Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-05
... Request; Experimental Study: Presentation of Quantitative Effectiveness Information to Consumers in Direct... clearance. Experimental Study: Presentation of Quantitative Effectiveness Information to Consumers in Direct... research has proposed that providing quantitative information about product efficacy enables consumers to...
Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu
2015-01-01
Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information. PMID:26113828
Curriculum system for experimental teaching in optoelectronic information
NASA Astrophysics Data System (ADS)
Di, Hongwei; Chen, Zhenqiang; Zhang, Jun; Luo, Yunhan
2017-08-01
The experimental curriculum system is directly related to talent training quality. Based on the careful investigation of the developing request of the optoelectronic information talents in the new century, the experimental teaching goal and the content, the teaching goal was set to cultivate students' innovative consciousness, innovative thinking, creativity and problem solving ability. Through straightening out the correlation among the experimental teaching in the main courses, the whole structure design was phased out, as well as the hierarchical curriculum connotation. According to the ideas of "basic, comprehensive, applied and innovative", the construction of experimental teaching system called "triple-three" was put forward for the optoelectronic information experimental teaching practice.
Directional x-ray dark-field imaging of strongly ordered systems
NASA Astrophysics Data System (ADS)
Jensen, Torben Haugaard; Bech, Martin; Zanette, Irene; Weitkamp, Timm; David, Christian; Deyhle, Hans; Rutishauser, Simon; Reznikova, Elena; Mohr, Jürgen; Feidenhans'L, Robert; Pfeiffer, Franz
2010-12-01
Recently a novel grating based x-ray imaging approach called directional x-ray dark-field imaging was introduced. Directional x-ray dark-field imaging yields information about the local texture of structures smaller than the pixel size of the imaging system. In this work we extend the theoretical description and data processing schemes for directional dark-field imaging to strongly scattering systems, which could not be described previously. We develop a simple scattering model to account for these recent observations and subsequently demonstrate the model using experimental data. The experimental data includes directional dark-field images of polypropylene fibers and a human tooth slice.
DIRECT operational field test evaluation natural use study. Part 1, Subject stated response
DOT National Transportation Integrated Search
1998-08-01
This report presents evaluation results from the Subject Stated Response portion (Part I) of the Natural Use Study of the DIRECT (Driver Information Radio using Experimental Communication : Technologies) operational test sponsored by the Michigan Dep...
Law, Andrew J.; Sharma, Gaurav; Schieber, Marc H.
2014-01-01
We present a methodology for detecting effective connections between simultaneously recorded neurons using an information transmission measure to identify the presence and direction of information flow from one neuron to another. Using simulated and experimentally-measured data, we evaluate the performance of our proposed method and compare it to the traditional transfer entropy approach. In simulations, our measure of information transmission outperforms transfer entropy in identifying the effective connectivity structure of a neuron ensemble. For experimentally recorded data, where ground truth is unavailable, the proposed method also yields a more plausible connectivity structure than transfer entropy. PMID:21096617
1986-01-01
the information that has been determined experimentally. The Labyrinth Seal Analysis program was, therefore, directed to the develop - ment of an...labyrinth seal performance, the program included the development of an improved empirical design model to pro- j. .,’ vide the calculation of the flow... program . * Phase I was directed to the analytical development of both an *analysis* model and an improvwd empirical *design" model. Supporting rig tests
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-01
... on the Experimental Study of Comparative Direct-to-Consumer (DTC) Advertising. This study is designed... indirect comparisons, using comparative visuals, and using vaguer language. This study is designed to apply... Effectiveness) studies designed to explore comparative effectiveness. When this large project is completed, FDA...
2014-06-01
analytics to evaluate document relevancy and order query results. 4 Background • Information environment complexity • Relevancy solutions for big data ...027 Primary Topic: Data , Information and Knowledge Alternatives: Organizational Concepts and Approaches; Experimentation, Metrics, and Analysis...instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
NASA Astrophysics Data System (ADS)
Thakur, Sunil
2012-03-01
Theory of relativity prohibits faster-than-light communication; we assume information must be transmitted from the sender to the receiver for it to be communicated; however, experimental evidences presented in this paper show waves, be it electromagnetic waves or sound waves, do not carry and communicate information. Information can be communicated instantly without violating of law of causality. Law of causality only suggests that every effect has a cause; it does not suggest cause must precede the effect. This paradigm-shifting paper fully backed up by overwhelming experimental evidences and observations directly from nature shows universe is a hologram and information becomes available across the universe as soon as it is produced.
Legge, Eric L G; Wystrach, Antoine; Spetch, Marcia L; Cheng, Ken
2014-12-01
Insects typically use celestial sources of directional information for path integration, and terrestrial panoramic information for view-based navigation. Here we set celestial and terrestrial sources of directional information in conflict for homing desert ants (Melophorus bagoti). In the first experiment, ants learned to navigate out of a round experimental arena with a distinctive artificial panorama. On crucial tests, we rotated the arena to create a conflict between the artificial panorama and celestial information. In a second experiment, ants at a feeder in their natural visually-cluttered habitat were displaced prior to their homing journey so that the dictates of path integration (feeder to nest direction) based on a celestial compass conflicted with the dictates of view-based navigation (release point to nest direction) based on the natural terrestrial panorama. In both experiments, ants generally headed in a direction intermediate to the dictates of celestial and terrestrial information. In the second experiment, the ants put more weight on the terrestrial cues when they provided better directional information. We conclude that desert ants weight and integrate the dictates of celestial and terrestrial information in determining their initial heading, even when the two directional cues are highly discrepant. © 2014. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.
2015-09-28
Two dimensional electronic spectroscopy has proven to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derivemore » response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.
2015-09-28
Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derivemore » response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.« less
Lewis, Nicholas H C; Dong, Hui; Oliver, Thomas A A; Fleming, Graham R
2015-09-28
Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.
Koenigstorfer, Joerg; Wąsowicz-Kiryło, Grażyna; Styśko-Kunkowska, Małgorzata; Groeppel-Klein, Andrea
2014-09-01
Nutrition information aims to reduce information asymmetries between manufacturers and consumers. To date, however, it remains unclear how nutrition information that is shown on the front of the packaging should be designed in order to increase both visual attention and the tendency to make healthful food choices. The present study aimed to address this gap in research. An experimental laboratory study applying mobile eye-tracking technology manipulated the presence of two directive cues, i.e. health marks and traffic light colour-coding, as part of front-of-package nutrition information on actual food packages. Participants wore mobile eye-tracking glasses during a simulated shopping trip. After the ostensible study had finished, they chose one snack (from an assortment of fifteen snacks) as a thank you for participation. All products were labelled with nutrition information according to the experimental condition. Consumers (n 160) who were mainly responsible for grocery shopping in their household participated in the study. The results showed that, in the absence of traffic light colouring, health marks reduced attention to the snack food packaging. This effect did not occur when the colouring was present. The combination of the two directive cues (v. presenting traffic light colours only) made consumers choose more healthful snacks, according to the nutrient profile. Public policy makers may recommend retailers and manufacturers implement consistent front-of-pack nutrition labelling that contains both health marks and traffic light colouring as directive cues. The combination of the cues may increase the likelihood of healthful decision making.
The design of free structure granular mappings: the use of the principle of justifiable granularity.
Pedrycz, Witold; Al-Hmouz, Rami; Morfeq, Ali; Balamash, Abdullah
2013-12-01
The study introduces a concept of mappings realized in presence of information granules and offers a design framework supporting the formation of such mappings. Information granules are conceptually meaningful entities formed on a basis of a large number of experimental input–output numeric data available for the construction of the model. We develop a conceptually and algorithmically sound way of forming information granules. Considering the directional nature of the mapping to be formed, this directionality aspect needs to be taken into account when developing information granules. The property of directionality implies that while the information granules in the input space could be constructed with a great deal of flexibility, the information granules formed in the output space have to inherently relate to those built in the input space. The input space is granulated by running a clustering algorithm; for illustrative purposes, the focus here is on fuzzy clustering realized with the aid of the fuzzy C-means algorithm. The information granules in the output space are constructed with the aid of the principle of justifiable granularity (being one of the underlying fundamental conceptual pursuits of Granular Computing). The construct exhibits two important features. First, the constructed information granules are formed in the presence of information granules already constructed in the input space (and this realization is reflective of the direction of the mapping from the input to the output space). Second, the principle of justifiable granularity does not confine the realization of information granules to a single formalism such as fuzzy sets but helps form the granules expressed any required formalism of information granulation. The quality of the granular mapping (viz. the mapping realized for the information granules formed in the input and output spaces) is expressed in terms of the coverage criterion (articulating how well the experimental data are “covered” by information granules produced by the granular mapping for any input experimental data). Some parametric studies are reported by quantifying the performance of the granular mapping (expressed in terms of the coverage and specificity criteria) versus the values of a certain parameters utilized in the construction of output information granules through the principle of justifiable granularity. The plots of coverage–specificity dependency help determine a knee point and reach a sound compromise between these two conflicting requirements imposed on the quality of the granular mapping. Furthermore, quantified is the quality of the mapping with regard to the number of information granules (implying a certain granularity of the mapping). A series of experiments is reported as well.
77 FR 40064 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
.... This study will use an experimental design to assess the effectiveness of two potential enhancements to... program directly or through contracts with states or private, non-profit entities. Reapproval of this... the Medicare Plan Finder to gain access to comparative plan information, and second that once the user...
Bhansali, Archita H; Sangani, Darshan S; Mhatre, Shivani K; Sansgiry, Sujit S
2018-01-01
To compare three over-the-counter (OTC) Drug Facts panel versions for information processing optimization among college students. University of Houston students (N = 210) participated in a cross-sectional survey from January to May 2010. A current FDA label was compared to two experimental labels developed using the theory of CHREST to test information processing by re-positioning the warning information within the Drug Facts panel. Congruency was defined as placing like information together. Information processing was evaluated using the OTC medication Label Evaluation Process Model (LEPM): label comprehension, ease-of-use, attitude toward the product, product evaluation, and purchase intention. Experimental label with chunked congruent information (uses-directions-other information-warnings) was rated significantly higher than the current FDA label and had the best average scores among the LEPM information processing variables. If replications uphold these findings, the FDA label design might be revised to improve information processing.
Experimental Study of Middle-Term Training in Social Cognition in Preschoolers
ERIC Educational Resources Information Center
Houssa, Marine; Nader-Grosbois, Nathalie
2016-01-01
In an experimental design, we examined the effects of middle-term training in social information processing (SIP) and in Theory of Mind (ToM) on preschoolers' social cognition and social adjustment. 48 preschoolers took part in a pre-test and post-test session involving cognitive, socio-cognitive and social adjustment (direct and indirect)…
Improving plant bioaccumulation science through consistent reporting of experimental data.
Fantke, Peter; Arnot, Jon A; Doucette, William J
2016-10-01
Experimental data and models for plant bioaccumulation of organic contaminants play a crucial role for assessing the potential human and ecological risks associated with chemical use. Plants are receptor organisms and direct or indirect vectors for chemical exposures to all other organisms. As new experimental data are generated they are used to improve our understanding of plant-chemical interactions that in turn allows for the development of better scientific knowledge and conceptual and predictive models. The interrelationship between experimental data and model development is an ongoing, never-ending process needed to advance our ability to provide reliable quality information that can be used in various contexts including regulatory risk assessment. However, relatively few standard experimental protocols for generating plant bioaccumulation data are currently available and because of inconsistent data collection and reporting requirements, the information generated is often less useful than it could be for direct applications in chemical assessments and for model development and refinement. We review existing testing guidelines, common data reporting practices, and provide recommendations for revising testing guidelines and reporting requirements to improve bioaccumulation knowledge and models. This analysis provides a list of experimental parameters that will help to develop high quality datasets and support modeling tools for assessing bioaccumulation of organic chemicals in plants and ultimately addressing uncertainty in ecological and human health risk assessments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biological Information Processing in Single Microtubules
2014-03-05
single Microtubule Google Mountain view campus, workshop on quantum biology 22 October 2010 3. Paul Davies Beyond Center at Arizona State University...Phoenix) Phoenix, workshop on quantum biology and cancer research, Experimental studies on single microtubule, 25-27 October 2010, Tempe, Arizona...State University, USA 4. Quantum aspects of microtubule: Direct experimental evidence for the existence of quantum states in microtubule, Towards a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitriev, Alexander S.; Yemelyanov, Ruslan Yu.; Moscow Institute of Physics and Technology
The paper deals with a new multi-element processor platform assigned for modelling the behaviour of interacting dynamical systems, i.e., active wireless network. Experimentally, this ensemble is implemented in an active network, the active nodes of which include direct chaotic transceivers and special actuator boards containing microcontrollers for modelling the dynamical systems and an information display unit (colored LEDs). The modelling technique and experimental results are described and analyzed.
Direction and Integration of Experimental Ground Test Capabilities and Computational Methods
NASA Technical Reports Server (NTRS)
Dunn, Steven C.
2016-01-01
This paper groups and summarizes the salient points and findings from two AIAA conference panels targeted at defining the direction, with associated key issues and recommendations, for the integration of experimental ground testing and computational methods. Each panel session utilized rapporteurs to capture comments from both the panel members and the audience. Additionally, a virtual panel of several experts were consulted between the two sessions and their comments were also captured. The information is organized into three time-based groupings, as well as by subject area. These panel sessions were designed to provide guidance to both researchers/developers and experimental/computational service providers in defining the future of ground testing, which will be inextricably integrated with the advancement of computational tools.
Large-scale fabrication of single crystalline tin nanowire arrays
NASA Astrophysics Data System (ADS)
Luo, Bin; Yang, Dachi; Liang, Minghui; Zhi, Linjie
2010-09-01
Large-scale single crystalline tin nanowire arrays with preferred lattice orientation along the [100] direction were fabricated in porous anodic aluminium oxide (AAO) membranes by the electrodeposition method using copper nanorod as a second electrode.Large-scale single crystalline tin nanowire arrays with preferred lattice orientation along the [100] direction were fabricated in porous anodic aluminium oxide (AAO) membranes by the electrodeposition method using copper nanorod as a second electrode. Electronic supplementary information (ESI) available: Experimental details and the information for single crystalline copper nanorods. See DOI: 10.1039/c0nr00206b
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-27
...The Food and Drug Administration (FDA) is announcing that a collection of information entitled ``Experimental Study: Effect of Promotional Offers in Direct-to-Consumer Prescription Drug Print Advertisements on Consumer Product Perceptions'' has been approved by the Office of Management and Budget (OMB) under the Paperwork Reduction Act of 1995.
NASA Technical Reports Server (NTRS)
Akimov, V. V.; Bazer-Bashv, R.; Voronov, S. A.; Galper, A. M.; Gro, M.; Kalinkin, L. F.; Kerl, P.; Kozlov, V. D.; Koten, F.; Kretol, D.
1979-01-01
The development of the gamma ray telescope is investigated. The wide gap spark chambers, used to identify the gamma quanta and to determine the directions of their arrival, are examined. Two systems of information recording with the spark chambers photographic and vidicon system are compared.
ERIC Educational Resources Information Center
Duke, Benjamin C., Ed.
1963-01-01
The primary purpose of this project was to compile, translate, and publish educational media research material from the major Asian countries and to make that information available in the United States. Educational media research and experimentation is interpreted to include experimental programming, testing, evaluation, and use of all the newer…
Tissue-Informative Mechanism for Wearable Non-invasive Continuous Blood Pressure Monitoring
NASA Astrophysics Data System (ADS)
Woo, Sung Hun; Choi, Yun Young; Kim, Dae Jung; Bien, Franklin; Kim, Jae Joon
2014-10-01
Accurate continuous direct measurement of the blood pressure is currently available thru direct invasive methods via intravascular needles, and is mostly limited to use during surgical procedures or in the intensive care unit (ICU). Non-invasive methods that are mostly based on auscultation or cuff oscillometric principles do provide relatively accurate measurement of blood pressure. However, they mostly involve physical inconveniences such as pressure or stress on the human body. Here, we introduce a new non-invasive mechanism of tissue-informative measurement, where an experimental phenomenon called subcutaneous tissue pressure equilibrium is revealed and related for application in detection of absolute blood pressure. A prototype was experimentally verified to provide an absolute blood pressure measurement by wearing a watch-type measurement module that does not cause any discomfort. This work is supposed to contribute remarkably to the advancement of continuous non-invasive mobile devices for 24-7 daily-life ambulatory blood-pressure monitoring.
A simple and accurate method for calculation of the structure factor of interacting charged spheres.
Wu, Chu; Chan, Derek Y C; Tabor, Rico F
2014-07-15
Calculation of the structure factor of a system of interacting charged spheres based on the Ginoza solution of the Ornstein-Zernike equation has been developed and implemented on a stand-alone spreadsheet. This facilitates direct interactive numerical and graphical comparisons between experimental structure factors with the pioneering theoretical model of Hayter-Penfold that uses the Hansen-Hayter renormalisation correction. The method is used to fit example experimental structure factors obtained from the small-angle neutron scattering of a well-characterised charged micelle system, demonstrating that this implementation, available in the supplementary information, gives identical results to the Hayter-Penfold-Hansen approach for the structure factor, S(q) and provides direct access to the pair correlation function, g(r). Additionally, the intermediate calculations and outputs can be readily accessed and modified within the familiar spreadsheet environment, along with information on the normalisation procedure. Copyright © 2014 Elsevier Inc. All rights reserved.
MacInnes, Joy Anne; Salkovskis, Paul M; Wroe, Abigail; Hope, Tony
2015-11-01
Many patients want help in considering medical information relevant to treatment decisions they have to make or agree to. The present research investigated whether focussing on particular issues relevant to a medical treatment decision (using an apparently non-directive procedure) could systematically bias a treatment decision. In a randomized design, participants (community volunteers, n = 146) were given standard information about treatment of cardiac risk factors by medication (statins). There were four experimental interventions in which the participants focussed on the likely personal relevance of subsets of the information previously given (positive, negative, or mixed aspects) or on irrelevant information. Participants were asked to rate their anticipated likelihood of accepting treatment before and after the experimental intervention. The rating of acceptance of treatment was significantly increased by positive focussing; negative focussing did not significantly alter the decision rating. The results partially replicate similar studies in health screening decisions. Reasons for the differences in results from those obtained in screening studies are considered. It is suggested that negative focussing may have less effect in decisions in which there are few risks. Statement of contribution What is already known on this subject? Decision-making in the context of health behaviour change has been widely described, but there are few experimental studies testing hypothesised strategies. 'Non-directiveness' is often regarded as desirable because it supposedly allows exploration of the decision without influencing it. Previous studies on health screening (but not treatment) have shown that health decision outcomes can be systematically influenced by the way in which a 'non-directive' intervention is implemented. This can be accounted for by a modified subjective expected utility theory previously applied to both health screening and child vaccination decisions. What does this study add? The hypothetical decision about whether or not, in future, to take statins for elevated cholesterol levels was influenced by positive but not by negative focussing. Results were consistent with the theoretical framework. This study extends previous work on influences on the decision to undertake health screening and vaccination to treatment offered as secondary prevention. 'Non-directive' approaches to helping facilitate decisions can modify those decisions, and as such cannot be regarded as non-directive. © 2015 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Rings, Thorsten; Lehnertz, Klaus
2016-09-01
We investigate the relative merit of phase-based methods for inferring directional couplings in complex networks of weakly interacting dynamical systems from multivariate time-series data. We compare the evolution map approach and its partialized extension to each other with respect to their ability to correctly infer the network topology in the presence of indirect directional couplings for various simulated experimental situations using coupled model systems. In addition, we investigate whether the partialized approach allows for additional or complementary indications of directional interactions in evolving epileptic brain networks using intracranial electroencephalographic recordings from an epilepsy patient. For such networks, both direct and indirect directional couplings can be expected, given the brain's connection structure and effects that may arise from limitations inherent to the recording technique. Our findings indicate that particularly in larger networks (number of nodes ≫10 ), the partialized approach does not provide information about directional couplings extending the information gained with the evolution map approach.
Enhancing the educational value of direct-to-consumer advertising of prescription drugs.
Hwang, Monica J; Young, Henry N
The educational value of direct-to-consumer advertising (DTCA) of prescription drugs hinges on its ability to convey important benefit and risk information to consumers. However, the literacy level required to understand some of the information presented in print advertisements may hinder DTCA's ability to educate consumers. The objective of this study was to compare the comprehension and retention of benefit and risk information between consumers who viewed an original print DTCA and those who viewed an advertisement modified according to health literacy principles. An experimental design was used to conduct the study. Participants were randomly assigned to view a modified print advertisement (experimental group) or the original print advertisement (control group) for an antidepressant medication. Study participants were recruited from the University of Wisconsin Kidney Clinic. Ten true-false and 10 multiple-choice questions were developed to assess participants' comprehension and retention of benefit and risk information. A total of 120 participants were randomized to view either the original or the modified version of the advertisement. Regarding the comprehension and retention of only the benefit information, no significant differences were observed between the 2 groups. Significant differences were observed for comprehension and retention of only the risk information. The experimental group had significantly higher scores in comprehension (U = 1224; P < 0.01) and retention (U = 965; P < 0.01) of the risk information compared with the control group. These differences were also significant in multivariate analyses controlling for extraneous variables that were found to have associations with comprehension and retention of information. Study results demonstrated that the health literacy techniques used to modify the advertisement were successful in enhancing both consumers' comprehension and their retention of information presented in a print DTCA. This was especially apparent for the risk information. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Guerin, Stephen M.; Guerin, Clark L.
1979-01-01
Discusses a phenomenon called Extrasensory Perception (ESP) whereby information is gained directly by the mind without the use of the ordinary senses. Experiments in ESP and the basic equipment and methods are presented. Statistical evaluation of ESP experimental results are also included. (HM)
NASA Astrophysics Data System (ADS)
Pisarev, Vladimir S.; Odintsev, I.; Balalov, V.; Apalkov, A.
2003-05-01
Sophisticated technique for reliable quantitative deriving residual stress values from initial experimental data, which are inherent in combined implementing the hole drilling method with both holographic and speckle interferometry, is described in detail. The approach developed includes both possible ways of obtaining initial experimental information. The first of them consists of recording a set of required interference fringe patterns, which are resulted from residual stress energy release after through hole drilling, in two orthogonal directions that coincide with principal strain directions. The second way is obtaining a series of interrelated fringe patterns when a direction of either observation in reflection hologram interferometry or dual-beam illumination in speckle interferometry lies arbitrary with respect to definite principal strain direction. A set of the most typical both actual and analogous reference fringe patterns, which are related to both reflection hologram and dual-beam speckle interferometry, are presented.
Determination of wood grain direction from laser light scattering pattern
NASA Astrophysics Data System (ADS)
Simonaho, Simo-Pekka; Palviainen, Jari; Tolonen, Yrjö; Silvennoinen, Raimo
2004-01-01
Laser light scattering patterns from the grains of wood are investigated in detail to gain information about the characteristics of scattering patterns related to the direction of the grains. For this purpose, wood samples of Scots pine ( Pinus sylvestris L.) and silver birch ( Betula pubescens) were investigated. The orientation and shape of the scattering pattern of laser light in wood was found to correlate well with the direction of grain angles in a three-dimensional domain. The proposed method was also experimentally verified.
NASA Astrophysics Data System (ADS)
Popov, A.; Zolotarev, V.; Bychkov, S.
2016-11-01
This paper examines the results of experimental studies of a previously submitted combined algorithm designed to increase the reliability of information systems. The data that illustrates the organization and conduct of the studies is provided. Within the framework of a comparison of As a part of the study conducted, the comparison of the experimental data of simulation modeling and the data of the functioning of the real information system was made. The hypothesis of the homogeneity of the logical structure of the information systems was formulated, thus enabling to reconfigure the algorithm presented, - more specifically, to transform it into the model for the analysis and prediction of arbitrary information systems. The results presented can be used for further research in this direction. The data of the opportunity to predict the functioning of the information systems can be used for strategic and economic planning. The algorithm can be used as a means for providing information security.
Lizier, Joseph T; Heinzle, Jakob; Horstmann, Annette; Haynes, John-Dylan; Prokopenko, Mikhail
2011-02-01
The human brain undertakes highly sophisticated information processing facilitated by the interaction between its sub-regions. We present a novel method for interregional connectivity analysis, using multivariate extensions to the mutual information and transfer entropy. The method allows us to identify the underlying directed information structure between brain regions, and how that structure changes according to behavioral conditions. This method is distinguished in using asymmetric, multivariate, information-theoretical analysis, which captures not only directional and non-linear relationships, but also collective interactions. Importantly, the method is able to estimate multivariate information measures with only relatively little data. We demonstrate the method to analyze functional magnetic resonance imaging time series to establish the directed information structure between brain regions involved in a visuo-motor tracking task. Importantly, this results in a tiered structure, with known movement planning regions driving visual and motor control regions. Also, we examine the changes in this structure as the difficulty of the tracking task is increased. We find that task difficulty modulates the coupling strength between regions of a cortical network involved in movement planning and between motor cortex and the cerebellum which is involved in the fine-tuning of motor control. It is likely these methods will find utility in identifying interregional structure (and experimentally induced changes in this structure) in other cognitive tasks and data modalities.
NASA Astrophysics Data System (ADS)
Calderon, Christopher P.; Weiss, Lucien E.; Moerner, W. E.
2014-05-01
Experimental advances have improved the two- (2D) and three-dimensional (3D) spatial resolution that can be extracted from in vivo single-molecule measurements. This enables researchers to quantitatively infer the magnitude and directionality of forces experienced by biomolecules in their native environment. Situations where such force information is relevant range from mitosis to directed transport of protein cargo along cytoskeletal structures. Models commonly applied to quantify single-molecule dynamics assume that effective forces and velocity in the x ,y (or x ,y,z) directions are statistically independent, but this assumption is physically unrealistic in many situations. We present a hypothesis testing approach capable of determining if there is evidence of statistical dependence between positional coordinates in experimentally measured trajectories; if the hypothesis of independence between spatial coordinates is rejected, then a new model accounting for 2D (3D) interactions can and should be considered. Our hypothesis testing technique is robust, meaning it can detect interactions, even if the noise statistics are not well captured by the model. The approach is demonstrated on control simulations and on experimental data (directed transport of intraflagellar transport protein 88 homolog in the primary cilium).
NASA Astrophysics Data System (ADS)
Tabia, Gelo Noel M.
2012-12-01
It is crucial for various quantum information processing tasks that the state of a quantum system can be determined reliably and efficiently from general quantum measurements. One important class of measurements for this purpose is symmetric informationally complete positive operator-valued measurements (SIC-POVMs). SIC-POVMs have the advantage of providing an unbiased estimator for the quantum state with the minimal number of outcomes needed for full tomography. By virtue of Naimark's dilation theorem, any POVM can always be realized with a suitable coupling between the system and an auxiliary system and by performing a projective measurement on the joint system. In practice, finding the appropriate coupling is rather nontrivial. Here we propose an experimental design for directly implementing SIC-POVMs using multiport devices and path-encoded qubits and qutrits, the utility of which has recently been demonstrated by several experimental groups around the world. Furthermore, we describe how these multiports can be attained in practice with an integrated photonic system composed of nested linear optical elements.
Observing the operational significance of discord consumption
NASA Astrophysics Data System (ADS)
Gu, Mile; Chrzanowski, Helen M.; Assad, Syed M.; Symul, Thomas; Modi, Kavan; Ralph, Timothy C.; Vedral, Vlatko; Lam, Ping Koy
2012-09-01
Coherent interactions that generate negligible entanglement can still exhibit unique quantum behaviour. This observation has motivated a search beyond entanglement for a complete description of all quantum correlations. Quantum discord is a promising candidate. Here, we demonstrate that under certain measurement constraints, discord between bipartite systems can be consumed to encode information that can only be accessed by coherent quantum interactions. The inability to access this information by any other means allows us to use discord to directly quantify this `quantum advantage'. We experimentally encode information within the discordant correlations of two separable Gaussian states. The amount of extra information recovered by coherent interaction is quantified and directly linked with the discord consumed during encoding. No entanglement exists at any point of this experiment. Thus we introduce and demonstrate an operational method to use discord as a physical resource.
Barbosa, Ana; Marques, Alda; Sousa, Liliana; Nolan, Mike; Figueiredo, Daniela
2016-01-01
This study assessed the effects of a person-centered care-based psycho-educational intervention on direct care workers' communicative behaviors with people with dementia living in aged-care facilities. An experimental study with a pretest-posttest control-group design was conducted in four aged-care facilities. Two experimental facilities received an 8-week psycho-educational intervention aiming to develop workers' knowledge about dementia, person-centered care competences, and tools for stress management. Control facilities received education only, with no support to deal with stress. In total, 332 morning care sessions, involving 56 direct care workers (female, mean age 44.72 ± 9.02 years), were video-recorded before and 2 weeks after the intervention. The frequency and duration of a list of verbal and nonverbal communicative behaviors were analyzed. Within the experimental group there was a positive change from pre- to posttest on the frequency of all workers' communicative behaviors. Significant treatment effects in favor of the experimental group were obtained for the frequency of inform (p < .01, η(2)partial = 0.09) and laugh (p < .01, η(2)partial = 0.18). Differences between groups emerged mainly in nonverbal communicative behaviors. The findings suggest that a person-centered care-based psycho-educational intervention can positively affect direct care workers' communicative behaviors with residents with dementia. Further research is required to determine the extent of the benefits of this approach.
Al Ghamdi, Ebtisam; Yunus, Faisal; Da'ar, Omar; El-Metwally, Ashraf; Khalifa, Mohamed; Aldossari, Bakheet; Househ, Mowafa
2016-01-01
This research analyzes the impact of mobile phone screen size on user comprehension of health information and application structure. Applying experimental approach, we asked randomly selected users to read content and conduct tasks on a commonly used diabetes mobile application using three different mobile phone screen sizes. We timed and tracked a number of parameters, including correctness, effectiveness of completing tasks, content ease of reading, clarity of information organization, and comprehension. The impact of screen size on user comprehension/retention, clarity of information organization, and reading time were mixed. It is assumed on first glance that mobile screen size would affect all qualities of information reading and comprehension, including clarity of displayed information organization, reading time and user comprehension/retention of displayed information, but actually the screen size, in this experimental research, did not have significant impact on user comprehension/retention of the content or on understanding the application structure. However, it did have significant impact on clarity of information organization and reading time. Participants with larger screen size took shorter time reading the content with a significant difference in the ease of reading. While there was no significant difference in the comprehension of information or the application structures, there were a higher task completion rate and a lower number of errors with the bigger screen size. Screen size does not directly affect user comprehension of health information. However, it does affect clarity of information organization, reading time and user's ability to recall information.
The Flettner Rotor Ship in the Light of the Kutta-Joukowski Theory and of Experimental Results
NASA Technical Reports Server (NTRS)
Rizzo, Frank
1925-01-01
In this paper the fundamental principles of the Flettner rotor ship (Reference I) are discussed in the light of the Kutta-Joukowski theory and available experimental information on the subject. A brief exposition of the Kutta-Joukowski theory is given and the speed of the rotor ship Buckau computed, first by using effective propulsive force obtained by the above theory, and then by direct application of wind tunnel data.
Inherent noise can facilitate coherence in collective swarm motion
Yates, Christian A.; Erban, Radek; Escudero, Carlos; Couzin, Iain D.; Buhl, Jerome; Kevrekidis, Ioannis G.; Maini, Philip K.; Sumpter, David J. T.
2009-01-01
Among the most striking aspects of the movement of many animal groups are their sudden coherent changes in direction. Recent observations of locusts and starlings have shown that this directional switching is an intrinsic property of their motion. Similar direction switches are seen in self-propelled particle and other models of group motion. Comprehending the factors that determine such switches is key to understanding the movement of these groups. Here, we adopt a coarse-grained approach to the study of directional switching in a self-propelled particle model assuming an underlying one-dimensional Fokker–Planck equation for the mean velocity of the particles. We continue with this assumption in analyzing experimental data on locusts and use a similar systematic Fokker–Planck equation coefficient estimation approach to extract the relevant information for the assumed Fokker–Planck equation underlying that experimental data. In the experiment itself the motion of groups of 5 to 100 locust nymphs was investigated in a homogeneous laboratory environment, helping us to establish the intrinsic dynamics of locust marching bands. We determine the mean time between direction switches as a function of group density for the experimental data and the self-propelled particle model. This systematic approach allows us to identify key differences between the experimental data and the model, revealing that individual locusts appear to increase the randomness of their movements in response to a loss of alignment by the group. We give a quantitative description of how locusts use noise to maintain swarm alignment. We discuss further how properties of individual animal behavior, inferred by using the Fokker–Planck equation coefficient estimation approach, can be implemented in the self-propelled particle model to replicate qualitatively the group level dynamics seen in the experimental data. PMID:19336580
Ishikawa, L L W; Shoenfeld, Y; Sartori, A
2014-05-01
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that is mainly directed to the joints, affecting the synovial membrane, the cartilage and also the bone. This disease affects 1% to 2% of the world population and is associated with significant morbidity and increased mortality. RA experimental models have allowed a great deal of information to be translated to the corresponding human disease. This review summarizes some of the most relevant findings targeting immunomodulation in arthritis. Some general guidelines to choose an adequate experimental model and also our experience with arthritis are supplied.
Finger Vein Recognition Based on Local Directional Code
Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang
2012-01-01
Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP. PMID:23202194
Finger vein recognition based on local directional code.
Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang
2012-11-05
Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP.
Emergent oscillations assist obstacle negotiation during ant cooperative transport.
Gelblum, Aviram; Pinkoviezky, Itai; Fonio, Ehud; Gov, Nir S; Feinerman, Ofer
2016-12-20
Collective motion by animal groups is affected by internal interactions, external constraints, and the influx of information. A quantitative understanding of how these different factors give rise to different modes of collective motion is, at present, lacking. Here, we study how ants that cooperatively transport a large food item react to an obstacle blocking their path. Combining experiments with a statistical physics model of mechanically coupled active agents, we show that the constraint induces a deterministic collective oscillatory mode that facilitates obstacle circumvention. We provide direct experimental evidence, backed by theory, that this motion is an emergent group effect that does not require any behavioral changes at the individual level. We trace these relaxation oscillations to the interplay between two forces; informed ants pull the load toward the nest whereas uninformed ants contribute to the motion's persistence along the tangential direction. The model's predictions that oscillations appear above a critical system size, that the group can spontaneously transition into its ordered phase, and that the system can exhibit complete rotations are all verified experimentally. We expect that similar oscillatory modes emerge in collective motion scenarios where the structure of the environment imposes conflicts between individually held information and the group's tendency for cohesiveness.
Spacetime Replication of Quantum Information Using (2 , 3) Quantum Secret Sharing and Teleportation
NASA Astrophysics Data System (ADS)
Wu, Yadong; Khalid, Abdullah; Davijani, Masoud; Sanders, Barry
The aim of this work is to construct a protocol to replicate quantum information in any valid configuration of causal diamonds and assess resources required to physically realize spacetime replication. We present a set of codes to replicate quantum information along with a scheme to realize these codes using continuous-variable quantum optics. We use our proposed experimental realizations to determine upper bounds on the quantum and classical resources required to simulate spacetime replication. For four causal diamonds, our implementation scheme is more efficient than the one proposed previously. Our codes are designed using a decomposition algorithm for complete directed graphs, (2 , 3) quantum secret sharing, quantum teleportation and entanglement swapping. These results show the simulation of spacetime replication of quantum information is feasible with existing experimental methods. Alberta Innovates, NSERC, China's 1000 Talent Plan and the Institute for Quantum Information and Matter, which is an NSF Physics Frontiers Center (NSF Grant PHY-1125565) with support of the Gordon and Betty Moore Foundation (GBMF-2644).
Tao, Yunwen; Zou, Wenli; Cremer, Dieter; Kraka, Elfi
2017-10-26
A novel approach is presented to assess chemical similarity based the local vibrational mode analysis developed by Konkoli and Cremer. The local mode frequency shifts are introduced as similarity descriptors that are sensitive to any electronic structure change. In this work, 59 different monosubstituted benzenes are compared. For a subset of 43 compounds, for which experimental data was available, the ortho-/para- and meta-directing effect in electrophilic aromatic substitution reactions could be correctly reproduced, proving the robustness of the new similarity index. For the remaining 16 compounds, the directing effect was predicted. The new approach is broadly applicable to all compounds for which either experimental or calculated vibrational frequency information is available.
Gamma-ray Background Spectrum and Annihilation Rate in the Baryon-symmetric Big-bang Cosmology
NASA Technical Reports Server (NTRS)
Puget, J. L.
1973-01-01
An attempt was made to acquire experimental information on the problem of baryon symmetry on a large cosmological scale by observing the annihilation products. Data cover absorption cross sections and background radiation due to other sources for the two main products of annihilation, gamma rays and neutrinos. Test results show that the best direct experimental test for the presence of large scale antimatter lies in the gamma ray background spectrum between 1 and 70 MeV.
Liu, Xingbin; Mei, Wenbo; Du, Huiqian
2018-02-13
In this paper, a detail-enhanced multimodality medical image fusion algorithm is proposed by using proposed multi-scale joint decomposition framework (MJDF) and shearing filter (SF). The MJDF constructed with gradient minimization smoothing filter (GMSF) and Gaussian low-pass filter (GLF) is used to decompose source images into low-pass layers, edge layers, and detail layers at multiple scales. In order to highlight the detail information in the fused image, the edge layer and the detail layer in each scale are weighted combined into a detail-enhanced layer. As directional filter is effective in capturing salient information, so SF is applied to the detail-enhanced layer to extract geometrical features and obtain directional coefficients. Visual saliency map-based fusion rule is designed for fusing low-pass layers, and the sum of standard deviation is used as activity level measurement for directional coefficients fusion. The final fusion result is obtained by synthesizing the fused low-pass layers and directional coefficients. Experimental results show that the proposed method with shift-invariance, directional selectivity, and detail-enhanced property is efficient in preserving and enhancing detail information of multimodality medical images. Graphical abstract The detailed implementation of the proposed medical image fusion algorithm.
Space Processing Application Rocket project, SPAR 5
NASA Technical Reports Server (NTRS)
Reeves, F. (Compiler); Schaefer, D. (Compiler)
1980-01-01
Post flight results and analysis are presented on the following experiments: 'Agglomeration in Immiscible Liquids', 'Contained Polycrystalline Solidification in Low G', 'The Direct Observation of Dendrite Remelting and Macrosegregation in Casting', and 'Uniform Dispersion by Crystallization'. An engineering report on the performance of the SPAR Black Brant rocket is also included. Much useful data and information were accumulated for directing and developing experimental techniques and investigations toward an expanding commercially beneficial program of materials processing in the coming shuttle era.
NASA Astrophysics Data System (ADS)
Sowerby, Stephen J.; Petersen, George B.
2002-08-01
The hypothesis that life originated and evolved from linear informational molecules capable of facilitating their own catalytic replication is deeply entrenched. However, widespread acceptance of this paradigm seems oblivious to a lack of direct experimental support. Here, we outline the fundamental objections to the de novo appearance of linear, self-replicating polymers and examine an alternative hypothesis of template-directed coding of peptide catalysts by adsorbed purine bases. The bases (which encode biological information in modern nucleic acids) spontaneously self-organize into two-dimensional molecular solids adsorbed to the uncharged surfaces of crystalline minerals; their molecular arrangement is specified by hydrogen bonding rules between adjacent molecules and can possess the aperiodic complexity to encode putative protobiological information. The persistence of such information through self-reproduction, together with the capacity of adsorbed bases to exhibit enantiomorphism and effect amino acid discrimination, would seem to provide the necessary machinery for a primitive genetic coding mechanism.
The feasibility of remote-controlled assistance as a search tool for patient education.
Lin, I K; Bray, B E; Smith, J A; Lange, L L
2001-01-01
Patients often desire more information about their conditions than they receive during a physician office visit. To address the patient's information needs, a touchscreen information kiosk was implemented. Results from the first prototype identified interface, security, and technical issues. Misspelling of search terms was identified as the most observable cause of search failure. An experimental remote control assistance feature was added in the second prototype. The feature allowed a medical librarian to provide real-time remote help during searches by taking control of the patient's computer. Remote assistance improved patient satisfaction, increased ease of use, and raised document retrieval rate (86.7% vs. 56.7%). Both patients and librarians found the application useful. Reasons included its convenience and flexibility, opportunity for direct patient contact, ability to teach through direct demonstration, and complementing the librarian's role as an information gateway. The project demonstrated the feasibility of applying remote control technology to patient education.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-09
... comparative visuals, and using vaguer language. This study is designed to apply the existing comparative... Effectiveness) studies designed to explore comparative effectiveness. When this large project is completed, FDA... Request; Experimental Study of Comparative Direct-to-Consumer Advertising AGENCY: Food and Drug...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-19
... vessel characteristics and operations in the ETP, the origin of tuna and tuna products, and certain other... origin of tuna (if requested by the NOAA Administrator); 10 hours for an experimental fishing operation... October 18, 2011. ADDRESSES: Direct all written comments to Diana Hynek, Departmental Paperwork Clearance...
The Development of Concepts of Handicap in Adolescence: A Cross-Cultural Study-Part I.
ERIC Educational Resources Information Center
Doherty, Jim; Obani, Tim
1986-01-01
Reports the results of quasi-experimental study of 155 Nigerian and 151 British boys' and girls' understanding of handicaps. Presents information regarding the content of the questionnaire, which posed both direct and indirect questions regarding causality, effects, rehabilitation and interaction of handicapped persons. (JDH)
[Spatial imprinting influence on development of cognitive process in adult animals].
Serkova, V V; Nikol'skaia, K A
2013-12-01
The influence of spatial imprinting on cognitive activity of adult mice F1 from DBA/2J C57BL/6J in a transformable multialternative maze has been studied. A control mice initially learned in a maze with "direct" and "bypass" pathway between feeders. They successfully formed a food-getting habit after 9-10 sessions using mainly direct pathway, so the final route decision was consistent with the principle of least action. Experimental mice previously placed into reduced maze with only "bypass" pathway between feeders for 1-2 trials (1-3 min), and turn up in the complete maze immediately after that. Experimental mice could not organize a food-getting behavior according a task conditions since attempted to include in final decision both "direct" and "bypass" pathways, united in a single ring-like construction. They demonstrated situational behavior running from one feeder to another one, despite of fact that therein had no feed. So it opposed the realization of least action principle, becoming a source of psycho-emotional stress. The results showed that spatial information perceiving in the first few minutes of exploring the experimental environment can manifest itself as the acquired preference and come in conflict with an instinctive one. Cognitive dissonance predetermined the direction of the cognitive process.
Identification and Illustration of Insecure Direct Object References and their Countermeasures
NASA Astrophysics Data System (ADS)
KumarShrestha, Ajay; Singh Maharjan, Pradip; Paudel, Santosh
2015-03-01
The insecure direct object reference simply represents the flaws in the system design without the full protection mechanism for the sensitive system resources or data. It basically occurs when the web application developer provides direct access to objects in accordance with the user input. So any attacker can exploit this web vulnerability and gain access to privileged information by bypassing the authorization. The main aim of this paper is to demonstrate the real effect and the identification of the insecure direct object references and then to provide the feasible preventive solutions such that the web applications do not allow direct object references to be manipulated by attackers. The experiment of the insecure direct object referencing is carried out using the insecure J2EE web application called WebGoat and its security testing is being performed using another JAVA based tool called BURP SUITE. The experimental result shows that the access control check for gaining access to privileged information is a very simple problem but at the same time its correct implementation is a tricky task. The paper finally presents some ways to overcome this web vulnerability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilar, J.; Andres, J. de; Lucas, J. M.
2012-11-27
Different reactive processes taking place in collisions between alkali ions and neutral i-C{sub 3}H{sub 7}Cl molecules in the low (center of mass frame) energy range have been studied using an octopole radiofrequency guided-ion-beam apparatus developed in our laboratory. Cross-section energy dependences for all these reactions have been obtained in absolute units. Ab initio electronic structure calculations for those colliding systems evolving on the ground single potential surface have given relevant information on the main topological features of the surfaces. For some of the reactions a dynamic study by 'on the fly' trajectories has complemented the available experimental and electronic structuremore » information.« less
Breen, Andrew J; Moody, Michael P; Ceguerra, Anna V; Gault, Baptiste; Araullo-Peters, Vicente J; Ringer, Simon P
2015-12-01
The following manuscript presents a novel approach for creating lattice based models of Sb-doped Si directly from atom probe reconstructions for the purposes of improving information on dopant positioning and directly informing quantum mechanics based materials modeling approaches. Sophisticated crystallographic analysis techniques are used to detect latent crystal structure within the atom probe reconstructions with unprecedented accuracy. A distortion correction algorithm is then developed to precisely calibrate the detected crystal structure to the theoretically known diamond cubic lattice. The reconstructed atoms are then positioned on their most likely lattice positions. Simulations are then used to determine the accuracy of such an approach and show that improvements to short-range order measurements are possible for noise levels and detector efficiencies comparable with experimentally collected atom probe data. Copyright © 2015 Elsevier B.V. All rights reserved.
Decentralized Multisensory Information Integration in Neural Systems.
Zhang, Wen-Hao; Chen, Aihua; Rasch, Malte J; Wu, Si
2016-01-13
How multiple sensory cues are integrated in neural circuitry remains a challenge. The common hypothesis is that information integration might be accomplished in a dedicated multisensory integration area receiving feedforward inputs from the modalities. However, recent experimental evidence suggests that it is not a single multisensory brain area, but rather many multisensory brain areas that are simultaneously involved in the integration of information. Why many mutually connected areas should be needed for information integration is puzzling. Here, we investigated theoretically how information integration could be achieved in a distributed fashion within a network of interconnected multisensory areas. Using biologically realistic neural network models, we developed a decentralized information integration system that comprises multiple interconnected integration areas. Studying an example of combining visual and vestibular cues to infer heading direction, we show that such a decentralized system is in good agreement with anatomical evidence and experimental observations. In particular, we show that this decentralized system can integrate information optimally. The decentralized system predicts that optimally integrated information should emerge locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas. To extract information reliably from ambiguous environments, the brain integrates multiple sensory cues, which provide different aspects of information about the same entity of interest. Here, we propose a decentralized architecture for multisensory integration. In such a system, no processor is in the center of the network topology and information integration is achieved in a distributed manner through reciprocally connected local processors. Through studying the inference of heading direction with visual and vestibular cues, we show that the decentralized system can integrate information optimally, with the reciprocal connections between processers determining the extent of cue integration. Our model reproduces known multisensory integration behaviors observed in experiments and sheds new light on our understanding of how information is integrated in the brain. Copyright © 2016 Zhang et al.
Decentralized Multisensory Information Integration in Neural Systems
Zhang, Wen-hao; Chen, Aihua
2016-01-01
How multiple sensory cues are integrated in neural circuitry remains a challenge. The common hypothesis is that information integration might be accomplished in a dedicated multisensory integration area receiving feedforward inputs from the modalities. However, recent experimental evidence suggests that it is not a single multisensory brain area, but rather many multisensory brain areas that are simultaneously involved in the integration of information. Why many mutually connected areas should be needed for information integration is puzzling. Here, we investigated theoretically how information integration could be achieved in a distributed fashion within a network of interconnected multisensory areas. Using biologically realistic neural network models, we developed a decentralized information integration system that comprises multiple interconnected integration areas. Studying an example of combining visual and vestibular cues to infer heading direction, we show that such a decentralized system is in good agreement with anatomical evidence and experimental observations. In particular, we show that this decentralized system can integrate information optimally. The decentralized system predicts that optimally integrated information should emerge locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas. SIGNIFICANCE STATEMENT To extract information reliably from ambiguous environments, the brain integrates multiple sensory cues, which provide different aspects of information about the same entity of interest. Here, we propose a decentralized architecture for multisensory integration. In such a system, no processor is in the center of the network topology and information integration is achieved in a distributed manner through reciprocally connected local processors. Through studying the inference of heading direction with visual and vestibular cues, we show that the decentralized system can integrate information optimally, with the reciprocal connections between processers determining the extent of cue integration. Our model reproduces known multisensory integration behaviors observed in experiments and sheds new light on our understanding of how information is integrated in the brain. PMID:26758843
What experimental experience affects dogs' comprehension of human communicative actions?
Hauser, Marc D; Comins, Jordan A; Pytka, Lisa M; Cahill, Donal P; Velez-Calderon, Sofia
2011-01-01
Studies of dogs report that individuals reliably respond to the goal-directed communicative actions (e.g., pointing) of human experimenters. All of these studies use some version of a multi-trial approach, thereby allowing for the possibility of rapid learning within an experimental session. The experiments reported here ask whether dogs can respond correctly to a communicative action based on only a single presentation, thereby eliminating the possibility of learning within the experimental context. We tested 173 dogs. For each dog reaching our test criteria, we used a single presentation of six different goal-directed actions within a session, asking whether they correctly follow to a target goal (container with concealed food) a (1) distal hand point, (2) step toward one container, (3) hand point to one container followed by step toward the other, (4) step toward one container and point to the other, (5) distal foot point with the experimenter's hands free, and (6) distal foot point with the experimenter's hands occupied. Given only a single presentation, dogs selected the correct container when the experimenter hand pointed, foot pointed with hands occupied, or stepped closer to the target container, but failed on the other actions, despite using the same method. The fact that dogs correctly followed foot pointing with hands occupied, but not hands free, suggests that they are sensitive to environmental constraints, and use this information to infer rational, goal-directed action. We discuss these results in light of the role of experience in recognizing communicative gestures, as well as the significance of coding criteria for studies of canine competence. Copyright © 2010 Elsevier B.V. All rights reserved.
Imaginative Use of Nonbroadcast Technology Directs Social Services to Isolated Audiences.
ERIC Educational Resources Information Center
Erdman, Ann
1981-01-01
The keynote article in this issue summarizes some of the lessons learned after a decade of using satellites for public service, and after five years of experimentation with information technologies designed for specialized audiences. Community service programs in the Appalachian Mountain and Rocky Mountain regions and in the state of Alaska are…
Laser reflection from oxide-coated aluminum
NASA Technical Reports Server (NTRS)
Williams, M. D.
1982-01-01
The theory of reflection from an oxide-coated metal is combined with experimentally measured parameters of aluminum to produce useful amplitude and phase shift information applicable to the concentration and direction of laser light. Amplitude and phase are plotted vs angle of incidence for several important laser wavelengths in the near UV, visible, and IR spectral regions.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-31
... Directed at Adolescents.'' This study is designed to examine how adolescents interpret DTC advertising... understanding of benefits and risks in DTC ads differ across this part of the lifespan. Design Overview Within... (benefit onset: immediate, delayed) x 2 (risk severity: high, low) factorial design, based on the rationale...
NASA Astrophysics Data System (ADS)
Sawada, A.; Faniel, S.; Mineshige, S.; Kawabata, S.; Saito, K.; Kobayashi, K.; Sekine, Y.; Sugiyama, H.; Koga, T.
2018-05-01
We report an approach for examining electron properties using information about the shape and size of a nanostructure as a measurement reference. This approach quantifies the spin precession angles per unit length directly by considering the time-reversal interferences on chaotic return trajectories within mesoscopic ring arrays (MRAs). Experimentally, we fabricated MRAs using nanolithography in InGaAs quantum wells which had a gate-controllable spin-orbit interaction (SOI). As a result, we observed an Onsager symmetry related to relativistic magnetic fields, which provided us with indispensable information for the semiclassical billiard ball simulation. Our simulations, developed based on the real-space formalism of the weak localization/antilocalization effect including the degree of freedom for electronic spin, reproduced the experimental magnetoconductivity (MC) curves with high fidelity. The values of five distinct electron parameters (Fermi wavelength, spin precession angles per unit length for two different SOIs, impurity scattering length, and phase coherence length) were thereby extracted from a single MC curve. The methodology developed here is applicable to wide ranges of nanomaterials and devices, providing a diagnostic tool for exotic properties of two-dimensional electron systems.
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Davidson, Frederic M.
1990-01-01
A technique for word timing recovery in a direct-detection optical PPM communication system is described. It tracks on back-to-back pulse pairs in the received random PPM data sequences with the use of a phase locked loop. The experimental system consisted of an 833-nm AlGaAs laser diode transmitter and a silicon avalanche photodiode photodetector, and it used Q = 4 PPM signaling at source data rate 25 Mb/s. The mathematical model developed to describe system performance is shown to be in good agreement with the experimental measurements. Use of this recovered PPM word clock with a slot clock recovery system caused no measurable penalty in receiver sensitivity. The completely self-synchronized receiver was capable of acquiring and maintaining both slot and word synchronizations for input optical signal levels as low as 20 average detected photons per information bit. The receiver achieved a bit error probability of 10 to the -6th at less than 60 average detected photons per information bit.
Identifying direct miRNA-mRNA causal regulatory relationships in heterogeneous data.
Zhang, Junpeng; Le, Thuc Duy; Liu, Lin; Liu, Bing; He, Jianfeng; Goodall, Gregory J; Li, Jiuyong
2014-12-01
Discovering the regulatory relationships between microRNAs (miRNAs) and mRNAs is an important problem that interests many biologists and medical researchers. A number of computational methods have been proposed to infer miRNA-mRNA regulatory relationships, and are mostly based on the statistical associations between miRNAs and mRNAs discovered in observational data. The miRNA-mRNA regulatory relationships identified by these methods can be both direct and indirect regulations. However, differentiating direct regulatory relationships from indirect ones is important for biologists in experimental designs. In this paper, we present a causal discovery based framework (called DirectTarget) to infer direct miRNA-mRNA causal regulatory relationships in heterogeneous data, including expression profiles of miRNAs and mRNAs, and miRNA target information. DirectTarget is applied to the Epithelial to Mesenchymal Transition (EMT) datasets. The validation by experimentally confirmed target databases suggests that the proposed method can effectively identify direct miRNA-mRNA regulatory relationships. To explore the upstream regulators of miRNA regulation, we further identify the causal feedforward patterns (CFFPs) of TF-miRNA-mRNA to provide insights into the miRNA regulation in EMT. DirectTarget has the potential to be applied to other datasets to elucidate the direct miRNA-mRNA causal regulatory relationships and to explore the regulatory patterns. Copyright © 2014 Elsevier Inc. All rights reserved.
Autonomous frequency domain identification: Theory and experiment
NASA Technical Reports Server (NTRS)
Yam, Yeung; Bayard, D. S.; Hadaegh, F. Y.; Mettler, E.; Milman, M. H.; Scheid, R. E.
1989-01-01
The analysis, design, and on-orbit tuning of robust controllers require more information about the plant than simply a nominal estimate of the plant transfer function. Information is also required concerning the uncertainty in the nominal estimate, or more generally, the identification of a model set within which the true plant is known to lie. The identification methodology that was developed and experimentally demonstrated makes use of a simple but useful characterization of the model uncertainty based on the output error. This is a characterization of the additive uncertainty in the plant model, which has found considerable use in many robust control analysis and synthesis techniques. The identification process is initiated by a stochastic input u which is applied to the plant p giving rise to the output. Spectral estimation (h = P sub uy/P sub uu) is used as an estimate of p and the model order is estimated using the produce moment matrix (PMM) method. A parametric model unit direction vector p is then determined by curve fitting the spectral estimate to a rational transfer function. The additive uncertainty delta sub m = p - unit direction vector p is then estimated by the cross spectral estimate delta = P sub ue/P sub uu where e = y - unit direction vectory y is the output error, and unit direction vector y = unit direction vector pu is the computed output of the parametric model subjected to the actual input u. The experimental results demonstrate the curve fitting algorithm produces the reduced-order plant model which minimizes the additive uncertainty. The nominal transfer function estimate unit direction vector p and the estimate delta of the additive uncertainty delta sub m are subsequently available to be used for optimization of robust controller performance and stability.
The flaws and human harms of animal experimentation.
Akhtar, Aysha
2015-10-01
Nonhuman animal ("animal") experimentation is typically defended by arguments that it is reliable, that animals provide sufficiently good models of human biology and diseases to yield relevant information, and that, consequently, its use provides major human health benefits. I demonstrate that a growing body of scientific literature critically assessing the validity of animal experimentation generally (and animal modeling specifically) raises important concerns about its reliability and predictive value for human outcomes and for understanding human physiology. The unreliability of animal experimentation across a wide range of areas undermines scientific arguments in favor of the practice. Additionally, I show how animal experimentation often significantly harms humans through misleading safety studies, potential abandonment of effective therapeutics, and direction of resources away from more effective testing methods. The resulting evidence suggests that the collective harms and costs to humans from animal experimentation outweigh potential benefits and that resources would be better invested in developing human-based testing methods.
Experimental Evolution with Caenorhabditis Nematodes
Teotónio, Henrique; Estes, Suzanne; Phillips, Patrick C.; Baer, Charles F.
2017-01-01
The hermaphroditic nematode Caenorhabditis elegans has been one of the primary model systems in biology since the 1970s, but only within the last two decades has this nematode also become a useful model for experimental evolution. Here, we outline the goals and major foci of experimental evolution with C. elegans and related species, such as C. briggsae and C. remanei, by discussing the principles of experimental design, and highlighting the strengths and limitations of Caenorhabditis as model systems. We then review three exemplars of Caenorhabditis experimental evolution studies, underlining representative evolution experiments that have addressed the: (1) maintenance of genetic variation; (2) role of natural selection during transitions from outcrossing to selfing, as well as the maintenance of mixed breeding modes during evolution; and (3) evolution of phenotypic plasticity and its role in adaptation to variable environments, including host–pathogen coevolution. We conclude by suggesting some future directions for which experimental evolution with Caenorhabditis would be particularly informative. PMID:28592504
Interactions of the polarization and the sun compass in path integration of desert ants.
Lebhardt, Fleur; Ronacher, Bernhard
2014-08-01
Desert ants, Cataglyphis fortis, perform large-scale foraging trips in their featureless habitat using path integration as their main navigation tool. To determine their walking direction they use primarily celestial cues, the sky's polarization pattern and the sun position. To examine the relative importance of these two celestial cues, we performed cue conflict experiments. We manipulated the polarization pattern experienced by the ants during their outbound foraging excursions, reducing it to a single electric field (e-)vector direction with a linear polarization filter. The simultaneous view of the sun created situations in which the directional information of the sun and the polarization compass disagreed. The heading directions of the homebound runs recorded on a test field with full view of the natural sky demonstrate that none of both compasses completely dominated over the other. Rather the ants seemed to compute an intermediate homing direction to which both compass systems contributed roughly equally. Direct sunlight and polarized light are detected in different regions of the ant's compound eye, suggesting two separate pathways for obtaining directional information. In the experimental paradigm applied here, these two pathways seem to feed into the path integrator with similar weights.
Emergent oscillations assist obstacle negotiation during ant cooperative transport
Gelblum, Aviram; Pinkoviezky, Itai; Fonio, Ehud; Gov, Nir S.; Feinerman, Ofer
2016-01-01
Collective motion by animal groups is affected by internal interactions, external constraints, and the influx of information. A quantitative understanding of how these different factors give rise to different modes of collective motion is, at present, lacking. Here, we study how ants that cooperatively transport a large food item react to an obstacle blocking their path. Combining experiments with a statistical physics model of mechanically coupled active agents, we show that the constraint induces a deterministic collective oscillatory mode that facilitates obstacle circumvention. We provide direct experimental evidence, backed by theory, that this motion is an emergent group effect that does not require any behavioral changes at the individual level. We trace these relaxation oscillations to the interplay between two forces; informed ants pull the load toward the nest whereas uninformed ants contribute to the motion’s persistence along the tangential direction. The model’s predictions that oscillations appear above a critical system size, that the group can spontaneously transition into its ordered phase, and that the system can exhibit complete rotations are all verified experimentally. We expect that similar oscillatory modes emerge in collective motion scenarios where the structure of the environment imposes conflicts between individually held information and the group’s tendency for cohesiveness. PMID:27930304
Reality, locality and all that: "experimental metaphysics" and the quantum foundations
NASA Astrophysics Data System (ADS)
Cavalcanti, Eric G.
2008-10-01
In recent decades there has been a resurge of interest in the foundations of quantum theory, partly motivated by new experimental techniques, partly by the emerging field of quantum information science. Old questions, asked since the seminal article by Einstein, Podolsky and Rosen (EPR), are being revisited. The work of John Bell has changed the direction of investigation by recognising that those fundamental philosophical questions can have, after all, input from experiment. Abner Shimony has aptly termed this new field of enquiry "experimental metaphysics". The objective of this Thesis is to contribute to that body of research, by formalising old concepts, proposing new ones, and finding new results in well-studied areas. Without losing from sight that the appeal of experimental metaphysics comes from the adjective, every major result is followed by clear experimental proposals for quantum-atom optical setups.
Using sparsity information for iterative phase retrieval in x-ray propagation imaging.
Pein, A; Loock, S; Plonka, G; Salditt, T
2016-04-18
For iterative phase retrieval algorithms in near field x-ray propagation imaging experiments with a single distance measurement, it is indispensable to have a strong constraint based on a priori information about the specimen; for example, information about the specimen's support. Recently, Loock and Plonka proposed to use the a priori information that the exit wave is sparsely represented in a certain directional representation system, a so-called shearlet system. In this work, we extend this approach to complex-valued signals by applying the new shearlet constraint to amplitude and phase separately. Further, we demonstrate its applicability to experimental data.
Experimental Study of Unshrouded Impeller Pump Stage Sensitivity to Tip Clearance
NASA Technical Reports Server (NTRS)
Williams, Robert W.; Zoladz, Thomas; Storey, Anne K.; Skelley, Stephen E.
2002-01-01
This viewgraph presentation provides information on an experiment. Its objective is to experimentally determine unshrouded impeller performance sensitivity to tip clearance. The experiment included: Determining impeller efficiency at scaled operating conditions in water at MSFC's Pump Test Equipment (PTE) Facility; Testing unshrouded impeller at three different tip clearances; Testing each tip clearance configuration at on- and off-design conditions, and collecting unsteady- and steady-state data in each configuration; Determining impeller efficiency directly using drive line torquemeter and pump inlet and exit total pressure measurements.
X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.
1997-04-01
X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.
Tan, Chao; Zhao, Jia; Dong, Feng
2015-03-01
Flow behavior characterization is important to understand gas-liquid two-phase flow mechanics and further establish its description model. An Electrical Resistance Tomography (ERT) provides information regarding flow conditions at different directions where the sensing electrodes implemented. We extracted the multivariate sample entropy (MSampEn) by treating ERT data as a multivariate time series. The dynamic experimental results indicate that the MSampEn is sensitive to complexity change of flow patterns including bubbly flow, stratified flow, plug flow and slug flow. MSampEn can characterize the flow behavior at different direction of two-phase flow, and reveal the transition between flow patterns when flow velocity changes. The proposed method is effective to analyze two-phase flow pattern transition by incorporating information of different scales and different spatial directions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Discord as a quantum resource for bi-partite communication
NASA Astrophysics Data System (ADS)
Chrzanowski, Helen M.; Gu, Mile; Assad, Syed M.; Symul, Thomas; Modi, Kavan; Ralph, Timothy C.; Vedral, Vlatko; Lam, Ping Koy
2014-12-01
Coherent interactions that generate negligible entanglement can still exhibit unique quantum behaviour. This observation has motivated a search beyond entanglement for a complete description of all quantum correlations. Quantum discord is a promising candidate. Here, we experimentally demonstrate that under certain measurement constraints, discord between bipartite systems can be consumed to encode information that can only be accessed by coherent quantum interactions. The inability to access this information by any other means allows us to use discord to directly quantify this `quantum advantage'.
Sleep-dependent directional coupling between human neocortex and hippocampus.
Wagner, Tobias; Axmacher, Nikolai; Lehnertz, Klaus; Elger, Christian E; Fell, Jürgen
2010-02-01
Complex interactions between neocortex and hippocampus are the neural basis of memory formation. Two-step theories of memory formation suggest that initial encoding of novel information depends on the induction of rapid plasticity within the hippocampus, and is followed by a second sleep-dependent step of memory consolidation. These theories predict information flow from the neocortex into the hippocampus during waking state and in the reverse direction during sleep. However, experimental evidence that interactions between hippocampus and neocortex have a predominant direction which reverses during sleep rely on cross-correlation analysis of data from animal experiments and yielded inconsistent results. Here, we investigated directional coupling in intracranial EEG data from human subjects using a phase-modeling approach which is well suited to reveal functional interdependencies in oscillatory data. In general, we observed that the anterior hippocampus predominantly drives nearby and remote brain regions. Surprisingly, however, the influence of neocortical regions on the hippocampus significantly increased during sleep as compared to waking state. These results question the standard model of hippocampal-neocortical interactions and suggest that sleep-dependent consolidation is accomplished by an active retrieval of hippocampal information by the neocortex. Copyright 2009 Elsevier Srl. All rights reserved.
The role of privacy protection in healthcare information systems adoption.
Hsu, Chien-Lung; Lee, Ming-Ren; Su, Chien-Hui
2013-10-01
Privacy protection is an important issue and challenge in healthcare information systems (HISs). Recently, some privacy-enhanced HISs are proposed. Users' privacy perception, intention, and attitude might affect the adoption of such systems. This paper aims to propose a privacy-enhanced HIS framework and investigate the role of privacy protection in HISs adoption. In the proposed framework, privacy protection, access control, and secure transmission modules are designed to enhance the privacy protection of a HIS. An experimental privacy-enhanced HIS is also implemented. Furthermore, we proposed a research model extending the unified theory of acceptance and use of technology by considering perceived security and information security literacy and then investigate user adoption of a privacy-enhanced HIS. The experimental results and analyses showed that user adoption of a privacy-enhanced HIS is directly affected by social influence, performance expectancy, facilitating conditions, and perceived security. Perceived security has a mediating effect between information security literacy and user adoption. This study proposes several implications for research and practice to improve designing, development, and promotion of a good healthcare information system with privacy protection.
Benzodiazepines, opioids and driving: an overview of the experimental research.
Leung, Stefanie Y
2011-05-01
Road crashes contribute significantly to the total burden of injury in Australia, with the risk of injury being associated with the presence of drugs and/or alcohol in the driver's blood. Increasingly, some of the most commonly detected drugs include prescription medicines, the most notable of these being benzodiazepines and opioids. However, there is a paucity of experimental research into the effects of prescribed psychoactive drugs on driving behaviours. This paper provides an overview of experimental studies investigating the effects of prescribed doses of benzodiazepines and opioids on driving ability, and points to future directions for research. There is growing epidemiological evidence linking the therapeutic use of benzodiazepines and opioids to an increased crash risk. However, the current experimental literature remains unclear. Limitations to study methodologies have resulted in inconsistent findings. Limited experimental evidence exists to inform policy and guidelines regarding fitness-to-drive for patients taking prescribed benzodiazepines and opioids. Further experimental research is required to elucidate the effects of these medications on driving, under varying conditions and in different medical contexts. This will ensure that doctors prescribing benzodiazepines and opioids are well informed, and can appropriately advise patients of the risks associated with driving whilst taking these medications. © 2011 Australasian Professional Society on Alcohol and other Drugs.
Home Care Nursing via Computer Networks: Justification and Design Specifications
Brennan, Patricia Flatley
1988-01-01
High-tech home care includes the use of information technologies, such as computer networks, to provide direct care to patients in the home. This paper presents the justification and design of a project using a free, public access computer network to deliver home care nursing. The intervention attempts to reduce isolation and improve problem solving among home care patients and their informal caregivers. Three modules comprise the intervention: a decision module, a communications module, and an information data base. This paper describes the experimental evaluation of the project, and discusses issues in the delivery of nursing care via computers.
Application of photon Doppler velocimetry to direct impact Hopkinson pressure bars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lea, Lewis J., E-mail: ll379@cam.ac.uk; Jardine, Andrew P.
2016-02-15
Direct impact Hopkinson pressure bar systems offer many potential advantages over split Hopkinson pressure bars, including access to higher strain rates, higher strains for equivalent striker velocity and system length, lower dispersion, and faster achievement of force equilibrium. Currently, these advantages are gained at the expense of all information about the striker impacted specimen face, preventing the experimental determination of force equilibrium, and requiring approximations to be made on the sample deformation history. In this paper, we discuss an experimental method and complementary data analysis for using photon Doppler velocimetry to measure surface velocities of the striker and output barsmore » in a direct impact bar experiment, allowing similar data to be recorded as in a split bar system. We discuss extracting velocity and force measurements, and the precision of measurements. Results obtained using the technique are compared to equivalent split bar tests, showing improved stress measurements for the lowest and highest strains in fully dense metals, and improvement for all strains in slow and non-equilibrating materials.« less
Bed inventory overturn in a circulating fluid bed riser with pant-leg structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jinjing Li; Wei Wang; Hairui Yang
2009-05-15
The special phenomenon, nominated as bed inventory overturn, in circulating fluid bed (CFB) riser with pant-leg structure was studied with model calculation and experimental work. A compounded pressure drop mathematic model was developed and validated with the experimental data in a cold experimental test rig. The model calculation results agree well with the measured data. In addition, the intensity of bed inventory overturn is directly proportional to the fluidizing velocity and is inversely proportional to the branch point height. The results in the present study provide significant information for the design and operation of a CFB boiler with pant-leg structure.more » 15 refs., 10 figs., 1 tab.« less
Overview: Homogeneous nucleation from the vapor phase-The experimental science.
Wyslouzil, Barbara E; Wölk, Judith
2016-12-07
Homogeneous nucleation from the vapor phase has been a well-defined area of research for ∼120 yr. In this paper, we present an overview of the key experimental and theoretical developments that have made it possible to address some of the fundamental questions first delineated and investigated in C. T. R. Wilson's pioneering paper of 1897 [C. T. R. Wilson, Philos. Trans. R. Soc., A 189, 265-307 (1897)]. We review the principles behind the standard experimental techniques currently used to measure isothermal nucleation rates, and discuss the molecular level information that can be extracted from these measurements. We then highlight recent approaches that interrogate the vapor and intermediate clusters leading to particle formation, more directly.
NASA Astrophysics Data System (ADS)
Chen, Tian-Yu; Chen, Yang; Yang, Hu-Jiang; Xiao, Jing-Hua; Hu, Gang
2018-03-01
Nowadays, massive amounts of data have been accumulated in various and wide fields, it has become today one of the central issues in interdisciplinary fields to analyze existing data and extract as much useful information as possible from data. It is often that the output data of systems are measurable while dynamic structures producing these data are hidden, and thus studies to reveal system structures by analyzing available data, i.e., reconstructions of systems become one of the most important tasks of information extractions. In the past, most of the works in this respect were based on theoretical analyses and numerical verifications. Direct analyses of experimental data are very rare. In physical science, most of the analyses of experimental setups were based on the first principles of physics laws, i.e., so-called top-down analyses. In this paper, we conducted an experiment of “Boer resonant instrument for forced vibration” (BRIFV) and inferred the dynamic structure of the experimental set purely from the analysis of the measurable experimental data, i.e., by applying the bottom-up strategy. Dynamics of the experimental set is strongly nonlinear and chaotic, and itʼs subjects to inevitable noises. We proposed to use high-order correlation computations to treat nonlinear dynamics; use two-time correlations to treat noise effects. By applying these approaches, we have successfully reconstructed the structure of the experimental setup, and the dynamic system reconstructed with the measured data reproduces good experimental results in a wide range of parameters.
Deterministic photon-emitter coupling in chiral photonic circuits.
Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter
2015-09-01
Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.
Deterministic photon-emitter coupling in chiral photonic circuits
NASA Astrophysics Data System (ADS)
Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter
2015-09-01
Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.
SPHERE: SPherical Harmonic Elastic REgistration of HARDI Data
Yap, Pew-Thian; Chen, Yasheng; An, Hongyu; Yang, Yang; Gilmore, John H.; Lin, Weili
2010-01-01
In contrast to the more common Diffusion Tensor Imaging (DTI), High Angular Resolution Diffusion Imaging (HARDI) allows superior delineation of angular microstructures of brain white matter, and makes possible multiple-fiber modeling of each voxel for better characterization of brain connectivity. However, the complex orientation information afforded by HARDI makes registration of HARDI images more complicated than scalar images. In particular, the question of how much orientation information is needed for satisfactory alignment has not been sufficiently addressed. Low order orientation representation is generally more robust than high order representation, although the latter provides more information for correct alignment of fiber pathways. However, high order representation, when naïvely utilized, might not necessarily be conducive to improving registration accuracy since similar structures with significant orientation differences prior to proper alignment might be mistakenly taken as non-matching structures. We present in this paper a HARDI registration algorithm, called SPherical Harmonic Elastic REgistration (SPHERE), which in a principled means hierarchically extracts orientation information from HARDI data for structural alignment. The image volumes are first registered using robust, relatively direction invariant features derived from the Orientation Distribution Function (ODF), and the alignment is then further refined using spherical harmonic (SH) representation with gradually increasing orders. This progression from non-directional, single-directional to multi-directional representation provides a systematic means of extracting directional information given by diffusion-weighted imaging. Coupled with a template-subject-consistent soft-correspondence-matching scheme, this approach allows robust and accurate alignment of HARDI data. Experimental results show marked increase in accuracy over a state-of-the-art DTI registration algorithm. PMID:21147231
ERIC Educational Resources Information Center
EDLING, JACK V.
A REPORT OF THE WESTERN REGIONAL CONFERENCE ON EDUCATIONAL MEDIA RESEARCH HELD AT SACRAMENTO, CALIFORNIA, APRIL 20-22, 1960, WAS PRESENTED. THE CONFERENCE WAS HELD TO REVIEW AND HELP CHART FUTURE DIRECTIONS IN RESEARCH, EXPERIMENTATION, AND THE DISSEMINATION OF INFORMATION RELATIVE TO NEW INSTRUCTIONAL MEDIA. THE CONFERENCE HAD FOUR PURPOSES--TO…
Code of Federal Regulations, 2014 CFR
2014-01-01
... maximum quantity of tritium or promethium-147 in each device; (2) Details of construction and design; (3... information, including experimental studies and tests, required by the Commission to facilitate a... direct physical contact by any person with it; (3) The device is so designed that it cannot easily be...
Code of Federal Regulations, 2013 CFR
2013-01-01
... maximum quantity of tritium or promethium-147 in each device; (2) Details of construction and design; (3... information, including experimental studies and tests, required by the Commission to facilitate a... direct physical contact by any person with it; (3) The device is so designed that it cannot easily be...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-23
...; Experimental Study: Examination of Corrective Direct-to-Consumer Television Advertising AGENCY: Food and Drug... Television Advertising'' has been approved by the Office of Management and Budget (OMB) under the Paperwork... Television Advertising'' to OMB for review and clearance under 44 U.S.C. 3507. An Agency may not conduct or...
Echolalic Responses by a Child with Autism to Four Experimental Conditions of Sociolinguistic Input.
ERIC Educational Resources Information Center
Violette, Joseph; Swisher, Linda
1992-01-01
The immediate verbal imitations (IVIs) of a boy (age five) with autism and echolalia were studied, with variables of linguistic familiarity and instructor's style of directiveness being manipulated. The occurrence of IVIs was related to uncertain or informative events, and was significantly greater when lexical stimuli were unknown and presented…
2009-08-01
caractéristiques directionnelles dépendent beaucoup de la fréquence. Les mesures des courbes de réponse en tension d’émission du projecteur et des diagrammes ...Development Knowledge and Information Management FFT Fast fourier transform HF MMPP High frequency multi-mode pipe projector kHz kilohertz MMPP
Crossed Molecular Beam Studies and Dynamics of Decomposition of Chemically Activated Radicals
DOE R&D Accomplishments Database
Lee, Y. T.
1973-09-01
The power of the crossed molecular beams method in the investigation of the dynamics of chemical reactions lies mainly in the direct observation of the consequences of single collisions of well controlled reactant molecules. The primary experimental observations which provide information on reaction dynamics are the measurements of angular and velocity distributions of reaction products.
Direct Broadcast Satellite: Radio Program
NASA Astrophysics Data System (ADS)
Hollansworth, James E.
1992-10-01
NASA is committed to providing technology development that leads to the introduction of new commercial applications for communications satellites. The Direct Broadcast Satellite-Radio (DBS-R) Program is a joint effort between The National Aeronautics and Space Administration (NASA) and The United States Information Agency/Voice of America (USIA/VOA) directed at this objective. The purpose of this program is to define the service and develop the technology for a direct-to-listener satellite sound broadcasting system. The DBS-R Program, as structured by NASA and VOA, is now a three-phase program designed to help the U.S. commercial communications satellite and receiver industry bring about this new communications service. Major efforts are being directed towards frequency planning hardware and service development, service demonstration, and experimentation with new satellite and receiver technology.
Identification of Piecewise Linear Uniform Motion Blur
NASA Astrophysics Data System (ADS)
Patanukhom, Karn; Nishihara, Akinori
A motion blur identification scheme is proposed for nonlinear uniform motion blurs approximated by piecewise linear models which consist of more than one linear motion component. The proposed scheme includes three modules that are a motion direction estimator, a motion length estimator and a motion combination selector. In order to identify the motion directions, the proposed scheme is based on a trial restoration by using directional forward ramp motion blurs along different directions and an analysis of directional information via frequency domain by using a Radon transform. Autocorrelation functions of image derivatives along several directions are employed for estimation of the motion lengths. A proper motion combination is identified by analyzing local autocorrelation functions of non-flat component of trial restored results. Experimental examples of simulated and real world blurred images are given to demonstrate a promising performance of the proposed scheme.
Using field inversion to quantify functional errors in turbulence closures
NASA Astrophysics Data System (ADS)
Singh, Anand Pratap; Duraisamy, Karthik
2016-04-01
A data-informed approach is presented with the objective of quantifying errors and uncertainties in the functional forms of turbulence closure models. The approach creates modeling information from higher-fidelity simulations and experimental data. Specifically, a Bayesian formalism is adopted to infer discrepancies in the source terms of transport equations. A key enabling idea is the transformation of the functional inversion procedure (which is inherently infinite-dimensional) into a finite-dimensional problem in which the distribution of the unknown function is estimated at discrete mesh locations in the computational domain. This allows for the use of an efficient adjoint-driven inversion procedure. The output of the inversion is a full-field of discrepancy that provides hitherto inaccessible modeling information. The utility of the approach is demonstrated by applying it to a number of problems including channel flow, shock-boundary layer interactions, and flows with curvature and separation. In all these cases, the posterior model correlates well with the data. Furthermore, it is shown that even if limited data (such as surface pressures) are used, the accuracy of the inferred solution is improved over the entire computational domain. The results suggest that, by directly addressing the connection between physical data and model discrepancies, the field inversion approach materially enhances the value of computational and experimental data for model improvement. The resulting information can be used by the modeler as a guiding tool to design more accurate model forms, or serve as input to machine learning algorithms to directly replace deficient modeling terms.
Improved medical image fusion based on cascaded PCA and shift invariant wavelet transforms.
Reena Benjamin, J; Jayasree, T
2018-02-01
In the medical field, radiologists need more informative and high-quality medical images to diagnose diseases. Image fusion plays a vital role in the field of biomedical image analysis. It aims to integrate the complementary information from multimodal images, producing a new composite image which is expected to be more informative for visual perception than any of the individual input images. The main objective of this paper is to improve the information, to preserve the edges and to enhance the quality of the fused image using cascaded principal component analysis (PCA) and shift invariant wavelet transforms. A novel image fusion technique based on cascaded PCA and shift invariant wavelet transforms is proposed in this paper. PCA in spatial domain extracts relevant information from the large dataset based on eigenvalue decomposition, and the wavelet transform operating in the complex domain with shift invariant properties brings out more directional and phase details of the image. The significance of maximum fusion rule applied in dual-tree complex wavelet transform domain enhances the average information and morphological details. The input images of the human brain of two different modalities (MRI and CT) are collected from whole brain atlas data distributed by Harvard University. Both MRI and CT images are fused using cascaded PCA and shift invariant wavelet transform method. The proposed method is evaluated based on three main key factors, namely structure preservation, edge preservation, contrast preservation. The experimental results and comparison with other existing fusion methods show the superior performance of the proposed image fusion framework in terms of visual and quantitative evaluations. In this paper, a complex wavelet-based image fusion has been discussed. The experimental results demonstrate that the proposed method enhances the directional features as well as fine edge details. Also, it reduces the redundant details, artifacts, distortions.
Experimental Evidence for the Role of Intonation in Evidential Marking.
Vanrell, Maria Del Mar; Armstrong, Meghan E; Prieto, Pilar
2017-06-01
This paper investigates the role of intonation in the marking of directly-perceived information in Majorcan Catalan polar questions. We conducted a perception experiment in which a total of 72 participants were introduced to a set of twins who were exposed to different types of evidence for a given p(roposition). One twin inferred p based on direct sensory information (via one of the five senses), while the other had been told that p by a third party, that is, reported information. Participants listened to a set of discourse contexts that ended in critical stimuli with three attested combinations of particle/intonation in this variety of Catalan: (1) polar questions produced with a falling nuclear contour ¡H+L* L%; (2) polar questions headed with the particle que 'that' produced with ¡H+L* L%; and (3) polar questions headed with the particle que and produced with a rise-fall L+H* L%. After hearing the stimulus, participants had to decide which of the twins had uttered the question-the one who inferred a proposition ( p) based on direct sensory information or the one who had been told p by a third party. The results show that listeners very consistently associate the que + L+H* L% combination with inferences drawn from direct sensory evidence as opposed to reported evidence. This shows that particles may work in tandem with intonation to convey the information source. Importantly, we show that intonation is a part of grammar that may be recruited for evidential strategies.
Inclusion of quasi-experimental studies in systematic reviews of health systems research.
Rockers, Peter C; Røttingen, John-Arne; Shemilt, Ian; Tugwell, Peter; Bärnighausen, Till
2015-04-01
Systematic reviews of health systems research commonly limit studies for evidence synthesis to randomized controlled trials. However, well-conducted quasi-experimental studies can provide strong evidence for causal inference. With this article, we aim to stimulate and inform discussions on including quasi-experiments in systematic reviews of health systems research. We define quasi-experimental studies as those that estimate causal effect sizes using exogenous variation in the exposure of interest that is not directly controlled by the researcher. We incorporate this definition into a non-hierarchical three-class taxonomy of study designs - experiments, quasi-experiments, and non-experiments. Based on a review of practice in three disciplines related to health systems research (epidemiology, economics, and political science), we discuss five commonly used study designs that fit our definition of quasi-experiments: natural experiments, instrumental variable analyses, regression discontinuity analyses, interrupted times series studies, and difference studies including controlled before-and-after designs, difference-in-difference designs and fixed effects analyses of panel data. We further review current practices regarding quasi-experimental studies in three non-health fields that utilize systematic reviews (education, development, and environment studies) to inform the design of approaches for synthesizing quasi-experimental evidence in health systems research. Ultimately, the aim of any review is practical: to provide useful information for policymakers, practitioners, and researchers. Future work should focus on building a consensus among users and producers of systematic reviews regarding the inclusion of quasi-experiments. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
ISPyB: an information management system for synchrotron macromolecular crystallography.
Delagenière, Solange; Brenchereau, Patrice; Launer, Ludovic; Ashton, Alun W; Leal, Ricardo; Veyrier, Stéphanie; Gabadinho, José; Gordon, Elspeth J; Jones, Samuel D; Levik, Karl Erik; McSweeney, Seán M; Monaco, Stéphanie; Nanao, Max; Spruce, Darren; Svensson, Olof; Walsh, Martin A; Leonard, Gordon A
2011-11-15
Individual research groups now analyze thousands of samples per year at synchrotron macromolecular crystallography (MX) resources. The efficient management of experimental data is thus essential if the best possible experiments are to be performed and the best possible data used in downstream processes in structure determination pipelines. Information System for Protein crystallography Beamlines (ISPyB), a Laboratory Information Management System (LIMS) with an underlying data model allowing for the integration of analyses down-stream of the data collection experiment was developed to facilitate such data management. ISPyB is now a multisite, generic LIMS for synchrotron-based MX experiments. Its initial functionality has been enhanced to include improved sample tracking and reporting of experimental protocols, the direct ranking of the diffraction characteristics of individual samples and the archiving of raw data and results from ancillary experiments and post-experiment data processing protocols. This latter feature paves the way for ISPyB to play a central role in future macromolecular structure solution pipelines and validates the application of the approach used in ISPyB to other experimental techniques, such as biological solution Small Angle X-ray Scattering and spectroscopy, which have similar sample tracking and data handling requirements.
Wang, Xu; Le, Anh-Thu; Yu, Chao; Lucchese, R. R.; Lin, C. D.
2016-01-01
We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. A simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method. PMID:27025410
NASA Astrophysics Data System (ADS)
Wang, Xu; Le, Anh-Thu; Yu, Chao; Lucchese, R. R.; Lin, C. D.
2016-03-01
We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. A simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method.
Status of the Siberian synchrotron radiation center
NASA Astrophysics Data System (ADS)
Ancharov, A. I.; Baryshev, V. B.; Chernov, V. A.; Gentselev, A. N.; Goldenberg, B. G.; Kochubei, D. I.; Korchuganov, V. N.; Kulipanov, G. N.; Kuzin, M. V.; Levichev, E. B.; Mezentsev, N. A.; Mishnev, S. I.; Nikolenko, A. D.; Pindyurin, V. F.; Sheromov, M. A.; Tolochko, B. P.; Sharafutdinov, M. R.; Shmakov, A. N.; Vinokurov, N. A.; Vobly, P. D.; Zolotarev, K. V.
2005-05-01
Synchrotron radiation (SR) experiments at the Budker Institute of Nuclear Physics had been started in 1973, and from 1981 the Siberian Synchrotron Radiation Center (SSRC) had an official status as Research Center of the Russian Academy of Sciences. SSRC is the research center, which is open and free of tax for the research teams from Russia and abroad. In this report some technical information about the storage rings—SR sources of the Budker INP, the main directions of activity of SSRC, experimental stations, experimental works and users—is given. Development of the free electron lasers, new SR sources and insertion devices is described.
2011-01-01
Background Renewed interest in plant × environment interactions has risen in the post-genomic era. In this context, high-throughput phenotyping platforms have been developed to create reproducible environmental scenarios in which the phenotypic responses of multiple genotypes can be analysed in a reproducible way. These platforms benefit hugely from the development of suitable databases for storage, sharing and analysis of the large amount of data collected. In the model plant Arabidopsis thaliana, most databases available to the scientific community contain data related to genetic and molecular biology and are characterised by an inadequacy in the description of plant developmental stages and experimental metadata such as environmental conditions. Our goal was to develop a comprehensive information system for sharing of the data collected in PHENOPSIS, an automated platform for Arabidopsis thaliana phenotyping, with the scientific community. Description PHENOPSIS DB is a publicly available (URL: http://bioweb.supagro.inra.fr/phenopsis/) information system developed for storage, browsing and sharing of online data generated by the PHENOPSIS platform and offline data collected by experimenters and experimental metadata. It provides modules coupled to a Web interface for (i) the visualisation of environmental data of an experiment, (ii) the visualisation and statistical analysis of phenotypic data, and (iii) the analysis of Arabidopsis thaliana plant images. Conclusions Firstly, data stored in the PHENOPSIS DB are of interest to the Arabidopsis thaliana community, particularly in allowing phenotypic meta-analyses directly linked to environmental conditions on which publications are still scarce. Secondly, data or image analysis modules can be downloaded from the Web interface for direct usage or as the basis for modifications according to new requirements. Finally, the structure of PHENOPSIS DB provides a useful template for the development of other similar databases related to genotype × environment interactions. PMID:21554668
Information Processing in Living Systems
NASA Astrophysics Data System (ADS)
Tkačik, Gašper; Bialek, William
2016-03-01
Life depends as much on the flow of information as on the flow of energy. Here we review the many efforts to make this intuition precise. Starting with the building blocks of information theory, we explore examples where it has been possible to measure, directly, the flow of information in biological networks, or more generally where information-theoretic ideas have been used to guide the analysis of experiments. Systems of interest range from single molecules (the sequence diversity in families of proteins) to groups of organisms (the distribution of velocities in flocks of birds), and all scales in between. Many of these analyses are motivated by the idea that biological systems may have evolved to optimize the gathering and representation of information, and we review the experimental evidence for this optimization, again across a wide range of scales.
Experimental demonstration of spinor slow light
NASA Astrophysics Data System (ADS)
Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriašov, Viačeslav; Chang, Kao-Fang; Cho, Hung-Wen; JuzeliÅ«nas, Gediminas; Yu, Ite A.
2016-03-01
Over the last decade there has been a continuing interest in slow and stored light based on the electromagnetically induced transparency (EIT) effect, because of their potential applications in quantum information manipulation. However, previous experimental works all dealt with the single-component slow light which cannot be employed as a qubit. In this work, we report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The oscillations between the two components, similar to the Rabi oscillation of a two-level system or a qubit, were observed. Single-photon SSL can be considered as two-color qubits. We experimentally demonstrated a possible application of the DT scheme as quantum memory and quantum rotator for the two-color qubits. This work opens up a new direction in the slow light research.
Focused Experimental and Analytical Studies of the RBCC Rocket-Ejector
NASA Technical Reports Server (NTRS)
Lehman, M.; Pal, S.; Schwes, D.; Chen, J. D.; Santoro, R. J.
1999-01-01
The rocket-ejector mode of a Rocket Based Combined Cycle Engine (RBCC) was studied through a joint experimental/analytical approach. A two-dimensional variable geometry rocket-ejector system with enhanced optical access was designed and fabricated for experimentation. The rocket-ejector system utilizes a single two-dimensional gaseous oxygen/gaseous hydrogen rocket as the ejector. To gain a systematic understanding of the rocket ejector's internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static configurations for a range of rocket operating conditions Overall system performance was obtained through Global measurements of wall static pressure profiles, heat flux profiles and engine thrust, whereas detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen. nitrogen and water vapor). These experimental efforts were complemented by Computational Fluid Dynamic (CFD) flowfield analyses.
A trial of direct control of pine engraver beetles on a small logging unit
W. L. Jackson
1960-01-01
Laboratory tests and small-scale field trials have shown the insecticide lindane to be highly toxic to pine engraver beetles. On the basis of that information, the insecticide was applied to fresh logging slash heavily infested with pine engraver beetles at Challenge Experimental Forest in 1959. Costs were reasonable and no insurmountable problems were encountered....
The Role of Goal-Directed Behavior in Intention Attribution in Children
ERIC Educational Resources Information Center
Legrain, Laure; Destrebecqz, Arnaud; Gevers, Wim
2012-01-01
In this study, we addressed the question of the nature of the information needed by 13-month-old infants to understand another agent's intentions. In two experiments, an experimenter was either unable or unwilling to give a toy to an infant. Importantly, an implement (a gutter in which the toy could roll down toward the infant) was used to make…
ERIC Educational Resources Information Center
Davis, Gregory J.; Gibson, Bradley S.
2012-01-01
Voluntary shifts of attention are often motivated in experimental contexts by using well-known symbols that accurately predict the direction of targets. The authors report 3 experiments, which showed that the presentation of predictive spatial information does not provide sufficient incentive to elicit voluntary shifts of attention. For instance,…
FROGS (Friends of Granites) report
NASA Astrophysics Data System (ADS)
Miller, Calvin
This VGP News, which is devoted to petrology, is a good one for noting the existence of FROGS. FROGS is, as the name suggests, an informal organization of people whose research relates in one way or another to granitic rocks. Its purpose has been to promote communication among geoscientists with different perspectives and concerns about felsic plutonism. Initially, a major focus was experimental petrology and integration of field-oriented and lab-oriented viewpoints; now that there is the opportunity to communicate with the Eos readership, an obvious additional goal will be to bring together volcanic and plutonic views of felsic magmatism.FROGS first gathered in late 1982 under the guidance of E-an Zen and Pete Toulmin (both at U.S. Geological Survey (USGS), Reston, Va.), who saw a need for greater interaction among those interested in granites and for renewed, focused experimental investigations. They produced two newsletters (which were sent out by direct mail) and organized an informal meeting at the Geological Society of America meeting at Indianapolis, Ind., and then turned over the FROG reins to Sue Kieffer (USGS, Flagstaff, Ariz.) and John Clemens (Arizona State University, Tempe). They generated another newsletter, which was directly mailed to a readership that had grown beyond 200.
Mandating audio-video recording of informed consent: are we right in enforcing this?
Agrawal, A R; Joshi, R P; Shah, V
2014-07-01
Medicines are the result of experimentation carried out in animals and humans. However, there are numerous instances in the history of medicine where humans were subjected to undue risks and abuses, requiring regulations for their safety. Idea of informed consent has found its presence in medical literature from the times of Hippocratic Oath propagating principles of '...never do harm to anyone' and physician directed care of patients. This was revived in post-world war II era in the form of Nuremberg code and the declaration of Helsinki in response to various debilitating experimentations done on prisoners in concentration camps and elsewhere. Complete information and voluntary participation forms the ethical tenets of these acts and the same has been reflected in various guidelines enacted worldwide, which are sufficient to make sure that patient consent is obtained in fair and just manner. Despite this, there have been undesirable lapses in the conduct of clinical trials. This situation worsens, when intentional lapses in conduct of trial hamper the ability of socially and economically disadvantaged communities in developing countries to make free and informed decision.
NASA Astrophysics Data System (ADS)
Hidayat, Taufiq; Shishin, Denis; Decterov, Sergei A.; Hayes, Peter C.; Jak, Evgueni
2017-01-01
Uncertainty in the metal price and competition between producers mean that the daily operation of a smelter needs to target high recovery of valuable elements at low operating cost. Options for the improvement of the plant operation can be examined and decision making can be informed based on accurate information from laboratory experimentation coupled with predictions using advanced thermodynamic models. Integrated high-temperature experimental and thermodynamic modelling research on phase equilibria and thermodynamics of copper-containing systems have been undertaken at the Pyrometallurgy Innovation Centre (PYROSEARCH). The experimental phase equilibria studies involve high-temperature equilibration, rapid quenching and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA). The thermodynamic modelling deals with the development of accurate thermodynamic database built through critical evaluation of experimental data, selection of solution models, and optimization of models parameters. The database covers the Al-Ca-Cu-Fe-Mg-O-S-Si chemical system. The gas, slag, matte, liquid and solid metal phases, spinel solid solution as well as numerous solid oxide and sulphide phases are included. The database works within the FactSage software environment. Examples of phase equilibria data and thermodynamic models of selected systems, as well as possible implementation of the research outcomes to selected copper making processes are presented.
How to make deposition of images a reality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guss, J. Mitchell, E-mail: mitchell.guss@sydney.edu.au; McMahon, Brian; School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006
2014-10-01
An analysis is performed of the technical and financial challenges to be overcome if deposition of primary experimental data is to become routine. The IUCr Diffraction Data Deposition Working Group is investigating the rationale and policies for routine deposition of diffraction images (and other primary experimental data sets). An information-management framework is described that should inform policy directions, and some of the technical and other issues that need to be addressed in an effort to achieve such a goal are analysed. In the near future, routine data deposition could be encouraged at one of the growing number of institutional repositoriesmore » that accept data sets or at a generic data-publishing web repository service. To realise all of the potential benefits of depositing diffraction data, specialized archives would be preferable. Funding such an initiative will be challenging.« less
Extending the Applicability of Exact Nuclear Overhauser Enhancements to Large Proteins and RNA.
Nichols, Parker; Born, Alexandra; Henen, Morkos; Strotz, Dean; Chi, Celestine N; Güntert, Peter; Vögeli, Beat Rolf
2018-06-08
Distance-dependent NOEs are one of the most popular and important experimental restraints for calculating NMR structures. Despite this, they are mostly employed as semi-quantitative upper distance bounds, which discards a wealth of information that is encoded in the cross-relaxation rate constant. Information that is lost includes exact distances between protons and dynamics that occur on the sub-millisecond time-scale. Our recently introduced exact measurement of the NOE (eNOE) requires little additional experimental effort relative to other NMR observables. So far, we have used eNOEs to calculate multi-state ensembles of proteins up to ~150 residues. Here, we briefly revisit the eNOE methodology and present two new directions for the use of eNOEs: Applications to large proteins and RNA. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Active dendrites: colorful wings of the mysterious butterflies.
Johnston, Daniel; Narayanan, Rishikesh
2008-06-01
Santiago Ramón y Cajal had referred to neurons as the 'mysterious butterflies of the soul.' Wings of these butterflies--their dendrites--were traditionally considered as passive integrators of synaptic information. Owing to a growing body of experimental evidence, it is now widely accepted that these wings are colorful, endowed with a plethora of active conductances, with each family of these butterflies made of distinct hues and shades. Furthermore, rapidly evolving recent literature also provides direct and indirect demonstrations for activity-dependent plasticity of these active conductances, pointing toward chameleonic adaptability in these hues. These experimental findings firmly establish the immense computational power of a single neuron, and thus constitute a turning point toward the understanding of various aspects of neuronal information processing. In this brief historical perspective, we track important milestones in the chameleonic transmogrification of these mysterious butterflies.
Game theory and reciprocity in some extensive form experimental games.
McCabe, K A; Rassenti, S J; Smith, V L
1996-11-12
We examine decision making in two-person extensive form game trees using nine treatments that vary matching protocol, payoffs, and payoff information. Our objective is to establish replicable principles of cooperative versus noncooperative behavior that involve the use of signaling, reciprocity, and backward induction strategies, depending on the availability of dominated direct punishing strategies and the probability of repeated interaction with the same partner. Contrary to the predictions of game theory, we find substantial support for cooperation under complete information even in various single-play treatments.
West Nile virus transmission and ecology in birds
McLean, R.G.; Ubico, S.R.; Docherty, D.E.; Hansen, W.R.; Sileo, L.; Mcnamara, T.S.
2001-01-01
The ecology of the strain of West Nile virus (WNV) introduced into the United States in 1999 has similarities to the native flavivirus, St. Louis encephalitis (SLE) virus, but has unique features not observed with SLE virus or with WNV in the old world. The primary route of transmission for most of the arboviruses in North America is by mosquito, and infected native birds usually do not suffer morbidity or mortality. An exception to this pattern is eastern equine encephalitis virus, which has an alternate direct route of transmission among nonnative birds, and some mortality of native bird species occurs. The strain of WNV circulating in the northeastern United States is unique in that it causes significant mortality in exotic and native bird species, especially in the American crow (Corvus brachyrhynchos). Because of the lack of information on the susceptibility and pathogenesis of WNV for this species, experimental studies were conducted at the USGS National Wildlife Health Center. In two separate studies, crows were inoculated with a 1999 New York strain of WNV, and all experimentally infected crows died. In one of the studies, control crows in regular contact with experimentally inoculated crows in the same room but not inoculated with WNV succumbed to infection. The direct transmission between crows was most likely by the oral route. Inoculated crows were viremic before death, and high titers of virus were isolated from a variety of tissues. The significance of the experimental direct transmission among captive crows is unknown.
Communication of direction by the honey bee.
Gould, J L; Henerey, M; MacLeod, M C
1970-08-07
In the presence of controls for site- and path-specific odors, observer and food-source scents, Nasanov gland and alarm odors, visual cues, wind, and general site taxis, recruited bees were able to locate the food source indicated by the dances of returning foragers in preference to a food source located at an equal distance in the opposite direction. This was true even when foragers were simultaneously dancing to indicate two different stations. Recruitment in the absence of dancing was very low, while in the absence of foraging it was virtually zero. Thus, under the experimental conditions used, the directional information contained in the dance appears to have been communicated from forager to recruit and subsequently used by the recruit.
Polarization-direction correlation measurement --- Experimental test of the PDCO methods
NASA Astrophysics Data System (ADS)
Starosta, K.; Morek, T.; Droste, Ch.; Rohoziński, S. G.; Srebrny, J.; Bergstrem, M.; Herskind, B.
1998-04-01
Information about spins and parities of excited states is crucial for nuclear structure studies. In ``in-beam" gamma ray spectroscopy the directional correlation (DCO) or angular distribution measurements are widely used tools for multipolarity assignment; although, it is known that neither of these methods is sensitive to electric or magnetic character of gamma radiation. Multipolarity of gamma rays may be determined when the results of the DCO analysis are combined with the results of linear polarization measurements. The large total efficiency of modern multidetector arrays allows one to carry out coincidence measurements between the polarimeter and the remaining detectors. The aim of the present study was to test experimentally the possibility of polarization-direction correlation measurements using the EUROGAM II array. The studied nucleus was ^164Yb produced in the ^138Ba(^30Si,4n) reaction at beam energies of 150 and 155 MeV. The angular correlation, linear polarization and direction-polarization correlation were measured for the strong transitions in yrast and non yrast cascades. Application of the PDCO analysis to a transition connecting a side band with the yrast band allowed one to rule out most of the ambiguities in multipolarity assignment occuring if one used angular correlations only.
Vilella, Laia; Conde, Ana
2017-01-01
A dual mechanism for direct benzene catalytic hydroxylation is described. Experimental studies and DFT calculations have provided a mechanistic explanation for the acid-free, TpxCu-catalyzed hydroxylation of benzene with hydrogen peroxide (Tpx = hydrotrispyrazolylborate ligand). In contrast with other catalytic systems that promote this transformation through Fenton-like pathways, this system operates through a copper-oxyl intermediate that may interact with the arene ring following two different, competitive routes: (a) electrophilic aromatic substitution, with the copper-oxyl species acting as the formal electrophile, and (b) the so-called rebound mechanism, in which the hydrogen is abstracted by the Cu–O moiety prior to the C–O bond formation. Both pathways contribute to the global transformation albeit to different extents, the electrophilic substitution route seeming to be largely favoured. PMID:29619184
Experiment/Analytical Characterization of the RBCC Rocket-Ejector Mode
NASA Technical Reports Server (NTRS)
Ruf, J. H.; Lehman, M.; Pal, S.; Santoro, R. J.; West, J.; Turner, James E. (Technical Monitor)
2000-01-01
Experimental and complementary CFD results from the study of the rocket-ejector mode of a Rocket Based Combined Cycle (RBCC) engine are presented and discussed. The experiments involved systematic flowfield measurements in a two-dimensional, variable geometry rocket-ejector system. The rocket-ejector system utilizes a single two-dimensional, gaseous oxygen/gaseous hydrogen rocket as the ejector. To gain a thorough understanding of the rocket-ejector's internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static configurations for a range of rocket operating conditions. Overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust, whereas detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (oxygen, hydrogen, nitrogen and water vapor). The experimental results for both the direct-connect and sea-level static configurations are compared with CFD predictions of the flowfield.
Determination of contact angle from the maximum height of enlarged drops on solid surfaces
NASA Astrophysics Data System (ADS)
Behroozi, F.
2012-04-01
Measurement of the liquid/solid contact angle provides useful information on the wetting properties of fluids. In 1870, the German physicist Georg Hermann Quincke (1834-1924) published the functional relation between the maximum height of an enlarged drop and its contact angle. Quincke's relation offered an alternative to the direct measurement of contact angle, which in practice suffers from several experimental uncertainties. In this paper, we review Quincke's original derivation and show that it is based on a hidden assumption. We then present a new derivation that exposes this assumption and clarifies the conditions under which Quincke's relation is valid. To explore Quincke's relation experimentally, we measure the maximum height of enlarged water drops on several substrates and calculate the contact angle in each case. Our results are in good agreement with contact angles measured directly from droplet images.
Experimental determination of entanglement with a single measurement.
Walborn, S P; Souto Ribeiro, P H; Davidovich, L; Mintert, F; Buchleitner, A
2006-04-20
Nearly all protocols requiring shared quantum information--such as quantum teleportation or key distribution--rely on entanglement between distant parties. However, entanglement is difficult to characterize experimentally. All existing techniques for doing so, including entanglement witnesses or Bell inequalities, disclose the entanglement of some quantum states but fail for other states; therefore, they cannot provide satisfactory results in general. Such methods are fundamentally different from entanglement measures that, by definition, quantify the amount of entanglement in any state. However, these measures suffer from the severe disadvantage that they typically are not directly accessible in laboratory experiments. Here we report a linear optics experiment in which we directly observe a pure-state entanglement measure, namely concurrence. Our measurement set-up includes two copies of a quantum state: these 'twin' states are prepared in the polarization and momentum degrees of freedom of two photons, and concurrence is measured with a single, local measurement on just one of the photons.
Cocaine, Appetitive Memory and Neural Connectivity
Ray, Suchismita
2013-01-01
This review examines existing cognitive experimental and brain imaging research related to cocaine addiction. In section 1, previous studies that have examined cognitive processes, such as implicit and explicit memory processes in cocaine users are reported. Next, in section 2, brain imaging studies are reported that have used chronic users of cocaine as study participants. In section 3, several conclusions are drawn. They are: (a) in cognitive experimental literature, no study has examined both implicit and explicit memory processes involving cocaine related visual information in the same cocaine user, (b) neural mechanisms underlying implicit and explicit memory processes for cocaine-related visual cues have not been directly investigated in cocaine users in the imaging literature, and (c) none of the previous imaging studies has examined connectivity between the memory system and craving system in the brain of chronic users of cocaine. Finally, future directions in the field of cocaine addiction are suggested. PMID:25009766
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flathers, M.B.; Bache, G.E.
1999-10-01
Radial loads and direction of a centrifugal gas compressor containing a high specific speed mixed flow impeller and a single tongue volute were determined both experimentally and computationally at both design and off-design conditions. The experimental methodology was developed in conjunction with a traditional ASME PTC-10 closed-loop test to determine radial load and direction. The experimental study is detailed in Part 1 of this paper (Moore and Flathers, 1998). The computational method employs a commercially available, fully three-dimensional viscous code to analyze the impeller and the volute interaction. An uncoupled scheme was initially used where the impeller and volute weremore » analyzed as separate models using a common vaneless diffuser geometry. The two calculations were then repeated until the boundary conditions at a chosen location in the common vaneless diffuser were nearly the same. Subsequently, a coupled scheme was used where the entire stage geometry was analyzed in one calculation, thus eliminating the need for manual iteration of the two independent calculations. In addition to radial load and direction information, this computational procedure also provided aerodynamic stage performance. The effect of impeller front face and rear face cavities was also quantified. The paper will discuss computational procedures, including grid generation and boundary conditions, as well as comparisons of the various computational schemes to experiment. The results of this study will show the limitations and benefits of Computational Fluid Dynamics (CFD) for determination of radial load, direction, and aerodynamic stage performance.« less
Tiwari, Kumar Anubhav; Raisutis, Renaldas; Mazeika, Liudas; Samaitis, Vykintas
2018-03-26
In this paper, a novel 2D analytical model based on the Huygens's principle of wave propagation is proposed in order to predict the directivity patterns of contact type ultrasonic transducers in the generation of guided waves (GWs). The developed model is able to estimate the directivity patterns at any distance, at any excitation frequency and for any configuration and shape of the transducers with prior information of phase dispersive characteristics of the guided wave modes and the behavior of transducer. This, in turn, facilitates to choose the appropriate transducer or arrays of transducers, suitable guided wave modes and excitation frequency for the nondestructive testing (NDT) and structural health monitoring (SHM) applications. The model is demonstrated for P1-type macro-fiber composite (MFC) transducer glued on a 2 mm thick aluminum (Al) alloy plate. The directivity patterns of MFC transducer in the generation of fundamental guided Lamb modes (the S0 and A0) and shear horizontal mode (the SH0) are successfully obtained at 80 kHz, 5-period excitation signal. The results are verified using 3D finite element (FE) modelling and experimental investigation. The results obtained using the proposed model shows the good agreement with those obtained using numerical simulations and experimental analysis. The calculation time using the analytical model was significantly shorter as compared to the time spent in experimental analysis and FE numerical modelling.
Observation of one-way Einstein-Podolsky-Rosen steering
NASA Astrophysics Data System (ADS)
Händchen, Vitus; Eberle, Tobias; Steinlechner, Sebastian; Samblowski, Aiko; Franz, Torsten; Werner, Reinhard F.; Schnabel, Roman
2012-09-01
The distinctive non-classical features of quantum physics were first discussed in the seminal paper by A. Einstein, B. Podolsky and N. Rosen (EPR) in 1935. In his immediate response, E. Schrödinger introduced the notion of entanglement, now seen as the essential resource in quantum information as well as in quantum metrology. Furthermore, he showed that at the core of the EPR argument is a phenomenon that he called steering. In contrast to entanglement and violations of Bell's inequalities, steering implies a direction between the parties involved. Recent theoretical works have precisely defined this property, but the question arose as to whether there are bipartite states showing steering only in one direction. Here, we present an experimental realization of two entangled Gaussian modes of light that in fact shows the steering effect in one direction but not in the other. The generated one-way steering gives a new insight into quantum physics and may open a new field of applications in quantum information.
NASA Astrophysics Data System (ADS)
Curioni, Arianna; Sebanz, Natalie; Knoblich, Günther
2018-03-01
In their review, Becchio and colleagues describe the 'unobservability principle' and the 'direct social perception thesis' as two competing accounts of how people identify others' intentions [4]. The former treats intentions as private information that is hidden within individual minds. The latter treats intentions as public information that can be directly perceived from observed movements. The authors propose a new method for quantifying cues to intention from human movement, providing support for the 'direct social perception thesis' in the domain of instrumental actions. Without doubt this new approach is valuable in establishing whether there is a dissociation between the presence of movement cues in the perceptual input and people's ability to make use of these cues for identifying intentions. It is also valuable in identifying movement parameters that could be crucial for improving the planning of instrumental actions in robotic agents so that their movements become better identifiable for human observers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaponov, Yu.A.; Igarashi, N.; Hiraki, M.
2004-05-12
An integrated controlling system and a unified database for high throughput protein crystallography experiments have been developed. Main features of protein crystallography experiments (purification, crystallization, crystal harvesting, data collection, data processing) were integrated into the software under development. All information necessary to perform protein crystallography experiments is stored (except raw X-ray data that are stored in a central data server) in a MySQL relational database. The database contains four mutually linked hierarchical trees describing protein crystals, data collection of protein crystal and experimental data processing. A database editor was designed and developed. The editor supports basic database functions to view,more » create, modify and delete user records in the database. Two search engines were realized: direct search of necessary information in the database and object oriented search. The system is based on TCP/IP secure UNIX sockets with four predefined sending and receiving behaviors, which support communications between all connected servers and clients with remote control functions (creating and modifying data for experimental conditions, data acquisition, viewing experimental data, and performing data processing). Two secure login schemes were designed and developed: a direct method (using the developed Linux clients with secure connection) and an indirect method (using the secure SSL connection using secure X11 support from any operating system with X-terminal and SSH support). A part of the system has been implemented on a new MAD beam line, NW12, at the Photon Factory Advanced Ring for general user experiments.« less
Rapid experimental measurements of physicochemical properties to inform models and testing.
Nicolas, Chantel I; Mansouri, Kamel; Phillips, Katherine A; Grulke, Christopher M; Richard, Ann M; Williams, Antony J; Rabinowitz, James; Isaacs, Kristin K; Yau, Alice; Wambaugh, John F
2018-05-02
The structures and physicochemical properties of chemicals are important for determining their potential toxicological effects, toxicokinetics, and route(s) of exposure. These data are needed to prioritize the risk for thousands of environmental chemicals, but experimental values are often lacking. In an attempt to efficiently fill data gaps in physicochemical property information, we generated new data for 200 structurally diverse compounds, which were rigorously selected from the USEPA ToxCast chemical library, and whose structures are available within the Distributed Structure-Searchable Toxicity Database (DSSTox). This pilot study evaluated rapid experimental methods to determine five physicochemical properties, including the log of the octanol:water partition coefficient (known as log(K ow ) or logP), vapor pressure, water solubility, Henry's law constant, and the acid dissociation constant (pKa). For most compounds, experiments were successful for at least one property; log(K ow ) yielded the largest return (176 values). It was determined that 77 ToxPrint structural features were enriched in chemicals with at least one measurement failure, indicating which features may have played a role in rapid method failures. To gauge consistency with traditional measurement methods, the new measurements were compared with previous measurements (where available). Since quantitative structure-activity/property relationship (QSAR/QSPR) models are used to fill gaps in physicochemical property information, 5 suites of QSPRs were evaluated for their predictive ability and chemical coverage or applicability domain of new experimental measurements. The ability to have accurate measurements of these properties will facilitate better exposure predictions in two ways: 1) direct input of these experimental measurements into exposure models; and 2) construction of QSPRs with a wider applicability domain, as their predicted physicochemical values can be used to parameterize exposure models in the absence of experimental data. Published by Elsevier B.V.
Dynamic Control of Topological Defects in Artificial Colloidal Ice
Libál, A.; Nisoli, C.; Reichhardt, C.; ...
2017-04-05
We demonstrate the use of an external field to stabilize and control defect lines connecting topological monopoles in spin ice. For definiteness we perform Brownian dynamics simulations with realistic units mimicking experimentally realized artificial colloidal spin ice systems, and show how defect lines can grow, shrink or move under the action of direct and alternating fields. Asymmetric alternating biasing forces can cause the defect line to ratchet in either direction, making it possible to precisely position the line at a desired location. Such manipulation could be employed to achieve mobile information storage in these metamaterials.
Dynamic Control of Topological Defects in Artificial Colloidal Ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libál, A.; Nisoli, C.; Reichhardt, C.
We demonstrate the use of an external field to stabilize and control defect lines connecting topological monopoles in spin ice. For definiteness we perform Brownian dynamics simulations with realistic units mimicking experimentally realized artificial colloidal spin ice systems, and show how defect lines can grow, shrink or move under the action of direct and alternating fields. Asymmetric alternating biasing forces can cause the defect line to ratchet in either direction, making it possible to precisely position the line at a desired location. Such manipulation could be employed to achieve mobile information storage in these metamaterials.
Does unconscious information affect cognitive activity?: a study using experimental priming.
Filippova, Margarita G
2011-05-01
In a series of three experiments the influence that information unrecognised by the subjects has on the effectiveness of occurring cognitive activity is studied. With this aim 3 types of stimulus were compared which for one reason or another were not afforded sufficient attention, namely: unconscious meanings of polysemantic information, stimuli presented at the subliminal level, and intentionally ignored distractors. All the listed types of stimuli are united in that the subjects were not able to give an account of them, i.e., these stimuli were not processed attentively. It is assumed that each of the types of stimuli studied is in actuality perceived, which can be judged by the impact they have on occurring cognitive activity. The purpose of the present research is the comparison of this impact: apart from the determination of the impact of unperceived stimuli on the information directly associated with them (priming-effect registration), also identified is the presence/absence of an overall interference effect rendered by the unperceived stimuli on the performance of occurring cognitive activity. To this end, each experiment had a control condition the aim of which was the creation of the possibility for the subjects to perceive stimuli unnoticed under experimental conditions. An experimental priming paradigm was used in combination with image-classification and lexical-decision tasks. The results of the experiments conducted demonstrate that all types of stimuli 'slipping the attention' are assimilated, but their effect on occurring cognitive activity is varied. Thus, subliminally presented information aids, and distractors, on the contrary, hinder the solution of tasks associated with them, whereas unperceived meanings of polysemantic information hinder not only the solution of the tasks directly associated with them, but also the performance of any other cognitive activity for which they serve as a context. The effect of subliminal stimuli on occurring cognitive activity in the present research is explained by the spreading activation in the memory, the effect of distractors--by the inhibition of irrelevant representations in the information-processing system. For an explanation of the consequence of unperceived meanings of polysemanticity, not only an inhibition model was used, but also an unconscious negative choice model which assumed the necessity of making a special decision on non-perception.
Habitual and value-guided purchase behavior.
Biel, Anders; Dahlstrand, Ulf; Grankvist, Gunne
2005-06-01
Society increasingly requests that individuals adopt environmentally benign behavior. Information campaigns purported to change people's attitudes are often regarded as prerequisites to installing such changes. While such information may be a necessary step, it is not sufficient by itself. We argue that many everyday behaviors with environmental consequences are habitual, and that little attention is given to information directed toward changing these habitual behaviors. In other instances, behavior is guided by values in a more reflective process. However, other information besides environmental consequences may draw a person's attention and affect behavioral choice. Using surveys and experimental studies targeting consumer behavior, we studied under what conditions different kinds of information is likely to influence people with varying levels of environmental concern. Based on results from these studies, implications for behavioral change are discussed.
REPHLEX II: An information management system for the ARS Water Data Base
NASA Astrophysics Data System (ADS)
Thurman, Jane L.
1993-08-01
The REPHLEX II computer system is an on-line information management system which allows scientists, engineers, and other researchers to retrieve data from the ARS Water Data Base using asynchronous communications. The system features two phone lines handling baud rates from 300 to 2400, customized menus to facilitate browsing, help screens, direct access to information and data files, electronic mail processing, file transfers using the XMODEM protocol, and log-in procedures which capture information on new users, process passwords, and log activity for a permanent audit trail. The primary data base on the REPHLEX II system is the ARS Water Data Base which consists of rainfall and runoff data from experimental agricultural watersheds located in the United States.
ERIC Educational Resources Information Center
DUKE, BENJAMIN C.
A SURVEY WAS CONDUCTED IN ASIA TO LEARN OF DEVELOPMENTS IN EDUCATIONAL MEDIA RESEARCH AND EXPERIMENTATION. THE PURPOSE OF THE PROJECT WAS TO COMPILE, TRANSLATE, AND PUBLISH EDUCATIONAL MEDIA MATERIALS FROM THE MAJOR ASIAN COUNTRIES AND TO MAKE THE INFORMATION AVAILABLE IN THE UNITED STATES. THE PRINCIPAL INVESTIGATOR VISITED 20 COUNTRIES IN THE…
Wang, Xu; Le, Anh -Thu; Yu, Chao; ...
2016-03-30
We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. Lastly, amore » simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method.« less
Delivery of laboratory data with World Wide Web technology.
Hahn, A W; Leon, M A; Klein-Leon, S; Allen, G K; Boon, G D; Patrick, T B; Klimczak, J C
1997-01-01
We have developed an experimental World Wide Web (WWW) based system to deliver laboratory results to clinicians in our Veterinary Medical Teaching Hospital. Laboratory results are generated by the clinical pathology section of our Veterinary Medical Diagnostic Laboratory and stored in a legacy information system. This system does not interface directly to the hospital information system, and it cannot be accessed directly by clinicians. Our "meta" system first parses routine print reports and then instantiates the data into a modern, open-architecture relational database using a data model constructed with currently accepted international standards for data representation and communication. The system does not affect either of the existing legacy systems. Location-independent delivery of patient data is via a secure WWW based system which maximizes usability and allows "value-added" graphic representations. The data can be viewed with any web browser. Future extensibility and intra- and inter-institutional compatibility served as key design criteria. The system is in the process of being evaluated using accepted methods of assessment of information technologies.
Superdense teleportation using hyperentangled photons
Graham, Trent M.; Bernstein, Herbert J.; Wei, Tzu-Chieh; Junge, Marius; Kwiat, Paul G
2015-01-01
Transmitting quantum information between two remote parties is a requirement for many quantum applications; however, direct transmission of states is often impossible because of noise and loss in the communication channel. Entanglement-enhanced state communication can be used to avoid this issue, but current techniques require extensive experimental resources to transmit large quantum states deterministically. To reduce these resource requirements, we use photon pairs hyperentangled in polarization and orbital angular momentum to implement superdense teleportation, which can communicate a specific class of single-photon ququarts. We achieve an average fidelity of 87.0(1)%, almost twice the classical limit of 44% with reduced experimental resources than traditional techniques. We conclude by discussing the information content of this constrained set of states and demonstrate that this set has an exponentially larger state space volume than the lower-dimensional general states with the same number of state parameters. PMID:26018201
Michielutte, R; Dignan, M B; Wells, H B; Young, L D; Jackson, D S; Sharp, P C
1989-01-01
The authors outline the development and implementation of a public health education program for cervical cancer screening among black women in Forsyth County, NC. The educational program includes distributing electronic and printed information media messages, a program of direct education for women, and providing information on current issues in cervical screening to primary-care physicians. Program development was based on social marketing principles, the PRECEDE model, and the communication-behavior change (CBC) model. Since a true experimental design was not feasible, program evaluation is based on several complementary quasi-experimental designs. Analysis of baseline data indicate that the county where the intervention is taking place, and the control county, are similar with respect to both demographic characteristics and the current level of screening activity. Preliminary results indicate that the program has been successful in raising women's level of awareness of cervical cancer and cervical screening.
Experimental measurement-device-independent quantum digital signatures.
Roberts, G L; Lucamarini, M; Yuan, Z L; Dynes, J F; Comandar, L C; Sharpe, A W; Shields, A J; Curty, M; Puthoor, I V; Andersson, E
2017-10-23
The development of quantum networks will be paramount towards practical and secure telecommunications. These networks will need to sign and distribute information between many parties with information-theoretic security, requiring both quantum digital signatures (QDS) and quantum key distribution (QKD). Here, we introduce and experimentally realise a quantum network architecture, where the nodes are fully connected using a minimum amount of physical links. The central node of the network can act either as a totally untrusted relay, connecting the end users via the recently introduced measurement-device-independent (MDI)-QKD, or as a trusted recipient directly communicating with the end users via QKD. Using this network, we perform a proof-of-principle demonstration of QDS mediated by MDI-QKD. For that, we devised an efficient protocol to distil multiple signatures from the same block of data, thus reducing the statistical fluctuations in the sample and greatly enhancing the final QDS rate in the finite-size scenario.
Can different quantum state vectors correspond to the same physical state? An experimental test
NASA Astrophysics Data System (ADS)
Nigg, Daniel; Monz, Thomas; Schindler, Philipp; Martinez, Esteban A.; Hennrich, Markus; Blatt, Rainer; Pusey, Matthew F.; Rudolph, Terry; Barrett, Jonathan
2016-01-01
A century after the development of quantum theory, the interpretation of a quantum state is still discussed. If a physicist claims to have produced a system with a particular quantum state vector, does this represent directly a physical property of the system, or is the state vector merely a summary of the physicist’s information about the system? Assume that a state vector corresponds to a probability distribution over possible values of an unknown physical or ‘ontic’ state. Then, a recent no-go theorem shows that distinct state vectors with overlapping distributions lead to predictions different from quantum theory. We report an experimental test of these predictions using trapped ions. Within experimental error, the results confirm quantum theory. We analyse which kinds of models are ruled out.
Experimental triple-slit interference in a strongly driven V-type artificial atom
NASA Astrophysics Data System (ADS)
Dada, Adetunmise C.; Santana, Ted S.; Koutroumanis, Antonios; Ma, Yong; Park, Suk-In; Song, Jindong; Gerardot, Brian D.
2017-08-01
Rabi oscillations of a two-level atom appear as a quantum interference effect between the amplitudes associated with atomic superpositions, in analogy with the classic double-slit experiment which manifests a sinusoidal interference pattern. By extension, through direct detection of time-resolved resonance fluorescence from a quantum-dot neutral exciton driven in the Rabi regime, we experimentally demonstrate triple-slit-type quantum interference via quantum erasure in a V-type three-level artificial atom. This result is of fundamental interest in the experimental studies of the properties of V-type three-level systems and may pave the way for further insight into their coherence properties as well as applications for quantum information schemes. It also suggests quantum dots as candidates for multipath-interference experiments for probing foundational concepts in quantum physics.
Experimental test of Landauer’s principle in single-bit operations on nanomagnetic memory bits
Hong, Jeongmin; Lambson, Brian; Dhuey, Scott; Bokor, Jeffrey
2016-01-01
Minimizing energy dissipation has emerged as the key challenge in continuing to scale the performance of digital computers. The question of whether there exists a fundamental lower limit to the energy required for digital operations is therefore of great interest. A well-known theoretical result put forward by Landauer states that any irreversible single-bit operation on a physical memory element in contact with a heat bath at a temperature T requires at least kBT ln(2) of heat be dissipated from the memory into the environment, where kB is the Boltzmann constant. We report an experimental investigation of the intrinsic energy loss of an adiabatic single-bit reset operation using nanoscale magnetic memory bits, by far the most ubiquitous digital storage technology in use today. Through sensitive, high-precision magnetometry measurements, we observed that the amount of dissipated energy in this process is consistent (within 2 SDs of experimental uncertainty) with the Landauer limit. This result reinforces the connection between “information thermodynamics” and physical systems and also provides a foundation for the development of practical information processing technologies that approach the fundamental limit of energy dissipation. The significance of the result includes insightful direction for future development of information technology. PMID:26998519
Nuclear astrophysics in the laboratory and in the universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Champagne, A. E., E-mail: artc@physics.unc.edu; Iliadis, C.; Longland, R.
Nuclear processes drive stellar evolution and so nuclear physics, stellar models and observations together allow us to describe the inner workings of stars and their life stories. This Information on nuclear reaction rates and nuclear properties are critical ingredients in addressing most questions in astrophysics and often the nuclear database is incomplete or lacking the needed precision. Direct measurements of astrophysically-interesting reactions are necessary and the experimental focus is on improving both sensitivity and precision. In the following, we review recent results and approaches taken at the Laboratory for Experimental Nuclear Astrophysics (LENA, http://research.physics.unc.edu/project/nuclearastro/Welcome.html )
Three-dimensional monochromatic x-ray CT
NASA Astrophysics Data System (ADS)
Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Ktsuyuki; Uyama, Chikao
1995-08-01
In this paper, we describe a 3D computed tomography (3D CT) using monochromatic x-rays generated by synchrotron radiation, which performs a direct reconstruction of 3D volume image of an object from its cone-beam projections. For the develpment of 3D CT, scanning orbit of x-ray source to obtain complete 3D information about an object and corresponding 3D image reconstruction algorithm are considered. Computer simulation studies demonstrate the validities of proposed scanning method and reconstruction algorithm. A prototype experimental system of 3D CT was constructed. Basic phantom examinations and specific material CT image by energy subtraction obtained in this experimental system are shown.
Machine learning assembly landscapes from particle tracking data.
Long, Andrew W; Zhang, Jie; Granick, Steve; Ferguson, Andrew L
2015-11-07
Bottom-up self-assembly offers a powerful route for the fabrication of novel structural and functional materials. Rational engineering of self-assembling systems requires understanding of the accessible aggregation states and the structural assembly pathways. In this work, we apply nonlinear machine learning to experimental particle tracking data to infer low-dimensional assembly landscapes mapping the morphology, stability, and assembly pathways of accessible aggregates as a function of experimental conditions. To the best of our knowledge, this represents the first time that collective order parameters and assembly landscapes have been inferred directly from experimental data. We apply this technique to the nonequilibrium self-assembly of metallodielectric Janus colloids in an oscillating electric field, and quantify the impact of field strength, oscillation frequency, and salt concentration on the dominant assembly pathways and terminal aggregates. This combined computational and experimental framework furnishes new understanding of self-assembling systems, and quantitatively informs rational engineering of experimental conditions to drive assembly along desired aggregation pathways.
Spatio-temporal correlations in models of collective motion ruled by different dynamical laws.
Cavagna, Andrea; Conti, Daniele; Giardina, Irene; Grigera, Tomas S; Melillo, Stefania; Viale, Massimiliano
2016-11-15
Information transfer is an essential factor in determining the robustness of biological systems with distributed control. The most direct way to study the mechanisms ruling information transfer is to experimentally observe the propagation across the system of a signal triggered by some perturbation. However, this method may be inefficient for experiments in the field, as the possibilities to perturb the system are limited and empirical observations must rely on natural events. An alternative approach is to use spatio-temporal correlations to probe the information transfer mechanism directly from the spontaneous fluctuations of the system, without the need to have an actual propagating signal on record. Here we test this method on models of collective behaviour in their deeply ordered phase by using ground truth data provided by numerical simulations in three dimensions. We compare two models characterized by very different dynamical equations and information transfer mechanisms: the classic Vicsek model, describing an overdamped noninertial dynamics and the inertial spin model, characterized by an underdamped inertial dynamics. By using dynamic finite-size scaling, we show that spatio-temporal correlations are able to distinguish unambiguously the diffusive information transfer mechanism of the Vicsek model from the linear mechanism of the inertial spin model.
An, Ming-Wen; Mandrekar, Sumithra J; Edelman, Martin J; Sargent, Daniel J
2014-07-01
The primary goal of Phase II clinical trials is to understand better a treatment's safety and efficacy to inform a Phase III go/no-go decision. Many Phase II designs have been proposed, incorporating randomization, interim analyses, adaptation, and patient selection. The Phase II design with an option for direct assignment (i.e. stop randomization and assign all patients to the experimental arm based on a single interim analysis (IA) at 50% accrual) was recently proposed [An et al., 2012]. We discuss this design in the context of existing designs, and extend it from a single-IA to a two-IA design. We compared the statistical properties and clinical relevance of the direct assignment design with two IA (DAD-2) versus a balanced randomized design with two IA (BRD-2) and a direct assignment design with one IA (DAD-1), over a range of response rate ratios (2.0-3.0). The DAD-2 has minimal loss in power (<2.2%) and minimal increase in T1ER (<1.6%) compared to a BRD-2. As many as 80% more patients were treated with experimental vs. control in the DAD-2 than with the BRD-2 (experimental vs. control ratio: 1.8 vs. 1.0), and as many as 64% more in the DAD-2 than with the DAD-1 (1.8 vs. 1.1). We illustrate the DAD-2 using a case study in lung cancer. In the spectrum of Phase II designs, the direct assignment design, especially with two IA, provides a middle ground with desirable statistical properties and likely appeal to both clinicians and patients. Copyright © 2014 Elsevier Inc. All rights reserved.
Sensitivity of system stability to model structure
Hosack, G.R.; Li, H.W.; Rossignol, P.A.
2009-01-01
A community is stable, and resilient, if the levels of all community variables can return to the original steady state following a perturbation. The stability properties of a community depend on its structure, which is the network of direct effects (interactions) among the variables within the community. These direct effects form feedback cycles (loops) that determine community stability. Although feedback cycles have an intuitive interpretation, identifying how they form the feedback properties of a particular community can be intractable. Furthermore, determining the role that any specific direct effect plays in the stability of a system is even more daunting. Such information, however, would identify important direct effects for targeted experimental and management manipulation even in complex communities for which quantitative information is lacking. We therefore provide a method that determines the sensitivity of community stability to model structure, and identifies the relative role of particular direct effects, indirect effects, and feedback cycles in determining stability. Structural sensitivities summarize the degree to which each direct effect contributes to stabilizing feedback or destabilizing feedback or both. Structural sensitivities prove useful in identifying ecologically important feedback cycles within the community structure and for detecting direct effects that have strong, or weak, influences on community stability. The approach may guide the development of management intervention and research design. We demonstrate its value with two theoretical models and two empirical examples of different levels of complexity. ?? 2009 Elsevier B.V. All rights reserved.
Simulation of Cooling Rate Effects on Ti-48Al-2Cr-2Nb Crack Formation in Direct Laser Deposition
NASA Astrophysics Data System (ADS)
Yan, Lei; Li, Wei; Chen, Xueyang; Zhang, Yunlu; Newkirk, Joe; Liou, Frank; Dietrich, David
2017-03-01
Transient temperature history is vital in direct laser deposition (DLD) as it reveals the cooling rate at specific temperatures. Cooling rate directly relates to phase transformation and types of microstructure formed in deposits. In this paper, finite element analysis simulation was employed to study the transient temperature history and cooling rate at different experimental setups in the Ti-48Al-2Cr-2Nb DLD process. An innovative prediction strategy was developed to model with a moving Gaussian distribution heat source and element birth and death technology in ANSYS®, and fabricate crack-free deposits. This approach helps to understand and analyze the impact of cooling rate and also explain phase information gathered from x-ray diffraction.
NASA Astrophysics Data System (ADS)
Wang, Xu; Le, Anh-Thu; Zhou, Zhaoyan; Wei, Hui; Lin, C. D.
2017-08-01
We provide a unified theoretical framework for recently emerging experiments that retrieve fixed-in-space molecular information through time-domain rotational coherence spectroscopy. Unlike a previous approach by Makhija et al. (V. Makhija et al., arXiv:1611.06476), our method can be applied to the retrieval of both real-valued (e.g., ionization yield) and complex-valued (e.g., induced dipole moment) molecular response information. It is also a direct retrieval method without using iterations. We also demonstrate that experimental parameters, such as the fluence of the aligning laser pulse and the rotational temperature of the molecular ensemble, can be quite accurately determined using a statistical method.
Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors.
Kuzmanic, Antonija; Zagrovic, Bojan
2010-03-03
Root mean-square deviation (RMSD) after roto-translational least-squares fitting is a measure of global structural similarity of macromolecules used commonly. On the other hand, experimental x-ray B-factors are used frequently to study local structural heterogeneity and dynamics in macromolecules by providing direct information about root mean-square fluctuations (RMSF) that can also be calculated from molecular dynamics simulations. We provide a mathematical derivation showing that, given a set of conservative assumptions, a root mean-square ensemble-average of an all-against-all distribution of pairwise RMSD for a single molecular species,
Determination of Ensemble-Average Pairwise Root Mean-Square Deviation from Experimental B-Factors
Kuzmanic, Antonija; Zagrovic, Bojan
2010-01-01
Abstract Root mean-square deviation (RMSD) after roto-translational least-squares fitting is a measure of global structural similarity of macromolecules used commonly. On the other hand, experimental x-ray B-factors are used frequently to study local structural heterogeneity and dynamics in macromolecules by providing direct information about root mean-square fluctuations (RMSF) that can also be calculated from molecular dynamics simulations. We provide a mathematical derivation showing that, given a set of conservative assumptions, a root mean-square ensemble-average of an all-against-all distribution of pairwise RMSD for a single molecular species,
A RANDOM-SCAN DISPLAY OF PREDICTED SATELLITE POSITIONS.
With the completion of the NRL evaluation of the experimental model of the Satellite Position Prediction and Display equipment ( SPAD ), efforts were...directed toward the design of an operational version of SPAD . Possible design and equipment configurations were proposed which would lead to a...substantial savings in cost and reduced equipment complexity. These designs involve the displaying of the SPAD information by means of a random scanning of
Williams, Pamela A; O'Donoghue, Amie C; Sullivan, Helen W; Willoughby, Jessica Fitts; Squire, Claudia; Parvanta, Sarah; Betts, Kevin R
2016-04-01
Drug efficacy can be measured by composite scores, which consist of two or more symptoms or other clinical components of a disease. We evaluated how individuals interpret composite scores in direct-to-consumer (DTC) prescription drug advertising. We conducted an experimental study of seasonal allergy sufferers (n=1967) who viewed a fictitious print DTC ad that varied by the type of information featured (general indication, list of symptoms, or definition of composite scores) and the presence or absence of an educational intervention about composite scores. We measured composite score recognition and comprehension, and perceived drug efficacy and risk. Ads that featured either (1) the composite score definition alone or (2) the list of symptoms or general indication information along with the educational intervention improved composite score comprehension. Ads that included the composite score definition or the educational intervention led to lower confidence in the drug's benefits. The composite score definition improved composite score recognition and lowered drug risk perceptions. Adding composite score information to DTC print ads may improve individuals' comprehension of composite scores and affect their perceptions of the drug. Providing composite score information may lead to more informed patient-provider prescription drug decisions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Failure of Standard Training Sets in the Analysis of Fast-Scan Cyclic Voltammetry Data.
Johnson, Justin A; Rodeberg, Nathan T; Wightman, R Mark
2016-03-16
The use of principal component regression, a multivariate calibration method, in the analysis of in vivo fast-scan cyclic voltammetry data allows for separation of overlapping signal contributions, permitting evaluation of the temporal dynamics of multiple neurotransmitters simultaneously. To accomplish this, the technique relies on information about current-concentration relationships across the scan-potential window gained from analysis of training sets. The ability of the constructed models to resolve analytes depends critically on the quality of these data. Recently, the use of standard training sets obtained under conditions other than those of the experimental data collection (e.g., with different electrodes, animals, or equipment) has been reported. This study evaluates the analyte resolution capabilities of models constructed using this approach from both a theoretical and experimental viewpoint. A detailed discussion of the theory of principal component regression is provided to inform this discussion. The findings demonstrate that the use of standard training sets leads to misassignment of the current-concentration relationships across the scan-potential window. This directly results in poor analyte resolution and, consequently, inaccurate quantitation, which may lead to erroneous conclusions being drawn from experimental data. Thus, it is strongly advocated that training sets be obtained under the experimental conditions to allow for accurate data analysis.
A new online database of nuclear electromagnetic moments
NASA Astrophysics Data System (ADS)
Mertzimekis, Theo J.
2017-09-01
Nuclear electromagnetic (EM) moments, i.e., the magnetic dipole and the electric quadrupole moments, provide important information of nuclear structure. As in other types of experimental data available to the community, measurements of nuclear EM moments have been organized systematically in compilations since the dawn of nuclear science. However, the wealth of recent moments measurements with radioactive beams, as well as earlier existing measurements, lack an online, easy-to-access, systematically organized presence to disseminate information to researchers. In addition, available printed compilations suffer a rather long life cycle, being left behind experimental measurements published in journals or elsewhere. A new, online database (
Using extant taxa to inform studies of fossil footprints
NASA Astrophysics Data System (ADS)
Falkingham, Peter; Gatesy, Stephen
2016-04-01
Attempting to use the fossilized footprints of extinct animals to study their palaeobiology and palaeoecology is notoriously difficult. The inconvenient extinction of the trackmaker makes direct correlation between footprints and foot far from straightforward. However, footprints are the only direct evidence of vertebrate motion recorded in the fossil record, and are potentially a source of data on palaeobiology that cannot be obtained from osteological remains alone. Our interests lie in recovering information about the movements of dinosaurs from their tracks. In particular, the Hitchcock collection of early Jurassic tracks held at the Beneski Museum of Natural History, Amherst, provide a rare look into the 3D form of tracks at and below the surface the animal walked on. Breaking naturally along laminations into 'track books', the specimens present sediment deformation at multiple levels, and in doing so record more of the foot's motion than a single surface might. In order to utilize this rich information source to study the now extinct trackmakers, the process of track formation must be understood at a fundamental level; the interaction of the moving foot and compliant substrate. We used bi-planar X-ray techniques (X-ray Reconstruction of Moving Morphology) to record the limb and foot motions of a Guineafowl traversing both granular and cohesive substrates. This data was supplemented with photogrammetric records of the resultant track surfaces, as well as the motion of metal beads within the sediment, to provide a full experimental dataset of foot and footprint formation. The physical experimental data was used to generate computer simulations of the process using high performance computing and the Discrete Element Method. The resultant simulations showed excellent congruence with reality, and enabled visualization within the sediment volume, and throughout the track-forming process. This physical and virtual experimental set-up has provided major insight into how to interpret the track-books within the Amherst Collection, and as such begin to understand how these early Jurassic dinosaurs moved. More broadly, this complete view of track formation afforded by experimental techniques will aid in interpretation of fossil vertebrate tracks throughout the fossil record.
CNTRO: A Semantic Web Ontology for Temporal Relation Inferencing in Clinical Narratives.
Tao, Cui; Wei, Wei-Qi; Solbrig, Harold R; Savova, Guergana; Chute, Christopher G
2010-11-13
Using Semantic-Web specifications to represent temporal information in clinical narratives is an important step for temporal reasoning and answering time-oriented queries. Existing temporal models are either not compatible with the powerful reasoning tools developed for the Semantic Web, or designed only for structured clinical data and therefore are not ready to be applied on natural-language-based clinical narrative reports directly. We have developed a Semantic-Web ontology which is called Clinical Narrative Temporal Relation ontology. Using this ontology, temporal information in clinical narratives can be represented as RDF (Resource Description Framework) triples. More temporal information and relations can then be inferred by Semantic-Web based reasoning tools. Experimental results show that this ontology can represent temporal information in real clinical narratives successfully.
Moles of a Substance per Cell Is a Highly Informative Dosing Metric in Cell Culture
Wagner, Brett A.; Buettner, Garry R.
2015-01-01
Background The biological consequences upon exposure of cells in culture to a dose of xenobiotic are not only dependent on biological variables, but also the physical aspects of experiments e.g. cell number and media volume. Dependence on physical aspects is often overlooked due to the unrecognized ambiguity in the dominant metric used to express exposure, i.e. initial concentration of xenobiotic delivered to the culture medium over the cells. We hypothesize that for many xenobiotics, specifying dose as moles per cell will reduce this ambiguity. Dose as moles per cell can also provide additional information not easily obtainable with traditional dosing metrics. Methods Here, 1,4-benzoquinone and oligomycin A are used as model compounds to investigate moles per cell as an informative dosing metric. Mechanistic insight into reactions with intracellular molecules, differences between sequential and bolus addition of xenobiotic and the influence of cell volume and protein content on toxicity are also investigated. Results When the dose of 1,4-benzoquinone or oligomycin A was specified as moles per cell, toxicity was independent of the physical conditions used (number of cells, volume of medium). When using moles per cell as a dose-metric, direct quantitative comparisons can be made between biochemical or biological endpoints and the dose of xenobiotic applied. For example, the toxicity of 1,4-benzoquinone correlated inversely with intracellular volume for all five cell lines exposed (C6, MDA-MB231, A549, MIA PaCa-2, and HepG2). Conclusions Moles per cell is a useful and informative dosing metric in cell culture. This dosing metric is a scalable parameter that: can reduce ambiguity between experiments having different physical conditions; provides additional mechanistic information; allows direct comparison between different cells; affords a more uniform platform for experimental design; addresses the important issue of repeatability of experimental results, and could increase the translatability of information gained from in vitro experiments. PMID:26172833
The effects of alcohol on emotion in social drinkers
Sayette, Michael A.
2017-01-01
Understanding why people drink alcohol and in some cases develop drinking problems has long puzzled researchers, clinicians, and patients alike. In the mid-1940s and early 1950s, experimental research began to systematically investigate alcohol’s hedonic properties. Presumably, alcohol consumption would prove reinforcing as a consequence of its capacity either to relieve stress or to brighten positive emotional experiences. This article reviews experimental research through the years examining the impact of alcohol on both the relief of negative affect and the enhancement of positive affect. It covers initial accounts that emphasized direct pharmacological effects of ethanol on the central nervous system. These early studies offered surprisingly tepid support for the premise that alcohol improved emotional states. Next, studies conducted in the 1970s are considered. Informed by social learning theory and employing advances derived from experimental psychology, this research sought to better understand the complex effects of alcohol on emotion. Coverage of this work is followed by discussion of current formulations, which integrate biological and behavioral approaches with the study of cognitive, affective, and social processes. These current perspectives provide insight into the particular conditions under which alcohol can boost emotional experiences. Finally, future research directions and clinical implications are considered. PMID:28110679
Measuring entanglement entropy in a quantum many-body system.
Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus
2015-12-03
Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.
Russell, Cristel Antonia; Swasy, John L.; Russell, Dale Wesley; Engel, Larry
2017-01-01
Risk warning or disclosure information in advertising is only effective in correcting consumers’ judgments if enough cognitive capacity is available to process that information. Hence, comprehension of verbal warnings in TV commercials may suffer if accompanied by positive visual elements. This research addresses this concern about cross-modality interference in the context of direct-to-consumer (DTC) pharmaceutical commercials in the United States by experimentally testing whether positive facial expressions reduce consumers’ understanding of the mandated health warning. A content analysis of a sample of DTC commercials reveals that positive facial expressions are more prevalent during the verbal warning act of the commercials than during the other acts. An eye-tracking experiment conducted with specially produced DTC commercials, which vary the valence of characters’ facial expressions during the health warning, provides evidence that happy faces reduce objective comprehension of the warning. PMID:29269979
Applied and implied semantics in crystallographic publishing
2012-01-01
Background Crystallography is a data-rich, software-intensive scientific discipline with a community that has undertaken direct responsibility for publishing its own scientific journals. That community has worked actively to develop information exchange standards allowing readers of structure reports to access directly, and interact with, the scientific content of the articles. Results Structure reports submitted to some journals of the International Union of Crystallography (IUCr) can be automatically validated and published through an efficient and cost-effective workflow. Readers can view and interact with the structures in three-dimensional visualization applications, and can access the experimental data should they wish to perform their own independent structure solution and refinement. The journals also layer on top of this facility a number of automated annotations and interpretations to add further scientific value. Conclusions The benefits of semantically rich information exchange standards have revolutionised the scholarly publishing process for crystallography, and establish a model relevant to many other physical science disciplines. PMID:22932420
A solid state source of photon triplets based on quantum dot molecules
Khoshnegar, Milad; Huber, Tobias; Predojević, Ana; Dalacu, Dan; Prilmüller, Maximilian; Lapointe, Jean; Wu, Xiaohua; Tamarat, Philippe; Lounis, Brahim; Poole, Philip; Weihs, Gregor; Majedi, Hamed
2017-01-01
Producing advanced quantum states of light is a priority in quantum information technologies. In this context, experimental realizations of multipartite photon states would enable improved tests of the foundations of quantum mechanics as well as implementations of complex quantum optical networks and protocols. It is favourable to directly generate these states using solid state systems, for simpler handling and the promise of reversible transfer of quantum information between stationary and flying qubits. Here we use the ground states of two optically active coupled quantum dots to directly produce photon triplets. The formation of a triexciton in these ground states leads to a triple cascade recombination and sequential emission of three photons with strong correlations. We record 65.62 photon triplets per minute under continuous-wave pumping, surpassing rates of earlier reported sources. Our structure and data pave the way towards implementing multipartite photon entanglement and multi-qubit readout schemes in solid state devices. PMID:28604705
Transcranial Direct Current Stimulation (tDCS): A Beginner's Guide for Design and Implementation
Thair, Hayley; Holloway, Amy L.; Newport, Roger; Smith, Alastair D.
2017-01-01
Transcranial direct current stimulation (tDCS) is a popular brain stimulation method that is used to modulate cortical excitability, producing facilitatory or inhibitory effects upon a variety of behaviors. There is, however, a current lack of consensus between studies, with many results suggesting that polarity-specific effects are difficult to obtain. This article explores some of these differences and highlights the experimental parameters that may underlie their occurrence. We provide a general, practical snapshot of tDCS methodology, including what it is used for, how to use it, and considerations for designing an effective and safe experiment. Our aim is to equip researchers who are new to tDCS with the essential knowledge so that they can make informed and well-rounded decisions when designing and running successful experiments. By summarizing the varied approaches, stimulation parameters, and outcomes, this article should help inform future tDCS research in a variety of fields. PMID:29213226
Studies on possible propagation of microbial contamination in planetary clouds
NASA Technical Reports Server (NTRS)
Dimmick, R. L.; Chatigny, M. A.; Wolochow, H.
1973-01-01
One of the key parameters in estimation of the probability of contamintion of the outer planets (Jupiter, Saturn, Uranus, etc.) is the probability of growth (Pg) of terrestrial microorganisms on or near these planets. For example, Jupiter appears to have an atmosphere in which some microbial species could metabolize and propagate. This study includes investigation of the likelihood of metabolism and propagation of microbes suspended in dynamic atmospheres. It is directed toward providing experimental information needed to aid in rational estimation of Pg for these outer planets. Current work is directed at demonstration of aerial metabolism under near optimal conditions and tests of propagation in simulated Jovian atmospheres.
Direct magnetocaloric characterization and simulation of thermomagnetic cycles
NASA Astrophysics Data System (ADS)
Porcari, G.; Buzzi, M.; Cugini, F.; Pellicelli, R.; Pernechele, C.; Caron, L.; Brück, E.; Solzi, M.
2013-07-01
An experimental setup for the direct measurement of the magnetocaloric effect capable of simulating high frequency magnetothermal cycles on laboratory-scale samples is described. The study of the magnetocaloric properties of working materials under operative conditions is fundamental for the development of innovative devices. Frequency and time dependent characterization can provide essential information on intrinsic features such as magnetic field induced fatigue in materials undergoing first order magnetic phase transitions. A full characterization of the adiabatic temperature change performed for a sample of Gadolinium across its Curie transition shows the good agreement between our results and literature data and in-field differential scanning calorimetry.
The BIG Bell Test: quantum physics experiments with direct public participation
NASA Astrophysics Data System (ADS)
Mitchell, Morgan; Abellan, Carlos; Tura, Jordi; Garcia Matos, Marta; Hirschmann, Alina; Beduini, Federica; Pruneri, Valerio; Acin, Antonio; Marti, Maria; BIG Bell Test Collaboration
The BIG Bell Test is a suite of physics experiments - tests of quantum nonlocality, quantum communications, and related experiments - that use crowd-sourced human randomness as an experimental resource. By connecting participants - anyone with an internet connection - to state-of-the-art experiments on five continents, the project aims at two complementary goals: 1) to provide bits generated directly from human choices, a unique information resource, to physics experiments, and 2) to give the world public the opportunity to contribute in a meaningful way to quantum physics research. We also describe related outreach and educational efforts to spread awareness of quantum physics and its applications.
Quantum non-Gaussianity and quantification of nonclassicality
NASA Astrophysics Data System (ADS)
Kühn, B.; Vogel, W.
2018-05-01
The algebraic quantification of nonclassicality, which naturally arises from the quantum superposition principle, is related to properties of regular nonclassicality quasiprobabilities. The latter are obtained by non-Gaussian filtering of the Glauber-Sudarshan P function. They yield lower bounds for the degree of nonclassicality. We also derive bounds for convex combinations of Gaussian states for certifying quantum non-Gaussianity directly from the experimentally accessible nonclassicality quasiprobabilities. Other quantum-state representations, such as s -parametrized quasiprobabilities, insufficiently indicate or even fail to directly uncover detailed information on the properties of quantum states. As an example, our approach is applied to multi-photon-added squeezed vacuum states.
Direct observation of forward-scattering oscillations in the H+HD→H2+D reaction
NASA Astrophysics Data System (ADS)
Yuan, Daofu; Yu, Shengrui; Chen, Wentao; Sang, Jiwei; Luo, Chang; Wang, Tao; Xu, Xin; Casavecchia, Piergiorgio; Wang, Xingan; Sun, Zhigang; Zhang, Dong H.; Yang, Xueming
2018-06-01
Accurate measurements of product state-resolved angular distributions are central to fundamental studies of chemical reaction dynamics. Yet, fine quantum-mechanical structures in product angular distributions of a reactive scattering process, such as the fast oscillations in the forward-scattering direction, have never been observed experimentally and the nature of these oscillations has not been fully explored. Here we report the crossed-molecular-beam experimental observation of these fast forward-scattering oscillations in the product angular distribution of the benchmark chemical reaction, H + HD → H2 + D. Clear oscillatory structures are observed for the H2(v' = 0, j' = 1, 3) product states at a collision energy of 1.35 eV, in excellent agreement with the quantum-mechanical dynamics calculations. Our analysis reveals that the oscillatory forward-scattering components are mainly contributed by the total angular momentum J around 28. The partial waves and impact parameters responsible for the forward scatterings are also determined from these observed oscillations, providing crucial dynamics information on the transient reaction process.
Xu, Rosalind J; Blasiak, Bartosz; Cho, Minhaeng; Layfield, Joshua P; Londergan, Casey H
2018-05-17
A quantitative connection between molecular dynamics simulations and vibrational spectroscopy of probe-labeled systems would enable direct translation of experimental data into structural and dynamical information. To constitute this connection, all-atom molecular dynamics (MD) simulations were performed for two SCN probe sites (solvent-exposed and buried) in a calmodulin-target peptide complex. Two frequency calculation approaches with substantial nonelectrostatic components, a quantum mechanics/molecular mechanics (QM/MM)-based technique and a solvatochromic fragment potential (SolEFP) approach, were used to simulate the infrared probe line shapes. While QM/MM results disagreed with experiment, SolEFP results matched experimental frequencies and line shapes and revealed the physical and dynamic bases for the observed spectroscopic behavior. The main determinant of the CN probe frequency is the exchange repulsion between the probe and its local structural neighbors, and there is a clear dynamic explanation for the relatively broad probe line shape observed at the "buried" probe site. This methodology should be widely applicable to vibrational probes in many environments.
Demonstration of Multisetting One-Way Einstein-Podolsky-Rosen Steering in Two-Qubit Systems
NASA Astrophysics Data System (ADS)
Xiao, Ya; Ye, Xiang-Jun; Sun, Kai; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can
2017-04-01
Einstein-Podolsky-Rosen (EPR) steering describes the ability of one party to remotely affect another's state through local measurements. One of the most distinguishable properties of EPR steering is its asymmetric aspect. Steering can work in one direction but fail in the opposite direction. This type of one-way steering, which is different from the symmetry concepts of entanglement and Bell nonlocality, has garnered much interest. However, an experimental demonstration of genuine one-way EPR steering in the simplest scenario, i.e., one that employs two-qubit systems, is still lacking. In this Letter, we experimentally demonstrate one-way EPR steering with multimeasurement settings for a class of two-qubit states, which are still one-way steerable even with infinite settings. The steerability is quantified by the steering radius, which represents a necessary and sufficient steering criterion. The demonstrated one-way steering in the simplest bipartite quantum system is of fundamental interest and may provide potential applications in one-way quantum information tasks.
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Wenbo, Mei; Huiqian, Du; Zexian, Wang
2018-04-01
A new algorithm was proposed for medical images fusion in this paper, which combined gradient minimization smoothing filter (GMSF) with non-sampled directional filter bank (NSDFB). In order to preserve more detail information, a multi scale edge preserving decomposition framework (MEDF) was used to decompose an image into a base image and a series of detail images. For the fusion of base images, the local Gaussian membership function is applied to construct the fusion weighted factor. For the fusion of detail images, NSDFB was applied to decompose each detail image into multiple directional sub-images that are fused by pulse coupled neural network (PCNN) respectively. The experimental results demonstrate that the proposed algorithm is superior to the compared algorithms in both visual effect and objective assessment.
One-dimensional cuts through multidimensional potential-energy surfaces by tunable x rays
NASA Astrophysics Data System (ADS)
Eckert, Sebastian; da Cruz, Vinícius Vaz; Gel'mukhanov, Faris; Ertan, Emelie; Ignatova, Nina; Polyutov, Sergey; Couto, Rafael C.; Fondell, Mattis; Dantz, Marcus; Kennedy, Brian; Schmitt, Thorsten; Pietzsch, Annette; Odelius, Michael; Föhlisch, Alexander
2018-05-01
The concept of the potential-energy surface (PES) and directional reaction coordinates is the backbone of our description of chemical reaction mechanisms. Although the eigenenergies of the nuclear Hamiltonian uniquely link a PES to its spectrum, this information is in general experimentally inaccessible in large polyatomic systems. This is due to (near) degenerate rovibrational levels across the parameter space of all degrees of freedom, which effectively forms a pseudospectrum given by the centers of gravity of groups of close-lying vibrational levels. We show here that resonant inelastic x-ray scattering (RIXS) constitutes an ideal probe for revealing one-dimensional cuts through the ground-state PES of molecular systems, even far away from the equilibrium geometry, where the independent-mode picture is broken. We strictly link the center of gravity of close-lying vibrational peaks in RIXS to a pseudospectrum which is shown to coincide with the eigenvalues of an effective one-dimensional Hamiltonian along the propagation coordinate of the core-excited wave packet. This concept, combined with directional and site selectivity of the core-excited states, allows us to experimentally extract cuts through the ground-state PES along three complementary directions for the showcase H2O molecule.
Experiencing your brain: neurofeedback as a new bridge between neuroscience and phenomenology
Bagdasaryan, Juliana; Quyen, Michel Le Van
2013-01-01
Neurophenomenology is a scientific research program aimed to combine neuroscience with phenomenology in order to study human experience. Nevertheless, despite several explicit implementations, the integration of first-person data into the experimental protocols of cognitive neuroscience still faces a number of epistemological and methodological challenges. Notably, the difficulties to simultaneously acquire phenomenological and neuroscientific data have limited its implementation into research projects. In our paper, we propose that neurofeedback paradigms, in which subjects learn to self-regulate their own neural activity, may offer a pragmatic way to integrate first-person and third-person descriptions. Here, information from first- and third-person perspectives is braided together in the iterative causal closed loop, creating experimental situations in which they reciprocally constrain each other. In real-time, the subject is not only actively involved in the process of data acquisition, but also assisted to directly influence the neural data through conscious experience. Thus, neurofeedback may help to gain a deeper phenomenological-physiological understanding of downward causations whereby conscious activities have direct causal effects on neuronal patterns. We discuss possible mechanisms that could mediate such effects and indicate a number of directions for future research. PMID:24187537
Predicting the valley physics of silicon quantum dots directly from a device layout
NASA Astrophysics Data System (ADS)
Gamble, John King; Harvey-Collard, Patrick; Jacobson, N. Tobias; Bacewski, Andrew D.; Nielsen, Erik; Montaño, Inès; Rudolph, Martin; Carroll, Malcolm S.; Muller, Richard P.
Qubits made from electrostatically-defined quantum dots in Si-based systems are excellent candidates for quantum information processing applications. However, the multi-valley structure of silicon's band structure provides additional challenges for the few-electron physics critical to qubit manipulation. Here, we present a theory for valley physics that is predictive, in that we take as input the real physical device geometry and experimental voltage operation schedule, and with minimal approximation compute the resulting valley physics. We present both effective mass theory and atomistic tight-binding calculations for two distinct metal-oxide-semiconductor (MOS) quantum dot systems, directly comparing them to experimental measurements of the valley splitting. We conclude by assessing these detailed simulations' utility for engineering desired valley physics in future devices. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program.
Echolalic responses by a child with autism to four experimental conditions of sociolinguistic input.
Violette, J; Swisher, L
1992-02-01
Studies of the immediate verbal imitations (IVIs) of subjects with echolalia report that features of linguistic or social input alone affect the number of IVIs elicited. This experimental study of a child with echolalia and autism controlled each of these variables while introducing a systematic change in the other. The subject produced more (p less than .05) IVIs in response to unknown lexical words presented with a high degree of directiveness (Condition D) than in response to three other conditions of stimulus presentation (e.g., unknown lexical words, minimally directive style.) Thus, an interaction between the effects of linguistic and social input was demonstrated. IVIs were produced across all conditions, primarily during first presentations of lexical stimuli. Only the IVIs elicited by first presentations of the lexical stimuli during Condition D differed significantly (p less than .05) from the number of IVIs elicited by first presentations of lexical stimuli in other conditions. These findings viewed together suggest that the occurrence of IVIs was related, at least for this child, to an uncertain or informative event and that this response was significantly greater when the lexical stimuli were unknown and presented in a highly directive style.
Angular velocity estimation from measurement vectors of star tracker.
Liu, Hai-bo; Yang, Jun-cai; Yi, Wen-jun; Wang, Jiong-qi; Yang, Jian-kun; Li, Xiu-jian; Tan, Ji-chun
2012-06-01
In most spacecraft, there is a need to know the craft's angular rate. Approaches with least squares and an adaptive Kalman filter are proposed for estimating the angular rate directly from the star tracker measurements. In these approaches, only knowledge of the vector measurements and sampling interval is required. The designed adaptive Kalman filter can filter out noise without information of the dynamic model and inertia dyadic. To verify the proposed estimation approaches, simulations based on the orbit data of the challenging minisatellite payload (CHAMP) satellite and experimental tests with night-sky observation are performed. Both the simulations and experimental testing results have demonstrated that the proposed approach performs well in terms of accuracy, robustness, and performance.
NASA Technical Reports Server (NTRS)
Scott, Elaine P.
1993-01-01
The focus of this research is on the reduction of the refrigeration requirements for infrared sensors operating in space through the use of high temperature superconductive (HTS) materials as electronic leads between the cooled sensors and the relatively warmer data acquisition components. Specifically, this initial study was directed towards the design of an experiment to quantify the thermal performance of these materials in the space environment. First, an intensive review of relevant literature was undertaken, and then, design requirements were formulated. From this background information, a preliminary experimental design was developed. Additional studies will involve a thermal analysis of the experiment and further modifications of the experimental design.
Time-accurate simulations of a shear layer forced at a single frequency
NASA Technical Reports Server (NTRS)
Claus, R. W.; Huang, P. G.; Macinnes, J. M.
1988-01-01
Calculations are presented for the forced shear layer studied experimentally by Oster and Wygnanski, and Weisbrot. Two different computational approaches are examined: Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES). The DNS approach solves the full three dimensional Navier-Stokes equations for a temporally evolving mixing layer, while the LES approach solves the two dimensional Navier-Stokes equations with a subgrid scale turbulence model. While the comparison between these calculations and experimental data was hampered by a lack of information on the inflow boundary conditions, the calculations are shown to qualitatively agree with several aspects of the experiment. The sensitivity of these calculations to factors such as mesh refinement and Reynolds number is illustrated.
Tutorial for Thermophysics Universal Research Framework
2017-07-30
DS1V are compared in Section 3.4.5. 3.4.2 Description of the Example Problem In a fluid, disturbance information is communicated within a medium at the...Universal Research Framework development (TURF-DEV) package on a case-by-case basis. Brief descriptions of the operations are provided in Tables 4.1 and...of additional experimental (E) and research (R) operations included in TURF-DEV. Module Operation Description DSMC SPDistDirectDSMCCellMergeOp (R
2017-04-01
commercial designs . The Navy planned to experiment with these ships to determine its preferred design variant. This experimentation strategy was...utilizing other non -LCS designs .6 When presented with this conclusion, senior Navy leadership directed the task force to explore what capabilities... compared to the LCS. Since the frigate will be based on an LCS design , it will likely carry forward some LCS design limitations. For example, LCS is
2006-04-01
contraction) caused by a load when deforming the material; which takes the form of a stress-strain curve . The stress- strain curve is the key information...anisotropy associated with large variability of the mechanical properties of its constituents. Therefore, every experimental stress-strain curve for...these materials is closely associated with the load direction with respect to the material symmetry axes. Under static conditions, stress-strain curves
Two dimensional Fourier transform methods for fringe pattern analysis
NASA Astrophysics Data System (ADS)
Sciammarella, C. A.; Bhat, G.
An overview of the use of FFTs for fringe pattern analysis is presented, with emphasis on fringe patterns containing displacement information. The techniques are illustrated via analysis of the displacement and strain distributions in the direction perpendicular to the loading, in a disk under diametral compression. The experimental strain distribution is compared to the theoretical, and the agreement is found to be excellent in regions where the elasticity solution models well the actual problem.
Tensor-based spatiotemporal saliency detection
NASA Astrophysics Data System (ADS)
Dou, Hao; Li, Bin; Deng, Qianqian; Zhang, LiRui; Pan, Zhihong; Tian, Jinwen
2018-03-01
This paper proposes an effective tensor-based spatiotemporal saliency computation model for saliency detection in videos. First, we construct the tensor representation of video frames. Then, the spatiotemporal saliency can be directly computed by the tensor distance between different tensors, which can preserve the complete temporal and spatial structure information of object in the spatiotemporal domain. Experimental results demonstrate that our method can achieve encouraging performance in comparison with the state-of-the-art methods.
FY 1999 Laboratory Directed Research and Development annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
PJ Hughes
2000-06-13
A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems.
Human Development VI: Supracellular Morphogenesis. The Origin of Biological and Cellular Order
Ventegodt, Søren; Hermansen, Tyge Dahl; Flensborg-Madsen, Trine; Nielsen, Maj Lyck; Merrick, Joav
2006-01-01
Uninterrupted morphogenesis shows the informational potentials of biological organisms. Experimentally disturbed morphogenesis shows the compensational dynamics of the biological informational system, which is the rich informational redundancy. In this paper, we use these data to describe morphogenesis in terms of the development of supracellular levels of the organism, and we define complex epigenesis and supracellular differentiation. We review the phenomena of regeneration and induction of Hydra and amphibians, and the higher animals informational needs for developing their complex nervous systems. We argue, also building on the NO-GO theorem for ontogenesis as chemistry, that the traditional chemical explanations of high-level informational events in ontogenesis, such as transmutation, regeneration, and induction, are insufficient. We analyze the informational dynamics of three embryonic compensatory reactions to different types of disturbances: (1) transmutations of the imaginal discs of insects, (2) regeneration after removal of embryonic tissue, and (3) embryonic induction, where two tissues that normally are separated experimentally are made to influence each other. We describe morphogenesis as a complex bifurcation, and the resulting morphological levels of the organism as organized in a fractal manner and supported by positional information. We suggest that some kind of real nonchemical phenomenon must be taking form in living organisms as an information-carrying dynamic fractal field, causing morhogenesis and supporting the organisms morphology through time. We argue that only such a phenomenon that provides information-directed self-organization to the organism is able to explain the observed dynamic distribution of biological information through morphogenesis and the organism's ability to rejuvenate and heal. PMID:17115082
Research on improved edge extraction algorithm of rectangular piece
NASA Astrophysics Data System (ADS)
He, Yi-Bin; Zeng, Ya-Jun; Chen, Han-Xin; Xiao, San-Xia; Wang, Yan-Wei; Huang, Si-Yu
Traditional edge detection operators such as Prewitt operator, LOG operator and Canny operator, etc. cannot meet the requirements of the modern industrial measurement. This paper proposes a kind of image edge detection algorithm based on improved morphological gradient. It can be detect the image using structural elements, which deals with the characteristic information of the image directly. Choosing different shapes and sizes of structural elements to use together, the ideal image edge information can be detected. The experimental result shows that the algorithm can well extract image edge with noise, which is clearer, and has more detailed edges compared with the previous edge detection algorithm.
Liu, Kui; Guo, Jun; Cai, Chunxiao; Zhang, Junxiang; Gao, Jiangrui
2016-11-15
Multipartite entanglement is used for quantum information applications, such as building multipartite quantum communications. Generally, generation of multipartite entanglement is based on a complex beam-splitter network. Here, based on the spatial freedom of light, we experimentally demonstrated spatial quadripartite continuous variable entanglement among first-order Hermite-Gaussian modes using a single type II optical parametric oscillator operating below threshold with an HG0245° pump beam. The entanglement can be scalable for larger numbers of spatial modes by changing the spatial profile of the pump beam. In addition, spatial multipartite entanglement will be useful for future spatial multichannel quantum information applications.
Effects of human running cadence and experimental validation of the bouncing ball model
NASA Astrophysics Data System (ADS)
Bencsik, László; Zelei, Ambrus
2017-05-01
The biomechanical analysis of human running is a complex problem, because of the large number of parameters and degrees of freedom. However, simplified models can be constructed, which are usually characterized by some fundamental parameters, like step length, foot strike pattern and cadence. The bouncing ball model of human running is analysed theoretically and experimentally in this work. It is a minimally complex dynamic model when the aim is to estimate the energy cost of running and the tendency of ground-foot impact intensity as a function of cadence. The model shows that cadence has a direct effect on energy efficiency of running and ground-foot impact intensity. Furthermore, it shows that higher cadence implies lower risk of injury and better energy efficiency. An experimental data collection of 121 amateur runners is presented. The experimental results validate the model and provides information about the walk-to-run transition speed and the typical development of cadence and grounded phase ratio in different running speed ranges.
NASA Astrophysics Data System (ADS)
Lee, Bo Mi; Loh, Kenneth J.
2017-04-01
Carbon nanotubes can be randomly deposited in polymer thin film matrices to form nanocomposite strain sensors. However, a computational framework that enables the direct design of these nanocomposite thin films is still lacking. The objective of this study is to derive an experimentally validated and two-dimensional numerical model of carbon nanotube-based thin film strain sensors. This study consisted of two parts. First, multi-walled carbon nanotube (MWCNT)-Pluronic strain sensors were fabricated using vacuum filtration, and their physical, electrical, and electromechanical properties were evaluated. Second, scanning electron microscope images of the films were used for identifying topological features of the percolated MWCNT network, where the information obtained was then utilized for developing the numerical model. Validation of the numerical model was achieved by ensuring that the area ratios (of MWCNTs relative to the polymer matrix) were equivalent for both the experimental and modeled cases. Strain sensing behavior of the percolation-based model was simulated and then compared to experimental test results.
Mesenchymal stem cell mechanobiology and emerging experimental platforms
MacQueen, Luke; Sun, Yu; Simmons, Craig A.
2013-01-01
Experimental control over progenitor cell lineage specification can be achieved by modulating properties of the cell's microenvironment. These include physical properties of the cell adhesion substrate, such as rigidity, topography and deformation owing to dynamic mechanical forces. Multipotent mesenchymal stem cells (MSCs) generate contractile forces to sense and remodel their extracellular microenvironments and thereby obtain information that directs broad aspects of MSC function, including lineage specification. Various physical factors are important regulators of MSC function, but improved understanding of MSC mechanobiology requires novel experimental platforms. Engineers are bridging this gap by developing tools to control mechanical factors with improved precision and throughput, thereby enabling biological investigation of mechanics-driven MSC function. In this review, we introduce MSC mechanobiology and review emerging cell culture platforms that enable new insights into mechanobiological control of MSCs. Our main goals are to provide engineers and microtechnology developers with an up-to-date description of MSC mechanobiology that is relevant to the design of experimental platforms and to introduce biologists to these emerging platforms. PMID:23635493
Experimental research of kinetic and dynamic characteristics of temperature movements of machines
NASA Astrophysics Data System (ADS)
Parfenov, I. V.; Polyakov, A. N.
2018-03-01
Nowadays, the urgency of informational support of machines at different stages of their life cycle is increasing in the form of various experimental characteristics that determine the criteria for working capacity. The effectiveness of forming the base of experimental characteristics of machines is related directly to the duration of their field tests. In this research, the authors consider a new technique that allows reducing the duration of full-scale testing of machines by 30%. To this end, three new indicator coefficients were calculated in real time to determine the moments corresponding to the characteristic points. In the work, new terms for thermal characteristics of machine tools are introduced: kinetic and dynamic characteristics of the temperature movements of the machine. This allow taking into account not only the experimental values for the temperature displacements of the elements of the carrier system of the machine, but also their derivatives up to the third order, inclusively. The work is based on experimental data obtained in the course of full-scale thermal tests of a drilling-milling and boring CNC machine.
Selective and directional actuation of elastomer films using chained magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Mishra, Sumeet R.; Dickey, Michael D.; Velev, Orlin D.; Tracy, Joseph B.
2016-01-01
We report selective and directional actuation of elastomer films utilizing magnetic anisotropy introduced by chains of Fe3O4 magnetic nanoparticles (MNPs). Under uniform magnetic fields or field gradients, dipolar interactions between the MNPs favor magnetization along the chain direction and cause selective lifting. This mechanism is described using a simple model.We report selective and directional actuation of elastomer films utilizing magnetic anisotropy introduced by chains of Fe3O4 magnetic nanoparticles (MNPs). Under uniform magnetic fields or field gradients, dipolar interactions between the MNPs favor magnetization along the chain direction and cause selective lifting. This mechanism is described using a simple model. Electronic supplementary information (ESI) available: Two videos for actuation while rotating the sample, experimental details of nanoparticle synthesis, polymer composite preparation, and alignment and bending studies, details of the theoretical model of actuation, and supplemental figures for understanding the behavior of rotating samples and results from modelling. See DOI: 10.1039/c5nr07410j
NASA Technical Reports Server (NTRS)
Rentz, P. E.
1976-01-01
Experimental evaluations of the acoustical characteristics and source sound power and directionality measurement capabilities of the NASA Lewis 9 x 15 foot low speed wind tunnel in the untreated or hardwall configuration were performed. The results indicate that source sound power estimates can be made using only settling chamber sound pressure measurements. The accuracy of these estimates, expressed as one standard deviation, can be improved from + or - 4 db to + or - 1 db if sound pressure measurements in the preparation room and diffuser are also used and source directivity information is utilized. A simple procedure is presented. Acceptably accurate measurements of source direct field acoustic radiation were found to be limited by the test section reverberant characteristics to 3.0 feet for omni-directional and highly directional sources. Wind-on noise measurements in the test section, settling chamber and preparation room were found to depend on the sixth power of tunnel velocity. The levels were compared with various analytic models. Results are presented and discussed.
A hierarchy of models for simulating experimental results from a 3D heterogeneous porous medium
NASA Astrophysics Data System (ADS)
Vogler, Daniel; Ostvar, Sassan; Paustian, Rebecca; Wood, Brian D.
2018-04-01
In this work we examine the dispersion of conservative tracers (bromide and fluorescein) in an experimentally-constructed three-dimensional dual-porosity porous medium. The medium is highly heterogeneous (σY2 = 5.7), and consists of spherical, low-hydraulic-conductivity inclusions embedded in a high-hydraulic-conductivity matrix. The bimodal medium was saturated with tracers, and then flushed with tracer-free fluid while the effluent breakthrough curves were measured. The focus for this work is to examine a hierarchy of four models (in the absence of adjustable parameters) with decreasing complexity to assess their ability to accurately represent the measured breakthrough curves. The most information-rich model was (1) a direct numerical simulation of the system in which the geometry, boundary and initial conditions, and medium properties were fully independently characterized experimentally with high fidelity. The reduced-information models included; (2) a simplified numerical model identical to the fully-resolved direct numerical simulation (DNS) model, but using a domain that was one-tenth the size; (3) an upscaled mobile-immobile model that allowed for a time-dependent mass-transfer coefficient; and, (4) an upscaled mobile-immobile model that assumed a space-time constant mass-transfer coefficient. The results illustrated that all four models provided accurate representations of the experimental breakthrough curves as measured by global RMS error. The primary component of error induced in the upscaled models appeared to arise from the neglect of convection within the inclusions. We discuss the necessity to assign value (via a utility function or other similar method) to outcomes if one is to further select from among model options. Interestingly, these results suggested that the conventional convection-dispersion equation, when applied in a way that resolves the heterogeneities, yields models with high fidelity without requiring the imposition of a more complex non-Fickian model.
Schwappach, David LB
2002-01-01
Background Health economic analysis aimed at informing policy makers and supporting resource allocation decisions has to evaluate not only improvements in health but also avoided decline. Little is known however, whether the "direction" in which changes in health are experienced is important for the public in prioritizing among patients. This experimental study investigates the social value people place on avoiding (further) health decline when directly compared to curative treatments in resource allocation decisions. Methods 127 individuals completed an interactive survey that was published in the World Wide Web. They were confronted with a standard gamble (SG) and three person trade-off tasks, either comparing improvements in health (PTO-Up), avoided decline (PTO-Down), or both, contrasting health changes of equal magnitude differing in the direction in which they are experienced (PTO-WAD). Finally, a direct priority ranking of various interventions was obtained. Results Participants strongly prioritized improving patients' health rather than avoiding decline. The mean substitution rate between health improvements and avoided decline (WAD) ranged between 0.47 and 0.64 dependent on the intervention. Weighting PTO values according to the direction in which changes in health are experienced improved their accuracy in predicting a direct prioritization ranking. Health state utilities obtained by the standard gamble method seem not to reflect social values in resource allocation contexts. Conclusion Results suggest that the utility of being cured of a given health state might not be a good approximation for the societal value of avoiding this health state, especially in cases of competition between preventive and curative interventions. PMID:11879529
Imaging the wave functions of adsorbed molecules
Lüftner, Daniel; Ules, Thomas; Reinisch, Eva Maria; Koller, Georg; Soubatch, Serguei; Tautz, F. Stefan; Ramsey, Michael G.; Puschnig, Peter
2014-01-01
The basis for a quantum-mechanical description of matter is electron wave functions. For atoms and molecules, their spatial distributions and phases are known as orbitals. Although orbitals are very powerful concepts, experimentally only the electron densities and -energy levels are directly observable. Regardless whether orbitals are observed in real space with scanning probe experiments, or in reciprocal space by photoemission, the phase information of the orbital is lost. Here, we show that the experimental momentum maps of angle-resolved photoemission from molecular orbitals can be transformed to real-space orbitals via an iterative procedure which also retrieves the lost phase information. This is demonstrated with images obtained of a number of orbitals of the molecules pentacene (C22H14) and perylene-3,4,9,10-tetracarboxylic dianhydride (C24H8O6), adsorbed on silver, which are in excellent agreement with ab initio calculations. The procedure requires no a priori knowledge of the orbitals and is shown to be simple and robust. PMID:24344291
Method for universal detection of two-photon polarization entanglement
NASA Astrophysics Data System (ADS)
Bartkiewicz, Karol; Horodecki, Paweł; Lemr, Karel; Miranowicz, Adam; Życzkowski, Karol
2015-03-01
Detecting and quantifying quantum entanglement of a given unknown state poses problems that are fundamentally important for quantum information processing. Surprisingly, no direct (i.e., without quantum tomography) universal experimental implementation of a necessary and sufficient test of entanglement has been designed even for a general two-qubit state. Here we propose an experimental method for detecting a collective universal witness, which is a necessary and sufficient test of two-photon polarization entanglement. It allows us to detect entanglement for any two-qubit mixed state and to establish tight upper and lower bounds on its amount. A different element of this method is the sequential character of its main components, which allows us to obtain relatively complicated information about quantum correlations with the help of simple linear-optical elements. As such, this proposal realizes a universal two-qubit entanglement test within the present state of the art of quantum optics. We show the optimality of our setup with respect to the minimal number of measured quantities.
Behavior Selection of Mobile Robot Based on Integration of Multimodal Information
NASA Astrophysics Data System (ADS)
Chen, Bin; Kaneko, Masahide
Recently, biologically inspired robots have been developed to acquire the capacity for directing visual attention to salient stimulus generated from the audiovisual environment. On purpose to realize this behavior, a general method is to calculate saliency maps to represent how much the external information attracts the robot's visual attention, where the audiovisual information and robot's motion status should be involved. In this paper, we represent a visual attention model where three modalities, that is, audio information, visual information and robot's motor status are considered, while the previous researches have not considered all of them. Firstly, we introduce a 2-D density map, on which the value denotes how much the robot pays attention to each spatial location. Then we model the attention density using a Bayesian network where the robot's motion statuses are involved. Secondly, the information from both of audio and visual modalities is integrated with the attention density map in integrate-fire neurons. The robot can direct its attention to the locations where the integrate-fire neurons are fired. Finally, the visual attention model is applied to make the robot select the visual information from the environment, and react to the content selected. Experimental results show that it is possible for robots to acquire the visual information related to their behaviors by using the attention model considering motion statuses. The robot can select its behaviors to adapt to the dynamic environment as well as to switch to another task according to the recognition results of visual attention.
Relating Out-of-Time-Order Correlations to Entanglement via Multiple-Quantum Coherences.
Gärttner, Martin; Hauke, Philipp; Rey, Ana Maria
2018-01-26
Out-of-time-order correlations (OTOCs) characterize the scrambling, or delocalization, of quantum information over all the degrees of freedom of a system and thus have been proposed as a proxy for chaos in quantum systems. Recent experimental progress in measuring OTOCs calls for a more thorough understanding of how these quantities characterize complex quantum systems, most importantly in terms of the buildup of entanglement. Although a connection between OTOCs and entanglement entropy has been derived, the latter only quantifies entanglement in pure systems and is hard to access experimentally. In this work, we formally demonstrate that the multiple-quantum coherence spectra, a specific family of OTOCs well known in NMR, can be used as an entanglement witness and as a direct probe of multiparticle entanglement. Our results open a path to experimentally testing the fascinating idea that entanglement is the underlying glue that links thermodynamics, statistical mechanics, and quantum gravity.
Relating Out-of-Time-Order Correlations to Entanglement via Multiple-Quantum Coherences
NASA Astrophysics Data System (ADS)
Gärttner, Martin; Hauke, Philipp; Rey, Ana Maria
2018-01-01
Out-of-time-order correlations (OTOCs) characterize the scrambling, or delocalization, of quantum information over all the degrees of freedom of a system and thus have been proposed as a proxy for chaos in quantum systems. Recent experimental progress in measuring OTOCs calls for a more thorough understanding of how these quantities characterize complex quantum systems, most importantly in terms of the buildup of entanglement. Although a connection between OTOCs and entanglement entropy has been derived, the latter only quantifies entanglement in pure systems and is hard to access experimentally. In this work, we formally demonstrate that the multiple-quantum coherence spectra, a specific family of OTOCs well known in NMR, can be used as an entanglement witness and as a direct probe of multiparticle entanglement. Our results open a path to experimentally testing the fascinating idea that entanglement is the underlying glue that links thermodynamics, statistical mechanics, and quantum gravity.
Structuring Stokes correlation functions using vector-vortex beam
NASA Astrophysics Data System (ADS)
Kumar, Vijay; Anwar, Ali; Singh, R. P.
2018-01-01
Higher order statistical correlations of the optical vector speckle field, formed due to scattering of a vector-vortex beam, are explored. Here, we report on the experimental construction of the Stokes parameters covariance matrix, consisting of all possible spatial Stokes parameters correlation functions. We also propose and experimentally realize a new Stokes correlation functions called Stokes field auto correlation functions. It is observed that the Stokes correlation functions of the vector-vortex beam will be reflected in the respective Stokes correlation functions of the corresponding vector speckle field. The major advantage of proposing Stokes correlation functions is that the Stokes correlation function can be easily tuned by manipulating the polarization of vector-vortex beam used to generate vector speckle field and to get the phase information directly from the intensity measurements. Moreover, this approach leads to a complete experimental Stokes characterization of a broad range of random fields.
A comparative approach to closed-loop computation.
Roth, E; Sponberg, S; Cowan, N J
2014-04-01
Neural computation is inescapably closed-loop: the nervous system processes sensory signals to shape motor output, and motor output consequently shapes sensory input. Technological advances have enabled neuroscientists to close, open, and alter feedback loops in a wide range of experimental preparations. The experimental capability of manipulating the topology-that is, how information can flow between subsystems-provides new opportunities to understand the mechanisms and computations underlying behavior. These experiments encompass a spectrum of approaches from fully open-loop, restrained preparations to the fully closed-loop character of free behavior. Control theory and system identification provide a clear computational framework for relating these experimental approaches. We describe recent progress and new directions for translating experiments at one level in this spectrum to predictions at another level. Operating across this spectrum can reveal new understanding of how low-level neural mechanisms relate to high-level function during closed-loop behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.
Levitt, Ash; Schlauch, Robert C.; Bartholow, Bruce D.; Sher, Kenneth J.
2013-01-01
Background Examining the natural language college students use to describe various levels of intoxication can provide important insight into subjective perceptions of college alcohol use. Previous research (Levitt et al., 2009) has shown that intoxication terms reflect moderate and heavy levels of intoxication, and that self-use of these terms differs by gender among college students. However, it is still unknown whether these terms similarly apply to other individuals and, if so, whether similar gender differences exist. Method To address these issues, the current study examined the application of intoxication terms to characters in experimentally manipulated vignettes of naturalistic drinking situations within a sample of university undergraduates (N = 145). Results Findings supported and extended previous research by showing that other-directed applications of intoxication terms are similar to self-directed applications, and depend on the gender of both the target and the user. Specifically, moderate intoxication terms were applied to and from women more than men, even when the character was heavily intoxicated, whereas heavy intoxication terms were applied to and from men more than women. Conclusions The findings suggest that gender differences in the application of intoxication terms are other-directed as well as self-directed, and that intoxication language can inform gender-specific prevention and intervention efforts targeting problematic alcohol use among college students. PMID:23841828
Makinson, James C; Beekman, Madeleine
2014-06-01
During reproductive swarming, honey bee scouts perform two very important functions. Firstly, they find new nesting locations and return to the swarm cluster to communicate their discoveries. Secondly, once the swarm is ready to depart, informed scout bees act as guides, leading the swarm to its final destination. We have previously hypothesised that the two processes, selecting a new nest site and swarm guidance, are tightly linked in honey bees. When swarms can be laissez faire about where they nest, reaching directional consensus prior to lift off seems unnecessary. If, in contrast, it is essential that the swarm reaches a precise location, either directional consensus must be near unanimous prior to swarm departure or only a select subgroup of the scouts guide the swarm. Here, we tested experimentally whether directional consensus is necessary for the successful guidance of swarms of the Western honey bee Apis mellifera by forcing swarms into the air prior to the completion of the decision-making process. Our results show that swarms were unable to guide themselves prior to the swarm reaching the pre-flight buzzing phase of the decision-making process, even when directional consensus was high. We therefore suggest that not all scouts involved in the decision-making process attempt to guide the swarm. © 2014. Published by The Company of Biologists Ltd.
Levitt, Ash; Schlauch, Robert C; Bartholow, Bruce D; Sher, Kenneth J
2013-12-01
Examining the natural language college students use to describe various levels of intoxication can provide important insight into subjective perceptions of college alcohol use. Previous research (Levitt et al., Alcohol Clin Exp Res 2009; 33: 448) has shown that intoxication terms reflect moderate and heavy levels of intoxication and that self-use of these terms differs by gender among college students. However, it is still unknown whether these terms similarly apply to other individuals and, if so, whether similar gender differences exist. To address these issues, the current study examined the application of intoxication terms to characters in experimentally manipulated vignettes of naturalistic drinking situations within a sample of university undergraduates (n = 145). Findings supported and extended previous research by showing that other-directed applications of intoxication terms are similar to self-directed applications and depend on the gender of both the target and the user. Specifically, moderate intoxication terms were applied to and from women more than men, even when the character was heavily intoxicated, whereas heavy intoxication terms were applied to and from men more than women. The findings suggest that gender differences in the application of intoxication terms are other-directed as well as self-directed and that intoxication language can inform gender-specific prevention and intervention efforts targeting problematic alcohol use among college students. Copyright © 2013 by the Research Society on Alcoholism.
Liu, Chao; Liu, Jinhong; Zhang, Junxiang; Zhu, Shiyao
2018-02-05
The direct counterfactual quantum communication (DCQC) is a surprising phenomenon that quantum information can be transmitted without using any carriers of physical particles. The nested interferometers are promising devices for realizing DCQC as long as the number of interferometers goes to be infinity. Considering the inevitable loss or dissipation in practical experimental interferometers, we analyze the dependence of reliability on the number of interferometers, and show that the reliability of direct communication is being rapidly degraded with the large number of interferometers. Furthermore, we simulate and test this counterfactual deterministic communication protocol with a finite number of interferometers, and demonstrate the improvement of the reliability using dissipation compensation in interferometers.
NASA Astrophysics Data System (ADS)
Zabierowski, J.; Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, H.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; KASCADE-Grande Collaboration
2009-12-01
The Muon Tracking Detector in the KASCADE-Grande EAS experiment allows the precise measurement of shower muon directions up to 700 m distance from the shower center. This directional information is used to study the pseudorapidity of muons in EAS, closely related to the pseudorapidity of their parent mesons. Moreover, the mean value of muon pseudorapidity in a registered shower reflects the longitudinal development of its hadronic component. All of this makes it a good tool for testing hadronic interaction models. The possibilities of such tests given by the KASCADE-Grande experimental setup are discussed and an example of the obtained muon pseudorapidity spectrum is shown.
Transcranial Magnetic and Direct Current Stimulation in Children.
Hameed, Mustafa Q; Dhamne, Sameer C; Gersner, Roman; Kaye, Harper L; Oberman, Lindsay M; Pascual-Leone, Alvaro; Rotenberg, Alexander
2017-02-01
Promising results in adult neurologic and psychiatric disorders are driving active research into transcranial brain stimulation techniques, particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), in childhood and adolescent syndromes. TMS has realistic utility as an experimental tool tested in a range of pediatric neuropathologies such as perinatal stroke, depression, Tourette syndrome, and autism spectrum disorder (ASD). tDCS has also been tested as a treatment for a number of pediatric neurologic conditions, including ASD, attention-deficit/hyperactivity disorder, epilepsy, and cerebral palsy. Here, we complement recent reviews with an update of published TMS and tDCS results in children, and discuss developmental neuroscience considerations that should inform pediatric transcranial stimulation.
Reconfigurable optomechanical circulator and directional amplifier.
Shen, Zhen; Zhang, Yan-Lei; Chen, Yuan; Sun, Fang-Wen; Zou, Xu-Bo; Guo, Guang-Can; Zou, Chang-Ling; Dong, Chun-Hua
2018-05-04
Non-reciprocal devices, which allow non-reciprocal signal routing, serve as fundamental elements in photonic and microwave circuits and are crucial in both classical and quantum information processing. The radiation-pressure-induced coupling between light and mechanical motion in travelling-wave resonators has been exploited to break the Lorentz reciprocity, enabling non-reciprocal devices without magnetic materials. Here, we experimentally demonstrate a reconfigurable non-reciprocal device with alternative functions as either a circulator or a directional amplifier via optomechanically induced coherent photon-phonon conversion or gain. The demonstrated device exhibits considerable flexibility and offers exciting opportunities for combining reconfigurability, non-reciprocity and active properties in single photonic devices, which can also be generalized to microwave and acoustic circuits.
Transcranial Magnetic and Direct Current Stimulation in Children
Hameed, Mustafa Q.; Dhamne, Sameer C.; Gersner, Roman; Kaye, Harper L.; Oberman, Lindsay M.; Pascual-Leone, Alvaro
2018-01-01
Promising results in adult neurologic and psychiatric disorders are driving active research into transcranial brain stimulation techniques, particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), in childhood and adolescent syndromes. TMS has realistic utility as an experimental tool tested in a range of pediatric neuropathologies such as perinatal stroke, depression, Tourette syndrome, and autism spectrum disorder (ASD). tDCS has also been tested as a treatment for a number of pediatric neurologic conditions, including ASD, attention-deficit/hyperactivity disorder, epilepsy, and cerebral palsy. Here, we complement recent reviews with an update of published TMS and tDCS results in children, and discuss developmental neuroscience considerations that should inform pediatric transcranial stimulation. PMID:28229395
NASA Astrophysics Data System (ADS)
Harbour, Steven; Galstian, Tigran; Akopyan, Rafik; Galstyan, Artur
2004-08-01
We have experimentally observed and theoretically explained the angular selectivity asymmetry in polymer dispersed liquid crystal holograms. Experiments are conducted in compounds with near infrared sensitivity. The coupled-wave theory is used to describe the diffraction properties of obtained anisotropic holographic gratings. Furthermore, the comparison of theory and experiments provides information about the optical axis direction that is defined by the average molecular orientation of the liquid crystal in the polymer matrix.
Non-resonant interactions between superconducting circuits coupled through a dc-SQUID
NASA Astrophysics Data System (ADS)
Jin, X. Y.; Lecocq, F.; Cicak, K.; Kotler, S. S.; Peterson, G. A.; Teufel, J. D.; Aumentado, J.; Simmonds, R. W.
We use a flux-biased direct current superconducting quantum interference device (dc-SQUID) to generate non-resonant tunable interactions between transmon qubits and resonators modes. By modulating the flux to the dc-SQUID, we can create an interaction with variable coupling rates from zero to greater than 100 MHz. We explore this system experimentally and describe its operation. Parametric coupling is important for constructing larger coupled systems, useful for both quantum information architectures and quantum simulators.
Echolocating bats use future-target information for optimal foraging.
Fujioka, Emyo; Aihara, Ikkyu; Sumiya, Miwa; Aihara, Kazuyuki; Hiryu, Shizuko
2016-04-26
When seeing or listening to an object, we aim our attention toward it. While capturing prey, many animal species focus their visual or acoustic attention toward the prey. However, for multiple prey items, the direction and timing of attention for effective foraging remain unknown. In this study, we adopted both experimental and mathematical methodology with microphone-array measurements and mathematical modeling analysis to quantify the attention of echolocating bats that were repeatedly capturing airborne insects in the field. Here we show that bats select rational flight paths to consecutively capture multiple prey items. Microphone-array measurements showed that bats direct their sonar attention not only to the immediate prey but also to the next prey. In addition, we found that a bat's attention in terms of its flight also aims toward the next prey even when approaching the immediate prey. Numerical simulations revealed a possibility that bats shift their flight attention to control suitable flight paths for consecutive capture. When a bat only aims its flight attention toward its immediate prey, it rarely succeeds in capturing the next prey. These findings indicate that bats gain increased benefit by distributing their attention among multiple targets and planning the future flight path based on additional information of the next prey. These experimental and mathematical studies allowed us to observe the process of decision making by bats during their natural flight dynamics.
Biasing moral decisions by exploiting the dynamics of eye gaze.
Pärnamets, Philip; Johansson, Petter; Hall, Lars; Balkenius, Christian; Spivey, Michael J; Richardson, Daniel C
2015-03-31
Eye gaze is a window onto cognitive processing in tasks such as spatial memory, linguistic processing, and decision making. We present evidence that information derived from eye gaze can be used to change the course of individuals' decisions, even when they are reasoning about high-level, moral issues. Previous studies have shown that when an experimenter actively controls what an individual sees the experimenter can affect simple decisions with alternatives of almost equal valence. Here we show that if an experimenter passively knows when individuals move their eyes the experimenter can change complex moral decisions. This causal effect is achieved by simply adjusting the timing of the decisions. We monitored participants' eye movements during a two-alternative forced-choice task with moral questions. One option was randomly predetermined as a target. At the moment participants had fixated the target option for a set amount of time we terminated their deliberation and prompted them to choose between the two alternatives. Although participants were unaware of this gaze-contingent manipulation, their choices were systematically biased toward the target option. We conclude that even abstract moral cognition is partly constituted by interactions with the immediate environment and is likely supported by gaze-dependent decision processes. By tracking the interplay between individuals, their sensorimotor systems, and the environment, we can influence the outcome of a decision without directly manipulating the content of the information available to them.
ERIC Educational Resources Information Center
Tittle, Carol Kehr; Denker, Elenor Rubin
1976-01-01
The effect of experimental directions designed to reduce a home-career conflict in women's occupational choices on the Kuder Occupational Interest Survey was investigated. Results indicate that the validity of the Kuder survey is not compromised by the experimental directions. Tables are presented and implications are discussed. (Author/JKS)
Atomistic Simulations of Graphene Growth: From Kinetics to Mechanism.
Qiu, Zongyang; Li, Pai; Li, Zhenyu; Yang, Jinlong
2018-03-20
Epitaxial growth is a promising strategy to produce high-quality graphene samples. At the same time, this method has great flexibility for industrial scale-up. To optimize growth protocols, it is essential to understand the underlying growth mechanisms. This is, however, very challenging, as the growth process is complicated and involves many elementary steps. Experimentally, atomic-scale in situ characterization methods are generally not feasible at the high temperature of graphene growth. Therefore, kinetics is the main experimental information to study growth mechanisms. Theoretically, first-principles calculations routinely provide atomic structures and energetics but have a stringent limit on the accessible spatial and time scales. Such gap between experiment and theory can be bridged by atomistic simulations using first-principles atomic details as input and providing the overall growth kinetics, which can be directly compared with experiment, as output. Typically, system-specific approximations should be applied to make such simulations computationally feasible. By feeding kinetic Monte Carlo (kMC) simulations with first-principles parameters, we can directly simulate the graphene growth process and thus understand the growth mechanisms. Our simulations suggest that the carbon dimer is the dominant feeding species in the epitaxial growth of graphene on both Cu(111) and Cu(100) surfaces, which enables us to understand why the reaction is diffusion limited on Cu(111) but attachment limited on Cu(100). When hydrogen is explicitly considered in the simulation, the central role hydrogen plays in graphene growth is revealed, which solves the long-standing puzzle into why H 2 should be fed in the chemical vapor deposition of graphene. The simulation results can be directly compared with the experimental kinetic data, if available. Our kMC simulations reproduce the experimentally observed quintic-like behavior of graphene growth on Ir(111). By checking the simulation results, we find that such nonlinearity is caused by lattice mismatch, and the induced growth front inhomogeneity can be universally used to predict growth behaviors in other heteroepitaxial systems. Notably, although experimental kinetics usually gives useful insight into atomic mechanisms, it can sometimes be misleading. Such pitfalls can be avoided via atomistic simulations, as demonstrated in our study of the graphene etching process. Growth protocols can be designed theoretically with computational kinetic and mechanistic information. By contrasting the different activation energies involved in an atom-exchange-based carbon penetration process for monolayer and bilayer graphene, we propose a three-step strategy to grow high-quality bilayer graphene. Based on first-principles parameters, a kinetic pathway toward the high-density, ordered N doping of epitaxial graphene on Cu(111) using a C 5 NCl 5 precursor is also identified. These studies demonstrate that atomistic simulations can unambiguously produce or reproduce the kinetic information on graphene growth, which is pivotal to understanding the growth mechanism and designing better growth protocols. A similar strategy can be used in growth mechanism studies of other two-dimensional atomic crystals.
Janssen, Eva; van Osch, Liesbeth; Lechner, Lilian; de Vries, Hein
2015-01-01
Evidence is accumulating for the importance of feelings of risk in explaining cancer preventive behaviors, but best practices for influencing these feelings are limited. This study investigated the direct and moderational influence of affectively laden phrases in cancer risk messages. Two experimental studies were conducted in relation to different cancer-related behaviors--sunbed use (n = 112) and red meat consumption (n = 447)--among student and nonstudent samples. Participants were randomly assigned to one of two conditions: (a) a cognitive message using cognitively laden phrases or (b) an affective message using affectively laden phrases. The results revealed that affective phrases did not directly influence feelings of risk in both studies. Evidence for a moderational influence was found in Study 2, suggesting that affective information strengthened the relation between feelings of risk and intention (i.e., participants relied more on their feelings in the decision-making process after exposure to affective information). These findings suggest that solely using affective phrases in risk communication may not be sufficient to directly influence feelings of risk and other methods need to be explored in future research. Moreover, research is needed to replicate our preliminary indications for a moderational influence of affective phrases to advance theory and practice.
Taylor, J T; Poludniowski, G; Price, T; Waltham, C; Allport, P P; Casse, G L; Esposito, M; Evans, P M; Green, S; Manger, S; Manolopoulos, S; Nieto-Camero, J; Parker, D J; Symons, J; Allinson, N M
2016-11-01
Radiography and tomography using proton beams promise benefit to image guidance and treatment planning for proton therapy. A novel proton tracking detector is described and experimental demonstrations at a therapy facility are reported. A new type of proton CT reconstructing relative "scattering power" rather than "stopping power" is also demonstrated. Notably, this new type of imaging does not require the measurement of the residual energies of the protons. A large area, silicon microstrip tracker with high spatial and temporal resolution has been developed by the Proton Radiotherapy Verification and Dosimetry Applications consortium and commissioned using beams of protons at iThemba LABS, Medical Radiation Department, South Africa. The tracker comprises twelve planes of silicon developed using technology from high energy physics with each plane having an active area of ∼10 × 10 cm segmented into 2048 microstrips. The tracker is organized into four separate units each containing three detectors at 60° to one another creating an x-u-v coordinate system. Pairs of tracking units are used to reconstruct vertices for protons entering and exiting a phantom containing tissue equivalent inserts. By measuring the position and direction of each proton before and after the phantom, the nonlinear path for each proton through an object can be reconstructed. Experimental results are reported for tracking the path of protons with initial energies of 125 and 191 MeV. A spherical phantom of 75 mm diameter was imaged by positioning it between the entrance and exit detectors of the tracker. Positions and directions of individual protons were used to create angular distributions and 2D fluence maps of the beam. These results were acquired for 36 equally spaced projections spanning 180°, allowing, for the first time, an experimental CT image based upon the relative scattering power of protons to be reconstructed. Successful tracking of protons through a thick target (phantom) has demonstrated that the tracker discussed in this paper can provide the precise directional information needed to perform proton radiography and tomography. When synchronized with a range telescope, this could enable the reconstruction of proton CT images of stopping power. Furthermore, by measuring the deflection of many protons through a phantom, it was demonstrated that it is possible to reconstruct a new kind of CT image (scattering power) based upon this tracking information alone.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-12
...; Experimental Study: Disease Information in Branded Promotional Material AGENCY: Food and Drug Administration... of information entitled ``Experimental Study: Disease Information in Branded Promotional Material... of information entitled ``Experimental Study: Disease Information in Branded Promotional Material...
NASA Astrophysics Data System (ADS)
Bau, Sébastien; Witschger, Olivier; Gensdarmes, François; Thomas, Dominique
2009-05-01
An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment to move forward our understanding of the hazards, the actual exposures in the workplace, and the limits of engineering controls and personal protective equipment with regard to NP. As a consequence, generating airborne NP with controlled properties constitutes an important challenge. In parallel, toxicological studies have been carried out, and most of them support the concept that surface-area could be a relevant metric for characterizing exposure to airborne NP [1]. To provide NP surface-area concentration measurements, some direct-reading instruments have been designed, based on attachment rate of unipolar ions to NP by diffusion. However, very few information is available concerning the performances of these instruments and the parameters that could affect their responses. In this context, our work aims at characterizing the actual available instruments providing airborne NP surface-area concentration. The instruments (a- LQ1-DC, Matter Engineering; b-AeroTrak™ 9000, TSI; c- NSAM, TSI model 3550;) are thought to be relevant for further workplace exposure characterization and monitoring. To achieve our work, an experimental facility (named CAIMAN) was specially designed, built and characterized.
How does social essentialism affect the development of inter-group relations?
Rhodes, Marjorie; Leslie, Sarah-Jane; Saunders, Katya; Dunham, Yarrow; Cimpian, Andrei
2018-01-01
Psychological essentialism is a pervasive conceptual bias to view categories as reflecting something deep, stable, and informative about their members. Scholars from diverse disciplines have long theorized that psychological essentialism has negative ramifications for inter-group relations, yet little previous empirical work has experimentally tested the social implications of essentialist beliefs. Three studies (N = 127, ages 4.5-6) found that experimentally inducing essentialist beliefs about a novel social category led children to share fewer resources with category members, but did not lead to the out-group dislike that defines social prejudice. These findings indicate that essentialism negatively influences some key components of inter-group relations, but does not lead directly to the development of prejudice. © 2017 John Wiley & Sons Ltd.
Crystal plasticity modeling of irradiation growth in Zircaloy-2
Patra, Anirban; Tome, Carlos; Golubov, Stanislav I.
2017-05-10
A reaction-diffusion based mean field rate theory model is implemented in the viscoplastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. A novel scheme is proposed to model the evolution (both number density and radius) of irradiation-induced dislocation loops that can be informed directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behavior of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture, and external stress onmore » the coupled irradiation growth and creep behavior are also studied.« less
Crystal plasticity modeling of irradiation growth in Zircaloy-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patra, Anirban; Tome, Carlos; Golubov, Stanislav I.
A reaction-diffusion based mean field rate theory model is implemented in the viscoplastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. A novel scheme is proposed to model the evolution (both number density and radius) of irradiation-induced dislocation loops that can be informed directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behavior of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture, and external stress onmore » the coupled irradiation growth and creep behavior are also studied.« less
Estimation of Blood Flow Rates in Large Microvascular Networks
Fry, Brendan C.; Lee, Jack; Smith, Nicolas P.; Secomb, Timothy W.
2012-01-01
Objective Recent methods for imaging microvascular structures provide geometrical data on networks containing thousands of segments. Prediction of functional properties, such as solute transport, requires information on blood flow rates also, but experimental measurement of many individual flows is difficult. Here, a method is presented for estimating flow rates in a microvascular network based on incomplete information on the flows in the boundary segments that feed and drain the network. Methods With incomplete boundary data, the equations governing blood flow form an underdetermined linear system. An algorithm was developed that uses independent information about the distribution of wall shear stresses and pressures in microvessels to resolve this indeterminacy, by minimizing the deviation of pressures and wall shear stresses from target values. Results The algorithm was tested using previously obtained experimental flow data from four microvascular networks in the rat mesentery. With two or three prescribed boundary conditions, predicted flows showed relatively small errors in most segments and fewer than 10% incorrect flow directions on average. Conclusions The proposed method can be used to estimate flow rates in microvascular networks, based on incomplete boundary data and provides a basis for deducing functional properties of microvessel networks. PMID:22506980
Fast reversible learning based on neurons functioning as anisotropic multiplex hubs
NASA Astrophysics Data System (ADS)
Vardi, Roni; Goldental, Amir; Sheinin, Anton; Sardi, Shira; Kanter, Ido
2017-05-01
Neural networks are composed of neurons and synapses, which are responsible for learning in a slow adaptive dynamical process. Here we experimentally show that neurons act like independent anisotropic multiplex hubs, which relay and mute incoming signals following their input directions. Theoretically, the observed information routing enriches the computational capabilities of neurons by allowing, for instance, equalization among different information routes in the network, as well as high-frequency transmission of complex time-dependent signals constructed via several parallel routes. In addition, this kind of hubs adaptively eliminate very noisy neurons from the dynamics of the network, preventing masking of information transmission. The timescales for these features are several seconds at most, as opposed to the imprint of information by the synaptic plasticity, a process which exceeds minutes. Results open the horizon to the understanding of fast and adaptive learning realities in higher cognitive brain's functionalities.
MyLabStocks: a web-application to manage molecular biology materials
Chuffart, Florent; Yvert, Gaël
2014-01-01
Laboratory stocks are the hardware of research. They must be stored and managed with mimimum loss of material and information. Plasmids, oligonucleotides and strains are regularly exchanged between collaborators within and between laboratories. Managing and sharing information about every item is crucial for retrieval of reagents, for planning experiments and for reproducing past experimental results. We have developed a web-based application to manage stocks commonly used in a molecular biology laboratory. Its functionalities include user-defined privileges, visualization of plasmid maps directly from their sequence and the capacity to search items from fields of annotation or directly from a query sequence using BLAST. It is designed to handle records of plasmids, oligonucleotides, yeast strains, antibodies, pipettes and notebooks. Based on PHP/MySQL, it can easily be extended to handle other types of stocks and it can be installed on any server architecture. MyLabStocks is freely available from: https://forge.cbp.ens-lyon.fr/redmine/projects/mylabstocks under an open source licence. PMID:24643870
Urban, Martin; Cuzick, Alayne; Rutherford, Kim; Irvine, Alistair; Pedro, Helder; Pant, Rashmi; Sadanadan, Vidyendra; Khamari, Lokanath; Billal, Santoshkumar; Mohanty, Sagar; Hammond-Kosack, Kim E.
2017-01-01
The pathogen–host interactions database (PHI-base) is available at www.phi-base.org. PHI-base contains expertly curated molecular and biological information on genes proven to affect the outcome of pathogen–host interactions reported in peer reviewed research articles. In addition, literature that indicates specific gene alterations that did not affect the disease interaction phenotype are curated to provide complete datasets for comparative purposes. Viruses are not included. Here we describe a revised PHI-base Version 4 data platform with improved search, filtering and extended data display functions. A PHIB-BLAST search function is provided and a link to PHI-Canto, a tool for authors to directly curate their own published data into PHI-base. The new release of PHI-base Version 4.2 (October 2016) has an increased data content containing information from 2219 manually curated references. The data provide information on 4460 genes from 264 pathogens tested on 176 hosts in 8046 interactions. Prokaryotic and eukaryotic pathogens are represented in almost equal numbers. Host species belong ∼70% to plants and 30% to other species of medical and/or environmental importance. Additional data types included into PHI-base 4 are the direct targets of pathogen effector proteins in experimental and natural host organisms. The curation problems encountered and the future directions of the PHI-base project are briefly discussed. PMID:27915230
Allmer, Jens; Kuhlgert, Sebastian; Hippler, Michael
2008-07-07
The amount of information stemming from proteomics experiments involving (multi dimensional) separation techniques, mass spectrometric analysis, and computational analysis is ever-increasing. Data from such an experimental workflow needs to be captured, related and analyzed. Biological experiments within this scope produce heterogenic data ranging from pictures of one or two-dimensional protein maps and spectra recorded by tandem mass spectrometry to text-based identifications made by algorithms which analyze these spectra. Additionally, peptide and corresponding protein information needs to be displayed. In order to handle the large amount of data from computational processing of mass spectrometric experiments, automatic import scripts are available and the necessity for manual input to the database has been minimized. Information is in a generic format which abstracts from specific software tools typically used in such an experimental workflow. The software is therefore capable of storing and cross analysing results from many algorithms. A novel feature and a focus of this database is to facilitate protein identification by using peptides identified from mass spectrometry and link this information directly to respective protein maps. Additionally, our application employs spectral counting for quantitative presentation of the data. All information can be linked to hot spots on images to place the results into an experimental context. A summary of identified proteins, containing all relevant information per hot spot, is automatically generated, usually upon either a change in the underlying protein models or due to newly imported identifications. The supporting information for this report can be accessed in multiple ways using the user interface provided by the application. We present a proteomics database which aims to greatly reduce evaluation time of results from mass spectrometric experiments and enhance result quality by allowing consistent data handling. Import functionality, automatic protein detection, and summary creation act together to facilitate data analysis. In addition, supporting information for these findings is readily accessible via the graphical user interface provided. The database schema and the implementation, which can easily be installed on virtually any server, can be downloaded in the form of a compressed file from our project webpage.
How to make deposition of images a reality
Guss, J. Mitchell; McMahon, Brian
2014-01-01
The IUCr Diffraction Data Deposition Working Group is investigating the rationale and policies for routine deposition of diffraction images (and other primary experimental data sets). An information-management framework is described that should inform policy directions, and some of the technical and other issues that need to be addressed in an effort to achieve such a goal are analysed. In the near future, routine data deposition could be encouraged at one of the growing number of institutional repositories that accept data sets or at a generic data-publishing web repository service. To realise all of the potential benefits of depositing diffraction data, specialized archives would be preferable. Funding such an initiative will be challenging. PMID:25286838
Imanbaew, Dimitri; Lang, Johannes; Gelin, Maxim F; Kaufhold, Simon; Pfeffer, Michael G; Rau, Sven; Riehn, Christoph
2017-05-08
We present a proof of concept that ultrafast dynamics combined with photochemical stability information of molecular photocatalysts can be acquired by electrospray ionization mass spectrometry combined with time-resolved femtosecond laser spectroscopy in an ion trap. This pump-probe "fragmentation action spectroscopy" gives straightforward access to information that usually requires high purity compounds and great experimental efforts. Results of gas-phase studies on the electronic dynamics of two supramolecular photocatalysts compare well to previous findings in solution and give further evidence for a directed electron transfer, a key process for photocatalytic hydrogen generation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solid-gas phase equilibria and thermodynamic properties of cadmium selenide.
NASA Technical Reports Server (NTRS)
Sigai, A. G.; Wiedemeier, H.
1972-01-01
Accurate vapor pressures are determined through direct weight loss measurements using the Knudsen effusion technique. The experimental data are evaluated by establishing the mode of vaporization and determining the heat capacity of cadmium selenide at elevated temperatures. Additional information is obtained through a second- and third-law evaluation of data, namely, the heat of formation and the absolute entropy of cadmium selenide. A preferential loss of selenium during the initial heating of CdSe is observed, which leads to a deviation in stoichiometry.
Learning-Theoretic Foundations of Linguistic Universals
1974-11-01
constructed experimental situations in which such predictions are tested. Rathär we are concerned with the more primary task of constructing firm and...for a unicorn . (22) may be true or false even if there is no such thing as a unicorn . There is a second reading, of course, in which a unicont must...the direct object of the verb is looking for may be either the intension of a unicorn , which we may represent here informally as a unicorn1, or the
Study and practice in the construction of open physical experiments teaching system
NASA Astrophysics Data System (ADS)
Xu, Yan
2017-09-01
Based on open physical experiments teaching system put forward by Ministry of Education, HHU(Hohai University) has carried out the construction of open experimental manage system, which includes course selecting system, teaching system, manage system and information desk. The innovation is in order to mobilize the students’ learning autonomy, cultivate the students’ creative ability and improve teaching quality. Besides, it achieves direct management from school to college to the laboratory and traced manage to the working device regardless of distance and time.
Adapting line integral convolution for fabricating artistic virtual environment
NASA Astrophysics Data System (ADS)
Lee, Jiunn-Shyan; Wang, Chung-Ming
2003-04-01
Vector field occurs not only extensively in scientific applications but also in treasured art such as sculptures and paintings. Artist depicts our natural environment stressing valued directional feature besides color and shape information. Line integral convolution (LIC), developed for imaging vector field in scientific visualization, has potential of producing directional image. In this paper we present several techniques of exploring LIC techniques to generate impressionistic images forming artistic virtual environment. We take advantage of directional information given by a photograph, and incorporate many investigations to the work including non-photorealistic shading technique and statistical detail control. In particular, the non-photorealistic shading technique blends cool and warm colors into the photograph to imitate artists painting convention. Besides, we adopt statistical technique controlling integral length according to image variance to preserve details. Furthermore, we also propose method for generating a series of mip-maps, which revealing constant strokes under multi-resolution viewing and achieving frame coherence in an interactive walkthrough system. The experimental results show merits of emulating satisfyingly and computing efficiently, as a consequence, relying on the proposed technique successfully fabricates a wide category of non-photorealistic rendering (NPR) application such as interactive virtual environment with artistic perception.
Rosenberg, Benjamin D; Siegel, Jason T
2016-01-01
Scholars across multiple domains have identified the presence of inconsistency-arousing information in direct-to-consumer prescription drug advertisements and have suggested that these appeals, which highlight differences between people's actual and desired lives, may create psychological disequilibrium. However, experimental assessment of the distinct influence of inconsistency-arousing information in this domain is rare. Guided by goal disruption theory-a framework that outlines people's reactions to goal expectation violations-we created direct-to-consumer advertisements designed to make people's life inconsistencies salient. The influence of these ads on people's perceptions of, and intentions to use, prescription drugs was then assessed. Results from a structural equation modeling analysis supported the proposed model, indicating that compared to a control ad, an ad containing a goal expectation violation manipulation resulted in higher levels of psychological disequilibrium; in turn, psychological disequilibrium led to positive evaluations of the ad and the drug, positive outcome expectations of the drug, increased purposive harm endurance, and increased usage intentions. The current results suggest a psychological pathway that begins with a negative goal expectation violation and ends with increased usage intentions and a greater willingness to endure harm to make use possible.
Mackey, Tim K; Schoenfeld, Virginia J
2016-02-02
Social media is fundamentally altering how we access health information and make decisions about medical treatment, including for terminally ill patients. This specifically includes the growing phenomenon of patients who use online petitions and social media campaigns in an attempt to gain access to experimental drugs through expanded access pathways. Importantly, controversy surrounding expanded access and "compassionate use" involves several disparate stakeholders, including patients, manufacturers, policymakers, and regulatory agencies-all with competing interests and priorities, leading to confusion, frustration, and ultimately advocacy. In order to explore this issue in detail, this correspondence article first conducts a literature review to describe how the expanded access policy and regulatory environment in the United States has evolved over time and how it currently impacts access to experimental drugs. We then conducted structured web searches to identify patient use of online petitions and social media campaigns aimed at compelling access to experimental drugs. This was carried out in order to characterize the types of communication strategies utilized, the diseases and drugs subject to expanded access petitions, and the prevalent themes associated with this form of "digital" patient advocacy. We find that patients and their families experience mixed results, but still gravitate towards the use of online campaigns out of desperation, lack of reliable information about treatment access options, and in direct response to limitations of the current fragmented structure of expanded access regulation and policy currently in place. In response, we discuss potential policy reforms to improve expanded access processes, including advocating greater transparency for expanded access programs, exploring use of targeted economic incentives for manufacturers, and developing systems to facilitate patient information about existing treatment options. This includes leveraging recent legislative attention to reform expanded access through the CURE Act Provisions contained in the proposed U.S. 21st Century Cures Act. While expanded access may not be the best option for the majority of individuals, terminally ill patients and their families nevertheless deserve better processes, policies, and availability to potentially life-changing information, before they decide to pursue an online campaign in the desperate hope of gaining access to experimental drugs.
Ravikumar, Balaguru; Parri, Elina; Timonen, Sanna; Airola, Antti; Wennerberg, Krister
2017-01-01
Due to relatively high costs and labor required for experimental profiling of the full target space of chemical compounds, various machine learning models have been proposed as cost-effective means to advance this process in terms of predicting the most potent compound-target interactions for subsequent verification. However, most of the model predictions lack direct experimental validation in the laboratory, making their practical benefits for drug discovery or repurposing applications largely unknown. Here, we therefore introduce and carefully test a systematic computational-experimental framework for the prediction and pre-clinical verification of drug-target interactions using a well-established kernel-based regression algorithm as the prediction model. To evaluate its performance, we first predicted unmeasured binding affinities in a large-scale kinase inhibitor profiling study, and then experimentally tested 100 compound-kinase pairs. The relatively high correlation of 0.77 (p < 0.0001) between the predicted and measured bioactivities supports the potential of the model for filling the experimental gaps in existing compound-target interaction maps. Further, we subjected the model to a more challenging task of predicting target interactions for such a new candidate drug compound that lacks prior binding profile information. As a specific case study, we used tivozanib, an investigational VEGF receptor inhibitor with currently unknown off-target profile. Among 7 kinases with high predicted affinity, we experimentally validated 4 new off-targets of tivozanib, namely the Src-family kinases FRK and FYN A, the non-receptor tyrosine kinase ABL1, and the serine/threonine kinase SLK. Our sub-sequent experimental validation protocol effectively avoids any possible information leakage between the training and validation data, and therefore enables rigorous model validation for practical applications. These results demonstrate that the kernel-based modeling approach offers practical benefits for probing novel insights into the mode of action of investigational compounds, and for the identification of new target selectivities for drug repurposing applications. PMID:28787438
de Oliveira, Marcos Roberto
2016-01-01
Phloretin (C15 H14 O5 ), a dihydrochalcone flavonoid, is mainly found in fruit, leaves, and roots of apple tree. Phloretin exerts antioxidant, anti-inflammatory, and anti-tumor activities in mammalian cells through mechanisms that have been partially elucidated throughout the years. Phloretin bioavailability is well known in humans, but still remains to be better studied in experimental animals, such as mouse and rat. The focus of the present review is to gather information regarding the mechanisms involved in the phloretin-elicited effects in different in vitro and in vivo experimental models. Several manuscripts were analyzed and data raised by authors were described and discussed here in a mechanistic manner. Comparisons between the effects elicited by phloretin and phloridzin were made whenever possible, as well as with other polyphenols, clarifying questions about the use of phloretin as a potential therapeutic agent. Toxicological aspects associated to phloretin exposure were also discussed here. Furthermore, a special section containing future directions was created as a suggestive guide towards the elucidation of phloretin-related actions in mammalian cells and tissues. © 2016 International Union of Biochemistry and Molecular Biology.
Direct observation of forward-scattering oscillations in the H+HD→H2+D reaction.
Yuan, Daofu; Yu, Shengrui; Chen, Wentao; Sang, Jiwei; Luo, Chang; Wang, Tao; Xu, Xin; Casavecchia, Piergiorgio; Wang, Xingan; Sun, Zhigang; Zhang, Dong H; Yang, Xueming
2018-06-01
Accurate measurements of product state-resolved angular distributions are central to fundamental studies of chemical reaction dynamics. Yet, fine quantum-mechanical structures in product angular distributions of a reactive scattering process, such as the fast oscillations in the forward-scattering direction, have never been observed experimentally and the nature of these oscillations has not been fully explored. Here we report the crossed-molecular-beam experimental observation of these fast forward-scattering oscillations in the product angular distribution of the benchmark chemical reaction, H + HD → H 2 + D. Clear oscillatory structures are observed for the H 2 (v' = 0, j' = 1, 3) product states at a collision energy of 1.35 eV, in excellent agreement with the quantum-mechanical dynamics calculations. Our analysis reveals that the oscillatory forward-scattering components are mainly contributed by the total angular momentum J around 28. The partial waves and impact parameters responsible for the forward scatterings are also determined from these observed oscillations, providing crucial dynamics information on the transient reaction process.
NASA Astrophysics Data System (ADS)
Wang, Huijun; White, Jesse F.; Sichen, Du
2018-04-01
A new method was developed to study the dissolution of a solid cylinder in a liquid under forced convection at elevated temperature. In the new design, a rotating cylinder was placed concentrically in a crucible fabricated by boring four holes into a blank material for creating an internal volume with a quatrefoil profile. A strong flow in the radial direction in the liquid was created, which was evidently shown by computational fluid dynamic (CFD) calculations and experiments at both room temperature and elevated temperature. The new setup was able to freeze the sample as it was at experimental temperature, particularly the interface between the solid and the liquid. This freezing was necessary to obtain reliable information for understanding the reaction mechanism. This was exemplified by the study of dissolution of a refractory in liquid slag. The absence of flow in the radial direction in the traditional setup using a symmetrical cylinder was also discussed. The differences in the findings by past investigators using the symmetrical cylinder are most likely due to the extent of misalignment of the cylinder in the containment vessel.
Geoscientific process monitoring with positron emission tomography (GeoPET)
NASA Astrophysics Data System (ADS)
Kulenkampff, Johannes; Gründig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna
2016-08-01
Transport processes in geomaterials can be observed with input-output experiments, which yield no direct information on the impact of heterogeneities, or they can be assessed by model simulations based on structural imaging using µ-CT. Positron emission tomography (PET) provides an alternative experimental observation method which directly and quantitatively yields the spatio-temporal distribution of tracer concentration. Process observation with PET benefits from its extremely high sensitivity together with a resolution that is acceptable in relation to standard drill core sizes. We strongly recommend applying high-resolution PET scanners in order to achieve a resolution on the order of 1 mm. We discuss the particularities of PET applications in geoscientific experiments (GeoPET), which essentially are due to high material density. Although PET is rather insensitive to matrix effects, mass attenuation and Compton scattering have to be corrected thoroughly in order to derive quantitative values. Examples of process monitoring of advection and diffusion processes with GeoPET illustrate the procedure and the experimental conditions, as well as the benefits and limits of the method.
NASA Astrophysics Data System (ADS)
Ozolinsh, Maris; Paulins, Paulis
2017-09-01
An experimental setup allowing the modeling of conditions in optical devices and in the eye at various degrees of scattering such as cataract pathology in human eyes is presented. The scattering in cells of polymer-dispersed liquid crystals (PDLCs) and ‘Smart Glass’ windows is used in the modeling experiments. Both applications are used as optical obstacles placed in different positions of the optical information flow pathway either directly on the stimuli demonstration computer screen or mounted directly after the image-formation lens of a digital camera. The degree of scattering is changed continuously by applying an AC voltage of up to 30-80 V to the PDLC cell. The setup uses a camera with 14 bit depth and a 24 mm focal length lens. Light-emitting diodes and diode-pumped solid-state lasers emitting radiation of different wavelengths are used as portable small-divergence light sources in the experiments. Image formation, optical system point spread function, modulation transfer functions, and system resolution limits are determined for such sample optical systems in student optics and optometry experimental exercises.
Direct Supervision in Outpatient Psychiatric Graduate Medical Education.
Galanter, Cathryn A; Nikolov, Roumen; Green, Norma; Naidoo, Shivana; Myers, Michael F; Merlino, Joseph P
2016-02-01
The authors describe a stimulus case that led training staff to examine and revise the supervision policy of the adult and child and adolescent psychiatry clinics. To inform the revisions, the authors reviewed the literature and national policies. The authors conducted a literature review in PubMed using the following criteria: Supervision, Residents, Training, Direct, and Indirect and a supplemental review in Academic Psychiatry. The authors reviewed institutional and Accreditation Council for Graduate Medical Education resident and fellow supervision policies to develop an outpatient and fellow supervision policy. Research is limited in psychiatry with three experimental articles demonstrating positive impact of direct supervision and several suggesting different techniques for direct supervision. In other areas of medicine, direct supervision is associated with improved educational and patient outcomes. The authors present details of our new supervision policy including triggers for direct supervision. The term direct supervision is relatively new in psychiatry and medical education. There is little published on the extent of implementation of direct supervision and on its impact on the educational experience of psychiatry trainees and other medical specialties. Direct supervision has been associated with improved educational and patient outcomes in nonpsychiatric fields of medicine. More research is needed on the implementation of, indications for, and effects of direct supervision on trainee education and on patient outcomes.
Perry, Nathan C; Wiggins, Mark W; Childs, Merilyn; Fogarty, Gerard
2013-06-01
The study was designed to examine whether the availability of reduced-processing decision support system interfaces could improve the decision making of inexperienced personnel in the context of Although research into reduced-processing decision support systems has demonstrated benefits in minimizing cognitive load, these benefits have not typically translated into direct improvements in decision accuracy because of the tendency for inexperienced personnel to focus on less-critical information. The authors investigated whether reduced-processing interfaces that direct users' attention toward the most critical cues for decision making can produce improvements in decision-making performance. Novice participants made incident command-related decisions in experimental conditions that differed according to the amount of information that was available within the interface, the level of control that they could exert over the presentation of information, and whether they had received decision training. The results revealed that despite receiving training, participants improved in decision accuracy only when they were provided with an interface that restricted information access to the most critical cues. It was concluded that an interface that restricts information access to only the most critical cues in the scenario can facilitate improvements in decision performance. Decision support system interfaces that encourage the processing of the most critical cues have the potential to improve the accuracy and timeliness of decisions made by inexperienced personnel.
Experimental Studies of Intent Information on Cockpit Traffic Displays
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Hansman, R. John, Jr.
1997-01-01
Intent information provides knowledge of another aircraft's current and future trajectory states. Prototype traffic displays were designed for four different levels of intent: No Intent, Rate, Commanded State, and Flight Management System (FMS)-Path. The TCAS Display was used as a baseline and represents the No Intent Level. The Rate, Commanded State, and FMS-Path Displays show increasing levels of intent information using TCAS-like symbology in addition to incorporating a conflict probe and profile view display. An experiment was run on the MIT Part Task Flight Simulator in which eight airline pilots flew five traffic scenarios with each of the four displays. Results show that pilots had fewer separation violations and maneuvered earlier with the three intent displays. Separation violations were reduced when pilots maneuvered earlier. A second experiment was run to compare performance between displaying intent information directly and incorporating it into a conflict probe. A different set of eight airline pilots flew four traffic scenarios with the TCAS and Commanded State Displays with and without the conflict probe. Conflict probes with two minute and long range look-ahead times were tested. Displaying conflict bands or showing intent information directly both led to fewer separation violations and earlier avoidance maneuvers than the base TCAS Display. Performance was similar between the two minute and long range look-ahead conflict probes. Pilots preferred all intent displays over the TCAS Display.
Direction of Arrival Estimation Using a Reconfigurable Array
2005-05-06
civilian world. Keywords: Direction-of-arrival Estimation MUSIC algorithm Reconfigurable Array Experimental Created by Neevia Personal...14. SUBJECT TERMS: Direction-of-arrival ; Estimation ; MUSIC algorithm ; Reconfigurable ; Array ; Experimental 16. PRICE CODE 17...9 1.5 MuSiC Algorithm
Buchner, Ginka S; Murphy, Ronan D; Buchete, Nicolae-Viorel; Kubelka, Jan
2011-08-01
The problem of spontaneous folding of amino acid chains into highly organized, biologically functional three-dimensional protein structures continues to challenge the modern science. Understanding how proteins fold requires characterization of the underlying energy landscapes as well as the dynamics of the polypeptide chains in all stages of the folding process. In recent years, important advances toward these goals have been achieved owing to the rapidly growing interdisciplinary interest and significant progress in both experimental techniques and theoretical methods. Improvements in the experimental time resolution led to determination of the timescales of the important elementary events in folding, such as formation of secondary structure and tertiary contacts. Sensitive single molecule methods made possible probing the distributions of the unfolded and folded states and following the folding reaction of individual protein molecules. Discovery of proteins that fold in microseconds opened the possibility of atomic-level theoretical simulations of folding and their direct comparisons with experimental data, as well as of direct experimental observation of the barrier-less folding transition. The ultra-fast folding also brought new questions, concerning the intrinsic limits of the folding rates and experimental signatures of barrier-less "downhill" folding. These problems will require novel approaches for even more detailed experimental investigations of the folding dynamics as well as for the analysis of the folding kinetic data. For theoretical simulations of folding, a main challenge is how to extract the relevant information from overwhelmingly detailed atomistic trajectories. New theoretical methods have been devised to allow a systematic approach towards a quantitative analysis of the kinetic network of folding-unfolding transitions between various configuration states of a protein, revealing the transition states and the associated folding pathways at multiple levels, from atomistic to coarse-grained representations. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archanjo, B. S.; Vasconcelos, T. L.; Oliveira, B. S.
Plasmonic nano-antennas are pushing the limits of optical imaging resolution capabilities in near-field scanning optical microscopy (NSOM). Accordingly, these techniques are driving the basic understanding of photonic and optoelectronic nanoscale devices with applications in sensing, energy conversion, solid-state lighting and information technology. Imaging the localized surface plasmon resonance (LSPR) at the nanoscale is a key to understanding the optical responses of a given tip geometry in order to engineer better plasmonic nano-antennas for near-field experiments. In recent years the advancement of focused ion beam technology provides the ability to directly modify plasmonic structures with nanometer resolution. Also, scanning transmission electronmore » microscopy (STEM) with electron energy loss spectroscopy (EELS) is an established technique allowing imaging of LSPR. Specifically, the combination of these two techniques provides spectrally sensitive two-dimensional (2D) imaging information to better visualize and understand LSPR on the nanometer scale. This can be combined with electron tomography to provide the three-dimensional LSPR distribution. Here in this paper we demonstrate the fabrication of Au nano-pyramids using helium ion microscopy, and analyze the LSPR in 3D reconstructions produced by total variation (TV)-norm minimization of a set of 2D STEM-EELS maps. Additionally, a boundary element simulation method was used to verify the experimentally observed nanopyramid LSPR modes. Finally, we show that the point-spread-functions (PSF) of LSPR mode hot spots in nanopyramids differ to local electric-field enhancement under optical excitation making direct comparison to NSOM experimental resolution difficult. However, the STEM-EELS results show how LSPR modes are influenced by the tip characteristics, which can inform the development of new nano-antenna designs.« less
Archanjo, B. S.; Vasconcelos, T. L.; Oliveira, B. S.; ...
2018-06-01
Plasmonic nano-antennas are pushing the limits of optical imaging resolution capabilities in near-field scanning optical microscopy (NSOM). Accordingly, these techniques are driving the basic understanding of photonic and optoelectronic nanoscale devices with applications in sensing, energy conversion, solid-state lighting and information technology. Imaging the localized surface plasmon resonance (LSPR) at the nanoscale is a key to understanding the optical responses of a given tip geometry in order to engineer better plasmonic nano-antennas for near-field experiments. In recent years the advancement of focused ion beam technology provides the ability to directly modify plasmonic structures with nanometer resolution. Also, scanning transmission electronmore » microscopy (STEM) with electron energy loss spectroscopy (EELS) is an established technique allowing imaging of LSPR. Specifically, the combination of these two techniques provides spectrally sensitive two-dimensional (2D) imaging information to better visualize and understand LSPR on the nanometer scale. This can be combined with electron tomography to provide the three-dimensional LSPR distribution. Here in this paper we demonstrate the fabrication of Au nano-pyramids using helium ion microscopy, and analyze the LSPR in 3D reconstructions produced by total variation (TV)-norm minimization of a set of 2D STEM-EELS maps. Additionally, a boundary element simulation method was used to verify the experimentally observed nanopyramid LSPR modes. Finally, we show that the point-spread-functions (PSF) of LSPR mode hot spots in nanopyramids differ to local electric-field enhancement under optical excitation making direct comparison to NSOM experimental resolution difficult. However, the STEM-EELS results show how LSPR modes are influenced by the tip characteristics, which can inform the development of new nano-antenna designs.« less
Network inference from functional experimental data (Conference Presentation)
NASA Astrophysics Data System (ADS)
Desrosiers, Patrick; Labrecque, Simon; Tremblay, Maxime; Bélanger, Mathieu; De Dorlodot, Bertrand; Côté, Daniel C.
2016-03-01
Functional connectivity maps of neuronal networks are critical tools to understand how neurons form circuits, how information is encoded and processed by neurons, how memory is shaped, and how these basic processes are altered under pathological conditions. Current light microscopy allows to observe calcium or electrical activity of thousands of neurons simultaneously, yet assessing comprehensive connectivity maps directly from such data remains a non-trivial analytical task. There exist simple statistical methods, such as cross-correlation and Granger causality, but they only detect linear interactions between neurons. Other more involved inference methods inspired by information theory, such as mutual information and transfer entropy, identify more accurately connections between neurons but also require more computational resources. We carried out a comparative study of common connectivity inference methods. The relative accuracy and computational cost of each method was determined via simulated fluorescence traces generated with realistic computational models of interacting neurons in networks of different topologies (clustered or non-clustered) and sizes (10-1000 neurons). To bridge the computational and experimental works, we observed the intracellular calcium activity of live hippocampal neuronal cultures infected with the fluorescent calcium marker GCaMP6f. The spontaneous activity of the networks, consisting of 50-100 neurons per field of view, was recorded from 20 to 50 Hz on a microscope controlled by a homemade software. We implemented all connectivity inference methods in the software, which rapidly loads calcium fluorescence movies, segments the images, extracts the fluorescence traces, and assesses the functional connections (with strengths and directions) between each pair of neurons. We used this software to assess, in real time, the functional connectivity from real calcium imaging data in basal conditions, under plasticity protocols, and epileptic conditions.
Abdulrehman, Dário; Monteiro, Pedro Tiago; Teixeira, Miguel Cacho; Mira, Nuno Pereira; Lourenço, Artur Bastos; dos Santos, Sandra Costa; Cabrito, Tânia Rodrigues; Francisco, Alexandre Paulo; Madeira, Sara Cordeiro; Aires, Ricardo Santos; Oliveira, Arlindo Limede; Sá-Correia, Isabel; Freitas, Ana Teresa
2011-01-01
The YEAst Search for Transcriptional Regulators And Consensus Tracking (YEASTRACT) information system (http://www.yeastract.com) was developed to support the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Last updated in June 2010, this database contains over 48 200 regulatory associations between transcription factors (TFs) and target genes, including 298 specific DNA-binding sites for 110 characterized TFs. All regulatory associations stored in the database were revisited and detailed information on the experimental evidences that sustain those associations was added and classified as direct or indirect evidences. The inclusion of this new data, gathered in response to the requests of YEASTRACT users, allows the user to restrict its queries to subsets of the data based on the existence or not of experimental evidences for the direct action of the TFs in the promoter region of their target genes. Another new feature of this release is the availability of all data through a machine readable web-service interface. Users are no longer restricted to the set of available queries made available through the existing web interface, and can use the web service interface to query, retrieve and exploit the YEASTRACT data using their own implementation of additional functionalities. The YEASTRACT information system is further complemented with several computational tools that facilitate the use of the curated data when answering a number of important biological questions. Since its first release in 2006, YEASTRACT has been extensively used by hundreds of researchers from all over the world. We expect that by making the new data and services available, the system will continue to be instrumental for yeast biologists and systems biology researchers. PMID:20972212
NASA Astrophysics Data System (ADS)
Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Candy, J.; Creely, A. J.
2016-05-01
To better understand the role of cross-scale coupling in experimental conditions, a series of multi-scale gyrokinetic simulations were performed on Alcator C-Mod, L-mode plasmas. These simulations, performed using all experimental inputs and realistic ion to electron mass ratio ((mi/me)1/2 = 60.0), simultaneously capture turbulence at the ion ( kθρs˜O (1.0 ) ) and electron-scales ( kθρe˜O (1.0 ) ). Direct comparison with experimental heat fluxes and electron profile stiffness indicates that Electron Temperature Gradient (ETG) streamers and strong cross-scale turbulence coupling likely exist in both of the experimental conditions studied. The coupling between ion and electron-scales exists in the form of energy cascades, modification of zonal flow dynamics, and the effective shearing of ETG turbulence by long wavelength, Ion Temperature Gradient (ITG) turbulence. The tightly coupled nature of ITG and ETG turbulence in these realistic plasma conditions is shown to have significant implications for the interpretation of experimental transport and fluctuations. Initial attempts are made to develop a "rule of thumb" based on linear physics, to help predict when cross-scale coupling plays an important role and to inform future modeling of experimental discharges. The details of the simulations, comparisons with experimental measurements, and implications for both modeling and experimental interpretation are discussed.
Gravity related behavior of the acellular slime mold Physarum polycephalum (7-IML-1)
NASA Technical Reports Server (NTRS)
Block, I.
1992-01-01
The objective of the experiment is to investigate the effect of near weightlessness on a single cell. The test object is the acellular slime mold Physarum polycephalum. This cell is composed of a network of protoplastic strands which perform rhythmic contractions in the minute range. These contractions of the strands' ectoplastic walls generate the force to drive the vigorous shuttle streaming of fluid protoplasm inside the strands (hydrostatic pressure flow). A net transport of protoplasm in one direction determines the direction of the cell's locomotion itself. In this way, gravity modifies the contraction rhythm of the strands, the streaming velocity of protoplasm in the strands, and the direction of locomotion of the whole slime mold (geotaxis). The other parts of this experiment will address the major question of how this cell, which does not possess any specialized gravireceptors, gets the information about the direction of the gravity vector. Details of the experimental setup are given.
Directly Phase-Modulated Light Source
NASA Astrophysics Data System (ADS)
Yuan, Z. L.; Fröhlich, B.; Lucamarini, M.; Roberts, G. L.; Dynes, J. F.; Shields, A. J.
2016-07-01
The art of imparting information onto a light wave by optical signal modulation is fundamental to all forms of optical communication. Among many schemes, direct modulation of laser diodes stands out as a simple, robust, and cost-effective method. However, the simultaneous changes in intensity, frequency, and phase have prevented its application in the field of secure quantum communication. Here, we propose and experimentally demonstrate a directly phase-modulated light source which overcomes the main disadvantages associated with direct modulation and is suitable for diverse applications such as coherent communications and quantum cryptography. The source separates the tasks of phase preparation and pulse generation between a pair of semiconductor lasers leading to very pure phase states. Moreover, the cavity-enhanced electro-optic effect enables the first example of subvolt half-wave phase modulation at high signal rates. The source is compact, stable, and versatile, and we show its potential to become the standard transmitter for future quantum communication networks based on attenuated laser pulses.
Schlosser, Ralf W; Belfiore, Phillip J; Sigafoos, Jeff; Briesch, Amy M; Wendt, Oliver
2018-05-28
Evidence-based practice as a process requires the appraisal of research as a critical step. In the field of developmental disabilities, single-case experimental designs (SCEDs) figure prominently as a means for evaluating the effectiveness of non-reversible instructional interventions. Comparative SCEDs contrast two or more instructional interventions to document their relative effectiveness and efficiency. As such, these designs have great potential to inform evidence-based decision-making. To harness this potential, however, interventionists and authors of systematic reviews need tools to appraise the evidence generated by these designs. Our literature review revealed that existing tools do not adequately address the specific methodological considerations of comparative SCEDs that aim to compare instructional interventions of non-reversible target behaviors. The purpose of this paper is to introduce the Comparative Single-Case Experimental Design Rating System (CSCEDARS, "cedars") as a tool for appraising the internal validity of comparative SCEDs of two or more non-reversible instructional interventions. Pertinent literature will be reviewed to establish the need for this tool and to underpin the rationales for individual rating items. Initial reliability information will be provided as well. Finally, directions for instrument validation will be proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pai, Priyadarshini P; Mondal, Sukanta
2017-01-01
Enzymes are biological catalysts that play an important role in determining the patterns of chemical transformations pertaining to life. Many milestones have been achieved in unraveling the mechanisms in which the enzymes orchestrate various cellular processes using experimental and computational approaches. Experimental studies generating nearly all possible mutations of target enzymes have been aided by rapid computational approaches aiming at enzyme functional classification, understanding domain organization, functional site identification. The functional architecture, essentially, is involved in binding or interaction with ligands including substrates, products, cofactors, inhibitors, providing for their function, such as in catalysis, ligand mediated cell signaling, allosteric regulation and post-translational modifications. With the increasing availability of enzyme information and advances in algorithm development, computational approaches have now become more capable of providing precise inputs for enzyme engineering, and in the process also making it more efficient. This has led to interesting findings, especially in aberrant enzyme interactions, such as hostpathogen interactions in infection, neurodegenerative diseases, cancer and diabetes. This review aims to summarize in retrospection - the mined knowledge, vivid perspectives and challenging strides in using available experimentally validated enzyme information for characterization. An analytical outlook is presented on the scope of exploring future directions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Direct-method SAD phasing with partial-structure iteration: towards automation.
Wang, J W; Chen, J R; Gu, Y X; Zheng, C D; Fan, H F
2004-11-01
The probability formula of direct-method SAD (single-wavelength anomalous diffraction) phasing proposed by Fan & Gu (1985, Acta Cryst. A41, 280-284) contains partial-structure information in the form of a Sim-weighting term. Previously, only the substructure of anomalous scatterers has been included in this term. In the case that the subsequent density modification and model building yields only structure fragments, which do not straightforwardly lead to the complete solution, the partial structure can be fed back into the Sim-weighting term of the probability formula in order to strengthen its phasing power and to benefit the subsequent automatic model building. The procedure has been tested with experimental SAD data from two known proteins with copper and sulfur as the anomalous scatterers.
Payload-Directed Control of Geophysical Magnetic Surveys
NASA Technical Reports Server (NTRS)
Lee, Ritchie; Yeh, Yoo-Hsiu; Ippolito, Corey; Spritzer, John; Phelps, Geoffrey
2010-01-01
Using non-navigational (e.g. imagers, scientific) sensor information in control loops is a difficult problem to which no general solution exists. Whether the task can be successfully achieved in a particular case depends highly on problem specifics, such as application domain and sensors of interest. In this study, we investigate the feasibility of using magnetometer data for control feedback in the context of geophysical magnetic surveys. An experimental system was created and deployed to (a) assess sensor integration with autonomous vehicles, (b) investigate how magnetometer data can be used for feedback control, and (c) evaluate the feasibility of using such a system for geophysical magnetic surveys. Finally, we report the results of our experiments and show that payload-directed control of geophysical magnetic surveys is indeed feasible.
The design of mobile robot control system for the aged and the disabled
NASA Astrophysics Data System (ADS)
Qiang, Wang; Lei, Shi; Xiang, Gao; Jin, Zhang
2017-01-01
This paper designs a control system of mobile robot for the aged and the disabled, which consists of two main parts: human-computer interaction and drive control module. The data of the two parts is transferred via universal asynchronous receiver/transmitter. In the former part, the speed and direction information of the mobile robot is obtained by hall joystick. In the latter part, the electronic differential algorithm is developed to implement the robot mobile function by driving two-wheel motors. In order to improve the comfort of the robot when speed or direction is changed, the least squares algorithm is used to optimize the speed characteristic curves of the two motors. Experimental results have verified the effectiveness of the designed system.
Polarization entangled cluster state generation in a lithium niobate chip
NASA Astrophysics Data System (ADS)
Szep, Attila; Kim, Richard; Shin, Eunsung; Fanto, Michael L.; Osman, Joseph; Alsing, Paul M.
2016-10-01
We present a design of a quantum information processing C-phase (Controlled-phase) gate applicable for generating cluster states that has a form of integrated photonic circuits assembled with cascaded directional couplers on a Ti in-diffused Lithium Niobate (Ti-LN) platform where directional couplers as the integrated optical analogue of bulk beam splitters are used as fundamental building blocks. Based on experimentally optimized fabrication parameters of Ti-LN optical waveguides operating at an 810nm wavelength, an integrated Ti-LN quantum C-phase gate is designed and simulated. Our proposed C-phase gate consists of three tunable directional couplers cascaded together with having different weighted switching ratios for providing a tool of routing vertically- and horizontally-polarized photons independently. Its operation mechanism relies on selectively controlling the optical coupling of orthogonally polarized modes via the change in the index of refraction, and its operation is confirmed by the BPM simulation.
Quantum Secure Direct Communication with Quantum Memory
NASA Astrophysics Data System (ADS)
Zhang, Wei; Ding, Dong-Sheng; Sheng, Yu-Bo; Zhou, Lan; Shi, Bao-Sen; Guo, Guang-Can
2017-06-01
Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.
Quantum Secure Direct Communication with Quantum Memory.
Zhang, Wei; Ding, Dong-Sheng; Sheng, Yu-Bo; Zhou, Lan; Shi, Bao-Sen; Guo, Guang-Can
2017-06-02
Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.
Photoelectron diffraction and holography: Some new directions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fadley, C.S.
1993-08-01
Photoelectron diffraction has by now become a versatile and powerful technique for studying surface structures, with special capabilities for resolving chemical and magnetic states of atoms and deriving direct structural information from both forward scattering along bond directions and back-scattering path length differences. Further fitting experiment to theory can lead to structural accuracies in the {plus_minus}0.03 ){Angstrom} range. Holographic inversions of such diffraction data also show considerable promise for deriving local three-dimensional structures around a given emitter with accuracies of {plus_minus}0.2--0.3 {Angstrom}. Resolving the photoelectron spin in some way and using circularly polarized radiation for excitation provide added dimensions formore » the study of magnetic systems and chiral experimental geometries. Synchrotron radiation with the highest brightness and energy resolution, as well as variable polarization, is crucial to the full exploitation of these techniques.« less
Polarized BRDF measurement of the type E235B low carbon structural steel
NASA Astrophysics Data System (ADS)
Liu, Yanlei; Yu, Kun; Zhang, Kaihua; Liu, Yufang
2018-01-01
Bidirectional reflectance distribution function (BRDF) offers complete description of the spectral and spatial characteristics of opaque materials. The polarized BRDF contains more information, especially for the painted objects and target recognition. In this letter, we measured the in plane polarized spectral BRDF for the steel E235B in the wavelength range of 450-600 nm. The reliability of our results is verified by comparing the experimental data of polytetrafluoroethylene with the reference data. The measuring results indicates that the wavelength of incident light has a positive effect on the BRDF near the specular direction, and has a negative influence for other direction. BRDF increases slowly with reflected zenith angle and decreases rapidly with peak occurs at specular direction, which may be attributed to the shadowing effect. In addition, the results presents that the polarization of incident light has a slight influence on the BRDF of the sample.
Biotic games and cloud experimentation as novel media for biophysics education
NASA Astrophysics Data System (ADS)
Riedel-Kruse, Ingmar; Blikstein, Paulo
2014-03-01
First-hand, open-ended experimentation is key for effective formal and informal biophysics education. We developed, tested and assessed multiple new platforms that enable students and children to directly interact with and learn about microscopic biophysical processes: (1) Biotic games that enable local and online play using galvano- and photo-tactic stimulation of micro-swimmers, illustrating concepts such as biased random walks, Low Reynolds number hydrodynamics, and Brownian motion; (2) an undergraduate course where students learn optics, electronics, micro-fluidics, real time image analysis, and instrument control by building biotic games; and (3) a graduate class on the biophysics of multi-cellular systems that contains a cloud experimentation lab enabling students to execute open-ended chemotaxis experiments on slimemolds online, analyze their data, and build biophysical models. Our work aims to generate the equivalent excitement and educational impact for biophysics as robotics and video games have had for mechatronics and computer science, respectively. We also discuss how scaled-up cloud experimentation systems can support MOOCs with true lab components and life-science research in general.
Synovial fluid cytology in experimental acute canine monocytic ehrlichiosis (Ehrlichia canis).
Theodorou, Konstantina; Leontides, Leonidas; Siarkou, Victoria I; Petanides, Theodoros; Tsafas, Konstantinos; Harrus, Shimon; Mylonakis, Mathios E
2015-05-15
Evidence-based information of a cause-and-effect relationship between Ehrlichia canis infection and polyarthritis in naturally- or experimentally-infected dogs is currently lacking. The aim of this prospective study was to investigate whether synovial fluid cytological evidence of arthritis could be documented in dogs with acute monocytic ehrlichiosis. Direct synovial fluid cytology smears from eight Beagle dogs experimentally infected with E. canis were examined prior to, and on 21, 35 and 63 days post-inoculation. The cytological variables assessed included cellularity, percentages of mononuclear cells and neutrophils, macrophage reactivity and evidence of E. canis morulae. The median cellularity and percentages of mononuclear cells and neutrophils prior to inoculation did not differ when compared to post-inoculation cytological evaluation. Increased cellularity, E. canis morulae or cytological evidence of arthritis or macrophage reactivity were not observed throughout the course of the study. In the present study, no cytological evidence of arthritis was found in dogs with experimental acute canine monocytic ehrlichiosis, suggesting that E. canis infection should be considered a rather uncommon cause of arthritis in dogs. Copyright © 2015 Elsevier B.V. All rights reserved.
Hooijmans, Carlijn R.; de Vries, Rob B. M.; Ritskes-Hoitinga, Merel; Rovers, Maroeska M.; Leeflang, Mariska M.; IntHout, Joanna; Wever, Kimberley E.; Hooft, Lotty; de Beer, Hans; Kuijpers, Ton; Macleod, Malcolm R.; Sena, Emily S.; ter Riet, Gerben; Morgan, Rebecca L.; Thayer, Kristina A.; Rooney, Andrew A.; Guyatt, Gordon H.; Schünemann, Holger J.
2018-01-01
Laboratory animal studies are used in a wide range of human health related research areas, such as basic biomedical research, drug research, experimental surgery and environmental health. The results of these studies can be used to inform decisions regarding clinical research in humans, for example the decision to proceed to clinical trials. If the research question relates to potential harms with no expectation of benefit (e.g., toxicology), studies in experimental animals may provide the only relevant or controlled data and directly inform clinical management decisions. Systematic reviews and meta-analyses are important tools to provide robust and informative evidence summaries of these animal studies. Rating how certain we are about the evidence could provide important information about the translational probability of findings in experimental animal studies to clinical practice and probably improve it. Evidence summaries and certainty in the evidence ratings could also be used (1) to support selection of interventions with best therapeutic potential to be tested in clinical trials, (2) to justify a regulatory decision limiting human exposure (to drug or toxin), or to (3) support decisions on the utility of further animal experiments. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach is the most widely used framework to rate the certainty in the evidence and strength of health care recommendations. Here we present how the GRADE approach could be used to rate the certainty in the evidence of preclinical animal studies in the context of therapeutic interventions. We also discuss the methodological challenges that we identified, and for which further work is needed. Examples are defining the importance of consistency within and across animal species and using GRADE’s indirectness domain as a tool to predict translation from animal models to humans. PMID:29324741
Hooijmans, Carlijn R; de Vries, Rob B M; Ritskes-Hoitinga, Merel; Rovers, Maroeska M; Leeflang, Mariska M; IntHout, Joanna; Wever, Kimberley E; Hooft, Lotty; de Beer, Hans; Kuijpers, Ton; Macleod, Malcolm R; Sena, Emily S; Ter Riet, Gerben; Morgan, Rebecca L; Thayer, Kristina A; Rooney, Andrew A; Guyatt, Gordon H; Schünemann, Holger J; Langendam, Miranda W
2018-01-01
Laboratory animal studies are used in a wide range of human health related research areas, such as basic biomedical research, drug research, experimental surgery and environmental health. The results of these studies can be used to inform decisions regarding clinical research in humans, for example the decision to proceed to clinical trials. If the research question relates to potential harms with no expectation of benefit (e.g., toxicology), studies in experimental animals may provide the only relevant or controlled data and directly inform clinical management decisions. Systematic reviews and meta-analyses are important tools to provide robust and informative evidence summaries of these animal studies. Rating how certain we are about the evidence could provide important information about the translational probability of findings in experimental animal studies to clinical practice and probably improve it. Evidence summaries and certainty in the evidence ratings could also be used (1) to support selection of interventions with best therapeutic potential to be tested in clinical trials, (2) to justify a regulatory decision limiting human exposure (to drug or toxin), or to (3) support decisions on the utility of further animal experiments. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach is the most widely used framework to rate the certainty in the evidence and strength of health care recommendations. Here we present how the GRADE approach could be used to rate the certainty in the evidence of preclinical animal studies in the context of therapeutic interventions. We also discuss the methodological challenges that we identified, and for which further work is needed. Examples are defining the importance of consistency within and across animal species and using GRADE's indirectness domain as a tool to predict translation from animal models to humans.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-27
... of information technology. Experimental Study of Graphic Cigarette Warning Labels--(OMB Control... graphic warnings required by the Tobacco Control Act. The experimental study data will be collected from...] Agency Information Collection Activities; Proposed Collection; Comment Request; Experimental Study of...
The Role of Verbal Threat Information in the Development of Childhood Fear. “Beware the Jabberwock!”
Field, Andy P.
2010-01-01
Rachman’s (Behaviour Research and Therapy 15:372–387, 1977; Clinical Psychology Review 11:155–173, 1991) three pathways theory proposed that childhood fears not only arise as a consequence of direct learning experiences, but can also be elicited by means of threat information transmission. This review looks at the scientific evidence for this idea, which has accumulated during the past three decades. We review research on the influences of media exposure on children’s fears, retrospective parent and child reports on the role of threat information in fear acquisition, and experimental studies that explored the causal effects of threat information on childhood fears. We also discuss possible mechanisms by which threat information exerts its influence and the processes relevant to understand the role of this type of learning experience in the origins of fear. Finally, implications for the prevention and intervention of childhood fears are briefly explored, and potential leads for future research will be highlighted. PMID:20198423
A locally-blazed ant trail achieves efficient collective navigation despite limited information
Fonio, Ehud; Heyman, Yael; Boczkowski, Lucas; Gelblum, Aviram; Kosowski, Adrian; Korman, Amos; Feinerman, Ofer
2016-01-01
Any organism faces sensory and cognitive limitations which may result in maladaptive decisions. Such limitations are prominent in the context of groups where the relevant information at the individual level may not coincide with collective requirements. Here, we study the navigational decisions exhibited by Paratrechina longicornis ants as they cooperatively transport a large food item. These decisions hinge on the perception of individuals which often restricts them from providing the group with reliable directional information. We find that, to achieve efficient navigation despite partial and even misleading information, these ants employ a locally-blazed trail. This trail significantly deviates from the classical notion of an ant trail: First, instead of systematically marking the full path, ants mark short segments originating at the load. Second, the carrying team constantly loses the guiding trail. We experimentally and theoretically show that the locally-blazed trail optimally and robustly exploits useful knowledge while avoiding the pitfalls of misleading information. DOI: http://dx.doi.org/10.7554/eLife.20185.001 PMID:27815944
A Real-Time System for Lane Detection Based on FPGA and DSP
NASA Astrophysics Data System (ADS)
Xiao, Jing; Li, Shutao; Sun, Bin
2016-12-01
This paper presents a real-time lane detection system including edge detection and improved Hough Transform based lane detection algorithm and its hardware implementation with field programmable gate array (FPGA) and digital signal processor (DSP). Firstly, gradient amplitude and direction information are combined to extract lane edge information. Then, the information is used to determine the region of interest. Finally, the lanes are extracted by using improved Hough Transform. The image processing module of the system consists of FPGA and DSP. Particularly, the algorithms implemented in FPGA are working in pipeline and processing in parallel so that the system can run in real-time. In addition, DSP realizes lane line extraction and display function with an improved Hough Transform. The experimental results show that the proposed system is able to detect lanes under different road situations efficiently and effectively.
(n,{gamma}) Experiments on tin isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baramsai, B.; Mitchell, G. E.; Walker, C. L.
2013-04-19
Neutron capture experiments on highly enriched {sup 117,119}Sn isotopes were performed with the DANCE detector array located at the Los Alamos Neutron Science Center. The DANCE detector provides detailed information about the multi-step {gamma}-ray cascade following neutron capture. Analysis of the experimental data provides important information to improve understanding of the neutron capture reaction, including a test of the statistical model, the assignment of spins and parities of neutron resonances, and information concerning the Photon Strength Function (PSF) and Level Density (LD) below the neutron separation energy. Preliminary results for the (n,{gamma}) reaction on {sup 117,119}Sn are presented. Resonance spinsmore » of the odd-A tin isotopes were almost completely unknown. Resonance spins and parities have been assigned via analysis of the multi-step {gamma}-ray spectra and directional correlations.« less
Metabolic networks in motion: 13C-based flux analysis
Sauer, Uwe
2006-01-01
Many properties of complex networks cannot be understood from monitoring the components—not even when comprehensively monitoring all protein or metabolite concentrations—unless such information is connected and integrated through mathematical models. The reason is that static component concentrations, albeit extremely informative, do not contain functional information per se. The functional behavior of a network emerges only through the nonlinear gene, protein, and metabolite interactions across multiple metabolic and regulatory layers. I argue here that intracellular reaction rates are the functional end points of these interactions in metabolic networks, hence are highly relevant for systems biology. Methods for experimental determination of metabolic fluxes differ fundamentally from component concentration measurements; that is, intracellular reaction rates cannot be detected directly, but must be estimated through computer model-based interpretation of stable isotope patterns in products of metabolism. PMID:17102807
Mechanical break junctions: enormous information in a nanoscale package.
Natelson, Douglas
2012-04-24
Mechanical break junctions, particularly those in which a metal tip is repeatedly moved in and out of contact with a metal film, have provided many insights into electronic conduction at the atomic and molecular scale, most often by averaging over many possible junction configurations. This averaging throws away a great deal of information, and Makk et al. in this issue of ACS Nano demonstrate that, with both simulated and real experimental data, more sophisticated two-dimensional analysis methods can reveal information otherwise obscured in simple histograms. As additional measured quantities come into play in break junction experiments, including thermopower, noise, and optical response, these more sophisticated analytic approaches are likely to become even more powerful. While break junctions are not directly practical for useful electronic devices, they are incredibly valuable tools for unraveling the electronic transport physics relevant for ultrascaled nanoelectronics.
New method for analyzing dark matter direct detection data
NASA Astrophysics Data System (ADS)
Davis, Jonathan H.; Enßlin, Torsten; BÅ`hm, Céline
2014-02-01
The experimental situation of dark matter direct detection has reached an exciting crossroads, with potential hints of a discovery of dark matter (DM) from the CDMS, CoGeNT, CRESST-II and DAMA experiments in tension with null results from xenon-based experiments such as XENON100 and LUX. Given the present controversial experimental status, it is important that the analytical method used to search for DM in direct detection experiments is both robust and flexible enough to deal with data for which the distinction between signal and background points is difficult, and hence where the choice between setting a limit or defining a discovery region is debatable. In this article we propose a novel (Bayesian) analytical method, which can be applied to all direct detection experiments and which extracts the maximum amount of information from the data. We apply our method to the XENON100 experiment data as a worked example, and show that firstly our exclusion limit at 90% confidence is in agreement with their own for the 225 live days data, but is several times stronger for the 100 live days data. Secondly we find that, due to the two points at low values of S1 and S2 in the 225 days data set, our analysis points to either weak consistency with low-mass dark matter or the possible presence of an unknown background. Given the null result from LUX, the latter scenario seems the more plausible.
Atypical development of spontaneous social cognition in autism spectrum disorders.
Senju, Atsushi
2013-02-01
Individuals with autism spectrum disorders (ASD) have profound impairment in the development of social interaction and communication. However, it is also known that some 'high-functioning' individuals with ASD show apparently typical capacity to process social information in a controlled experimental settings, despite their difficulties in daily life. The current paper overviews the spontaneous social cognition, spontaneous processing of social information in the absence of explicit instruction or task demand, in individuals with ASD. Three areas of the researches, false belief attribution, imitation/mimicry, and eye gaze processing, have been reviewed. The literatures suggest that high-functioning individuals with ASD (a) do not spontaneously attribute false belief to others, even though they can easily do so when explicitly instructed, (b) can imitate others' goal-directed actions under explicit instruction and show spontaneous mimicry of others' actions when they attend to the action, but are less likely to show spontaneous mimicry without the task structure to navigate attention to others' action and (c) can process others' gaze direction and shift attention to others' gaze directions, but fail to spontaneously attend to another person's eyes in social and communicative context, and less likely to be prompted to respond in response to perceived eye contact. These results are consistent with the claim that individuals with ASD do not spontaneously attend to socially relevant information, even though they can easily process the same information when their attention is navigated towards it. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Danilin, A. I.; Chernyavskiy, A. Zh; Danilin, S. A.; Blagin, E. V.
2018-01-01
This article deals with non-contact exploitation control method based on the treatment of the radio wave signal reflected from controlled gear teeth and its advantages in comparison with traditional methods of gear teeth control. Justification of necessity to use such control method during multiplier gears condition determination during its exploitation is given. Also this article deals with influence of different types of gear wear on typical information parameters of analyzed signals. Disadvantages of the method which are the impossibility of determination of certain types of wear are also taken into account. Certain stages of the development of mathematical model for interaction of first converter with controlled surface. Suggested mathematical model uses only the laws of geometric optics without taking wave processes into account but considering first converter direction diagram influence during its interaction with controlled surface. Structural scheme of developed experimental system for gears teeth condition control for steam compressor. Operation of the experimental system of gear control is given on the base of structural scheme. Core of the developed device is microcontroller STM32 which treat the information received from the sensors as well as connection with computer. Certain elements of the experimental control system as well as its components are described separately. Photos of experimental unit for control for control method development in laboratory conditions are presented. Design of the first converter is given in short.
Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Miao, Yusi; Qi, Li; Qu, Yueqiao; He, Youmin; Yang, Qiang; Chen, Zhongping
2017-05-01
Shear wave measurements for the determination of tissue elastic properties have been used in clinical diagnosis and soft tissue assessment. A shear wave propagates as a transverse wave where vibration is perpendicular to the wave propagation direction. Previous transverse shear wave measurements could detect the shear modulus in the lateral region of the force; however, they could not provide the elastic information in the axial region of the force. In this study, we report the imaging and quantification of longitudinal shear wave propagation using optical coherence tomography to measure the elastic properties along the force direction. The experimental validation and finite element simulations show that the longitudinal shear wave propagates along the vibration direction as a plane wave in the near field of a planar source. The wave velocity measurement can quantify the shear moduli in a homogeneous phantom and a side-by-side phantom. Combining the transverse shear wave and longitudinal shear wave measurements, this system has great potential to detect the directionally dependent elastic properties in tissues without a change in the force direction.
Fusion of infrared and visible images based on BEMD and NSDFB
NASA Astrophysics Data System (ADS)
Zhu, Pan; Huang, Zhanhua; Lei, Hai
2016-07-01
This paper presents a new fusion method based on the adaptive multi-scale decomposition of bidimensional empirical mode decomposition (BEMD) and the flexible directional expansion of nonsubsampled directional filter banks (NSDFB) for visible-infrared images. Compared with conventional multi-scale fusion methods, BEMD is non-parametric and completely data-driven, which is relatively more suitable for non-linear signals decomposition and fusion. NSDFB can provide direction filtering on the decomposition levels to capture more geometrical structure of the source images effectively. In our fusion framework, the entropies of the two patterns of source images are firstly calculated and the residue of the image whose entropy is larger is extracted to make it highly relevant with the other source image. Then, the residue and the other source image are decomposed into low-frequency sub-bands and a sequence of high-frequency directional sub-bands in different scales by using BEMD and NSDFB. In this fusion scheme, two relevant fusion rules are used in low-frequency sub-bands and high-frequency directional sub-bands, respectively. Finally, the fused image is obtained by applying corresponding inverse transform. Experimental results indicate that the proposed fusion algorithm can obtain state-of-the-art performance for visible-infrared images fusion in both aspects of objective assessment and subjective visual quality even for the source images obtained in different conditions. Furthermore, the fused results have high contrast, remarkable target information and rich details information that are more suitable for human visual characteristics or machine perception.
High Strain-Rate and Temperature Effects on the Response of Composites
NASA Technical Reports Server (NTRS)
Gilat, Amos
2004-01-01
The objective of the research is to expand the experimental study of the effect of strain rate on mechanical response (deformation and failure) of epoxy resins and carbon fibers/epoxy matrix composites, to include elevated temperature tests. The experimental data provide the information needed for NASA scientists for the development of a nonlinear, strain rate and temperature dependent deformation and strength models for composites that can subsequently be used in design. This year effort was directed into the development and testing of the epoxy resin at elevated temperatures. Two types of epoxy resins were tested in shear at high strain rates of about 700 per second and elevated temperatures of 50 and 80 C. The results show that the temperature significantly affects the response of epoxy.
Experimental generation of tripartite polarization entangled states of bright optical beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Liang; Liu, Yanhong; Deng, Ruijie
The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite entangled states of light at the frequency resonant with D1 line of Rubidium atoms are transformed into the continuous variable polarization entanglement among three bright optical beams via an opticalmore » beam splitter network. The obtained entanglement is confirmed by the extended criterion for polarization entanglement of multipartite quantized optical modes.« less
Real-space mapping of electronic orbitals.
Löffler, Stefan; Bugnet, Matthieu; Gauquelin, Nicolas; Lazar, Sorin; Assmann, Elias; Held, Karsten; Botton, Gianluigi A; Schattschneider, Peter
2017-06-01
Electronic states are responsible for most material properties, including chemical bonds, electrical and thermal conductivity, as well as optical and magnetic properties. Experimentally, however, they remain mostly elusive. Here, we report the real-space mapping of selected transitions between p and d states on the Ångström scale in bulk rutile (TiO 2 ) using electron energy-loss spectrometry (EELS), revealing information on individual bonds between atoms. On the one hand, this enables the experimental verification of theoretical predictions about electronic states. On the other hand, it paves the way for directly investigating electronic states under conditions that are at the limit of the current capabilities of numerical simulations such as, e.g., the electronic states at defects, interfaces, and quantum dots. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zahavi, Dan
2018-03-01
In their new article [1], Becchio and her colleagues argue that recent claims concerning the possibility of directly perceiving other people's mental states will remain speculative as long as one has failed to demonstrate the availability of mentalistic information in observable behavior [p. 4]. The ambitious goal of the authors is then to outline an experimental setup that will permit one to determine whether and to what extent a mental state is observable. Drawing on Becchio's previous work on how regularities in the kinematic patterns specify the mental states of the agent, the authors suggest that a similar approach can be adopted to probe the observability of any mental state instantiated in behavioral patterns [p. 19].
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-16
... notice solicits comments on research entitled ``Experimental Study: Disease Information in Branded Promotional Material.'' The proposed research will explore the nature of including information about a disease...] Agency Information Collection Activities; Proposed Collection; Comment Request; Experimental Study...
Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks
Zhao, Rui; Yan, Ruqiang; Wang, Jinjiang; Mao, Kezhi
2017-01-01
In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks (LSTMs) are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods. PMID:28146106
Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks.
Zhao, Rui; Yan, Ruqiang; Wang, Jinjiang; Mao, Kezhi
2017-01-30
In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks(LSTMs) are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods.
Information and complexity measures in the interface of a metal and a superconductor
NASA Astrophysics Data System (ADS)
Moustakidis, Ch. C.; Panos, C. P.
2018-06-01
Fisher information, Shannon information entropy and Statistical Complexity are calculated for the interface of a normal metal and a superconductor, as a function of the temperature for several materials. The order parameter Ψ (r) derived from the Ginzburg-Landau theory is used as an input together with experimental values of critical transition temperature Tc and the superconducting coherence length ξ0. Analytical expressions are obtained for information and complexity measures. Thus Tc is directly related in a simple way with disorder and complexity. An analytical relation is found of the Fisher Information with the energy profile of superconductivity i.e. the ratio of surface free energy and the bulk free energy. We verify that a simple relation holds between Shannon and Fisher information i.e. a decomposition of a global information quantity (Shannon) in terms of two local ones (Fisher information), previously derived and verified for atoms and molecules by Liu et al. Finally, we find analytical expressions for generalized information measures like the Tsallis entropy and Fisher information. We conclude that the proper value of the non-extensivity parameter q ≃ 1, in agreement with previous work using a different model, where q ≃ 1.005.
Experimental verification of multidimensional quantum steering
NASA Astrophysics Data System (ADS)
Li, Che-Ming; Lo, Hsin-Pin; Chen, Liang-Yu; Yabushita, Atsushi
2018-03-01
Quantum steering enables one party to communicate with another remote party even if the sender is untrusted. Such characteristics of quantum systems not only provide direct applications to quantum information science, but are also conceptually important for distinguishing between quantum and classical resources. While concrete illustrations of steering have been shown in several experiments, quantum steering has not been certified for higher dimensional systems. Here, we introduce a simple method to experimentally certify two different kinds of quantum steering: Einstein-Podolsky-Rosen (EPR) steering and single-system (SS) steering (i.e., temporal steering), for dimensionality (d) up to d = 16. The former reveals the steerability among bipartite systems, whereas the latter manifests itself in single quantum objects. We use multidimensional steering witnesses to verify EPR steering of polarization-entangled pairs and SS steering of single photons. The ratios between the measured witnesses and the maximum values achieved by classical mimicries are observed to increase with d for both EPR and SS steering. The designed scenario offers a new method to study further the genuine multipartite steering of large dimensionality and potential uses in quantum information processing.
Analyzing thresholds and efficiency with hierarchical Bayesian logistic regression.
Houpt, Joseph W; Bittner, Jennifer L
2018-07-01
Ideal observer analysis is a fundamental tool used widely in vision science for analyzing the efficiency with which a cognitive or perceptual system uses available information. The performance of an ideal observer provides a formal measure of the amount of information in a given experiment. The ratio of human to ideal performance is then used to compute efficiency, a construct that can be directly compared across experimental conditions while controlling for the differences due to the stimuli and/or task specific demands. In previous research using ideal observer analysis, the effects of varying experimental conditions on efficiency have been tested using ANOVAs and pairwise comparisons. In this work, we present a model that combines Bayesian estimates of psychometric functions with hierarchical logistic regression for inference about both unadjusted human performance metrics and efficiencies. Our approach improves upon the existing methods by constraining the statistical analysis using a standard model connecting stimulus intensity to human observer accuracy and by accounting for variability in the estimates of human and ideal observer performance scores. This allows for both individual and group level inferences. Copyright © 2018 Elsevier Ltd. All rights reserved.
High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB.
Liu, S; Cai, H; DeRose, C T; Davids, P; Pomerene, A; Starbuck, A L; Trotter, D C; Camacho, R; Urayama, J; Lentine, A
2017-05-15
We experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480 - 1640 nm and 95 nm from 1280 - 1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. We investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplers and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. Our demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.
NASA Astrophysics Data System (ADS)
Ceder, Gerbrand
2007-03-01
The prediction of structure is a key problem in computational materials science that forms the platform on which rational materials design can be performed. Finding structure by traditional optimization methods on quantum mechanical energy models is not possible due to the complexity and high dimensionality of the coordinate space. An unusual, but efficient solution to this problem can be obtained by merging ideas from heuristic and ab initio methods: In the same way that scientist build empirical rules by observation of experimental trends, we have developed machine learning approaches that extract knowledge from a large set of experimental information and a database of over 15,000 first principles computations, and used these to rapidly direct accurate quantum mechanical techniques to the lowest energy crystal structure of a material. Knowledge is captured in a Bayesian probability network that relates the probability to find a particular crystal structure at a given composition to structure and energy information at other compositions. We show that this approach is highly efficient in finding the ground states of binary metallic alloys and can be easily generalized to more complex systems.
NASA Astrophysics Data System (ADS)
Balaji, P. A.
1999-07-01
A cricket's ear is a directional acoustic sensor. It has a remarkable level of sensitivity to the direction of sound propagation in a narrow frequency bandwidth of 4-5 KHz. Because of its complexity, the directional sensitivity has long intrigued researchers. The cricket's ear is a four-acoustic-inputs/two-vibration-outputs system. In this dissertation, this system is examined in depth, both experimentally and theoretically, with a primary goal to understand the mechanics involved in directional hearing. Experimental identification of the system is done by using random signal processing techniques. Theoretical identification of the system is accomplished by analyzing sound transmission through complex trachea of the ear. Finally, a description of how the cricket achieves directional hearing sensitivity is proposed. The fundamental principle involved in directional heating of the cricket has been utilized to design a device to obtain a directional signal from non- directional inputs.
Robust model-based analysis of single-particle tracking experiments with Spot-On
Grimm, Jonathan B; Lavis, Luke D
2018-01-01
Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce ‘Spot-On’, an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants. PMID:29300163
Robust model-based analysis of single-particle tracking experiments with Spot-On.
Hansen, Anders S; Woringer, Maxime; Grimm, Jonathan B; Lavis, Luke D; Tjian, Robert; Darzacq, Xavier
2018-01-04
Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce 'Spot-On', an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants. © 2018, Hansen et al.
Structural refinement of vitreous silica bilayers
NASA Astrophysics Data System (ADS)
Sadjadi, Mahdi; Wilson, Mark; Thorpe, M. F.
The importance of glasses resides not only in their applications but in fundamental questions that they put forth. The continuous random network model can successfully describe the glass structure, but determining details, like ring statistics, has always been difficult using only diffraction data. But recent atomic images of 2D vitreous silica bilayers can offer valuable new insights which are hard to be observed directly in 3D silica models/experiments (for references see). However, the experimental results are prone to uncertainty in atomic positions, systematic errors, and being finite. We employ special boundary conditions developed for such networks to refine the experimental structures. We show the best structure can be found by using various potentials to maximize information gained from the experimental samples. We find a range of densities, the so-called flexibility window, in which tetrahedra are perfect. We compare results from simulations using harmonic potentials, MD with atomic polarizabilities included and DFT. We should thank David Drabold and Bishal Bhattarai for useful discussions. Support through NSF Grant # DMS 1564468 is gratefully acknowledged.
NASA Technical Reports Server (NTRS)
Pujar, Vijay V.; Cawley, James D.; Levine, S. (Technical Monitor)
2000-01-01
Earlier results from computer simulation studies suggest a correlation between the spatial distribution of stacking errors in the Beta-SiC structure and features observed in X-ray diffraction patterns of the material. Reported here are experimental results obtained from two types of nominally Beta-SiC specimens, which yield distinct XRD data. These samples were analyzed using high resolution transmission electron microscopy (HRTEM) and the stacking error distribution was directly determined. The HRTEM results compare well to those deduced by matching the XRD data with simulated spectra, confirming the hypothesis that the XRD data is indicative not only of the presence and density of stacking errors, but also that it can yield information regarding their distribution. In addition, the stacking error population in both specimens is related to their synthesis conditions and it appears that it is similar to the relation developed by others to explain the formation of the corresponding polytypes.
Solid iron-hydrogen alloys under high pressure by first principles
NASA Astrophysics Data System (ADS)
Umemoto, K.; Hirose, K.
2016-12-01
Hydrogen and iron are two of major constituents of the Earth and planetary interiors. The crystal structure of solid FeHx is one of the most fundamental information in order to understand properties of planetary cores. It is well known that FeH takes closed-packed structures: dhcp, hcp, and fcc. Recently, hydrogen-rich phases, FeH2 and FeH3, were experimentally synthesized [1]. Although a tetragonal structure of FeH2 was proposed, it could not explain experimental observations, energetic stability and compression curve. Here we propose a new crystal structure of FeH2. The symmetry of the new structure is completely identical to that in originally proposed one, but the hydrogen sublattice which cannot be directly determined by XRD experiments is different. It will be demonstrated by first principles that the new structure can be fully consistent with experimental observations. [1] C. M. Pépin, A. Dewaele, G. Geneste, P. Loubeyre, and M. Mezouar, Phys. Rev. Lett. 113, 265504 (2014).
Real-time intravital microscopy of individual nanoparticle dynamics in liver and tumors of live mice
van de Ven, Anne L; Kim, Pilhan; Ferrari, Mauro; Yun, Seok Hyun
2013-01-01
Intravital microscopy is emerging as an important experimental tool for the research and development of multi-functional therapeutic nanoconstructs. The direct visualization of nanoparticle dynamics within live animals provides invaluable insights into the mechanisms that regulate nanotherapeutics transport and cell-particle interactions. Here we present a protocol to image the dynamics of nanoparticles within the liver and tumors of live mice immediately following systemic injection using a high-speed (30-400 fps) confocal or multi-photon laser-scanning fluorescence microscope. Techniques for quantifying the real-time accumulation and cellular association of individual particles with a size ranging from several tens of nanometers to micrometers are described, as well as an experimental strategy for labeling Kupffer cells in the liver in vivo. Experimental design considerations and controls are provided, as well as minimum equipment requirements. The entire protocol takes approximately 4-8 hours and yields quantitative information. These techniques can serve to study a wide range of kinetic parameters that drive nanotherapeutics delivery, uptake, and treatment response. PMID:25383179
Optimal control of directional deep brain stimulation in the parkinsonian neuronal network
NASA Astrophysics Data System (ADS)
Fan, Denggui; Wang, Zhihui; Wang, Qingyun
2016-07-01
The effect of conventional deep brain stimulation (DBS) on debilitating symptoms of Parkinson's disease can be limited because it can only yield the spherical field. And, some side effects are clearly induced with influencing their adjacent ganglia. Recent experimental evidence for patients with Parkinson's disease has shown that a novel DBS electrode with 32 independent stimulation source contacts can effectively optimize the clinical therapy by enlarging the therapeutic windows, when it is applied on the subthalamic nucleus (STN). This is due to the selective activation in clusters of various stimulation contacts which can be steered directionally and accurately on the targeted regions of interest. In addition, because of the serious damage to the neural tissues, the charge-unbalanced stimulation is not typically indicated and the real DBS utilizes charge-balanced bi-phasic (CBBP) pulses. Inspired by this, we computationally investigate the optimal control of directional CBBP-DBS from the proposed parkinsonian neuronal network of basal ganglia-thalamocortical circuit. By appropriately tuning stimulation for different neuronal populations, it can be found that directional steering CBBP-DBS paradigms are superior to the spherical case in improving parkinsonian dynamical properties including the synchronization of neuronal populations and the reliability of thalamus relaying the information from cortex, which is in a good agreement with the physiological experiments. Furthermore, it can be found that directional steering stimulations can increase the optimal stimulation intensity of desynchronization by more than 1 mA compared to the spherical case. This is consistent with the experimental result with showing that there exists at least one steering direction that can allow increasing the threshold of side effects by 1 mA. In addition, we also simulate the local field potential (LFP) and dominant frequency (DF) of the STN neuronal population induced by the activation of 32 different contacts with optimal stimulation intensity and immediately after the stimulation, respectively. These can reveal regional differences in pathological activity within STN nucleus. It is shown that in line with the experimental results directional steering stimulation can induce the low-amplitude LFP which implies the occurrence of desynchronizing regime, as well as the distribution of DF can locate at the 13-40 Hz of beta frequency range. Hopefully, the obtained results can provide theoretical evidences in exploring pathophysiologic activity of brain.
Experimental characterization of wingtip vortices in the near field using smoke flow visualizations
NASA Astrophysics Data System (ADS)
Serrano-Aguilera, J. J.; García-Ortiz, J. Hermenegildo; Gallardo-Claros, A.; Parras, L.; del Pino, C.
2016-08-01
In order to predict the axial development of the wingtip vortices strength, an accurate theoretical model is required. Several experimental techniques have been used to that end, e.g. PIV or hot-wire anemometry, but they imply a significant cost and effort. For this reason, we have performed experiments using the smoke-wire technique to visualize smoke streaks in six planes perpendicular to the main stream flow direction. Using this visualization technique, we obtained quantitative information regarding the vortex velocity field by means of Batchelor's model for two chord-based Reynolds numbers, Re_c=3.33× 10^4 and 10^5. Therefore, this theoretical vortex model has been introduced in the integration of ordinary differential equations which describe the temporal evolution of streak lines as function of two parameters: the swirl number, S, and the virtual axial origin, overline{z_0}. We have applied two different procedures to minimize the distance between experimental and theoretical flow patterns: individual curve fitting at six different control planes in the streamwise direction and the global curve fitting which corresponds to all the control planes simultaneously. Both sets of results have been compared with those provided by del Pino et al. (Phys Fluids 23(013):602, 2011b. doi: 10.1063/1.3537791), finding good agreement. Finally, we have observed a weak influence of the Reynolds number on the values S and overline{z_0} at low-to-moderate Re_c. This experimental technique is proposed as a low cost alternative to characterize wingtip vortices based on flow visualizations.
The three-dimensional genome organization of Drosophila melanogaster through data integration.
Li, Qingjiao; Tjong, Harianto; Li, Xiao; Gong, Ke; Zhou, Xianghong Jasmine; Chiolo, Irene; Alber, Frank
2017-07-31
Genome structures are dynamic and non-randomly organized in the nucleus of higher eukaryotes. To maximize the accuracy and coverage of three-dimensional genome structural models, it is important to integrate all available sources of experimental information about a genome's organization. It remains a major challenge to integrate such data from various complementary experimental methods. Here, we present an approach for data integration to determine a population of complete three-dimensional genome structures that are statistically consistent with data from both genome-wide chromosome conformation capture (Hi-C) and lamina-DamID experiments. Our structures resolve the genome at the resolution of topological domains, and reproduce simultaneously both sets of experimental data. Importantly, this data deconvolution framework allows for structural heterogeneity between cells, and hence accounts for the expected plasticity of genome structures. As a case study we choose Drosophila melanogaster embryonic cells, for which both data types are available. Our three-dimensional genome structures have strong predictive power for structural features not directly visible in the initial data sets, and reproduce experimental hallmarks of the D. melanogaster genome organization from independent and our own imaging experiments. Also they reveal a number of new insights about genome organization and its functional relevance, including the preferred locations of heterochromatic satellites of different chromosomes, and observations about homologous pairing that cannot be directly observed in the original Hi-C or lamina-DamID data. Our approach allows systematic integration of Hi-C and lamina-DamID data for complete three-dimensional genome structure calculation, while also explicitly considering genome structural variability.
Arzumanov, Sergei S; Gabrienko, Anton A; Freude, Dieter; Stepanov, Alexander G
2009-04-01
Ethane conversion into aromatic hydrocarbons over Zn-modified zeolite BEA has been analyzed by high-temperature MAS NMR spectroscopy. Information about intermediates (Zn-ethyl species) and reaction products (mainly toluene and methane), which were formed under the conditions of a batch reactor, was obtained by (13)C MAS NMR. Kinetics of the reaction, which was monitored by (1)H MAS NMR in situ at the temperature of 573K, provided information about the reaction mechanism. Simulation of the experimental kinetics within the frames of the possible kinetic schemes of the reaction demonstrates that a large amount of methane evolved under ethane aromatization arises from the stage of direct ethane hydrogenolysis.
A Hierarchical multi-input and output Bi-GRU Model for Sentiment Analysis on Customer Reviews
NASA Astrophysics Data System (ADS)
Zhang, Liujie; Zhou, Yanquan; Duan, Xiuyu; Chen, Ruiqi
2018-03-01
Multi-label sentiment classification on customer reviews is a practical challenging task in Natural Language Processing. In this paper, we propose a hierarchical multi-input and output model based bi-directional recurrent neural network, which both considers the semantic and lexical information of emotional expression. Our model applies two independent Bi-GRU layer to generate part of speech and sentence representation. Then the lexical information is considered via attention over output of softmax activation on part of speech representation. In addition, we combine probability of auxiliary labels as feature with hidden layer to capturing crucial correlation between output labels. The experimental result shows that our model is computationally efficient and achieves breakthrough improvements on customer reviews dataset.
Interference and partial which-way information: A quantitative test of duality in two-atom resonance
NASA Astrophysics Data System (ADS)
Abranyos, Y.; Jakob, M.; Bergou, J.
2000-01-01
We propose for the experimental verification of an inequality concerning wave-particle duality by Englert [Phys. Rev. Lett. 77, 2154 (1996)] relating (or setting) an upper limit on distinguishability and visibility in a two-way interferometer. The inequality, quantifies the concept of wave-particle duality. The considered two-way interferometer is a Young's double-slit experiment involving two four-level atoms and is a slightly modified version of that of the recent experiment by Eichmann et al. [Phys. Rev. Lett. 70, 2359 (1993)]. The fringe visibility depends on the detected polarization direction of the scattered light and a read out of the internal state of one of the two atoms provides a partial which-way information.
Predictive searching algorithm for Fourier ptychography
NASA Astrophysics Data System (ADS)
Li, Shunkai; Wang, Yifan; Wu, Weichen; Liang, Yanmei
2017-12-01
By capturing a set of low-resolution images under different illumination angles and stitching them together in the Fourier domain, Fourier ptychography (FP) is capable of providing high-resolution image with large field of view. Despite its validity, long acquisition time limits its real-time application. We proposed an incomplete sampling scheme in this paper, termed the predictive searching algorithm to shorten the acquisition and recovery time. Informative sub-regions of the sample’s spectrum are searched and the corresponding images of the most informative directions are captured for spectrum expansion. Its effectiveness is validated by both simulated and experimental results, whose data requirement is reduced by ˜64% to ˜90% without sacrificing image reconstruction quality compared with the conventional FP method.
The Adaptation of the Moth Pheromone Receptor Neuron to its Natural Stimulus
NASA Astrophysics Data System (ADS)
Kostal, Lubomir; Lansky, Petr; Rospars, Jean-Pierre
2008-07-01
We analyze the first phase of information transduction in the model of the olfactory receptor neuron of the male moth Antheraea polyphemus. We predict such stimulus characteristics that enable the system to perform optimally, i.e., to transfer as much information as possible. Few a priori constraints on the nature of stimulus and stimulus-to-signal transduction are assumed. The results are given in terms of stimulus distributions and intermittency factors which makes direct comparison with experimental data possible. Optimal stimulus is approximatelly described by exponential or log-normal probability density function which is in agreement with experiment and the predicted intermittency factors fall within the lowest range of observed values. The results are discussed with respect to electroantennogram measurements and behavioral observations.
NASA Technical Reports Server (NTRS)
Mackay, N. G.; Green, S. F.; Gardner, D. J.; Mcdonnell, J. A. M.
1995-01-01
Interpretation of the wealth of impact data available from the Long Duration Exposure Facility, in terms of the absolute and relative populations of space debris and natural micrometeoroids, requires three dimensional models of the distribution of impact directions, velocities and masses of such particles, as well as understanding of the impact processes. Although the stabilized orbit of LDEF provides limited directional information, it is possible to determine more accurate impact directions from detailed crater morphology. The applicability of this technique has already been demonstrated but the relationship between crater shape and impactor direction and velocity has not been derived in detail. We present the results of impact experiments and simulations: (1) impacts at micron dimensions using the Unit's 2MV Van de Graaff accelerator; (2) impacts at mm dimensions using a Light Gas Gun; and (3) computer simulations using AUTODYN-3D from which an empirical relationship between crater shape and impactor velocity, direction and particle properties we aim to derive. Such a relationship can be applied to any surface exposed to space debris or micrometeoroid particles for which a detailed pointing history is available.
A Fundamental Study of Smoldering with Emphasis on Experimental Design for Zero-G
NASA Technical Reports Server (NTRS)
Fernandez-Pello, Carlos; Pagni, Patrick J.
1995-01-01
A research program to study smoldering combustion with emphasis on the design of an experiment to be conducted in the space shuttle was conducted at the Department of Mechanical Engineering, University of California, Berkeley. The motivation of the research is the interest in smoldering both as a fundamental combustion problem and as a serious fire risk. Research conducted included theoretical and experimental studies that have brought considerable new information about smolder combustion, the effect that buoyancy has on the process, and specific information for the design of a space experiment. Experiments were conducted at normal gravity, in opposed and forward mode of propagation and in the upward and downward direction to determine the effect and range of influence of gravity on smolder. Experiments were also conducted in microgravity, in a drop tower and in parabolic aircraft flights, where the brief microgravity periods were used to analyze transient aspects of the problem. Significant progress was made on the study of one-dimensional smolder, particularly in the opposed-flow configuration. These studies provided enough information to design a small-scale space-based experiment that was successfully conducted in the Spacelab Glovebox in the June 1992 USML-1/STS-50 mission of the Space Shuttle Columbia.
Urban, Martin; Cuzick, Alayne; Rutherford, Kim; Irvine, Alistair; Pedro, Helder; Pant, Rashmi; Sadanadan, Vidyendra; Khamari, Lokanath; Billal, Santoshkumar; Mohanty, Sagar; Hammond-Kosack, Kim E
2017-01-04
The pathogen-host interactions database (PHI-base) is available at www.phi-base.org PHI-base contains expertly curated molecular and biological information on genes proven to affect the outcome of pathogen-host interactions reported in peer reviewed research articles. In addition, literature that indicates specific gene alterations that did not affect the disease interaction phenotype are curated to provide complete datasets for comparative purposes. Viruses are not included. Here we describe a revised PHI-base Version 4 data platform with improved search, filtering and extended data display functions. A PHIB-BLAST search function is provided and a link to PHI-Canto, a tool for authors to directly curate their own published data into PHI-base. The new release of PHI-base Version 4.2 (October 2016) has an increased data content containing information from 2219 manually curated references. The data provide information on 4460 genes from 264 pathogens tested on 176 hosts in 8046 interactions. Prokaryotic and eukaryotic pathogens are represented in almost equal numbers. Host species belong ∼70% to plants and 30% to other species of medical and/or environmental importance. Additional data types included into PHI-base 4 are the direct targets of pathogen effector proteins in experimental and natural host organisms. The curation problems encountered and the future directions of the PHI-base project are briefly discussed. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Qin, Xin; Ren, Run; Zhang, Zhi-Xue; Johnson, Russell E
2015-05-01
Employees routinely make judgments of 3 kinds of justice (i.e., distributive, procedural, and interactional), yet they may lack clear information to do so. This research examines how justice judgments are formed when clear information about certain types of justice is unavailable or ambiguous. Drawing from fairness heuristic theory, as well as more general theories of cognitive heuristics, we predict that when information for 1 type of justice is unclear (i.e., low in justice clarity), people infer its fairness based on other types of justice with clear information (i.e., high in justice clarity). Results across 3 studies employing different designs (correlational vs. experimental), samples (employees vs. students), and measures (proxy vs. direct) provided support for the proposed substitutability effects, especially when inferences were based on clear interactional justice information. Moreover, we found that substitutability effects were more likely to occur when employees had high (vs. low) need for cognitive closure. We conclude by discussing the theoretical contributions and practical implications of our findings. (c) 2015 APA, all rights reserved).
Internal wave emission from baroclinic jets: experimental results
NASA Astrophysics Data System (ADS)
Borcia, Ion D.; Rodda, Costanza; Harlander, Uwe
2016-04-01
Large-scale balanced flows can spontaneously radiate meso-scale inertia-gravity waves (IGWs) and are thus in fact unbalanced. While flow-dependent parameterizations for the radiation of IGWs from orographic and convective sources do exist, the situation is less developed for spontaneously emitted IGWs. Observations identify increased IGW activity in the vicinity of jet exit regions. A direct interpretation of those based on geostrophic adjustment might be tempting. However, directly applying this concept to the parameterization of spontaneous imbalance is difficult since the dynamics itself is continuously re-establishing an unbalanced flow which then sheds imbalances by GW radiation. Examining spontaneous IGW emission in the atmosphere and validating parameterization schemes confronts the scientist with particular challenges. Due to its extreme complexity, GW emission will always be embedded in the interaction of a multitude of interdependent processes, many of which are hardly detectable from analysis or campaign data. The benefits of repeated and more detailed measurements, while representing the only source of information about the real atmosphere, are limited by the non-repeatability of an atmospheric situation. The same event never occurs twice. This argues for complementary laboratory experiments, which can provide a more focused dialogue between experiment and theory. Indeed, life cycles are also examined in rotating-annulus laboratory experiments. Thus, these experiments might form a useful empirical benchmark for theoretical and modeling work that is also independent of any sort of subgrid model. In addition, the more direct correspondence between experimental and model data and the data reproducibility makes lab experiments a powerful testbed for parameterizations. Here we show first results from a small rotating annulus experiments and we will further present our new experimental facility to study wave emission from jets and fronts.
Development of image processing techniques for applications in flow visualization and analysis
NASA Technical Reports Server (NTRS)
Disimile, Peter J.; Shoe, Bridget; Toy, Norman; Savory, Eric; Tahouri, Bahman
1991-01-01
A comparison between two flow visualization studies of an axi-symmetric circular jet issuing into still fluid, using two different experimental techniques, is described. In the first case laser induced fluorescence is used to visualize the flow structure, whilst smoke is utilized in the second. Quantitative information was obtained from these visualized flow regimes using two different digital imaging systems. Results are presented of the rate at which the jet expands in the downstream direction and these compare favorably with the more established data.
Measurements of VLF polarization and wave normal direction on OGO-F
NASA Technical Reports Server (NTRS)
Helliwell, R. A.
1973-01-01
A major achievement of the F-24 experiment on OGO 6 was a verification of the theory of the polarization of proton whistlers. As predicted, the electron whistler was found to be right-hand polarized and the proton whistler left hand polarized. The transition from right- to left-hand polarization was found to occur very rapidly. Thus it appears that the experimental technique may allow great accuracy in the measurement of the cross-over frequency, a frequency that provides information on the ionic composition of the ionosphere.
Monoclonal antibodies directed against surface molecules of multicell spheroids
NASA Technical Reports Server (NTRS)
Martinez, Andrew O.
1993-01-01
The objective of this project is to generate a library of monoclonal antibodies (MAb's) to surface molecules involved in the cell-cell interactions of mammalian cells grown as multicell spheroids (MCS). MCS are highly organized 3-dimensional multicellular structures which exhibit many characteristics in vivo tissues not found in conventional monolayer or suspension culture. They also provide a functional assay for surface adhesion molecules. In brief, MCS combine the relevance of organized tissues with the accuracy of in vitro methodology. Further, one can manipulate these MCS experimentally to discern important information about their biology.
The Trojan Horse Method in nuclear astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spitaleri, C., E-mail: spitaleri@lns.infn.it; Mukhamedzhanov, A. M.; Blokhintsev, L. D.
2011-12-15
The study of energy production and nucleosynthesis in stars requires an increasingly precise knowledge of the nuclear reaction rates at the energies of interest. To overcome the experimental difficulties arising from the small cross sections at those energies and from the presence of the electron screening, the Trojan Horse Method has been introduced. The method provides a valid alternative path to measure unscreened low-energy cross sections of reactions between charged particles, and to retrieve information on the electron screening potential when ultra-low energy direct measurements are available.
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.
1982-01-01
It has been customary to assume that ions flow nearly equally in all directions from the ion production region within an electron-bombardment discharge chamber. In general, the electron current through a magnetic field can alter the electron density, and hence the ion density, in such a way that ions tend to be directed away from the region bounded by the magnetic field. When this mechanism is understood, it becomes evident that many past discharge chamber designs have operated with a preferentially directed flow of ions. Thermal losses were calculated for an oxide-free hollow cathode. At low electron emissions, the total of the radiation and conduction losses agreed with the total discharge power. At higher emissions, though, the plasma collisions external to the cathode constituted an increasingly greater fraction of the discharge power. Experimental performance of a Hall-current thruster was adversely affected by nonuniformities in the magnetic field, produced by the cathode heating current. The technology of closed-drift thrusters was reviewed. The experimental electron diffusion in the acceleration channel was found to be within about a factor of 3 of the Bohm value for the better thruster designs at most operating conditions. Thruster efficiencies of about 0.5 appear practical for the 1000 to 2000 s range of specific impulse. Lifetime information is limited, but values of several thousands of hours should be possible with anode layer thrusters operated or = to 2000 s.
A micromotor based on polymer single crystals and nanoparticles: toward functional versatility
NASA Astrophysics Data System (ADS)
Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y.
2014-07-01
We report a multifunctional micromotor fabricated by the self-assembly technique using multifunctional materials, i.e. polymer single crystals and nanoparticles, as basic building blocks. Not only can this micromotor achieve autonomous and directed movement, it also possesses unprecedented functions, including enzymatic degradation-induced micromotor disassembly, sustained release and molecular detection.We report a multifunctional micromotor fabricated by the self-assembly technique using multifunctional materials, i.e. polymer single crystals and nanoparticles, as basic building blocks. Not only can this micromotor achieve autonomous and directed movement, it also possesses unprecedented functions, including enzymatic degradation-induced micromotor disassembly, sustained release and molecular detection. Electronic supplementary information (ESI) available: Experimental section, Fig. S1-S8 and Video S1-S4. See DOI: 10.1039/c4nr02593h
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Sawhney, Kawal
2016-03-21
X-ray dark-field contrast tomography can provide important supplementary information inside a sample to the conventional absorption tomography. Recently, the X-ray speckle based technique has been proposed to provide qualitative two-dimensional dark-field imaging with a simple experimental arrangement. In this letter, we deduce a relationship between the second moment of scattering angle distribution and cross-correlation degradation of speckle and establish a quantitative basis of X-ray dark-field tomography using single directional speckle scanning technique. In addition, the phase contrast images can be simultaneously retrieved permitting tomographic reconstruction, which yields enhanced contrast in weakly absorbing materials. Such complementary tomography technique can allow systematicmore » investigation of complex samples containing both soft and hard materials.« less
NASA Astrophysics Data System (ADS)
Yu, Fei; Hui, Mei; Zhao, Yue-jin
2009-08-01
The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.
Experimental Studies of the Effect of Intent Information on Cockpit Traffic Displays
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Hansman, R. John
1997-01-01
Intent information provides knowledge of another aircraft's current and future trajectory states. Prototype traffic displays were designed for four different levels of intent: Position, Rate, Commanded State, and FMS (Flight Management System)-Path. The current TCAS (traffic collision avoidance systems) Display, which shows altitude rate in addition to current position and altitude, was used as a baseline and represents the lowest level of intent. The Rate, Commanded State, and FMS-Path Displays show increasing levels of intent information using TCAS-like symbology in addition to incorporating a conflict probe and profile view display. An initial experiment was run on the MIT (Massachusetts Institute of Technology) Part Task Flight Simulator in which eight airline pilots flew five traffic scenarios with each of the four displays. Results show that pilots had fewer separation violations and maneuvered earlier with the three intent displays. Separation violations were reduced when pilots maneuvered earlier. A second experiment was run to compare performance between displaying intent information directly and incorporating it into a conflict probe. A different set of eight airline pilots flew four traffic scenarios with the TCAS and Commanded State Displays with and without the conflict probe. Conflict probes with two minute and long range look-ahead times were tested. Displaying conflict bands or showing intent information directly both led to fewer separation violations and earlier avoidance maneuvers than the base TCAS Display. Performance was similar between the two minute and long range look-ahead conflict probes. Pilots preferred all intent displays over the TCAS Display.
Environet: An interactive space-environment information resource
NASA Astrophysics Data System (ADS)
Vampola, A. L.; Hall, William N.; Lauriente, Michael
1989-05-01
EnviroNET is an interactive menu-driven system set up as an information resource for experimenters, program managers, and design and test engineers who are involved in space missions. Its basic use is as a fundamental single-source of data for the environment encountered by Shuttle and Space Station payloads, but is also has wider applicability in that it includes information on environments encountered by other satellites in both low altitude and high altitude (including geosynchronous) orbits. It incorporates both a text-retrieval mode and an interactive modeling code mode. The system is maintained on the ENVNET and MicroVAX computer at NASA/Goddard. It's services are available at no cost to any user who has access to a terminal and a dial-up port. It is a tail-node on SPAN and so it is accessible either directly or through BITNET, ARPANET, and GTE/TELENET via NPSS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rougieux, F. E.; Macdonald, D.
2014-03-24
The state of bistable defects in crystalline silicon such as iron-boron pairs or the boron-oxygen defect can be changed at room temperature. In this letter, we experimentally demonstrate that the chemical state of a group of defects can be changed to represent a bit of information. The state can then be read without direct contact via the intensity of the emitted band-band photoluminescence signal of the group of defects, via their impact on the carrier lifetime. The theoretical limit of the information density is then computed. The information density is shown to be low for two-dimensional storage but significant formore » three-dimensional data storage. Finally, we compute the maximum storage capacity as a function of the lower limit of the photoluminescence detector sensitivity.« less
Munafò, Marcus R; Roberts, Nicole; Bauld, Linda; Leonards, Ute
2011-08-01
To assess the impact of plain packaging on visual attention towards health warning information on cigarette packs. Mixed-model experimental design, comprising smoking status as a between-subjects factor, and package type (branded versus plain) as a within-subjects factor. University laboratory. Convenience sample of young adults, comprising non-smokers (n = 15), weekly smokers (n = 14) and daily smokers (n = 14). Number of saccades (eye movements) towards health warnings on cigarette packs, to directly index visual attention. Analysis of variance indicated more eye movements (i.e. greater visual attention) towards health warnings compared to brand information on plain packs versus branded packs. This effect was observed among non-smokers and weekly smokers, but not daily smokers. Among non-smokers and non-daily cigarette smokers, plain packaging appears to increase visual attention towards health warning information and away from brand information. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.
Herman, Ciara; Healy, Olive; Lydon, Sinéad
2018-04-01
Experimental Functional analysis (EFA) is considered the "gold standard" of behavioural assessment and its use is predictive of treatment success. However, EFA has a number of limitations including its lengthy nature, the high level of expertise required, and the reinforcement of challenging behaviour. This study aimed to further validate a novel interview-informed synthesised contingency analysis (IISCA). An open-ended interview and brief direct observation informed an IISCA for a young boy with autism who engaged in challenging behaviour. Resulting data supported the hypothesis that the target behaviour was multiply controlled by escape from demands and access to tangible items. An intervention comprised of most-to-least prompting, escape extinction, differential reinforcement and a high-probability instruction sequence was evaluated using a reversal design. This intervention reduced challenging behaviour to low levels and resulted in increased compliance. Findings support the status of the IISCA as a valid, practical, and effective process for designing function-based interventions.
NASA Astrophysics Data System (ADS)
Li, Xiangyu; Huang, Zhanhua; Zhu, Meng; He, Jin; Zhang, Hao
2014-12-01
Hilbert transform (HT) is widely used in temporal speckle pattern interferometry, but errors from low modulations might propagate and corrupt the calculated phase. A spatio-temporal method for phase retrieval using temporal HT and spatial phase unwrapping is presented. In time domain, the wrapped phase difference between the initial and current states is directly determined by using HT. To avoid the influence of the low modulation intensity, the phase information between the two states is ignored. As a result, the phase unwrapping is shifted from time domain to space domain. A phase unwrapping algorithm based on discrete cosine transform is adopted by taking advantage of the information in adjacent pixels. An experiment is carried out with a Michelson-type interferometer to study the out-of-plane deformation field. High quality whole-field phase distribution maps with different fringe densities are obtained. Under the experimental conditions, the maximum number of fringes resolvable in a 416×416 frame is 30, which indicates a 15λ deformation along the direction of loading.
Invasive Non-typhoidal Salmonella Disease – epidemiology, pathogenesis and diagnosis
Gordon, Melita A
2012-01-01
Purpose of review To highlight and discuss important publications over the past 12 months providing new insights on invasive non-typhoidal Salmonella disease (iNTS). Recent findings There have been informative new estimates of the burden of iNTS in Asia and in high-resource low-incidence settings. Important information has emerged in the last year about the relationships between HIV, malaria, iNTS and typhoid fever in adults and children in Africa. HIV causes susceptibility to iNTS disease, but has been shown to be protective against typhoid fever. Clinical guidelines for presumptive diagnosis frequently fail to identify iNTS disease in Africa, and there remains a need for improved diagnostic tools. Experimental studies in humans have helped us to understand the intracellular pathogenesis of iNTS and to direct the search for appropriate protein vaccine targets. Summary The most important remaining gap in our knowledge is probably an understanding of how NTS are transmitted, and the nature of the relationship between diarrhoeal disease, carriage and invasive disease in Africa, so that diagnostic and prevention tools can be appropriately directed. PMID:21844803
NASA Astrophysics Data System (ADS)
Tian, Biao; Liu, Yang; Xu, Shiyou; Chen, Zengping
2014-01-01
Interferometric inverse synthetic aperture radar (InISAR) imaging provides complementary information to monostatic inverse synthetic aperture radar (ISAR) imaging. This paper proposes a new InISAR imaging system for space targets based on wideband direct sampling using two antennas. The system is easy to realize in engineering since the motion trajectory of space targets can be known in advance, which is simpler than that of three receivers. In the preprocessing step, high speed movement compensation is carried out by designing an adaptive matched filter containing speed that is obtained from the narrow band information. Then, the coherent processing and keystone transform for ISAR imaging are adopted to reserve the phase history of each antenna. Through appropriate collocation of the system, image registration and phase unwrapping can be avoided. Considering the situation not to be satisfied, the influence of baseline variance is analyzed and compensation method is adopted. The corresponding size can be achieved by interferometric processing of the two complex ISAR images. Experimental results prove the validity of the analysis and the three-dimensional imaging algorithm.
MyLabStocks: a web-application to manage molecular biology materials.
Chuffart, Florent; Yvert, Gaël
2014-05-01
Laboratory stocks are the hardware of research. They must be stored and managed with mimimum loss of material and information. Plasmids, oligonucleotides and strains are regularly exchanged between collaborators within and between laboratories. Managing and sharing information about every item is crucial for retrieval of reagents, for planning experiments and for reproducing past experimental results. We have developed a web-based application to manage stocks commonly used in a molecular biology laboratory. Its functionalities include user-defined privileges, visualization of plasmid maps directly from their sequence and the capacity to search items from fields of annotation or directly from a query sequence using BLAST. It is designed to handle records of plasmids, oligonucleotides, yeast strains, antibodies, pipettes and notebooks. Based on PHP/MySQL, it can easily be extended to handle other types of stocks and it can be installed on any server architecture. MyLabStocks is freely available from: https://forge.cbp.ens-lyon.fr/redmine/projects/mylabstocks under an open source licence. © 2014 Laboratoire de Biologie Moleculaire de la Cellule CNRS. Yeast published by John Wiley & Sons, Ltd.
PILA: Sub-Meter Localization Using CSI from Commodity Wi-Fi Devices
Tian, Zengshan; Li, Ze; Zhou, Mu; Jin, Yue; Wu, Zipeng
2016-01-01
The aim of this paper is to present a new indoor localization approach by employing the Angle-of-arrival (AOA) and Received Signal Strength (RSS) measurements in Wi-Fi network. To achieve this goal, we first collect the Channel State Information (CSI) by using the commodity Wi-Fi devices with our designed three antennas to estimate the AOA of Wi-Fi signal. Second, we propose a direct path identification algorithm to obtain the direct signal path for the sake of reducing the interference of multipath effect on the AOA estimation. Third, we construct a new objective function to solve the localization problem by integrating the AOA and RSS information. Although the localization problem is non-convex, we use the Second-order Cone Programming (SOCP) relaxation approach to transform it into a convex problem. Finally, the effectiveness of our approach is verified based on the prototype implementation by using the commodity Wi-Fi devices. The experimental results show that our approach can achieve the median error 0.7 m in the actual indoor environment. PMID:27735879
PILA: Sub-Meter Localization Using CSI from Commodity Wi-Fi Devices.
Tian, Zengshan; Li, Ze; Zhou, Mu; Jin, Yue; Wu, Zipeng
2016-10-10
The aim of this paper is to present a new indoor localization approach by employing the Angle-of-arrival (AOA) and Received Signal Strength (RSS) measurements in Wi-Fi network. To achieve this goal, we first collect the Channel State Information (CSI) by using the commodity Wi-Fi devices with our designed three antennas to estimate the AOA of Wi-Fi signal. Second, we propose a direct path identification algorithm to obtain the direct signal path for the sake of reducing the interference of multipath effect on the AOA estimation. Third, we construct a new objective function to solve the localization problem by integrating the AOA and RSS information. Although the localization problem is non-convex, we use the Second-order Cone Programming (SOCP) relaxation approach to transform it into a convex problem. Finally, the effectiveness of our approach is verified based on the prototype implementation by using the commodity Wi-Fi devices. The experimental results show that our approach can achieve the median error 0.7 m in the actual indoor environment.
Signal processing for molecular and cellular biological physics: an emerging field.
Little, Max A; Jones, Nick S
2013-02-13
Recent advances in our ability to watch the molecular and cellular processes of life in action--such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer--raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied.
Observable measure of quantum coherence in finite dimensional systems.
Girolami, Davide
2014-10-24
Quantum coherence is the key resource for quantum technology, with applications in quantum optics, information processing, metrology, and cryptography. Yet, there is no universally efficient method for quantifying coherence either in theoretical or in experimental practice. I introduce a framework for measuring quantum coherence in finite dimensional systems. I define a theoretical measure which satisfies the reliability criteria established in the context of quantum resource theories. Then, I present an experimental scheme implementable with current technology which evaluates the quantum coherence of an unknown state of a d-dimensional system by performing two programmable measurements on an ancillary qubit, in place of the O(d2) direct measurements required by full state reconstruction. The result yields a benchmark for monitoring quantum effects in complex systems, e.g., certifying nonclassicality in quantum protocols and probing the quantum behavior of biological complexes.
NASA Technical Reports Server (NTRS)
Burge, G. W.; Blackmon, J. B.
1973-01-01
Areas of cryogenic fuel systems were identified where critical experimental information was needed either to define a design criteria or to establish the feasibility of a design concept or a critical aspect of a particular design. Such data requirements fell into three broad categories: (1) basic surface tension screen characteristics; (2) screen acquisition device fabrication problems; and (3) screen surface tension device operational failure modes. To explore these problems and to establish design criteria where possible, extensive laboratory or bench test scale experiments were conducted. In general, these proved to be quite successful and, in many instances, the test results were directly used in the system design analyses and development. In some cases, particularly those relating to operational-type problems, areas requiring future research were identified, especially screen heat transfer and vibrational effects.
Endpoint Model of Exclusive Processes
NASA Astrophysics Data System (ADS)
Dagaonkar, Sumeet; Jain, Pankaj; Ralston, John P.
2018-07-01
The endpoint model explains the scaling laws observed in exclusive hadronic reactions at large momentum transfer in all experimentally important regimes. The model, originally conceived by Feynman and others, assumes a single valence quark carries most of the hadron momentum. The quark wave function is directly related to the momentum transfer dependence of the reaction. After extracting the momentum dependence of the quark wave function from one process, it explains all the others. Endpoint quark-counting rules relate the number of quarks in a hadron to the power-law. A universal linear endpoint behavior explains the proton electromagnetic form factors F1 and F2, proton-proton scattering at fixed-angle, the t-dependence of proton-proton scattering at large s>> t, and Compton scattering at fixed t. The model appears to be the only comprehensive mechanism consistent with all experimental information.
Signal processing for molecular and cellular biological physics: an emerging field
Little, Max A.; Jones, Nick S.
2013-01-01
Recent advances in our ability to watch the molecular and cellular processes of life in action—such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer—raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied. PMID:23277603
Oncologists' non-verbal behavior and analog patients' recall of information.
Hillen, Marij A; de Haes, Hanneke C J M; van Tienhoven, Geertjan; van Laarhoven, Hanneke W M; van Weert, Julia C M; Vermeulen, Daniëlle M; Smets, Ellen M A
2016-06-01
Background Information in oncological consultations is often excessive. Those patients who better recall information are more satisfied, less anxious and more adherent. Optimal recall may be enhanced by the oncologist's non-verbal communication. We tested the influence of three non-verbal behaviors, i.e. eye contact, body posture and smiling, on patients' recall of information and perceived friendliness of the oncologist. Moreover, the influence of patient characteristics on recall was examined, both directly or as a moderator of non-verbal communication. Material and methods Non-verbal communication of an oncologist was experimentally varied using video vignettes. In total 194 breast cancer patients/survivors and healthy women participated as 'analog patients', viewing a randomly selected video version while imagining themselves in the role of the patient. Directly after viewing, they evaluated the oncologist. From 24 to 48 hours later, participants' passive recall, i.e. recognition, and free recall of information provided by the oncologist were assessed. Results Participants' recognition was higher if the oncologist maintained more consistent eye contact (β = 0.17). More eye contact and smiling led to a perception of the oncologist as more friendly. Body posture and smiling did not significantly influence recall. Older age predicted significantly worse recognition (β = -0.28) and free recall (β = -0.34) of information. Conclusion Oncologists may be able to facilitate their patients' recall functioning through consistent eye contact. This seems particularly relevant for older patients, whose recall is significantly worse. These findings can be used in training, focused on how to maintain eye contact while managing computer tasks.
Tucker, George; Loh, Po-Ru; Berger, Bonnie
2013-10-04
Comprehensive protein-protein interaction (PPI) maps are a powerful resource for uncovering the molecular basis of genetic interactions and providing mechanistic insights. Over the past decade, high-throughput experimental techniques have been developed to generate PPI maps at proteome scale, first using yeast two-hybrid approaches and more recently via affinity purification combined with mass spectrometry (AP-MS). Unfortunately, data from both protocols are prone to both high false positive and false negative rates. To address these issues, many methods have been developed to post-process raw PPI data. However, with few exceptions, these methods only analyze binary experimental data (in which each potential interaction tested is deemed either observed or unobserved), neglecting quantitative information available from AP-MS such as spectral counts. We propose a novel method for incorporating quantitative information from AP-MS data into existing PPI inference methods that analyze binary interaction data. Our approach introduces a probabilistic framework that models the statistical noise inherent in observations of co-purifications. Using a sampling-based approach, we model the uncertainty of interactions with low spectral counts by generating an ensemble of possible alternative experimental outcomes. We then apply the existing method of choice to each alternative outcome and aggregate results over the ensemble. We validate our approach on three recent AP-MS data sets and demonstrate performance comparable to or better than state-of-the-art methods. Additionally, we provide an in-depth discussion comparing the theoretical bases of existing approaches and identify common aspects that may be key to their performance. Our sampling framework extends the existing body of work on PPI analysis using binary interaction data to apply to the richer quantitative data now commonly available through AP-MS assays. This framework is quite general, and many enhancements are likely possible. Fruitful future directions may include investigating more sophisticated schemes for converting spectral counts to probabilities and applying the framework to direct protein complex prediction methods.
Schanda, Paul; Ernst, Matthias
2016-01-01
Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution. PMID:27110043
Barbour, Randall L; Graber, Harry L; Xu, Yong; Pei, Yaling; Schmitz, Christoph H; Pfeil, Douglas S; Tyagi, Anandita; Andronica, Randy; Lee, Daniel C; Barbour, San-Lian S; Nichols, J David; Pflieger, Mark E
2012-03-01
An important determinant of the value of quantitative neuroimaging studies is the reliability of the derived information, which is a function of the data collection conditions. Near infrared spectroscopy (NIRS) and electroencelphalography are independent sensing domains that are well suited to explore principal elements of the brain's response to neuroactivation, and whose integration supports development of compact, even wearable, systems suitable for use in open environments. In an effort to maximize the translatability and utility of such resources, we have established an experimental laboratory testbed that supports measures and analysis of simulated macroscopic bioelectric and hemodynamic responses of the brain. Principal elements of the testbed include 1) a programmable anthropomorphic head phantom containing a multisignal source array embedded within a matrix that approximates the background optical and bioelectric properties of the brain, 2) integrated translatable headgear that support multimodal studies, and 3) an integrated data analysis environment that supports anatomically based mapping of experiment-derived measures that are directly and not directly observable. Here, we present a description of system components and fabrication, an overview of the analysis environment, and findings from a representative study that document the ability to experimentally validate effective connectivity models based on NIRS tomography.
NASA Astrophysics Data System (ADS)
Kang, Ming; Zhu, Weiren; Rukhlenko, Ivan D.
2017-12-01
The exceptional point (EP), which is one of the most important branch-type singularities exclusive to non-Hermitian systems, has been observed recently in various synthetic materials, giving rise to counterintuitive phenomena due to the nontrivial topology of the EP. Here, we present a direct experimental observation of the topological structure of the EPs via the angle-resolved transmission measurement of a hybridized metamaterial. Both eigenvalues and eigenvectors show branch-point singularities in the investigated biparametric space of frequency and incident angle. Importantly, the angle-resolved transmission coefficients provide all the information about the eigenvalues as well as the corresponding eigenvectors in the biparametric space, revealing the nontrivial topological structure of the EP, such as mode switching and the topological phase for a parameter loop encircling the EP. It is shown that the appearance of the EP in the scattering matrix is related directly to the perfect unidirectional transmission and the chirality of the EP corresponds to the maximum or minimum value of the asymmetric factor. Our investigation uncovers the capabilities of metamaterials for exploring the physics of EPs and their potential for having extreme optical properties, which provide potential applications in the spectral band ranging from microwaves to visible frequencies.
EBSD characterization of the growth mechanism of SiC synthesized via direct microwave heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jigang, E-mail: wangjigang@seu.edu.cn; Xizang Key Laboratory of Optical Information Processing and Visualization Technology, School of Information Engineering, Xizang Minzu University, Xianyang 712082; Huang, Shan
2016-04-15
Well-crystallized 3C-silicon carbide (SiC) grains/nanowires have been synthesized rapidly and conveniently via direct microwave heating, simply using silicon dioxide powders and artificial graphite as raw materials. The comprehensive characterizations have been employed to investigate the micro-structure of the obtained 3C-SiC products. Results indicated that, different from the classic screw dislocation growth mechanism, the 3C-SiC grains/nanowires synthesized via high-energy vacuum microwave irradiation were achieved through the two-dimension nucleation and laminar growth mechanism. Especially, the electron backscattered diffraction (EBSD) was employed to characterize the crystal planes of the as-grown SiC products. The calculated Euler angles suggested that the fastest-growing crystal planes (211)more » were overlapped gradually. Through the formation of the (421) transformation plane, (211) finally evolved to (220) which existed as the side face of SiC grains. The most stable crystal planes (111) became the regular hexagonal planes in the end, which could be explained by the Bravais rule. The characterization results of EBSD provided important experimental information for the evolution of crystal planes. - Graphical abstract: The formation of 3C-SiC prepared via direct microwave heating follows the mechanism of two-dimension nucleation and laminar growth. - Highlights: • 3C−SiC grains/nanowires were obtained via direct microwave heating. • 3C−SiC followed the mechanism of two-dimension nucleation and laminar growth. • In-situ EBSD analysis provided the experimental evidences of the growth.« less
Collective conflict resolution in groups on the move
NASA Astrophysics Data System (ADS)
Pinkoviezky, Itai; Couzin, Iain D.; Gov, Nir S.
2018-03-01
Collective decision-making regarding direction of travel is observed during natural motion of animal and cellular groups. This phenomenon is exemplified, in the simplest case, by a group that contains two informed subgroups that hold conflicting preferred directions of motion. Under such circumstances, simulations, subsequently supported by experimental data with birds and primates, have demonstrated that the resulting motion is either towards a compromise direction or towards one of the preferred targets (even when the two subgroups are equal in size). However, the nature of this transition is not well understood. We present a theoretical study that combines simulations and a spin model for mobile animal groups, the latter providing an equilibrium representation, and exact solution in the thermodynamic limit. This allows us to identify the nature of this transition at a critical angular difference between the two preferred directions: in both flocking and spin models the transition coincides with the change in the group dynamics from Brownian to persistent collective motion. The groups undergo this transition as the number of uninformed individuals (those in the group that do not exhibit a directional preference) increases, which acts as an inverse of the temperature (noise) of the spin model. When the two informed subgroups are not equal in size, there is a tendency for the group to reach the target preferred by the larger subgroup. We find that the spin model captures effectively the essence of the collective decision-making transition and allows us to reveal a noise-dependent trade-off between the decision-making speed and the ability to achieve majority (democratic) consensus.
Collective conflict resolution in groups on the move.
Pinkoviezky, Itai; Couzin, Iain D; Gov, Nir S
2018-03-01
Collective decision-making regarding direction of travel is observed during natural motion of animal and cellular groups. This phenomenon is exemplified, in the simplest case, by a group that contains two informed subgroups that hold conflicting preferred directions of motion. Under such circumstances, simulations, subsequently supported by experimental data with birds and primates, have demonstrated that the resulting motion is either towards a compromise direction or towards one of the preferred targets (even when the two subgroups are equal in size). However, the nature of this transition is not well understood. We present a theoretical study that combines simulations and a spin model for mobile animal groups, the latter providing an equilibrium representation, and exact solution in the thermodynamic limit. This allows us to identify the nature of this transition at a critical angular difference between the two preferred directions: in both flocking and spin models the transition coincides with the change in the group dynamics from Brownian to persistent collective motion. The groups undergo this transition as the number of uninformed individuals (those in the group that do not exhibit a directional preference) increases, which acts as an inverse of the temperature (noise) of the spin model. When the two informed subgroups are not equal in size, there is a tendency for the group to reach the target preferred by the larger subgroup. We find that the spin model captures effectively the essence of the collective decision-making transition and allows us to reveal a noise-dependent trade-off between the decision-making speed and the ability to achieve majority (democratic) consensus.
NASA Technical Reports Server (NTRS)
Simoneau, Robert J.; Strazisar, Anthony J.; Sockol, Peter M.; Reid, Lonnie; Adamczyk, John J.
1987-01-01
The discipline research in turbomachinery, which is directed toward building the tools needed to understand such a complex flow phenomenon, is based on the fact that flow in turbomachinery is fundamentally unsteady or time dependent. Success in building a reliable inventory of analytic and experimental tools will depend on how the time and time-averages are treated, as well as on who the space and space-averages are treated. The raw tools at disposal (both experimentally and computational) are truly powerful and their numbers are growing at a staggering pace. As a result of this power, a case can be made that a situation exists where information is outstripping understanding. The challenge is to develop a set of computational and experimental tools which genuinely increase understanding of the fluid flow and heat transfer in a turbomachine. Viewgraphs outline a philosophy based on working on a stairstep hierarchy of mathematical and experimental complexity to build a system of tools, which enable one to aggressively design the turbomachinery of the next century. Examples of the types of computational and experimental tools under current development at Lewis, with progress to date, are examined. The examples include work in both the time-resolved and time-averaged domains. Finally, an attempt is made to identify the proper place for Lewis in this continuum of research.
Choi, Du Hyung; Shin, Sangmun; Khoa Viet Truong, Nguyen; Jeong, Seong Hoon
2012-09-01
A robust experimental design method was developed with the well-established response surface methodology and time series modeling to facilitate the formulation development process with magnesium stearate incorporated into hydrophilic matrix tablets. Two directional analyses and a time-oriented model were utilized to optimize the experimental responses. Evaluations of tablet gelation and drug release were conducted with two factors x₁ and x₂: one was a formulation factor (the amount of magnesium stearate) and the other was a processing factor (mixing time), respectively. Moreover, different batch sizes (100 and 500 tablet batches) were also evaluated to investigate an effect of batch size. The selected input control factors were arranged in a mixture simplex lattice design with 13 experimental runs. The obtained optimal settings of magnesium stearate for gelation were 0.46 g, 2.76 min (mixing time) for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The optimal settings for drug release were 0.33 g, 7.99 min for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The exact ratio and mixing time of magnesium stearate could be formulated according to the resulting hydrophilic matrix tablet properties. The newly designed experimental method provided very useful information for characterizing significant factors and hence to obtain optimum formulations allowing for a systematic and reliable experimental design method.
Large surface scintillators as base of impact point detectors and their application in Space Weather
NASA Astrophysics Data System (ADS)
Ayuso, Sindulfo; Medina, José; Gómez-Herrero, Raul; José Blanco, Juan; García-Tejedor, Ignacio; García-Población, Oscar; Díaz-Romeral, Gonzalo
2016-04-01
The use of a pile of two 100 cm x 100 cm x 5 cm BC-400 organic scintillators is proposed as ground-based cosmic ray detector able to provide directional information on the incident muons. The challenge is to get in real time the muon impact point on the scintillator and its arrival direction using as few Photomultiplier Tubes (PMTs) as possible. The instrument is based on the dependence of attenuation of light with the traversed distance in each scintillator. For the time being, four photomultiplier tubes gather the light through the lateral faces (100 cm x 5 cm) of the scintillator. Several experiments have already been carried out. The results show how data contain information about the muon trajectory through the scintillator. This information can be extracted using the pulse heights collected by the PMTs working in coincidence mode. Reliability and accuracy of results strongly depend on the number of PMTs used and mainly on their appropriate geometrical arrangement with regard to the scintillator. In order to determine the optimal position and the minimum number of PMTs required, a Montecarlo simulation code has been developed. Preliminary experimental and simulation results are presented and the potential of the system for space weather monitoring is discussed.
Bayesian approach for assessing non-inferiority in a three-arm trial with pre-specified margin.
Ghosh, Samiran; Ghosh, Santu; Tiwari, Ram C
2016-02-28
Non-inferiority trials are becoming increasingly popular for comparative effectiveness research. However, inclusion of the placebo arm, whenever possible, gives rise to a three-arm trial which has lesser burdensome assumptions than a standard two-arm non-inferiority trial. Most of the past developments in a three-arm trial consider defining a pre-specified fraction of unknown effect size of reference drug, that is, without directly specifying a fixed non-inferiority margin. However, in some recent developments, a more direct approach is being considered with pre-specified fixed margin albeit in the frequentist setup. Bayesian paradigm provides a natural path to integrate historical and current trials' information via sequential learning. In this paper, we propose a Bayesian approach for simultaneous testing of non-inferiority and assay sensitivity in a three-arm trial with normal responses. For the experimental arm, in absence of historical information, non-informative priors are assumed under two situations, namely when (i) variance is known and (ii) variance is unknown. A Bayesian decision criteria is derived and compared with the frequentist method using simulation studies. Finally, several published clinical trial examples are reanalyzed to demonstrate the benefit of the proposed procedure. Copyright © 2015 John Wiley & Sons, Ltd.
Optically pre-amplified lidar-radar
NASA Astrophysics Data System (ADS)
Morvan, Loic; Dolfi, Daniel; Huignard, Jean-Pierre
2001-09-01
We present the concept of an optically pre-amplified intensity modulated lidar, where the modulation frequency is in the microwave domain (1-10 GHz). Such a system permits to combine directivity of laser beams with mature radar processing. As an intensity modulated or dual-frequency laser beam is directed on a target, the backscattered intensity is collected by an optical system, pass through an optical preamplifier, and is detected on a high speed photodiode in a direct detection scheme. A radar type processing permits then to extract range, speed and identification information. The association of spatially multimode amplifier and direct detection allows low sensitivity to atmospheric turbulence and large field of view. We demonstrated theoretically that optical pre-amplification can greatly enhance sensitivity, even in spatially multimode amplifiers, such as free-space amplifier or multimode doped fiber. Computed range estimates based on this concept are presented. Laboratory demonstrations using 1 to 3 GHz modulated laser sources and >20 dB gain in multimode amplifiers are detailed. Preliminary experimental results on range and speed measurements and possible use for large amplitude vibrometry will be presented.
Direct conversion of rheological compliance measurements into storage and loss moduli.
Evans, R M L; Tassieri, Manlio; Auhl, Dietmar; Waigh, Thomas A
2009-07-01
We remove the need for Laplace/inverse-Laplace transformations of experimental data, by presenting a direct and straightforward mathematical procedure for obtaining frequency-dependent storage and loss moduli [G'(omega) and G''(omega), respectively], from time-dependent experimental measurements. The procedure is applicable to ordinary rheological creep (stress-step) measurements, as well as all microrheological techniques, whether they access a Brownian mean-square displacement, or a forced compliance. Data can be substituted directly into our simple formula, thus eliminating traditional fitting and smoothing procedures that disguise relevant experimental noise.
Direct conversion of rheological compliance measurements into storage and loss moduli
NASA Astrophysics Data System (ADS)
Evans, R. M. L.; Tassieri, Manlio; Auhl, Dietmar; Waigh, Thomas A.
2009-07-01
We remove the need for Laplace/inverse-Laplace transformations of experimental data, by presenting a direct and straightforward mathematical procedure for obtaining frequency-dependent storage and loss moduli [ G'(ω) and G″(ω) , respectively], from time-dependent experimental measurements. The procedure is applicable to ordinary rheological creep (stress-step) measurements, as well as all microrheological techniques, whether they access a Brownian mean-square displacement, or a forced compliance. Data can be substituted directly into our simple formula, thus eliminating traditional fitting and smoothing procedures that disguise relevant experimental noise.
Towards a new kind of experimental psycho-aesthetics? Reflections on the Parallellepipeda project
Wagemans, Johan
2011-01-01
Experimental psycho-aesthetics—the science aimed at understanding the factors that determine aesthetic experience—is reviewed briefly as background to describe the Parallellepipeda project, a cross-over project between artists and scientists in Leuven. In particular, I sketch how it started and developed further, with close interactions between the participating artists and scientists. A few examples of specific research projects are mentioned to illustrate the kind of research questions we address and the methodological approach we have taken. We often found an effect of providing participants with additional information, a difference between novice and expert participants, and a shift with increasing experience with an artwork, in the direction of tolerating more complexity and acquiring more order from it. By establishing more connections between parts of an artwork and more associations to the artwork, it becomes a stronger Gestalt, which is more easily mastered by the viewer and leads to increased appreciation. In the final part of the paper, I extract some general lessons from the project regarding a possible new way of doing psycho-aesthetics research, which is able to solve some of the problems of traditional experimental psycho-aesthetics (eg, trade-off between experimental control and ecological validity). PMID:23145251
Quantum tomography for collider physics: illustrations with lepton-pair production
NASA Astrophysics Data System (ADS)
Martens, John C.; Ralston, John P.; Takaki, J. D. Tapia
2018-01-01
Quantum tomography is a method to experimentally extract all that is observable about a quantum mechanical system. We introduce quantum tomography to collider physics with the illustration of the angular distribution of lepton pairs. The tomographic method bypasses much of the field-theoretic formalism to concentrate on what can be observed with experimental data. We provide a practical, experimentally driven guide to model-independent analysis using density matrices at every step. Comparison with traditional methods of analyzing angular correlations of inclusive reactions finds many advantages in the tomographic method, which include manifest Lorentz covariance, direct incorporation of positivity constraints, exhaustively complete polarization information, and new invariants free from frame conventions. For example, experimental data can determine the entanglement entropy of the production process. We give reproducible numerical examples and provide a supplemental standalone computer code that implements the procedure. We also highlight a property of complex positivity that guarantees in a least-squares type fit that a local minimum of a χ 2 statistic will be a global minimum: There are no isolated local minima. This property with an automated implementation of positivity promises to mitigate issues relating to multiple minima and convention dependence that have been problematic in previous work on angular distributions.
Burns, Gully A P C; Dasigi, Pradeep; de Waard, Anita; Hovy, Eduard H
2016-01-01
Automated machine-reading biocuration systems typically use sentence-by-sentence information extraction to construct meaning representations for use by curators. This does not directly reflect the typical discourse structure used by scientists to construct an argument from the experimental data available within a article, and is therefore less likely to correspond to representations typically used in biomedical informatics systems (let alone to the mental models that scientists have). In this study, we develop Natural Language Processing methods to locate, extract, and classify the individual passages of text from articles' Results sections that refer to experimental data. In our domain of interest (molecular biology studies of cancer signal transduction pathways), individual articles may contain as many as 30 small-scale individual experiments describing a variety of findings, upon which authors base their overall research conclusions. Our system automatically classifies discourse segments in these texts into seven categories (fact, hypothesis, problem, goal, method, result, implication) with an F-score of 0.68. These segments describe the essential building blocks of scientific discourse to (i) provide context for each experiment, (ii) report experimental details and (iii) explain the data's meaning in context. We evaluate our system on text passages from articles that were curated in molecular biology databases (the Pathway Logic Datum repository, the Molecular Interaction MINT and INTACT databases) linking individual experiments in articles to the type of assay used (coprecipitation, phosphorylation, translocation etc.). We use supervised machine learning techniques on text passages containing unambiguous references to experiments to obtain baseline F1 scores of 0.59 for MINT, 0.71 for INTACT and 0.63 for Pathway Logic. Although preliminary, these results support the notion that targeting information extraction methods to experimental results could provide accurate, automated methods for biocuration. We also suggest the need for finer-grained curation of experimental methods used when constructing molecular biology databases. © The Author(s) 2016. Published by Oxford University Press.
Measurement and modelling of reactive transport in geological barriers for nuclear waste containment
Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; ...
2015-10-26
Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. Here, this balancesmore » the insufficient characterisation information and provides the means for future mechanical–physical–chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(VI) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(VI) diffusion the method is extended to account for sorption and convection. Finally, rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.« less
Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; Jivkov, Andrey P
2015-11-11
Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. This balances the insufficient characterisation information and provides the means for future mechanical-physical-chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(vi) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(vi) diffusion the method is extended to account for sorption and convection. Rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.
Griko, Yuri; Regan, Matthew D
2018-02-01
Animal research aboard the Space Shuttle and International Space Station has provided vital information on the physiological, cellular, and molecular effects of spaceflight. The relevance of this information to human spaceflight is enhanced when it is coupled with information gleaned from human-based research. As NASA and other space agencies initiate plans for human exploration missions beyond low Earth orbit (LEO), incorporating animal research into these missions is vitally important to understanding the biological impacts of deep space. However, new technologies will be required to integrate experimental animals into spacecraft design and transport them beyond LEO in a safe and practical way. In this communication, we propose the use of metabolic control technologies to reversibly depress the metabolic rates of experimental animals while in transit aboard the spacecraft. Compared to holding experimental animals in active metabolic states, the advantages of artificially inducing regulated, depressed metabolic states (called synthetic torpor) include significantly reduced mass, volume, and power requirements within the spacecraft owing to reduced life support requirements, and mitigated radiation- and microgravity-induced negative health effects on the animals owing to intrinsic physiological properties of torpor. In addition to directly benefitting animal research, synthetic torpor-inducing systems will also serve as test beds for systems that may eventually hold human crewmembers in similar metabolic states on long-duration missions. The technologies for inducing synthetic torpor, which we discuss, are at relatively early stages of development, but there is ample evidence to show that this is a viable idea and one with very real benefits to spaceflight programs. The increasingly ambitious goals of world's many spaceflight programs will be most quickly and safely achieved with the help of animal research systems transported beyond LEO; synthetic torpor may enable this to be done as practically and inexpensively as possible. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Griko, Yuri; Regan, Matthew D.
2018-02-01
Animal research aboard the Space Shuttle and International Space Station has provided vital information on the physiological, cellular, and molecular effects of spaceflight. The relevance of this information to human spaceflight is enhanced when it is coupled with information gleaned from human-based research. As NASA and other space agencies initiate plans for human exploration missions beyond low Earth orbit (LEO), incorporating animal research into these missions is vitally important to understanding the biological impacts of deep space. However, new technologies will be required to integrate experimental animals into spacecraft design and transport them beyond LEO in a safe and practical way. In this communication, we propose the use of metabolic control technologies to reversibly depress the metabolic rates of experimental animals while in transit aboard the spacecraft. Compared to holding experimental animals in active metabolic states, the advantages of artificially inducing regulated, depressed metabolic states (called synthetic torpor) include significantly reduced mass, volume, and power requirements within the spacecraft owing to reduced life support requirements, and mitigated radiation- and microgravity-induced negative health effects on the animals owing to intrinsic physiological properties of torpor. In addition to directly benefitting animal research, synthetic torpor-inducing systems will also serve as test beds for systems that may eventually hold human crewmembers in similar metabolic states on long-duration missions. The technologies for inducing synthetic torpor, which we discuss, are at relatively early stages of development, but there is ample evidence to show that this is a viable idea and one with very real benefits to spaceflight programs. The increasingly ambitious goals of world's many spaceflight programs will be most quickly and safely achieved with the help of animal research systems transported beyond LEO; synthetic torpor may enable this to be done as practically and inexpensively as possible.
Improve Biomedical Information Retrieval using Modified Learning to Rank Methods.
Xu, Bo; Lin, Hongfei; Lin, Yuan; Ma, Yunlong; Yang, Liang; Wang, Jian; Yang, Zhihao
2016-06-14
In these years, the number of biomedical articles has increased exponentially, which becomes a problem for biologists to capture all the needed information manually. Information retrieval technologies, as the core of search engines, can deal with the problem automatically, providing users with the needed information. However, it is a great challenge to apply these technologies directly for biomedical retrieval, because of the abundance of domain specific terminologies. To enhance biomedical retrieval, we propose a novel framework based on learning to rank. Learning to rank is a series of state-of-the-art information retrieval techniques, and has been proved effective in many information retrieval tasks. In the proposed framework, we attempt to tackle the problem of the abundance of terminologies by constructing ranking models, which focus on not only retrieving the most relevant documents, but also diversifying the searching results to increase the completeness of the resulting list for a given query. In the model training, we propose two novel document labeling strategies, and combine several traditional retrieval models as learning features. Besides, we also investigate the usefulness of different learning to rank approaches in our framework. Experimental results on TREC Genomics datasets demonstrate the effectiveness of our framework for biomedical information retrieval.
Forward and backward uncertainty propagation: an oxidation ditch modelling example.
Abusam, A; Keesman, K J; van Straten, G
2003-01-01
In the field of water technology, forward uncertainty propagation is frequently used, whereas backward uncertainty propagation is rarely used. In forward uncertainty analysis, one moves from a given (or assumed) parameter subspace towards the corresponding distribution of the output or objective function. However, in the backward uncertainty propagation, one moves in the reverse direction, from the distribution function towards the parameter subspace. Backward uncertainty propagation, which is a generalisation of parameter estimation error analysis, gives information essential for designing experimental or monitoring programmes, and for tighter bounding of parameter uncertainty intervals. The procedure of carrying out backward uncertainty propagation is illustrated in this technical note by working example for an oxidation ditch wastewater treatment plant. Results obtained have demonstrated that essential information can be achieved by carrying out backward uncertainty propagation analysis.
Image routing via atomic spin coherence
Wang, Lei; Sun, Jia-Xiang; Luo, Meng-Xi; Sun, Yuan-Hang; Wang, Xiao-Xiao; Chen, Yi; Kang, Zhi-Hui; Wang, Hai-Hua; Wu, Jin-Hui; Gao, Jin-Yue
2015-01-01
Coherent storage of optical image in a coherently-driven medium is a promising method with possible applications in many fields. In this work, we experimentally report a controllable spatial-frequency routing of image via atomic spin coherence in a solid-state medium driven by electromagnetically induced transparency (EIT). Under the EIT-based light-storage regime, a transverse spatial image carried by the probe field is stored into atomic spin coherence. By manipulating the frequency and spatial propagation direction of the read control field, the stored image is transferred into a new spatial-frequency channel. When two read control fields are used to retrieve the stored information, the image information is converted into a superposition of two spatial-frequency modes. Through this technique, the image is manipulated coherently and all-optically in a controlled fashion. PMID:26658846
Multi-sensor image registration based on algebraic projective invariants.
Li, Bin; Wang, Wei; Ye, Hao
2013-04-22
A new automatic feature-based registration algorithm is presented for multi-sensor images with projective deformation. Contours are firstly extracted from both reference and sensed images as basic features in the proposed method. Since it is difficult to design a projective-invariant descriptor from the contour information directly, a new feature named Five Sequential Corners (FSC) is constructed based on the corners detected from the extracted contours. By introducing algebraic projective invariants, we design a descriptor for each FSC that is ensured to be robust against projective deformation. Further, no gray scale related information is required in calculating the descriptor, thus it is also robust against the gray scale discrepancy between the multi-sensor image pairs. Experimental results utilizing real image pairs are presented to show the merits of the proposed registration method.
The DynaMine webserver: predicting protein dynamics from sequence.
Cilia, Elisa; Pancsa, Rita; Tompa, Peter; Lenaerts, Tom; Vranken, Wim F
2014-07-01
Protein dynamics are important for understanding protein function. Unfortunately, accurate protein dynamics information is difficult to obtain: here we present the DynaMine webserver, which provides predictions for the fast backbone movements of proteins directly from their amino-acid sequence. DynaMine rapidly produces a profile describing the statistical potential for such movements at residue-level resolution. The predicted values have meaning on an absolute scale and go beyond the traditional binary classification of residues as ordered or disordered, thus allowing for direct dynamics comparisons between protein regions. Through this webserver, we provide molecular biologists with an efficient and easy to use tool for predicting the dynamical characteristics of any protein of interest, even in the absence of experimental observations. The prediction results are visualized and can be directly downloaded. The DynaMine webserver, including instructive examples describing the meaning of the profiles, is available at http://dynamine.ibsquare.be. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-27
...The Food and Drug Administration (FDA) is reopening the comment period on specific data related to a proposed rule published in the Federal Register of March 29, 2010 (75 FR 15376), to establish standards that would be considered in determining whether the major statement in direct-to-consumer (DTC) television and radio advertisements relating to the side effects and contraindications of an advertised prescription drug intended for use by humans is presented in a clear, conspicuous, and neutral manner. FDA is announcing that it has added a document to the docket for the proposed rulemaking concerning a study entitled: ``Experimental Evaluation of the Impact of Distraction on Consumer Understanding of Risk and Benefit Information in Direct-to- Consumer Prescription Drug Television Advertisements'' (Distraction Study). This study was designed to investigate some advertising factors that could influence consumers' understanding of a drug's risks. This document reopens the comment period for the rulemaking proceeding to allow an opportunity for comment on the study as it relates to the proposed standards.
Bonaiuto, James J; de Berker, Archy; Bestmann, Sven
2016-01-01
Animals and humans have a tendency to repeat recent choices, a phenomenon known as choice hysteresis. The mechanism for this choice bias remains unclear. Using an established, biophysically informed model of a competitive attractor network for decision making, we found that decaying tail activity from the previous trial caused choice hysteresis, especially during difficult trials, and accurately predicted human perceptual choices. In the model, choice variability could be directionally altered through amplification or dampening of post-trial activity decay through simulated depolarizing or hyperpolarizing network stimulation. An analogous intervention using transcranial direct current stimulation (tDCS) over left dorsolateral prefrontal cortex (dlPFC) yielded a close match between model predictions and experimental results: net soma depolarizing currents increased choice hysteresis, while hyperpolarizing currents suppressed it. Residual activity in competitive attractor networks within dlPFC may thus give rise to biases in perceptual choices, which can be directionally controlled through non-invasive brain stimulation. DOI: http://dx.doi.org/10.7554/eLife.20047.001 PMID:28005007
Li, Zhe; Erkilinc, M Sezer; Galdino, Lidia; Shi, Kai; Thomsen, Benn C; Bayvel, Polina; Killey, Robert I
2016-12-12
Single-polarization direct-detection transceivers may offer advantages compared to digital coherent technology for some metro, back-haul, access and inter-data center applications since they offer low-cost and complexity solutions. However, a direct-detection receiver introduces nonlinearity upon photo detection, since it is a square-law device, which results in signal distortion due to signal-signal beat interference (SSBI). Consequently, it is desirable to develop effective and low-cost SSBI compensation techniques to improve the performance of such transceivers. In this paper, we compare the performance of a number of recently proposed digital signal processing-based SSBI compensation schemes, including the use of single- and two-stage linearization filters, an iterative linearization filter and a SSBI estimation and cancellation technique. Their performance is assessed experimentally using a 7 × 25 Gb/s wavelength division multiplexed (WDM) single-sideband 16-QAM Nyquist-subcarrier modulation system operating at a net information spectral density of 2.3 (b/s)/Hz.
Al-Makhamreh, Sahar; Alnabulsi, Hana; Asfour, Hana
2016-01-01
This article outlines innovative field training methods that foster the abilities of undergraduate social work students so that they are able to empower the local community and raise awareness of environmental issues. In this study, students were engaged in a local community assessment that sought to understand their views on environmental and community impacts of the Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME) Project on the lives of the host village's residents. A students' self-directed approach was applied for the fieldwork out of which interventions were developed ( Garrison, 1997). Quantitative data were gathered by eighteen students through a survey of 361 questionnaires targeting Allan society. In addition to students' field notes, pre and post focus groups were used to collect qualitative information. Study findings highlighted the effectiveness of students' self-directed projects in cultivating culturally competent practices; ensuring sustainable development; and providing evidence-based knowledge on social work practice involving environmental issues. PMID:27559202
Al-Makhamreh, Sahar; Alnabulsi, Hana; Asfour, Hana
2016-06-01
This article outlines innovative field training methods that foster the abilities of undergraduate social work students so that they are able to empower the local community and raise awareness of environmental issues. In this study, students were engaged in a local community assessment that sought to understand their views on environmental and community impacts of the Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME) Project on the lives of the host village's residents. A students' self-directed approach was applied for the fieldwork out of which interventions were developed ( Garrison, 1997). Quantitative data were gathered by eighteen students through a survey of 361 questionnaires targeting Allan society. In addition to students' field notes, pre and post focus groups were used to collect qualitative information. Study findings highlighted the effectiveness of students' self-directed projects in cultivating culturally competent practices; ensuring sustainable development; and providing evidence-based knowledge on social work practice involving environmental issues.
Use of experimental ecosystems in regulatory decision making
NASA Astrophysics Data System (ADS)
La Point, Thomas W.; Perry, James A.
1989-09-01
Tiered testing for the effects of chemicals on aquatic ecosystems has begun to include tests at the ecosystem level as a component in pesticide regristration. Because such tests are expensive, regulators and industry need to know what additional information they can gain from such tests relative to the costs of the simpler single-species toxicity bioassays. Requirements for ecosystem-level testing have developed because resource managers have not fully understood the implications of potential damage to resources without having evaluations of the predicted impacts under field conditions. We review approaches taken in the use of experimental ecosystems, discuss benefits and limitations of small- and large-scale ecosystem tests, and point to correlative approaches between laboratory and field toxicity testing. Laboratory experimental ecosystems (microcosms) have been successfully used to measure contaminant bioavailability, to determine routes of uptake in moderately complex aquatic systems, and to isolate factors modifying contaminant uptake into the biota. Such factors cannot be as readily studied in outdoor experimental ecosystems because direct cause-and-effect relations are often confounded and difficult to isolate. However, laboratory tests can be designed to quantify the relations among three variables: known concentrations of Stressors; specific sublethal behavioral, biochemical, and physiological effects displayed by organisms; and responses that have been observed in ecosystem-level analyses. For regulatory purposes, the specificity of test results determines how widely they can be applied. Ecotoxicological research should be directed at attempts to identify instances where single-species testing would be the appropriate level of analysis for identifying critical ecological endpoints and for clarifying relationships between ecosystem structure and function, and where it would be inadequate for a given level of analysis.
Use of experimental ecosystems in regulatory decision making
La Point, Thomas W.; Perry, James A.
1989-01-01
Tiered testing for the effects of chemicals on aquatic ecosystems has begun to include tests at the ecosystem level as a component in pesticide regristration. Because such tests are expensive, regulators and industry need to know what additional information they can gain from such tests relative to the costs of the simpler single-species toxicity bioassays. Requirements for ecosystem-level testing have developed because resource managers have not fully understood the implications of potential damage to resources without having evaluations of the predicted impacts under field conditions. We review approaches taken in the use of experimental ecosystems, discuss benefits and limitations of small- and large-scale ecosystem tests, and point to correlative approaches between laboratory and field toxicity testing.Laboratory experimental ecosystems (microcosms) have been successfully used to measure contaminant bioavailability, to determine routes of uptake in moderately complex aquatic systems, and to isolate factors modifying contaminant uptake into the biota. Such factors cannot be as readily studied in outdoor experimental ecosystems because direct cause-and-effect relations are often confounded and difficult to isolate. However, laboratory tests can be designed to quantify the relations among three variables: known concentrations of Stressors; specific sublethal behavioral, biochemical, and physiological effects displayed by organisms; and responses that have been observed in ecosystem-level analyses. For regulatory purposes, the specificity of test results determines how widely they can be applied. Ecotoxicological research should be directed at attempts to identify instances where single-species testing would be the appropriate level of analysis for identifying critical ecological endpoints and for clarifying relationships between ecosystem structure and function, and where it would be inadequate for a given level of analysis.
Direct Sequence Detection of Structured H5 Influenza Viral RNA
Kerby, Matthew B.; Freeman, Sarah; Prachanronarong, Kristina; Artenstein, Andrew W.; Opal, Steven M.; Tripathi, Anubhav
2008-01-01
We describe the development of sequence-specific molecular beacons (dual-labeled DNA probes) for identification of the H5 influenza subtype, cleavage motif, and receptor specificity when hybridized directly with in vitro transcribed viral RNA (vRNA). The cloned hemagglutinin segment from a highly pathogenic H5N1 strain, A/Hanoi/30408/2005(H5N1), isolated from humans was used as template for in vitro transcription of sense-strand vRNA. The hybridization behavior of vRNA and a conserved subtype probe was characterized experimentally by varying conditions of time, temperature, and Mg2+ to optimize detection. Comparison of the hybridization rates of probe to DNA and RNA targets indicates that conformational switching of influenza RNA structure is a rate-limiting step and that the secondary structure of vRNA dominates the binding kinetics. The sensitivity and specificity of probe recognition of other H5 strains was calculated from sequence matches to the National Center for Biotechnology Information influenza database. The hybridization specificity of the subtype probes was experimentally verified with point mutations within the probe loop at five locations corresponding to the other human H5 strains. The abundance frequencies of the hemagglutinin cleavage motif and sialic acid recognition sequences were experimentally tested for H5 in all host viral species. Although the detection assay must be coupled with isothermal amplification on the chip, the new probes form the basis of a portable point-of-care diagnostic device for influenza subtyping. PMID:18403607
NASA Astrophysics Data System (ADS)
Sarac, Abdulhamit; Kysar, Jeffrey W.
2018-02-01
We present a new methodology for experimental validation of single crystal plasticity constitutive relationships based upon spatially resolved measurements of the direction of the Net Burgers Density Vector, which we refer to as the β-field. The β-variable contains information about the active slip systems as well as the ratios of the Geometrically Necessary Dislocation (GND) densities on the active slip systems. We demonstrate the methodology by comparing single crystal plasticity finite element simulations of plane strain wedge indentations into face-centered cubic nickel to detailed experimental measurements of the β-field. We employ the classical Peirce-Asaro-Needleman (PAN) hardening model in this study due to the straightforward physical interpretation of its constitutive parameters that include latent hardening ratio, initial hardening modulus and the saturation stress. The saturation stress and the initial hardening modulus have relatively large influence on the β-variable compared to the latent hardening ratio. A change in the initial hardening modulus leads to a shift in the boundaries of plastic slip sectors with the plastically deforming region. As the saturation strength varies, both the magnitude of the β-variable and the boundaries of the plastic slip sectors change. We thus demonstrate that the β-variable is sensitive to changes in the constitutive parameters making the variable suitable for validation purposes. We identify a set of constitutive parameters that are consistent with the β-field obtained from the experiment.
An experimental analysis of a doped lithium fluoride direct absorption solar receiver
NASA Technical Reports Server (NTRS)
Kesseli, James; Pollak, Tom; Lacy, Dovie
1988-01-01
An experimental analysis of two key elements of a direct absorption solar receiver for use with Brayton solar dynamic systems was conducted. Experimental data are presented on LiF crystals doped with dysprosium, samarium, and cobalt fluorides. In addition, a simulation of the cavity/window environment was performed and a posttest inspection was conducted to evaluate chemical reactivity, transmissivity, and condensation rate.
Recycling Flight Hardware Components and Systems to Reduce Next Generation Research Costs
NASA Technical Reports Server (NTRS)
Turner, Wlat
2011-01-01
With the recent 'new direction' put forth by President Obama identifying NASA's new focus in research rather than continuing on a path to return to the Moon and Mars, the focus of work at Kennedy Space Center (KSC) may be changing dramatically. Research opportunities within the micro-gravity community potentially stands at the threshold of resurgence when the new direction of the agency takes hold for the next generation of experimenters. This presentation defines a strategy for recycling flight experiment components or part numbers, in order to reduce research project costs, not just in component selection and fabrication, but in expediting qualification of hardware for flight. A key component of the strategy is effective communication of relevant flight hardware information and available flight hardware components to researchers, with the goal of 'short circuiting' the design process for flight experiments
Report on carcinogens monograph on 1-bromopropane.
2013-09-01
The National Toxicology Program conducted a cancer evaluation on 1 bromopropane for possible listing in the Report on Carcinogens (RoC). The cancer evaluation is captured in the RoC monograph, which was peer reviewed in a public forum. The monograph consists of two components: (Part 1) the cancer evaluation, which reviews the relevant scientific information, assesses its quality, applies the RoC listing criteria to the scientific information, and provides the NTP recommendation for listing status for 1 bromopropane in the RoC, and (Part 2) the substance profile proposed for the RoC, containing the NTP's listing status recommendation, a summary of the scientific evidence considered key to reaching that decision, and data on properties, use, production, exposure, and Federal regulations and guidelines to reduce exposure to 1-bromopropane. This monograph provides an assessment of the available scientific information on 1 bromopropane, including human exposure and properties, disposition and toxicokinetics, cancer studies in experimental animals, and studies of mechanisms and other related effects, including relevant toxicological effects, genetic toxicology, and mechanisms of carcinogenicity. From this assessment, the NTP recommended that 1 bromopropane be listed as reasonably anticipated to be a human carcinogen in the RoC based on sufficient evidence from studies in experimental animals, which found inhalation exposure to 1-bromopropane caused skin tumors in male rats, large intestine tumors in female and male rats, and lung tumors in female mice. Also noted was that 1 bromopropane, either directly or via reactive metabolites, caused molecular alterations that typically are associated with carcinogenesis, including genotoxicity, oxidative stress, and glutathione depletion. These alterations, observed in mainly in vitro and toxicity studies in rodents, are relevant to possible mechanisms of human carcinogenicity and support the relevance of the cancer studies in experimental animals to humans.
Kurtzman, Ellen T; Greene, Jessica
2016-01-01
This systematic review synthesizes what is known about the effective presentation of health care performance information for consumer decision making. Six databases were searched for articles published in English between September 2003 and April 2014. Experimental studies comparing consumers' responses to performance information when one or more presentation feature was altered were included. A thematic analysis was performed and practical guidelines derived. All 31 articles retained, the majority which tested responses to various presentations of health care cost and/or quality information, found that consumers better understand and make more informed choices when the information display is less complex. Simplification can be achieved by reducing the quantity of choices, displaying results in a positive direction, using non-technical language and evaluative elements, and situating results in common contexts. While findings do not offer a prescriptive design, this synthesis informs approaches to enhancing the presentation of health care performance information and areas that merit additional research. Guidelines derived from these results can be used to enhance health care performance reports for consumer decision making including using recognizable, evaluative graphics and customizable formats, limiting the amount of information presented, and testing presentation formats prior to use. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Experimental investigation of the structural behavior of equine urethra.
Natali, Arturo Nicola; Carniel, Emanuele Luigi; Frigo, Alessandro; Fontanella, Chiara Giulia; Rubini, Alessandro; Avital, Yochai; De Benedictis, Giulia Maria
2017-04-01
An integrated experimental and computational investigation was developed aiming to provide a methodology for characterizing the structural response of the urethral duct. The investigation provides information that are suitable for the actual comprehension of lower urinary tract mechanical functionality and the optimal design of prosthetic devices. Experimental activity entailed the execution of inflation tests performed on segments of horse penile urethras from both proximal and distal regions. Inflation tests were developed imposing different volumes. Each test was performed according to a two-step procedure. The tubular segment was inflated almost instantaneously during the first step, while volume was held constant for about 300s to allow the development of relaxation processes during the second step. Tests performed on the same specimen were interspersed by 600s of rest to allow the recovery of the specimen mechanical condition. Results from experimental activities were statistically analyzed and processed by means of a specific mechanical model. Such computational model was developed with the purpose of interpreting the general pressure-volume-time response of biologic tubular structures. The model includes parameters that interpret the elastic and viscous behavior of hollow structures, directly correlated with the results from the experimental activities. Post-processing of experimental data provided information about the non-linear elastic and time-dependent behavior of the urethral duct. In detail, statistically representative pressure-volume and pressure relaxation curves were identified, and summarized by structural parameters. Considering elastic properties, initial stiffness ranged between 0.677 ± 0.026kPa and 0.262 ± 0.006kPa moving from proximal to distal region of penile urethra. Viscous parameters showed typical values of soft biological tissues, as τ 1 =0.153±0.018s, τ 2 =17.458 ± 1.644s and τ 1 =0.201 ± 0.085, τ 2 = 8.514 ± 1.379s for proximal and distal regions respectively. A general procedure for the mechanical characterization of the urethral duct has been provided. The proposed methodology allows identifying mechanical parameters that properly express the mechanical behavior of the biological tube. The approach is especially suitable for evaluating the influence of degenerative phenomena on the lower urinary tract mechanical functionality. The information are mandatory for the optimal design of potential surgical procedures and devices. Copyright © 2017 Elsevier B.V. All rights reserved.
Hudson-Shore, Michelle
2016-03-01
The Annual Statistics of Scientific Procedures on Living Animals Great Britain 2014 reports a welcome decline in animal experimentation in the UK. However, caution has to be exercised when interpreting these most recent figures, due to the significant changes made to satisfy the requirements of Directive 2010/63/EU as to what information is reported and how it is reported. Comparisons to the figures and trends reported in previous years is difficult, so this paper focuses on the specifics of the current report, providing information on overall animal use and highlighting specific issues associated with genetically-altered animals, fish and primates. There is a detailed discussion of the extent of the changes, commenting on the benefits and disadvantages of the new format, in areas such as severity of procedures, legislation and techniques of special interest. It also considers the consequences of the changes on the effective monitoring of laboratory animal use, the openness and transparency regarding the impacts of animal use, and the implementation of Three Rs initiatives. In addition, suggestions for further improvements to the new format are made to the Home Office. 2016 FRAME.
Cappelletti, David; Bartocci, Alessio; Frati, Federica; Roncaratti, Luiz F; Belpassi, Leonardo; Tarantelli, Francesco; Lakshmi, Prabha Aiswarya; Arunan, Elangannan; Pirani, Fernando
2015-11-11
New molecular beam scattering experiments have been performed to measure the total (elastic plus inelastic) cross sections as a function of the velocity in collisions between water and hydrogen sulfide projectile molecules and the methane target. Measured data have been exploited to characterize the range and strength of the intermolecular interaction in such systems, which are of relevance as they drive the gas phase molecular dynamics and the clathrate formation. Complementary information has been obtained by rotational spectra, recorded for the hydrogen sulfide-methane complex, with a pulsed nozzle Fourier transform microwave spectrometer. Extensive ab initio calculations have been performed to rationalize all the experimental findings. The combination of experimental and theoretical information has established the ground for the understanding of the nature of the interaction and allows for its basic components to be modelled, including charge transfer, in these weakly bound systems. The intermolecular potential for H2S-CH4 is significantly less anisotropic than for H2O-CH4, although both of them have potential minima that can be characterized as 'hydrogen bonded'.
High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, S.; Cai, H.; DeRose, C. T.
Here, we experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480 – 1640 nm and 95 nm from 1280 – 1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. Furthermore, we investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplersmore » and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. This demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.« less
High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB
Liu, S.; Cai, H.; DeRose, C. T.; ...
2017-05-04
Here, we experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480 – 1640 nm and 95 nm from 1280 – 1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. Furthermore, we investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplersmore » and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. This demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.« less
Building toy models of proteins using coevolutionary information
NASA Astrophysics Data System (ADS)
Cheng, Ryan; Raghunathan, Mohit; Onuchic, Jose
2015-03-01
Recent developments in global statistical methodologies have advanced the analysis of large collections of protein sequences for coevolutionary information. Coevolution between amino acids in a protein arises from compensatory mutations that are needed to maintain the stability or function of a protein over the course of evolution. This gives rise to quantifiable correlations between amino acid positions within the multiple sequence alignment of a protein family. Here, we use Direct Coupling Analysis (DCA) to infer a Potts model Hamiltonian governing the correlated mutations in a protein family to obtain the sequence-dependent interaction energies of a toy protein model. We demonstrate that this methodology predicts residue-residue interaction energies that are consistent with experimental mutational changes in protein stabilities as well as other computational methodologies. Furthermore, we demonstrate with several examples that DCA could be used to construct a structure-based model that quantitatively agrees with experimental data on folding mechanisms. This work serves as a potential framework for generating models of proteins that are enriched by evolutionary data that can potentially be used to engineer key functional motions and interactions in protein systems. This research has been supported by the NSF INSPIRE award MCB-1241332 and by the CTBP sponsored by the NSF (Grant PHY-1427654).
Experimental and numerical analysis of interfilament resistances in NbTi strands
NASA Astrophysics Data System (ADS)
Breschi, M.; Massimini, M.; Ribani, P. L.; Spina, T.; Corato, V.
2014-05-01
Superconducting strands are composite wires made of fine superconducting filaments embedded in a metallic matrix. The transverse resistivity among superconducting filaments affects the coupling losses during electromagnetic transients and the electro-thermal behavior of the wire in case of a quench. A direct measurement of the transverse interfilament resistance as a function of temperature in NbTi multi-filamentary wires was performed at the ENEA Frascati Superconductivity Division, Italy by means of a four-probe method. The complexity of these measurements is remarkable, due to the current distribution phenomena that occur among superconducting filaments during these tests. A two-dimensional finite element method model of the wire cross section and a three-dimensional electrical circuit model of the wire sample developed at the University of Bologna are applied here to derive qualitative and quantitative information about the transverse electrical resistance matrix. The experiment is aimed at verifying the qualitative behaviors and trends predicted by the numerical calculations, especially concerning the current redistribution length and consequent length effects of the sample under test. A fine tuning of the model parameters at the filament level allowed us to reproduce the experimental results and get quantitative information about the current distribution phenomena between filaments.
Dai, Qi; Yang, Yanchun; Wang, Tianming
2008-10-15
Many proposed statistical measures can efficiently compare biological sequences to further infer their structures, functions and evolutionary information. They are related in spirit because all the ideas for sequence comparison try to use the information on the k-word distributions, Markov model or both. Motivated by adding k-word distributions to Markov model directly, we investigated two novel statistical measures for sequence comparison, called wre.k.r and S2.k.r. The proposed measures were tested by similarity search, evaluation on functionally related regulatory sequences and phylogenetic analysis. This offers the systematic and quantitative experimental assessment of our measures. Moreover, we compared our achievements with these based on alignment or alignment-free. We grouped our experiments into two sets. The first one, performed via ROC (receiver operating curve) analysis, aims at assessing the intrinsic ability of our statistical measures to search for similar sequences from a database and discriminate functionally related regulatory sequences from unrelated sequences. The second one aims at assessing how well our statistical measure is used for phylogenetic analysis. The experimental assessment demonstrates that our similarity measures intending to incorporate k-word distributions into Markov model are more efficient.
Lim, H.; Hale, L. M.; Zimmerman, J. A.; ...
2015-01-05
In this study, we develop an atomistically informed crystal plasticity finite element (CP-FE) model for body-centered-cubic (BCC) α-Fe that incorporates non-Schmid stress dependent slip with temperature and strain rate effects. Based on recent insights obtained from atomistic simulations, we propose a new constitutive model that combines a generalized non-Schmid yield law with aspects from a line tension (LT) model for describing activation enthalpy required for the motion of dislocation kinks. Atomistic calculations are conducted to quantify the non-Schmid effects while both experimental data and atomistic simulations are used to assess the temperature and strain rate effects. The parameterized constitutive equationmore » is implemented into a BCC CP-FE model to simulate plastic deformation of single and polycrystalline Fe which is compared with experimental data from the literature. This direct comparison demonstrates that the atomistically informed model accurately captures the effects of crystal orientation, temperature and strain rate on the flow behavior of siangle crystal Fe. Furthermore, our proposed CP-FE model exhibits temperature and strain rate dependent flow and yield surfaces in polycrystalline Fe that deviate from conventional CP-FE models based on Schmid's law.« less
Applied metabolomics in drug discovery.
Cuperlovic-Culf, M; Culf, A S
2016-08-01
The metabolic profile is a direct signature of phenotype and biochemical activity following any perturbation. Metabolites are small molecules present in a biological system including natural products as well as drugs and their metabolism by-products depending on the biological system studied. Metabolomics can provide activity information about possible novel drugs and drug scaffolds, indicate interesting targets for drug development and suggest binding partners of compounds. Furthermore, metabolomics can be used for the discovery of novel natural products and in drug development. Metabolomics can enhance the discovery and testing of new drugs and provide insight into the on- and off-target effects of drugs. This review focuses primarily on the application of metabolomics in the discovery of active drugs from natural products and the analysis of chemical libraries and the computational analysis of metabolic networks. Metabolomics methodology, both experimental and analytical is fast developing. At the same time, databases of compounds are ever growing with the inclusion of more molecular and spectral information. An increasing number of systems are being represented by very detailed metabolic network models. Combining these experimental and computational tools with high throughput drug testing and drug discovery techniques can provide new promising compounds and leads.
Burow, Elke; Käsbohrer, Annemarie
2017-03-01
The aim of this literature review was to identify risk factors in addition to antimicrobial treatment for antimicrobial resistance (AMR) occurrence in commensal Escherichia coli in pigs. A variety of studies were searched in 2014 and 2015. Studies identified as potentially relevant were assessed against eligibility criteria such as observation or experiment (no review), presentation of risk factors in addition to (single dosage) antimicrobial use, risk factors for but not resulting from AMR, and the same antimicrobial used and tested. Thirteen articles (nine on observational, four on experimental studies) were finally selected as relevant. It was reported that space allowance, production size/stage, cleanliness, entry of animals and humans into herds, dosage/frequency/route of administration, time span between treatment and sampling date, herd size, distance to another farm, coldness, and season had an impact on AMR occurrence. Associations were shown by one to four studies per factor and differed in magnitude, direction, and level of significance. The risk of bias was unclear in nearly half of the information of observational studies and in most of the information from experimental studies. Further research on the effects of specific management practices is needed to develop well-founded management advice.
NASA Astrophysics Data System (ADS)
van Ness, Katherine; Hill, Craig; Aliseda, Alberto; Polagye, Brian
2017-11-01
Experimental measurements of a 0.45-m diameter, variable-pitch marine hydrokinetic (MHK) turbine were collected in a tow tank at different tip speed ratios and blade pitch angles. The coefficients of power and thrust are computed from direct measurements of torque, force and angular speed at the hub level. Loads on individual blades were measured with a six-degree of freedom load cell mounted at the root of one of the turbine blades. This information is used to validate the performance predictions provided by blade element model (BEM) simulations used in the turbine design, specifically the open-source code WTPerf developed by the National Renewable Energy Lab (NREL). Predictions of blade and hub loads by NREL's AeroDyn are also validated for the first time for an axial-flow MHK turbine. The influence of design twist angle, combined with the variable pitch angle, on the flow separation and subsequent blade loading will be analyzed with the complementary information from simulations and experiments. Funding for this research was provided by the United States Naval Facilities Engineering Command.
Experimental Method for Characterizing Electrical Steel Sheets in the Normal Direction
Hihat, Nabil; Lecointe, Jean Philippe; Duchesne, Stephane; Napieralska, Ewa; Belgrand, Thierry
2010-01-01
This paper proposes an experimental method to characterise magnetic laminations in the direction normal to the sheet plane. The principle, which is based on a static excitation to avoid planar eddy currents, is explained and specific test benches are proposed. Measurements of the flux density are made with a sensor moving in and out of an air-gap. A simple analytical model is derived in order to determine the permeability in the normal direction. The experimental results for grain oriented steel sheets are presented and a comparison is provided with values obtained from literature. PMID:22163394
Learning Quantitative Sequence-Function Relationships from Massively Parallel Experiments
NASA Astrophysics Data System (ADS)
Atwal, Gurinder S.; Kinney, Justin B.
2016-03-01
A fundamental aspect of biological information processing is the ubiquity of sequence-function relationships—functions that map the sequence of DNA, RNA, or protein to a biochemically relevant activity. Most sequence-function relationships in biology are quantitative, but only recently have experimental techniques for effectively measuring these relationships been developed. The advent of such "massively parallel" experiments presents an exciting opportunity for the concepts and methods of statistical physics to inform the study of biological systems. After reviewing these recent experimental advances, we focus on the problem of how to infer parametric models of sequence-function relationships from the data produced by these experiments. Specifically, we retrace and extend recent theoretical work showing that inference based on mutual information, not the standard likelihood-based approach, is often necessary for accurately learning the parameters of these models. Closely connected with this result is the emergence of "diffeomorphic modes"—directions in parameter space that are far less constrained by data than likelihood-based inference would suggest. Analogous to Goldstone modes in physics, diffeomorphic modes arise from an arbitrarily broken symmetry of the inference problem. An analytically tractable model of a massively parallel experiment is then described, providing an explicit demonstration of these fundamental aspects of statistical inference. This paper concludes with an outlook on the theoretical and computational challenges currently facing studies of quantitative sequence-function relationships.
NASA Astrophysics Data System (ADS)
Revuelto, Jesús; Azorin-Molina, Cesar; Alonso-González, Esteban; Sanmiguel-Vallelado, Alba; Navarro-Serrano, Francisco; Rico, Ibai; López-Moreno, Juan Ignacio
2017-12-01
This work describes the snow and meteorological data set available for the Izas Experimental Catchment in the Central Spanish Pyrenees, from the 2011 to 2017 snow seasons. The experimental site is located on the southern side of the Pyrenees between 2000 and 2300 m above sea level, covering an area of 55 ha. The site is a good example of a subalpine environment in which the evolution of snow accumulation and melt are of major importance in many mountain processes. The climatic data set consists of (i) continuous meteorological variables acquired from an automatic weather station (AWS), (ii) detailed information on snow depth distribution collected with a terrestrial laser scanner (TLS, lidar technology) for certain dates across the snow season (between three and six TLS surveys per snow season) and (iii) time-lapse images showing the evolution of the snow-covered area (SCA). The meteorological variables acquired at the AWS are precipitation, air temperature, incoming and reflected solar radiation, infrared surface temperature, relative humidity, wind speed and direction, atmospheric air pressure, surface temperature (snow or soil surface), and soil temperature; all were taken at 10 min intervals. Snow depth distribution was measured during 23 field campaigns using a TLS, and daily information on the SCA was also retrieved from time-lapse photography. The data set (https://doi.org/10.5281/zenodo.848277) is valuable since it provides high-spatial-resolution information on the snow depth and snow cover, which is particularly useful when combined with meteorological variables to simulate snow energy and mass balance. This information has already been analyzed in various scientific studies on snow pack dynamics and its interaction with the local climatology or topographical characteristics. However, the database generated has great potential for understanding other environmental processes from a hydrometeorological or ecological perspective in which snow dynamics play a determinant role.
Kersbergen, Inge; Field, Matt
2017-01-26
Alcohol warning labels have a limited effect on drinking behavior, potentially because people devote minimal attention to them. We report findings from two studies in which we measured the extent to which alcohol consumers attend to warning labels on alcohol packaging, and aimed to identify if increased attention to warning labels is associated with motivation to change drinking behavior. Study 1 (N = 60) was an exploratory cross-sectional study in which we used eye-tracking to measure visual attention to brand and health information on alcohol and soda containers. In study 2 (N = 120) we manipulated motivation to reduce drinking using an alcohol brief intervention (vs control intervention) and measured heavy drinkers' attention to branding and warning labels with the same eye-tracking paradigm as in study 1. Then, in a separate task we experimentally manipulated attention by drawing a brightly colored border around health (or brand) information before measuring participants' self-reported drinking intentions for the subsequent week. Study 1 showed that participants paid minimal attention to warning labels (7% of viewing time). Participants who were motivated to reduce drinking paid less attention to alcohol branding and alcohol warning labels. Results from study 2 showed that the alcohol brief intervention decreased attention to branding compared to the control condition, but it did not affect attention to warning labels. Furthermore, the experimental manipulation of attention to health or brand information did not influence drinking intentions for the subsequent week. Alcohol consumers allocate minimal attention to warning labels on alcohol packaging and even if their attention is directed to these warning labels, this has no impact on their drinking intentions. The lack of attention to warning labels, even among people who actively want to cut down, suggests that there is room for improvement in the content of health warnings on alcohol packaging.
NASA Astrophysics Data System (ADS)
Avitabile, P.; O'Callahan, J.
2003-07-01
Inclusion of rotational effects is critical for the accuracy of the predicted system characteristics, in almost all system modelling studies. However, experimentally derived information for the description of one or more of the components for the system will generally not have any rotational effects included in the description of the component. The lack of rotational effects has long affected the results from any system model development whether using a modal-based approach or an impedance-based approach. Several new expansion processes are described herein for the development of FRFs needed for impedance-based system models. These techniques expand experimentally derived mode shapes, residual modes from the modal parameter estimation process and FRFs directly to allow for the inclusion of the necessary rotational dof. The FRFs involving translational to rotational dofs are developed as well as the rotational to rotational dof. Examples are provided to show the use of these techniques.
Effects of Kraft Mill effluent on the sexuality of fishes: An environmental early warning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, W.P.; Bortone, S.A.
1992-01-01
Arrhenoid or masculinized female fish species of the live-bearing family, Poeciliidae, have been observed for over thirteen years in specific southern streams which receive waste effluents from pulping mills. The complex mixture of organic compounds in kraft mill effluent (KME) has inhibited specific identification of causal agent(s). However, microbially degraded phytosterols (e.g. sitosterol or stigmastanol) in experimental exposures induce the same intersexual states that characterize affected female poeciliids sampled from KME streams. KME-polluted streams often exhibit a drastic reduction of fish species diversity and degrees of physiological stress, all of which suggests reduced reproduction in surviving forms. A potential ontogeneticmore » or developmental response is demonstrated in American eels captured in one of these streams as well. The authors examine available information, including laboratory and experimental field exposures, and suggest directions for additional research as well as the need for environmental concern.« less
Training Implicit Social Anxiety Associations: An Experimental Intervention
Clerkin, Elise M.; Teachman, Bethany A.
2010-01-01
The current study investigates an experimental anxiety reduction intervention among a highly socially anxious sample (N=108; n=36 per Condition; 80 women). Using a conditioning paradigm, our goal was to modify implicit social anxiety associations to directly test the premise from cognitive models that biased cognitive processing may be causally related to anxious responding. Participants were trained to preferentially process non-threatening information through repeated pairings of self-relevant stimuli and faces indicating positive social feedback. As expected, participants in this positive training condition (relative to our two control conditions) displayed less negative implicit associations following training, and were more likely to complete an impromptu speech (though they did not report less anxiety during the speech). These findings offer partial support for cognitive models and indicate that implicit associations are not only correlated with social anxiety, they may be causally related to anxiety reduction as well. PMID:20102788
Training implicit social anxiety associations: an experimental intervention.
Clerkin, Elise M; Teachman, Bethany A
2010-04-01
The current study investigates an experimental anxiety reduction intervention among a highly socially anxious sample (N=108; n=36 per Condition; 80 women). Using a conditioning paradigm, our goal was to modify implicit social anxiety associations to directly test the premise from cognitive models that biased cognitive processing may be causally related to anxious responding. Participants were trained to preferentially process non-threatening information through repeated pairings of self-relevant stimuli and faces indicating positive social feedback. As expected, participants in this positive training condition (relative to our two control conditions) displayed less negative implicit associations following training, and were more likely to complete an impromptu speech (though they did not report less anxiety during the speech). These findings offer partial support for cognitive models and indicate that implicit associations are not only correlated with social anxiety, they may be causally related to anxiety reduction as well. (c) 2010 Elsevier Ltd. All rights reserved.
Social Learning and Culture in Child and Chimpanzee.
Whiten, Andrew
2017-01-03
A few decades ago, we knew next to nothing about the behavior of our closest animal relative, the chimpanzee, but long-term field studies have since revealed an undreamed-of richness in the diversity of their cultural traditions across Africa. These discoveries have been complemented by a substantial suite of experimental studies, now bridging to the wild through field experiments. These field and experimental studies, particularly those in which direct chimpanzee-child comparisons have been made, delineate a growing set of commonalities between the phenomena of social learning and culture in the lives of chimpanzees and humans. These commonalities in social learning inform our understanding of the evolutionary roots of the cultural propensities the species share. At the same time, such comparisons throw into clearer relief the unique features of the distinctive human capacity for cumulative cultural evolution, and new research has begun to probe the key psychological attributes that may explain it.
Generalized quantum interference of correlated photon pairs.
Kim, Heonoh; Lee, Sang Min; Moon, Han Seb
2015-05-07
Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source.
Inkjet printing-based volumetric display projecting multiple full-colour 2D patterns
NASA Astrophysics Data System (ADS)
Hirayama, Ryuji; Suzuki, Tomotaka; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Naruse, Makoto; Nakayama, Hirotaka; Kakue, Takashi; Ito, Tomoyoshi
2017-04-01
In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Moreover, we propose a design algorithm with 3D structures that provide multiple different 2D full-colour patterns when viewed from different directions and experimentally demonstrate prototypes. It is considered that these types of 3D volumetric structures and their fabrication methods based on widely deployed existing printing technologies can be utilised as novel information display devices and systems, including digital signage, media art, entertainment and security.
Sensitivity analysis of cool-down strategies for a transonic cryogenic tunnel
NASA Technical Reports Server (NTRS)
Thibodeaux, J. J.
1982-01-01
Guidelines and suggestions substantiated by real-time simulation data to ensure optimum time and energy use of injected liquid nitrogen for cooling the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT) are presented. It is directed toward enabling operators and researchers to become cognizant of criteria for using the 0.3-m TCT in an energy- or time-efficient manner. Operational recommendations were developed based on information collected from a validated simulator of the 0.3-m TCT and experimental data from the tunnel. Results and trends, however, can be extrapolated to other similarly constructed cryogenic wind tunnels.
Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes.
Kang, Myungshim; Chakraborty, Kaushik; Loverde, Sharon M
2018-06-25
We report here on long-time all-atomistic molecular dynamics simulations of functional supramolecular nanotubes composed by the self-assembly of peptide-drug amphiphiles (DAs). These DAs have been shown to possess an inherently high drug loading of the hydrophobic anticancer drug camptothecin. We probe the self-assembly mechanism from random with ∼0.4 μs molecular dynamics simulations. Furthermore, we also computationally characterize the interfacial structure, directionality of π-π stacking, and water dynamics within several peptide-drug nanotubes with diameters consistent with the reported experimental nanotube diameter. Insight gained should inform the future design of these novel anticancer drug delivery systems.
Gianni, Stefano; Jemth, Per
2014-07-01
The only experimental strategy to address the structure of folding transition states, the so-called Φ value analysis, relies on the synergy between site directed mutagenesis and the measurement of reaction kinetics. Despite its importance, the Φ value analysis has been often criticized and its power to pinpoint structural information has been questioned. In this hypothesis, we demonstrate that comparing the Φ values between proteins not only allows highlighting the robustness of folding pathways but also provides per se a strong validation of the method. © 2014 International Union of Biochemistry and Molecular Biology.
Socialization of emotion: who influences whom and how?
Zahn-Waxler, Carolyn
2010-01-01
Emotion socialization begins within the family setting and extends outward as children transition into expanded social worlds. Children contribute to their socialization from the first years of life, so the dynamics between parents and children are reciprocal in nature. Because socialization influences are best inferred from patterns that unfold over time, longitudinal research can help to untangle these processes. Laboratory observations of emotion exchanges and discussions or experimental manipulations of environmental processes also provide valuable information about causal influences and direction of effects. Parents and children must be studied within the same research designs to understand emotion socialization. (c) Wiley Periodicals, Inc.
Burch, Matthew J.; Fancher, Chris M.; Patala, Srikanth; ...
2016-11-18
A novel technique, which directly and nondestructively maps polar domains using electron backscatter diffraction (EBSD) is described and demonstrated. Through dynamical diffraction simulations and quantitative comparison to experimental EBSD patterns, the absolute orientation of a non-centrosymmetric crystal can be determined. With this information, the polar domains of a material can be mapped. The technique is demonstrated by mapping the non-ferroelastic, or 180°, ferroelectric domains in periodically poled LiNbO 3 single crystals. Furthermore, the authors demonstrate the possibility of mapping polarity using this technique in other polar materials system.
The ecological study of memory.
Neisser, U
1997-01-01
The study of memory has long been dominated by the structural tradition, and especially by the experimental analysis of mechanisms of information processing. That dominance may soon be brought to an end by the progress of neuroscience, which offers more direct ways of studying the mechanisms in question. At that point functional issues may move to centre stage. Those issues include the act of remembering and its social functions, the skills and presuppositions of the remembered, the interaction of those skills and presuppositions with the particular material being remembered, and the determinants of accuracy and confabulation in recall. PMID:9415921
Nguimdo, Romain Modeste; Lacot, Eric; Jacquin, Olivier; Hugon, Olivier; Van der Sande, Guy; Guillet de Chatellus, Hugues
2017-02-01
Reservoir computing (RC) systems are computational tools for information processing that can be fully implemented in optics. Here, we experimentally and numerically show that an optically pumped laser subject to optical delayed feedback can yield similar results to those obtained for electrically pumped lasers. Unlike with previous implementations, the input data are injected at a time interval that is much larger than the time-delay feedback. These data are directly coupled to the feedback light beam. Our results illustrate possible new avenues for RC implementations for prediction tasks.
The Apollo experiment for document delivery via satellite communication
NASA Astrophysics Data System (ADS)
1985-03-01
Dutch participation possibilities in the Apollo document delivery project, wishes and idea's of potential user and tender groups, and plans and activities of Dutch institutes and companies, are surveyed. The Apollo storage and transport system, demand and administration network, potential markets, and subject areas of the documents are investigated. Utilization areas (scientific, technical, administration, and business information) are listed. High tariffs and the lack of necessary provision make a direct participation strategy impossible. However, in the experimental phase, Dutch companies must be allowed to contribute in technical developments and availability of organizational and technical facilities must be stimulated.
When holography meets coherent diffraction imaging.
Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner
2012-12-17
The phase problem is inherent to crystallographic, astronomical and optical imaging where only the intensity of the scattered signal is detected and the phase information is lost and must somehow be recovered to reconstruct the object's structure. Modern imaging techniques at the molecular scale rely on utilizing novel coherent light sources like X-ray free electron lasers for the ultimate goal of visualizing such objects as individual biomolecules rather than crystals. Here, unlike in the case of crystals where structures can be solved by model building and phase refinement, the phase distribution of the wave scattered by an individual molecule must directly be recovered. There are two well-known solutions to the phase problem: holography and coherent diffraction imaging (CDI). Both techniques have their pros and cons. In holography, the reconstruction of the scattered complex-valued object wave is directly provided by a well-defined reference wave that must cover the entire detector area which often is an experimental challenge. CDI provides the highest possible, only wavelength limited, resolution, but the phase recovery is an iterative process which requires some pre-defined information about the object and whose outcome is not always uniquely-defined. Moreover, the diffraction patterns must be recorded under oversampling conditions, a pre-requisite to be able to solve the phase problem. Here, we report how holography and CDI can be merged into one superior technique: holographic coherent diffraction imaging (HCDI). An inline hologram can be recorded by employing a modified CDI experimental scheme. We demonstrate that the amplitude of the Fourier transform of an inline hologram is related to the complex-valued visibility, thus providing information on both, the amplitude and the phase of the scattered wave in the plane of the diffraction pattern. With the phase information available, the condition of oversampling the diffraction patterns can be relaxed, and the phase problem can be solved in a fast and unambiguous manner. We demonstrate the reconstruction of various diffraction patterns of objects recorded with visible light as well as with low-energy electrons. Although we have demonstrated our HCDI method using laser light and low-energy electrons, it can also be applied to any other coherent radiation such as X-rays or high-energy electrons.
Mekenyan, Ovanes; Patlewicz, Grace; Dimitrova, Gergana; Kuseva, Chanita; Todorov, Milen; Stoeva, Stoyanka; Kotov, Stefan; Donner, E Maria
2010-10-18
Skin sensitization is an end point of concern for various legislation in the EU, including the seventh Amendment to the Cosmetics Directive and Registration Evaluation, Authorisation and Restriction of Chemicals (REACH). Since animal testing is a last resort for REACH or banned (from 2013 onward) for the Cosmetics Directive, the use of intelligent/integrated testing strategies (ITS) as an efficient means of gathering necessary information from alternative sources (e.g., in vitro, (Q)SARs, etc.) is gaining widespread interest. Previous studies have explored correlations between mutagenicity data and skin sensitization data as a means of exploiting information from surrogate end points. The work here compares the underlying chemical mechanisms for mutagenicity and skin sensitization in an effort to evaluate the role mutagenicity information can play as a predictor of skin sensitization potential. The Tissue Metabolism Simulator (TIMES) hybrid expert system was used to compare chemical mechanisms of both end points since it houses a comprehensive set of established structure-activity relationships for both skin sensitization and mutagenicity. The evaluation demonstrated that there is a great deal of overlap between skin sensitization and mutagenicity structural alerts and their underlying chemical mechanisms. The similarities and differences in chemical mechanisms are discussed in light of available experimental data. A number of new alerts for mutagenicity were also postulated for inclusion into TIMES. The results presented show that mutagenicity information can provide useful insights on skin sensitization potential as part of an ITS and should be considered prior to any in vivo skin sensitization testing being initiated.
Serotonergic Psychedelics Temporarily Modify Information Transfer in Humans
Alonso, Joan Francesc; Romero, Sergio; Mañanas, Miquel Àngel
2015-01-01
Background: Psychedelics induce intense modifications in the sensorium, the sense of “self,” and the experience of reality. Despite advances in our understanding of the molecular and cellular level mechanisms of these drugs, knowledge of their actions on global brain dynamics is still incomplete. Recent imaging studies have found changes in functional coupling between frontal and parietal brain structures, suggesting a modification in information flow between brain regions during acute effects. Methods: Here we assessed the psychedelic-induced changes in directionality of information flow during the acute effects of a psychedelic in humans. We measured modifications in connectivity of brain oscillations using transfer entropy, a nonlinear measure of directed functional connectivity based on information theory. Ten healthy male volunteers with prior experience with psychedelics participated in 2 experimental sessions. They received a placebo or a dose of ayahuasca, a psychedelic preparation containing the serotonergic 5-HT2A agonist N,N-dimethyltryptamine. Results: The analysis showed significant changes in the coupling of brain oscillations between anterior and posterior recording sites. Transfer entropy analysis showed that frontal sources decreased their influence over central, parietal, and occipital sites. Conversely, sources in posterior locations increased their influence over signals measured at anterior locations. Exploratory correlations found that anterior-to-posterior transfer entropy decreases were correlated with the intensity of subjective effects, while the imbalance between anterior-to-posterior and posterior-to-anterior transfer entropy correlated with the degree of incapacitation experienced. Conclusions: These results suggest that psychedelics induce a temporary disruption of neural hierarchies by reducing top-down control and increasing bottom-up information transfer in the human brain. PMID:25820842
Experimental formation enthalpies for intermetallic phases and other inorganic compounds
Kim, George; Meschel, S. V.; Nash, Philip; Chen, Wei
2017-01-01
The standard enthalpy of formation of a compound is the energy associated with the reaction to form the compound from its component elements. The standard enthalpy of formation is a fundamental thermodynamic property that determines its phase stability, which can be coupled with other thermodynamic data to calculate phase diagrams. Calorimetry provides the only direct method by which the standard enthalpy of formation is experimentally measured. However, the measurement is often a time and energy intensive process. We present a dataset of enthalpies of formation measured by high-temperature calorimetry. The phases measured in this dataset include intermetallic compounds with transition metal and rare-earth elements, metal borides, metal carbides, and metallic silicides. These measurements were collected from over 50 years of calorimetric experiments. The dataset contains 1,276 entries on experimental enthalpy of formation values and structural information. Most of the entries are for binary compounds but ternary and quaternary compounds are being added as they become available. The dataset also contains predictions of enthalpy of formation from first-principles calculations for comparison. PMID:29064466
Dynamic Stiffness Transfer Function of an Electromechanical Actuator Using System Identification
NASA Astrophysics Data System (ADS)
Kim, Sang Hwa; Tahk, Min-Jea
2018-04-01
In the aeroelastic analysis of flight vehicles with electromechanical actuators (EMAs), an accurate prediction of flutter requires dynamic stiffness characteristics of the EMA. The dynamic stiffness transfer function of the EMA with brushless direct current (BLDC) motor can be obtained by conducting complicated mathematical calculations of control algorithms and mechanical/electrical nonlinearities using linearization techniques. Thus, system identification approaches using experimental data, as an alternative, have considerable advantages. However, the test setup for system identification is expensive and complex, and experimental procedures for data collection are time-consuming tasks. To obtain the dynamic stiffness transfer function, this paper proposes a linear system identification method that uses information obtained from a reliable dynamic stiffness model with a control algorithm and nonlinearities. The results of this study show that the system identification procedure is compact, and the transfer function is able to describe the dynamic stiffness characteristics of the EMA. In addition, to verify the validity of the system identification method, the simulation results of the dynamic stiffness transfer function and the dynamic stiffness model were compared with the experimental data for various external loads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burchell, Timothy D
2014-07-01
The experimental results obtained here will assist in the development and validation of future models of irradiation induced creep of graphite by providing the following data: Inert creep stain data from low to lifetime AGR fluence Inert creep-property data (especially CTE) from low to lifetime AGR fluence Effect of oxidation on creep modulus (by indirect comparison with experiment 1 and direct comparison with experiment 3 NB. Experiment 1 and 3 are not covered here) Data to develop a mechanistic understanding, including oAppropriate creep modulus (including pinning and high dose effects on structure) oInvestigation of CTE-creep strain behavior under inert conditionsmore » oInformation on the effect of applied stress/creep strain on crystallite orientation (requires XRD) oEffect of creep strain on micro-porosity (requires tomography & microscopy) This document describes the experimental work planned to meet the requirements of project technical specification [1] and EDF Energy requests for additional Pre-IE work. The PIE work is described in detail in this revision (Section 8 and 9).« less
NASA Astrophysics Data System (ADS)
Düsterer, S.; Rehders, M.; Al-Shemmary, A.; Behrens, C.; Brenner, G.; Brovko, O.; DellAngela, M.; Drescher, M.; Faatz, B.; Feldhaus, J.; Frühling, U.; Gerasimova, N.; Gerken, N.; Gerth, C.; Golz, T.; Grebentsov, A.; Hass, E.; Honkavaara, K.; Kocharian, V.; Kurka, M.; Limberg, Th.; Mitzner, R.; Moshammer, R.; Plönjes, E.; Richter, M.; Rönsch-Schulenburg, J.; Rudenko, A.; Schlarb, H.; Schmidt, B.; Senftleben, A.; Schneidmiller, E. A.; Siemer, B.; Sorgenfrei, F.; Sorokin, A. A.; Stojanovic, N.; Tiedtke, K.; Treusch, R.; Vogt, M.; Wieland, M.; Wurth, W.; Wesch, S.; Yan, M.; Yurkov, M. V.; Zacharias, H.; Schreiber, S.
2014-12-01
One of the most challenging tasks for extreme ultraviolet, soft and hard x-ray free-electron laser photon diagnostics is the precise determination of the photon pulse duration, which is typically in the sub 100 fs range. Nine different methods, able to determine such ultrashort photon pulse durations, were compared experimentally at FLASH, the self-amplified spontaneous emission free-electron laser at DESY in Hamburg, in order to identify advantages and disadvantages of different methods. Radiation pulses at a wavelength of 13.5 and 24.0 nm together with the corresponding electron bunch duration were measured by indirect methods like analyzing spectral correlations, statistical fluctuations, and energy modulations of the electron bunch and also by direct methods like autocorrelation techniques, terahertz streaking, or reflectivity changes of solid state samples. In this paper, we present a comprehensive overview of the various techniques and a comparison of the individual experimental results. The information gained is of utmost importance for the future development of reliable pulse duration monitors indispensable for successful experiments with ultrashort extreme ultraviolet pulses.
The dye-sensitized solar cell database.
Venkatraman, Vishwesh; Raju, Rajesh; Oikonomopoulos, Solon P; Alsberg, Bjørn K
2018-04-03
Dye-sensitized solar cells (DSSCs) have garnered a lot of attention in recent years. The solar energy to power conversion efficiency of a DSSC is influenced by various components of the cell such as the dye, electrolyte, electrodes and additives among others leading to varying experimental configurations. A large number of metal-based and metal-free dye sensitizers have now been reported and tools using such data to indicate new directions for design and development are on the rise. DSSCDB, the first of its kind dye-sensitized solar cell database, aims to provide users with up-to-date information from publications on the molecular structures of the dyes, experimental details and reported measurements (efficiencies and spectral properties) and thereby facilitate a comprehensive and critical evaluation of the data. Currently, the DSSCDB contains over 4000 experimental observations spanning multiple dye classes such as triphenylamines, carbazoles, coumarins, phenothiazines, ruthenium and porphyrins. The DSSCDB offers a web-based, comprehensive source of property data for dye sensitized solar cells. Access to the database is available through the following URL: www.dyedb.com .
Experimental study on direct adaptive control of a PUMA 560 industrial robot
NASA Technical Reports Server (NTRS)
Seraji, H.; Lee, T.; Delpech, M.
1990-01-01
The implementation and experimental validation of a direct adaptive control scheme on a PUMA 560 industrial robot is discussed. The design theory for direct adaptive control of manipulators is outlined and the test facility and software are described. Results are presented from the experiments on the simultaneous control of all of the six joint angles and control of the end-effector position and orientation of the robot. Also, the possible applications of the direct adaptive control scheme are considered.
Houtenbos, M; de Winter, J C F; Hale, A R; Wieringa, P A; Hagenzieker, M P
2017-04-01
A large portion of road traffic crashes occur at intersections for the reason that drivers lack necessary visual information. This research examined the effects of an audio-visual display that provides real-time sonification and visualization of the speed and direction of another car approaching the crossroads on an intersecting road. The location of red blinking lights (left vs. right on the speedometer) and the lateral input direction of beeps (left vs. right ear in headphones) corresponded to the direction from where the other car approached, and the blink and beep rates were a function of the approaching car's speed. Two driving simulators were linked so that the participant and the experimenter drove in the same virtual world. Participants (N = 25) completed four sessions (two with the audio-visual display on, two with the audio-visual display off), each session consisting of 22 intersections at which the experimenter approached from the left or right and either maintained speed or slowed down. Compared to driving with the display off, the audio-visual display resulted in enhanced traffic efficiency (i.e., greater mean speed, less coasting) while not compromising safety (i.e., the time gap between the two vehicles was equivalent). A post-experiment questionnaire showed that the beeps were regarded as more useful than the lights. It is argued that the audio-visual display is a promising means of supporting drivers until fully automated driving is technically feasible. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Wimer, N. T.; Mackoweicki, A. S.; Poludnenko, A. Y.; Hoffman, C.; Daily, J. W.; Rieker, G. B.; Hamlington, P.
2017-12-01
Results are presented from a joint computational and experimental research effort focused on understanding and characterizing wildland fire spread at small scales (roughly 1m-1mm) using direct numerical simulations (DNS) with chemical kinetics mechanisms that have been calibrated using data from high-speed laser diagnostics. The simulations are intended to directly resolve, with high physical accuracy, all small-scale fluid dynamic and chemical processes relevant to wildland fire spread. The high fidelity of the simulations is enabled by the calibration and validation of DNS sub-models using data from high-speed laser diagnostics. These diagnostics have the capability to measure temperature and chemical species concentrations, and are used here to characterize evaporation and pyrolysis processes in wildland fuels subjected to an external radiation source. The chemical kinetics code CHEMKIN-PRO is used to study and reduce complex reaction mechanisms for water removal, pyrolysis, and gas phase combustion during solid biomass burning. Simulations are then presented for a gaseous pool fire coupled with the resulting multi-step chemical reaction mechanisms, and the results are connected to the fundamental structure and spread of wildland fires. It is anticipated that the combined computational and experimental approach of this research effort will provide unprecedented access to information about chemical species, temperature, and turbulence during the entire pyrolysis, evaporation, ignition, and combustion process, thereby permitting more complete understanding of the physics that must be represented by coarse-scale numerical models of wildland fire spread.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-22
... implement the mandatory graphic warnings required by the Tobacco Control Act. The experimental study data...] Agency Information Collection Activities; Proposed Collection; Comment Request; Experimental Study of... on the Experimental Study of Graphic Cigarette Warning Labels that is being conducted in support of...
Marenco, Luis; Ascoli, Giorgio A; Martone, Maryann E; Shepherd, Gordon M; Miller, Perry L
2008-09-01
This paper describes the NIF LinkOut Broker (NLB) that has been built as part of the Neuroscience Information Framework (NIF) project. The NLB is designed to coordinate the assembly of links to neuroscience information items (e.g., experimental data, knowledge bases, and software tools) that are (1) accessible via the Web, and (2) related to entries in the National Center for Biotechnology Information's (NCBI's) Entrez system. The NLB collects these links from each resource and passes them to the NCBI which incorporates them into its Entrez LinkOut service. In this way, an Entrez user looking at a specific Entrez entry can LinkOut directly to related neuroscience information. The information stored in the NLB can also be utilized in other ways. A second approach, which is operational on a pilot basis, is for the NLB Web server to create dynamically its own Web page of LinkOut links for each NCBI identifier in the NLB database. This approach can allow other resources (in addition to the NCBI Entrez) to LinkOut to related neuroscience information. The paper describes the current NLB system and discusses certain design issues that arose during its implementation.
MIPS: analysis and annotation of proteins from whole genomes
Mewes, H. W.; Amid, C.; Arnold, R.; Frishman, D.; Güldener, U.; Mannhaupt, G.; Münsterkötter, M.; Pagel, P.; Strack, N.; Stümpflen, V.; Warfsmann, J.; Ruepp, A.
2004-01-01
The Munich Information Center for Protein Sequences (MIPS-GSF), Neuherberg, Germany, provides protein sequence-related information based on whole-genome analysis. The main focus of the work is directed toward the systematic organization of sequence-related attributes as gathered by a variety of algorithms, primary information from experimental data together with information compiled from the scientific literature. MIPS maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the database of complete cDNAs (German Human Genome Project, NGFN), the database of mammalian protein–protein interactions (MPPI), the database of FASTA homologies (SIMAP), and the interface for the fast retrieval of protein-associated information (QUIPOS). The Arabidopsis thaliana database, the rice database, the plant EST databases (MATDB, MOsDB, SPUTNIK), as well as the databases for the comprehensive set of genomes (PEDANT genomes) are described elsewhere in the 2003 and 2004 NAR database issues, respectively. All databases described, and the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de). PMID:14681354
MIPS: analysis and annotation of proteins from whole genomes.
Mewes, H W; Amid, C; Arnold, R; Frishman, D; Güldener, U; Mannhaupt, G; Münsterkötter, M; Pagel, P; Strack, N; Stümpflen, V; Warfsmann, J; Ruepp, A
2004-01-01
The Munich Information Center for Protein Sequences (MIPS-GSF), Neuherberg, Germany, provides protein sequence-related information based on whole-genome analysis. The main focus of the work is directed toward the systematic organization of sequence-related attributes as gathered by a variety of algorithms, primary information from experimental data together with information compiled from the scientific literature. MIPS maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the database of complete cDNAs (German Human Genome Project, NGFN), the database of mammalian protein-protein interactions (MPPI), the database of FASTA homologies (SIMAP), and the interface for the fast retrieval of protein-associated information (QUIPOS). The Arabidopsis thaliana database, the rice database, the plant EST databases (MATDB, MOsDB, SPUTNIK), as well as the databases for the comprehensive set of genomes (PEDANT genomes) are described elsewhere in the 2003 and 2004 NAR database issues, respectively. All databases described, and the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de).
Causality Analysis of fMRI Data Based on the Directed Information Theory Framework.
Wang, Zhe; Alahmadi, Ahmed; Zhu, David C; Li, Tongtong
2016-05-01
This paper aims to conduct fMRI-based causality analysis in brain connectivity by exploiting the directed information (DI) theory framework. Unlike the well-known Granger causality (GC) analysis, which relies on the linear prediction technique, the DI theory framework does not have any modeling constraints on the sequences to be evaluated and ensures estimation convergence. Moreover, it can be used to generate the GC graphs. In this paper, first, we introduce the core concepts in the DI framework. Second, we present how to conduct causality analysis using DI measures between two time series. We provide the detailed procedure on how to calculate the DI for two finite-time series. The two major steps involved here are optimal bin size selection for data digitization and probability estimation. Finally, we demonstrate the applicability of DI-based causality analysis using both the simulated data and experimental fMRI data, and compare the results with that of the GC analysis. Our analysis indicates that GC analysis is effective in detecting linear or nearly linear causal relationship, but may have difficulty in capturing nonlinear causal relationships. On the other hand, DI-based causality analysis is more effective in capturing both linear and nonlinear causal relationships. Moreover, it is observed that brain connectivity among different regions generally involves dynamic two-way information transmissions between them. Our results show that when bidirectional information flow is present, DI is more effective than GC to quantify the overall causal relationship.
Investigation of unifying transcutaneous transformer for transmission of energy and information.
Tamura, Nozomi; Yamamoto, Takahiko; Aoki, Hirooki; Koshiji, Kohji; Homma, Akihiko; Tatsumi, Eisuke; Taenaka, Yoshiyuki
2009-01-01
When patients are fitted with a totally implantable artificial heart (TAH), they need to be implanted with two additional devices: one for the transmission of energy and one for information. However, this is a cumbersome process that affects the quality of life of the recipient. Therefore, we investigated the use of electromagnetic coupling for the transmission of energy and information and the possibility of unifying two transcutaneous transformers for the simultaneous transmission of energy and information. While unifying the transformers, it is important to suppress the electromagnetic coupling between energy and information transmission. Therefore, we ensured that the electromagnetic fields generated from the transformer windings for the transmissions of information and energy intersected perpendicularly. If the fields are perpendicular, the electromagnetic coupling between the energy and information transmissions will be suppressed significantly. The characteristics of the simultaneous transmission of information and energy using the unified transcutaneous transformer, developed experimentally, were evaluated by changing the number of windings used for the transmission of information. The electromagnetic coupling between the energy and information transmissions was suppressed by determining the direction of the magnetic field. Moreover, the optimum number of transformer windings required for the simultaneous transmission of energy and information was determined. We concluded that the externally coupled transcutaneous transformer unified for the simultaneous transmission of energy and information performed with good transmission characteristics.
Damage Precursor Detection in Polymer Matrix Composites Using Novel Smart Composite Particles
2016-09-20
during the deformation test. Good agreement was observed with experimental results : the intensity of fluorescence was found to be directly proportional to...agreement is observed with experimental results , for which the intensity of fluorescence was found to be directly proportional to the deformation. Epoxy...the estimated Tgs of both neat epoxy and the smart polymer were compared with the experimental results obtained by DSC. Unit cell preparation
Herrmann, Esther; Keupp, Stefanie; Hare, Brian; Vaish, Amrisha; Tomasello, Michael
2013-02-01
Humans make decisions about when and with whom to cooperate based on their reputations. People either learn about others by direct interaction or by observing third-party interactions or gossip. An important question is whether other animal species, especially our closest living relatives, the nonhuman great apes, also form reputations of others. In Study 1, chimpanzees, bonobos, orangutans, and 2.5-year-old human children experienced a nice experimenter who tried to give food/toys to the subject and a mean experimenter who interrupted the food/toy giving. In studies 2 and 3, nonhuman great apes and human children could only passively observe a similar interaction, in which a nice experimenter and a mean experimenter interacted with a third party. Orangutans and 2.5-year-old human children preferred to approach the nice experimenter rather than the mean one after having directly experienced their respective behaviors. Orangutans, chimpanzees, and 2.5-year-old human children also took into account experimenter actions toward third parties in forming reputations. These studies show that the human ability to form direct and indirect reputation judgment is already present in young children and shared with at least some of the other great apes. PsycINFO Database Record (c) 2013 APA, all rights reserved
Bailey, Susan F; Bataillon, Thomas
2016-01-01
There have been a variety of approaches taken to try to characterize and identify the genetic basis of adaptation in nature, spanning theoretical models, experimental evolution studies and direct tests of natural populations. Theoretical models can provide formalized and detailed hypotheses regarding evolutionary processes and patterns, from which experimental evolution studies can then provide important proofs of concepts and characterize what is biologically reasonable. Genetic and genomic data from natural populations then allow for the identification of the particular factors that have and continue to play an important role in shaping adaptive evolution in the natural world. Further to this, experimental evolution studies allow for tests of theories that may be difficult or impossible to test in natural populations for logistical and methodological reasons and can even generate new insights, suggesting further refinement of existing theories. However, as experimental evolution studies often take place in a very particular set of controlled conditions--that is simple environments, a small range of usually asexual species, relatively short timescales--the question remains as to how applicable these experimental results are to natural populations. In this review, we discuss important insights coming from experimental evolution, focusing on four key topics tied to the evolutionary genetics of adaptation, and within those topics, we discuss the extent to which the experimental work compliments and informs natural population studies. We finish by making suggestions for future work in particular a need for natural population genomic time series data, as well as the necessity for studies that combine both experimental evolution and natural population approaches. © 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
... Experimental Population of Upper Columbia Spring-Run Chinook Salmon in the Okanogan River Subbasin, Washington... authorize the release of a nonessential experimental population (NEP) of Upper Columbia River spring-run... (301-427-8403). SUPPLEMENTARY INFORMATION: Background Information Relevant to Experimental Population...
Mayweg-Paus, Elisabeth; Jucks, Regina
2015-01-01
There are clear differences in the way written information on health issues presents research findings. In some cases, the source of a piece of information (e.g. "expert professor") is highlighted to emphasize its credibility and relevance. In other cases, the impact of a certain argument is stressed by avoiding hints on tentativeness such as "mostly" or "up to now." This article examines whether and how far such differences influence laypersons' comprehension of the contents provided. In an experimental setting, 157 laypersons were asked to read an online article on a new approach to preventing influenza. The texts manipulated whether there were (a) hints on the source of information and (b) lexical hints on the tentativeness of the information (hedges). After reading the text, participants were asked to write an essay reporting their opinion on the topic. Their argumentation on vaccination was assessed with content analysis and their attitudes toward vaccination were surveyed with a questionnaire. Results indicated that when lexical hints were given, tentativeness led participants to focus more on the actual information in the text. Additionally, decisions more strongly favored the direction implied in the text when the source of the medical information was not reported. Consequences for the way health information should be presented to laypersons are discussed.
Think spatial: the representation in mental rotation is nonvisual.
Liesefeld, Heinrich R; Zimmer, Hubert D
2013-01-01
For mental rotation, introspection, theories, and interpretations of experimental results imply a certain type of mental representation, namely, visual mental images. Characteristics of the rotated representation can be examined by measuring the influence of stimulus characteristics on rotational speed. If the amount of a given type of information influences rotational speed, one can infer that it was contained in the rotated representation. In Experiment 1, rotational speed of university students (10 men, 11 women) was found to be influenced exclusively by the amount of represented orientation-dependent spatial-relational information but not by orientation-independent spatial-relational information, visual complexity, or the number of stimulus parts. As information in mental-rotation tasks is initially presented visually, this finding implies that at some point during each trial, orientation-dependent information is extracted from visual information. Searching for more direct evidence for this extraction, we recorded the EEG of another sample of university students (12 men, 12 women) during mental rotation of the same stimuli. In an early time window, the observed working memory load-dependent slow potentials were sensitive to the stimuli's visual complexity. Later, in contrast, slow potentials were sensitive to the amount of orientation-dependent information only. We conclude that only orientation-dependent information is contained in the rotated representation. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
Transfer entropy analysis of maternal and fetal heart rate coupling.
Marzbanrad, Faezeh; Kimura, Yoshitaka; Endo, Miyuki; Palaniswami, Marimuthu; Khandoker, Ahsan H
2015-01-01
Although evidence of the short term relationship between maternal and fetal heart rates has been found in previous model-based studies, knowledge about the mechanism and patterns of the coupling during gestation is still limited. In this study, a model-free method based on Transfer Entropy (TE) was applied to quantify the maternal-fetal heart rate couplings in both directions. Furthermore, analysis of the lag at which TE was maximum and its changes throughout gestation, provided more information about the mechanism of coupling and its latency. Experimental results based on fetal electrocardiograms (fECGs) and maternal ECG showed the evidence of coupling for 62 out of 65 healthy mothers and fetuses in each direction, by statistically validating against the surrogate pairs. The fetuses were divided into three gestational age groups: early (16-25 weeks), mid (26-31 weeks) and late (32-41 weeks) gestation. The maximum TE from maternal to fetal heart rate significantly increased from early to mid gestation, while the coupling delay on both directions decreased significantly from mid to late gestation. These changes occur concomitant with the maturation of the fetal sensory and autonomic nervous systems with advancing gestational age. In conclusion, the application of TE with delays revealed detailed information about the changes in fetal-maternal heart rate coupling strength and latency throughout gestation, which could provide novel clinical markers of fetal development and well-being.
Before your very eyes: the value and limitations of eye tracking in medical education.
Kok, Ellen M; Jarodzka, Halszka
2017-01-01
Medicine is a highly visual discipline. Physicians from many specialties constantly use visual information in diagnosis and treatment. However, they are often unable to explain how they use this information. Consequently, it is unclear how to train medical students in this visual processing. Eye tracking is a research technique that may offer answers to these open questions, as it enables researchers to investigate such visual processes directly by measuring eye movements. This may help researchers understand the processes that support or hinder a particular learning outcome. In this article, we clarify the value and limitations of eye tracking for medical education researchers. For example, eye tracking can clarify how experience with medical images mediates diagnostic performance and how students engage with learning materials. Furthermore, eye tracking can also be used directly for training purposes by displaying eye movements of experts in medical images. Eye movements reflect cognitive processes, but cognitive processes cannot be directly inferred from eye-tracking data. In order to interpret eye-tracking data properly, theoretical models must always be the basis for designing experiments as well as for analysing and interpreting eye-tracking data. The interpretation of eye-tracking data is further supported by sound experimental design and methodological triangulation. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Mora, Cordula V.; Bingman, Verner P.
2013-01-01
It has long been thought that birds may use the Earth's magnetic field not only as a compass for direction finding, but that it could also provide spatial information for position determination analogous to a map during navigation. Since magnetic field intensity varies systematically with latitude and theoretically could also provide longitudinal information during position determination, birds using a magnetic map should be able to discriminate magnetic field intensity cues in the laboratory. Here we demonstrate a novel behavioural paradigm requiring homing pigeons to identify the direction of a magnetic field intensity gradient in a “virtual magnetic map” during a spatial conditioning task. Not only were the pigeons able to detect the direction of the intensity gradient, but they were even able to discriminate upward versus downward movement on the gradient by differentiating between increasing and decreasing intensity values. Furthermore, the pigeons typically spent more than half of the 15 second sampling period in front of the feeder associated with the rewarded gradient direction indicating that they required only several seconds to make the correct choice. Our results therefore demonstrate for the first time that pigeons not only can detect the presence and absence of magnetic anomalies, as previous studies had shown, but are even able to detect and respond to changes in magnetic field intensity alone, including the directionality of such changes, in the context of spatial orientation within an experimental arena. This opens up the possibility for systematic and detailed studies of how pigeons could use magnetic intensity cues during position determination as well as how intensity is perceived and where it is processed in the brain. PMID:24039812
Mora, Cordula V; Bingman, Verner P
2013-01-01
It has long been thought that birds may use the Earth's magnetic field not only as a compass for direction finding, but that it could also provide spatial information for position determination analogous to a map during navigation. Since magnetic field intensity varies systematically with latitude and theoretically could also provide longitudinal information during position determination, birds using a magnetic map should be able to discriminate magnetic field intensity cues in the laboratory. Here we demonstrate a novel behavioural paradigm requiring homing pigeons to identify the direction of a magnetic field intensity gradient in a "virtual magnetic map" during a spatial conditioning task. Not only were the pigeons able to detect the direction of the intensity gradient, but they were even able to discriminate upward versus downward movement on the gradient by differentiating between increasing and decreasing intensity values. Furthermore, the pigeons typically spent more than half of the 15 second sampling period in front of the feeder associated with the rewarded gradient direction indicating that they required only several seconds to make the correct choice. Our results therefore demonstrate for the first time that pigeons not only can detect the presence and absence of magnetic anomalies, as previous studies had shown, but are even able to detect and respond to changes in magnetic field intensity alone, including the directionality of such changes, in the context of spatial orientation within an experimental arena. This opens up the possibility for systematic and detailed studies of how pigeons could use magnetic intensity cues during position determination as well as how intensity is perceived and where it is processed in the brain.
Pfannkuche, Kristina A; Bouma, Anke; Groothuis, Ton G G
2009-04-12
Lateralization of brain and behaviour has been the topic of research for many years in neuropsychology, but the factors guiding its development remain elusive. Based on sex differences in human lateralization, four hypotheses have been postulated that suggest a role for androgens, specifically testosterone. With the discovery that lateralization is a fundamental principle in the organization of brain and behaviour among vertebrates, it has now become possible to experimentally test such hypotheses in animal models. The use of different taxa, humans, other mammalian species and birds (with oestradiol and not testosterone involved in sexual differentiation in birds) facilitates to differentiate between the hypotheses. We used meta-analyses for analysing papers that provided sufficient information, and a semi-quantitative approach based on all relevant studies that we extracted from the literature. We tested the predictions of these hypotheses regarding strength and direction of lateralization for motor output, language and visuospatial cognition in these three taxa. We tested for sex differences and early organizational effects of testosterone (both correlative and experimental studies). We found sex differences in the direction of lateralization for non-human mammals (motor biases similar to humans) and in direction and strength in birds (visual cognitive tasks). However, the prediction that prenatal testosterone exposure affects the direction of lateralization was not supported for humans. In birds and non-human mammals, opposite trends were found, with the effect in non-human mammals being opposite to the expectation based on sex differences. None of the four hypotheses was sufficiently supported and more studies, testing a wider array of functions in different taxa while reporting the data more completely are needed.
Nawroth, Christian; von Borell, Eberhard; Langbein, Jan
2016-05-01
Being able to recognise when one is being observed by someone else is thought to be adaptive during cooperative or competitive events. In particular for prey species, this ability should be of use in the context of predation. A previous study reported that goats (Capra aegagrus hircus) alter their behaviour according to the body and head orientation of a human experimenter. During a food anticipation task, an experimenter remained in a particular posture for 30 s before delivering a reward, and the goats' active anticipation and standing alert behaviour were analysed. To further evaluate the specific mechanisms at work, we here present two additional test conditions. In particular, we investigated the effects of the eye visibility and head orientation of a human experimenter on the behaviour of the goats (N = 7). We found that the level of the subjects' active anticipatory behaviour was highest in the conditions where the experimenter was directing his head and body towards the goat ('Control' and 'Eyes closed' conditions), but the anticipatory behaviour was significantly decreased when the body ('Head only') or the head and body of the experimenter were directed away from the subject ('Back' condition). For standing alert, we found no significant differences between the three conditions in which the experimenter was directing his head towards the subject ('Control', 'Eyes closed' and 'Head only'). This lack of differences in the expression of standing alert suggests that goats evaluate the direction of a human's head as an important cue in their anticipatory behaviour. However, goats did not respond to the visibility of the experimenter's eyes alone.
DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts
Paraskevopoulou, Maria D.; Vlachos, Ioannis S.; Karagkouni, Dimitra; Georgakilas, Georgios; Kanellos, Ilias; Vergoulis, Thanasis; Zagganas, Konstantinos; Tsanakas, Panayiotis; Floros, Evangelos; Dalamagas, Theodore; Hatzigeorgiou, Artemis G.
2016-01-01
microRNAs (miRNAs) are short non-coding RNAs (ncRNAs) that act as post-transcriptional regulators of coding gene expression. Long non-coding RNAs (lncRNAs) have been recently reported to interact with miRNAs. The sponge-like function of lncRNAs introduces an extra layer of complexity in the miRNA interactome. DIANA-LncBase v1 provided a database of experimentally supported and in silico predicted miRNA Recognition Elements (MREs) on lncRNAs. The second version of LncBase (www.microrna.gr/LncBase) presents an extensive collection of miRNA:lncRNA interactions. The significantly enhanced database includes more than 70 000 low and high-throughput, (in)direct miRNA:lncRNA experimentally supported interactions, derived from manually curated publications and the analysis of 153 AGO CLIP-Seq libraries. The new experimental module presents a 14-fold increase compared to the previous release. LncBase v2 hosts in silico predicted miRNA targets on lncRNAs, identified with the DIANA-microT algorithm. The relevant module provides millions of predicted miRNA binding sites, accompanied with detailed metadata and MRE conservation metrics. LncBase v2 caters information regarding cell type specific miRNA:lncRNA regulation and enables users to easily identify interactions in 66 different cell types, spanning 36 tissues for human and mouse. Database entries are also supported by accurate lncRNA expression information, derived from the analysis of more than 6 billion RNA-Seq reads. PMID:26612864
Network reconstruction and systems analysis of plant cell wall deconstruction by Neurospora crassa.
Samal, Areejit; Craig, James P; Coradetti, Samuel T; Benz, J Philipp; Eddy, James A; Price, Nathan D; Glass, N Louise
2017-01-01
Plant biomass degradation by fungal-derived enzymes is rapidly expanding in economic importance as a clean and efficient source for biofuels. The ability to rationally engineer filamentous fungi would facilitate biotechnological applications for degradation of plant cell wall polysaccharides. However, incomplete knowledge of biomolecular networks responsible for plant cell wall deconstruction impedes experimental efforts in this direction. To expand this knowledge base, a detailed network of reactions important for deconstruction of plant cell wall polysaccharides into simple sugars was constructed for the filamentous fungus Neurospora crassa . To reconstruct this network, information was integrated from five heterogeneous data types: functional genomics, transcriptomics, proteomics, genetics, and biochemical characterizations. The combined information was encapsulated into a feature matrix and the evidence weighted to assign annotation confidence scores for each gene within the network. Comparative analyses of RNA-seq and ChIP-seq data shed light on the regulation of the plant cell wall degradation network, leading to a novel hypothesis for degradation of the hemicellulose mannan. The transcription factor CLR-2 was subsequently experimentally shown to play a key role in the mannan degradation pathway of N. crassa . Here we built a network that serves as a scaffold for integration of diverse experimental datasets. This approach led to the elucidation of regulatory design principles for plant cell wall deconstruction by filamentous fungi and a novel function for the transcription factor CLR-2. This expanding network will aid in efforts to rationally engineer industrially relevant hyper-production strains.
NASA Astrophysics Data System (ADS)
Barak, Miri; Dori, Yehudit Judy
2005-01-01
Project-based learning (PBL), which is increasingly supported by information technologies (IT), contributes to fostering student-directed scientific inquiry of problems in a real-world setting. This study investigated the integration of PBL in an IT environment into three undergraduate chemistry courses, each including both experimental and control students. Students in the experimental group volunteered to carry out an individual IT-based project, whereas the control students solved only traditional problems. The project included constructing computerized molecular models, seeking information on scientific phenomena, and inquiring about chemistry theories. The effect of the PBL was examined both quantitatively and qualitatively. The quantitative analysis was based on a pretest, a posttest, and a final examination, which served for comparing the learning gains of the two research groups. For the qualitative analysis, we looked into the experimental students' performance, as reflected by the projects they had submitted. In addition, think alou interviews and observations helped us gain insight into the students' conceptual understanding of molecular structures. Students who participated in the IT-enhanced PBL performed significantly better than their control classmates not only on their posttest but also on their course final examination. Analyzing the qualitative findings, we concluded that the construction of computerized models and Web-based inquiry activities helped promote students' ability of mentally traversing the four levels of chemistry understanding: symbolic, macroscopic, microscopic, and process. More generally, our results indicated that incorporating IT-rich PBL into freshmen courses can enhance students' understanding of chemical concepts, theories, and molecular structures.
How and why does the immunological synapse form? Physical chemistry meets cell biology.
Chakraborty, Arup K
2002-03-05
During T lymphocyte (T cell) recognition of an antigen, a highly organized and specific pattern of membrane proteins forms in the junction between the T cell and the antigen-presenting cell (APC). This specialized cell-cell junction is called the immunological synapse. It is several micrometers large and forms over many minutes. A plethora of experiments are being performed to study the mechanisms that underlie synapse formation and the way in which information transfer occurs across the synapse. The wealth of experimental data that is beginning to emerge must be understood within a mechanistic framework if it is to prove useful in developing modalities to control the immune response. Quantitative models can complement experiments in the quest for such a mechanistic understanding by suggesting experimentally testable hypotheses. Here, a quantitative synapse assembly model is described. The model uses concepts developed in physical chemistry and cell biology and is able to predict the spatiotemporal evolution of cell shape and receptor protein patterns observed during synapse formation. Attention is directed to how the juxtaposition of model predictions and experimental data has led to intriguing hypotheses regarding the role of null and self peptides during synapse assembly, as well as correlations between T cell effector functions and the robustness of synapse assembly. We remark on some ways in which synergistic experiments and modeling studies can improve current models, and we take steps toward a better understanding of information transfer across the T cell-APC junction.
Smart caching based on mobile agent of power WebGIS platform.
Wang, Xiaohui; Wu, Kehe; Chen, Fei
2013-01-01
Power information construction is developing towards intensive, platform, distributed direction with the expansion of power grid and improvement of information technology. In order to meet the trend, power WebGIS was designed and developed. In this paper, we first discuss the architecture and functionality of power WebGIS, and then we study caching technology in detail, which contains dynamic display cache model, caching structure based on mobile agent, and cache data model. We have designed experiments of different data capacity to contrast performance between WebGIS with the proposed caching model and traditional WebGIS. The experimental results showed that, with the same hardware environment, the response time of WebGIS with and without caching model increased as data capacity growing, while the larger the data was, the higher the performance of WebGIS with proposed caching model improved.
PROBLEMS OF CYBERNETICS AND SPACE MEDICINE (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parin, V.V.; Baevskii, R.M.
1963-01-01
Problems of cybernetics are discussed with reference to space medicine. The information theory is widely used for solving the problems relevant to radiotelemetric transmission of biological data. Construction of devices for automatic medical control of the condition of the crew of the space ship has a direct bearing to electron diagnostic machines. Mathematical methods and the computing technic are used for analyzing experimental evidence. The theory of automatic regulation was applied for modeling physiological reactions, for developing closed ecological systems, and for solving the problems of driving space ships. The problems bearing on the modifications undergone by the information inmore » the brain are of primary importance for the study of the effect of the space flight conditions upon the efficiency of man, the activity of his nervous system and of his analyzers. (P.C.H.)« less
Design and analysis of ultrasonic monaural audio guiding device for the visually impaired.
Kim, Keonwook; Kim, Hyunjai; Yun, Gihun; Kim, Myungsoo
2009-01-01
The novel Audio Guiding Device (AGD) based on the ultrasonic, which is named as SonicID, has been developed in order to localize point of interest for the visually impaired. The SonicID requires the infrastructure of the transmitters for broadcasting the location information over the ultrasonic carrier. The user with ultrasonic headset receives the information with variable amplitude upon the location and direction of the user due to the ultrasonic characteristic and modulation method. This paper proposes the monaural headset form factor of the SonicID which improves the daily life of the beneficiary compare to the previous version which uses the both ears. Experimental results from SonicID, Bluetooth, and audible sound show that the SonicID demonstrates comparable localization performance to the audible sound with silence to others.
Lumba, Shelley; Subha, Asrinus; McCourt, Peter
2017-07-01
Strigolactones (SLs) are small molecules that act as endogenous hormones to regulate plant development as well as exogenous cues that help parasitic plants to infect their hosts. Given that parasitic plants are experimentally challenging systems, researchers are using two approaches to understand how they respond to host-derived SLs. The first involves extrapolating information on SLs from model genetic systems to dissect their roles in parasitic plants. The second uses chemicals to probe SL signaling directly in the parasite Striga hermonthica. These approaches indicate that parasitic plants have co-opted a family of α/β hydrolases to perceive SLs. The importance of this genetic and chemical information cannot be overstated since parasitic plant infestations are major obstacles to food security in the developing world. Copyright © 2017 Elsevier Ltd. All rights reserved.
The computer integrated documentation project: A merge of hypermedia and AI techniques
NASA Technical Reports Server (NTRS)
Mathe, Nathalie; Boy, Guy
1993-01-01
To generate intelligent indexing that allows context-sensitive information retrieval, a system must be able to acquire knowledge directly through interaction with users. In this paper, we present the architecture for CID (Computer Integrated Documentation). CID is a system that enables integration of various technical documents in a hypertext framework and includes an intelligent browsing system that incorporates indexing in context. CID's knowledge-based indexing mechanism allows case based knowledge acquisition by experimentation. It utilizes on-line user information requirements and suggestions either to reinforce current indexing in case of success or to generate new knowledge in case of failure. This allows CID's intelligent interface system to provide helpful responses, based on previous experience (user feedback). We describe CID's current capabilities and provide an overview of our plans for extending the system.
Dynamic tensile characterization of a 4330 steel with kolsky bar techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Bo; Antoun, Bonnie R.; Connelly, Kevin
2010-08-01
There has been increasing demand to understand the stress-strain response as well as damage and failure mechanisms of materials under impact loading condition. Dynamic tensile characterization has been an efficient approach to acquire satisfactory information of mechanical properties including damage and failure of the materials under investigation. However, in order to obtain valid experimental data, reliable tensile experimental techniques at high strain rates are required. This includes not only precise experimental apparatus but also reliable experimental procedures and comprehensive data interpretation. Kolsky bar, originally developed by Kolsky in 1949 [1] for high-rate compressive characterization of materials, has been extended formore » dynamic tensile testing since 1960 [2]. In comparison to Kolsky compression bar, the experimental design of Kolsky tension bar has been much more diversified, particularly in producing high speed tensile pulses in the bars. Moreover, instead of directly sandwiching the cylindrical specimen between the bars in Kolsky bar compression bar experiments, the specimen must be firmly attached to the bar ends in Kolsky tensile bar experiments. A common method is to thread a dumbbell specimen into the ends of the incident and transmission bars. The relatively complicated striking and specimen gripping systems in Kolsky tension bar techniques often lead to disturbance in stress wave propagation in the bars, requiring appropriate interpretation of experimental data. In this study, we employed a modified Kolsky tension bar, newly developed at Sandia National Laboratories, Livermore, CA, to explore the dynamic tensile response of a 4330-V steel. The design of the new Kolsky tension bar has been presented at 2010 SEM Annual Conference [3]. Figures 1 and 2 show the actual photograph and schematic of the Kolsky tension bar, respectively. As shown in Fig. 2, the gun barrel is directly connected to the incident bar with a coupler. The cylindrical striker set inside the gun barrel is launched to impact on the end cap that is threaded into the open end of the gun barrel, producing a tension on the gun barrel and the incident bar.« less
Dynamic tensile characterization of a 4330-V steel with kolsky bar techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Bo; Antoun, Bonnie R.; Connelly, Kevin
2010-09-01
There has been increasing demand to understand the stress-strain response as well as damage and failure mechanisms of materials under impact loading condition. Dynamic tensile characterization has been an efficient approach to acquire satisfactory information of mechanical properties including damage and failure of the materials under investigation. However, in order to obtain valid experimental data, reliable tensile experimental techniques at high strain rates are required. This includes not only precise experimental apparatus but also reliable experimental procedures and comprehensive data interpretation. Kolsky bar, originally developed by Kolsky in 1949 [1] for high-rate compressive characterization of materials, has been extended formore » dynamic tensile testing since 1960 [2]. In comparison to Kolsky compression bar, the experimental design of Kolsky tension bar has been much more diversified, particularly in producing high speed tensile pulses in the bars. Moreover, instead of directly sandwiching the cylindrical specimen between the bars in Kolsky bar compression bar experiments, the specimen must be firmly attached to the bar ends in Kolsky tensile bar experiments. A common method is to thread a dumbbell specimen into the ends of the incident and transmission bars. The relatively complicated striking and specimen gripping systems in Kolsky tension bar techniques often lead to disturbance in stress wave propagation in the bars, requiring appropriate interpretation of experimental data. In this study, we employed a modified Kolsky tension bar, newly developed at Sandia National Laboratories, Livermore, CA, to explore the dynamic tensile response of a 4330-V steel. The design of the new Kolsky tension bar has been presented at 2010 SEM Annual Conference [3]. Figures 1 and 2 show the actual photograph and schematic of the Kolsky tension bar, respectively. As shown in Fig. 2, the gun barrel is directly connected to the incident bar with a coupler. The cylindrical striker set inside the gun barrel is launched to impact on the end cap that is threaded into the open end of the gun barrel, producing a tension on the gun barrel and the incident bar.« less
Extension of the sasCIF format and its applications for data processing and deposition
Kachala, Michael; Westbrook, John; Svergun, Dmitri
2016-02-01
Recent advances in small-angle scattering (SAS) experimental facilities and data analysis methods have prompted a dramatic increase in the number of users and of projects conducted, causing an upsurge in the number of objects studied, experimental data available and structural models generated. To organize the data and models and make them accessible to the community, the Task Forces on SAS and hybrid methods for the International Union of Crystallography and the Worldwide Protein Data Bank envisage developing a federated approach to SAS data and model archiving. Within the framework of this approach, the existing databases may exchange information and providemore » independent but synchronized entries to users. At present, ways of exchanging information between the various SAS databases are not established, leading to possible duplication and incompatibility of entries, and limiting the opportunities for data-driven research for SAS users. In this work, a solution is developed to resolve these issues and provide a universal exchange format for the community, based on the use of the widely adopted crystallographic information framework (CIF). The previous version of the sasCIF format, implemented as an extension of the core CIF dictionary, has been available since 2000 to facilitate SAS data exchange between laboratories. The sasCIF format has now been extended to describe comprehensively the necessary experimental information, results and models, including relevant metadata for SAS data analysis and for deposition into a database. Processing tools for these files (sasCIFtools) have been developed, and these are available both as standalone open-source programs and integrated into the SAS Biological Data Bank, allowing the export and import of data entries as sasCIF files. Software modules to save the relevant information directly from beamline data-processing pipelines in sasCIF format are also developed. Lastly, this update of sasCIF and the relevant tools are an important step in the standardization of the way SAS data are presented and exchanged, to make the results easily accessible to users and to promote further the application of SAS in the structural biology community.« less
Vathsangam, Harshvardhan; Emken, Adar; Schroeder, E. Todd; Spruijt-Metz, Donna; Sukhatme, Gaurav S.
2011-01-01
This paper describes an experimental study in estimating energy expenditure from treadmill walking using a single hip-mounted triaxial inertial sensor comprised of a triaxial accelerometer and a triaxial gyroscope. Typical physical activity characterization using accelerometer generated counts suffers from two drawbacks - imprecison (due to proprietary counts) and incompleteness (due to incomplete movement description). We address these problems in the context of steady state walking by directly estimating energy expenditure with data from a hip-mounted inertial sensor. We represent the cyclic nature of walking with a Fourier transform of sensor streams and show how one can map this representation to energy expenditure (as measured by V O2 consumption, mL/min) using three regression techniques - Least Squares Regression (LSR), Bayesian Linear Regression (BLR) and Gaussian Process Regression (GPR). We perform a comparative analysis of the accuracy of sensor streams in predicting energy expenditure (measured by RMS prediction accuracy). Triaxial information is more accurate than uniaxial information. LSR based approaches are prone to outlier sensitivity and overfitting. Gyroscopic information showed equivalent if not better prediction accuracy as compared to accelerometers. Combining accelerometer and gyroscopic information provided better accuracy than using either sensor alone. We also analyze the best algorithmic approach among linear and nonlinear methods as measured by RMS prediction accuracy and run time. Nonlinear regression methods showed better prediction accuracy but required an order of magnitude of run time. This paper emphasizes the role of probabilistic techniques in conjunction with joint modeling of triaxial accelerations and rotational rates to improve energy expenditure prediction for steady-state treadmill walking. PMID:21690001
Baskan, O; Speetjens, M F M; Metcalfe, G; Clercx, H J H
2015-10-01
Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.
King, Nicholas B; Harper, Sam; Young, Meredith; Berry, Sarah C; Voigt, Kristin
2018-01-01
The Global Burden of Disease (GBD) project systematically assesses mortality, healthy life expectancy, and disability across 195 countries and territories, using the disability-adjusted life year (DALY). Disability weights in the DALY are based upon surveys that ask users to rate health states based on lay descriptions. We conducted an experimental study to examine whether the inclusion or removal of psychological, social, or familial implications from a health state description might affect individual judgments about disease severity, and thus relative disability weights. We designed a survey consisting of 36 paired descriptions in which information about plausible psychological, social, or familial implications of a health condition was either present or absent. Using a Web-based platform, we recruited 1,592 participants, who were assigned to one of two experimental groups, each of which were asked to assign a value to the health state description from 0 to 100 using a slider, with 0 as the "worst possible health" and 100 as the "best possible health." We tested five hypotheses: (1) the inclusion of psychological, social, or familial consequences in health state descriptions will reduce the average rating of a health state; (2) the effect will be stronger for diseases with lower disability weights (i.e., less severe diseases); (3) the effect will vary across the type of additional information added to the health state description; (4) the impact of adding information on familial consequences will be stronger for female than male; (5) the effect of additional consequences on ratings of health state descriptions will not differ by levels of completed education and age. On average, adding social, psychological, or familial consequences to the health state description lowered individual ratings of that description by 0.78 points. The impact of adding information had a stronger impact on ratings of the least severe conditions, reducing average ratings in this category by 1.67 points. Addition of information about child-rearing had the strongest impact, reducing average ratings by 2.09 points. We found little evidence that the effect of adding information on ratings of health descriptions varied by gender, education, or age. Including information about health states not directly related to major functional consequences or symptoms, particularly with respect to child-rearing and specifically for descriptions of less severe conditions, can lead to lower ratings of health. However, this impact was not consistent across all conditions or types of information, and was most pronounced for inclusion of information about child-rearing, and among the least severe conditions.
Quantum technologies with hybrid systems
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-01-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558
Quantum technologies with hybrid systems.
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-31
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Quantum technologies with hybrid systems
NASA Astrophysics Data System (ADS)
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Link prediction with node clustering coefficient
NASA Astrophysics Data System (ADS)
Wu, Zhihao; Lin, Youfang; Wang, Jing; Gregory, Steve
2016-06-01
Predicting missing links in incomplete complex networks efficiently and accurately is still a challenging problem. The recently proposed Cannistrai-Alanis-Ravai (CAR) index shows the power of local link/triangle information in improving link-prediction accuracy. Inspired by the idea of employing local link/triangle information, we propose a new similarity index with more local structure information. In our method, local link/triangle structure information can be conveyed by clustering coefficient of common-neighbors directly. The reason why clustering coefficient has good effectiveness in estimating the contribution of a common-neighbor is that it employs links existing between neighbors of a common-neighbor and these links have the same structural position with the candidate link to this common-neighbor. In our experiments, three estimators: precision, AUP and AUC are used to evaluate the accuracy of link prediction algorithms. Experimental results on ten tested networks drawn from various fields show that our new index is more effective in predicting missing links than CAR index, especially for networks with low correlation between number of common-neighbors and number of links between common-neighbors.
Quantum storage of orbital angular momentum entanglement in cold atomic ensembles
NASA Astrophysics Data System (ADS)
Shi, Bao-Sen; Ding, Dong-Sheng; Zhang, Wei
2018-02-01
Electromagnetic waves have both spin momentum and orbital angular momentum (OAM). Light carrying OAM has broad applications in micro-particle manipulation, high-precision optical metrology, and potential high-capacity optical communications. In the concept of quantum information, a photon encoded with information in its OAM degree of freedom enables quantum networks to carry much more information and increase their channel capacity greatly compared with those of current technology because of the inherent infinite dimensions for OAM. Quantum memories are indispensable to construct quantum networks. Storing OAM states has attracted considerable attention recently, and many important advances in this direction have been achieved during the past few years. Here we review recent experimental realizations of quantum memories using OAM states, including OAM qubits and qutrits at true single photon level, OAM states entangled in a two-dimensional or a high-dimensional space, hyperentanglement and hybrid entanglement consisting of OAM and other degree of freedom in a physical system. We believe that all achievements described here are very helpful to study quantum information encoded in a high-dimensional space.
Encoding photonic angular momentum information onto surface plasmon polaritons with plasmonic lens.
Liu, Aiping; Rui, Guanghao; Ren, Xifeng; Zhan, Qiwen; Guo, Guangcan; Guo, Guoping
2012-10-22
Both spin angular momentum (SAM) and orbital angular momentum (OAM) can be used to carry information in classical optics and quantum optics. In this paper, the encoding of angular momentum (AM) information of photons onto surface plasmon polaritons (SPPs) is demonstrated using a nano-ring plasmonic lens. Near-field energy distribution on the metal surface is measured using a near-field scanning optical microscope (NSOM) when the plasmonic lens is excited by photons with different combinations of SAM and OAM. It is found that both the SAM and OAM can influence the near field energy distribution of SPPs. More interestingly, numerical and experimental studies reveal that the energy distribution on the plasmonic lens surface is determined by the absolute value of the total AM. This gives direct evidences that SPPs can be encoded with the photonic SAM and OAM information simultaneously and the spin degeneracy of the photons can be removed using the interactions between photonic OAM and plasmonic lens. The findings are useful not only for the fundamental understanding of the photonic AM but also for the future design of plasmonic quantum optics devices and systems.
a Context-Aware Tourism Recommender System Based on a Spreading Activation Method
NASA Astrophysics Data System (ADS)
Bahramian, Z.; Abbaspour, R. Ali; Claramunt, C.
2017-09-01
Users planning a trip to a given destination often search for the most appropriate points of interest location, this being a non-straightforward task as the range of information available is very large and not very well structured. The research presented by this paper introduces a context-aware tourism recommender system that overcomes the information overload problem by providing personalized recommendations based on the user's preferences. It also incorporates contextual information to improve the recommendation process. As previous context-aware tourism recommender systems suffer from a lack of formal definition to represent contextual information and user's preferences, the proposed system is enhanced using an ontology approach. We also apply a spreading activation technique to contextualize user preferences and learn the user profile dynamically according to the user's feedback. The proposed method assigns more effect in the spreading process for nodes which their preference values are assigned directly by the user. The results show the overall performance of the proposed context-aware tourism recommender systems by an experimental application to the city of Tehran.
Hand gesture guided robot-assisted surgery based on a direct augmented reality interface.
Wen, Rong; Tay, Wei-Liang; Nguyen, Binh P; Chng, Chin-Boon; Chui, Chee-Kong
2014-09-01
Radiofrequency (RF) ablation is a good alternative to hepatic resection for treatment of liver tumors. However, accurate needle insertion requires precise hand-eye coordination and is also affected by the difficulty of RF needle navigation. This paper proposes a cooperative surgical robot system, guided by hand gestures and supported by an augmented reality (AR)-based surgical field, for robot-assisted percutaneous treatment. It establishes a robot-assisted natural AR guidance mechanism that incorporates the advantages of the following three aspects: AR visual guidance information, surgeon's experiences and accuracy of robotic surgery. A projector-based AR environment is directly overlaid on a patient to display preoperative and intraoperative information, while a mobile surgical robot system implements specified RF needle insertion plans. Natural hand gestures are used as an intuitive and robust method to interact with both the AR system and surgical robot. The proposed system was evaluated on a mannequin model. Experimental results demonstrated that hand gesture guidance was able to effectively guide the surgical robot, and the robot-assisted implementation was found to improve the accuracy of needle insertion. This human-robot cooperative mechanism is a promising approach for precise transcutaneous ablation therapy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
A proposed simulation method for directed self-assembly of nanographene
NASA Astrophysics Data System (ADS)
Geraets, J. A.; Baldwin, J. P. C.; Twarock, R.; Hancock, Y.
2017-09-01
A methodology for predictive kinetic self-assembly modeling of bottom-up chemical synthesis of nanographene is proposed. The method maintains physical transparency in using a novel array format to efficiently store molecule information and by using array operations to determine reaction possibilities. Within a minimal model approach, the parameter space for the bond activation energies (i.e. molecule functionalization) at fixed reaction temperature and initial molecule concentrations is explored. Directed self-assembly of nanographene from functionalized tetrabenzanthracene and benzene is studied with regions in the activation energy phase-space showing length-to-width ratio tunability. The degree of defects and reaction reproducibility in the simulations is also determined, with the rate of functionalized benzene addition providing additional control of the dimension and quality of the nanographene. Comparison of the reaction energetics to available density functional theory data suggests the synthesis may be experimentally tenable using aryl-halide cross-coupling and noble metal surface-assisted catalysis. With full access to the intermediate reaction network and with dynamic coupling to density functional theory-informed tight-binding simulation, the method is proposed as a computationally efficient means towards detailed simulation-driven design of new nanographene systems.
Retrieving the axial position of fluorescent light emitting spots by shearing interferometry
NASA Astrophysics Data System (ADS)
Schindler, Johannes; Schau, Philipp; Brodhag, Nicole; Frenner, Karsten; Osten, Wolfgang
2016-12-01
A method for the depth-resolved detection of fluorescent radiation based on imaging of an interference pattern of two intersecting beams and shearing interferometry is presented. The illumination setup provides the local addressing of the excitation of fluorescence and a coarse confinement of the excitation volume in axial and lateral directions. The reconstruction of the depth relies on the measurement of the phase of the fluorescent wave fronts. Their curvature is directly related to the distance of a source to the focus of the imaging system. Access to the phase information is enabled by a lateral shearing interferometer based on a Michelson setup. This allows the evaluation of interference signals even for spatially and temporally incoherent light such as emitted by fluorophors. An analytical signal model is presented and the relations for obtaining the depth information are derived. Measurements of reference samples with different concentrations and spatial distributions of fluorophors and scatterers prove the experimental feasibility of the method. In a setup optimized for flexibility and operating in the visible range, sufficiently large interference signals are recorded for scatterers placed in depths in the range of hundred micrometers below the surface in a material with scattering properties comparable to dental enamel.
Retrieving the axial position of fluorescent light emitting spots by shearing interferometry.
Schindler, Johannes; Schau, Philipp; Brodhag, Nicole; Frenner, Karsten; Osten, Wolfgang
2016-12-01
A method for the depth-resolved detection of fluorescent radiation based on imaging of an interference pattern of two intersecting beams and shearing interferometry is presented. The illumination setup provides the local addressing of the excitation of fluorescence and a coarse confinement of the excitation volume in axial and lateral directions. The reconstruction of the depth relies on the measurement of the phase of the fluorescent wave fronts. Their curvature is directly related to the distance of a source to the focus of the imaging system. Access to the phase information is enabled by a lateral shearing interferometer based on a Michelson setup. This allows the evaluation of interference signals even for spatially and temporally incoherent light such as emitted by fluorophors. An analytical signal model is presented and the relations for obtaining the depth information are derived. Measurements of reference samples with different concentrations and spatial distributions of fluorophors and scatterers prove the experimental feasibility of the method. In a setup optimized for flexibility and operating in the visible range, sufficiently large interference signals are recorded for scatterers placed in depths in the range of hundred micrometers below the surface in a material with scattering properties comparable to dental enamel.
Studies of fission fragment yields via high-resolution γ-ray spectroscopy
NASA Astrophysics Data System (ADS)
Wilson, J. N.; Lebois, M.; Qi, L.; Amador-Celdran, P.; Bleuel, D.; Briz, J. A.; Carroll, R.; Catford, W.; Witte, H. De; Doherty, D. T.; Eloirdi, R.; Georgiev, G.; Gottardo, A.; Goasduff, A.; Hadyñska-Klek, K.; Hauschild, K.; Hess, H.; Ingeberg, V.; Konstantinopoulos, T.; Ljungvall, J.; Lopez-Martens, A.; Lorusso, G.; Lozeva, R.; Lutter, R.; Marini, P.; Matea, I.; Materna, T.; Mathieu, L.; Oberstedt, A.; Oberstedt, S.; Panebianco, S.; Podolyak, Zs.; Porta, A.; Regan, P. H.; Reiter, P.; Rezynkina, K.; Rose, S. J.; Sahin, E.; Seidlitz, M.; Serot, O.; Shearman, R.; Siebeck, B.; Siem, S.; Smith, A. G.; Tveten, G. M.; Verney, D.; Warr, N.; Zeiser, F.; Zielinska, M.
2018-03-01
Precise spectroscopic information on the fast neutron induced fission of the 238U(n,f) reaction was recently gained using a new technique which involved coupling of the Miniball high resolution y-ray spectrometer and the LICORNE directional neutron source. The experiment allowed measurement of the isotopic fission yields for around 40 even-even nuclei at an incident neutron energy of around 2 MeV where yield data are very sparse. In addition spectroscopic information on very neutron-rich fission products was obtained. Results were compared to models, both the JEFF-3.1.1 data base and the GEF code, and large discrepancies for the S1 fission mode in the Sn/Mo isotope pair were discovered. This suggests that current models are overestimating the role played by spherical shell effects in fast neutron induced fission. In late 2017 and 2018 the nu-ball hybrid spectrometer will be constructed at the IPN Orsay to perform further experimental investigations with directional neutrons coupled to a powerful hybrid Ge/LaBr3 detector array. This will open up new possibilities for measurements of fission yields for fast-neutron-induced fission using the spectroscopic technique and will be complimentary to other methods being developed.
Uncertainty relations as Hilbert space geometry
NASA Technical Reports Server (NTRS)
Braunstein, Samuel L.
1994-01-01
Precision measurements involve the accurate determination of parameters through repeated measurements of identically prepared experimental setups. For many parameters there is a 'natural' choice for the quantum observable which is expected to give optimal information; and from this observable one can construct an Heinsenberg uncertainty principle (HUP) bound on the precision attainable for the parameter. However, the classical statistics of multiple sampling directly gives us tools to construct bounds for the precision available for the parameters of interest (even when no obvious natural quantum observable exists, such as for phase, or time); it is found that these direct bounds are more restrictive than those of the HUP. The implication is that the natural quantum observables typically do not encode the optimal information (even for observables such as position, and momentum); we show how this can be understood simply in terms of the Hilbert space geometry. Another striking feature of these bounds to parameter uncertainty is that for a large enough number of repetitions of the measurements all V quantum states are 'minimum uncertainty' states - not just Gaussian wave-packets. Thus, these bounds tell us what precision is achievable as well as merely what is allowed.
Yu, Kebing; Salomon, Arthur R
2009-12-01
Recently, dramatic progress has been achieved in expanding the sensitivity, resolution, mass accuracy, and scan rate of mass spectrometers able to fragment and identify peptides through MS/MS. Unfortunately, this enhanced ability to acquire proteomic data has not been accompanied by a concomitant increase in the availability of flexible tools allowing users to rapidly assimilate, explore, and analyze this data and adapt to various experimental workflows with minimal user intervention. Here we fill this critical gap by providing a flexible relational database called PeptideDepot for organization of expansive proteomic data sets, collation of proteomic data with available protein information resources, and visual comparison of multiple quantitative proteomic experiments. Our software design, built upon the synergistic combination of a MySQL database for safe warehousing of proteomic data with a FileMaker-driven graphical user interface for flexible adaptation to diverse workflows, enables proteomic end-users to directly tailor the presentation of proteomic data to the unique analysis requirements of the individual proteomics lab. PeptideDepot may be deployed as an independent software tool or integrated directly with our high throughput autonomous proteomic pipeline used in the automated acquisition and post-acquisition analysis of proteomic data.
Elucidation of Peptide-Directed Palladium Surface Structure for Biologically Tunable Nanocatalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedford, Nicholas M.; Ramezani-Dakhel, Hadi; Slocik, Joseph M.
Peptide-enabled synthesis of inorganic nanostructures represents an avenue to access catalytic materials with tunable and optimized properties. This is achieved via peptide complexity and programmability that is missing in traditional ligands for catalytic nanomaterials. Unfortunately, there is limited information available to correlate peptide sequence to particle structure and catalytic activity to date. As such, the application of peptide-enabled nanocatalysts remains limited to trial and error approaches. In this paper, a hybrid experimental and computational approach is introduced to systematically elucidate biomolecule-dependent structure/function relationships for peptide-capped Pd nanocatalysts. Synchrotron X-ray techniques were used to uncover substantial particle surface structural disorder, whichmore » was dependent upon the amino acid sequence of the peptide capping ligand. Nanocatalyst configurations were then determined directly from experimental data using reverse Monte Carlo methods and further refined using molecular dynamics simulation, obtaining thermodynamically stable peptide-Pd nanoparticle configurations. Sequence-dependent catalytic property differences for C-C coupling and olefin hydrogenation were then eluddated by identification of the catalytic active sites at the atomic level and quantitative prediction of relative reaction rates. This hybrid methodology provides a clear route to determine peptide-dependent structure/function relationships, enabling the generation of guidelines for catalyst design through rational tailoring of peptide sequences« less
From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper
NASA Astrophysics Data System (ADS)
Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal
2016-02-01
X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.
Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?
NASA Astrophysics Data System (ADS)
Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim
2014-11-01
Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).
Bypassing the energy-time uncertainty in time-resolved photoemission
NASA Astrophysics Data System (ADS)
Randi, Francesco; Fausti, Daniele; Eckstein, Martin
2017-03-01
The energy-time uncertainty is an intrinsic limit for time-resolved experiments imposing a tradeoff between the duration of the light pulses used in experiments and their frequency content. In standard time-resolved photoemission, this limitation maps directly onto a tradeoff between the time resolution of the experiment and the energy resolution that can be achieved on the electronic spectral function. Here we propose a protocol to disentangle the energy and time resolutions in photoemission. We demonstrate that dynamical information on all time scales can be retrieved from time-resolved photoemission experiments using suitably shaped light pulses of quantum or classical nature. As a paradigmatic example, we study the dynamical buildup of the Kondo peak, a narrow feature in the electronic response function arising from the screening of a magnetic impurity by the conduction electrons. After a quench, the electronic screening builds up on timescales shorter than the inverse width of the Kondo peak and we demonstrate that the proposed experimental scheme could be used to measure the intrinsic time scales of such electronic screening. The proposed approach provides an experimental framework to access the nonequilibrium response of collective electronic properties beyond the spectral uncertainty limit and will enable the direct measurement of phenomena such as excited Higgs modes and, possibly, the retarded interactions in superconducting systems.
The desert ant odometer: a stride integrator that accounts for stride length and walking speed.
Wittlinger, Matthias; Wehner, Rüdiger; Wolf, Harald
2007-01-01
Desert ants, Cataglyphis, use path integration as a major means of navigation. Path integration requires measurement of two parameters, namely, direction and distance of travel. Directional information is provided by a celestial compass, whereas distance measurement is accomplished by a stride integrator, or pedometer. Here we examine the recently demonstrated pedometer function in more detail. By manipulating leg lengths in foraging desert ants we could also change their stride lengths. Ants with elongated legs ('stilts') or shortened legs ('stumps') take larger or shorter strides, respectively, and misgauge travel distance. Travel distance is overestimated by experimental animals walking on stilts, and underestimated by animals walking on stumps - strongly indicative of stride integrator function in distance measurement. High-speed video analysis was used to examine the actual changes in stride length, stride frequency and walking speed caused by the manipulations of leg length. Unexpectedly, quantitative characteristics of walking behaviour remained almost unaffected by imposed changes in leg length, demonstrating remarkable robustness of leg coordination and walking performance. These data further allowed normalisation of homing distances displayed by manipulated animals with regard to scaling and speed effects. The predicted changes in homing distance are in quantitative agreement with the experimental data, further supporting the pedometer hypothesis.
Electroweak Symmetry Breaking and the Higgs Boson: Confronting Theories at Colliders
NASA Astrophysics Data System (ADS)
Azatov, Aleksandr; Galloway, Jamison
2013-01-01
In this review, we discuss methods of parsing direct information from collider experiments regarding the Higgs boson and describe simple ways in which experimental likelihoods can be consistently reconstructed and interfaced with model predictions in pertinent parameter spaces. We review prevalent scenarios for extending the electroweak symmetry breaking sector and emphasize their predictions for nonstandard Higgs phenomenology that could be observed in large hadron collider (LHC) data if naturalness is realized in particular ways. Specifically we identify how measurements of Higgs couplings can be used to imply the existence of new physics at particular scales within various contexts. The most dominant production and decay modes of the Higgs-like state observed in the early data sets have proven to be consistent with predictions of the Higgs boson of the Standard Model, though interesting directions in subdominant channels still exist and will require our careful attention in further experimental tests. Slightly anomalous rates in certain channels at the early LHC have spurred effort in model building and spectra analyses of particular theories, and we discuss these developments in some detail. Finally, we highlight some parameter spaces of interest in order to give examples of how the data surrounding the new state can most effectively be used to constrain specific models of weak scale physics.
Elucidation of peptide-directed palladium surface structure for biologically tunable nanocatalysts.
Bedford, Nicholas M; Ramezani-Dakhel, Hadi; Slocik, Joseph M; Briggs, Beverly D; Ren, Yang; Frenkel, Anatoly I; Petkov, Valeri; Heinz, Hendrik; Naik, Rajesh R; Knecht, Marc R
2015-05-26
Peptide-enabled synthesis of inorganic nanostructures represents an avenue to access catalytic materials with tunable and optimized properties. This is achieved via peptide complexity and programmability that is missing in traditional ligands for catalytic nanomaterials. Unfortunately, there is limited information available to correlate peptide sequence to particle structure and catalytic activity to date. As such, the application of peptide-enabled nanocatalysts remains limited to trial and error approaches. In this paper, a hybrid experimental and computational approach is introduced to systematically elucidate biomolecule-dependent structure/function relationships for peptide-capped Pd nanocatalysts. Synchrotron X-ray techniques were used to uncover substantial particle surface structural disorder, which was dependent upon the amino acid sequence of the peptide capping ligand. Nanocatalyst configurations were then determined directly from experimental data using reverse Monte Carlo methods and further refined using molecular dynamics simulation, obtaining thermodynamically stable peptide-Pd nanoparticle configurations. Sequence-dependent catalytic property differences for C-C coupling and olefin hydrogenation were then elucidated by identification of the catalytic active sites at the atomic level and quantitative prediction of relative reaction rates. This hybrid methodology provides a clear route to determine peptide-dependent structure/function relationships, enabling the generation of guidelines for catalyst design through rational tailoring of peptide sequences.
Time-lapse Mise-á-la-Masse measurements and modeling for tracer test monitoring in a shallow aquifer
NASA Astrophysics Data System (ADS)
Perri, Maria Teresa; De Vita, Pantaleone; Masciale, Rita; Portoghese, Ivan; Chirico, Giovanni Battista; Cassiani, Giorgio
2018-06-01
The main goal of this study is to evaluate the reliability of the Mise-á-la-Masse (MALM) technique associated with saline tracer tests for the characterization of groundwater flow direction and velocity. The experimental site is located in the upper part of the Alento River alluvial plain (Campania Region, Southern Italy). In this paper we present the hydrogeological setting, the experimental setup and the relevant field results. Subsequently, we compare those data against the simulated results obtained with a 3D resistivity model of the test area, coupled with a model describing the Advection - Dispersion equation for continuous tracer injection. In particular, we calculate a series of 3D forward solutions starting from a reference model, all derived from electrical tomography results, but taking into consideration different values of mean flow velocity and directions. Each electrical resistivity 3D model is used to produce synthetic voltage maps for MALM surveys. Finally, the synthetic MALM voltage maps are compared with the ones measured in the field in order to assess the information content of the MALM dataset with respect to the groundwater field characteristics. The results demonstrate that the information content of the MALM data is sufficient to define important characteristics of the aquifer geometry and properties. This work shows how a combination of three-dimensional time-lapse modeling of flow, tracer transport and electrical current can substantially contribute towards a quantitative interpretation of MALM measurements during a saline tracer test. This approach can thus revive the use of MALM as a practical, low cost field technique for tracer test monitoring and aquifer hydrodynamic characterization.
Lakatos, Gabriella; Gácsi, Márta; Topál, József; Miklósi, Adám
2012-03-01
The aim of the present investigation was to study the visual communication between humans and dogs in relatively complex situations. In the present research, we have modelled more lifelike situations in contrast to previous studies which often relied on using only two potential hiding locations and direct association between the communicative signal and the signalled object. In Study 1, we have provided the dogs with four potential hiding locations, two on each side of the experimenter to see whether dogs are able to choose the correct location based on the pointing gesture. In Study 2, dogs had to rely on a sequence of pointing gestures displayed by two different experimenters. We have investigated whether dogs are able to recognise an 'indirect signal', that is, a pointing toward a pointer. In Study 3, we have examined whether dogs can understand indirect information about a hidden object and direct the owner to the particular location. Study 1 has revealed that dogs are unlikely to rely on extrapolating precise linear vectors along the pointing arm when relying on human pointing gestures. Instead, they rely on a simple rule of following the side of the human gesturing. If there were more targets on the same side of the human, they showed a preference for the targets closer to the human. Study 2 has shown that dogs are able to rely on indirect pointing gestures but the individual performances suggest that this skill may be restricted to a certain level of complexity. In Study 3, we have found that dogs are able to localise the hidden object by utilising indirect human signals, and they are able to convey this information to their owner.
Carcagno, G J; Kemper, P
1988-04-01
The channeling demonstration sought to substitute community care for nursing home care to reduce long-term care costs and improve the quality of life of elderly clients and the family members and friends who care for them. Two interventions were tested, each in five sites; both had comprehensive case management at their core. One model added a small amount of additional funding for direct community services to fill the gaps in the existing system; the other substantially expanded coverage of community services regardless of categorical eligibility under existing programs. The demonstration was evaluated using a randomized experimental design to test the effects of channeling on use of community care, nursing homes, hospitals, and informal caregiving, and on measures of the quality of life of clients and their informal caregivers. Data were obtained from interviews with clients and informal caregivers; service use and cost records came from Medicare, Medicaid, channeling, and providers; and death records for an 18-month follow-up period were examined.
Leonidou, Chrysanthi; Panayiotou, Georgia
2018-08-01
According to the cognitive-behavioral model, illness anxiety is developed and maintained through biased processing of health-threatening information and maladaptive responses to such information. This study is a systematic review of research that attempted to validate central tenets of the cognitive-behavioral model regarding etiological and maintenance mechanisms in illness anxiety. Sixty-two studies, including correlational and experimental designs, were identified through a systematic search of databases and were evaluated for their quality. Outcomes were synthesized following a qualitative thematic approach under categories of theoretically driven mechanisms derived from the cognitive-behavioral model: attention, memory and interpretation biases, perceived awareness and inaccuracy in perception of somatic sensations, negativity bias, emotion dysregulation, and behavioral avoidance. Findings partly support the cognitive-behavioral model, but several of its hypothetical mechanisms only receive weak support due to the scarcity of relevant studies. Directions for future research are suggested based on identified gaps in the existing literature. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Starshynov, I.; Paniagua-Diaz, A. M.; Fayard, N.; Goetschy, A.; Pierrat, R.; Carminati, R.; Bertolotti, J.
2018-04-01
The propagation of monochromatic light through a scattering medium produces speckle patterns in reflection and transmission, and the apparent randomness of these patterns prevents direct imaging through thick turbid media. Yet, since elastic multiple scattering is fundamentally a linear and deterministic process, information is not lost but distributed among many degrees of freedom that can be resolved and manipulated. Here, we demonstrate experimentally that the reflected and transmitted speckle patterns are robustly correlated, and we unravel all the complex and unexpected features of this fundamentally non-Gaussian and long-range correlation. In particular, we show that it is preserved even for opaque media with thickness much larger than the scattering mean free path, proving that information survives the multiple scattering process and can be recovered. The existence of correlations between the two sides of a scattering medium opens up new possibilities for the control of transmitted light without any feedback from the target side, but using only information gathered from the reflected speckle.
Qubit Manipulations Techniques for Trapped-Ion Quantum Information Processing
NASA Astrophysics Data System (ADS)
Gaebler, John; Tan, Ting; Lin, Yiheng; Bowler, Ryan; Jost, John; Meier, Adam; Knill, Emanuel; Leibfried, Dietrich; Wineland, David; Ion Storage Team
2013-05-01
We report recent results on qubit manipulation techniques for trapped-ions towards scalable quantum information processing (QIP). We demonstrate a platform-independent benchmarking protocol for evaluating the performance of Clifford gates, which form a basis for fault-tolerant QIP. We report a demonstration of an entangling gate scheme proposed by Bermudez et al. [Phys. Rev. A. 85, 040302 (2012)] and achieve a fidelity of 0.974(4). This scheme takes advantage of dynamic decoupling which protects the qubit against dephasing errors. It can be applied directly on magnetic-field-insensitive states, and provides a number of simplifications in experimental implementation compared to some other entangling gates with trapped ions. We also report preliminary results on dissipative creation of entanglement with trapped-ions. Creation of an entangled pair does not require discrete logic gates and thus could reduce the level of quantum-coherent control needed for large-scale QIP. Supported by IARPA, ARO contract No. EAO139840, ONR, and the NIST Quantum Information Program.
Effective 3-D surface modeling for geographic information systems
NASA Astrophysics Data System (ADS)
Yüksek, K.; Alparslan, M.; Mendi, E.
2013-11-01
In this work, we propose a dynamic, flexible and interactive urban digital terrain platform (DTP) with spatial data and query processing capabilities of Geographic Information Systems (GIS), multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized Directional Replacement Policy (DRP) based buffer management scheme. Polyhedron structures are used in Digital Surface Modeling (DSM) and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g. X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.
Effective 3-D surface modeling for geographic information systems
NASA Astrophysics Data System (ADS)
Yüksek, K.; Alparslan, M.; Mendi, E.
2016-01-01
In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.
The road to embryologically based dose-response models.
Kavlock, R J; Setzer, R W
1996-01-01
The goal of researchers working in the area of developmental toxicology is to prevent adverse reproductive outcomes (early pregnancy loss, birth defects, reduced birth weight, and altered functional development) in humans due to exposures to environmental contaminants, therapeutic drugs, and other factors. To best achieve that goal, it is important that relevant information be gathered and assimilated in the risk assessment process. One of the major challenges of improved risk assessment is to better use all pertinent biological and mechanistic information. This may be done qualitatively (e.g., demonstrating that the experimental model is not appropriate for extrapolation purposes); semiquantitatively (using information to reduce the degree of uncertainty present under default extrapolation procedures), or quantitatively (formally describing the relationships between exposure and adverse outcome in mathematical forms, including components that directly reflect individual steps in the overall progression of toxicity). In this paper we review the recent advances in the risk assessment process for developmental toxicants and hypothesize on future directions that may revolutionize our thinking in this area. The road to these changes sometimes appears to be a well-mapped course on a relatively smooth surface; at other times the path is bumpy and obscure, while at still other times it is only a wish in the eye of the engineer to cross an uncharted and rugged environment. Images Figure 11. A Figure 11. B PMID:8722115
Multiple Types of Memory and Everyday Functional Assessment in Older Adults
Beaver, Jenna
2017-01-01
Abstract Objective Current proxy measures for assessing everyday functioning (e.g., questionnaires, performance-based measures, and direct observation) show discrepancies in their rating of functional status. The present study investigated the relationship between multiple proxy measures of functional status and content memory (i.e., memory for information), temporal order memory, and prospective memory in an older adult sample. Method A total of 197 community-dwelling older adults who did (n = 45) or did not meet (n = 152) criteria for mild cognitive impairment (MCI), completed six different assessments of functional status (two questionnaires, two performance-based tasks, and two direct observation tasks) as well as experimental measures of content memory, prospective memory, and temporal order memory. Results After controlling for demographics and content memory, the temporal order and prospective memory measures explained a significant amount of variance in all proxy functional status measures. When all variables were entered into the regression analyses, content memory and prospective memory were found to be significant predictors of all measures of functional status, whereas temporal order memory was a significant predictor for the questionnaire and direct observation measures, but not performance-based measures. Conclusion The results suggest that direct observation and questionnaire measures may be able to capture components of everyday functioning that require context and temporal sequencing abilities, such as multi-tasking, that are not as well captured in many current laboratory performance-based measures of functional status. Future research should aim to inform the development and use of maximally effective and valid proxy measures of functional ability. PMID:28334170
Soltanipour, Asieh; Sadri, Saeed; Rabbani, Hossein; Akhlaghi, Mohammad Reza
2015-01-01
This paper presents a new procedure for automatic extraction of the blood vessels and optic disk (OD) in fundus fluorescein angiogram (FFA). In order to extract blood vessel centerlines, the algorithm of vessel extraction starts with the analysis of directional images resulting from sub-bands of fast discrete curvelet transform (FDCT) in the similar directions and different scales. For this purpose, each directional image is processed by using information of the first order derivative and eigenvalues obtained from the Hessian matrix. The final vessel segmentation is obtained using a simple region growing algorithm iteratively, which merges centerline images with the contents of images resulting from modified top-hat transform followed by bit plane slicing. After extracting blood vessels from FFA image, candidates regions for OD are enhanced by removing blood vessels from the FFA image, using multi-structure elements morphology, and modification of FDCT coefficients. Then, canny edge detector and Hough transform are applied to the reconstructed image to extract the boundary of candidate regions. At the next step, the information of the main arc of the retinal vessels surrounding the OD region is used to extract the actual location of the OD. Finally, the OD boundary is detected by applying distance regularized level set evolution. The proposed method was tested on the FFA images from angiography unit of Isfahan Feiz Hospital, containing 70 FFA images from different diabetic retinopathy stages. The experimental results show the accuracy more than 93% for vessel segmentation and more than 87% for OD boundary extraction.
Neuroscience-related research in Ghana: a systematic evaluation of direction and capacity.
Quansah, Emmanuel; Karikari, Thomas K
2016-02-01
Neurological and neuropsychiatric diseases account for considerable healthcare, economic and social burdens in Ghana. In order to effectively address these burdens, appropriately-trained scientists who conduct high-impact neuroscience research will be needed. Additionally, research directions should be aligned with national research priorities. However, to provide information about current neuroscience research productivity and direction, the existing capacity and focus need to be identified. This would allow opportunities for collaborative research and training to be properly explored and developmental interventions to be better targeted. In this study, we sought to evaluate the existing capacity and direction of neuroscience-related research in Ghana. To do this, we examined publications reporting research investigations authored by scientists affiliated with Ghanaian institutions in specific areas of neuroscience over the last two decades (1995-2015). 127 articles that met our inclusion criteria were systematically evaluated in terms of research foci, annual publication trends and author affiliations. The most actively-researched areas identified include neurocognitive impairments in non-nervous system disorders, depression and suicide, epilepsy and seizures, neurological impact of substance misuse, and neurological disorders. These studies were mostly hospital and community-based surveys. About 60% of these articles were published in the last seven years, suggesting a recent increase in research productivity. However, data on experimental and clinical research outcomes were particularly lacking. We suggest that future investigations should focus on the following specific areas where information was lacking: large-scale disease epidemiology, effectiveness of diagnostic platforms and therapeutic treatments, and the genetic, genomic and molecular bases of diseases.
Soltanipour, Asieh; Sadri, Saeed; Rabbani, Hossein; Akhlaghi, Mohammad Reza
2015-01-01
This paper presents a new procedure for automatic extraction of the blood vessels and optic disk (OD) in fundus fluorescein angiogram (FFA). In order to extract blood vessel centerlines, the algorithm of vessel extraction starts with the analysis of directional images resulting from sub-bands of fast discrete curvelet transform (FDCT) in the similar directions and different scales. For this purpose, each directional image is processed by using information of the first order derivative and eigenvalues obtained from the Hessian matrix. The final vessel segmentation is obtained using a simple region growing algorithm iteratively, which merges centerline images with the contents of images resulting from modified top-hat transform followed by bit plane slicing. After extracting blood vessels from FFA image, candidates regions for OD are enhanced by removing blood vessels from the FFA image, using multi-structure elements morphology, and modification of FDCT coefficients. Then, canny edge detector and Hough transform are applied to the reconstructed image to extract the boundary of candidate regions. At the next step, the information of the main arc of the retinal vessels surrounding the OD region is used to extract the actual location of the OD. Finally, the OD boundary is detected by applying distance regularized level set evolution. The proposed method was tested on the FFA images from angiography unit of Isfahan Feiz Hospital, containing 70 FFA images from different diabetic retinopathy stages. The experimental results show the accuracy more than 93% for vessel segmentation and more than 87% for OD boundary extraction. PMID:26284170
Alexander, C. Scott; Ding, Jow -Lian; Asay, James Russell
2016-03-09
Magnetically applied pressure-shear (MAPS) is a new experimental technique that provides a platform for direct measurement of material strength at extreme pressures. The technique employs an imposed quasi-static magnetic field and a pulsed power generator that produces an intense current on a planar driver panel, which in turn generates high amplitude magnetically induced longitudinal compression and transverse shear waves into a planar sample mounted on the drive panel. In order to apply sufficiently high shear traction to the test sample, a high strength material must be used for the drive panel. Molybdenum is a potential driver material for the MAPSmore » experiment because of its high yield strength and sufficient electrical conductivity. To properly interpret the results and gain useful information from the experiments, it is critical to have a good understanding and a predictive capability of the mechanical response of the driver. In this work, the inelastic behavior of molybdenum under uniaxial compression and biaxial compression-shear ramp loading conditions is experimentally characterized. It is observed that an imposed uniaxial magnetic field ramped to approximately 10 T through a period of approximately 2500 μs and held near the peak for about 250 μs before being tested appears to anneal the molybdenum panel. In order to provide a physical basis for model development, a general theoretical framework that incorporates electromagnetic loading and the coupling between the imposed field and the inelasticity of molybdenum was developed. Based on this framework, a multi-axial continuum model for molybdenum under electromagnetic loading is presented. The model reasonably captures all of the material characteristics displayed by the experimental data obtained from various experimental configurations. Additionally, data generated from shear loading provide invaluable information not only for validating but also for guiding the development of the material model for multiaxial loadings.« less
Experimental quantum simulations of many-body physics with trapped ions.
Schneider, Ch; Porras, Diego; Schaetz, Tobias
2012-02-01
Direct experimental access to some of the most intriguing quantum phenomena is not granted due to the lack of precise control of the relevant parameters in their naturally intricate environment. Their simulation on conventional computers is impossible, since quantum behaviour arising with superposition states or entanglement is not efficiently translatable into the classical language. However, one could gain deeper insight into complex quantum dynamics by experimentally simulating the quantum behaviour of interest in another quantum system, where the relevant parameters and interactions can be controlled and robust effects detected sufficiently well. Systems of trapped ions provide unique control of both the internal (electronic) and external (motional) degrees of freedom. The mutual Coulomb interaction between the ions allows for large interaction strengths at comparatively large mutual ion distances enabling individual control and readout. Systems of trapped ions therefore exhibit a prominent system in several physical disciplines, for example, quantum information processing or metrology. Here, we will give an overview of different trapping techniques of ions as well as implementations for coherent manipulation of their quantum states and discuss the related theoretical basics. We then report on the experimental and theoretical progress in simulating quantum many-body physics with trapped ions and present current approaches for scaling up to more ions and more-dimensional systems.
USDA-ARS?s Scientific Manuscript database
The present experiment was conducted to study the effects of dietary Bacillus-based direct-fed microbials (DFMs) on cytokine expression patterns, intestinal intraepithelial lymphocyte (IEL) subpopulation, splenocyte proliferation, macrophage functions and resistance against experimental coccidiosis ...