membrane filtration was first applied for recycling textile effluents in a cotton textile mill with capacity of 5000 m(3)/d. Influent COD (chemical oxygen demand) in the range of 82-120 mg/L, BOD5 (5-day biochemical oxygen demand) of 12.6-23.1 mg/L, suspended solids (SSs) of 38-52 mg/L and color of 32-64° were observed during operation. Outflows with COD≤45 mg/L, BOD5≤7.6 mg/L, SS≤15 mg/L, color≤8° were obtained after being decontaminated by ozone-BAF with ozone dosage of 20-25 mg/L. Besides, the average removal rates of PVA (polyvinyl alcohol) and UV254 were 100% and 73.4% respectively. Permeate water produced by RO (reverse osmosis) could be reused in dyeing and finishing processes, while the RO concentrates could be discharged directly under local regulations with COD≤100 mg/L, BOD5≤21 mg/L, SS≤52 mg/L, color≤32°. Results showed that the combined process could guarantee water reuse with high quality, and solve the problem of RO concentrate disposal.

  16. Radiation treatment of municipal effluent

    NASA Astrophysics Data System (ADS)

    Sawai, Teruko; Sekiguchi, Masayuki; Shimokawa, Toshinari; Sawai, Takeshi

    1993-10-01

    The recycling of municipal wastewater is an effective means of coping with the water shortage in Tokyo. After irradiation, the refractory organic substances in wastewater were decomposed. COD, light brown color, offensive odor and foaminess in the effluents were reduced with increasing dose. Inactivation efficiencies (D 10) of six microorganisms added to the secondary effluents and return sludge supernatant by irradiation were investigated. The survival curves of total bacteria, total coliforms and enterococci in the secondary effluents were compared. The number of total coliforms exponentially decreased with increasing dose and fell to undetectable levels at 0.5 kGy. The elimination of suspended solids in the secondary effluents is effective in diminishing the dose required to disinfect and prevent bacteria regrowth.

  17. Evaluation of Chemical Fluorescent Dyes as a Protein Conjugation Partner for Live Cell Imaging

    PubMed Central

    Hayashi-Takanaka, Yoko; Stasevich, Timothy J.; Kurumizaka, Hitoshi; Nozaki, Naohito; Kimura, Hiroshi

    2014-01-01

    To optimize live cell fluorescence imaging, the choice of fluorescent substrate is a critical factor. Although genetically encoded fluorescent proteins have been used widely, chemical fluorescent dyes are still useful when conjugated to proteins or ligands. However, little information is available for the suitability of different fluorescent dyes for live imaging. We here systematically analyzed the property of a number of commercial fluorescent dyes when conjugated with antigen-binding (Fab) fragments directed against specific histone modifications, in particular, phosphorylated H3S28 (H3S28ph) and acetylated H3K9 (H3K9ac). These Fab fragments were conjugated with a fluorescent dye and loaded into living HeLa cells. H3S28ph-specific Fab fragments were expected to be enriched in condensed chromosomes, as H3S28 is phosphorylated during mitosis. However, the degree of Fab fragment enrichment on mitotic chromosomes varied depending on the conjugated dye. In general, green fluorescent dyes showed higher enrichment, compared to red and far-red fluorescent dyes, even when dye∶protein conjugation ratios were similar. These differences are partly explained by an altered affinity of Fab fragment after dye-conjugation; some dyes have less effect on the affinity, while others can affect it more. Moreover, red and far-red fluorescent dyes tended to form aggregates in the cytoplasm. Similar results were observed when H3K9ac-specific Fab fragments were used, suggesting that the properties of each dye affect different Fab fragments similarly. According to our analysis, conjugation with green fluorescent dyes, like Alexa Fluor 488 and Dylight 488, has the least effect on Fab affinity and is the best for live cell imaging, although these dyes are less photostable than red fluorescent dyes. When multicolor imaging is required, we recommend the following dye combinations for optimal results: Alexa Fluor 488 (green), Cy3 (red), and Cy5 or CF640 (far-red). PMID:25184362

  18. Dye removal from textile dye wastewater using recycled alum sludge.

    PubMed

    Chu, W

    2001-09-01

    The removal of dyes from textile dying wastewater by recycled alum sludge (RAS) generated by the coagulation process itself was studied and optimized. One hydrophobic and one hydrophilic dye were used as probes to examine the performance of this process. It was found that RAS is a good way of removing hydrophobic dye in wastewater, while simultaneously reducing the fresh alum dosage, of which one third of the fresh alum can be saved. The back-diffusion of residued dye from the recycling sludge is detected but is easily controlled as long as a small amount of fresh alum is added to the system. The use of RAS is not recommended for the removal of hydrophilic dyes, since the high solubility characteristics of such dyes can cause deterioration in the water quality during recycling.

  19. Fiberized fluorescent dye microtubes

    NASA Astrophysics Data System (ADS)

    Vladev, Veselin; Eftimov, Tinko

    2013-03-01

    In the present work we study the effect of the length of fluorescent dye-filled micro-capillaries on the fluorescence spectra. Two types of micro-capillaries have been studied: a 100 μm inner diameter fused silica capillary with a transparent coating and one of the holes of a fiber optic glass ferrule with 125 μm inner diameter. The tubes were filled with solutions of Rhodamine 6G dissolved in ethanol and then in glycerin. Experimental data show that the maximum fluorescence and the largest spectral widths are observed for a sample length of about 0.25 mm for the used concentration. This results show that miniature tunable fiberized dye lasers can be developed using available standard micro-and fibre-optic components.

  20. Azacoumarin dye lasers

    DOEpatents

    Hammond, Peter R.; Atkins, Ronald L.; Henry, Ronald A.; Fletcher, Aaron N.

    1978-01-01

    A dye laser comprising a laser dye solution of a compound having the general structure: ##STR1## wherein at least one of the 5, 6 and 8 ring positions is occupied by a nitrogen atom in lieu of the corresponding CR group and X is OH, alkoxy, or amino including amino substituted by at least one of the following: alkyl, aryl, acyl, aracyl, a group which taken together with the nitrogen atom of the amino group forms a heterocyclic ring, or part of one or two 5 or 6 membered aliphatic heterocyclic rings attached to ring A at positions 6 or 8 or both depending on where the N in ring A is located. R.sub.3, R.sub.4, R.sub.5, R.sub.6 and R.sub.8 are hydrogen or other groups as defined below. The compounds lase in the blue-green to near ultraviolet region.

  1. Azaquinolone dye lasers

    DOEpatents

    Hammond, Peter R.; Atkins, Ronald L.; Henry, Ronald A.; Fletcher, Aaron N.

    1978-01-01

    A dye laser comprising a laser dye solution of a compound having the general structure: ##STR1## wherein at least one of the 5, 6 and 8 ring positions is occupied by a nitrogen atom in lieu of the corresponding CR group and X is OH, alkoxy, or amino including amino substituted by at least one of the following: alkyl, aryl, acyl, aracyl, a group which taken together with the nitrogen atom of the amino group forms a heterocyclic ring, or part of one or two 5 or 6 membered aliphatic heterocyclic rings attached to ring A at positions 6 or 8 or both depending on where the N in ring A is located. R.sub.1, R.sub.3, R.sub.4, R.sub.5, R.sub.6 and R.sub.8 are hydrogen or other groups as defined below. The compounds lase in the blue to near ultraviolet region.

  2. Industrial wastewater analysis: A toxicity-directed approach

    SciTech Connect

    Reemtsma, T.; Putschew, A.; Jekel, M.

    1999-06-01

    Methods of toxicity-directed analysis have been developed for the characterization and identification of toxic organic constituents in industrial wastewater. Sequential solid-phase extraction is followed by high-performance liquid chromatography (HPLC) fractionation or by automated multiple development thin-layer chromatography fractionation (AMD-TLC) of the toxic extracts. Toxic fractions were finally analyzed by gas chromatography-mass spectroscopy (GC-MS). Toxicity was detected before each of the analytical steps by the bioluminescence inhibition of Vibrio fischeri, which was performed on microtiter plates and on the developed TLC plates. While sequential extraction broadens the polarity range of the procedure, the new variants of the luminescence test make the method very versatile and fast. The potential of this kind of toxicity-directed analysis with respect to resolution and polarity of analytes is discussed and applications to partial effluents of a tannery, to molasses wastewater and a spent dyeing bath are presented. A variety of benzothiazoles and more polar organics were identified as major toxic compounds in tannery effluents. It is shown that the procedures are well suited to detect individual toxic components in complex industrial wastewaters. The use of LC-MS is proposed to extend the polarity range of the final identification step.

  3. Making cancer visible--Dyes in surgical oncology.

    PubMed

    Yap, Kiryu K; Neuhaus, Susan J

    2016-03-01

    Dyes share an intricate relationship with oncology. Dyes can cause cancer as chemical carcinogens, but can also be harnessed against cancer when used as diagnostic and therapeutic agents. Histopathology, imaging, and newer molecular diagnostics all rely on dyes, and their use in sentinel lymph node biopsies and intra-operative imaging has helped drive a paradigm shift in cancer surgery towards minimally-invasive and organ sparing approaches with enhanced resection accuracy. As therapeutic agents, the cytotoxicity of specific dyes can be employed in direct chemo-ablation or in photodynamic therapy. The same agent can have dual functionalities in cancer detection and treatment, in a novel field known as theranostics. This is facilitated by newer generation dyes conjugated with tumour-targeting probes such as antibodies, and these bio-conjugate agents can also incorporate nanotechnology or radio-isotopes. Further advances will be closely aligned with our increasing understanding of molecular oncology, and will form a new generation of cancer detection and treatment agents that promote precision medicine for cancer. Dyes and their roles have evolved and been reinvented, but they remain relevant as ever. This review explores the fascinating history of dyes, and their place in the state-of-the-art of oncology.

  4. Dyeing fabrics with metals

    NASA Astrophysics Data System (ADS)

    Kalivas, Georgia

    2002-06-01

    Traditionally, in textile dyeing, metals have been used as mordants or to improve the color produced by a natural or synthetic dye. In biomedical research and clinical diagnostics gold colloids are used as sensitive signals to detect the presence of pathogens. It has been observed that when metals are finely divided, a distinct color may result that is different from the color of the metal in bulk. For example, when gold is finely divided it may appear black, ruby or purple. This can be seen in biomedical research when gold colloids are reduced to micro-particles. Bright color signals are produced by few nanometer-sized particles. Dr. William Todd, a researcher in the Department of Veterinary Science at the Louisiana State University, developed a method of dyeing fabrics with metals. By using a reagent to bond the metal particles deep into the textile fibers and actually making the metal a part of the chemistry of the fiber. The chemicals of the fabric influence the resulting color. The combination of the element itself, the size of the particle, the chemical nature of the particle and the interaction of the metal with the chemistry of the fabric determine the actual hue. By using different elements, reagents, textiles and solvents a broad range of reproducible colors and tones can be created. Metals can also be combined into alloys, which will produce a variety of colors. The students of the ISCC chapter at the Fashion Institute of Technology dyed fabric using Dr. Todd's method and created a presentation of the results. They also did a demonstration of dyeing fabrics with metals.

  5. Microwave assisted dyeing of polyester fabrics with disperse dyes.

    PubMed

    Al-Mousawi, Saleh Mohammed; El-Apasery, Morsy Ahmed; Elnagdi, Mohamed Hilmy

    2013-09-09

    Dyeing of polyester fabrics with thienobenzochromene disperse dyes under conventional and microwave heating conditions was studied in order to determine whether microwave heating could be used to enhance the dyeability of polyester fabrics. Fastness properties of the dyed samples were measured. All samples dyed with or without microwave heating displayed excellent washing and perspiration fastness. The biological activities of the synthesized dyes against Gram positive bacteria, Gram negative bacteria, yeast and fungus were also evaluated.

  6. Decolorization of dyehouse effluent and biodegradation of Congo red by Bacillus thuringiensis RUN1.

    PubMed

    Olukanni, Olumide David; Osuntoki, Akinniyi A; Awotula, Ayodeji Olushola; Kalyani, Dayanand C; Gbenle, George Olabode; Govindwar, Sanjay P

    2013-06-28

    A dye-decolorizing bacterium was isolated from a soil sample and identified as Bacillus thuringiensis using 16S rRNA sequencing. The bacterium was able to decolorize three different textile dyes, namely, Reactive blue 13, Reactive red 58, and Reactive yellow 42, and a real dyehouse effluent up to 80-95% within 6 h. Some non-textile industrially important dyes were also decolorized to different extents. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometer analysis of the ethyl acetate extract of Congo red dye and its metabolites showed that the bacterium could degrade it by the asymmetric cleavage of the azo bonds to yield sodium (4- amino-3-diazenylnaphthalene-1-sulfonate) and phenylbenzene. Sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) was further oxidized by the ortho-cleavage pathway to yield 2- (1-amino-2-diazenyl-2-formylvinyl) benzoic acid. There was induction of the activities of laccase and azoreductase during the decolorization of Congo red, which suggests their probable role in the biodegradation. B. thuringiensis was found to be versatile and could be used for industrial effluent biodegradation.

  7. Dye adsorption of cotton fabric grafted with PPI dendrimers: Isotherm and kinetic studies.

    PubMed

    Salimpour Abkenar, Samera; Malek, Reza Mohammad Ali; Mazaheri, Firouzmehr

    2015-11-01

    In this research, the cotton fabrics grafted with two generations of the poly(propylene imine) dendrimers were applied to adsorb textile dyes from aqueous solutions. Direct Red 80 (anionic dye), Disperse Yellow 42 (nonionic dye) and Basic Blue 9 (cationic dye) were selected as model dyes. The effect of various experimental parameters such as initial concentration of dyes, charge of dyes molecule, salt and pH was investigated on the adsorption process. Furthermore, kinetics and equilibrium of the adsorption process on the grafted samples were studied. It was found that maximum adsorption of anionic and disperse dyes took place at around pH 3, while cationic dye could be adsorbed at around pH 11. The Langmuir equation was able to describe the mechanism of dyes adsorption. In addition, the second-order equation was found to be fit with the kinetics data. Interestingly, it seems that the dye adsorption of the grafted fabrics is strongly pH dependent. PMID:26292774

  8. Dye adsorption of cotton fabric grafted with PPI dendrimers: Isotherm and kinetic studies.

    PubMed

    Salimpour Abkenar, Samera; Malek, Reza Mohammad Ali; Mazaheri, Firouzmehr

    2015-11-01

    In this research, the cotton fabrics grafted with two generations of the poly(propylene imine) dendrimers were applied to adsorb textile dyes from aqueous solutions. Direct Red 80 (anionic dye), Disperse Yellow 42 (nonionic dye) and Basic Blue 9 (cationic dye) were selected as model dyes. The effect of various experimental parameters such as initial concentration of dyes, charge of dyes molecule, salt and pH was investigated on the adsorption process. Furthermore, kinetics and equilibrium of the adsorption process on the grafted samples were studied. It was found that maximum adsorption of anionic and disperse dyes took place at around pH 3, while cationic dye could be adsorbed at around pH 11. The Langmuir equation was able to describe the mechanism of dyes adsorption. In addition, the second-order equation was found to be fit with the kinetics data. Interestingly, it seems that the dye adsorption of the grafted fabrics is strongly pH dependent.

  9. Oxidative treatment characteristics of biotreated textile-dyeing wastewater and chemical agents used in a textile-dyeing process by advanced oxidation process.

    PubMed

    Lim, B R; Hu, H Y; Ahn, K H; Fujie, K

    2004-01-01

    The oxidative treatment characteristics of biotreated textile-dyeing wastewater and typical chemicals such as desizing, scouring, dispersing and swelling agents used in the textile-dyeing process by advanced oxidation process were experimentally studied. The refractory organic matters remained in the effluent of biological treatment process without degradation may be suitable for the improvement of biodegradability and mineralized to CO2 by combined ozonation with and without hydrogen peroxide. On the other hand, the refractory chemicals contained in the scouring agent A and swelling agent may not be mineralized and their biodegradability may not be improved by ozonation. However, the BOD/DOC ratio of scouring agent B increased from 0.3 to 0.45 after ozonation. Based on the results described above, advanced treatment process involving the ozonation without and with the addition of hydrogen peroxide, followed by biological treatment was proposed for the treatment of refractory wastewater discharged from the textile-dyeing process.

  10. Cold Pad-Batch dyeing method for cotton fabric dyeing with reactive dyes using ultrasonic energy.

    PubMed

    Khatri, Zeeshan; Memon, Muhammad Hanif; Khatri, Awais; Tanwari, Anwaruddin

    2011-11-01

    Reactive dyes are vastly used in dyeing and printing of cotton fibre. These dyes have a distinctive reactive nature due to active groups which form covalent bonds with -OH groups of cotton through substitution and/or addition mechanism. Among many methods used for dyeing cotton with reactive dyes, the Cold Pad Batch (CPB) method is relatively more environment friendly due to high dye fixation and non requirement of thermal energy. The dyed fabric production rate is low due to requirement of at least twelve hours batching time for dye fixation. The proposed CPB method for dyeing cotton involves ultrasonic energy resulting into a one third decrease in batching time. The dyeing of cotton fibre was carried out with CI reactive red 195 and CI reactive black 5 by conventional and ultrasonic (US) method. The study showed that the use of ultrasonic energy not only shortens the batching time but the alkalis concentrations can considerably be reduced. In this case, the colour strength (K/S) and dye fixation (%F) also enhances without any adverse effect on colour fastness of the dyed fabric. The appearance of dyed fibre surface using scanning electron microscope (SEM) showed relative straightening of fibre convolutions and significant swelling of the fibre upon ultrasonic application. The total colour difference values ΔE (CMC) for the proposed method, were found within close proximity to the conventionally dyed sample.

  11. Dye-coated europium monosulfide

    SciTech Connect

    Kar, Srotoswini; Dollahon, Norman R.; Stoll, Sarah L.

    2011-05-15

    Nanoparticles of EuS were synthesized using europium dithiocarbamate complexes. The resulting nanoparticles were coated with the dye, 1-pyrene carboxylic acid and the resulting material was characterized using X-ray powder diffraction, TEM, and UV-visible spectroscopy. Fluorescence spectroscopy was used to determine the relative energy of the conduction band edge to the excited state energy of the dye. -- Graphical abstract: Dye sensitized magnetic semiconductor materials were prepared by synthesizing EuS nanoparticles using single source precursors and coating with the dye, 1-pyrene carboxylic acid. Display Omitted highlights: > Synthesized EuS nanoparticles, 11{+-}2.4 nm characterized using XRD, TEM, and UV-vis. spect. > Grafted a dye to the surface and characterized the product using XRD, FTIR, UV-vis., and TEM. > Studied the photophysical properties using fluorescence spectroscopy. > Determined the relative dye excited state to the conduction band of the semiconductor.

  12. Degradation of azo dyes by oxidative processes--laccase and ultrasound treatment.

    PubMed

    Tauber, Michael M; Gübitz, Georg M; Rehorek, Astrid

    2008-07-01

    Azo dyes are of synthetic origin and their environmental fate is not well understood. They are resistant to direct aerobic bacterial degradation and form potentially carcinogenic aromatic amines by reduction of the azo group. This study shows that applying the oxidative processes of enzymatic treatment with laccase and ultrasound treatment, both alone and in combination, leads to dye degradation. Laccase treatment degraded both Acid Orange and Direct Blue dyes within 1-5 h but failed in the case of Reactive dyes, whereas ultrasound degraded all the dyes investigated (3-15 h). When applied as multi-stage combinations the treatments showed synergistic effects for dye degradation compared with individual treatments. Bulk light absorption (UV-Vis) and ion pairing HPLC were used for process monitoring. Additionally, mass spectrometry was used to elucidate the structures of intermediates arising from ultrasound treatment.

  13. Decolorization of adsorbed textile dyes by developed consortium of Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 under solid state fermentation.

    PubMed

    Kadam, Avinash A; Telke, Amar A; Jagtap, Sujit S; Govindwar, Sanjay P

    2011-05-15

    The objective of this study was to develop consortium using Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 to decolorize adsorbed dyes from textile effluent wastewater under solid state fermentation. Among various agricultural wastes rice bran showed dye adsorption up to 90, 62 and 80% from textile dye reactive navy blue HE2R (RNB HE2R) solution, mixture of textile dyes and textile industry wastewater, respectively. Pseudomonas sp. SUK1 and A. ochraceus NCIM-1146 showed 62 and 38% decolorization of RNB HE2R adsorbed on rice bran in 24h under solid state fermentation. However, the consortium of Pseudomonas sp. SUK1 and A. ochraceus NCIM-1146 (consortium-PA) showed 80% decolorization in 24h. The consortium-PA showed effective ADMI removal ratio of adsorbed dyes from textile industry wastewater (77%), mixture of textile dyes (82%) and chemical precipitate of textile dye effluent (CPTDE) (86%). Secretion of extracellular enzymes such as laccase, azoreductase, tyrosinase and NADH-DCIP reductase and their significant induction in the presence of adsorbed dye suggests their role in the decolorization of RNB HE2R. GCMS and HPLC analysis of product suggests the different fates of biodegradation of RNB HE2R when used Pseudomonas sp. SUK1, A. ochraceus NCIM-1146 and consortium PA.

  14. Effectiveness of Rice Agricultural Waste, Microbes and Wetland Plants in the Removal of Reactive Black-5 Azo Dye in Microcosm Constructed Wetlands.

    PubMed

    Saba, Beenish; Jabeen, Madeeha; Khalid, Azeem; Aziz, Irfan; Christy, Ann D

    2015-01-01

    Azo dyes are commonly generated as effluent pollutants by dye using industries, causing contamination of surface and ground water. Various strategies are employed to treat such wastewater; however, a multi-faceted treatment strategy could be more effective for complete removal of azo dyes from industrial effluent than any single treatment. In the present study, rice husk material was used as a substratum in two constructed wetlands (CWs) and augmented with microorganisms in the presence of wetland plants to effectively treat dye-polluted water. To evaluate the efficiency of each process the study was divided into three levels, i.e., adsorption of dye onto the substratum, phytoremediation within the CW and then bioremediation along with the previous two processes in the augmented CW. The adsorption process was helpful in removing 50% dye in presence of rice husk while 80% in presence of rice husk biocahr. Augmentation of microorganisms in CW systems has improved dye removal efficiency to 90%. Similarly presence of microorganisms enhanced removal of total nitrogen (68% 0 and Total phosphorus (75%). A significant improvement in plant growth was also observed by measuring plant height, number of leaves and leave area. These findings suggest the use of agricultural waste as part of a CW substratum can provide enhanced removal of textile dyes.

  15. Interaction of Cibacron Blue F3GA with glutamine synthetase: use of the dye as a conformational probe. 1. Studies using unfractionated dye samples.

    PubMed

    Federici, M M; Chock, P B; Stadtman, E R

    1985-01-29

    Cibacron Blue F3GA dye has been used to probe subtle conformational changes in protein structure associated with the conversion of Escherichia coli glutamine synthetase (GS) between relaxed, taut, oxidized, and dissociated forms. Binding of the dye to each form of the enzyme elicits a different spectral perturbation of the dye which can be detected by difference spectroscopy. By following time-dependent changes in the difference spectrum associated with the binding of dye to the enzyme, it was demonstrated that dissociation of subunits provoked either by urea or by relaxation of the enzyme at pH 8.5 is a multiphasic process. In the presence of 3-4 M urea, dissociation of taut GS is associated with an almost instantaneous, transient increase in absorbancy of the difference spectrum at 638 nm and, after a lag, by a progressive decrease in absorbancy at 585 nm and an increase at 700 nm. The kinetics of these changes vary as a function of temperature, pH, and the concentrations of KCl, MnCl2, and urea, probably reflecting differences in the rates of GS relaxation and in the formation of aggregates of intermediate sizes. Results of direct binding measurements show that the taut and relaxed forms of GS can bind only 1-1.3 equiv of dye per subunit, whereas dissociated subunits bind up to 3.0 equiv per subunit. The Kd of the dye-taut GS complex as calculated from binding data was 0.55 microM. The binding of dye to taut GS was inhibited by its substrate, ADP, and by the allosteric effectors AMP and tryptophan. On the basis of the abilities of ADP, AMP, and tryptophan to inhibit the binding of dye to GS, dissociation constants of the respective GS-ligand complexes were 2.4, 121, and 1170 microM, respectively, in good agreement with previously determined values. From the difference spectra obtained between a given concentration of dye in a 5.0-cm cell and 10 times that concentration in a 0.5-cm cell, it was established that at concentrations greater than 5 microM a

  16. Dye laser amplifier including an improved window configuration for its dye beam

    DOEpatents

    O'Neil, R.W.; Davin, J.M.

    1992-12-01

    A dye laser amplifier in which a continuously replenished supply of dye is excited with a first light beam in order to amplify the intensity of a second different light beam passing therethrough is disclosed herein. This amplifier includes a cell though which a continuous stream of the dye is caused to pass, and means for directing the first beam into the cell while the second beam is directed into and through the same cell. There is also disclosed herein a specific improvement to this amplifier which resides in the use of a pair of particularly configured windows through which the second beam passes along fixed paths as the second beam enters and exits the dye cell. Each of these windows has a relatively thick main section which is substantially larger in dimensions transverse to its beam path than the cross section of the second beam itself, whereby to add structural integrity to the overall window. At the same time, the latter includes a second section which is disposed entirely within the confines of the main section and through which the second beam is intended to pass in its entirety. This second section is made substantially thinner than the main section in order to reduce optical distortion as the second beam passes therethrough. 4 figs.

  17. Dye laser amplifier including an improved window configuration for its dye beam

    DOEpatents

    O'Neil, Richard W.; Davin, James M.

    1992-01-01

    A dye laser amplifier in which a continuously replenished supply of dye is excited with a first light beam in order to amplify the intensity of a second different light beam passing therethrough is disclosed herein. This amplifier includes a cell though which a continuous stream of the dye is caused to pass, and means for directing the first beam into the cell while the second beam is directed into and through the same cell. There is also disclosed herein a specific improvement to this amplifier which resides in the use of a pair of particularly configured windows through which the second beam passes along fixed paths as the second beam enters and exits the dye cell. Each of these windows has a relatively thick main section which is substantially larger in dimensions transverse to its beam path than the cross section of the second beam itself, whereby to add structural integrity to the overall window. At the same time, the latter includes a second section which is disposed entirely within the confines of the main section and through which the second beam is intended to pass in its entirety. This second section is made substantially thinner than the main section in order to reduce optical distortion as the second beam passes therethrough.

  18. Rec effect of certain textile dyes in Bacillus subtilis.

    PubMed

    Sharma, M K; Sobti, R C

    2000-02-16

    A large number of compounds are toxic, genotoxic, mutagenic, teratogenic and/or carcinogenic. The genotoxicity of four textile dyes commonly used in India namely Sulphur Red Brown 360 (SRB), Jade Green 2G (JG), Reactofix Turquoise Blue 5GFL (RTB) and Direct Scarlet 4BS (DS) was determined by Bacillus subtilis spore Rec assay, both in the presence and absence of metabolizing activation mixture (S9 mix). Each dye was toxic at higher dose levels. A dose-dependent increase in the depth of growth inhibition zones was observed for all dyes. Zones of inhibition were usually clearer at higher doses of the dyes and with Rec- bacteria, but were translucent with Rec+ bacteria. SRB and DS were toxic to Rec+ and Rec- bacteria. JG was less genotoxic in the absence of S9 mix, however, its genotoxic potential increased in the presence of S9 mix. Reactofix T blue was more genotoxic in the absence of S9 mixture.

  19. Biological decolorization of xanthene dyes by anaerobic granular biomass.

    PubMed

    Apostol, Laura Carmen; Pereira, Luciana; Pereira, Raquel; Gavrilescu, Maria; Alves, Maria Madalena

    2012-09-01

    Biodegradation of a xanthene dyes was investigated for the first time using anaerobic granular sludge. On a first screening, biomass was able to decolorize, at different extents, six azo dye solutions: acid orange 7, direct black 19, direct blue 71, mordant yellow 10, reactive red 2 and reactive red 120 and two xanthene dyes--Erythrosine B and Eosin Y. Biomass concentration, type of electron donor, induction of biomass with dye and mediation with activated carbon (AC) were variables studied for Erythrosine B (Ery) as model dye. Maximum color removal efficiency was achieved with 4.71 g VSS L⁻¹, while the process rates were independent of the biomass concentration above 1.89 g VSS L⁻¹. No considerable effects were observed when different substrates were used as electron donors (VFA, glucose or lactose). Addition of Ery in the incubation period of biomass led to a fivefold increase of the decolorization rate. The rate of Ery decolorization almost duplicated in the presence of commercial AC (0.1 g L⁻¹ AC₀). Using different modified AC samples (from the treatment of AC₀), a threefold higher rate was obtained with the most basic one, AC(H₂), as compared with non-mediated reaction. Higher rates were obtained at pH 6.0. Chemical reduction using Na₂S confirmed the recalcitrant nature of this dye. The results attest that decolorization of Ery is essentially due to enzymatic and adsorption phenomena.

  20. Synergistic action of azoreductase and laccase leads to maximal decolourization and detoxification of model dye-containing wastewaters.

    PubMed

    Mendes, Sónia; Farinha, Ana; Ramos, Christian G; Leitão, Jorge H; Viegas, Cristina A; Martins, Lígia O

    2011-11-01

    The azoreductase PpAzoR from Pseudomonas putida shows a broader specificity for decolourization of azo dyes than CotA-laccase from Bacillus subtilis. However, the final products of PpAzoR activity exhibited in most cases a 2 to 3-fold higher toxicity than intact dyes themselves. We show that addition of CotA-laccase to PpAzoR reaction mixtures lead to a significant drop in the final toxicity. A sequential enzymatic process was validated through the use of 18 representative azo dyes and three model wastewaters that mimic real dye-containing effluents. A heterologous Escherichia coli strain was successfully constructed co-expressing the genes coding for both PpAzoR and CotA. Whole-cell assays of recombinant strain for the treatment of model dye wastewater resulted in decolourization levels above 80% and detoxification levels up to 50%. The high attributes of this strain, make it a promising candidate for the biological treatment of industrial dye containing effluents.

  1. Sequential anaerobic/aerobic treatment of dye-containing wastewaters: colour and COD removals, and ecotoxicity tests.

    PubMed

    Silva, Marcos Erick Rodrigues da; Firmino, Paulo Igor Milen; Sousa, Márcia Rodrigues de; Santos, André Bezerra Dos

    2012-02-01

    Colour and COD removals of the azo dyes Congo Red (CR) and Reactive Black 5 (RB5) were individually evaluated in a sequential anaerobic/aerobic treatment system. Additionally, dye toxicity was assessed by using acute ecotoxicity tests with Daphnia magna as the indicator-organism. The anaerobic reactor was operated at approximately 27 °C and with hydraulic retention times of 12 and 24 h. The aerobic reactor was operated in batch mode with a total cycle of 24 h. During anaerobic step, high colour removals were obtained, 96.3% for CR (400 mg/L) and 75% for RB5 (200 mg/L). During the aerobic phase, COD effluent was considerably reduced, with an average removal efficiency of 52% for CR and 85% for RB5, which resulted in an overall COD removal of 88% for both dyes. Ecotoxicity tests with CR revealed that the anaerobic effluent presented a higher toxicity compared with the influent, and an aerobic post-treatment was not efficient in reducing toxicity. However, the results with RB5 showed that both anaerobic and aerobic steps could decrease dye toxicity, especially the aerobic phase, which removed completely the toxicity in D. magna. Therefore, the anaerobic/aerobic treatment is not always effective in detoxifying dye-containing wastewaters, sometimes even increasing dye toxicity. PMID:22238010

  2. The Chemistry of Plant and Animal Dyes.

    ERIC Educational Resources Information Center

    Sequin-Frey, Margareta

    1981-01-01

    Provides a brief history of natural dyes. Chemical formulas are provided for flavonoids, luteolin, genistein, brazilin, tannins, terpenes, naphthoquinone, anthraquinone, and dyes with an alkaloid structure. Also discusses chemical background of different dye processes. (CS)

  3. 40 CFR 471.66 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.66 Effluent limitations representing the degree of effluent...

  4. 40 CFR 471.86 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Zinc Forming Subcategory § 471.86 Effluent limitations representing the degree of effluent reduction...

  5. 40 CFR 471.26 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Magnesium Forming Subcategory § 471.26 Effluent limitations representing the degree of effluent...

  6. 40 CFR 471.76 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Uranium Forming Subcategory § 471.76 Effluent limitations representing the degree of effluent reduction...

  7. 40 CFR 471.76 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Uranium Forming Subcategory § 471.76 Effluent limitations representing the degree of effluent reduction...

  8. 40 CFR 471.86 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Zinc Forming Subcategory § 471.86 Effluent limitations representing the degree of effluent reduction...

  9. 40 CFR 471.26 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Magnesium Forming Subcategory § 471.26 Effluent limitations representing the degree of effluent...

  10. 40 CFR 471.66 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.66 Effluent limitations representing the degree of effluent...

  11. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1...

  12. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1...

  13. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1...

  14. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1...

  15. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1...

  16. 40 CFR 464.17 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Aluminum Casting Subcategory § 464.17 Effluent limitations guidelines representing the degree of effluent...

  17. 40 CFR 428.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex Rubber Subcategory § 428.42 Effluent limitations guidelines representing the degree of effluent...

  18. 40 CFR 428.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex Rubber Subcategory § 428.43 Effluent limitations guidelines representing the degree of effluent...

  19. 40 CFR 428.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex Rubber Subcategory § 428.43 Effluent limitations guidelines representing the degree of effluent...

  20. 40 CFR 428.33 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Solution Crumb Rubber Subcategory § 428.33 Effluent limitations guidelines representing the degree of effluent...

  1. 40 CFR 428.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex Rubber Subcategory § 428.43 Effluent limitations guidelines representing the degree of effluent...

  2. 40 CFR 428.23 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428.23 Effluent limitations guidelines representing the degree of effluent...

  3. 40 CFR 428.23 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428.23 Effluent limitations guidelines representing the degree of effluent...

  4. 40 CFR 428.33 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Solution Crumb Rubber Subcategory § 428.33 Effluent limitations guidelines representing the degree of effluent...

  5. 40 CFR 428.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex Rubber Subcategory § 428.42 Effluent limitations guidelines representing the degree of effluent...

  6. 40 CFR 440.115 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.115 Effluent limitations representing the degree of effluent...

  7. 40 CFR 440.112 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.112 Effluent limitations representing the degree of effluent...

  8. 40 CFR 440.115 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.115 Effluent limitations representing the degree of effluent...

  9. 40 CFR 440.112 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.112 Effluent limitations representing the degree of effluent...

  10. 40 CFR 440.92 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.92 Effluent limitations representing the degree of effluent...

  11. 40 CFR 440.35 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.35 Effluent limitations representing the degree of effluent...

  12. 40 CFR 440.115 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.115 Effluent limitations representing the degree of effluent...

  13. 40 CFR 440.92 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.92 Effluent limitations representing the degree of effluent...

  14. 40 CFR 440.112 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.112 Effluent limitations representing the degree of effluent...

  15. 40 CFR 440.92 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.92 Effluent limitations representing the degree of effluent...

  16. Treatment of textile industry effluents using orange waste: a proposal to reduce color and chemical oxygen demand.

    PubMed

    de Farias Silva, Carlos Eduardo; da Silva Gonçalves, Andreza Heloiza; de Souza Abud, Ana Karla

    2016-01-01

    Various agricultural residues have been tested as biosorbents due to their low cost, high surface area, and favorable surface chemistry. In this work, a sweet orange albedo was tested as a biosorbent for treatment of real textile effluents. The orange albedo powder was prepared by drying the residue at 50 °C and milling to 30 mesh, and then used for dye adsorption from a alkaline (pH = 10.71) effluent. The adsorption process was studied in batch experiments at 30 °C by measuring color removal and chemical oxygen demand (COD). The color removal was found not to be significantly altered when the effluent was used in its raw state, while COD increased probably due to albedo degradation. For the effluent diluted to 60% (Veffluent VH2O(-1)), color and COD removal percentages of approximately 89% were obtained. It was found that pH played a very significant role on the adsorption process, as the treated albedo displayed a relative pHPZC* of 4.61, and the highest dye removal efficiencies were reached at pH lower than 2. The COD was strongly influenced by the effluent dilution. The effectiveness in eliminating color and COD shows that orange albedo can be potentially used as a biosorbent to treat textile wastewater. PMID:27533873

  17. Treatment of textile industry effluents using orange waste: a proposal to reduce color and chemical oxygen demand.

    PubMed

    de Farias Silva, Carlos Eduardo; da Silva Gonçalves, Andreza Heloiza; de Souza Abud, Ana Karla

    2016-01-01

    Various agricultural residues have been tested as biosorbents due to their low cost, high surface area, and favorable surface chemistry. In this work, a sweet orange albedo was tested as a biosorbent for treatment of real textile effluents. The orange albedo powder was prepared by drying the residue at 50 °C and milling to 30 mesh, and then used for dye adsorption from a alkaline (pH = 10.71) effluent. The adsorption process was studied in batch experiments at 30 °C by measuring color removal and chemical oxygen demand (COD). The color removal was found not to be significantly altered when the effluent was used in its raw state, while COD increased probably due to albedo degradation. For the effluent diluted to 60% (Veffluent VH2O(-1)), color and COD removal percentages of approximately 89% were obtained. It was found that pH played a very significant role on the adsorption process, as the treated albedo displayed a relative pHPZC* of 4.61, and the highest dye removal efficiencies were reached at pH lower than 2. The COD was strongly influenced by the effluent dilution. The effectiveness in eliminating color and COD shows that orange albedo can be potentially used as a biosorbent to treat textile wastewater.

  18. Dye sensitized solar cells.

    PubMed

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO(2), ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  19. Dye Sensitized Solar Cells

    PubMed Central

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  20. Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater.

    PubMed

    Raghu, S; Ahmed Basha, C

    2007-10-22

    This paper examines the use of chemical or electrocoagulation treatment process followed by ion-exchange process of the textile dye effluent. The dye effluent was treated using polymeric coagulant (cationic dye-fixing agent) or electrocoagulation (iron and aluminum electrode) process under various conditions such as various current densities and effect of pH. Efficiencies of COD reduction, colour removal and power consumption were studied for each process. The chemical or electrochemical treatment are indented primarily to remove colour and COD of wastewater while ion exchange is used to further improve the removal efficiency of the colour, COD, Fe concentration, conductivity, alkalinity and total dissolved solids (TDS). From the results chemical coagulation, maximum COD reduction of about 81.3% was obtained at 300 mg/l of coagulant whereas in electrocoagulation process, maximum COD removal of about 92.31% (0.25 A/dm2) was achieved with energy consumption of about 19.29 k Wh/kg of COD and 80% (1A/dm(2)) COD removal was obtained with energy consumption of about 130.095 k Wh/kg of COD at iron and aluminum electrodes, respectively. All the experimental results, throughout the present study, have indicated that chemical or electrocoagulation treatment followed by ion-exchange methods were very effective and were capable of elevating quality of the treated wastewater effluent to the reuse standard of the textile industry.

  1. Ames testing of Direct Black 38 parallels carcinogenicity testing.

    PubMed

    Gregory, A R; Elliott, J; Kluge, P

    1981-12-01

    Studies have established that Direct Black 38 and two other benzidine-based dyes are carcinogenic. The carcinogenic effect has been generally considered attributable to the metabolic release of benzidine from Direct Black 38 and similar dyes. However, Ames tests indicated that when Direct Black 38 is reduced with sodium dithionate it is more mutagenic than can be accounted for by complete release of all the benzidine present in the dye molecule. While most dyes are not mutagenic when tested with S-9, a series of benzidine congener dyes were all found to be mutagenic with either TA 98 or TA 100 strains, if the dyes were first reduced with sodium dithionate. Unreduced dyes were not mutagenic. Neither anaerobic conditions nor addition of riboflavin induced mutagenicity of these dyes under the condition of our experiments.

  2. Fusarium oxysporum degradation and detoxification of a new textile-glycoconjugate azo dye (GAD).

    PubMed

    Porri, Aimone; Baroncelli, Riccardo; Guglielminetti, Lorenzo; Sarrocco, Sabrina; Guazzelli, Lorenzo; Forti, Maurizio; Catelani, Giorgio; Valentini, Giorgio; Bazzichi, Agostino; Franceschi, Massimiliano; Vannacci, Giovanni

    2011-01-01

    Degradation and detoxification of textile dyes are of interest due to the huge environmental impact of such chemicals. An isolate of Fusarium oxysporum was used to degrade and to detoxify a new chemical class of textile dyes called Glycoconjugate Azo Dye (GAD). After 6 d of growth in a liquid batch culture, the fungus degraded the dye and the culture medium at the end of incubation period showed a ˜100% detoxification compared to the initial dye solution. Increasing the initial fungal inoculum, the dye was totally decolourized after 24 h of incubation. The degradation ability was found to be common among various isolates of F. oxysporum suggesting this as a specific trait of this species. Degrading rate was enhanced in concomitancy to the glucose depletion and the beginning of the stationary phase of growth, suggesting that the shift from the primary to the secondary metabolism may be the trigger of the degradation pathway. The Daphnia magna acute toxicity test demonstrated a strong detoxification of GAD-4 by F. oxysporum, resulting in non-toxic metabolite production. Fusarium oxysporum could, therefore, be taken into consideration to develop new remediation strategies of textile effluents.

  3. Decolorization of azo dyes by marine Shewanella strains under saline conditions.

    PubMed

    Liu, Guangfei; Zhou, Jiti; Meng, Xianming; Fu, Shiang Q; Wang, Jing; Jin, Ruofei; Lv, Hong

    2013-05-01

    Azo dye decolorization was studied with Shewanella strains under saline conditions. Growing cells of Shewanella algae and Shewanella marisflavi isolated from marine environments demonstrated better azo dye decolorization capacities than the other three strains from non-saline sources. Cell suspensions of S. algae and S. marisflavi could decolorize single or mixed azo dyes with different structures. Decolorization kinetics were described with Michaelis-Menton equation, which indicated better decolorization performance of S. algae over S. marisflavi. Lactate and formate were identified as efficient electron donors for amaranth decolorization by the two strains. S. algae and S. marisflavi could decolorize amaranth at up to 100 g L(-1) NaCl or Na2SO4. However, extremely low concentration of NaNO3 exerted strong inhibition on decolorization. Both strains could remove the color and COD of textile effluent during sequential anaerobic-aerobic incubation. Lower concentrations of NaCl (20-30 g L(-1)) stimulated the activities of azoreductase, laccase, and NADH-DCIP reductase. The decolorization intermediates were identified by high-performance liquid chromatography and Fourier transform infrared spectroscopy. Decolorization metabolites of amaranth were less toxic than original dye. These findings improved our knowledge of azo-dye-decolorizing Shewanella species and provided efficient candidates for the treatment of dye-polluted saline wastewaters.

  4. Waste sizing solution as co-substrate for anaerobic decolourisation of textile dyeing wastewaters.

    PubMed

    Bisschops, I; dos Santos, A B; Spanjers, H

    2005-01-01

    Dyeing wastewaters and residual size are textile factory waste streams that can be treated anaerobically. For successful anaerobic treatment of dyeing effluents, a co-substrate has to be added because of their low concentration of easily biodegradable compounds. Starch-based size contains easily biodegradable material, but is too concentrated to be treated without difficulties. Although residual size makes up only a small volume, when mixed with the other textile wastewater streams it has a considerable impact on the overall organic load. Many textile dyes can pass through a conventional aerobic treatment plant without being degraded. Anaerobic pre-treatment of the dyeing wastewaters before discharge to the aerobic plant can solve this problem, as many dyestuffs are partly degradable under anaerobic conditions, rendering aerobically degradable products. In this study, the possibility of using waste size as a co-substrate for the anaerobic pre-treatment of dyeing wastewaters was investigated. It was found that waste size was applicable as co-substrate for the decolourisation of the two textile dyeing wastewaters studied. Adding a redox mediator could enhance decolourisation rates for both wastewaters.

  5. Effect of temperature and surfactant on the control release of microencapsulated dye in lecithin liposomes. I.

    PubMed

    Baptista, A L F; Coutinho, P J G; Real Oliveira, M E C D; Gomes, J I N Rocha

    2003-05-01

    The objective of our work has been the microencapsulation of dyes with lecithin from soybean, with the formation of liposomes, as a substitute for synthetic auxiliaries so as to improve the quality of the effluent. Current scenarios promote the disintegration and leakage of the liposomes, such as, changes in temperature, pH and the use of surfactants. Since dyeing process is a mix of all these parameters, we pretended to study each one separately. Rhodamine 6G fluorescence is known to be concentration quenched through the formation of non-fluorescent dimmers and, additionally, through the energy transfer from rhodamine monomer to these dimmers (Baptista ALF, Coutinho PJG, Real Oliveira MECD, Gomes JINR. Proceedings of 13th International Symposium of Surfactants, SIS 2000, Gainesville, USA, 2000). The temperature, the surfactant and pH induce a release of the encapsulated dye resulting in rhodamine dilution and consequently alterations in the dimerization/binding equilibrium. The experimental spectra indicate that rhodamine binds almost completely to liposomes. The decomposition of the rhodamine fluorescence spectra allowed us to determine the percentage of released dye during a simulated dyeing process, and allowed us to conclude that the dimerization process occurs mainly at the inner interfaces. The amount of dye released induced by temperature changes was greater in the presence of surfactant.

  6. Characterization of fluorescent-dissolved organic matter and identification of specific fluorophores in textile effluents.

    PubMed

    Li, Wentao; Xu, Zixiao; Wu, Qian; Li, Yan; Shuang, Chendong; Li, Aimin

    2015-03-01

    This study focused on the characterization of fluorescent-dissolved organic matter and identification of specific fluorophores in textile effluents. Samples from different textile wastewater treatment plants were characterized by high-performance liquid chromatography and size exclusion chromatography as well as fluorescence excitation-emission matrix spectra. Despite the highly heterogeneous textile effluents, the fluorescent components and their physicochemical properties were found relatively invariable, which is beneficial for the combination of biological and physicochemical treatment processes. The humic-like substance with triple-excitation peaks (excitation (Ex) 250, 310, 365/emission (Em) 460 nm) presented as the specific fluorescence indicator in textile effluents. It was also the major contributor to UV absorbance at 254 nm and resulted in the brown color of biologically treated textile effluents. By spectral comparison, the specific fluorophore in textile effluents could be attributed to the intermediate structure of azo dyes 1-amino-2-naphthol, which was transferred into the special humic-like substances during biological treatment.

  7. The potential of free cells of Pseudomonas aeruginosa on textile dye degradation.

    PubMed

    Selvakumar, Kuppusamy Vaithilingam; Basha, Chiya Ahmed; Prabhu, Harinarayan Janardhana; Kalaichelvi, Ponnusamy; Nelliyan, Sudha

    2010-04-01

    The objective of the present work was to reduce chemical oxygen demand (COD), color of textile effluent containing dye Procion Blue 2G and recycle the treated effluent. To achieve this objective, the degradation potential of bacterial strain Pseudomonas aeruginosa was tested. In degradation, the 'clean' electro-oxidation (EO) process was combined with bio-treatment such that an electro-oxidation step was included between two bio-degradation treatments. Bio-oxidation process was carried out under aerobic and anoxic conditions. Results showed more than 90% reduction in COD and complete removal of color at the end of two cycles of combined oxidation process with a post electro-oxidation. The treated effluent was then subjected to photo-oxidation to remove the microbes so that the water can be recycled after the removal of total dissolved solids (TDS).

  8. Effects of Dye Structure in Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Hoskins, Anna R.

    Dye sensitized solar cells (DSSCs) are photovoltaic devices that may compete with standard silicon solar cells due to their ease of construction and lower cost [32]. Ruthenium dye structures, such as N3 (Ru -- (4,4' -- dicarboxylic acid -- 2,2' -- bipyridine)2(NCS)2), have shown promise for collection efficiencies near silicon photovoltaic levels [20, 33]. DSSCs have not achieved the reproducibility and maximum efficiency of silicon solar cells [33, 34]. Altering ligands on the dye molecules may affect the energies of light that are absorbed by the DSSC. Photovoltaic testing, including current versus voltage tests, of DSSCs with both narrow band monochromated light sources and broadband (AM1.5 solar simulator) allows comparison between maximum efficiency, short-circuit current, open circuit voltage, and spectral response (SR) for the dye molecules. By studying how the efficiency and power output change with different dye structures, the nature of how to increase efficiency of the DSSC can be addressed. Conjugation length of the ligands in ruthenium dye molecules can be shown, through square-well and Huckel theory calculations, to have a role in changing the HOMO-LUMO gap of the molecules and the absorption of specific wavelengths of light by the DSSC. The efficiency, max power, short circuit current, open circuit voltage, and SR were all measured for the DSSCs at wavelengths from 350 nm to 690 nm using a monochromated light source. Measurements taken at 20 nm steps reveal trends in the photon acceptance for dye molecules that can be linked to the conjugation length of the ligands in the dye through the SR. The change in the SR centroid and UV-VIS measurements indicate a trend toward increasing optimal wavelength with increasing conjugation length in the dye molecules; however these trends are not as pronounced as theoretical calculations for the dyes. This difference in wavelength shift occurs due to the theoretical calculations accounting for only the ligands

  9. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation.

    PubMed

    An, Alicia Kyoungjin; Guo, Jiaxin; Jeong, Sanghyun; Lee, Eui-Jong; Tabatabai, S Assiyeh Alizadeh; Leiknes, TorOve

    2016-10-15

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR18), and acid yellow 36 (AY36) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane-dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye-dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment.

  10. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation.

    PubMed

    An, Alicia Kyoungjin; Guo, Jiaxin; Jeong, Sanghyun; Lee, Eui-Jong; Tabatabai, S Assiyeh Alizadeh; Leiknes, TorOve

    2016-10-15

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR18), and acid yellow 36 (AY36) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane-dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye-dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment. PMID:27486044

  11. Synthesis of nickel–zinc ferrite magnetic nanoparticle and dye degradation using photocatalytic ozonation

    SciTech Connect

    Mahmoodi, Niyaz Mohammad; Bashiri, Marziyeh; Moeen, Shirin Jebeli

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Nickel–zinc ferrite magnetic nanoparticle (NZFMN) was synthesized and characterized. ► Dye degradation by photocatalytic ozonation using NZFMN was studied. ► Formate, acetate and oxalate were detected as dominant dye degradation aliphatic intermediates. ► Nitrate, sulfate and chloride ions were detected as mineralization products of dyes. ► NZFMN was an effective magnetic nanocatalyst to degrade dyes. -- Abstract: In this paper, nickel–zinc ferrite magnetic nanoparticle (NZFMN) was synthesized and its dye degradation ability using photocatalytic ozonation was investigated. The NZFMN was characterized by X-ray diffraction (XRD), scanning electron microscopic (SEM), Fourier transforms infrared (FTIR) and alternative gradient force magnetometer (AGFM). Reactive Red 198 (RR198) and Direct Green 6 (DG6) were used as dye models. UV–vis and ion chromatography (IC) analyses were employed to study dye degradation. The effects of operational parameters on decolorization such as NZFMN dosage, dye concentration, salt and pH were studied. RR198 and DG6 were completely decolorized (100%) by photocatalytic ozonation using NZFMN. Formate, acetate and oxalate anions were detected as dominant aliphatic intermediates. Nitrate, sulfate and chloride ions were detected as mineralization products of dyes. Results showed that the photocatalytic ozonation using NZFMN was a very effective method for dye degradation.

  12. Plant-mediated synthesis of silver-nanocomposite as novel effective azo dye adsorbent

    NASA Astrophysics Data System (ADS)

    Satapathy, Mantosh Kumar; Banerjee, Priya; Das, Papita

    2015-01-01

    Toxicity of textile effluent is a globally alarming issue nowadays. In order to address this problem, a cost-effective and environment-friendly technique for adsorption of toxic dyes has been introduced in this research. Firstly in this study, green synthesis of silver nanoparticles (AgNPs) having antibacterial efficacy, had been carried out using leaf extracts of Azadirachta indica as reducing as well as capping agent. This research idea was further extended for the development and application of a novel method of preparation of silver-nanocomposite using synthesized microwave-assisted AgNPs with soil as a novel nanocomposite to adsorb hazardous dyes. However, this nanocomposite was found to possess higher efficiency and adsorption capacity in comparison to soil as adsorbent for the removal of crystal violet dye under same experimental conditions. Additionally, it was also observed that use of this Ag-nanocomposite as adsorbent helped in achieving about 97.2 % removal of crystal violet dye from the effluent solution.

  13. Application of enhanced membrane bioreactor (eMBR) to treat dye wastewater.

    PubMed

    Rondon, Hector; El-Cheikh, William; Boluarte, Ida Alicia Rodriguez; Chang, Chia-Yuan; Bagshaw, Steve; Farago, Leanne; Jegatheesan, Veeriah; Shu, Li

    2015-05-01

    An enhanced membrane bioreactor (eMBR) consisting of two anoxic bioreactors (ARs) followed by an aerated membrane bioreactor (AMBR), UV-unit and a granular activated carbon (GAC) filter was employed to treat 50-100 mg/L of remazol blue BR dye. The COD of the feed was 2334 mg/L and COD:TN:TP in the feed was 119:1.87:1. A feed flow rate of 5 L/d was maintained when the dye concentration was 50 mg/L; 10 L/d of return activated sludge was recirculated to each AR from the AMBR. Once the biological system is acclimatised, 95% of dye, 99% of COD, 97% of nitrogen and 73% of phosphorus were removed at a retention time of 74.4 h. When the effluent from the AMBR was drawn at a flux rate of 6.5 L/m(2)h, the trans-membrane pressure reached 40 kPa in every 10 days. AMBR effluent was passed through the UV-unit and GAC filter to remove the dye completely. PMID:25723130

  14. Application of enhanced membrane bioreactor (eMBR) to treat dye wastewater.

    PubMed

    Rondon, Hector; El-Cheikh, William; Boluarte, Ida Alicia Rodriguez; Chang, Chia-Yuan; Bagshaw, Steve; Farago, Leanne; Jegatheesan, Veeriah; Shu, Li

    2015-05-01

    An enhanced membrane bioreactor (eMBR) consisting of two anoxic bioreactors (ARs) followed by an aerated membrane bioreactor (AMBR), UV-unit and a granular activated carbon (GAC) filter was employed to treat 50-100 mg/L of remazol blue BR dye. The COD of the feed was 2334 mg/L and COD:TN:TP in the feed was 119:1.87:1. A feed flow rate of 5 L/d was maintained when the dye concentration was 50 mg/L; 10 L/d of return activated sludge was recirculated to each AR from the AMBR. Once the biological system is acclimatised, 95% of dye, 99% of COD, 97% of nitrogen and 73% of phosphorus were removed at a retention time of 74.4 h. When the effluent from the AMBR was drawn at a flux rate of 6.5 L/m(2)h, the trans-membrane pressure reached 40 kPa in every 10 days. AMBR effluent was passed through the UV-unit and GAC filter to remove the dye completely.

  15. Decolorization of the AO24 azo dye and reduction of toxicity and genotoxicity in trickling biofilters.

    PubMed

    Garzóón-Zúñga, Marco A; Sandoval-Villasana, Ana M; Moeller-Chávez, Gabriela E

    2011-02-01

    Acid Orange 24 (AO24) dye was degraded in a trickling biofilter packed with peat and wood chips and inoculated with biomass from a petrochemical industry wastewater system. Different operating strategies were tested; in the first stage, two biofilters were operated independently--one non-aerated biofilter (passive) and the other with aeration-subsequently, the systems were operated serially, and effluent from the non-aerated biofilter was fed to the biofilter with aeration. This treatment train was used to test three different filtration velocities--0.141, 0.282, and 0.423 m/d. The results show that, when operating the systems with a dye charge of 0.035 kg AO24 m2/d and treating the effluent in a single step, good removal efficiencies of AO24 (95 and 89%), COD (63 and 53%), and acute toxicity (63 and 78%) were obtained in both biofilters (with and without air), although mutagenic and potentially carcinogenic intermediary compounds were not removed, because genotoxicity exhibits values higher than 2.0 units for the mutation rate. When using the non-aerated biofilter/aerated biofilter treatment train, it is possible to treat a dye charge 3 times greater (0.106 kg AO24 m2/d) and efficiently remove 98% AO24, 76% COD, 100% acute toxicity, and 100% genotoxicity, which indicates that, with this biological system, an advanced degree of biotransformation and mineralization of the azo dye AO24 is achieved.

  16. Bioremediation of textile azo dyes by aerobic bacterial consortium.

    PubMed

    Senan, Resmi C; Abraham, T Emilia

    2004-08-01

    An aerobic bacterial consortium consisting of two isolated strains (BF1, BF2) and a strain of Pseudomonas putida (MTCC1194) was developed for the aerobic degradation of a mixture of textile azodyes and individual azodyes at alkaline pH (9-10.5) and salinity (0.9-3.68 g/l) at ambient temperature (28 +/- 2 degrees C). The degradation efficiency of the strains in different media (mineral media and in the Simulated textile effluent (STE)) and at different dye concentrations were studied. The presence of a H2O2 independent oxidase-laccase (26.5 IU/ml) was found in the culture filtrate of the organism BF2. The analysis of the degraded products by TLC and HPLC, after the microbial treatment of the dyes showed the absence of amines and the presence of low molecular weight oxidative degradation products. The enzymes present in the crude supernatant was found to be reusable for the dye degradation.

  17. Multifactorial optimization of the decolorisation parameters of wastewaters resulting from dyeing flowers.

    PubMed

    Pavas, Edison Gil; Gómez-García, Miguel Angel

    2009-01-01

    This work deals with the treatment of the wastewaters resulting from the process of dyeing flowers. In some local cases for growing flowers near to Medellín (Colombia), wastewater color was found to be one of the main problems in meeting local effluent standards. Wastewaters were treated by photodegradation process (which includes photocatalysis) to achieve the degradation of dyes mixture and organic matter in the wastewater. A multifactorial experimental design was proposed, including as experimental factors the following variables: pH, and the concentration of both catalyst (TiO(2)) and hydrogen peroxide (H(2)O(2)). According to the obtained results, at the optimized variables values, it is possible to reach a 99% reduction of dyes, a 76.9% of mineralization (TOC) and a final biodegradability of 0.834. Kinetic analysis allows proposing a pseudo first order reaction for the reduction, the mineralization, and the biodegradation processes. PMID:19381002

  18. [Azo dyes, their environmental effects, and defining a strategy for their biodegradation and detoxification].

    PubMed

    Gudelj, Ivana; Hrenović, Jasna; Dragičević, Tibela Landeka; Delaš, Frane; Soljan, Vice; Gudelj, Hrvoje

    2011-03-01

    Intense industrial development has been accompanied by the production of wastewaters of very complex content, which pose a serious hazard to the environment, put at risk sustainable development, and call for new treatment technologies that would more effectively address the issue. One particular challenge in terms of science and technology is how to biodegrade xenobiotics such as azo dyes, which practically do not degrade under natural environmental conditions. These compounds tend to bioaccumulate in the environment, and have allergenic, carcinogenic, mutagenic, and teratogenic properties for humans. Removal of azo dyes from effluents is mostly based on physical-chemical methods. These methods are often very costly and limited, as they accumulate concentrated sludge, which also poses a significant secondary disposal problem, or produce toxic end-products. Biotechnological approach may offer alternative, lowcost biological treatment systems that can completely biodegrade and detoxify even the hard-to-biodegrade azo dyes.

  19. Closed-cycle textile dyeing: full-scale hyperfiltration demonstration (design)

    SciTech Connect

    1982-01-01

    Hyperfiltration (HF) is a membrane separation technique that has been used successfully in desalination of natural water. Because energy, process chemicals and water are discharged from industrial processes in large quantities, the application of various types of membranes to recover through recycle has been studied in a series of government sponsored research projects. The results of the research led to the current project of joining a full scale dynamic membrane HF system with an operating dye range into an integrated production unit. The dye range is a multi-purpose unit having a variety of effluents from preparation and dyeing of textile fabric. This report describes the design and construction of the hyperfiltration equipment; presents and evaluates data from one year of operation; gives costs for equipment, installation and operation, and credits for savings due to recycle; and describes the primary objectives of an 18 month project continuation.

  20. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Detergents Subcategory § 417.163 Effluent limitations guidelines representing the degree... detergent operations the following values pertain: Effluent characteristic Effluent limitations Maximum...

  1. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Detergents Subcategory § 417.163 Effluent limitations guidelines representing the degree... detergent operations the following values pertain: Effluent characteristic Effluent limitations Maximum...

  2. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Detergents Subcategory § 417.163 Effluent limitations guidelines representing the degree... detergent operations the following values pertain: Effluent characteristic Effluent limitations Maximum...

  3. 40 CFR 455.22 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... representing the degree of effluent reduction attainable by the application of the best practicable control... Chemicals Manufacturing Subcategory § 455.22 Effluent limitations guidelines representing the degree of... shall achieve the following effluent limitations representing the degree of effluent...

  4. Utilization of carbon nanotubes for the removal of rhodamine B dye from aqueous solutions.

    PubMed

    Kumar, Sandeep; Bhanjana, Gaurav; Jangra, Kavita; Dilbaghi, Neeraj; Umar, Ahmad

    2014-06-01

    Carbon nanotubes (CNTs) are attracting increasing research interest as promising adsorbents for harmful cations, anions, and other organic and inorganic impurities present in natural sources of water. This study examined the feasibility of removing Rhodamine B dye from aqueous solutions using multi walled carbon nanotubes (MWCNTs) synthesized by chemical vapor deposition (CVD) method. The effects of dye concentration, pH and contact time on adsorption of direct dye by CNTs were also evaluated. The study used the Langmuir and Temkin isotherms to describe equilibrium adsorption. Additionally, pseudo second-order model was adopted to evaluate experimental data and thereby elucidate the kinetic adsorption process. The adsorption percentage of dye increased as contact time increased. Conversely, the adsorption percentage of dye decreased as dye concentration increased. The pseudo second-order model best represented adsorption kinetics. The capacity of CNTs to adsorb Rhodamine B was 65-90% at different pH values.

  5. Suppression of relaxation modes in dye dispersed SmC* phase

    NASA Astrophysics Data System (ADS)

    Yadav, Satya Prakash; Pande, Mukti; Manohar, Rajiv; Singh, Shri

    2014-03-01

    We report the results of dielectric and electro-optical properties of ferroelectric liquid crystal (FLC), Felix 17/100, exhibiting chiral smectic C phase and dye dispersed FLCs. The polarization measurement on pristine and dye dispersed FLC mixture shows decrease in the value of polarization, indicating the distribution of dye dipole in a direction opposite to the orientation of FLC molecule. The rotational viscosity also decreases accordingly as shown by the measurement of response time. Dielectric measurement shows existence of two relaxation modes both in pure FLC and dye dispersed FLC. The relaxation strength of Goldstone mode decreases with the dispersion of dye and the relaxation frequency of this mode shifts towards the high-frequency side. The second relaxation mode arises due to the formation of domains at the surface interface. The dispersion of dye into FLC suppresses the domains.

  6. Utilization of carbon nanotubes for the removal of rhodamine B dye from aqueous solutions.

    PubMed

    Kumar, Sandeep; Bhanjana, Gaurav; Jangra, Kavita; Dilbaghi, Neeraj; Umar, Ahmad

    2014-06-01

    Carbon nanotubes (CNTs) are attracting increasing research interest as promising adsorbents for harmful cations, anions, and other organic and inorganic impurities present in natural sources of water. This study examined the feasibility of removing Rhodamine B dye from aqueous solutions using multi walled carbon nanotubes (MWCNTs) synthesized by chemical vapor deposition (CVD) method. The effects of dye concentration, pH and contact time on adsorption of direct dye by CNTs were also evaluated. The study used the Langmuir and Temkin isotherms to describe equilibrium adsorption. Additionally, pseudo second-order model was adopted to evaluate experimental data and thereby elucidate the kinetic adsorption process. The adsorption percentage of dye increased as contact time increased. Conversely, the adsorption percentage of dye decreased as dye concentration increased. The pseudo second-order model best represented adsorption kinetics. The capacity of CNTs to adsorb Rhodamine B was 65-90% at different pH values. PMID:24738392

  7. Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates.

    PubMed

    Berlier, Judith E; Rothe, Anca; Buller, Gayle; Bradford, Jolene; Gray, Diane R; Filanoski, Brian J; Telford, William G; Yue, Stephen; Liu, Jixiang; Cheung, Ching-Ying; Chang, Wesley; Hirsch, James D; Beechem, Joseph M; Haugland, Rosaria P; Haugland, Richard P

    2003-12-01

    Amine-reactive N-hydroxysuccinimidyl esters of Alexa Fluor fluorescent dyes with principal absorption maxima at about 555 nm, 633 nm, 647 nm, 660 nm, 680 nm, 700 nm, and 750 nm were conjugated to antibodies and other selected proteins. These conjugates were compared with spectrally similar protein conjugates of the Cy3, Cy5, Cy5.5, Cy7, DY-630, DY-635, DY-680, and Atto 565 dyes. As N-hydroxysuccinimidyl ester dyes, the Alexa Fluor 555 dye was similar to the Cy3 dye, and the Alexa Fluor 647 dye was similar to the Cy5 dye with respect to absorption maxima, emission maxima, Stokes shifts, and extinction coefficients. However, both Alexa Fluor dyes were significantly more resistant to photobleaching than were their Cy dye counterparts. Absorption spectra of protein conjugates prepared from these dyes showed prominent blue-shifted shoulder peaks for conjugates of the Cy dyes but only minor shoulder peaks for conjugates of the Alexa Fluor dyes. The anomalous peaks, previously observed for protein conjugates of the Cy5 dye, are presumably due to the formation of dye aggregates. Absorption of light by the dye aggregates does not result in fluorescence, thereby diminishing the fluorescence of the conjugates. The Alexa Fluor 555 and the Alexa Fluor 647 dyes in protein conjugates exhibited significantly less of this self-quenching, and therefore the protein conjugates of Alexa Fluor dyes were significantly more fluorescent than those of the Cy dyes, especially at high degrees of labeling. The results from our flow cytometry, immunocytochemistry, and immunohistochemistry experiments demonstrate that protein-conjugated, long-wavelength Alexa Fluor dyes have advantages compared to the Cy dyes and other long-wavelength dyes in typical fluorescence-based cell labeling applications.

  8. Effects of complex effluents from the River Raisin on zooplankton grazing in Lake Erie

    SciTech Connect

    McNaught, D.C.; Bridgham, S.D.; Meadows, C.

    1988-01-01

    Functional ecosystem tests should reflect the hazards of toxic chemicals, as well as stimulation by nutrients, by measuring a single flux of phytoplankton to the dominant members of the community. The flux of phytoplankton and detritus to zooplankton is reflected by the filtering rates of individual organisms, expressed as millilitres per animal per hour. The authors used common particle counting techniques to measure such fluxes in the waters of Lake Erie. They then examined the impact of complex effluents on the filtering rates. These effluent effects are scored as inhibition or stimulation of filtering by the dominant herbivores in the Lake Erie ecosystem. In the River Raisin, a tributary to Lake Erie, specific effluents usually inhibited grazing by the herbivores Daphnia. Diaptomus, and Cyclops, although one effluent was stimulatory. These results were directionally consistent and probably depended on the characteristics (especially the concentrations of metals) of the effluents.

  9. Results of a "Whole Effluent Assessment" study from different industrial sectors in Germany according to OSPAR's WEA strategy.

    PubMed

    Gartiser, Stefan; Hafner, Christoph; Oeking, Sven; Paschke, Albrecht

    2009-02-01

    The results of a Whole Effluent Assessment (WEA) of 8 wastewater samples from different industrial sectors as the German contribution to the OSPAR-WEA expert group are presented. The testing strategy followed the WEA principles described in the OSPAR WEA-Guidance document considering persistency (P), potentially bio-accumulative substances (B) and toxicity (T). All wastewater samples have been tested before and after a biodegradation test. The Zahn-Wellens test has been applied with wastewater indirectly discharged to a municipal treatment plant, the DOC Die away assay for wastewater directly discharged to surface water. The DIN standardized bioassays referred to in the German wastewater ordinance which partly are related to screening versions of the respective OECD guidelines have been applied. The potentially bio-accumulative substances (PBS) were determined by solid phase microextraction (SPME) and referred to the reference compound 2,3-dimethylnaphthalene. Generally low to moderate ecotoxic effects of wastewater samples have been determined with maximum values of LID(A)=8 in the algae test, LID(L)=24 in the luminescent bacteria test and LID(Egg)=6 in the fish egg test. Low levels of PBS were determined in the effluents after biological treatment. The Zahn-Wellens test proved to be a suitable screening tool for the biological treatment of wastewater samples. The mutagenicity of one wastewater sample from the chemical industry was investigated by additional chemical analysis and backtracking. A nitro-aromatic compound (2-methoxy-4-nitroaniline) used for batchwise azo dye synthesis and its transformation products are the probable cause for the mutagenic effects analysed. PMID:19212594

  10. Mutagenicity of some lipsticks and their dyes.

    PubMed

    Green, M R; Pastewka, J V

    1980-03-01

    Twenty-four lipsticks of various shades and colors were tested for mutagencitiy with the histidine-requiring tester strain Salmonella typhimurium TA98. Nine lipsticks were mutagenic without microsomal (S-9) activation. Dose-response effects were observed. Eight colorants listed as ingredients of the mutagenic lipsticsk were tested with and without S-9. Drug and Cosmetic (D&C) Orange No. 17, a monoazo dye with two nitro groups, was highly mutagenic in the absence of S-9. The mutagenic effect was decreased or lost in the presence of S-9 prepared from livers of male noninbred Sprague-Dawley rats given a single injection of Aroclor 1254. Eight lipsticsk matched for ingredients other than dyes were tested. Two containing D&C Orange No. 17 were directly mutagenic. The mutagenic effect was decreased by the presence of S-9. Only D&C Orange No. 17 was sufficiently mutagenic without microsomal activation to account for the mutagenicity observed in these lipsticks. Lipsticks containing D&C Orange No. 17 and those labeled with the words "may contain" D&C Orange No. 17 should be suspected of being mutagenic for S. typhimurium TA98. This dye and 2,4-dinitrosaniline, which may also be present, are potential health hazards. Assessment of their carcinogenicity awaits evaluation of results obtained by appropriate testing in animals.

  11. Aerobic degradation of a mixture of azo dyes in a packed bed reactor having bacteria-coated laterite pebbles.

    PubMed

    Senan, Resmi C; Shaffiqu, T S; Roy, J Jegan; Abraham, T Emilia

    2003-01-01

    A microbial consortium capable of aerobic degradation of a mixture of azo dyes consisting of two isolated strains (RRL,TVM) and one known strain of Pseudomonas putida (MTCC 1194) was immobilized on laterite stones. The amount of bacterial biomass attached to the laterite stones was 8.64 g per 100 g of the stone on a dry weight basis. The packed bed reactor was filled with these stones and had a total capacity of 850 mL and a void volume of 210 mL. The feed consisted of an equal mixture of seven azo dyes both in water as well as in a simulated textile effluent, at a pH of 9.0 and a salinity of 900 mg/L. The dye concentrations of influent were 25, 50, and 100 microg/mL. The residence time was varied between 0.78 and 6.23 h. It was found that at the lowest residence time 23.55, 45.73, and 79.95 microg of dye was degraded per hour at an initial dye concentration of 25, 50, and 100 microg, respectively. The pH was reduced from 9.0 to 7.0. Simulated textile effluent containing 50 microg/mL dye was degraded by 61.7%. Analysis of degradation products by TLC and HPLC showed that the dye mixture was degraded to nontoxic smaller molecules. The bacteria-coated pebbles were stable, there was no washout even after 2 months, and the reactor was found to be suitable for the aerobic degradation of azo dyes. PMID:12675610

  12. Aerobic degradation of a mixture of azo dyes in a packed bed reactor having bacteria-coated laterite pebbles.

    PubMed

    Senan, Resmi C; Shaffiqu, T S; Roy, J Jegan; Abraham, T Emilia

    2003-01-01

    A microbial consortium capable of aerobic degradation of a mixture of azo dyes consisting of two isolated strains (RRL,TVM) and one known strain of Pseudomonas putida (MTCC 1194) was immobilized on laterite stones. The amount of bacterial biomass attached to the laterite stones was 8.64 g per 100 g of the stone on a dry weight basis. The packed bed reactor was filled with these stones and had a total capacity of 850 mL and a void volume of 210 mL. The feed consisted of an equal mixture of seven azo dyes both in water as well as in a simulated textile effluent, at a pH of 9.0 and a salinity of 900 mg/L. The dye concentrations of influent were 25, 50, and 100 microg/mL. The residence time was varied between 0.78 and 6.23 h. It was found that at the lowest residence time 23.55, 45.73, and 79.95 microg of dye was degraded per hour at an initial dye concentration of 25, 50, and 100 microg, respectively. The pH was reduced from 9.0 to 7.0. Simulated textile effluent containing 50 microg/mL dye was degraded by 61.7%. Analysis of degradation products by TLC and HPLC showed that the dye mixture was degraded to nontoxic smaller molecules. The bacteria-coated pebbles were stable, there was no washout even after 2 months, and the reactor was found to be suitable for the aerobic degradation of azo dyes.

  13. Dye-sensitized solar cells

    DOEpatents

    Skotheim, Terje A. [Berkeley, CA

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  14. Dye-sensitized solar cells

    DOEpatents

    Skotheim, T.A.

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.

  15. The sublethal effects of petroleum refinery effluents: Mixed function oxygenase (MFO) induction in rainbow trout

    SciTech Connect

    Sherry, J.; Scott, B.; Parrott, J.; Hodson, P.; Rao, S.

    1995-12-31

    Canada uses a single biological parameter which is based on the ability of rainbow trout (Oncorhynchus mykiss) to survive a 24 hour exposure to assess and regulate the toxicity of refinery effluents. The acute toxicity of Canadian refinery effluents is generally well controlled. Long term exposures to sublethal toxicants, which are not covered by the current regulations, could have adverse ecological effects. Since PAHs, such as benzo(a)pyrene, can occur in refinery effluents, the authors tested the hypothesis that refinery effluents can induce mixed-function oxygenase measured as ethoxyresorufin-O-deethylase activity (EROD) activity in fish. Two end of pipe effluent samples were collected from each of four Ontario refineries. All effluents induced EROD activity in young trout in a dose dependent manner. The EROD parameter has potential as a bioindicator of exposure to refinery effluents. The samples were also tested for toxicity to fathead minnow (Pimephales promelas) larvae and to a fish cell line (Ictalurus nebulosus). Fathead minnow growth was significantly reduced by six out of eight samples, and larval survival was affected by one sample. The in vitro data were less consistent: weak toxicity was detected in some samples but the dose response relationship was poor. Direct acting mutagens were detected in two effluents using the Ames Fluctuation assay.

  16. Dyeing Properties of Natural Dye Syzygium cuminii on Silk

    NASA Astrophysics Data System (ADS)

    Narayana Swamy, V.; Ninge Gowda, K. N.; Sudhakar, R.

    2014-04-01

    Dyeing behavior of natural dye extracted from the bark of Syzygium cuminii L has been studied on silk fabric. Colour values and colour co-ordinates were examined in terms of K/S and L* a* b* C and h. A range of shades were obtained by using various mordants and mordanting techniques. Dye was tested for some of the eco-parameters using atomic absorption spectrophotometry and GC/MS. The test results were compared with the set standards to determine the eco-friendliness of natural dye. Their concentrations were much below the stipulated limits. Dyed samples were tested for antimicrobial activity against Gram-positive and Gram-negative bacteria and were found to possess antibacterial activity.

  17. Bichromophoric Dyes for Wavelength Shifting of Dye-Protein Fluoromodules

    PubMed Central

    Pham, Ha H.; Szent-Gyorgyi, Christopher; Brotherton, Wendy L.; Schmidt, Brigitte F.; Zanotti, Kimberly J.; Waggoner, Alan S.

    2015-01-01

    Dye-protein fluoromodules consist of fluorogenic dyes and single chain antibody fragments that form brightly fluorescent noncovalent complexes. This report describes two new bichromophoric dyes that extend the range of wavelengths of excitation or emission of existing fluoromodules. In one case, a fluorogenic thiazole orange (TO) was attached to an energy acceptor dye, Cy5. Upon binding to a protein that recognizes TO, red emission due to efficient energy transfer from TO to Cy5 replaces the green emission observed for monochromophoric TO bound to the same protein. Separately, TO was attached to a coumarin that serves as an energy donor. The same green emission is observed for coumarin-TO and TO bound to a protein, but efficient energy transfer allows violet excitation of coumarin-TO, versus longer wavelength, blue excitation of monochromophoric TO. Both bichromophores exhibit low nanomolar KD values for their respective proteins, >95% energy transfer efficiency and high fluorescence quantum yields. PMID:25679477

  18. Hair dye poisoning and rhabdomyolysis.

    PubMed

    Bokutz, Munira; Nasir, Nosheen; Mahmood, Faisal; Sajid, Sara

    2015-04-01

    Hair dye ingestion is a rare cause of toxicity in Pakistan. We are presenting the case report of a 55 year old male who presented with accidental hair dye ingestion and developed laryngeal oedema requiring emergent tracheostomy. He had also developed aspiration pneumonitis and chemical oesophagitis. However, the most alarming manifestation was rhabdomyolysis. Hair dye toxicity can be fatal if not recognized early. There is no antidote available. Rhabdomyolysis is a complication and needs to be managed aggressively in order to prevent long term morbidity. PMID:25976581

  19. Characterization of Microbial Communities Found in Bioreactor Effluent

    NASA Technical Reports Server (NTRS)

    Flowe, Candice

    2013-01-01

    The purpose of this investigation was to examine microbial communities of simulated wastewater effluent from hollow fiber membrane bioreactors collected from the Space Life Science Laboratory and Texas Technical University. Microbes were characterized using quantitative polymerase chain reaction where a total count of bacteria and fungi were determined. The primers that were used to determine the total count of bacteria and fungi were targeted for 16S rDNA genes and the internal transcribed spacer, respectively. PCR products were detected with SYBR Green I fluorescent dye and a melting curve analysis was performed to identify unique melt profiles resulting from DNA sequence variations from each species of the community. Results from both the total bacteria and total fungi count assays showed that distinct populations were present in isolates from these bioreactors. This was exhibited by variation in the number of peaks observed on the melting curve analysis graph. Further analysis of these results using species-specific primers will shed light on exactly which microbes are present in these effluents. Information gained from this study will enable the design of a system that can efficiently monitor microbes that play a role in the biogeochemical cycling of nitrogen in wastewater on the International Space Station to assist in the design of a sustainable system capable of converting this nutrient.

  20. Multifunctional Three-Dimensional Europium Metal-Organic Framework for Luminescence Sensing of Benzaldehyde and Cu(2+) and Selective Capture of Dye Molecules.

    PubMed

    Du, Pei-Yao; Gu, Wen; Liu, Xin

    2016-08-15

    A multifunctional three-dimensional lanthanide metal-organic framework has been rationally constructed. Highly selective sensing of benzaldehyde and Cu(2+) ions makes it a potential bifunctional sensor. Also, it could serve as a good candidate material for the removal of dyes from effluents based on the size exclusion. PMID:27458756

  1. Treatment of reactive azo dye from textile wastewater by burhead (Echinodorus cordifolius L.) in constructed wetland: Effect of molecular size.

    PubMed

    Noonpui, Sirikan; Thiravetyan, Paitip

    2011-01-01

    The potential of burhead (Echinodorus cordifolius L.) for the treatment of textile wastewater has been investigated. Reactive red 2; RR2 [MW=615], reactive red 120; RR120 [MW=1469] and reactive red 141; RR141 [MW=1775] were studied in order to determine the effect of molecular size on the efficiency of dye removal by plants in batch systems of constructed wetlands under soil and soil-free conditions. Dye concentrations, total dissolve solids (TDS), conductivity and pH in the effluents, and the relative growth rates (RGR) of plants were measured. The highest efficiency of dye removal during 7 days under soil-free conditions was RR2 (33.09 μmol(RR2)kg(-1)(FW)), followed by RR120 (13.35 μmol(RR120)kg(-1)(FW)) and RR141 (10.57 μmol(RR141)kg(-1)(FW)), respectively. This suggests that the structure and size of dye molecule strongly affects the efficiency of dye removal by plant. The results from a synthetic wetland experiment found that dye removal was 96 % at 4 days and 6 days under soil and soil-free conditions, respectively. Furthermore, plants were able to decrease TDS (42 %), conductivity (50 %) and pH (from 9.5 to 7.4) within 2 days in the synthetic reactive red(141) dye wastewater (SRRW141) under soil-free conditions, thus demonstrating the potential of burhead for textile wastewater treatment.

  2. Response surface-optimized removal of Reactive Red 120 dye from its aqueous solutions using polyethyleneimine enhanced ultrafiltration.

    PubMed

    Dasgupta, J; Singh, M; Sikder, J; Padarthi, V; Chakraborty, S; Curcio, S

    2015-11-01

    Retention of toxic dyes with molecular weights lower than the molecular weight cut-off (MWCO) of the ultrafiltration membranes can be improved through selective binding of the target dyes to a water-soluble polymer, followed by ultrafiltration of the macromolecular complexes formed. This method, often referred to as polymer enhanced ultrafiltration (PEUF), was investigated in the present study, using polyethyleneimine (PEI) as the chelating agent. Model azo dye Reactive Red 120 was selected as the poorly biodegradable, target contaminant, because of its frequent recalcitrant presence in colored effluents, and its eventual ecotoxicological impacts on the environment. The effects of the governing process factors, namely, cross flow rate, transmembrane pressure polymer to dye ratio and pH, on target dye rejection efficiency were meticulously examined. Additionally, each parameter level was statistically optimized using central composite design (CCD) from the response surface methodology (RSM) toolkit, with an objective to maximize performance efficiency. The results revealed high dye retention efficiency over 99%, accompanied with reasonable permeate flux over 100L/m(2)h under optimal process conditions. The estimated results were elucidated graphically through response surface (RS) plots and validated experimentally. The analyses clearly established PEUF as a novel, reasonably efficient and economical route for recalcitrant dye treatment.

  3. Removal of dissolved textile dyes from wastewater by a compost sorbent

    USGS Publications Warehouse

    Tsui, L.S.; Roy, W.R.; Cole, M.A.

    2003-01-01

    The objective of this study was to evaluate the potential for treating dye-contaminated waste streams by sorption using compost as a low-cost sorbent. A mature, thermophilic compost sample was used to sorb CI Acid Black 24, CI Acid Orange 74, CI Basic Blue 9, CI Basic Green 4, CI Direct Blue 71, CI Direct Orange 39, CI Reactive Orange 16 and CI Reactive Red 2 from solution using a batch-sorption method. With the exception of the two reactive dyes, the sorption kinetics were favourable for a continuous-flow treatment process with the compost-dye mixtures reaching a steady state within 3-5 h. Based on limited comparisons, the affinity of the compost for each dye appeared to be competitive with other non-activated carbon sorbents. The results suggest that additional research on using compost as a sorbent for dye-contaminated solutions is warranted.

  4. Technical and economic feasibility of polyester dyeing wastewater treatment by coagulation/flocculation and Fenton's oxidation.

    PubMed

    Rodrigues, Carmen S D; Boaventura, Rui A R; Madeira, Luis M

    2014-01-01

    This study aims to investigate the efficiency of individual and integrated processes applied to organic matter abatement and biodegradability improvement of a polyester dyeing wastewater, namely coagulation/flocculation combined with Fenton's reagent (Approach 1), Fenton oxidation alone (Approach 2) and its integration with coagulation/flocculation (Approach 3). The effects of Fe2+ dose, initial concentration of the oxidant (H202) and temperature during Fenton's oxidation were evaluated in Approaches 1 and 2, whereas in Approach 3 the influence ofpH and flocculant dose was also assessed, during the coagulation/flocculation stage. Toxicity and biodegradability of the final effluent were also evaluated. After oxidation, a slight increase in the specific oxygen uptake rate of the effluent was observed (from 27.0 up to 28.5-30.0mg O2/(gVSSh)) and the inhibition to Vibrio fischeri was eliminated. An effluent that complies with discharge standards was obtained in all cases; however, Approach 3 revealed to be a promising solution for treating this effluent as it leads to smaller operating costs. Therefore, the use of dissolved iron resulting from Fenton's oxidation as coagulant in the second stage was shown to be an innovative, efficient and economically attractive strategy for treating these effluents.

  5. Using protein nanofibrils to remove azo dyes from aqueous solution by the coagulation process.

    PubMed

    Morshedi, Dina; Mohammadi, Zeinab; Akbar Boojar, Masoud Mashhadi; Aliakbari, Farhang

    2013-12-01

    The ever-increasing applications of hazardous azo dyes as industrialized coloring agents have led to serious remediation challenges. In this study, proteinaceous nanofibrils were examined as coagulants for decolorization of azo dyes in aqueous solutions. The results provided some insight regarding the mechanism of dye removal. The strength of nanofibrils to remove dyes from solution was evaluated by remediation of acid red 88, Bismarck brown R, direct violet 51, reactive black 5, and Congo red. However, the efficiency of nanofibrils to coagulate with different dyes was variable (60-98%) and dependent on the structures of dyes and the physicochemical conditions of the solutions. Increasing the temperature or ionic strength declined the coagulation time and induced the rate of dye removal. Changing pH had contradictory effects on the dye removal efficiency which was more affected by the chemical structure of the dye rather than the change in stability of the coagulant. The efficiency of nanofibrils to remove dyes was more than that of charcoal, which is considered as one of the most common substances used for azo dye remediation which may be due to its well dispersion in the aqueous solutions, and slower rates of the coagulation than that of the adsorption process. Furthermore, cytotoxicity was not detected after treating cell cultures with the decolorized solutions. Accordingly, by integrating biological and biophysicochemical processes, proteinaceous nanofibrils can be promising candidates for treatment of colored wastewaters. Ease of production, proper and quick dispersion in water, without the production of dangerous dye by-products and derivatives, are some of the main advantages of nanofibrils. PMID:23999142

  6. Electrophilicity and solvatochromic reversal of pyridinium phenolate betaine dyes

    NASA Astrophysics Data System (ADS)

    Rezende, Marcos Caroli; Aracena, Andrés

    2012-07-01

    The solvatochromic reversal of phenolate betaine dyes may be theoretically rationalized and predicted by determining the flow direction of their internal charge-transfer in media of increasing polarity, with the aid of the electrophilicities of the donor and acceptor moieties, or of the corresponding electrophilic Fukui functions. The protocol was applied to ten examples from the literature.

  7. Aberration corrected STEM to study an ancient hair dyeing formula

    NASA Astrophysics Data System (ADS)

    Patriarche, G.; Van Elslande, E.; Castaing, J.; Walter, P.

    2014-05-01

    Lead-based chemistry was initiated in ancient Egypt for cosmetic preparation more than 4000 years ago. Here, we study a hair-dyeing recipe using lead salts described in text since Greco-Roman times. We report direct evidence about the shape and distribution of PbS nanocrystals that form within the hair during blackening.

  8. Waste monitoring system for effluents

    SciTech Connect

    Macdonald, J.M.; Gomez, B.; Trujillo, L.; Malcom, J.E.; Nekimken, H.; Pope, N.; Bibeau, R.

    1995-07-01

    The waste monitoring system in use at Los Alamos National Laboratory`s Plutonium Facility, TA-55, is a computer-based system that proves real-time information on industrial effluents. Remote computers monitor discharge events and data moves from one system to another via a local area network. This report describes the history, system design, summary, instrumentation list, displays, trending screens, and layout of the waste monitoring system.

  9. Dye lasing arrangement including an optical assembly for altering the cross-section of its pumping beam and method

    DOEpatents

    O'Neil, Richard W.; Sweatt, William C.

    1992-01-01

    An optical assembly is disclosed herein along with a method of operation for use in a dye lasing arrangement, for example a dye laser oscillator or a dye amplifier, in which a continuous stream of dye is caused to flow through a given zone in a cooperating dye chamber while the zone is being illuminated by light from a pumping beam which is directed into the given zone. This in turn causes the dye therein to lase and thereby produce a new dye beam in the case of a dye laser oscillator or amplify a dye beam in the case of a dye amplifier. The optical assembly so disclosed is designed to alter the pump beam such that the beam enters the dye chamber with a different cross-sectional configuration, preferably one having a more uniform intensity profile, than its initially produced cross-sectional configuration. To this end, the assembly includes a network of optical components which first act on the beam while the latter retains its initially produced cross-sectional configuration for separating it into a plurality of predetermined segments and then recombines the separated components in a predetermined way which causes the recombined beam to have the different cross-sectional configuration.

  10. Dye laser amplifier including a dye cell contained within a support vessel

    DOEpatents

    Davin, J.

    1992-12-01

    A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of greater than 30 gallons/minute at a static pressure greater than 150 pounds/square inch and a specifically designed support vessel for containing the dye cell. 6 figs.

  11. Dye laser amplifier including a dye cell contained within a support vessel

    DOEpatents

    Davin, James

    1992-01-01

    A large (high flow rate) dye laser amplifier in which a continous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of greater than 30 gallons/minute at a static pressure greater than 150 pounds/square inch and a specifically designed support vessel for containing the dye cell.

  12. Use of jute processing wastes for treatment of wastewater contaminated with dye and other organics.

    PubMed

    Banerjee, Souvik; Dastidar, M G

    2005-11-01

    A study was conducted to examine the potential of jute processing waste (JPW) for the treatment of wastewater contaminated with dye and other organics generated from various activities associated with jute cultivation and fibre production. Adsorption studies in batch mode have been conducted using dye solution as an adsorbate and JPW as an adsorbent. A comparative adsorption study was made with standard adsorbents such as powdered and granular activated carbon (PAC and GAC, respectively). A maximum removal of 81.7% was obtained with methylene blue dye using JPW as compared to 61% using PAC and 40% using GAC under similar conditions. The adsorption potential of JPW was observed to be dependent on various parameters such as type of dye, initial dye concentration, pH and dosage of adsorbent. The batch sorption data conformed well to the Langmuir and Freundlich isotherms. However, lower BOD (33.3%) and COD (13.8%) removal from retting effluent was observed using JPW as compared to 75.6% BOD removal and 71.1% COD removal obtained with GAC.

  13. 16SrRNA sequencing of Dye decolorizing bacteria isolated from Soil

    PubMed Central

    Kumar, Avnish; Asthana, Monika; Gupta, Poonam; Yadav, Shweta; Sharma, Deepti; Singh, Km Neeraj; Kumar, Sunil

    2015-01-01

    Dye׳s residues in textile effluents are hazardous for humans and animals health. Such pollutants can be degraded into non-harmful molecules using biological approaches that are considered cheaper and ecologically safer. Isolated 15 bacterial cultures from soil that could be used in biological system were showed decolorization capacity for Acid Green dye (33.9% to 94.0%) using thin layer chromatography and broth culture method. The most promising cultures (AMC3) to decolorize Acid green Dye (94.6%) was re-coded as NSDSUAM for submitting at IMTECH, Chandigarh for sequencing. The 16SrRNA sequencing suggested that it can be a variant of Pseudomonas geniculata (99.85% identical similarity) with difference of 2 base pairs to reference strain Pseudomonas geniculata ATCC 19374(T). Thus present study proposed dye decolorizing efficiency of the isolated strain of Pseudomonas geniculata that was previously unnoticed. The sequence is deposited in NCBI GenBank with the accession number KP238100. PMID:25780272

  14. 16SrRNA sequencing of Dye decolorizing bacteria isolated from Soil.

    PubMed

    Kumar, Avnish; Asthana, Monika; Gupta, Poonam; Yadav, Shweta; Sharma, Deepti; Singh, Km Neeraj; Kumar, Sunil

    2015-01-01

    Dye׳s residues in textile effluents are hazardous for humans and animals health. Such pollutants can be degraded into non-harmful molecules using biological approaches that are considered cheaper and ecologically safer. Isolated 15 bacterial cultures from soil that could be used in biological system were showed decolorization capacity for Acid Green dye (33.9% to 94.0%) using thin layer chromatography and broth culture method. The most promising cultures (AMC3) to decolorize Acid green Dye (94.6%) was re-coded as NSDSUAM for submitting at IMTECH, Chandigarh for sequencing. The 16SrRNA sequencing suggested that it can be a variant of Pseudomonas geniculata (99.85% identical similarity) with difference of 2 base pairs to reference strain Pseudomonas geniculata ATCC 19374(T). Thus present study proposed dye decolorizing efficiency of the isolated strain of Pseudomonas geniculata that was previously unnoticed. The sequence is deposited in NCBI GenBank with the accession number KP238100.

  15. Color, organic matter and sulfate removal from textile effluents by anaerobic and aerobic processes.

    PubMed

    Amaral, F M; Kato, M T; Florêncio, L; Gavazza, S

    2014-07-01

    An upflow anaerobic sludge blanket (UASB)-submerged aerated biofilter (SAB) system was evaluated to remove color and chemical oxygen demand (COD) from real textile effluent. The system was operated for 335 days in three phases (P-1, P-2, P-3) with total hydraulic retention time varying from 21 h to 14 h. The results showed that high sulfate levels (>300 mg SO4(2-)/L) impaired the dye reduction. The best color removal efficiencies of 30% and 96% for the UASB and the reactor system, respectively, were obtained in P-1; the SAB higher efficiency was associated with adsorption. The best COD removal efficiency of 71% for the reactor system was obtained in P-2. Precipitation of some material composed mostly of sulfur (98%) and some metals occurred in the UASB. However, the precipitated sulfur was again oxidized in the SAB. The system also showed an effective toxicity reduction in tests (Daphnia magna) with the treated effluent.

  16. Chitosan beads immobilized manganese peroxidase catalytic potential for detoxification and decolorization of textile effluent.

    PubMed

    Bilal, Muhammad; Asgher, Muhammad; Iqbal, Munawar; Hu, Hongbo; Zhang, Xuehong

    2016-08-01

    Textile industry has led to severe environmental pollution and is posing a serious threat to the ecosystems. Immobilized biocatalysts have gained importance as potential bio-remediating agent. Manganese peroxidase (MnP) was immobilized onto glutaraldehyde activated chitosan beads by crosslinking and employed for the degradation and detoxification of dyes in textile effluents. The efficiency of chitosan-immobilized MnP (CI-MnP) was evaluated on the basis of decolorization, water quality improvement and toxicity reduction. Maximum color removal of 97.31% was recorded and up to 82.40%, 78.30% and 91.7% reductions in COD, TOC, and BOD were achieved, respectively. The cytotoxicity of bio-treated effluents reduced significantly and 38.46%, 43.47% and 41.83% Allium cepa root length, root count and mitotic index were increased, respectively, whereas brine shrimp nauplii death reduced up to 63.64%. Mutagenicity (Ames test) reduced up to 73.44% and 75.43% for TA98 and TA100 strains, respectively. The CI-MnP retained 60% activity after 10 repeated decolorization batches. The CI-MnP showed excellent efficiency for the bioremediation of textile effluents and can be used for the remediation of toxic agents in wastewater. The monitoring of processed wastewater using bioassays is suggested to evaluate bio-efficiency of treatment method for safe disposal of effluents into water bodies. PMID:27130652

  17. Involvement of ligninolytic enzymes of Phanerochaete chrysosporium in treating the textile effluent containing Astrazon Red FBL in a packed-bed bioreactor.

    PubMed

    Sedighi, M; Karimi, A; Vahabzadeh, F

    2009-09-30

    The effect of Tween80, Mn(II) and veratryl alcohol (VA) on the production of ligninolytic enzymes of Phanerochaete chrysosporium in a packed-bed bioreactor using small pieces of Kissiris as carrier, was investigated. The results of the enzyme activities were noticeable in terms of decolorization and COD removal of the textile effluent containing an azo dye (Astrazon Red FBL). No dilution was made on the tested textile effluent and it was not sterilized, also. Maximum decolorization of the dye (87%) and COD removal (42%), both occurred when only Tween80 (0.05%, w/v) was added to the effluent. The maximum activities of lignin peroxidase (LiP) and manganese peroxidase (MnP) were (U/l): 17 and 52, respectively. The role of MnP was pronounced in the dye decolorization process, while the influence of LiP was noticeable on COD removal. The reusability of the original biomass was examined by replacing undiluted textile effluent (i.e., five times). The cellular performance of the original biomass in repeated-batch operations was promising.

  18. Simultaneous dyeing and antibacterial finishing for cotton cellulose using a new reactive dye.

    PubMed

    Farouk, R; Gaffer, H E

    2013-08-14

    Simultaneous dyeing and antibacterial finishing for cotton fabric using a new antibacterial reactive dye having a modified chemical structure to the commercial reactive dye CI Reactive Red 198 were studied. This modification was carried out by replacing metanilic acid in the commercial dye with 4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide (sulfadimidine). Optimum exhaustion and fixation values were achieved at 60 g/l sodium sulphate and 20 g/l sodium carbonate for both dyes. The modified dye exhibited higher substantivity, exhaustion and fixation efficiency compared to the commercial dye. Antibacterial activities of the dyed samples at different concentrations of both dyes were studied against gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria. The cotton dyed with the modified dye shows higher antibacterial efficacy compared to the dyed cotton fabric using the commercial dye, especially on gram negative (E. coli) bacteria. All the reactive dyeings also exhibited high fastness properties.

  19. Genotoxic, mutagenic and cytotoxic effects of the commercial dye CI Disperse Blue 291 in the human hepatic cell line HepG2.

    PubMed

    Tsuboy, M S; Angeli, J P F; Mantovani, M S; Knasmüller, S; Umbuzeiro, G A; Ribeiro, L R

    2007-12-01

    Textile dyes are discarded into the aquatic ecosystem via industrial effluents and potentially expose humans and local biota to adverse effects. The commercial dye CI Disperse Blue 291 which contains the aminoazobenzene 2-[(2-bromo-4,6-dinitrophenyl)azo]-5(diethylamino)-4-methoxyacetanilide (CAS registry no. 56548-64-2), was tested for genotoxicity and cytotoxicity in the human hepatoma cell line HepG2, using the comet assay, micronucleus (MN) test and a cell viability test. Five different concentrations of the test compound were examined: 200 microg/ml, 400 microg/ml, 600 microg/ml, 800 microg/ml and 1000 microg/ml. An increase in comet tail length and in the frequency of MN was detected with exposure of cells to concentrations of the commercial dye from 400 microg/ml. Furthermore, the dye was found to decrease cell viability. The results of this study demonstrate for the first time the genotoxic and mutagenic effects of the dye CI Disperse Blue 291 in mammalian cells, thus stressing the need to develop non-mutagenic dyes and to invest in improving the treatment of effluents. These measures will help to prevent harmful effects that these compounds can have on humans and aquatic organisms that come in contact with them.

  20. Effluent treatment for nuclear thermal propulsion ground testing

    NASA Astrophysics Data System (ADS)

    Shipers, Larry R.

    The objectives are to define treatment functions, review concept options, discuss PIPET effluent treatment system (ETS), and outline future activities. The topics covered include the following: reactor exhaust; effluent treatment functions; effluent treatment categories; effluent treatment options; concept evaluation; PIPETS ETS envelope; PIPET effluent treatment concept; and future activities.