New Cost-Effective Method for Long-Term Groundwater Monitoring Programs
2013-05-01
with a small-volume, gas -tight syringe (< 1 mL) and injected directly into the field-portable GC. Alternatively, the well headspace sample can be...according to manufacturers’ protocols. Isobutylene was used as the calibration standard for the PID. The standard gas mixtures were used for 3-point...monitoring wells are being evaluated: 1) direct headspace sampling, 2) sampling tube with gas permeable membrane, and 3) gas -filled passive vapor
Yu, Conrad M.; Koo, Jackson C.
2000-01-01
A system and method for preconcentrating, identifying, and quantifying chemical and biological substances is disclosed. An input valve directs a first volume of a sample gas to a surface acoustic wave (SAW) device. The SAW device preconcentrates and detects a mass of a substance within the sample gas. An output valve receives a second volume of the sample gas containing the preconcentrated substance from the SAW device and directs the second volume to a gas chromatograph (GC). The GC identifies the preconcentrated substance within the sample gas. A shunt valve exhausts a volume of the sample gas equal to the first volume minus the second volume away from the SAW device and the GC. The method of the present invention includes the steps of opening an input valve for passing a first volume of a sample gas to a SAW device; preconcentrating and detecting a mass of a substance within the sample gas using the SAW device; opening an output valve for passing a second volume of the sample gas containing the preconcentrated substance to a gas chromatograph (GC); and then identifying the preconcentrated substance within the sample gas using the GC.
Tabb, Michelle M; Batterman, Hollis J
2016-01-01
The Simplexa™ Group A Strep Direct assay is intended for use on the Integrated Cycler for detection of Group A Streptococcus (GAS) directly from throat swabs that have not undergone nucleic acid extraction. A prospective study of 1352 samples in 4 geographically diverse sites showed an overall prevalence of GAS of 15.4%. The assay demonstrated 97.4% sensitivity and 95.2% specificity versus culture. The positive predictive value compared to culture was 72.7%. However, 46 out of 57 discrepant samples were Group A Strep positive when tested using a bi-directional sequencing method illustrating the increased sensitivity of the assay compared to culture for detection of GAS. Rapid and accurate diagnosis of GAS allows for timely treatment to decrease complications of this prevalent organism that continues to cause substantial morbidity and mortality worldwide.
Method and apparatus for measuring the gas permeability of a solid sample
Carstens, D.H.W.
1984-01-27
The disclosure is directed to an apparatus and method for measuring the permeability of a gas in a sample. The gas is allowed to reach a steady flow rate through the sample. A measurable amount of the gas is collected during a given time period and then delivered to a sensitive quadrupole. The quadrupole signal, adjusted for background, is proportional to the amount of gas collected during the time period. The quadrupole can be calibrated with a standard helium leak. The gas can be deuterium and the sample can be polyvinyl alcohol.
Gas chromatography/matrix-isolation apparatus
Reedy, G.T.
1986-06-10
A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring. 10 figs.
Gas chromatography/matrix-isolation apparatus
Reedy, Gerald T.
1986-01-01
A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring.
Dual liquid and gas chromatograph system
Gay, D.D.
A chromatographic system is described that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a nontransparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extreme low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.
Dual liquid and gas chromatograph system
Gay, Don D.
1985-01-01
A chromatographic system that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a non-transparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extremely low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiskoot, R.J.J.
Accurate and reliable sampling systems are imperative when confirming natural gas' commercial value. Buyers and sellers need accurate hydrocarbon-composition information to conduct fair sale transactions. Because of poor sample extraction, preparation or analysis can invalidate the sale, more attention should be directed toward improving representative sampling. Consider all sampling components, i.e., gas types, line pressure and temperature, equipment maintenance and service needs, etc. The paper discusses gas sampling, design considerations (location, probe type, extraction devices, controller, and receivers), operating requirements, and system integration.
Wilson, Jordan L; Samaranayake, V A; Limmer, Matthew A; Schumacher, John G; Burken, Joel G
2017-12-19
Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman's coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.
Wilson, Jordan L.; Samaranayake, V.A.; Limmer, Matthew A.; Schumacher, John G.; Burken, Joel G.
2017-01-01
Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman’s coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in-planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.
Gras, Ronda; Luong, Jim; Shellie, Robert A
2015-11-17
We introduce a technique for the direct measurement of elemental mercury in light hydrocarbons such as natural gas. We determined elemental mercury at the parts-per-trillion level with high precision [<3% RSD (n = 20 manual injection)] using gas chromatography with ultraviolet photometric detection (GC-UV) at 254 nm. Our approach requires a small sample volume (1 mL) and does not rely on any form of sample preconcentration. The GC-UV separation employs an inert divinylbenzene porous layer open tubular column set to separate mercury from other components in the sample matrix. We incorporated a 10-port gas-sampling valve in the GC-UV system, which enables automated sampling, as well as back flushing capability to enhance system cleanliness and sample throughput. Total analysis time is <2 min, and the procedure is linear over a range of 2-83 μg/m(3) [correlation coefficient of R(2) = 0.998] with a measured recovery of >98% over this range.
Three field tests of a gas filter correlation radiometer
NASA Technical Reports Server (NTRS)
Campbell, S. A.; Casas, J. C.; Condon, E. P.
1977-01-01
Test flights to remotely measure nonurban carbon monoxide (CO) concentrations by gas filter correlation radiometry are discussed. The inferred CO concentrations obtained through use of the Gas Filter Correlation Radiometer (GFCR) agreed with independent measurements obtained by gas chromatography air sample bottle analysis to within 20 percent. The equipment flown on board the aircraft, the flight test procedure, the gas chromatograph direct air sampling procedure, and the GFCR data analysis procedure are reported.
Integrated Microfluidic Gas Sensors for Water Monitoring
NASA Technical Reports Server (NTRS)
Zhu, L.; Sniadecki, N.; DeVoe, D. L.; Beamesderfer, M.; Semancik, S.; DeVoe, D. L.
2003-01-01
A silicon-based microhotplate tin oxide (SnO2) gas sensor integrated into a polymer-based microfluidic system for monitoring of contaminants in water systems is presented. This device is designed to sample a water source, control the sample vapor pressure within a microchannel using integrated resistive heaters, and direct the vapor past the integrated gas sensor for analysis. The sensor platform takes advantage of novel technology allowing direct integration of discrete silicon chips into a larger polymer microfluidic substrate, including seamless fluidic and electrical interconnects between the substrate and silicon chip.
Method to make accurate concentration and isotopic measurements for small gas samples
NASA Astrophysics Data System (ADS)
Palmer, M. R.; Wahl, E.; Cunningham, K. L.
2013-12-01
Carbon isotopic ratio measurements of CO2 and CH4 provide valuable insight into carbon cycle processes. However, many of these studies, like soil gas, soil flux, and water head space experiments, provide very small gas sample volumes, too small for direct measurement by current constant-flow Cavity Ring-Down (CRDS) isotopic analyzers. Previously, we addressed this issue by developing a sample introduction module which enabled the isotopic ratio measurement of 40ml samples or smaller. However, the system, called the Small Sample Isotope Module (SSIM), does dilute the sample during the delivery with inert carrier gas which causes a ~5% reduction in concentration. The isotopic ratio measurements are not affected by this small dilution, but researchers are naturally interested accurate concentration measurements. We present the accuracy and precision of a new method of using this delivery module which we call 'double injection.' Two portions of the 40ml of the sample (20ml each) are introduced to the analyzer, the first injection of which flushes out the diluting gas and the second injection is measured. The accuracy of this new method is demonstrated by comparing the concentration and isotopic ratio measurements for a gas sampled directly and that same gas measured through the SSIM. The data show that the CO2 concentration measurements were the same within instrument precision. The isotopic ratio precision (1σ) of repeated measurements was 0.16 permil for CO2 and 1.15 permil for CH4 at ambient concentrations. This new method provides a significant enhancement in the information provided by small samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, Kimberly E; Gerdes, Kirk
2013-07-01
A new and complete GC–ICP-MS method is described for direct analysis of trace metals in a gas phase process stream. The proposed method is derived from standard analytical procedures developed for ICP-MS, which are regularly exercised in standard ICP-MS laboratories. In order to implement the method, a series of empirical factors were generated to calibrate detector response with respect to a known concentration of an internal standard analyte. Calibrated responses are ultimately used to determine the concentration of metal analytes in a gas stream using a semi-quantitative algorithm. The method was verified using a traditional gas injection from a GCmore » sampling valve and a standard gas mixture containing either a 1 ppm Xe + Kr mix with helium balance or 100 ppm Xe with helium balance. Data collected for Xe and Kr gas analytes revealed that agreement of 6–20% with the actual concentration can be expected for various experimental conditions. To demonstrate the method using a relevant “unknown” gas mixture, experiments were performed for continuous 4 and 7 hour periods using a Hg-containing sample gas that was co-introduced into the GC sample loop with the xenon gas standard. System performance and detector response to the dilute concentration of the internal standard were pre-determined, which allowed semi-quantitative evaluation of the analyte. The calculated analyte concentrations varied during the course of the 4 hour experiment, particularly during the first hour of the analysis where the actual Hg concentration was under predicted by up to 72%. Calculated concentration improved to within 30–60% for data collected after the first hour of the experiment. Similar results were seen during the 7 hour test with the deviation from the actual concentration being 11–81% during the first hour and then decreasing for the remaining period. The method detection limit (MDL) was determined for the mercury by injecting the sample gas into the system following a period of equilibration. The MDL for Hg was calculated as 6.8 μg · m -3. This work describes the first complete GC–ICP-MS method to directly analyze gas phase samples, and detailed sample calculations and comparisons to conventional ICP-MS methods are provided.« less
Can direct gas-liquid chromatography of clinical samples detect specific organisms?
Watt, B; Geddes, P A; Greenan, O A; Napier, S K; Mitchell, A
1982-01-01
A total of 1929 samples was analyzed by direct gas-liquid chromatography and the volatile fatty acid (VFA) patterns of the positive samples were compared with the results of culture. There was no correlation between any bacterial genus or species and the detailed VFA patterns although the presence of butyric or valeric acids, or both, was generally associated with the presence of anaerobes and that of acetic acid was generally associated with aerobic bacteria; however, the technique could not predict the nature of the subsequent bacterial isolate. There was also poor correlation between the VFA pattern in a given sample and the VFA pattern(s) of anaerobic bacteria subsequently isolated from that sample. PMID:7096589
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhdanov, E. Yu., E-mail: zhdanov@isp.nsc.ru; Pogosov, A. G.; Budantsev, M. V.
2017-01-15
The magnetoresistance of suspended semiconductor nanostructures with a two-dimensional electron gas structured by periodic square antidot lattices is studied. It is shown that the ballistic regime of electron transport is retained after detaching the sample from the substrate. Direct comparative analysis of commensurability oscillations of magnetoresistance and their temperature dependences in samples before and after suspension is performed. It is found that the temperature dependences are almost identical for non-suspended and suspended samples, whereas significant differences are observed in the nonlinear regime, caused by direct current passage. Commensurability oscillations in the suspended samples are more stable with respect to exposuremore » to direct current, which can be presumably explained by electron–electron interaction enhancement after detaching nanostructures from the high-permittivity substrate.« less
Church, Deirdre L; Lloyd, Tracie; Larios, Oscar; Gregson, Daniel B
2018-03-01
Diagnosis of bacterial pharyngitis is confirmed by detection of group A Streptococcus (GAS) in patient throat samples. Testing of throat samples has historically relied on culture, but new molecular methods allow much faster test turnaround time (i.e., same day versus 48 to 72 h for culture). Our laboratory uses the Hologic GAS Direct (GASD) assay for screening more than 125,000 throat samples per year. Simplexa GAS Direct is a new real-time quantitative PCR (qPCR) assay that does not require initial DNA extraction. Performance of Simplexa qPCR was compared to GASD. A total of 289 throat swabs were collected from patients attending ambulatory clinics in Calgary, Alberta, Canada. A total of 60 (20.8%) of the samples were initially GAS positive by either method: 54 by both methods, 4 by Simplex qPCR alone, and 2 by GASD alone. An in-house PCR using a unique GAS primer set was used to resolve the 6 discrepant results. Overall, GASD compared to Simplexa qPCR had a sensitivity, specificity, positive predictive value, and negative predictive value of 93.1% versus 100%, 100% versus 100%, 100% versus 100%, and 98.31% versus 100%, respectively. Implementation of Simplexa qPCR in our laboratory setting would cost more but allow the high sample volume to be reported in half the time and save 0.62 medical laboratory technician (MLT) full-time equivalent (FTE). In comparison to culture, the implementation of Simplexa qPCR would save 2.79 medical laboratory assistant (MLA) FTE plus 0.94 MLT FTE. Simplexa qPCR has improved performance and diagnostic efficiency in a high-volume laboratory compared to GASD for GAS detection in throat swabs. Copyright © 2018 American Society for Microbiology.
In-situ continuous water monitoring system
Thompson, Cyril V.; Wise, Marcus B.
1998-01-01
An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer.
In-situ continuous water monitoring system
Thompson, C.V.; Wise, M.B.
1998-03-31
An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer. 2 figs.
Gas and hydrogen isotopic analyses of volcanic eruption clouds in Guatemala sampled by aircraft
Rose, W.I.; Cadle, R.D.; Heidt, L.E.; Friedman, I.; Lazrus, A.L.; Huebert, B.J.
1980-01-01
Gas samples were collected by aircraft entering volcanic eruption clouds of three Guatemalan volcanoes. Gas chromatographic analyses show higher H2 and S gas contents in ash eruption clouds and lower H2 and S gases in vaporous gas plumes. H isotopic data demonstrate lighter isotopic distribution of water vapor in ash eruption clouds than in vaporous gas plumes. Most of the H2O in the vaporous plumes is probably meteoric. The data are the first direct gas analyses of explosive eruptive clouds, and demonstrate that, in spite of atmospheric admixture, useful compositional information on eruptive gases can be obtained using aircraft. ?? 1980.
Evolution of the Interstellar Gas Fraction Over Cosmic Time
NASA Astrophysics Data System (ADS)
Wiklind, Tommy; CANDELS
2018-01-01
Galaxies evolve by transforming gas into stars. The gas is acquired through accretion and mergers and is a highly intricate process where feed-back processes play an important role. Directly measuring the gas content in distant galaxies is, however, both complicated and time consuming. A direct observations involves either observing neutral hydrogen using the 21cm line or observing the molecular gas component using tracer molecules such as CO. The former method is impeded by man-made radio interference, and the latter is time consuming even with sensitive instruments such s ALMA. An indirect method is to observe the Raleigh-Jeans part of the dust SED and from this infer the gas mass. Here we present the results from a project using ALMA to measure the RJ part of the dust SED in a carefully selected sample of 70 galaxies at redshifts z=2-5. The galaxies are selected solely based on their redshift and stellar mass and therefore represents an unbiased sample. The stellar masses are selected using the MEAM method and thus the sample corresponds to progenitors of a z=0 galaxy of a particular stellar mass. Preliminary results show that the average gas fraction increases with redshift over the range z=2-3 in accordance with theoretical models, but at z≥4 the observed gas fraction is lower.
Al-Azmi, D; Snopek, B; Sayed, A M; Domanski, T
2004-01-01
Based on the different levels of solubility of radon gas in organic solvents and water, a bubbling system has been developed to transfer radon gas, dissolving naturally in water samples, to an organic solvent, i.e. olive oil, which is known to be a good solvent of radon gas. The system features the application of a fixed volume of bubbling air by introducing a fixed volume of water into a flask mounted above the system, to displace an identical volume of air from an air cylinder. Thus a gravitational flow of water is provided without the need for pumping. Then, the flushing air (radon-enriched air) is directed through a vial containing olive oil, to achieve deposition of the radon gas by another bubbling process. Following this, the vial (containing olive oil) is measured by direct use of gamma ray spectrometry, without the need of any chemical or physical processing of the samples. Using a standard solution of 226Ra/222Rn, a lowest measurable concentration (LMC) of radon in water samples of 9.4 Bq L(-1) has been achieved (below the maximum contaminant level of 11 Bq L(-1)).
Origins of hydrocarbon gas seeping out from offshore mud volcanoes in the Nile delta
NASA Astrophysics Data System (ADS)
Prinzhofer, Alain; Deville, Eric
2013-04-01
This paper discusses the origin of gas seepages (free gas or dissolved gas in ground water or brine) sampled with the Nautile submarine during the Nautinil cruise at the seafloor of the deep water area of the Nile turbiditic system on different mud volcanoes and brine pools. Generally, the gas is wet and includes C1, C2, C3, iC4, nC4, CO2. These gas samples show no evidence of biodegradation which is not the case of the gas present in the deep hydrocarbon accumulations at depth. It indicates that the gas expelled by the mud volcanoes is not issued from direct leakages from deep gas fields. The collected gas samples mainly have a thermogenic origin and show different maturities. Some samples show very high maturities indicating that these seepages are sourced from great depths, below the Messinian salt. Moreover, the different chemical compositions of the gas samples reflect not only differences in maturity but also the fact that the gas finds its origin in different deep source rocks. Carbon dioxide has an organic signature and cannot result from carbonate decomposition or mantle fluids. The crustal-derived radiogenic isotopes show that the analyzed gas samples have suffered a fractionation processes after the production of the radiogenic isotopes, due either to oil occurrence at depth interacting with the flux of gas, and/or fractionation during the fluid migration.
Metal-Assisted Laser-Induced Gas Plasma for the Direct Analysis of Powder Using Pulse CO2 Laser
NASA Astrophysics Data System (ADS)
Khumaeni, A.; Lie, Z. S.; Kurniawan, K. H.; Kagawa, K.
2017-01-01
Analysis of powder samples available in small quantities has been carried out using metal-assisted gas plasma by utilizing a transversely excited atmospheric (TEA) CO2 laser. The powder was homogeneously mixed with Si grease, and the mixed powder was painted on a metal subtarget. When a TEA CO2 laser was directly focused on the metal subtarget at atmospheric pressure of He gas, a high-temperature He gas plasma was induced. It is assumed that the powder particles were vaporized to be effectively atomized and excited in the gas plasma region. This method has been employed in the rapid analyses of elements in organic and inorganic powder samples present in small quantities. Detection of trace elements of Cr and Pb has been successfully made by using the supplement powder and loam soil, respectively. The detection limits of Pb in loam soil were approximately 20 mg/kg.
Analysis of volatile organic compounds. [trace amounts of organic volatiles in gas samples
NASA Technical Reports Server (NTRS)
Zlatkis, A. (Inventor)
1977-01-01
An apparatus and method are described for reproducibly analyzing trace amounts of a large number of organic volatiles existing in a gas sample. Direct injection of the trapped volatiles into a cryogenic percolum provides a sharply defined plug. Applications of the method include: (1) analyzing the headspace gas of body fluids and comparing a profile of the organic volatiles with standard profiles for the detection and monitoring of disease; (2) analyzing the headspace gas of foods and beverages and comparing the profile with standard profiles to monitor and control flavor and aroma; and (3) analyses for determining the organic pollutants in air or water samples.
Sridhar, M K; Carter, R; Moran, F; Banham, S W
1993-01-01
BACKGROUND--Accurate and reliable measurement of gas exchange during exercise has traditionally involved arterial cannulation. Non-invasive devices to estimate arterial oxygen (O2) and carbon dioxide (CO2) tensions are now available. A method has been devised and evaluated for measuring gas exchange during exercise with a combined transcutaneous O2 and CO2 electrode. METHODS--Symptom limited exercise tests were carried out in 24 patients reporting effort intolerance and breathlessness. Exercise testing was performed by bicycle ergometry with a specifically designed protocol involving gradual two minute workload increments. Arterial O2 and CO2 tensions were measured at rest and during exercise by direct blood sampling from an indwelling arterial cannula and a combined transcutaneous electrode heated to 45 degrees C. The transcutaneous system was calibrated against values obtained by direct arterial sampling before each test. RESULTS--In all tests the trend of gas exchange measured by the transcutaneous system was true to the trend measured from direct arterial sampling. In the 140 measurements the mean difference between the O2 tensions estimated by direct sampling and the transcutaneous method was 0.08 kPa (0.62 mm Hg, limits of agreement 4.42 and -3.38 mm Hg). The mean difference between the methods for CO2 was 0.02 kPa (0.22 mm Hg, limits of agreement 2.20 and -1.70 mm Hg). There was no morbidity associated with the use of the transcutaneous electrode heated to 45 degrees C. CONCLUSIONS--A combined transcutaneous O2 and CO2 electrode heated to 45 degrees C can be used to provide a reliable estimate of gas exchange during gradual incremental exercise in adults. PMID:8346496
40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1
Code of Federal Regulations, 2011 CFR
2011-07-01
... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...
40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1
Code of Federal Regulations, 2010 CFR
2010-07-01
... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...
40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1
Code of Federal Regulations, 2012 CFR
2012-07-01
... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...
Cacho, J I; Nicolás, J; Viñas, P; Campillo, N; Hernández-Córdoba, M
2016-12-02
A solventless analytical method is proposed for analyzing the compounds responsible for cork taint in cork stoppers. Direct sample introduction (DSI) is evaluated as a sample introduction system for the gas chromatography-mass spectrometry (GC-MS) determination of four haloanisoles (HAs) in cork samples. Several parameters affecting the DSI step, including desorption temperature and time, gas flow rate and other focusing parameters, were optimized using univariate and multivariate approaches. The proposed method shows high sensitivity and minimises sample handling, with detection limits of 1.6-2.6ngg -1 , depending on the compound. The suitability of the optimized procedure as a screening method was evaluated by obtaining decision limits (CCα) and detection capabilities (CCβ) for each analyte, which were found to be in 6.9-11.8 and 8.7-14.8ngg -1 , respectively, depending on the compound. Twenty-four cork samples were analysed, and 2,4,6-trichloroanisole was found in four of them at levels between 12.6 and 53ngg -1 . Copyright © 2016 Elsevier B.V. All rights reserved.
Mapping of local argon impingement on a virtual surface: an insight for gas injection during FEBID
NASA Astrophysics Data System (ADS)
Wanzenboeck, H. D.; Hochleitner, G.; Mika, J.; Shawrav, M. M.; Gavagnin, M.; Bertagnolli, E.
2014-12-01
During the last decades, focused electron beam induced deposition (FEBID) has become a successful approach for direct-write fabrication of nanodevices. Such a deposition technique relies on the precursor supply to the sample surface which is typically accomplished by a gas injection system using a tube-shaped injector nozzle. This precursor injection strategy implies a position-dependent concentration gradient on the surface, which affects the geometry and chemistry of the final nanodeposit. Although simulations already proposed the local distribution of nozzle-borne gas molecules impinging on the surface, this isolated step in the FEBID process has never been experimentally measured yet. This work experimentally investigates the local distribution of impinging gas molecules on the sample plane, isolating the direct impingement component from surface diffusion or precursor depletion by deposition. The experimental setup used in this work maps and quantifies the local impinging rate of argon gas over the sample plane. This setup simulates the identical conditions for a precursor molecule during FEBID. Argon gas was locally collected with a sniffer tube, which is directly connected to a residual gas analyzer for quantification. The measured distribution of impinging gas molecules showed a strong position dependence. Indeed, a 300-µm shift of the deposition area to a position further away from the impingement center spot resulted in a 50 % decrease in the precursor impinging rate on the surface area. With the same parameters, the precursor distribution was also simulated by a Monte Carlo software by Friedli and Utke and showed a good correlation between the empirical and the simulated precursor distribution. The results hereby presented underline the importance of controlling the local precursor flux conditions in order to obtain reproducible and comparable deposition results in FEBID.
Quantitation of dissolved gas content in emulsions and in blood using mass spectrometric detection
Grimley, Everett; Turner, Nicole; Newell, Clayton; Simpkins, Cuthbert; Rodriguez, Juan
2011-01-01
Quantitation of dissolved gases in blood or in other biological media is essential for understanding the dynamics of metabolic processes. Current detection techniques, while enabling rapid and convenient assessment of dissolved gases, provide only direct information on the partial pressure of gases dissolved in the aqueous fraction of the fluid. The more relevant quantity known as gas content, which refers to the total amount of the gas in all fractions of the sample, can be inferred from those partial pressures, but only indirectly through mathematical modeling. Here we describe a simple mass spectrometric technique for rapid and direct quantitation of gas content for a wide range of gases. The technique is based on a mass spectrometer detector that continuously monitors gases that are rapidly extracted from samples injected into a purge vessel. The accuracy and sample processing speed of the system is demonstrated with experiments that reproduce within minutes literature values for the solubility of various gases in water. The capability of the technique is further demonstrated through accurate determination of O2 content in a lipid emulsion and in whole blood, using as little as 20 μL of sample. The approach to gas content quantitation described here should greatly expand the range of animals and conditions that may be used in studies of metabolic gas exchange, and facilitate the development of artificial oxygen carriers and resuscitation fluids. PMID:21497566
Medical Findings and Toxicological Analysis in Infant Death by Balloon Gas Asphyxia: A Case Report.
Cuypers, Eva; Rosier, Elien; Loix, Sara; Develter, Wim; Van Den Bogaert, Wouter; Wuestenbergs, Joke; Van de Voorde, Wim; Tytgat, Jan
2017-05-01
In recent years, the increasing number of asphyxiation cases due to helium inhalation is remarkable. All described cases in the literature where diagnosed as suicide. In this article, however, we describe a triple infant homicide in which helium, as balloon gas, was administered to three young children after sedation causing asphyxiation and death through the medical findings and toxicological analysis. During autopsy, in addition to standard toxicological samples, gas samples from lungs as well as lung tissue itself were directly collected into headspace vials. Besides routine toxicological analysis, which revealed toxic levels of doxylamine, qualitative analysis on gas and lung samples was performed using headspace gas chromatography-mass spectrometry. As carrier gas, the commonly used helium was replaced by nitrogen. In gas samples from lungs of all three children, no helium was found. Nevertheless, lung tissue samples were found positive on helium. Therefore, sedation followed by asphyxia due to helium inhalation can strongly be assumed as the cause of death of all three children. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A new comprehensive database of global volcanic gas analyses
NASA Astrophysics Data System (ADS)
Clor, L. E.; Fischer, T. P.; Lehnert, K. A.; McCormick, B.; Hauri, E. H.
2013-12-01
Volcanic volatiles are the driving force behind eruptions, powerful indicators of magma provenance, present localized hazards, and have implications for climate. Studies of volcanic emissions are necessary for understanding volatile cycling from the mantle to the atmosphere. Gas compositions vary with volcanic activity, making it important to track their chemical variability over time. As studies become increasingly interdisciplinary, it is critical to have a mechanism to integrate decades of gas studies across disciplines. Despite the value of this research to a variety of fields, there is currently no integrated network to house all volcanic and hydrothermal gas data, making spatial, temporal, and interdisciplinary comparison studies time-consuming. To remedy this, we are working to establish a comprehensive database of volcanic gas emissions and compositions worldwide, as part of the Deep Carbon Observatory's DECADE (Deep Carbon Degassing) initiative. Volcanic gas data have been divided into two broad categories: 1) chemical analyses from samples collected directly at the volcanic source, and 2) measurements of gas concentrations and fluxes, such as remotely by mini-DOAS or satellite, or in-plume such as by multiGAS. The gas flux database effort is realized by the Global Volcanism Program of the Smithsonian Institution (abstract by Brendan McCormick, this meeting). The direct-sampling data is the subject of this presentation. Data from direct techniques include samples of gases collected at the volcanic source from fumaroles and springs, tephras analyzed for gas contents, filter pack samples of gases collected in a plume, and any other data types that involve collection of a sample. Data are incorporated into the existing framework of the Petrological Database, PetDB. Association with PetDB is advantageous as it will allow volcanic gas data to be linked to chemical data from lava or tephra samples, forming more complete ties between the eruptive products and the source magma. Eventually our goal is to have a seamless gas database that allows the user to easily access all gas data ever collected at volcanoes. This database will be useful in a variety of science applications: 1) correlating volcanic gas composition to volcanic activity; 2) establishing a characteristic gas composition or total volatile budget for a volcano or region in studies of global chemical cycles; 3) better quantifying the flux and source of volcanic carbon to the atmosphere. The World Organization of Volcano Observatories is populating a volcano monitoring database, WOVOdat, which centers on data collected during times of volcanic unrest for monitoring and hazard purposes. The focus of our database is to gain insight into volcanic degassing specifically, during both eruptive and quiescent times. Coordination of the new database with WOVOdat will allow comparison studies of gas compositions with seismic and other monitoring data during times of unrest, as well as promote comprehensive and cross-disciplinary questions about volcanic degassing.
Lu, Xinqiong; Yu, Quan; Zhang, Qian; Ni, Kai; Qian, Xiang; Tang, Fei; Wang, Xiaohao
2017-08-01
A miniature ion trap mass spectrometer with capillary direct sampling and vacuum ultraviolet photoionization source was developed to conduct trace analysis of organic compounds in liquids. Self-aspiration sampling is available where the samples are drawn into the vacuum chamber through a capillary with an extremely low flow rate (less than 1 μL/min), which minimizes sample consumption in each analysis to tens of micrograms. A pulsed gas-assisted inlet was designed and optimized to promote sample transmission in the tube and facilitate the cooling of ions, thereby improving instrument sensitivity. A limit of detection of 2 ppb could be achieved for 2,4-dimethylaniline in a methanol solution. The sampling system described in the present study is specifically suitable for a miniature photoionization ion trap mass spectrometer that can perform rapid and online analysis for liquid samples. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Lu, Xinqiong; Yu, Quan; Zhang, Qian; Ni, Kai; Qian, Xiang; Tang, Fei; Wang, Xiaohao
2017-08-01
A miniature ion trap mass spectrometer with capillary direct sampling and vacuum ultraviolet photoionization source was developed to conduct trace analysis of organic compounds in liquids. Self-aspiration sampling is available where the samples are drawn into the vacuum chamber through a capillary with an extremely low flow rate (less than 1 μL/min), which minimizes sample consumption in each analysis to tens of micrograms. A pulsed gas-assisted inlet was designed and optimized to promote sample transmission in the tube and facilitate the cooling of ions, thereby improving instrument sensitivity. A limit of detection of 2 ppb could be achieved for 2,4-dimethylaniline in a methanol solution. The sampling system described in the present study is specifically suitable for a miniature photoionization ion trap mass spectrometer that can perform rapid and online analysis for liquid samples.
Method for the detection of nitro-containing compositions using ultraviolet photolysis
Reagen, William K.; Lancaster, Gregory D.; Partin, Judy K.; Moore, Glenn A.
2000-01-01
A method for detecting nitro-containing compositions (e.g. nitrate/nitrite materials) in water samples and on solid substrates. In a water sample, ultraviolet light is applied to the sample so that dissolved nitro compositions therein will photolytically dissociate into gaseous nitrogen oxides (NO.sub.2(g) and/or NO.sub.(g)). A carrier gas is then introduced into the sample to generate a gaseous stream which includes the carrier gas combined with any gaseous nitrogen oxides. The carrier gas is thereafter directed into a detector. To detect nitro-compositions on solid substrates, ultraviolet light is applied thereto. A detector is then used to detect any gaseous nitrogen oxides which are photolytically generated during ultraviolet illumination. An optional carrier gas may be applied to the substrate during illumination to produce a gaseous stream which includes the carrier gas and any gaseous nitrogen oxides. The gaseous stream is then supplied to the detector.
Report of Operation FITZWILLIAM. Volume 1, Design of Operation and Summary of Results (REDACTED)
1948-01-01
storage tanks {400 lbs/sq in) to pel’mit the collection o£ sampleD or gas in the vicinity of the radio- active clouc1. P~dicective LUlC.lysis of -~he gas...Corps Furnish ground dust sampling units and wrap-around countera. 4. Navy Naval :Research Lab. (a) FW:-nish ground dust sampling units...direct as necessar,r the collection or air• craft filters and gaseou.s samples trca aircraft based at Km.falem. (6) Vector Destro,.er-M:lne...Swee
A study was conducted near the Raymark Superfund Site in Stratford, Connecticut to compare results of soil-gas sampling using dedicated vapor probes, a truck-mounted direct-push technique - the Geoprobe Post-Run-Tubing (PRT) system, and a hand-held rotary hammer technique - the A...
Towards Making Data Bases Practical for use in the Field
NASA Astrophysics Data System (ADS)
Fischer, T. P.; Lehnert, K. A.; Chiodini, G.; McCormick, B.; Cardellini, C.; Clor, L. E.; Cottrell, E.
2014-12-01
Geological, geochemical, and geophysical research is often field based with travel to remote areas and collection of samples and data under challenging environmental conditions. Cross-disciplinary investigations would greatly benefit from near real-time data access and visualisation within the existing framework of databases and GIS tools. An example of complex, interdisciplinary field-based and data intensive investigations is that of volcanologists and gas geochemists, who sample gases from fumaroles, hot springs, dry gas vents, hydrothermal vents and wells. Compositions of volcanic gas plumes are measured directly or by remote sensing. Soil gas fluxes from volcanic areas are measured by accumulation chamber and involve hundreds of measurements to calculate the total emission of a region. Many investigators also collect rock samples from recent or ancient volcanic eruptions. Structural, geochronological, and geophysical data collected during the same or related field campaigns complement these emissions data. All samples and data collected in the field require a set of metadata including date, time, location, sample or measurement id, and descriptive comments. Currently, most of these metadata are written in field notebooks and later transferred into a digital format. Final results such as laboratory analyses of samples and calculated flux data are tabulated for plotting, correlation with other types of data, modeling and finally publication and presentation. Data handling, organization and interpretation could be greatly streamlined by using digital tools available in the field to record metadata, assign an International Geo Sample Number (IGSN), upload measurements directly from field instruments, and arrange sample curation. Available data display tools such as GeoMapApp and existing data sets (PetDB, IRIS, UNAVCO) could be integrated to direct locations for additional measurements during a field campaign. Nearly live display of sampling locations, pictures, and comments could be used as an educational and outreach tool during sampling expeditions. Achieving these goals requires the integration of existing online data resources, with common access through a dedicated web portal.
Portable tester for determining gas content within a core sample
Garcia, Jr., Fred; Schatzel, Steven J.
1998-01-01
A portable tester is provided for reading and displaying the pressure of a gas released from a rock core sample stored within a sealed container and for taking a sample of the released pressurized gas for chemical analysis thereof for subsequent use in a modified direct method test which determines the volume of gas and specific type of gas contained within the core sample. The portable tester includes a pair of low and high range electrical pressure transducers for detecting a gas pressure; a pair of low and high range display units for displaying the pressure of the detected gas- a selector valve connected to the low and high range pressure transducers, a selector knob for selecting gas flow to one of the flow paths; control valve having an inlet connection to the sealed container, and outlets connected to: a sample gas canister, a second outlet port connected to the selector valve means for reading the pressure of the gas from the sealed container to either the low range or high range pressure transducers, and a connection for venting gas contained within the sealed container to the atmosphere. A battery is electrically connected to and supplies the power for operating the unit. The pressure transducers, display units, selector and control valve means and the battery is mounted to and housed within a protective casing for portable transport and use.
Portable tester for determining gas content within a core sample
Garcia, F. Jr.; Schatzel, S.J.
1998-04-21
A portable tester is provided for reading and displaying the pressure of a gas released from a rock core sample stored within a sealed container and for taking a sample of the released pressurized gas for chemical analysis thereof for subsequent use in a modified direct method test which determines the volume of gas and specific type of gas contained within the core sample. The portable tester includes a pair of low and high range electrical pressure transducers for detecting a gas pressure; a pair of low and high range display units for displaying the pressure of the detected gas; a selector valve connected to the low and high range pressure transducers and a selector knob for selecting gas flow to one of the flow paths; control valve having an inlet connection to the sealed container; and outlets connected to: a sample gas canister, a second outlet port connected to the selector valve means for reading the pressure of the gas from the sealed container to either the low range or high range pressure transducers, and a connection for venting gas contained within the sealed container to the atmosphere. A battery is electrically connected to and supplies the power for operating the unit. The pressure transducers, display units, selector and control valve means and the battery is mounted to and housed within a protective casing for portable transport and use. 5 figs.
Quantitation of dissolved gas content in emulsions and in blood using mass spectrometric detection.
Grimley, Everett; Turner, Nicole; Newell, Clayton; Simpkins, Cuthbert; Rodriguez, Juan
2011-06-01
Quantitation of dissolved gases in blood or in other biological media is essential for understanding the dynamics of metabolic processes. Current detection techniques, while enabling rapid and convenient assessment of dissolved gases, provide only direct information on the partial pressure of gases dissolved in the aqueous fraction of the fluid. The more relevant quantity known as gas content, which refers to the total amount of the gas in all fractions of the sample, can be inferred from those partial pressures, but only indirectly through mathematical modeling. Here we describe a simple mass spectrometric technique for rapid and direct quantitation of gas content for a wide range of gases. The technique is based on a mass spectrometer detector that continuously monitors gases that are rapidly extracted from samples injected into a purge vessel. The accuracy and sample processing speed of the system is demonstrated with experiments that reproduce within minutes literature values for the solubility of various gases in water. The capability of the technique is further demonstrated through accurate determination of O(2) content in a lipid emulsion and in whole blood, using as little as 20 μL of sample. The approach to gas content quantitation described here should greatly expand the range of animals and conditions that may be used in studies of metabolic gas exchange, and facilitate the development of artificial oxygen carriers and resuscitation fluids. Copyright © 2011 Elsevier B.V. All rights reserved.
Kim, OanhNguyenThi; Nghiem, Le Hoang; Phyu, Yin Latt
2002-03-01
Smoke samples, in both gas and particulate matter (PM) phases, of the three domestic stoves were collected using U.S. EPA modified method 5 and were analyzed for 17 PAH (HPLC-UV), acute toxicity (Microtox test), and mutagenicity (Amestest). The gas phase of smoke contributed > or = 95% of 17 PAH, > or = 96% of toxicity, and > or = 60% of mutagenicity. The highest emission factor of 17 PAH was from sawdust briquettes (260 mg/kg), but the highest emission of 11 genotoxic PAH was from kerosene (28 mg/kg). PM samples of kerosene smoke were not toxic. The total toxicity emission factor was the highest from sawdust, followed by kerosene and wood fuel. Smoke samples from the kerosene stove were not mutagenic. TA98 indicated the presence of both direct and indirect mutagenic activities in PM samples of sawdust and wood fuel but only direct mutagenic activities in the gas phase. TA100 detected only direct mutagenic activities in both PM and gas-phase samples. The higher mutagenicity emission factor was from wood fuel, 12 x 10(6) revertants/kg (TA100-S9) and 3.5 x 10(6) (TA98-S9), and lower from sawdust, 2.9 x 10(6) (TA100-S9) and 2.8 x 10(6) (TA98-S9). The low burning rate and high efficiency of a kerosene stove have resulted in the lowest PAH, toxicity, and mutagenicity emissions from daily cooking activities. The bioassays produced toxicity and mutagenicity results in correspondence with the PAH content of samples. The tests could be used for a quick assessment of potential health risks.
Spötl, Christoph
2005-09-01
The stable carbon isotopic composition of dissolved inorganic carbon (delta13C(DIC)) is traditionally determined using either direct precipitation or gas evolution methods in conjunction with offline gas preparation and measurement in a dual-inlet isotope ratio mass spectrometer. A gas evolution method based on continuous-flow technology is described here, which is easy to use and robust. Water samples (100-1500 microl depending on the carbonate alkalinity) are injected into He-filled autosampler vials in the field and analysed on an automated continuous-flow gas preparation system interfaced to an isotope ratio mass spectrometer. Sample analysis time including online preparation is 10 min and overall precision is 0.1 per thousand. This method is thus fast and can easily be automated for handling large sample batches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooke, M.; DeRoos, F.; Rising, B.
1984-10-01
The report gives results of an evaluation of the sampling and analysis of ultratrace levels of dibenzodioxins using EPA's recommended source sampling procedures (Modified Method 5 (MM5) train and the Source Assessment Sampling System--SASS). A gas-fired combustion system was used to simulate incineration flue gas, and a precision liquid injection system was designed for the program. The precision liquid injector was used to administer dilute solutions of 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TCDD) directly into a hot--260C (500F)--flue gas stream. Injections occurred continuously during the sampling episode so that very low gas-phase concentrations of 1,2,3,4-TCDD were continuously mixed with the flue gases. Recoveries weremore » measured for eight burn experiments. For all but one, the recoveries could be considered quantitative, demonstrating efficient collection by the EPA sampling systems. In one study, the components and connecting lines from a sampling device were analyzed separately to show where the 1,2,3,4-TCDD deposited in the train.« less
Field, Christopher R.; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C.; Rose-Pehrsson, Susan L.
2014-01-01
The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416
Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L
2014-07-25
The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples.
Code of Federal Regulations, 2013 CFR
2013-07-01
... measuring hydrogen sulfide in acid gas-Tutwiler Procedure? 60.5408 Section 60.5408 Protection of Environment... § 60.5408 What is an optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure... of titrating hydrogen sulfide in a gas sample directly with a standard solution of iodine. (b...
Code of Federal Regulations, 2014 CFR
2014-07-01
... measuring hydrogen sulfide in acid gas-Tutwiler Procedure? 60.5408 Section 60.5408 Protection of Environment... § 60.5408 What is an optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure... of titrating hydrogen sulfide in a gas sample directly with a standard solution of iodine. (b...
Thermophoretic separation of aerosol particles from a sampled gas stream
Postma, A.K.
1984-09-07
This disclosure relates to separation of aerosol particles from gas samples withdrawn from within a contained atmosphere, such as containment vessels for nuclear reactors or other process equipment where remote gaseous sampling is required. It is specifically directed to separation of dense aerosols including particles of any size and at high mass loadings and high corrosivity. The United States Government has rights in this invention pursuant to Contract DE-AC06-76FF02170 between the US Department of Energy and Westinghouse Electric Corporation.
Li, Weifeng; Yin, Zhibin; Cheng, Xiaoling; Hang, Wei; Li, Jianfeng; Huang, Benli
2015-05-05
Pulsed microdischarge employed as source for direct solid analysis was investigated in N2 environment at atmospheric pressure. Compared with direct current (DC) microdischarge, it exhibits advantages with respect to the ablation and emission of the sample. Comprehensive evidence, including voltage-current relationship, current density (j), and electron density (ne), suggests that pulsed microdischarge is in the arc regime while DC microdischarge belongs to glow. Capability in ablating metal samples demonstrates that pulsed microdischarge is a viable option for direct solid sampling because of the enhanced instantaneous energy. Using optical spectrometer, only common emission lines of N2 can be acquired in DC mode, whereas primary atomic and ionic lines of the sample are obtained in the case of pulsed mode. Calculations show a significant difference in N2 vibrational temperatures between DC and pulsed microdischarge. Combined with inductively coupled plasma mass spectrometry (ICPMS), pulsed microdischarge exhibits much better performances in calibration linearity and limits of detection (LOD) than those of DC discharge in direct analysis of samples of different matrices. To improve transmission efficiency, a mixture of Ar and N2 was employed as discharge gas as well as carrier gas in follow-up experiments, facilitating that LODs of most elements reached ng/g.
First Detection of Non-Chlorinated Organic Molecules Indigenous to a Martian Sample
NASA Technical Reports Server (NTRS)
Freissinet, C.; Glavin, D. P.; Buch, A.; Szopa, C.; Summons, R. E.; Eigenbrode, J. L.; Archer, P. D., Jr.; Brinckerhoff, W. B.; Brunner, A. E.; Cabane, M.;
2016-01-01
The Sample Analysis at Mars (SAM) instrument onboard Curiosity can perform pyrolysis of martian solid samples, and analyze the volatiles by direct mass spectrometry in evolved gas analysis (EGA) mode, or separate the components in the GCMS mode (coupling the gas chromatograph and the mass spectrometer instruments). In addition, SAM has a wet chemistry laboratory designed for the extraction and identification of complex and refractory organic molecules in the solid samples. The chemical derivatization agent used, N-methyl-N-tert-butyldimethylsilyl- trifluoroacetamide (MTBSTFA), was sealed inside seven Inconel metal cups present in SAM. Although none of these foil-capped derivatization cups have been punctured on Mars for a full wet chemistry experiment, an MTBSTFA leak was detected and the resultant MTBSTFA vapor inside the instrument has been used for a multi-sol MTBSTFA derivatization (MD) procedure instead of direct exposure to MTBSTFA liquid by dropping a solid sample directly into a punctured wet chemistry cup. Pyr-EGA, Pyr-GCMS and Der-GCMS experiments each led to the detection and identification of a variety of organic molecules in diverse formations of Gale Crater.
Method and apparatus for controlling gas evolution from chemical reactions
Skorpik, James R.; Dodson, Michael G.
1999-01-01
The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846.
Khumaeni, Ali; Ramli, Muliadi; Deguchi, Yoji; Lee, Yong Inn; Idris, Nasrullah; Kurniawan, Koo Hendrik; Lie, Tjung Jie; Kagawa, Kiichiro
2008-12-01
Taking advantage of the differences between the interactions of transversely excited atmospheric (TEA) CO(2) lasers with metal and with organic powder, a new technique for the direct analysis of food powder samples has been developed. In this technique, the powder samples were placed into a small hole with a diameter of 2 mm and a depth of 3 mm and covered by a metal mesh. The TEA CO(2) laser (1500 mJ, 200 ns) was focused on the powder sample surfaces, passing through the metal mesh, at atmospheric pressure in nitrogen gas. It is hypothesized that the small hole functions to confine the powder particles and suppresses the blowing-off of sample, while the metal mesh works as the source of electrons to initiate the strong gas breakdown plasma. The confined powder particles are then ablated by laser irradiation and the ablated particles move into the strong gas breakdown plasma region to be atomized and excited; this method cannot be applied for the case of Nd:YAG lasers because in such case the metal mesh itself was ablated by the laser irradiation. A quantitative analysis of a milk powder sample containing different concentrations of Ca was successfully demonstrated, resulting in a good linear calibration curve with high precision.
Continuous analysis of nitrogen dioxide in gas streams of plants
NASA Technical Reports Server (NTRS)
Durkin, W. T.; Kispert, R. C.
1969-01-01
Analyzer and sampling system continuously monitors nitrogen dioxide concentrations in the feed and tail gas streams of a facility recovering nitric acid. The system, using a direct calorimetric approach, makes use of readily available equipment and is flexible and reliable in operation.
NASA Astrophysics Data System (ADS)
Ganzha, V.; Ivshin, K.; Kammel, P.; Kravchenko, P.; Kravtsov, P.; Petitjean, C.; Trofimov, V.; Vasilyev, A.; Vorobyov, A.; Vznuzdaev, M.; Wauters, F.
2018-02-01
A series of muon experiments at the Paul Scherrer Institute in Switzerland deploy ultra-pure hydrogen active targets. A new gas impurity analysis technique was developed, based on conventional gas chromatography, with the capability to measure part-per-billion (ppb) traces of nitrogen and oxygen in hydrogen and deuterium. Key ingredients are a cryogenic admixture accumulation, a directly connected sampling system and a dedicated calibration setup. The dependence of the measured concentration on the sample volume was investigated, confirming that all impurities from the sample gas are collected in the accumulation column and measured with the gas chromatograph. The system was calibrated utilizing dynamic dilution of admixtures into the gas flow down to sub-ppb level concentrations. The total amount of impurities accumulated in the purification system during a three month long experimental run was measured and agreed well with the calculated amount based on the measured concentrations in the flow.
Multiplex gas chromatography for use in space craft
NASA Technical Reports Server (NTRS)
Valentin, J. R.
1985-01-01
Gas chromatography is a powerful technique for the analysis of gaseous mixtures. Some limitations in this technique still exist which can be alleviated with multiplex gas chromatography (MGC). In MGC, rapid multiple sample injections are made into the column without having to wait for one determination to be finished before taking a new sample. The resulting data must then be reduced using computational methods such as cross correlation. In order to efficiently perform multiplexgas chromatography, experiments in the laboratory and on board future space craft, skills, equipment, and computer software were developed. Three new techniques for modulating, i.e., changing, sample concentrations were demonstrated by using desorption, decomposition, and catalytic modulators. In all of them, the need for a separate gas stream as the carrier was avoided by placing the modulator at the head of the column to directly modulate a sample stream. Finally, the analysis of an environmental sample by multiplex chromatography was accomplished by employing silver oxide to catalytically modulate methane in ambient air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colby, Robert J.; Alsem, Daan H.; Liyu, Andrey V.
2015-06-01
The development of environmental transmission electron microscopy (TEM) has enabled in situ experiments in a gaseous environment with high resolution imaging and spectroscopy. Addressing scientific challenges in areas such as catalysis, corrosion, and geochemistry can require pressures much higher than the ~20 mbar achievable with a differentially pumped, dedicated environmental TEM. Gas flow stages, in which the environment is contained between two semi-transparent thin membrane windows, have been demonstrated at pressures of several atmospheres. While this constitutes significant progress towards operando measurements, the design of many current gas flow stages is such that the pressure at the sample cannot necessarilymore » be directly inferred from the pressure differential across the system. Small differences in the setup and design of the gas flow stage can lead to very different sample pressures. We demonstrate a method for measuring the gas pressure directly, using a combination of electron energy loss spectroscopy and TEM imaging. This method requires only two energy filtered TEM images, limiting the measurement time to a few seconds and can be performed during an ongoing experiment at the region of interest. This approach provides a means to ensure reproducibility between different experiments, and even between very differently designed gas flow stages.« less
Tans, Petrus P.; Lashof, Daniel A.
1986-01-01
A device for determining the relative composition of a sample of a gas by comparison of the Raman-scattered light of the sample with that of a known gas comprising: a means for passing a single light source through the unknown and the known gases, choppers to alternate the Raman-scattered light into a common light detection and measuring system, optical fiber networks for spatially mixing the resulting Raman scattered light from each sample and directing the mixed light to selective detectors, and a compiler to record the light intensity of each wavelength of Raman-scattered light as a function of the sample from which it originated.
NASA Astrophysics Data System (ADS)
Zhang, Ying; Mao, Xuefei; Liu, Jixin; Wang, Min; Qian, Yongzhong; Gao, Chengling; Qi, Yuehan
2016-04-01
In this work, a solid sampling device consisting of a tungsten coil trap, porous carbon vaporizer and on-line ashing furnace of a Ni-Cr coil was interfaced with inductively coupled plasma mass spectrometry (ICP-MS). A modified double gas circuit system was employed that was composed of carrier and supplemental gas lines controlled by separate gas mass flow controllers. For Cd determination in food samples using the assembled solid sampling ICP-MS, the optimal ashing and vaporization conditions, flow rate of the argon-hydrogen (Ar/H2) (v:v = 24:1) carrier gas and supplemental gas, and minimum sampling mass were investigated. Under the optimized conditions, the limit of quantification was 0.5 pg and the relative standard deviation was within a 10.0% error range (n = 10). Furthermore, the mean spiked recoveries for various food samples were 99.4%-105.9% (n = 6). The Cd concentrations measured by the proposed method were all within the certified values of the reference materials or were not significantly different (P > 0.05) from those of the microwave digestion ICP-MS method, demonstrating the good accuracy and precision of the solid sampling ICP-MS method for Cd determination in food samples.
Method and apparatus for controlling gas evolution from chemical reactions
Skorpik, J.R.; Dodson, M.G.
1999-05-25
The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846. 8 figs.
Peltonen, R; Ling, W H; Hänninen, O; Eerola, E
1992-01-01
The effect of an uncooked extreme vegan diet on fecal microflora was studied by direct stool sample gas-liquid chromatography (GLC) of bacterial cellular fatty acids and by quantitative bacterial culture by using classical microbiological techniques of isolation, identification, and enumeration of different bacterial species. Eighteen volunteers were divided randomly into two groups. The test group received an uncooked vegan diet for 1 month and a conventional diet of mixed Western type for the other month of the study. The control group consumed a conventional diet throughout the study period. Stool samples were collected. Bacterial cellular fatty acids were extracted directly from the stool samples and measured by GLC. Computerized analysis of the resulting fatty acid profiles was performed. Such a profile represents all bacterial cellular fatty acids in a sample and thus reflects its microflora and can be used to detect changes, differences, or similarities of bacterial flora between individual samples or sample groups. GLC profiles changed significantly in the test group after the induction and discontinuation of the vegan diet but not in the control group at any time, whereas quantitative bacterial culture did not detect any significant change in fecal bacteriology in either of the groups. The results suggest that an uncooked extreme vegan diet alters the fecal bacterial flora significantly when it is measured by direct stool sample GLC of bacterial fatty acids. PMID:1482187
Miranda, Nahieh Toscano; Sequinel, Rodrigo; Hatanaka, Rafael Rodrigues; de Oliveira, José Eduardo; Flumignan, Danilo Luiz
2017-04-01
Benzene, toluene, ethylbenzene, and xylenes are some of the most hazardous constituents found in commercial gasoline samples; therefore, these components must be monitored to avoid toxicological problems. We propose a new routine method of ultrafast gas chromatography coupled to flame ionization detection for the direct determination of benzene, toluene, ethylbenzene, and xylenes in commercial gasoline. This method is based on external standard calibration to quantify each compound, including the validation step of the study of linearity, detection and quantification limits, precision, and accuracy. The time of analysis was less than 3.2 min, with quantitative statements regarding the separation and quantification of all compounds in commercial gasoline samples. Ultrafast gas chromatography is a promising alternative method to official analytical techniques. Government laboratories could consider using this method for quality control. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ahro, M; Hakala, M; Kauppinen, J; Kallio, H
2001-10-01
Four apple wine fermentation processes have been observed by means of direct-inlet gas-phase FTIR spectroscopy. The apple juice concentrates were each fermented by two species of Saccharomyces cerevisiae starters, and the experiment was repeated. The development of the concentrations of 1-propanol, 4-methylpyridine, acetaldehyde, acetic acid, and ethyl acetate was monitored. Two different sampling methods were used--static headspace and direct injection of the must. The performance of the FTIR method is limited by the high ethanol concentration. It can be mathematically proven that the amount of sample can be selected so that any distortion due to ethanol is minimized. Headspace GC-MS was used for preliminary compound identification.
High-pressure liquid chromatography with direct injection of gas sample.
Astanin, Anton I; Baram, Grigory I
2017-06-09
The conventional method of using liquid chromatography to determine the composition of a gaseous mixture entails dissolving vapors in a suitable solvent, then obtaining a chromatograph of the resulting solution. We studied the direct introduction of a gaseous sample into a C18 reversed-phase column, followed by separation of the components by HPLC with UV detection. Since the chromatography was performed at high pressure, vapors readily dissolved in the eluent and the substances separated in the column as effectively as in liquid samples. Samples were injected into the column in two ways: a) through the valve without a flow stop; b) after stopping the flow and relieving all pressure. We showed that an injectable gas volume could reach 70% of column dead volume. When an injected gaseous sample volume was less than 10% of the column dead volume, the resulting peaks were symmetrical and the column efficiency was high. Copyright © 2017 Elsevier B.V. All rights reserved.
Winters, W.J.; Pecher, I.A.; Waite, W.F.; Mason, D.H.
2004-01-01
This paper presents results of shear strength and acoustic velocity (p-wave) measurements performed on: (1) samples containing natural gas hydrate from the Mallik 2L-38 well, Mackenzie Delta, Northwest Territories; (2) reconstituted Ottawa sand samples containing methane gas hydrate formed in the laboratory; and (3) ice-bearing sands. These measurements show that hydrate increases shear strength and p-wave velocity in natural and reconstituted samples. The proportion of this increase depends on (1) the amount and distribution of hydrate present, (2) differences, in sediment properties, and (3) differences in test conditions. Stress-strain curves from the Mallik samples suggest that natural gas hydrate does not cement sediment grains. However, stress-strain curves from the Ottawa sand (containing laboratory-formed gas hydrate) do imply cementation is present. Acoustically, rock physics modeling shows that gas hydrate does not cement grains of natural Mackenzie Delta sediment. Natural gas hydrates are best modeled as part of the sediment frame. This finding is in contrast with direct observations and results of Ottawa sand containing laboratory-formed hydrate, which was found to cement grains (Waite et al. 2004). It therefore appears that the microscopic distribution of gas hydrates in sediment, and hence the effect of gas hydrate on sediment physical properties, differs between natural deposits and laboratory-formed samples. This difference may possibly be caused by the location of water molecules that are available to form hydrate. Models that use laboratory-derived properties to predict behavior of natural gas hydrate must account for these differences.
Fucci, Nadia; Gambelunghe, Cristiana; Aroni, Kyriaki; Rossi, Riccardo
2014-12-01
Because levamisole has been increasingly found as a component of illicit drugs, a robust method to detect its presence in hair samples is needed. However, no systematic research on the detection of levamisole in hair samples has been published. The method presented here uses direct immersion solid-phase microextraction coupled with gas chromatography and mass spectrometry (DI-SPME-GC/MS) to detect levamisole and minor cocaine congeners in hair samples using a single-extraction method. Fifty hair samples taken in the last 4 years were obtained from cocaine abusers, along with controls taken from drug-free volunteers. Sampling was performed using direct immersion with a 30-μm polydimethylsiloxane fused silica/stainless steel fiber. Calibration curves were prepared by adding known amounts of analytes and deuterated internal standards to the hair samples taken from drug-free volunteers. This study focused on the adulterant levamisole and some minor cocaine congeners (tropococaine, norcocaine, and cocaethylene). Levamisole was detected in 38% of the hair samples analyzed; its concentration ranged from 0.2 to 0.8 ng/mg. The limit of quantification and limit of detection for levamisole, tropococaine, norcocaine, and cocaine were 0.2 and 0.1 ng/mg, respectively. DI-SPME-GC/MS is a sensitive and specific method to detect the presence of levamisole and cocaine congeners in hair samples.
CI as a Tracer of Gas Mass in Star Forming Galaxies
NASA Astrophysics Data System (ADS)
Bourne, Nathan
2018-01-01
Research in galaxy evolution aims to understand the cosmic industry of converting gas into stars. While SFR and stellar mass evolution are well constrained by current data, our knowledge of gas in galaxies throughout cosmic time is comparatively lacking. Almost all high-redshift gas measurements to date rely on CO as a tracer, but this is subject to systematic uncertainties due to optically thick emission and poorly constrained dependences on gas density, distribution and metallicity. Recently, some attention has been given to dust continuum as an alternative gas tracer, which shows promise for large samples but still requires accurate calibration on a direct gas tracer at high redshift. The [CI] 492GHz emission line could overcome much of the systematic uncertainty, as it is optically thin and has similar excitation conditions to CO(1-0), but observational limitations have so far restricted CI measurements to very small samples. I will presen t some new data from ALMA, for the first time testing the CI/dust correlation in a representative sample of star-forming galaxies at z=1, and discuss how future observations could be designed to more widely exploit this independent gas tracer.
Trefz, Phillip; Rösner, Lisa; Hein, Dietmar; Schubert, Jochen K; Miekisch, Wolfram
2013-04-01
Needle trap devices (NTDs) have shown many advantages such as improved detection limits, reduced sampling time and volume, improved stability, and reproducibility if compared with other techniques used in breath analysis such as solid-phase extraction and solid-phase micro-extraction. Effects of sampling flow (2-30 ml/min) and volume (10-100 ml) were investigated in dry gas standards containing hydrocarbons, aldehydes, and aromatic compounds and in humid breath samples. NTDs contained (single-bed) polymer packing and (triple-bed) combinations of divinylbenzene/Carbopack X/Carboxen 1000. Substances were desorbed from the NTDs by means of thermal expansion and analyzed by gas chromatography-mass spectrometry. An automated CO2-controlled sampling device for direct alveolar sampling at the point-of-care was developed and tested in pilot experiments. Adsorption efficiency for small volatile organic compounds decreased and breakthrough increased when sampling was done with polymer needles from a water-saturated matrix (breath) instead from dry gas. Humidity did not affect analysis with triple-bed NTDs. These NTDs showed only small dependencies on sampling flow and low breakthrough from 1-5 %. The new sampling device was able to control crucial parameters such as sampling flow and volume. With triple-bed NTDs, substance amounts increased linearly with increasing sample volume when alveolar breath was pre-concentrated automatically. When compared with manual sampling, automatic sampling showed comparable or better results. Thorough control of sampling and adequate choice of adsorption material is mandatory for application of needle trap micro-extraction in vivo. The new CO2-controlled sampling device allows direct alveolar sampling at the point-of-care without the need of any additional sampling, storage, or pre-concentration steps.
Design and research of built-in sample cell with multiple optical reflections
NASA Astrophysics Data System (ADS)
Liu, Jianhui; Wang, Shuyao; Lv, Jinwei; Liu, Shuyang; Zhou, Tao; Jia, Xiaodong
2017-10-01
In the field of trace gas measurement, with the characteristics of high sensitivity, high selectivity and rapid detection, tunable diode laser absorption spectroscopy (TDLAS) is widely used in industrial process and trace gas pollution monitoring. Herriott cell is a common form of multiple reflections of the sample cell, the structure of the Herriott cell is relatively simple, which be used to application of trace gas absorption spectroscopy. In the pragmatic situation, the gas components are complicated, and the continuous testing process for a long time can lead to different degree of pollution and corrosion for the reflector in the sample cell. If the mirror is not cleaned up in time, it will have a great influence on the detection accuracy. In order to solve this problem in the process of harsh environment detection, this paper presents a design of the built-in sample cell to avoid the contact of gas and the mirror, thereby effectively reducing corrosion pollution. If there is optical pollution, direct replacement of the built-in optical sample cell can easily to be disassembled, and cleaned. The advantage of this design is long optical path, high precision, cost savings and so on.
Organic petrology and coalbed gas content, Wilcox Group (Paleocene-Eocene), northern Louisiana
Hackley, Paul C.; Warwick, Peter D.; Breland, F. Clayton
2007-01-01
Wilcox Group (Paleocene–Eocene) coal and carbonaceous shale samples collected from four coalbed methane test wells in northern Louisiana were characterized through an integrated analytical program. Organic petrographic analyses, gas desorption and adsorption isotherm measurements, and proximate–ultimate analyses were conducted to provide insight into conditions of peat deposition and the relationships between coal composition, rank, and coalbed gas storage characteristics. The results of petrographic analyses indicate that woody precursor materials were more abundant in stratigraphically higher coal zones in one of the CBM wells, consistent with progradation of a deltaic depositional system (Holly Springs delta complex) into the Gulf of Mexico during the Paleocene–Eocene. Comparison of petrographic analyses with gas desorption measurements suggests that there is not a direct relationship between coal type (sensu maceral composition) and coalbed gas storage. Moisture, as a function of coal rank (lignite–subbituminous A), exhibits an inverse relationship with measured gas content. This result may be due to higher moisture content competing for adsorption space with coalbed gas in shallower, lower rank samples. Shallower (< 600 m) coal samples consistently are undersaturated with respect to CH4 adsorption isotherms; deeper (> 600 m) coal samples containing less moisture range from under- to oversaturated with respect to their CH4adsorption capacity.
Soil-Gas Radon Anomaly Map of an Unknown Fault Zone Area, Chiang Mai, Northern Thailand
NASA Astrophysics Data System (ADS)
Udphuay, S.; Kaweewong, C.; Imurai, W.; Pondthai, P.
2015-12-01
Soil-gas radon concentration anomaly map was constructed to help detect an unknown subsurface fault location in San Sai District, Chiang Mai Province, Northern Thailand where a 5.1-magnitude earthquake took place in December 2006. It was suspected that this earthquake may have been associated with an unrecognized active fault in the area. In this study, soil-gas samples were collected from eighty-four measuring stations covering an area of approximately 50 km2. Radon in soil-gas samples was quantified using Scintrex Radon Detector, RDA-200. The samplings were conducted twice: during December 2014-January 2015 and March 2015-April 2015. The soil-gas radon map obtained from this study reveals linear NNW-SSE trend of high concentration. This anomaly corresponds to the direction of the prospective fault system interpreted from satellite images. The findings from this study support the existence of this unknown fault system. However a more detailed investigation should be conducted in order to confirm its geometry, orientation and lateral extent.
Tans, P.P.; Lashof, D.A.
1986-12-23
A device is described for determining the relative composition of a sample of a gas by comparison of the Raman-scattered light of the sample with that of a known gas comprising: a means for passing a single light source through the unknown and the known gases, choppers to alternate the Raman-scattered light into a common light detection and measuring system, optical fiber networks for spatially mixing the resulting Raman scattered light from each sample and directing the mixed light to selective detectors, and a compiler to record the light intensity of each wavelength of Raman-scattered light as a function of the sample from which it originated. 6 figs.
ANALYSIS OF VOLATILES AND SEMIVOLATILES BY DIRECT AQUEOUS INJECTION
Direct aqueous injection analysis (DAI) with gas chromatographic separation and ion trap mass spectral detection was used to analyze aqueous samples for g/L levels of 54 volatile and semivolatile compounds, and problematic non-purgeables and non-extractables. The method reduces ...
NASA Astrophysics Data System (ADS)
Jin, Y.; Konno, Y.; Kida, M.; Nagao, J.
2014-12-01
Hydrate saturation of gas-hydrate bearing sediment is a key of gas production from natural gas-hydrate reservoir. Developable natural gas-hydrates by conventional gas/oil production apparatus almost exist in unconsolidated sedimental layer. Generally, hydrate saturations of sedimental samples are directly estimated by volume of gas generated from dissociation of gas hydrates in pore spaces, porosity data and volume of the sediments. Furthermore, hydrate saturation can be also assessed using velocity of P-wave through sedimental samples. Nevertheless, hydrate saturation would be changed by morphological variations (grain-coating, cementing and pore-filling model) of gas hydrates in pore spaces. Jin et al.[1,2] recently observed the O-H stretching bands of H2O molecules of methane hydrate in porous media using an attenuated total reflection IR (ATR-IR) spectra. They observed in situ hydrate formation/dissociation process in sandy samples (Tohoku Keisya number 8, grain size of ca. 110 μm). In this presentation, we present IR spectroscopy approach to in situ evaluation of hydrate saturation of pressured gas-hydrate sediments. This work was supported by funding from the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by the Ministry of Economy, Trade and Industry (METI), Japan. [1] Jin, Y.; Konno, Y.; Nagao, J. Energy Fules, 2012, 26, 2242-2247. [2] Jin, Y.; Oyama, H.; Nagao, J. Jpn. J. Appl. Phys. 2009, 48, No. 108001.
25 CFR 226.32 - Well records and reports.
Code of Federal Regulations, 2010 CFR
2010-04-01
... LANDS FOR OIL AND GAS MINING Requirements of Lessees § 226.32 Well records and reports. (a) Lessee shall... and character of oil, gas, or water in each formation, and the kind, weight, size, landed depth and... pressure or fluid sample surveys, temperature surveys, directional surveys, and the like; the materials and...
Hydrocarbon gases associated with permafrost in the Mackenzie Delta, Northwest Territories, Canada
Collett, T.S.; Dallimore, S.R.
1999-01-01
Molecular and isotopic analyses of core gas samples from 3 permafrost research core holes (92GSCTAGLU, 92GSCKUMAK, 92GSCUNIPKAT; sample core depths ranging from 0.36 to 413.82 m) in the Mackenzie Delta of the Northwest Territories of Canada reveal the presence of hydrocarbon gases from both microbial and thermogenic sources. Analyses of most headspace and blended gas samples from the ice-bonded permafrost portion of the core holes yielded C1/(C2 + C3) hydrocarbon gas ratios and CH4-C isotopic compositions (??13C CH4) indicative of microbially sourced CH4 gas. However, near the base of ice-bonded permafrost and into the underlying non-frozen stratigraphic section, an increase in ethane (C2) concentrations, decreases in C1/(C2 + C3) hydrocarbon gas ratios, and CH4-C isotopic (??13C CH4) data indicate the presence of hydrocarbon gases derived from a thermogenic source. The thermogenic gas below permafrost in the Mackenzie Delta likely migrated from deeper hydrocarbon accumulations and/or directly from thermally mature hydrocarbon source rocks.
Preparation of a pure molecular quantum gas.
Herbig, Jens; Kraemer, Tobias; Mark, Michael; Weber, Tino; Chin, Cheng; Nägerl, Hanns-Christoph; Grimm, Rudolf
2003-09-12
An ultracold molecular quantum gas is created by application of a magnetic field sweep across a Feshbach resonance to a Bose-Einstein condensate of cesium atoms. The ability to separate the molecules from the atoms permits direct imaging of the pure molecular sample. Magnetic levitation enables study of the dynamics of the ensemble on extended time scales. We measured ultralow expansion energies in the range of a few nanokelvin for a sample of 3000 molecules. Our observations are consistent with the presence of a macroscopic molecular matter wave.
Three-phase double-arc plasma for spectrochemical analysis of environmental samples.
Mohamed, M M; Ghatass, Z F; Shalaby, E A; Kotb, M M; El-Raey, M
2000-12-01
A new instrument, which uses a three-phase current to support a double-arc argon plasma torch for evaporation, atomization and excitation of solid or powder samples, is described. The sampling arc is ignited between the first and second electrode while the excitation arc is ignited between the second and third electrode. Aerosol generated from the sample (first electrode) is swept by argon gas, through a hole in the second electrode (carbon tubing electrode), into the excitation plasma. A tangential stream of argon gas is introduced through an inlet orifice as a coolant gas for the second electrode. This gas stream forces the excitation arc discharge to rotate reproducibly around the electrode surface. Discharge rotation increases the stability of the excitation plasma. Spectroscopic measurements are made directly in the current-carrying region of the excitation arc. An evaluation of each parameter influencing the device performance was performed. Analytical calibration curves were obtained for Fe, Al, K, and Pb. Finally, the present technique was applied for the analysis of environmental samples. The present method appears to have significant, low cost analytical utility for environmental measurements.
Kulkarni, Tejaswini; Aikawa, Chihiro; Nozawa, Takashi; Murase, Kazunori; Maruyama, Fumito; Nakagawa, Ichiro
2016-10-11
Group A Streptococcus (GAS; Streptococcus pyogenes) causes a range of mild to severe infections in humans. It can also colonize healthy persons asymptomatically. Therefore, it is important to study GAS carriage in healthy populations, as carriage of it might lead to subsequent disease manifestation, clonal spread in the community, and/or diversification of the organism. Throat swab culture is the gold standard method for GAS detection. Advanced culture-independent methods provide rapid and efficient detection of microorganisms directly from clinical samples. We investigated the presence of GAS in throat swab samples from healthy adults in Japan using culture-dependent and culture-independent methods. Two throat swab samples were collected from 148 healthy volunteers. One was cultured on selective medium, while total DNA extracted from the other was polymerase chain reaction (PCR) amplified with two GAS-specific primer pairs: one was a newly designed 16S rRNA-specific primer pair, the other a previously described V-Na + -ATPase primer pair. Although only 5 (3.4 %) of the 148 samples were GAS-positive by the culture-dependent method, 146 (98.6 %) were positive for the presence of GAS DNA by the culture-independent method. To obtain serotype information by emm typing, we performed nested PCR using newly designed emm primers. We detected the four different emm types in 25 (16.9 %) samples, and these differed from the common emm types associated with GAS associated diseases in Japan. The different emm types detected in the healthy volunteers indicate that the presence of unique emm types might be associated with GAS carriage. Our results suggest that culture-independent methods should be considered for profiling GAS in the healthy hosts, with a view to obtaining better understanding of these organisms. The GAS-specific primers (16S rRNA and V-Na + -ATPase) used in this study can be used to estimate the maximum potential GAS carriage in people.
Sheppard, D.S.; Janik, C.J.; Keith, T.E.C.
1992-01-01
Fumarolic gas samples collected in 1978 and 1979 from the stratovolcanoes Mount Griggs, Mount Mageik, and the 1953-68 SW Trident cone in Katmai National Park, Alaska, have been analysed and the results presented here. Comparison with recalculated analyses of samples collected from the Valley of Ten Thousand Smokes (VTTS) in 1917 and 1919 demonstrates differences between gases from the short-lived VTTS fumaroles, which were not directly magma related, and the fumaroles on the volcanic peaks. Fumarolic gases of Mount Griggs have an elevated total He content, suggesting a more direct deep crustal or mantle source for these gases than those from the other volcanoes. ?? 1992.
NASA Astrophysics Data System (ADS)
Kolzenburg, Stephan; Russell, Kelly
2015-04-01
Gas-permeability plays a governing role in the pre-explosive pressurization of volcanic edifices. Pressurization may only occur once the total volume flux of gases emitted by an underlying magmatic or hydrothermal source exceeds the flow capacity of the permeable pathways present in the edifice. We have measured the physical properties (strain, porosity, permeability and ultrasonic wave velocities) of breadcrust bombs recovered from the deposits of the 2350 B.P. eruption of Mt Meager, BC, Canada. These rocks represent a conduit-infilling pyroclastic breccia that underwent various degrees of welding and deformation and present a remarkable opportunity to constrain the nature and timescale of mechanical processes operating within explosive volcanic conduits during repose periods between eruptive cycles. Here we present data from permeability measurements along the directions of maximum and minimum shortening which help quantifying the effect of vesicle microstructure on permeability. Permeability is measured by applying a range of confining pressures (between 3.4 and 17.2 MPa) to each sample and imposing a constant head (of 0.2 to 3.5 MPa) across the sample. The permeability is then determined using a modified version of Darcy's law applicable to compressible fluids. These rocks display a profound directionality in the measured physical properties resulting from the deformation-induced fabric. For all samples the permeability across the elongation fabric is highly correlated to the sample porosity whereas along the elongation fabric there is little effect of porosity on permeability. At porosity values of about 20% the permeability seems to reach a minimum at 10-16 m2 and does not change significantly with further reduction of porosity. Further, the effect of confining pressure on the permeability of these samples appears to be more pronounced across the elongation fabric than along the elongation fabric. The deformation fabric has a significant effect on the gas-permeability of the deposit. Porosity, on the other hand, appears to play a secondary role. This, fabric dependent, anisotropic permeability evolution of fragmental deposits during welding directly affects the gas escape from, and transport through the deposit and, therewith, plays a key role in the gas-pressure distribution and evolution within the volcano.
NOAA Mobile Laboratory Measures Oil and Gas Emissions
NASA Astrophysics Data System (ADS)
Kofler, J. D.; Petron, G.; Dube, W. P.; Edwards, P. M.; Brown, S. S.; Geiger, F.; Patrick, L.; Crepinsek, S.; Chen, H.; Miller, B. R.; Montzka, S. A.; Lang, P. M.; Newberger, T.; Higgs, J. A.; Sweeney, C.; Guenther, D.; Karion, A.; Wolter, S.; Williams, J.; Jordan, A.; Tans, P. P.; Schnell, R. C.
2012-12-01
A van capable of continuous real time measurements of CH4 , CO2, CO, Water Vapor, Ozone, NO, NO2, Volatile Organic Compounds VOCs including aromatics and other traces gases was driven in the oil and gas fields of the Uintah Basin in northeastern Utah. Compressor Stations, processing plants, oil and gas well heads. Separators, condensate tanks, evaporation pond disposal facilities, holding tanks, hydraulic fracturing sites, gas pipelines and more were studied using the van. The mobile measurements provide a powerful tool to get to the source of the emissions and reveal the unique chemical signature of each of the stages and components of oil and gas production as well as the overall basin and background gas concentrations. In addition to a suite of gas analyzers, the van includes a meteorological system (temperature, humidity, and wind speed and direction), GPS tracking, flask sampling system and a batter power system. Aspects of the vans hardware, sampling methods and operations are discussed along with a few highlights of the measurements.
Reversal electron attachment ionizer for detection of trace species
NASA Technical Reports Server (NTRS)
Bernius, Mark T. (Inventor); Chutjian, Ara (Inventor)
1990-01-01
An in-line reversal electron, high-current ionizer capable of focusing a beam of electrons to a reversal region and executing a reversal of said electrons, such that the electrons possess zero kinetic energy at the point of reversal, may be used to produce both negative and positive ions. A sample gas is introduced at the point of electron reversal for low energy electron-(sample gas) molecule attachment with high efficiency. The attachment process produces negative ions from the sample gas, which includes species present in trace (minute) amounts. These ions are extracted efficiently and directed to a mass analyzer where they may be detected and identified. The generation and detection of positive ions is accomplished in a similar fashion with minimal adjustment to potentials applied to the apparatus.
Reversal electron attachment ionizer for detection of trace species
NASA Technical Reports Server (NTRS)
Bernius, Mark T. (Inventor); Chutjian, Ara (Inventor)
1989-01-01
An in-line reversal electron, high-current ionizer capable of focusing a beam of electrons to a reversal region and executing a reversal of the electrons, such that the electrons possess zero kinetic energy at the point of reversal, may be used to produce both negative and positive ions. A sample gas is introduced at the point of electron reversal for low energy electron-(sample gas) molecule attachment with high efficiency. The attachment process produces negative ions from the sample gas, which includes species present in trace (minute) amounts. These ions are extracted efficiently and directed to a mass analyzer where they may be detected and identified. The generation and detection of positive ions is accomplished in a similar fashion with minimal adjustment to potentials applied to the apparatus.
NASA Astrophysics Data System (ADS)
Darzi, M.; Johnson, D.; Heltzel, R.; Clark, N.
2017-12-01
Researchers at West Virginia University's Center for Alternative Fuels, Engines, and Emissions have recently participated in a variety of studies targeted at direction quantification of methane emissions from across the natural gas supply chain. These studies included assessing methane emissions from heavy-duty vehicles and their fuel stations, active unconventional well sites - during both development and production, natural gas compression and storage facilities, natural gas engines - both large and small, two- and four-stroke, and low-throughput equipment associated with coal bed methane wells. Engine emissions were sampled using conventional instruments such as Fourier transform infrared spectrometers and heated flame ionization detection analyzers. However, to accurately quantify a wide range of other sources beyond the tailpipe (both leaks and losses), a full flow sampling system was developed, which included an integrated cavity-enhanced absorption spectrometer. Through these direct quantification efforts and analysis major sources of methane emissions were identified. Technological solutions and best practices exist or could be developed to reduce methane emissions by focusing on the "lowest-hanging fruit." For example, engine crankcases from across the supply chain should employ vent mitigation systems to reduce methane and other emissions. An overview of the direct quantification system and various campaign measurements results will be presented along with the identification of other targets for additional mitigation.
Nakai, S; Wang, Z H; Dou, J; Nakamura, S; Ogawa, M; Nakai, E; Vanderstoep, J
1999-02-01
Coho, Atlantic, Spring, and Sockeye salmon and five commercial samples of hamburger patties were analyzed by processing gas chromatography (GC) data of volatile compounds using the principal component similarity (PCS) technique. PCS scattergrams of the samples inoculated with Escherichia coli and Staphylococcus aureus followed by incubation showed the pattern-shift lines moving away from the data point for uninoculated, unincubated reference samples in different directions with increasing incubation time. When the PCS scattergrams were drawn for samples incubated overnight, the samples inoculated with the two bacterial species and the uninoculated samples appeared as three separated groups. This GC/PCS approach has the potential to ensure quality of samples by discriminating good samples from potentially spoiled samples. The latter may require further microbial assays to identify the bacteria species potentially contaminating foods.
NASA Astrophysics Data System (ADS)
Yacovitch, T. I.; Herndon, S. C.; Roscioli, J. R.; Petron, G.; Shorter, J. H.; Jervis, D.; McManus, J. B.; Nelson, D. D.; Zahniser, M. S.; Kolb, C. E., Jr.
2015-12-01
Instrumental developments in the measurement of multiple isotopes of methane (12CH4, 13CH4 and 12CH3D) are presented. A first generation 8-micron instrument quantifies 12CH4 and 13CH4 at a 1-second rate via tunable infrared direct absorption spectroscopy (TILDAS). A second generation instrument uses two 3-micron intraband cascade lasers in an Aerodyne dual laser chassis for simultaneous measurement of 12CH4, 13CH4 and 12CH3D. Sensitivity and noise performance improvements are examined. The isotopic signature of methane provides valuable information for emission source identification of this greenhouse gas. A first generation spectrometer has been deployed in the field on a mobile laboratory along with a sophisticated 4-tank calibration system. Calibrations are done on an agressive schedule, allowing for the correction of measured isotope ratios to an absolute isotope scale. Distinct isotopic signatures are found for a number of emission sources in the Denver-Julesburg Basin: oil and gas gathering stations, compressor stations and processing plants; a municipal landfill, and dairy/cattle operations. The isotopic signatures are compared with measured ethane/methane ratios. These direct absorption measurements have larger uncertainties than samples measured via gas chromatography-mass spectrometry, but have several advantages over canister sampling methods: individual sources of short duration are easier to isolate; calibrated isotope ratio results are available immediately; replicate measurements on a single source are easily performed; and the number of sources sampled is not limited by canister availability and processing time.
Selected papers in the hydrologic sciences 1984; July 1984
Meyer, Eric L.
1984-01-01
The rapid, accurate measurement of the oxygen content of soil gas in the unsaturated zone or dissolved oxygen in soil water in the saturated zone can be useful in wetland vegetation studies. A method has been devised and tested in the Great Dismal Swamp, a wetland with fine silt-clay and organic soils, that appears to provide good results. A 60-milliliter sample of soil gas or water is withdrawn from permanently installed chambers at various depths in the soil profile. The oxygen concentration of air samples is measured with a specially constructed analyzer cell fitted to the polarographic oxygen electrode of a portable oxygen meter. The dissolved oxygen concentration of water samples is measured directly with the oxygen electrode while stirring the sample in a 32-milliliter glass bottle with a portable magnetic stirrer. Field tests with duplicate chamber installations showed that consistent results are obtained for soil gas and water.
Concentric micro-nebulizer for direct sample insertion
Fassel, V.A.; Rice, G.W.; Lawrence, K.E.
1984-03-06
A concentric micro-nebulizer and method for introducing liquid samples into a plasma established in a plasma torch including a first tube connected to a source of plasma gas. The concentric micro-nebulizer has inner and outer concentric tubes extending upwardly within the torch for connection to a source of nebulizer gas and to a source of liquid solvent and to a source of sample liquid. The inner tube is connected to the source of liquid solvent and to the source of sample liquid and the outer tube is connected to the source of nebulizer gas. The outer tube has an orifice positioned slightly below the plasma when it is established, with the inner and outer tubes forming an annulus therebetween with the annular spacing between the tubes at said orifice being less than about 0.05mm. The dead volume of the inner tube is less than about 5 microliters.
Concentric micro-nebulizer for direct sample insertion
Fassel, Velmer A.; Rice, Gary W.; Lawrence, Kimberly E.
1986-03-11
A concentric micro-nebulizer and method for introducing liquid samples into a plasma established in a plasma torch including a first tube connected to a source of plasma gas. The concentric micro-nebulizer has inner and outer concentric tubes extending upwardly within the torch for connection to a source of nebulizer gas and to a source of liquid solvent and to a source of sample liquid. The inner tube is connected to the source of liquid solvent and to the source of sample liquid and the outer tube is connected to the source of nebulizer gas. The outer tube has an orifice positioned slightly below the plasma when it is established, with the inner and outer tubes forming an annulus therebetween with the annular spacing between the tubes at said orifice being less than about 0.05 mm. The dead volume of the inner tube is less than about 5 microliters.
NASA Astrophysics Data System (ADS)
Bartnik, Andrzej; Fiedorowicz, Henryk; Jarocki, Roman; Kostecki, Jerzy; Rakowski, Rafał; Szczurek, Mirosław
2005-09-01
Organic polymers (PMMA, PTFE, PET, and PI) are considered as the important materials in microengineering, especially for biological and medical applications. Micromachining of such materials is possible with the use of different techniques that involve electromagnetic radiation or charged particle beams. Another possibility of high aspect ratio micromachining of PTFE is direct photo-etching using synchrotron radiation. X-ray and ultraviolet radiation from other sources, for micromachining of materials by direct photo-etching can be also applied. In this paper we present the results of investigation of a wide band soft X-ray source and its application for direct photo-etching of organic polymers. X-ray radiation in the wavelength range from about 3 nm to 20 nm was produced as a result of irradiation of a double-stream gas puff target with laser pulses of energy 0.8 J and time duration of about 3 ns. The spectra, plasma size and absolute energies of soft X-ray pulses for different gas puff targets were measured. Photo-etching process of polymers irradiated with the use of the soft X-ray radiation was analyzed and investigated. Samples of organic polymers were placed inside a vacuum chamber of the x-ray source, close to the gas puff target at the distance of about 2 cm from plasmas created by focused laser pulses. A fine metal grid placed in front of the samples was used as a mask to form structures by x-ray ablation. The results of photo-etching process for several minutes exposition with l0Hz repetition rate were presented. High ablation efficiency was obtained with the use of the gas puff target containing xenon surrounded by helium.
Khumaeni, Ali; Lie, Zener Sukra; Niki, Hideaki; Lee, Yong Inn; Kurihara, Kazuyoshi; Wakasugi, Motoomi; Takahashi, Touru; Kagawa, Kiichiro
2012-03-01
Taking advantage of the specific characteristics of a transversely excited atmospheric (TEA) CO(2) laser, a sophisticated technique for the analysis of chromated copper arsenate (CCA) in wood samples has been developed. In this study, a CCA-treated wood sample with a dimension of 20 mm × 20 mm and a thickness of 2 mm was attached in contact to a nickel plate (20 mm × 20 mm × 0.15 mm), which functions as a subtarget. When the TEA CO(2) laser was successively irradiated onto the wood surface, a hole with a diameter of approximately 2.5 mm was produced inside the sample and the laser beam was directly impinged onto the metal subtarget. Strong and stable gas plasma with a very large diameter of approximately 10 mm was induced once the laser beam had directly struck the metal subtarget. This gas plasma then interacted with the fine particles of the sample inside the hole and finally the particles were effectively dissociated and excited in the gas plasma region. By using this technique, high precision and sensitive analysis of CCA-treated wood sample was realized. A linear calibration curve of Cr was successfully made using the CCA-treated wood sample. The detection limits of Cr, Cu, and As were estimated to be approximately 1, 2, and 15 mg/kg, respectively. In the case of standard LIBS using the Nd:YAG laser, the analytical intensities fluctuate and the detection limit was much lower at approximately one-tenth that of TEA CO(2) laser. © 2012 Optical Society of America
Fuel leak detection apparatus for gas cooled nuclear reactors
Burnette, Richard D.
1977-01-01
Apparatus is disclosed for detecting nuclear fuel leaks within nuclear power system reactors, such as high temperature gas cooled reactors. The apparatus includes a probe assembly that is inserted into the high temperature reactor coolant gaseous stream. The probe has an aperture adapted to communicate gaseous fluid between its inside and outside surfaces and also contains an inner tube for sampling gaseous fluid present near the aperture. A high pressure supply of noncontaminated gas is provided to selectively balance the pressure of the stream being sampled to prevent gas from entering the probe through the aperture. The apparatus includes valves that are operable to cause various directional flows and pressures, which valves are located outside of the reactor walls to permit maintenance work and the like to be performed without shutting down the reactor.
Gas-liquid chromatography in the diagnosis of anaerobic infections: a three year experience.
Watt, B; Geddes, P A; Greenan, O A; Napier, S K; Mitchell, A
1982-01-01
Nearly two thousand clinical samples were examined by direct gas-liquid chromatography over a three year period. Absence of volatile fatty acids (VFAs) in the samples correlated well with negative culture results for anaerobic bacteria. In general the presence of acetic acid alone correlated well with the presence of aerobic organisms, whereas the presence of a mixture of VFAs correlated well with the presence of anaerobic organisms, either alone or in combination with aerobes. However a proportion of such VFA-positive samples gave no growth on culture. Swabs gave comparable results to samples of pus or exudates except that a higher proportion of the former were VFA-negative but culture positive. PMID:7096590
Dataset from chemical gas sensor array in turbulent wind tunnel.
Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Huerta, Ramón
2015-06-01
The dataset includes the acquired time series of a chemical detection platform exposed to different gas conditions in a turbulent wind tunnel. The chemo-sensory elements were sampling directly the environment. In contrast to traditional approaches that include measurement chambers, open sampling systems are sensitive to dispersion mechanisms of gaseous chemical analytes, namely diffusion, turbulence, and advection, making the identification and monitoring of chemical substances more challenging. The sensing platform included 72 metal-oxide gas sensors that were positioned at 6 different locations of the wind tunnel. At each location, 10 distinct chemical gases were released in the wind tunnel, the sensors were evaluated at 5 different operating temperatures, and 3 different wind speeds were generated in the wind tunnel to induce different levels of turbulence. Moreover, each configuration was repeated 20 times, yielding a dataset of 18,000 measurements. The dataset was collected over a period of 16 months. The data is related to "On the performance of gas sensor arrays in open sampling systems using Inhibitory Support Vector Machines", by Vergara et al.[1]. The dataset can be accessed publicly at the UCI repository upon citation of [1]: http://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+sampling+settings.
Lapthorn, Cris; Pullen, Frank
2009-01-01
The performance of the direct analysis in real-time (DART) technique was evaluated across a range of metastable gas temperatures for a pharmaceutical compound, Voriconazole, in order to investigate the effect of metastable gas temperature on molecular ion intensity and fragmentation. The DART source has been used to analyse a range of analytes and from a range of matrices including drugs in solid tablet form and preparations, active ingredients in ointment, naturally occurring plant alkaloids, flavours and fragrances, from thin layer chromatography (TLC) plates, melting point tubes and biological matrices including hair, urine and blood. The advantages of this technique include rapid analysis time (as little as 5 s), a reduction in sample preparation requirements, elimination of mobile phase requirement and analysis of samples not typically amenable to atmospheric pressure ionisation (API) techniques. This technology has therefore been proposed as an everyday tool for identification of components in crude organic reaction mixtures.
Measurements of sulfur compounds in CO 2 by diode laser atomic absorption spectrometry
NASA Astrophysics Data System (ADS)
Franzke, J.; Stancu, D. G.; Niemax, K.
2003-07-01
Two simple methods for the analysis of the total concentration of sulfur in CO 2 by diode laser atomic absorption spectrometry of excited, metastable sulfur atoms in a direct current discharge are presented. In the first method, the CO 2 sample gas is mixed with the plasma gas (Ar or He) while the second is based on reproducible measurements of the sulfur released from the walls in a helium discharge after being deposited as a result of operating the discharge in pure CO 2 sample gas. The detection limits obtained satisfy the requirements for the control of sulfur compounds in CO 2 used in the food and beverage industry.
NASA Astrophysics Data System (ADS)
Žák, Karel; SkáLA, Roman; Šanda, Zdeněk.; Mizera, Jiří.
2012-06-01
Tektites, natural silica-rich glasses produced during impact events, commonly contain bubbles. The paper reviews published data on pressure and composition of a gas phase contained in the tektite bubbles and data on other volatile compounds which can be released from tektites by either high-temperature melting or by crushing or milling under vacuum. Gas extraction from tektites using high-temperature melting generally produced higher gas yield and different gas composition than the low-temperature extraction using crushing or milling under vacuum. The high-temperature extraction obviously releases volatiles not only from the bubbles, but also volatile compounds contained directly in the glass. Moreover, the gas composition can be modified by reactions between the released gases and the glass melt. Published data indicate that besides CO2 and/or CO in the bubbles, another carbon reservoir is present directly in the tektite glass. To clarify the problem of carbon content and carbon isotopic composition of the tektite glass, three samples from the Central European tektite strewn field—moldavites—were analyzed. The samples contained only 35-41 ppm C with δ13C values in the range from -28.5 to -29.9‰ VPDB. This indicates that terrestrial organic matter was a dominant carbon source during moldavite formation.
NASA Astrophysics Data System (ADS)
Bard, Edouard; Tuna, Thibaut; Fagault, Yoann; Bonvalot, Lise; Wacker, Lukas; Fahrni, Simon; Synal, Hans-Arno
2015-10-01
A compact AMS system dedicated to measuring 14C in ultra-small samples was installed at the CEREGE in Aix-en-Provence at the end of March 2014, together with an automated graphitization system. AixMICADAS operates at around 200 kV with carbon ion stripping in helium leading to a transmission of about 47%. The hybrid ion source works with graphite targets and CO2 gas. It is coupled to a versatile gas interface system that ensures stable gas measurements from different sources: a cracker for CO2 in glass ampoules, an elemental analyzer for combusting organic matter and an automated system to handle carbonate by wet chemistry. The analyses performed during the first half-year of operation show that a precision of about 2‰ is reached on modern samples of about 1 mg of carbon. Measurements of IAEA reference materials of various 14C ages show a good agreement with consensus values. Direct measurements of geological graphites indicate a machine background equivalent to an age of 68,000 years BP. AixMICADAS is thus limited solely by the 14C contamination of samples in the field and in the laboratory. The performances of the gas ion source and its gas interface system were tested with two CO2 production units: the elemental analyzer and the automated carbonate hydrolysis unit. These tests show that samples ranging between 10 and 100 μg C can produce a 12C- ion beam of the order of 10-15 μA during time spans ranging from 3 to 30 min depending on the sample mass. Coupling the automated hydrolysis system to the gas ion source of AixMICADAS, enables us to develop a method involving sequential leaching of carbonate samples with direct 14C measurements of the leached fractions and the residual sample. The main advantage is that all of steps leaching and hydrolysis are performed in the same vial for a particular sample. A sequential leaching was applied to a young carbonate sample (ca. 6600 years BP) whose 14C age agrees with previous determination and which shows no sign of significant surface contamination. By contrast, the tests also show that the leached CO2 from very old carbonates is significantly "younger" than the residual sample. This study, though preliminary, already confirms that pretreatment by acid leaching of old carbonates is essential if we are to accurately measure the true age of such samples.
Situ soil sampling probe system with heated transfer line
Robbat, Jr., Albert
2002-01-01
The present invention is directed both to an improved in situ penetrometer probe and to a heated, flexible transfer line. The line and probe may be implemented together in a penetrometer system in which the transfer line is used to connect the probe to a collector/analyzer at the surface. The probe comprises a heater that controls a temperature of a geologic medium surrounding the probe. At least one carrier gas port and vapor collection port are located on an external side wall of the probe. The carrier gas port provides a carrier gas into the geologic medium, and the collection port captures vapors from the geologic medium for analysis. In the transfer line, a flexible collection line that conveys a collected fluid, i.e., vapor, sample to a collector/analyzer. A flexible carrier gas line conveys a carrier gas to facilitate the collection of the sample. A system heating the collection line is also provided. Preferably the collection line is electrically conductive so that an electrical power source can generate a current through it so that the internal resistance generates heat.
NASA Astrophysics Data System (ADS)
Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.
2012-12-01
Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.
Sinclair, Michael B [Albuquerque, NM; Pfeifer, Kent B [Los Lunas, NM; Flemming, Jeb H [Albuquerque, NM; Jones, Gary D [Tijeras, NM; Tigges, Chris P [Albuquerque, NM
2010-04-13
A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.
Fletouris, D J; Botsoglou, N A; Psomas, I E; Mantis, A I
1998-11-01
A simple method is described for the determination of cholesterol in milk and milk products. Samples (0.2 g) are saponified in capped tubes with 0.5 M methanolic KOH solution by heating for 15 min at 80 degrees C. Water is added to the mixtures, and the unsaponifiable fractions are extracted with hexane to be further analyzed by capillary gas chromatography. Because of the rapid sample preparation and gas chromatographic procedures, a single sample can be analyzed in 30 min. Overall recovery was 98.6%, and the linearity was excellent for the fortification range examined. Precision data that were based on the variation within and between days suggested an overall relative standard deviation value of 1.4%. The method has been successfully applied to quantitate cholesterol in a variety of milk products.
Raterink, Robert-Jan; Witkam, Yoeri; Vreeken, Rob J; Ramautar, Rawi; Hankemeier, Thomas
2014-10-21
In the field of bioanalysis, there is an increasing demand for miniaturized, automated, robust sample pretreatment procedures that can be easily connected to direct-infusion mass spectrometry (DI-MS) in order to allow the high-throughput screening of drugs and/or their metabolites in complex body fluids like plasma. Liquid-Liquid extraction (LLE) is a common sample pretreatment technique often used for complex aqueous samples in bioanalysis. Despite significant developments that have been made in automated and miniaturized LLE procedures, fully automated LLE techniques allowing high-throughput bioanalytical studies on small-volume samples using direct infusion mass spectrometry, have not been matured yet. Here, we introduce a new fully automated micro-LLE technique based on gas-pressure assisted mixing followed by passive phase separation, coupled online to nanoelectrospray-DI-MS. Our method was characterized by varying the gas flow and its duration through the solvent mixture. For evaluation of the analytical performance, four drugs were spiked to human plasma, resulting in highly acceptable precision (RSD down to 9%) and linearity (R(2) ranging from 0.990 to 0.998). We demonstrate that our new method does not only allow the reliable extraction of analytes from small sample volumes of a few microliters in an automated and high-throughput manner, but also performs comparable or better than conventional offline LLE, in which the handling of small volumes remains challenging. Finally, we demonstrate the applicability of our method for drug screening on dried blood spots showing excellent linearity (R(2) of 0.998) and precision (RSD of 9%). In conclusion, we present the proof of principe of a new high-throughput screening platform for bioanalysis based on a new automated microLLE method, coupled online to a commercially available nano-ESI-DI-MS.
Paseiro-Cerrato, Rafael; Rodríguez-Bernaldo de Quirós, Ana; Otero-Pazos, Pablo; Sendón, Raquel; Paseiro-Losada, Perfecto
2018-03-01
The aim of the present study was to determine the migration kinetics of one photoinitiator, benzophenone, and two optical brighteners, Uvitex OB and 1,4-diphenyl-1,3-butadiene (DPBD), from low-density polyethylene (LDPE) films into cake. Transfer was assessed by both direct contact and also the vapour phase. To perform the migration tests by direct contact, plastic films enriched with the additives were placed between two cake slices. To evaluate the migration through the gas phase, cake and the fortified LDPE film were placed with no direct contact in a glass container that was hermetically closed. Samples were stored at different time-temperature conditions. Target compounds were extracted from the films with ethanol (70°C, 24 h) and analysed by HPLC-DAD. Relevant parameters such as partition and diffusion coefficients between food and plastic film were calculated. The Arrhenius equation was applied to estimate the diffusion coefficient at any temperature. The data indicate that migration of benzophenone occurs in a significant extent into cake by both direct contact and through the gas phase (no direct contact). Conversely, very little migration occurred for Uvitex OB by direct contact and none through the gas phase. Results for benzophenone suggest that migration through the gas phase should be considered when evaluating migration from food packaging materials into food.
MarsVac: Pneumatic Sampling System for Planetary Exploration
NASA Astrophysics Data System (ADS)
Zacny, K.; Mungas, G.; Chu, P.; Craft, J.; Davis, K.
2008-12-01
We are proposing a Mars Sample Return scheme whereby a sample of regolith is acquired directly into a Mars Ascent Vehicle using a pneumatic system. Unlike prior developments that used suction to collect fines, the proposed system uses positive pressure to move the regolith. We envisage 3 pneumatic tubes to be embedded inside the 3 legs of the lander. Upon landing, the legs will burry themselves into the regolith and the tubes will fill up with regolith. With one puff of gas, the regolith can be lifted into a sampling chamber onboard of the Mars Ascent Vehicle. An additional chamber can be opened to acquire atmospheric gas and dust. The entire MSR will require 1) an actuator to open/close sampling chamber and 2) a valve to open gas cylinder. In the most recent study related to lunar excavation and funded under the NASA SBIR program we have shown that it is possible lift over 3000 grams of soil with only 1 gram of gas at 1atm. Tests conducted under Mars atmospheric pressure conditions (5 torr). In September of 2008, we will be performing tests at 1/6thg (Moon) and 1/3g (Mars) to determine mass lifting efficiencies in reduced gravities.
Bi-directionally draining pore fluid extraction vessel
Prizio, Joseph; Ritt, Alexander; Mower, Timothy E.; Rodine, Lonn
1991-01-01
The invention is used to extract pore fluid from porous solids through a combination of mechanical compression and inert-gas injection and comprises a piston for axially compressing samples to force water out, and top and bottom drainage plates for capturing the exuded water and using inert gas to force water to exit when the limits of mechanical compression have been reached.
Current practice for evaluating the vapor intrusion pathway involves a multiple line of evidence approach based on direct measurements of volatile organic compound (VOC) concentrations in groundwater, external soil gas, subslab soil gas, and/or indoor air. No single line of evide...
A novel in-situ method for real-time monitoring of gas transport in soil
NASA Astrophysics Data System (ADS)
Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike
2017-04-01
Gas exchange between soil and atmosphere is important for the biogeochemistry of soils. Gas transport in soil is commonly assumed to be governed by molecular diffusion and is usually described by the soil gas diffusion coefficient DS characterizing the ability of the soil to "transport passively" gas through the soil. One way to determine DS is sampling soil cores in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious. Moreover, a few previous field studies identified other gas transport processes in soil to significantly enhance the diffusive gas transport. However, until now, no method is available to measure gas transport in situ in the soil. We developed a novel method to monitor gas transport in soil in situ. The method includes a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has several sampling depths and can be easily installed into a vertical hole drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the depth profile of DS. Gas transport in the soil surrounding the gas-sampling-device/soil system was modeled using the Finite Element Modeling program COMSOL . We tested our new method both in the lab and during two short field studies and compared the results with a reference method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. During a longer monitoring field campaign, typical soil-moisture effects upon gas diffusivity such as an increase during a drying period or a decrease after rain could be observed consistently. Under windy conditions we additionally measured for the first time the direct enhancement of gas transport in soil due to wind-induced pressure-pumping which could increase the effective DS up to 30% in the topsoil. Our novel monitoring method can be quickly and easily installed and allows for monitoring continuously soil gas transport over a long time. It allows monitoring physical modifications of soil gas diffusivity due to rain events or evaporation but it also allows studying non-diffusive gas transport processes in the soil.
NASA Technical Reports Server (NTRS)
Musselwhite, D. S.; Boynton, W. V.; Ming, Douglas W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.
2000-01-01
Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current C development and cutting edge research. The Thermal Evolved Gas Analyzer (MGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil.
Inception of Snapover and Gas Induced Glow Discharges
NASA Technical Reports Server (NTRS)
Galofaro, J. T.; Vayner, B. V.; Degroot, W. A.; Ferguson, D. C.; Thomson, C. D.; Dennison, J. R.; Davies, R. E.
2000-01-01
Ground based experiments of the snapover phenomenon were conducted in the large vertical simulation chamber at the Glenn Research Center (GRC) Plasma Interaction Facility (PIF). Two Penning sources provided both argon and xenon plasmas for the experiments. The sources were used to simulate a variety of ionospheric densities pertaining to a spacecraft in a Low Earth Orbital (LEO) environment. Secondary electron emission is believed responsible for dielectric surface charging, and all subsequent snapover phenomena observed. Voltage sweeps of conductor potentials versus collected current were recorded in order to examine the specific charging history of each sample. The average time constant for sample charging was estimated between 25 and 50 seconds for all samples. It appears that current drops off by approximately a factor of 3 over the charging time of the sample. All samples charged in the forward and reverse bias directions, demonstrated hysteresis. Current jumps were only observed in the forward or positive swept voltage direction. There is large dispersion in tile critical snapover potential when repeating sweeps on any one sample. The current ratio for the first snapover region jumps between 2 and 4.6 times, with a standard deviation less than 1.6. Two of the samples showed even larger current ratios. It is believed the second large snapover region is due to sample outgassing. Under certain preset conditions, namely at the higher neutral gas background pressures, a perceptible blue-green glow was observed around the conductor. The glow is believed to be a result of secondary electrons undergoing collisions with an expelled tenuous cloud of gas, that is outgassed from the sample. Spectroscopic measurements of the glow discharge were made in an attempt to identify specific lines contributing to the observed glow.
NASA Astrophysics Data System (ADS)
Castro, M. C.; Niu, Y.; Warrier, R. B.; Hall, C. M.; Gingerich, S. B.; Scholl, M. A.; Bouvier, L.
2014-12-01
Recent work in the Galapagos Islands suggests that noble gas temperatures (NGTs) in fractured groundwater systems reflect the temperature of the ground surface at the time of infiltration rather than the mean annual air temperature (MAAT) value as commonly assumed in sedimentary systems where NGTs are typically used as indicators of past climate. This suggests that noble gases in fractured areas may record seasonality, and thus, provide information about timing of recharge in addition to location. Calculation of NGTs assumes that rain-derived recharge at the water table is in equilibrium with ground air. Lack of noble gas equilibration with respect to surface conditions, however, was observed in high-altitude springs in the Galapagos Islands and in a rainwater pilot study in Michigan, supporting the NGT seasonality hypothesis. Developing this new NGT application will lead to a better understanding of fractured groundwater flow systems and will contribute to improved water resource management plans. This study, carried out on Maui, Hawaii, is meant to test these hypotheses while improving knowledge of this island's groundwater flow system where limited hydrologic data are available. Here, we present the first results of noble gas analyses from samples collected in springs, groundwater wells and rainwater on northeast Maui. Results show that like most Michigan rainwater samples, rainwater from Maui is in disequilibrium with surface conditions and follows a mass-dependent pattern. Spring samples follow a similar pattern to that of rainwater and suggest that spring water originates directly from rainfall. These findings further support the hypothesis of NGT seasonality. However, while the atmospheric composition of noble gases points to direct supply from rainfall to spring aquifer systems, a direct connection between spring water and deeper aquifer levels or the mantle is apparent from He isotopic ratios which display an almost pure He mantle component in some springs.
Woo, A H; Lindsay, R C
1980-07-01
A rapid quantiative method was developed for routine analysis of the major, even carbon-numbered free fatty acids in butter and cream. Free fatty acids were isolated directly from intact samples by a modified silicic acid-potassium hydroxide arrestant column and were separated by gas chromatography with a 1.8 m x 2 mm inner diameter glass column packed with 10% neopentyl glycol adipate on 80/100 Chromosorb W. Purified, formic acid-saturated carrier gas was required for minimal peak tailing and extended column life. The accuracy and reproducibility of the mmethod was established through quantitative recovery studies of free fatty acid mixtures, free fatty acids added to butter, and replicate analysis of butter and cream samples.
Hilton, David J
2012-12-31
We develop a new characteristic matrix-based method to analyze cyclotron resonance experiments in high mobility two-dimensional electron gas samples where direct interference between primary and satellite reflections has previously limited the frequency resolution. This model is used to simulate experimental data taken using terahertz time-domain spectroscopy that show multiple pulses from the substrate with a separation of 15 ps that directly interfere in the time-domain. We determine a cyclotron dephasing lifetime of 15.1 ± 0.5 ps at 1.5 K and 5.0 ± 0.5 ps at 75 K.
In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy
Braymen, Steven D.
1996-06-11
A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.
Dual Source Time-of-flight Mass Spectrometer and Sample Handling System
NASA Astrophysics Data System (ADS)
Brinckerhoff, W.; Mahaffy, P.; Cornish, T.; Cheng, A.; Gorevan, S.; Niemann, H.; Harpold, D.; Rafeek, S.; Yucht, D.
We present details of an instrument under development for potential NASA missions to planets and small bodies. The instrument comprises a dual ionization source (laser and electron impact) time-of-flight mass spectrometer (TOF-MS) and a carousel sam- ple handling system for in situ analysis of solid materials acquired by, e.g., a coring drill. This DSTOF instrument could be deployed on a fixed lander or a rover, and has an open design that would accommodate measurements by additional instruments. The sample handling system (SHS) is based on a multi-well carousel, originally de- signed for Champollion/DS4. Solid samples, in the form of drill cores or as loose chips or fines, are inserted through an access port, sealed in vacuum, and transported around the carousel to a pyrolysis cell and/or directly to the TOF-MS inlet. Samples at the TOF-MS inlet are xy-addressable for laser or optical microprobe. Cups may be ejected from their holders for analyzing multiple samples or caching them for return. Samples are analyzed with laser desorption and evolved-gas/electron-impact sources. The dual ion source permits studies of elemental, isotopic, and molecular composition of unprepared samples with a single mass spectrometer. Pulsed laser desorption per- mits the measurement of abundance and isotope ratios of refractory elements, as well as the detection of high-mass organic molecules in solid samples. Evolved gas analysis permits similar measurements of the more volatile species in solids and aerosols. The TOF-MS is based on previous miniature prototypes at JHU/APL that feature high sensitivity and a wide mass range. The laser mode, in which the sample cup is directly below the TOF-MS inlet, permits both ablation and desorption measurements, to cover elemental and molecular species, respectively. In the evolved gas mode, sample cups are raised into a small pyrolysis cell and heated, producing a neutral gas that is elec- tron ionized and pulsed into the TOF-MS. (Any imaging and laser microprobe studies would necessarily precede the pyrolysis step to assure that the grain-scale composition is captured.)
USDA-ARS?s Scientific Manuscript database
Most analytical methods for persistent organic pollutants (POPs) focus on targeted analytes. Therefore, analysis of multiple classes of POPs typically entails several sample preparations, fractionations, and injections, whereas other chemicals of possible interest are neglected. To analyze a wider...
40 CFR 60.446 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the web substrate. (b) Method 25 shall be used to determine the VOC concentration, in parts per... equivalent, and each effluent gas stream emitted directly to the atmosphere. Methods 1, 2, 3, and 4 shall be... minimum sampling volume must be 0.003 dscm except that shorter sampling times or smaller volumes, when...
40 CFR 60.446 - Test methods and procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the web substrate. (b) Method 25 shall be used to determine the VOC concentration, in parts per... equivalent, and each effluent gas stream emitted directly to the atmosphere. Methods 1, 2, 3, and 4 shall be... minimum sampling volume must be 0.003 dscm except that shorter sampling times or smaller volumes, when...
Novel characterization of the aerosol and gas-phase composition of aerosolized jet fuel.
Tremblay, Raphael T; Martin, Sheppard A; Fisher, Jeffrey W
2010-04-01
Few robust methods are available to characterize the composition of aerosolized complex hydrocarbon mixtures. The difficulty in separating the droplets from their surrounding vapors and preserving their content is challenging, more so with fuels, which contain hydrocarbons ranging from very low to very high volatility. Presented here is a novel method that uses commercially available absorbent tubes to measure a series of hydrocarbons in the vapor and droplets from aerosolized jet fuels. Aerosol composition and concentrations were calculated from the differential between measured total (aerosol and gas-phase) and measured gas-phase concentrations. Total samples were collected directly, whereas gas-phase only samples were collected behind a glass fiber filter to remove droplets. All samples were collected for 1 min at 400 ml min(-1) and quantified using thermal desorption-gas chromatography-mass spectrometry. This method was validated for the quantification of the vapor and droplet content from 4-h aerosolized jet fuel exposure to JP-8 and S-8 at total concentrations ranging from 200 to 1000 mg/m(3). Paired samples (gas-phase only and total) were collected every approximately 40 min. Calibrations were performed with neat fuel to calculate total concentration and also with a series of authentic standards to calculate specific compound concentrations. Accuracy was good when compared to an online GC-FID (gas chromatography-flame ionization detection) technique. Variability was 15% or less for total concentrations, the sum of all gas-phase compounds, and for most specific compound concentrations in both phases. Although validated for jet fuels, this method can be adapted to other hydrocarbon-based mixtures.
Kleeblatt, Juliane; Schubert, Jochen K; Zimmermann, Ralf
2015-02-03
A fast detection method to analyze gaseous organic compounds in complex gas mixtures was developed, using a needle trap device (NTD) in conjunction with thermal-desorption photoionization time-of-flight mass spectrometry (TD-PI-TOFMS). The mass spectrometer was coupled via a deactivated fused silica capillary to an injector of a gas chromatograph. In the hot injector, the analytes collected on the NTD were thermally desorbed and directly transferred to the PI-TOFMS ion source. The molecules are softly ionized either by single photon ionization (SPI, 118 nm) or by resonance enhanced multiphoton ionization (REMPI, 266 nm), and the molecular ion signals are detected in the TOF mass analyzer. Analyte desorption and the subsequent PI-TOFMS detection step only lasts ten seconds. The specific selectivity of REMPI (i.e., aromatic compounds) and universal ionization characteristics render PI-MS as a promising detection system. As a first demonstrative application, the alveolar phase breath gas of healthy, nonsmoking subjects was sampled on NTDs. While smaller organic compounds such as acetone, acetaldehyde, isoprene, or cysteamine can be detected in the breath gas with SPI, REMPI depicts the aromatic substances phenol and indole at 266 nm. In the breath gas of a healthy, smoking male subject, several xenobiotic substances such as benzene, toluene, styrene, and ethylbenzene can be found as well. Furthermore, the NTD-REMPI-TOFMS setup was tested for breath gas taken from a mechanically ventilated pig under continuous intravenous propofol (2,6-diisopropylphenol, narcotic drug) infusion.
Belisle, A.A.; Swineford, D.M.
1988-01-01
A simple, specific procedure was developed for the analysis of organophosphorus and carbamate pesticides in sediment. The wet soil was mixed with anhydrous sodium sulfate to bind water and the residues were column extracted in acetone:methylene chloride (1:l,v/v). Coextracted water was removed by additional sodium sulfate packed below the sample mixture. The eluate was concentrated and analyzed directly by capillary gas chromatography using phosphorus and nitrogen specific detectors. Recoveries averaged 93 % for sediments extracted shortly after spiking, but decreased significantly as the samples aged.
NASA Technical Reports Server (NTRS)
Musselwhite, D. S.; Boynton, W. V.; Ming, D. W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.
2000-01-01
Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current development and cutting edge research. The Thermal Evolved Gas Analyzer (TEGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil. Additional information is available in the original extended abstract.
Savareear, Benjamin; Brokl, Michał; Wright, Chris; Focant, Jean-Francois
2017-11-24
A thermal desorption comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (TD-GC×GC-TOFMS) method has been developed for the analysis of mainstream tobacco smoke (MTS) vapour phase (VP). The selection process of the sample introduction approach involved comparing the results obtained from three different approaches: a) use of gas sampling bag followed by SPME (Tedlar ® -SPME), b) gas sampling bag followed by TD (Tedlar ® -TD), and c) sampling directly on TD sorbents (Direct-TD). Six different SPME fibers and six different TD sorbent beds were evaluated for the extraction capacities in terms of total number of peaks and related intensities or peak areas. The best results were obtained for the Direct-TD approach using Tenax TA/Carbograph1TD/Carboxen1003 sorbent tubes. The optimisation of TD tube desorption parameters was carried out using a face-centered central composite experimental design and resulted in the use of the Tenax TA/Carbograph 1TD/Carboxen 1003 sorbent with a 7.5min desorption time, a 60mL/min tube desorption flow, and a 250°C tube desorption temperature. The optimised method was applied to the separation of MTS-VP constituents, with 665 analytes detected. The method precision ranged from 1% to 15% for over 99% of identified peak areas and from 0% to 3% and 0% to 1% for both first ( 1 t R ) and second ( 2 t R ) dimension retention times, respectively. The method was applied to the analyses of two cigarette types differing in their filter construction. Principal component analysis (PCA) allowed a clear differentiation of the studied cigarette types (PC1 describing 94% of the explained variance). Supervised Fisher ratio analysis permitted the identification of compounds responsible for the chemical differences between the two sample types. A set of 91 most relevant compounds was selected by applying a Fisher ratio cut-off approach and most of them were selectively removed by one of the cigarette filter types. Copyright © 2017 Elsevier B.V. All rights reserved.
Cabañero, Ana I; San-Hipólito, Tamar; Rupérez, Mercedes
2007-01-01
A new procedure for the determination of carbon dioxide (CO(2)) (13)C/(12)C isotope ratios, using direct injection into a GasBench/isotope ratio mass spectrometry (GasBench/IRMS) system, has been developed to improve isotopic methods devoted to the study of the authenticity of sparkling drinks. Thirty-nine commercial sparkling drink samples from various origins were analyzed. Values of delta(13)C(cava) ranged from -20.30 per thousand to -23.63 per thousand, when C3 sugar addition was performed for a second alcoholic fermentation. Values of delta(13)C(water) ranged from -5.59 per thousand to -6.87 per thousand in the case of naturally carbonated water or water fortified with gas from the spring, and delta(13)C(water) ranged from -29.36 per thousand to -42.09 per thousand when industrial CO(2) was added. It has been demonstrated that the addition of C4 sugar to semi-sparkling wine (aguja) and industrial CO(2) addition to sparkling wine (cava) or water can be detected. The new procedure has advantages over existing methods in terms of analysis time and sample treatment. In addition, it is the first isotopic method developed that allows (13)C/(12)C determination directly from a liquid sample without previous CO(2) extraction. No significant isotopic fractionation was observed nor any influence by secondary compounds present in the liquid phase. Copyright (c) 2007 John Wiley & Sons, Ltd.
Valero, E; Sanz, J; Martínez-Castro, I
2001-06-01
Direct thermal desorption (DTD) has been used as a technique for extracting volatile components of cheese as a preliminary step to their gas chromatographic (GC) analysis. In this study, it is applied to different cheese varieties: Camembert, blue, Chaumes, and La Serena. Volatiles are also extracted using other techniques such as simultaneous distillation-extraction and dynamic headspace. Separation and identification of the cheese components are carried out by GC-mass spectrometry. Approximately 100 compounds are detected in the examined cheeses. The described results show that DTD is fast, simple, and easy to automate; requires only a small amount of sample (approximately 50 mg); and affords quantitative information about the main groups of compounds present in cheeses.
Heilmann, Jens; Boulyga, Sergei F; Heumann, Klaus G
2004-09-01
Inductively coupled plasma isotope-dilution mass spectrometry (ICP-IDMS) with direct injection of isotope-diluted samples into the plasma, using a direct injection high-efficiency nebulizer (DIHEN), was applied for accurate sulfur determinations in sulfur-free premium gasoline, gas oil, diesel fuel, and heating oil. For direct injection a micro-emulsion consisting of the corresponding organic sample and an aqueous 34S-enriched spike solution with additions of tetrahydronaphthalene and Triton X-100, was prepared. The ICP-MS parameters were optimized with respect to high sulfur ion intensities, low mass-bias values, and high precision of 32S/34S ratio measurements. For validation of the DIHEN-ICP-IDMS method two certified gas oil reference materials (BCR 107 and BCR 672) were analyzed. For comparison a wet-chemical ICP-IDMS method was applied with microwave-assisted digestion using decomposition of samples in a closed quartz vessel inserted into a normal microwave system. The results from both ICP-IDMS methods agree well with the certified values of the reference materials and also with each other for analyses of other samples. However, the standard deviation of DIHEN-ICP-IDMS was about a factor of two higher (5-6% RSD at concentration levels above 100 mircog g(-1)) compared with those of wet-chemical ICP-IDMS, mainly due to inhomogeneities of the micro-emulsion, which causes additional plasma instabilities. Detection limits of 4 and 18 microg g(-1) were obtained for ICP-IDMS in connection with microwave-assisted digestion and DIHEN-ICP-IDMS, respectively, with a sulfur background of the used Milli-Q water as the main limiting factor for both methods.
Hydrates of natural gas in continental margins
Kvenvolden, K.A.; Barnard, L.A.
1982-01-01
Natural gas hydrates in continental margin sediment can be inferred from the widespread occurrence of an anomalous seismic reflector which coincides with the predicted transition boundary at the base of the gas hydrate zone. Direct evidence of gas hydrates is provided by visual observations of sediments from the landward wall of the Mid-America Trench off Mexico and Guatemala, from the Blake Outer Ridge off the southeastern United States, and from the Black Sea in the U.S.S.R. Where solid gas hydrates have been sampled, the gas is composed mainly of methane accompanied by CO2 and low concentrations of ethane and hydrocarbons of higher molecular weight. The molecular and isotopic composition of hydrocarbons indicates that most of the methane is of biolog cal origin. The gas was probably produced by the bacterial alteration of organic matter buried in the sediment. Organic carbon contents of the sediment containing sampled gas hydrates are higher than the average organic carbon content of marine sediments. The main economic importance of gas hydrates may reside in their ability to serve as a cap under which free gas can collect. To be producible, however, such trapped gas must occur in porous and permeable reservoirs. Although gas hydrates are common along continental margins, the degree to which they are associated with significant reservoirs remains to be investigated.
High temperature aircraft research furnace facilities
NASA Technical Reports Server (NTRS)
Smith, James E., Jr.; Cashon, John L.
1992-01-01
Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.
NASA Astrophysics Data System (ADS)
Lee, J. D.; Bauguitte, S.; Wellpott, A.; Lowry, D.; Fisher, R. E.; Lewis, A. C.; Hopkins, J.; Allen, G.; O'Shea, S.; Lanoiselle, M.; France, J.; Lidster, R.; Punjabi, S.; Manning, A. J.; Ryerson, T. B.; Mobbs, S.; Gallagher, M. W.; Coe, H.; Pyle, J. A.; Nisbet, E. G.
2012-12-01
Aircraft measurement and air sampling have been used to quantify the source and magnitude of the North Sea Total Elgin wellhead platform gas leak in March/April 2012. Isotopic techniques were used to characterise the geological source formation from which the gas came. Initially on 30 March 2012 the leak was in the range 1.6 - 0.7 kg s-1, reducing to less than half that rate by 3 April 2012. Keeling plot analysis of methane in air samples showed that the gas had δ13CCH4 -43‰, implying that the gas source was not the main high-pressure high-temperature Elgin gas field (5.5 km deep, at 190oC) but more probably the overlying Hod Formation. The evidence in the air plume for release of very volatile NMHCs confirmed media reports that the gas leak was on the production platform, above the sea level. This contrasts with the early situation in the BP Deepwater Horizon event, where release was underwater and volatile NMHC species were taken up in the water column. Non-methane hydrocarbons (NMHC) and other volatile organic compounds in the plumes were determined from flask samples by offline analysis. NMHC content was dominated by light alkanes ranging from >20 ppb ethane to <1 ppb benzene and <0.1 ppb higher monoaromatics. The methodology developed in this work is widely applicable to future emissions of environmental concern in circumstances where direct access is difficult or dangerous, and permits unbiased regulatory assessment of potential impact, independent of the emitting party.
Dissolved atmospheric gas in xylem sap measured with membrane inlet mass spectrometry.
Schenk, H Jochen; Espino, Susana; Visser, Ate; Esser, Bradley K
2016-04-01
A new method is described for measuring dissolved gas concentrations in small volumes of xylem sap using membrane inlet mass spectrometry. The technique can be used to determine concentrations of atmospheric gases, such as argon, as reported here, or for any dissolved gases and their isotopes for a variety of applications, such as rapid detection of trace gases from groundwater only hours after they were taken up by trees and rooting depth estimation. Atmospheric gas content in xylem sap directly affects the conditions and mechanisms that allow for gas removal from xylem embolisms, because gas can dissolve into saturated or supersaturated sap only under gas pressure that is above atmospheric pressure. The method was tested for red trumpet vine, Distictis buccinatoria (Bignoniaceae), by measuring atmospheric gas concentrations in sap collected at times of minimum and maximum daily temperature and during temperature increase and decline. Mean argon concentration in xylem sap did not differ significantly from saturation levels for the temperature and pressure conditions at any time of collection, but more than 40% of all samples were supersaturated, especially during the warm parts of day. There was no significant diurnal pattern, due to high variability between samples. © 2015 John Wiley & Sons Ltd.
Using pre-screening methods for an effective and reliable site characterization at megasites.
Algreen, Mette; Kalisz, Mariusz; Stalder, Marcel; Martac, Eugeniu; Krupanek, Janusz; Trapp, Stefan; Bartke, Stephan
2015-10-01
This paper illustrates the usefulness of pre-screening methods for an effective characterization of polluted sites. We applied a sequence of site characterization methods to a former Soviet military airbase with likely fuel and benzene, toluene, ethylbenzene, and xylene (BTEX) contamination in shallow groundwater and subsoil. The methods were (i) phytoscreening with tree cores; (ii) soil gas measurements for CH4, O2, and photoionization detector (PID); (iii) direct-push with membrane interface probe (MIP) and laser-induced fluorescence (LIF) sensors; (iv) direct-push sampling; and (v) sampling from soil and from groundwater monitoring wells. Phytoscreening and soil gas measurements are rapid and inexpensive pre-screening methods. Both indicated subsurface pollution and hot spots successfully. The direct-push sensors yielded 3D information about the extension and the volume of the subsurface plume. This study also expanded the applicability of tree coring to BTEX compounds and tested the use of high-resolution direct-push sensors for light hydrocarbons. Comparison of screening results to results from conventional soil and groundwater sampling yielded in most cases high rank correlation and confirmed the findings. The large-scale application of non- or low-invasive pre-screening can be of help in directing and focusing the subsequent, more expensive investigation methods. The rapid pre-screening methods also yielded useful information about potential remediation methods. Overall, we see several benefits of a stepwise screening and site characterization scheme, which we propose in conclusion.
Dopant-assisted direct analysis in real time mass spectrometry with argon gas.
Cody, Robert B; Dane, A John
2016-05-30
Dopants used with Atmospheric Pressure Photoionization (APPI) were examined with the Direct Analysis in Real Time (DART ® ) ion source operated with argon gas. Charge-exchange and proton transfer reactions were observed by adding toluene, anisole, chlorobenzene and acetone to the DART gas stream, complementing the information obtained by helium DART. Mass spectra were acquired with a time-of-flight mass spectrometer equipped with a DART ion source operated with argon gas. A syringe pump was used to introduce dopants directly into the DART gas stream through deactivated fused-silica capillary tubing. Samples including polycyclic aromatic hydrocarbons (PAHs), diesel fuel, trinitrotoluene and cannabinoids were deposited onto the sealed end of melting tube, allowed to dry, and the tube was then suspended in the dopant-enhanced DART gas stream. PAHs could be detected as molecular ions at concentrations in the low parts-per-billion range by using a solution of 0.5% anisole in toluene as a dopant. Argon DART analysis of a diesel fuel sample with the same dopant mixture showed a simpler mass spectrum than obtained by using helium DART. The argon DART mass spectrum was dominated by molecular ions for aromatic compounds, whereas the helium DART mass spectrum showed both molecular ions and protonated molecules. In contrast O 2 - attachment DART showed saturated hydrocarbons and oxygen-containing species. Mass spectra for trinitrotoluene with argon DART in negative-ion mode showed a prominent [M - H] - peak, whereas conventional helium DART showed both M - and [M - H] - . Lastly, in analogy to a report in the literature using APPI, positive ions produced by argon DART ionization for delta-9-tetrahydrocannabinol (THC) and cannabidiol showed distinctive product-ion mass spectra. Dopant-assisted argon DART operates by a mechanism that is analogous to those proposed for dopant-assisted atmospheric-pressure photoionization. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Snowpack Chemistry of Reactive Gases at Station Concordia, Antarctica
NASA Astrophysics Data System (ADS)
Helmig, Detlev; Mass, Alex; Hueber, Jacques; Fain, Xavier; Dommergue, Aurelien; Barbero, Albane; Savarino, Joel
2013-04-01
During December 2012 a new experiment for the study of snow photochemical processes and surface gas exchange was installed at Dome Concordia, Antarctica. The experiment consists of two sampling manifolds ('snow tower') which facilitate the withdrawal of interstitial firn air from four depths in the snowpack and from above the surface. One of these snow towers can be shaded for investigation of the dependency of snow chemistry on solar radiation. A nearby 12 m meteorological tower facilitates above surface turbulence and trace gas gradient measurements. Temperature profiles and UV and IR light penetration are monitored in the snowpack. Air samples are directed through sampling lines to a nearby underground laboratory that houses the experiment control system and gas monitors. The system is fully automated, sampling gases from the array of inlet ports sequentially, and is intended to be operated continuously for a full annual cycle. The computerized control system can be accessed remotely for data retrieval and quality control and for configuring experimental details. Continuous gas measurements include ozone, nitrogen oxides, methane, carbon monoxide, and gaseous elemental mercury. Whole air samples were sampled on four occasions for volatile organic compound analysis. The objective of this research is the study of the year-round snowpack gas chemistry and its dependency on snowpack and above surface physical and environmental conditions. A particular emphasis will be the investigation of the effects of increased UV radiation during the occurrence of the stratospheric ozone hole. We will present the conceptual design of the experiment and data examples from the first three months of the experiment.
Moving bed reactor setup to study complex gas-solid reactions.
Gupta, Puneet; Velazquez-Vargas, Luis G; Valentine, Charles; Fan, Liang-Shih
2007-08-01
A moving bed scale reactor setup for studying complex gas-solid reactions has been designed in order to obtain kinetic data for scale-up purpose. In this bench scale reactor setup, gas and solid reactants can be contacted in a cocurrent and countercurrent manner at high temperatures. Gas and solid sampling can be performed through the reactor bed with their composition profiles determined at steady state. The reactor setup can be used to evaluate and corroborate model parameters accounting for intrinsic reaction rates in both simple and complex gas-solid reaction systems. The moving bed design allows experimentation over a variety of gas and solid compositions in a single experiment unlike differential bed reactors where the gas composition is usually fixed. The data obtained from the reactor can also be used for direct scale-up of designs for moving bed reactors.
Felix, Larry Gordon; Farthing, William Earl; Irvin, James Hodges; Snyder, Todd Robert
2010-05-11
A dilution apparatus for diluting a gas sample. The apparatus includes a sample gas conduit having a sample gas inlet end and a diluted sample gas outlet end, and a sample gas flow restricting orifice disposed proximate the sample gas inlet end connected with the sample gas conduit and providing fluid communication between the exterior and the interior of the sample gas conduit. A diluted sample gas conduit is provided within the sample gas conduit having a mixing end with a mixing space inlet opening disposed proximate the sample gas inlet end, thereby forming an annular space between the sample gas conduit and the diluted sample gas conduit. The mixing end of the diluted sample gas conduit is disposed at a distance from the sample gas flow restricting orifice. A dilution gas source connected with the sample gas inlet end of the sample gas conduit is provided for introducing a dilution gas into the annular space, and a filter is provided for filtering the sample gas. The apparatus is particularly suited for diluting heated sample gases containing one or more condensable components.
In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy
Braymen, S.D.
1996-06-11
A method and apparatus are disclosed for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present in situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization. 5 figs.
Potential for Biodegradation of the Alkaline Hydrolysis End Products of TNT and RDX
2007-11-01
Bellco Glass, Inc. (Vineland, NJ). The stainless steel , deflected point needles used in sparging (18 G, 6 in. and 12 in.) were manufactured by Popper and...12 Figure 4. Gas sparging of anaerobic cultures showing the direction of flow of the CO2- free carrier gas through the sample...determine if any reaction components exhibited unpaired electron spins, which would indicate a free radical. EPR results suggested that a single
NASA Astrophysics Data System (ADS)
Hurowitz, J. A.; Yen, A. S.
2007-12-01
The biology experiments onboard the Viking Landers determined that the Martian soils at Chryse and Utopia Planitia contain an unknown chemical compound of a highly oxidizing nature. The Gas Exchange Experiments (GEx) demonstrated that the humidification of a 1-cc Martian soil sample resulted in the production of as much as 790 nanomoles of oxygen gas. Yen et al. (2000) have provided experimental evidence that superoxide radicals can be generated on plagioclase feldspar (labradorite) grain surfaces by exposure to ultraviolet (UV) light in the presence of oxygen gas. Adsorbed superoxide radicals are thought to react readily with water vapor, and produce oxygen gas in quantities sufficient to explain the Viking GEx results. Direct evidence for the formation of oxygen gas, however, was not provided in the experiments of Yen et al (2000). Accordingly, the motivation of this study is to determine whether superoxide radicals adsorbed on labradorite surfaces are capable of producing oxygen gas upon exposure to water vapor. We have constructed an experimental apparatus that is capable of monitoring oxygen gas release from basaltic mineral powders that have been exposed to UV-radiation under Martian atmospheric pressure conditions. The apparatus consists of a stainless-steel vacuum chamber with a UV- transparent window where sample radiation exposures are performed. The vacuum chamber has multiple valved ports for injection of gases and water vapor. The vacuum chamber is connected via a precision leak valve to a quadrupole mass spectrometer, which measures changes in the composition of the headspace gases over our mineral samples. We will report on the results of our experiments, which are aimed at detecting and quantifying oxygen gas release from UV-exposed basaltic mineral samples using this new experimental facility. These results will further constrain whether superoxide ions adsorbed on mineral surfaces provide a viable explanation for the Viking GEx results, which have been of considerable controversy in the roughly three decades since the measurements were first made.
Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing
Osborn, Stephen G.; Vengosh, Avner; Warner, Nathaniel R.; Jackson, Robert B.
2011-01-01
Directional drilling and hydraulic-fracturing technologies are dramatically increasing natural-gas extraction. In aquifers overlying the Marcellus and Utica shale formations of northeastern Pennsylvania and upstate New York, we document systematic evidence for methane contamination of drinking water associated with shale-gas extraction. In active gas-extraction areas (one or more gas wells within 1 km), average and maximum methane concentrations in drinking-water wells increased with proximity to the nearest gas well and were 19.2 and 64 mg CH4 L-1 (n = 26), a potential explosion hazard; in contrast, dissolved methane samples in neighboring nonextraction sites (no gas wells within 1 km) within similar geologic formations and hydrogeologic regimes averaged only 1.1 mg L-1 (P < 0.05; n = 34). Average δ13C-CH4 values of dissolved methane in shallow groundwater were significantly less negative for active than for nonactive sites (-37 ± 7‰ and -54 ± 11‰, respectively; P < 0.0001). These δ13C-CH4 data, coupled with the ratios of methane-to-higher-chain hydrocarbons, and δ2H-CH4 values, are consistent with deeper thermogenic methane sources such as the Marcellus and Utica shales at the active sites and matched gas geochemistry from gas wells nearby. In contrast, lower-concentration samples from shallow groundwater at nonactive sites had isotopic signatures reflecting a more biogenic or mixed biogenic/thermogenic methane source. We found no evidence for contamination of drinking-water samples with deep saline brines or fracturing fluids. We conclude that greater stewardship, data, and—possibly—regulation are needed to ensure the sustainable future of shale-gas extraction and to improve public confidence in its use. PMID:21555547
NASA Astrophysics Data System (ADS)
Miller, S. D.; Freitas, H.; Read, E.; Goulden, M. L.; Rocha, H.
2007-12-01
Gas evasion from Amazonian rivers and lakes to the atmosphere has been estimated to play an important role in the regional budget of carbon dioxide (Richey et al., 2002) and the global budget of methane (Melack et al., 2004). These flux estimates were calculated by combining remote sensing estimates of inundation area with water-side concentration gradients and gas transfer rates (piston velocities) estimated primarily from floating chamber measurements (footprint ~1 m2). The uncertainty in these fluxes was large, attributed primarily to uncertainty in the gas exchange parameterization. Direct measurements of the gas exchange coefficient are needed to improve the parameterizations in these environments, and therefore reduce the uncertainty in fluxes. The micrometeorological technique of eddy covariance is attractive since it is a direct measurement of gas exchange that samples over a much larger area than floating chambers, and is amenable to use from a moving platform. We present eddy covariance carbon dioxide exchange measurements made using a small riverboat in rivers and lakes in the central Amazon near Santarem, Para, Brazil. Water-side carbon dioxide concentration was measured in situ, and the gas exchange coefficient was calculated. We found the piston velocity at a site on the Amazon River to be similar to existing ocean-based parameterizations, whereas the piston velocity at a site on the Tapajos River was roughly a factor 5 higher. We hypothesize that the enhanced gas exchange at the Tapajos site was due to a shallow upwind fetch. Our results demonstrate the feasibility of boat-based eddy covariance on these rivers, and also the utility of a mobile platform to investigate spatial variability of gas exchange.
The Sample Analysis at Mars Investigation and Instrument Suite
NASA Technical Reports Server (NTRS)
Mahaffy, Paul; Webster, Chris R.; Cabane, M.; Conrad, Pamela G.; Coll, Patrice; Atreya, Sushil K.; Arvey, Robert; Barciniak, Michael; Benna, Mehdi; Bleacher, L.;
2012-01-01
The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory(MSL) addresses the chemical and isotopic composition of the atmosphere and volatilesextracted from solid samples. The SAM investigation is designed to contribute substantiallyto the mission goal of quantitatively assessing the habitability of Mars as an essentialstep in the search for past or present life on Mars. SAM is a 40 kg instrument suite locatedin the interior of MSLs Curiosity rover. The SAM instruments are a quadrupole massspectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupledthrough solid and gas processing systems to provide complementary information on thesame samples. The SAM suite is able to measure a suite of light isotopes and to analyzevolatiles directly from the atmosphere or thermally released from solid samples. In additionto measurements of simple inorganic compounds and noble gases SAM will conducta sensitive search for organic compounds with either thermal or chemical extraction fromsieved samples delivered by the sample processing system on the Curiosity rovers roboticarm.
Foster, Gregory D.; Gates, Paul M.; Foreman, William T.; McKenzie, Stuart W.; Rinella, Frank A.
1993-01-01
Concentrations of pesticides in the dissolved phase of surface water samples from the Yakima River basin, WA, were determined using preconcentration in the Goulden large-sample extractor (GLSE) and gas chromatography/mass spectrometry (GC/MS) analysis. Sample volumes ranging from 10 to 120 L were processed with the GLSE, and the results from the large-sample analyses were compared to those derived from 1-L continuous liquid-liquid extractions Few of the 40 target pesticides were detected in 1-L samples, whereas large-sample preconcentration in the GLSE provided detectable levels for many of the target pesticides. The number of pesticides detected in GLSE processed samples was usually directly proportional to sample volume, although the measured concentrations of the pesticides were generally lower at the larger sample volumes for the same water source. The GLSE can be used to provide lower detection levels relative to conventional liquid-liquid extraction in GC/MS analysis of pesticides in samples of surface water.
Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.
2013-01-01
Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.
Spray-loading: A cryogenic deposition method for diamond anvil cell
NASA Astrophysics Data System (ADS)
Scelta, Demetrio; Ceppatelli, Matteo; Ballerini, Riccardo; Hajeb, Ahmed; Peruzzini, Maurizio; Bini, Roberto
2018-05-01
An efficient loading technique has been developed for flammable, toxic, or explosive gases which can be condensed at liquid nitrogen temperature and ambient pressure in membrane diamond anvil cells (DACs). This cryogenic technique consists in a deposition of small quantities of the desired gas directly into the sample chamber. The deposition is performed using a capillary that reaches the space between the diamond anvils. The DAC is kept under inert gas overpressure during the whole process, in order to avoid contamination from atmospheric O2, CO2, and H2O. This technique provides significant advantages over standard cryo-loading and gas-loading when the condensation of dangerous samples at liquid nitrogen temperature raises safety concerns because it allows dealing with minimum quantities of condensed gases. The whole procedure is particularly fast and efficient. The "spray-loading" has been successfully used in our laboratory to load several samples including acetylene, ammonia, ethylene, and carbon dioxide/water or red phosphorus/NH3 mixtures.
Evaluation of direct saponification method for determination of cholesterol in meats.
Adams, M L; Sullivan, D M; Smith, R L; Richter, E F
1986-01-01
A gas chromatographic (GC) method has been developed for determination of cholesterol in meats. The method involves ethanolic KOH saponification of the sample material, homogeneous-phase toluene extraction of the unsaponifiables, derivatization of cholesterol to its trimethylsilylether, and quantitation by GC-flame ionization detection using 5-alpha-cholestane as internal standard. This direct saponification method is compared with the current AOAC official method for determination of cholesterol in 20 different meat products. The direct saponification method eliminates the need for initial lipid extraction, thus offering a 30% savings in labor, and requires fewer solvents than the AOAC method. It produced comparable or slightly higher cholesterol results than the AOAC method in all meat samples examined. Precision, determined by assaying a turkey meat sample 16 times over 4 days, was excellent (CV = 1.74%). Average recovery of cholesterol added to meat samples was 99.8%.
Observation of tritium in gas/plasma loaded titanium samples
NASA Astrophysics Data System (ADS)
Srinivasan, M.; Shyam, A.; Kaushik, T. C.; Rout, R. K.; Kulkarni, L. V.; Krishnan, M. S.; Malhotra, S. K.; Nagvenkar, V. G.; Iyengar, P. K.
1991-05-01
The observation of significant neutron yield from gas loaded titanium samples at Frascati in April 1989 opened up an alternate pathway to the investigation of anomalous nuclear phenomena in deuterium/solid systems, complimenting the electrolytic approach. Since then at least six different groups have successfully measured burst neutron emission from deuterated titanium shavings following the Frascati methodology, the special feature of which was the use of liquid nitrogen to create repeated thermal cycles resulting in the production of non-equilibrium conditions in the deuterated samples. At Trombay several variations of the gas loading procedure have been investigated including induction heating of single machined titanium targets in a glass chamber as well as use of a plasma focus device for deuteriding its central titanium electrode. Stemming from earlier observations both at BARC and elsewhere that tritium yield is ≂108 times higher than neutron output in cold fusion experiments, we have channelised our efforts to the search for tritium rather than neutrons. The presence of tritium in a variety gas/plasma loaded titanium samples has been established successfully through a direct measurement of the radiations emitted as a result of tritium decay, in contradistinction to other groups who have looked for tritium in the extracted gases. In some samples we have thus observed tritium levels of over 10 MBq with a corresponding (t/d) ratio of ≳10-5.
NASA Astrophysics Data System (ADS)
Chepigin, A.; Leonte, M.; Colombo, F.; Kessler, J. D.
2014-12-01
Dissolved methane, ethane, propane, and butane concentrations in natural waters are traditionally measured using a headspace equilibration technique and gas chromatograph with flame ionization detector (GC-FID). While a relatively simple technique, headspace equilibration suffers from slow equilibration times and loss of sensitivity due to concentration dilution with the pure gas headspace. Here we present a newly developed pre-concentration system and auto-analyzer for use with a GC-FID. This system decreases the time required for each analysis by eliminating the headspace equilibration time, increases the sensitivity and precision with a rapid pre-concentration step, and minimized operator time with an autoanalyzer. In this method, samples are collected from Niskin bottles in newly developed 1 L plastic sample bags rather than glass vials. Immediately following sample collection, the sample bags are placed in an incubator and individually connected to a multiport sampling valve. Water is pumped automatically from the desired sample bag through a small (6.5 mL) Liqui-Cel® membrane contactor where the dissolved gas is vacuum extracted and directly flushed into the GC sample loop. The gases of interest are preferentially extracted with the Liqui-Cel and thus a natural pre-concentration effect is obtained. Daily method calibration is achieved in the field with a five-point calibration curve that is created by analyzing gas standard-spiked water stored in 5 L gas-impermeable bags. Our system has been shown to substantially pre-concentrate the dissolved gases of interest and produce a highly linear response of peak areas to dissolved gas concentration. The system retains the high accuracy, precision, and wide range of measurable concentrations of the headspace equilibration method while simultaneously increasing the sensitivity due to the pre-concentration step. The time and labor involved in the headspace equilibration method is eliminated and replaced with the immediate and automatic analysis of a maximum of 13 sequential samples. The elapsed time between sample collection and analysis is reduced from approximately 12 hrs to < 10 min, enabling dynamic and highly resolved sampling plans.
Fast and accurate calculation of dilute quantum gas using Uehling–Uhlenbeck model equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yano, Ryosuke, E-mail: ryosuke.yano@tokiorisk.co.jp
The Uehling–Uhlenbeck (U–U) model equation is studied for the fast and accurate calculation of a dilute quantum gas. In particular, the direct simulation Monte Carlo (DSMC) method is used to solve the U–U model equation. DSMC analysis based on the U–U model equation is expected to enable the thermalization to be accurately obtained using a small number of sample particles and the dilute quantum gas dynamics to be calculated in a practical time. Finally, the applicability of DSMC analysis based on the U–U model equation to the fast and accurate calculation of a dilute quantum gas is confirmed by calculatingmore » the viscosity coefficient of a Bose gas on the basis of the Green–Kubo expression and the shock layer of a dilute Bose gas around a cylinder.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seol, Yongkoo; Myshakin, Evgeniy
2011-01-01
Gas hydrate has been predicted to reform around a wellbore during depressurization-based gas production from gas hydrate-bearing reservoirs. This process has an adverse effect on gas production rates and it requires time and sometimes special measures to resume gas flow to producing wells. Due to lack of applicable field data, laboratory scale experiments remain a valuable source of information to study hydrate reformation. In this work, we report laboratory experiments and complementary numerical simulations executed to investigate the hydrate reformation phenomenon. Gas production from a pressure vessel filled with hydrate-bearing sand was induced by depressurization with and without heat fluxmore » through the boundaries. Hydrate decomposition was monitored with a medical X-ray CT scanner and pressure and temperature measurements. CT images of the hydrate-bearing sample were processed to provide 3-dimensional data of heterogeneous porosity and phase saturations suitable for numerical simulations. In the experiments, gas hydrate reformation was observed only in the case of no-heat supply from surroundings, a finding consistent with numerical simulation. By allowing gas production on either side of the core, numerical simulations showed that initial hydrate distribution patterns affect gas distribution and flow inside the sample. This is a direct consequence of the heterogeneous pore network resulting in varying hydraulic properties of the hydrate-bearing sediment.« less
Assessment of long-term gas sampling design at two commercial manure-belt layer barns.
Chai, Li-Long; Ni, Ji-Qin; Chen, Yan; Diehl, Claude A; Heber, Albert J; Lim, Teng T
2010-06-01
Understanding temporal and spatial variations of aerial pollutant concentrations is important for designing air quality monitoring systems. In long-term and continuous air quality monitoring in large livestock and poultry barns, these systems usually use location-shared analyzers and sensors and can only sample air at limited number of locations. To assess the validity of the gas sampling design at a commercial layer farm, a new methodology was developed to map pollutant gas concentrations using portable sensors under steady-state or quasi-steady-state barn conditions. Three assessment tests were conducted from December 2008 to February 2009 in two manure-belt layer barns. Each barn was 140.2 m long and 19.5 m wide and had 250,000 birds. Each test included four measurements of ammonia and carbon dioxide concentrations at 20 locations that covered all operating fans, including six of the fans used in the long-term sampling that represented three zones along the lengths of the barns, to generate data for complete-barn monitoring. To simulate the long-term monitoring, gas concentrations from the six long-term sampling locations were extracted from the 20 assessment locations. Statistical analyses were performed to test the variances (F-test) and sample means (t test) between the 6- and 20-sample data. The study clearly demonstrated ammonia and carbon dioxide concentration gradients that were characterized by increasing concentrations from the west to east ends of the barns following the under-cage manure-belt travel direction. Mean concentrations increased from 7.1 to 47.7 parts per million (ppm) for ammonia and from 2303 to 3454 ppm for carbon dioxide from the west to east of the barns. Variations of mean gas concentrations were much less apparent between the south and north sides of the barns, because they were 21.2 and 20.9 ppm for ammonia and 2979 and 2951 ppm for carbon dioxide, respectively. The null hypotheses that the variances and means between the 6- and 20-sample data were equal at alpha = 0.05 (P > 0.05) were accepted for both gases. The results proved that the long-term gas sampling design was valid in this instance and suggested that the gas sampling design in these two barns was one of the best on the basis of available long-term monitoring instrumentation at reasonable cost.
Daft, J L
1983-03-01
A gas chromatographic (GC) procedure for determining fumigants in grains was developed. Fumigants were leached from grain samples with the official AOAC method using acetone-water (5 + 1). They were then partitioned from the leachate with isooctane, yielding a dry, stable extract that was analyzed by GC. Fortified sample recoveries ranged from 90 to 100%. Two GC columns were used, 20% OV-101 and 20% OV-225/20% OV-17 (2 + 1). These columns gave dissimilar retention profiles and baseline resolution for the 7 fumigants investigated: chloroform, ethylene dichloride, carbon tetrachloride, trichloroethylene, chloropicrin, ethylene dibromide, and tetrachloroethylene. Further tests showed that grain samples could be screened for fumigant residues by direct injection of the acetone-water leachates obtained using the AOAC method.
Design for gas chromatography-corona discharge-ion mobility spectrometry.
Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein
2012-11-20
A corona discharge ionization-ion mobility spectrometry (CD-IMS) with a novel sample inlet system was designed and constructed as a detector for capillary gas chromatography. In this design, a hollow needle was used instead of a solid needle which is commonly used for corona discharge creation, helping us to have direct axial interfacing for GC-IMS. The capillary column was passed through the needle, resulting in a reaction of effluents with reactant ions on the upstream side of the corona discharge ionization source. Using this sample introduction design, higher ionization efficiency was achieved relative to the entrance direction through the side of the drift tube. In addition, the volume of the ionization region was reduced to minimize the resistance time of compounds in the ionization source, increasing chromatographic resolution of the instrument. The effects of various parameters such as drift gas flow, makeup gas flow, and column tip position inside the needle were investigated. The designed instrument was exhaustively validated in terms of sensitivity, resolution, and reproducibility by analyzing the standard solutions of methyl isobutyl ketone, heptanone, nonanone, and acetophenone as the test compounds. The results obtained by CD-IMS detector were compared with those of the flame ionization detector, which revealed the capability of the proposed GC-IMS for two-dimensional separation (based on the retention time and drift time information) and identification of an analyte in complex matrixes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, K.E.; Dickhut, R.M.
1995-12-31
The gaseous exchange fluxes of polycyclic aromatic hydrocarbons (PAHs) across the air-water interface of lower Chesapeake Bay were determined using a modified two-film exchange model. Sampling covered the period January 1994 to June 1995 for five sites on lower Chesapeake Bay ranging from rural to urban and highly industrialized. Simultaneous air and water samples were collected and the atmospheric gas phase and water column dissolved phase analyzed via GC/MS for 17 PAHs. The direction and magnitude of flux for each PAH was calculated using Henry`s law constants, hydrological and meteorological parameters, Temperature was observed to be an important environmental factormore » in determining both the direction and magnitude of PAH gas exchange. Nonetheless, wind speed significantly impacts mass transfer coefficients, and therefore was found to control the magnitude of flux. Spatial and temporal variation of PAH gaseous exchange fluxes were examined. Fluxes were determined to be both into and out of Chesapeake Bay. The range of gas exchange fluxes ({minus}560 to 600{micro}g/M{sup 2}*Mo) is of the same order to 10X greater than atmospheric wet and dry depositional fluxes to lower Chesapeake Bay. The results of this study support the hypothesis that gas exchange is a major transport process affecting the net loadings of PAHs in lower Chesapeake Bay.« less
PlanetVac: Sample Return with a Puff of Gas
NASA Astrophysics Data System (ADS)
Zacny, K.; Mueller, R.; Betts, B. H.
2014-12-01
PlanetVac is a regolith sample acquisition mission concept that uses compressed gas to blow material from the surface up a pneumatic tube and directly into a sample return container. The PlanetVac sampling device is built into the lander legs to eliminate cost and complexity associated with robotic arms and scoops. The pneumatic system can effectively capture fine and coarse regolith, including small pebbles. It is well suited for landed missions to Mars, asteroids, or the Moon. Because of the low pressures on all those bodies, the technique is extremely efficient. If losses are kept to minimum, 1 gram of compressed gas could efficiently lift 6000 grams of soil. To demonstrate this approach, the PlanetVac lander with four legs and two sampling tubes has been designed, integrated, and tested. Vacuum chamber testing was performed using two well-known planetary regolith simulants: Mars Mojave Simulant (MMS) and lunar regolith simulant JSC-1A. One of the two sampling systems was connected to a mockup of an earth return rocket while the second sampling system was connected to a lander deck mounted instrument (clear box for easy viewing). The tests included a drop from a height of approximately 50 cm onto the bed of regolith, deployment of sampling tubes into the regolith, pneumatic acquisition of sample into an instrument (sample container) and the rocket, and the launch of the rocket. The demonstration has been successful and can be viewed here: https://www.youtube.com/watch?v=DjJXvtQk6no. In most of the tests, 20 grams or more of sample was delivered to the 'instrument' and approximately 5 grams of regolith was delivered into a sampling chamber within the rocket. The gas lifting efficiency was calculated to be approximately 1000:1; that is 1 gram of gas lofted 1000 grams of regolith. Efficiencies in lower gravity environments are expected to be much higher. This successful, simple and lightweight sample capture demonstration paves the way to using such sampling system on either NASA or commercial landers to the Moon, Asteroids, comets, or Mars.
Analytical instrument with apparatus and method for sample concentrating
Zaromb, S.
1986-08-04
A system for analysis of trace concentrations of contaminants in air includes a portable liquid chromatograph and a preconcentrator for the contaminants to be analyzed. The preconcentrator includes a sample bag having an inlet valve and an outlet valve for collecting an air sample. When the sample is collected the sample bag is connected in series with a sorbing apparatus in a recirculation loop. The sorbing apparatus has an inner gas-permeable container containing a sorbent material and an outer gas-impermeable container. The sample is circulated through the outer container and around the inner container for trapping and preconcentrating the contaminants in the sorbent material. The sorbent material may be a liquid having the same composition as the mobile phase of the chromatograph for direct injection thereinto. Alternatively, the sorbent material may be a porous, solid body, to which mobile phase liquid is added after preconcentration of the contaminants for dissolving the contaminants, the liquid solution then being withdrawn for injection into the chromatograph.
Analytical instrument with apparatus for sample concentrating
Zaromb, Solomon
1989-01-01
A system for analysis of trace concentrations of contaminants in air includes a portable liquid chromatograph and a preconcentrator for the contaminants to be analyzed. The preconcentrator includes a sample bag having an inlet valve and an outlet valve for collecting an air sample. When the sample is collected the sample bag is connected in series with a sorbing apparatus in a recirculation loop. The sorbing apparatus has an inner gas-permeable container containing a sorbent material and an outer gas-impermeable container. The sample is circulated through the outer container and around the inner container for trapping and preconcentrating the contaminants in the sorbent material. The sorbent material may be a liquid having the same composition as the mobile phase of the chromatograph for direct injection thereinto. Alternatively, the sorbent material may be a porous, solid body, to which mobile phase liquid is added after preconcentration of the contaminants for dissolving the contaminants, the liquid solution then being withdrawn for injection into the chromatograph.
Method for preconcentrating a sample for subsequent analysis
Zaromb, Solomon
1990-01-01
A system for analysis of trace concentration of contaminants in air includes a portable liquid chromatograph and a preconcentrator for the contaminants to be analyzed. The preconcentrator includes a sample bag having an inlet valve and an outlet valve for collecting an air sample. When the sample is collected the sample bag is connected in series with a sorbing apparatus in a recirculation loop. The sorbing apparatus has an inner gas-permeable container containing a sorbent material and an outer gas-impermeable container. The sample is circulated through the outer container and around the inner container for trapping and preconcentrating the contaminants in the sorbent material. The sorbent material may be a liquid having the same composition as the mobile phase of the chromatograph for direct injection thereinto. Alternatively, the sorbent material may be a porous, solid body, to which mobile phase liquid is added after preconcentration of the contaminants for dissolving the contaminants, the liquid solution then being withdrawn for injection into the chromatograph.
NASA Astrophysics Data System (ADS)
Violino, Giulio; Ellison, Sara L.; Sargent, Mark; Coppin, Kristen E. K.; Scudder, Jillian M.; Mendel, Trevor J.; Saintonge, Amelie
2018-05-01
We investigate the connection between star formation and molecular gas properties in galaxy mergers at low redshift (z ≤ 0.06). The study we present is based on IRAM 30-m CO(1-0) observations of 11 galaxies with a close companion selected from the Sloan Digital Sky Survey (SDSS). The pairs have mass ratios ≤4, projected separations rp ≤ 30 kpc and velocity separations ΔV ≤ 300 km s-1, and have been selected to exhibit enhanced specific star formation rates (sSFRs). We calculate molecular gas (H2) masses, assigning to each galaxy a physically motivated conversion factor αCO, and we derive molecular gas fractions and depletion times. We compare these quantities with those of isolated galaxies from the extended CO Legacy Data base for the GALEX Arecibo SDSS Survey sample (xCOLDGASS; Saintonge et al.) with gas quantities computed in an identical way. Ours is the first study which directly compares the gas properties of galaxy pairs and those of a control sample of normal galaxies with rigorous control procedures and for which SFR and H2 masses have been estimated using the same method. We find that the galaxy pairs have shorter depletion times and an average molecular gas fraction enhancement of 0.4 dex compared to the mass matched control sample drawn from xCOLDGASS. However, the gas masses (and fractions) in galaxy pairs and their depletion times are consistent with those of non-mergers whose SFRs are similarly elevated. We conclude that both external interactions and internal processes may lead to molecular gas enhancement and decreased depletion times.
A simple technique for continuous measurement of time-variable gas transfer in surface waters
Tobias, Craig R.; Bohlke, John Karl; Harvey, Judson W.; Busenberg, Eurybiades
2009-01-01
Mass balance models of dissolved gases in streams, lakes, and rivers serve as the basis for estimating wholeecosystem rates for various biogeochemical processes. Rates of gas exchange between water and the atmosphere are important and error-prone components of these models. Here we present a simple and efficient modification of the SF6 gas tracer approach that can be used concurrently while collecting other dissolved gas samples for dissolved gas mass balance studies in streams. It consists of continuously metering SF6-saturated water directly into the stream at a low rate of flow. This approach has advantages over pulse injection of aqueous solutions or bubbling large amounts of SF6 into the stream. By adding the SF6 as a saturated solution, we minimize the possibility that other dissolved gas measurements are affected by sparging and/or bubble injecta. Because the SF6 is added continuously we have a record of changing gas transfer velocity (GTV) that is contemporaneous with the sampling of other nonconservative ambient dissolved gases. Over a single diel period, a 30% variation in GTV was observed in a second-order stream (Sugar Creek, Indiana, USA). The changing GTV could be attributed in part to changes in temperature and windspeed that occurred on hourly to diel timescales.
NASA Astrophysics Data System (ADS)
Somlai, Celia; Natchimuthu, Sivakiruthika; Bastviken, David; Lorke, Andreas
2015-04-01
Quantifying the role of inland water systems in terms of carbon sinks and sources and their connection to the terrestrial ecosystems and landscapes is fundamental for improving the balance approach of regional and global carbon budgets. Recent research showed that freshwater bodies emit significant amounts of CO2 and CH4 into the atmosphere. The extent of the emissions from small streams and headwaters, however, remains uncertain due to a limited availability of data. Studies have shown that headwater systems receive most of the terrestrial organic carbon, have the highest dissolved CO2 concentration and the highest gas exchange velocities and cover the largest fractional surface area within fluvial networks. The gas exchange between inland waters and the atmosphere is controlled by two factors: the difference between the dissolved gas concentration and its atmospheric equilibrium concentration, and the gas exchange velocity. The direct measurement of the dissolved gas concentration of greenhouse gases can be measured straightforwardly, for example, by gas chromatography from headspace extraction of water sample. In contrast, direct measurement of gas exchange velocity is more complex and time consuming, as simultaneous measurements with a volatile and nonvolatile inert tracer gas are needed. Here we analyze measurements of gas exchange velocities, concentrations and fluxes of dissolved CO2 and CH4, as well as loads of total organic and inorganic carbon in 10 reaches in headwater streams in Southwest Sweden. We compare the gas exchange velocities measured directly through tracer injections with those estimated through various empirical approaches, which are based on modelled and measured current velocity, stream depth and slope. Furthermore, we estimate the resulting uncertainties of the flux estimates. We also present different time series of dissolved CO2, CH4 and O2 concentration, water temperature, barometric pressure, electro conductivity, and pH values measured during the period of tracer injection.
Rahmanian, A; Ghaziaskar, H S; Khayamian, T
2013-01-11
In this study, packed column supercritical fluid chromatography (SFC) was directly coupled to a continuous corona discharge (CD) ion mobility spectrometer (IMS) with several modifications. The main advantage of the developed detector is its capability to introduce full column effluent up to 2000 mL min(-1) CO(2) gas directly into the IMS cell relative to 40 mL min(-1) CO(2) gas as a maximum tolerance, reported for the previous IMS detectors. This achievement was made possible because of using corona discharge instead of (63)Ni as an ionization source and locating the inlet and outlet of the CO(2) gas in the counter electrode of the CD in opposite direction. In addition, a heated interface was placed between back pressure regulator (BPR) and the IMS cell to heat the output of the BPR for introducing sample as the gas phase into the IMS cell. Furthermore, a make-up methanol flow was introduced between the column outlet and BPR to provide a more uniform flow through the BPR and also to prevent freezing and deposition of the analytes in the BPR. The performance of the SFC-CD-IMS was evaluated by analysis of testosterone, medroxyprogesterone, caffeine, and theophylline as test compounds and figures of merit for these compounds have been calculated. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McGuire, N. D.; Ewen, R. J.; de Lacy Costello, B.; Garner, C. E.; Probert, C. S. J.; Vaughan, K.; Ratcliffe, N. M.
2014-06-01
Rapid volatile profiling of stool sample headspace was achieved using a combination of short multi-capillary chromatography column (SMCC), highly sensitive heated metal oxide semiconductor sensor and artificial neural network software. For direct analysis of biological samples this prototype offers alternatives to conventional gas chromatography (GC) detectors and electronic nose technology. The performance was compared to an identical instrument incorporating a long single capillary column (LSCC). The ability of the prototypes to separate complex mixtures was assessed using gas standards and homogenized in house ‘standard’ stool samples, with both capable of detecting more than 24 peaks per sample. The elution time was considerably faster with the SMCC resulting in a run time of 10 min compared to 30 min for the LSCC. The diagnostic potential of the prototypes was assessed using 50 C. difficile positive and 50 negative samples. The prototypes demonstrated similar capability of discriminating between positive and negative samples with sensitivity and specificity of 85% and 80% respectively. C. difficile is an important cause of hospital acquired diarrhoea, with significant morbidity and mortality around the world. A device capable of rapidly diagnosing the disease at the point of care would reduce cases, deaths and financial burden.
Yang, Cui; Zhao, Jinhua; Wang, Juan; Yu, Hongling; Piao, Xiangfan; Li, Donghao
2013-07-26
A novel organic solvent-free mode of gas purge microsyringe extraction, termed water-based gas purge microsyringe extraction, was developed. This technique can directly extract target compounds in wet samples without any drying process. Parameters affecting the extraction efficiency were investigated. Under optimal extraction conditions, the recoveries of alkylphenols were between 87.6 and 105.8%, and reproducibility was between 5.2 and 12.1%. The technique was also used to determine six kinds of alkylphenols (APs) from samples of Laminaria japonica Aresh. The OP and NP were detected in all the samples, and concentrations ranged from 26.0 to 54.5ngg(-1) and 45.0-180.4ngg(-1), respectively. The 4-n-butylphenol was detected in only one sample and its concentration was very low. Other APs were not detected in L. japonica Aresh samples. The experimental results demonstrated that the technique is fast, simple, non-polluting, allows for quantitative extraction, and a drying process was not required for wet samples. Since only aqueous solution and a conventional microsyringe were used, this technique proved affordable, efficient, and convenient for the extraction of volatile and semivolatile ionizable compounds. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kelly, P. J.; Werner, C. A.; Evans, W.; Ingebritsen, S.; Tucker, D.
2012-12-01
Degassing from most Cascade Range Volcanoes, USA, is characterized by low-temperature hydrothermal emissions. It is important to monitor these emissions as part of a comprehensive monitoring strategy yet access is often difficult and most features are sampled by the USGS only once per year at best. In an effort to increase the sampling frequency of major gas species and in preparation for building permanent, autonomous units, we built a portable sensor package capable of measuring H2O, CO2, SO2, and H2S in volcanic gas plumes. Here we compare results from the portable sensor package with gas analyses from direct samples obtained using a titanium tube and evacuated glass flasks collected at the same time. The sensor package is housed in a small, rugged case, weighs 5 kg, and includes sensors for measuring H2O (0-16 parts per thousand), CO2 (0-5000 ppmv), SO2 (0-100 ppm), and H2S (0-20 ppm) gases. Additional temperature and pressure sensors, a micro air pump, datalogger, and an internal battery are also incorporated. H2O and CO2 are measured using an infrared spectrometer (Licor 840) and sulfur-containing gases are measured using electrochemical sensors equipped with filters to mitigate cross-sensitivities. Data are collected at a 1 Hz sampling rate and can be recorded and displayed in real-time using a netbook computer or can be saved to the onboard datalogger. The data display includes timeseries of H2O, CO2, SO2, and H2S mixing ratios, the four-component bulk composition of the plume, and automated calculation of gas ratios commonly used in volcanic gas monitoring, such as H2O/CO2, CO2/SO2, and CO2/H2S . In the Cascade Range, the sensor package has been tested at Mt. Baker, Mt. St. Helens, Mt. Hood, and in Lassen Volcanic National Park. In each case, the instrument was placed 5 to 30 meters from the fumarole or fumarole field and emissions were sampled for 5 to 30 minutes. No SO2 was detected at any location. At Mt. Hood the sensor package yielded average CO2/H2S ratios from 10 to 16 in fumarole plumes versus flask CO2/H2S ratios (n = 2) of 13 and 16 on 9 July 2011, and on 28 July 2012 the sensor package yielded an average CO2/H2S ratio of 12 versus flask ratios (n = 2) of 13 (both sets of flask samples obtained in the Crater Rock area). At Mt. Baker, the sensor package yielded average CO2/H2S ratios from 19 to 22 whereas flask ratios (n = 3) were higher, from 25 to 32 (both fumarole-plume and flask samples obtained in the Sherman Crater area) on 22 July 2011. The mismatch falls slightly outside expected analytical uncertainty for the sensor package (about 20% relative for CO2/H2S ratios). However, flask samples collected in Sherman Crater in 2006 and 2007 (n = 5) yielded CO2/H2S ratios from 18 to 29, which nearly spans the range of observations in 2011. Therefore, one explanation for the small mismatch between the results of the sensor package and direct samples is that the sensor package measures bulk plume compositions that may integrate emissions from several chemically distinct fumaroles and the direct samples better represent the composition of discrete vents. Overall, the sensor package and evacuated flask data show good agreement and demonstrate that the real-time technique is a viable means for monitoring major volcanic gas species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grote, R.A.
1991-05-01
The report is a recommended operating procedure (ROP), prepared for use in research activities conducted by EPA's Air and Energy Engineering Research Laboratory (AEERL). The method described is applicable to the stack sampling of flue gas from a rotary kiln and to associated equipment of AEERL's Combustion Research Branch. It has been the standard method of sampling kiln flue gas due to the transient nature of the puff development and its capability to sample the maximum volume over the shortest time period. ROPs describe non-routine or experimental research operations where some judgment in application may be warranted. ROPs may notmore » be applicable to activities conducted by other research groups, and should not be used in place of standard operating procedures. Use of ROPs must be accompanied by an understanding of the purpose and scope. Questions should be directed to the author.« less
Boulyga, Sergei F; Heilmann, Jens; Heumann, Klaus G
2005-08-01
Inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with direct laser-assisted introduction of isotope-diluted samples into the plasma, using a laser ablation system with high ablation rates, was developed for accurate sulfur determinations in different petroleum products such as 'sulfur-free' premium gasoline, diesel fuel, and heating oil. Two certified gas oil reference materials were analyzed for method validation. Two different 34S-enriched spike compounds, namely, elementary sulfur dissolved in xylene and dibenzothiophene in hexane, were synthesized and tested for their usefulness in this isotope dilution technique. The isotope-diluted sample was adsorbed on a filter-paper-like material, which was fixed in a special holder for irradiation by the laser beam. Under these conditions no time-dependent spike/analyte fractionation was only observed for the dibenzothiophene spike during the laser ablation process, which means that the measured 34S/32S isotope ratio of the isotope-diluted sample remained constant-a necessary precondition for accurate results with the isotope dilution technique. A comparison of LA-ICP-IDMS results with the certified values of the gas oil reference materials and with results obtained from ICP-IDMS analyses with wet sample digestion demonstrated the accuracy of the new LA-ICP-IDMS method in the concentration range of 9.2 microg g(-1) ('sulfur-free' premium gasoline) to 10.4 mg g(-1) (gas oil reference material BCR 107). The detection limit for sulfur by LA-ICP-IDMS is 0.04 microg g(-1) and the analysis time is only about 10 min, which therefore also qualifies this method for accurate determinations of low sulfur contents in petroleum products on a routine level.
NASA Astrophysics Data System (ADS)
Raulerson, S.; Volkmann, T.; Pangle, L. A.
2017-12-01
Traditional methodologies for measuring ratios of stable isotopes within the xylem water of trees involve destructive coring of the stem. A recent approach involves permanently installed probes within the stem, and an on-site assembly of pumps, switching valves, gas lines, and climate-controlled structure for field deployment of a laser spectrometer. The former method limits the possible temporal resolution of sampling, and sample size, while the latter may not be feasible for many research groups. We present results from initial laboratory efforts towards developing a non-destructive, temporally-resolved technique for measuring stable isotope ratios within the xylem flow of trees. Researchers have used direct liquid-vapor equilibration as a method to measure isotope ratios of the water in soil pores. Typically, this is done by placing soil samples in a fixed container, and allowing the liquid water within the soil to come into isotopic equilibrium with the headspace of the container. Water can also be removed via cryogenic distillation or azeotropic distillation, with the resulting liquid tested for isotope ratios. Alternatively, the isotope ratios of the water vapor can be directly measured using a laser-based water vapor isotope analyzer. Well-established fractionation factors and the isotope ratios in the vapor phase are then used to calculate the isotope ratios in the liquid phase. We propose a setup which would install a single, removable chamber onto a tree, where vapor samples could non-destructively and repeatedly be taken. These vapor samples will be injected into a laser-based isotope analyzer by a recirculating gas conveyance system. A major part of what is presented here is in the procedure of taking vapor samples at 100% relative humidity, appropriately diluting them with completely dry N2 calibration gas, and injecting them into the gas conveyance system without inducing fractionation in the process. This methodology will be helpful in making temporally resolved measurements of the stable isotopes in xylem water, using a setup that can be easily repeated by other research groups. The method is anticipated to find broad application in ecohydrological analyses, and in tracer studies aimed at quantifying age distributions of soil water extracted by plant roots.
Woo, Kang-Lyung
2005-01-01
Low molecular weight alcohols including fusel oil were determined using diethyl ether extraction and capillary gas chromatography. Twelve kinds of alcohols were successfully resolved on the HP-FFAP (polyethylene glycol) capillary column. The diethyl ether extraction method was very useful for the analysis of alcohols in alcoholic beverages and biological samples with excellent cleanliness of the resulting chromatograms and high sensitivity compared to the direct injection method. Calibration graphs for all standard alcohols showed good linearity in the concentration range used, 0.001-2% (w/v) for all alcohols. Salting out effects were significant (p < 0.01) for the low molecular weight alcohols methanol, isopropanol, propanol, 2-butanol, n-butanol and ethanol, but not for the relatively high molecular weight alcohols amyl alcohol, isoamyl alcohol, and heptanol. The coefficients of variation of the relative molar responses were less than 5% for all of the alcohols. The limits of detection and quantitation were 1-5 and 10-60 microg/L for the diethyl ether extraction method, and 10-50 and 100-350 microg/L for the direct injection method, respectively. The retention times and relative retention times of standard alcohols were significantly shifted in the direct injection method when the injection volumes were changed, even with the same analysis conditions, but they were not influenced in the diethyl ether extraction method. The recoveries by the diethyl ether extraction method were greater than 95% for all samples and greater than 97% for biological samples.
Desorption corona beam ionization source for mass spectrometry.
Wang, Hua; Sun, Wenjian; Zhang, Junsheng; Yang, Xiaohui; Lin, Tao; Ding, Li
2010-04-01
A novel Desorption Corona Beam Ionization (DCBI) source for direct analysis of samples from surface in mass spectrometry is reported. The DCBI source can work under ambient conditions without time-consuming sample pretreatments. The source shares some common features with another ionization source - Direct Analysis in Real Time (DART), developed earlier. For example, helium was used as the discharge gas (although only corona discharge is involved in the present source), and heating of the discharge gas is required for sample desorption. However, the difference between the two sources is substantial. In the present source, a visible thin corona beam extending out around 1 cm can be formed by using a hollow needle/ring electrode structure. This feature would greatly facilitate localizing sampling areas and performing imaging/profiling experiments. The DCBI source is also capable of performing progressive temperature scans between room temperature and 450 degrees C in order to sequentially desorb samples from the surface and, therefore, to achieve a rough separation of the individual components in a complex mixture, resulting in less congestion in the mass spectrum acquired. Mass spectra for a broad range of compounds (pesticides, veterinary additives, OTC drugs, explosive materials) have been acquired using the DCBI source. For most of the compounds tested, the heater temperature required for efficient desorption is at least 150 degrees C. The molecular weight of the sample that can be desorbed/ionized is normally below 600 dalton even at the highest heater temperature, which is mainly limited by the volatility of the sample.
Pleil, J D; Lindstrom, A B
1997-05-01
The organic constituents of exhaled human breath are representative of blood-borne concentrations through gas exchange in the blood/breath interface in the lungs. The presence of specific compounds can be an indicator of recent exposure or represent a biological response of the subject. For volatile organic compounds (VOCs), sampling and analysis of breath is preferred to direct measurement from blood samples because breath collection is noninvasive, potentially infectious waste is avoided, and the measurement of gas-phase analytes is much simpler in a gas matrix rather than in a complex biological tissue such as blood. To exploit these advantages, we have developed the "single breath canister" (SBC) technique, a simple direct collection method for individual alveolar breath samples, and adapted conventional gas chromatography-mass spectrometry analytical methods for trace-concentration VOC analysis. The focus of this paper is to describe briefly the techniques for making VOC measurements in breath, to present some specific applications for which these methods are relevant, and to demonstrate how to estimate exposure to example VOCs on the basis of breath elimination. We present data from three different exposure scenarios: (a) vinyl chloride and cis-1,2-dichloroethene from showering with contaminated water from a private well, (b) chloroform and bromodichloromethane from high-intensity swimming in chlorinated pool water, and (c) trichloroethene from a controlled exposure chamber experiment. In all cases, for all subjects, the experiment is the same: preexposure breath measurement, exposure to halogenated VOC, and a postexposure time-dependent series of breath measurements. Data are presented only to demonstrate the use of the method and how to interpret the analytical results.
LOW LEVEL LOW ENERGY LOW QUANTITY SAMPLE COUNTING IN TRACER WORK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosain, F.
1958-01-01
A gas-flow Geiger counter has been set in anticoincidence with a ring of 10 Geiger-Mueller cosmic-ray counters and the whole assembly placed inside an iron castle. Radioactive samples can be introduced directly within the structure of the counter. The apparatus has been used in very low level tracer work with S/sup 35/, Fe/sup 55/, and I/sup 131/. (J.S.R.)
Discrete model of gas-free spin combustion of a powder mixture
NASA Astrophysics Data System (ADS)
Klimenok, Kirill L.; Rashkovskiy, Sergey A.
2015-01-01
We propose a discrete model of gas-free combustion of a cylindrical sample which reproduces in detail a spin combustion mode. It is shown that a spin combustion, in its classical sense as a continuous spiral motion of heat release zones on the surface of the sample, does not exist. Such a concept has arisen due to the misinterpretation of the experimental data. This study shows that in fact a spinlike combustion is realized, at which two energy release zones appear on the lateral surface of the sample and propagate circumferentially in the opposite directions. After some time two new heat release zones are formed on the next layer of the cylinder surface and make the same counter-circular motion. This process continues periodically and from a certain angle it looks like a spiral movement of the luminous zone along the lateral surface of the sample. The model shows that on approaching the combustion limit the process becomes more complicated and the spinlike combustion mode shifts to a more complex mode with multiple zones of heat release moving in different directions along the lateral surface. It is shown that the spin combustion mode appears due to asymmetry of initial conditions and always transforms into a layer-by-layer combustion mode with time.
Discrete model of gas-free spin combustion of a powder mixture.
Klimenok, Kirill L; Rashkovskiy, Sergey A
2015-01-01
We propose a discrete model of gas-free combustion of a cylindrical sample which reproduces in detail a spin combustion mode. It is shown that a spin combustion, in its classical sense as a continuous spiral motion of heat release zones on the surface of the sample, does not exist. Such a concept has arisen due to the misinterpretation of the experimental data. This study shows that in fact a spinlike combustion is realized, at which two energy release zones appear on the lateral surface of the sample and propagate circumferentially in the opposite directions. After some time two new heat release zones are formed on the next layer of the cylinder surface and make the same counter-circular motion. This process continues periodically and from a certain angle it looks like a spiral movement of the luminous zone along the lateral surface of the sample. The model shows that on approaching the combustion limit the process becomes more complicated and the spinlike combustion mode shifts to a more complex mode with multiple zones of heat release moving in different directions along the lateral surface. It is shown that the spin combustion mode appears due to asymmetry of initial conditions and always transforms into a layer-by-layer combustion mode with time.
Hua, Yujuan; Hawryluk, Myron; Gras, Ronda; Shearer, Randall; Luong, Jim
2018-01-01
A fast and reliable analytical technique for the determination of total sulfur levels in complex hydrocarbon matrices is introduced. The method employed flow injection technique using a gas chromatograph as a sample introduction device and a gas phase dual-plasma sulfur chemiluminescence detector for sulfur quantification. Using the technique described, total sulfur measurement in challenging hydrocarbon matrices can be achieved in less than 10 s with sample-to-sample time <2 min. The high degree of selectivity and sensitivity toward sulfur compounds of the detector offers the ability to measure low sulfur levels with a detection limit in the range of 20 ppb w/w S. The equimolar response characteristic of the detector allows the quantitation of unknown sulfur compounds and simplifies the calibration process. Response is linear over a concentration range of five orders of magnitude, with a high degree of repeatability. The detector's lack of response to hydrocarbons enables direct analysis without the need for time-consuming sample preparation and chromatographic separation processes. This flow injection-based sulfur chemiluminescence detection technique is ideal for fast analysis or trace sulfur analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, M R F; Tweed, J K S; Kim, E J; Scollan, N D
2012-12-01
When fractionation of meat lipids is not required, procedures such as saponification can be used to extract total fatty acids, reducing reliance on toxic organic compounds. However, saponification of muscle fatty acids is laborious, and requires extended heating times, and a second methylation step to convert the extracted fatty acids to fatty acid methyl esters prior to gas chromatography. Therefore the development of a more rapid direct methylation procedure would be of merit. The use of freeze-dried material for analysis is common and allows for greater homogenisation of the sample. The present study investigated the potential of using freeze-dried muscle samples and a direct bimethylation to analyse total fatty acids of meat (beef, chicken and lamb) in comparison with a saponification procedure followed by bimethylation. Both methods compared favourably for all major fatty acids measured. There was a minor difference in relation to the C18:1 trans 10 isomer with a greater (P<0.05) recovery with saponification. However, numerically the difference was small and likely as a result of approaching the limits of isomer identification by single column gas chromatography. Differences (P<0.001) between species were found for all fatty acids measured with no interaction effects. The described technique offers a simplified, quick and reliable alternative to saponification to analyse total fatty acids from muscle samples. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Sample Analysis at Mars Investigation and Instrument Suite
NASA Technical Reports Server (NTRS)
Mahaffy, Paul; Webster, Christopher R.; Conrad, Pamela G.; Arvey, Robert; Bleacher, Lora; Brinckerhoff, William B.; Eigenbrode, Jennifer L.; Chalmers, Robert A.; Dworkin, Jason P.; Errigo, Therese;
2012-01-01
The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory (MSL) addresses the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. The SAM investigation is designed to contribute substantially to the mission goal of quantitatively assessing the habitability of Mars as an essential step in the search for past or present life on Mars. SAM is a 40 kg instrument suite located in the interior of MSL's Curiosity rover. The SAM instruments are a quadrupole mass spectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupled through solid and gas processing systems to provide complementary information on the same samples. The SAM suite is able to measure a suite of light isotopes and to analyze volatiles directly from the atmosphere or thermally released from solid samples. In addition to measurements of simple inorganic compounds and noble gases SAM will conduct a sensitive search for organic compounds with either thermal or chemical extraction from sieved samples delivered by the sample processing system on the Curiosity rover's robotic arm,
Concentration by centrifugation for gas exchange EPR oximetry measurements with loop-gap resonators.
Subczynski, Witold K; Felix, Christopher C; Klug, Candice S; Hyde, James S
2005-10-01
Measurement of the bimolecular collision rate between a spin label and oxygen is conveniently carried out using a gas permeable plastic sample tube of small diameter that fits a loop-gap resonator. It is often desirable to concentrate the sample by centrifugation in order to improve the signal-to-noise ratio (SNR), but the deformable nature of small plastic sample tubes presents technical problems. Solutions to these problems are described. Two geometries were considered: (i) a methylpentene polymer, TPX, from Mitsui Chemicals, at X-band and (ii) Teflon tubing with 0.075 mm wall thickness at Q-band. Sample holders were fabricated from Delrin that fit the Eppendorf microcentrifuge tubes and support the sample capillaries. For TPX, pressure of the sealant at the end of the sample tube against the Delrin sample holder provided an adequate seal. For Teflon, the holder permitted introduction of water around the tube in order to equalize pressures across the sealant during centrifugation. Typically, the SNR was improved by a factor of five to eight. Oxygen accessibility applications in site-directed spin labeling studies are discussed.
Concentration by centrifugation for gas exchange EPR oximetry measurements with loop-gap resonators
NASA Astrophysics Data System (ADS)
Subczynski, Witold K.; Felix, Christopher C.; Klug, Candice S.; Hyde, James S.
2005-10-01
Measurement of the bimolecular collision rate between a spin label and oxygen is conveniently carried out using a gas permeable plastic sample tube of small diameter that fits a loop-gap resonator. It is often desirable to concentrate the sample by centrifugation in order to improve the signal-to-noise ratio (SNR), but the deformable nature of small plastic sample tubes presents technical problems. Solutions to these problems are described. Two geometries were considered: (i) a methylpentene polymer, TPX, from Mitsui Chemicals, at X-band and (ii) Teflon tubing with 0.075 mm wall thickness at Q-band. Sample holders were fabricated from Delrin that fit the Eppendorf microcentrifuge tubes and support the sample capillaries. For TPX, pressure of the sealant at the end of the sample tube against the Delrin sample holder provided an adequate seal. For Teflon, the holder permitted introduction of water around the tube in order to equalize pressures across the sealant during centrifugation. Typically, the SNR was improved by a factor of five to eight. Oxygen accessibility applications in site-directed spin labeling studies are discussed.
Shunji, Hashimoto; Yoshikatsu, Takazawa; Akihiro, Fushimi; Hiroyasu, Ito; Kiyoshi, Tanabe; Yasuyuki, Shibata; Masa-aki, Ubukata; Akihiko, Kusai; Kazuo, Tanaka; Hideyuki, Otsuka; Katsunori, Anezaki
2008-01-18
Polychlorinated dibenzo-p-dioxins and dibenzofurans in crude extracts of fly ash and flue gas from municipal waste incinerators were quantified using a comprehensive multidimensional gas chromatograph (GC x GC) coupled to a high-resolution time-of-flight mass spectrometer (HR-TOFMS). For identification and quantification, we developed our own program to prepare 3D chromatograms of selected mass numbers from the data of the GC x GC/HR-TOFMS. Isolation of all congeners with a TCDD toxic equivalency factor from the other isomers by only one injection was confirmed. The instrumental detection limit of TCDD on the GC x GC/HR-TOFMS was 0.9 pg by the relative calibration method. Quantification of these substances in the crude extracts was achieved by direct injection to the GC x GC/HR-TOFMS. The results agree with the values obtained using a generic gas chromatography/high-resolution mass spectrometry (GC/HRMS) system. It was confirmed that measurement by high-resolution TOFMS and GC x GC effectively reduces interference from other chemicals.
Lachenmeier, Dirk W; Kroener, Lars; Musshoff, Frank; Madea, Burkhard
2004-01-01
A fully automated procedure using alkaline hydrolysis and headspace solid-phase microextraction (HS-SPME), followed by on-fiber derivatization and gas chromatographic-mass spectrometric (GC-MS) detection has been developed for determination of cannabinoids in hemp food samples. After addition of a deuterated internal standard, the sample was hydrolyzed with sodium hydroxide and submitted to direct HS-SPME. After absorption of analytes for on-fiber derivatization, the fiber was placed directly into the headspace of a second vial containing N-methyl- N-trimethylsilyltrifluoroacetamide (MSTFA), before GC-MS analysis. Linearity was good for Delta(9)-tetrahydrocannabinol (THC), cannabidiol, and cannabinol; regression coefficients were greater than 0.99. Depending on the characteristics of the matrix the detection limits obtained ranged between 0.01 and 0.17 mg kg(-1) and the precision between 0.4 and 11.8%. In comparison with conventional liquid-liquid extraction this automated HS-SPME-GC-MS procedure is substantially faster. It is easy to perform, solvent-free, and sample quantities are minimal, yet it maintains the same sensitivity and reproducibility. The applicability was demonstrated by analysis of 30 hemp food samples. Cannabinoids were detected in all of the samples and it was possible to differentiate between drug-type and fiber-type Cannabis sativa L. In comparison with other studies relatively low THC concentrations between 0.01 and 15.53 mg kg(-1) were determined.
Using high resolution measurements of gas tracers to determine metabolic rates in streams
NASA Astrophysics Data System (ADS)
Knapp, J. L.; Osenbrück, K.; Brennwald, M. S.; Cirpka, O. A.
2017-12-01
Hyporheic exchange and other hyporheic processes are strongly linked to stream respiration, as the majority of a streams' microorganisms are located within the streambed. Directly estimating these respiration rates on the reach scale is usually not possible, but they can indirectly be inferred from measurements of dissolved oxygen. This, however, requires determining stream reaeration rates with high precision. Conducting gas-tracer tests has been found to be the most reliable method to estimate stream reaeration, but the majority of field-based sampling techniques for tracer gases are either costly in time and materials, or imprecise. By contrast, on-site gas analysis using gas-equilibrium membrane-inlet mass spectrometers (miniRUEDI, Gasometrix GmbH [1]) avoid the errors caused by sampling, storage, and analysis in the standard sampling techniques. Furthermore, the high analytical frequency of the on-site mass-spectrometer provides concentration data exhibiting a low uncertainty. We present results from gas-tracer tests with a continuous injection of propane and noble gases as tracers in a number of small streams. The concentrations of the tracer gases are recorded continuously over time at the first measurement station to account for fluctuations of the input signal, whereas shorter sample sets are collected at all further measurement stations. Reaeration rate constants are calculated from gas measurements for individual stream sections. These rates are then used to estimate metabolic rates of respiration and primary production based on time series of oxygen measurements. To demonstrate the advancement of the method provided by the on-site analysis, results from measurements performed by on-site mass spectroscopy are compared to those from traditional headspace sampling with gas chromatography analysis. Additionally, differences in magnitude and uncertainty of the obtained reaeration rates of oxygen and calculated metabolic rates from both methods highlight the usefulness of the high-frequency on-site analysis. [1] Brennwald, M. S., Schmidt, M., Oser, J., and Kipfer, R. (2016). A portable and autonomous mass spectrometric system for on-site environmental gas analysis. Environ. Sci. Technol., 50(24):13455-13463. Doi: 10.1021/acs.est.6b03669
Baratloo, Alireza; Rahmati, Farhad; Rouhipour, Alaleh; Motamedi, Maryam; Gheytanchi, Elmira; Amini, Fariba; Safari, Saeed
2014-01-01
Objective: To determine the correlation between blood gas parameters and central venous pressure (CVP) in patients suffering from septic shock. Methods: Forty adult patients with diagnosis of septic shock who were admitted to the emergency department (ED) of Shohadaye Tajrish Hospital affiliated with Shahid Beheshti University of Medical Sciences, and met inclusion and exclusion criteria were enrolled. For all patients, sampling was done for venous blood gas analysis, serum sodium and chlorine levels. At the time of sampling; blood pressure, pulse rate and CVP were recorded. Correlation between blood gas parameters and hemodynamic indices were. Results: A significant direct correlation between CVP with anion gap (AG) and inversely with base deficit (BD) and bicarbonate. CVP also showed a relative correlation with pH, whereas it was not correlated with BD/ AG ratio and serum chlorine level. There was no significant association between CVP and clinical parameters including shock index (SI) and mean arterial pressure (MAP). Conclusion: It seems that some of non invasive blood gas parameters could be served as alternative to invasive measures such as CVP in treatment planning of patients referred to an ED with septic shock. PMID:27162870
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almond, P.; Livingston, R.; Traver, L.
The Savannah River National Laboratory (SRNL) 3013 destructive examination program performs surveillances on 3013 containers originating from multiple sites across the DOE complex. The bases for the packaging, storage, and surveillance activities are derived from the Department of Energy's 3013 Standard (DOE-STD-3013-2004). During destructive examination, headspace gas samples are obtained from the 3013 inner container and the annulus between the outer and inner containers. To characterize gas species, the samples are analyzed by gas chromatography (GC), direct-inlet mass spectrometry (DIMS), and Fourier-transform infrared spectroscopy (FTIR). The GC results, as well as other parameters, are utilized as input into the gasmore » evaluation software tool (GEST) program for computation of pre-puncture gas compositions and pressures. Over 30 containers from the Hanford Site and the Rocky Flats Environmental Technology Site (RFETS) have been examined in the first three years of the surveillance program. Several containers were shown to have appreciable hydrogen content (some greater than 30 mol %), yet little or no oxygen was detected in any of the containers, including those exhibiting high hydrogen concentrations. Characteristics including moisture content, surface area, and material composition, along with the headspace gas composition, are utilized in an attempt to explain the chemical behavior of the packaged materials.« less
Short-term gas dispersion in idealised urban canopy in street parallel with flow direction
NASA Astrophysics Data System (ADS)
Chaloupecká, Hana; Jaňour, Zbyněk; Nosek, Štěpán
2016-03-01
Chemical attacks (e.g. Syria 2014-15 chlorine, 2013 sarine or Iraq 2006-7 chlorine) as well as chemical plant disasters (e.g. Spain 2015 nitric oxide, ferric chloride; Texas 2014 methyl mercaptan) threaten mankind. In these crisis situations, gas clouds are released. Dispersion of gas clouds is the issue of interest investigated in this paper. The paper describes wind tunnel experiments of dispersion from ground level point gas source. The source is situated in a model of an idealised urban canopy. The short duration releases of passive contaminant ethane are created by an electromagnetic valve. The gas cloud concentrations are measured in individual places at the height of the human breathing zone within a street parallel with flow direction by Fast-response Ionisation Detector. The simulations of the gas release for each measurement position are repeated many times under the same experimental set up to obtain representative datasets. These datasets are analysed to compute puff characteristics (arrival, leaving time and duration). The results indicate that the mean value of the dimensionless arrival time can be described as a growing linear function of the dimensionless coordinate in the street parallel with flow direction where the gas source is situated. The same might be stated about the dimensionless leaving time as well as the dimensionless duration, however these fits are worse. Utilising a linear function, we might also estimate some other statistical characteristics from datasets than the datasets means (medians, trimeans). The datasets of the dimensionless arrival time, the dimensionless leaving time and the dimensionless duration can be fitted by the generalized extreme value distribution (GEV) in all sampling positions except one.
A True Eddy Accumulation - Eddy Covariance hybrid for measurements of turbulent trace gas fluxes
NASA Astrophysics Data System (ADS)
Siebicke, Lukas
2016-04-01
Eddy covariance (EC) is state-of-the-art in directly and continuously measuring turbulent fluxes of carbon dioxide and water vapor. However, low signal-to-noise ratios, high flow rates and missing or complex gas analyzers limit it's application to few scalars. True eddy accumulation, based on conditional sampling ideas by Desjardins in 1972, requires no fast response analyzers and is therefore potentially applicable to a wider range of scalars. Recently we showed possibly the first successful implementation of True Eddy Accumulation (TEA) measuring net ecosystem exchange of carbon dioxide of a grassland. However, most accumulation systems share the complexity of having to store discrete air samples in physical containers representing entire flux averaging intervals. The current study investigates merging principles of eddy accumulation and eddy covariance, which we here refer to as "true eddy accumulation in transient mode" (TEA-TM). This direct flux method TEA-TM combines true eddy accumulation with continuous sampling. The TEA-TM setup is simpler than discrete accumulation methods while avoiding the need for fast response gas analyzers and high flow rates required for EC. We implemented the proposed TEA-TM method and measured fluxes of carbon dioxide (CO2), methane (CH4) and water vapor (H2O) above a mixed beech forest at the Hainich Fluxnet and ICOS site, Germany, using a G2301 laser spectrometer (Picarro Inc., USA). We further simulated a TEA-TM sampling system using measured high frequency CO2 time series from an open-path gas analyzer. We operated TEA-TM side-by-side with open-, enclosed- and closed-path EC flux systems for CO2, H2O and CH4 (LI-7500, LI-7200, LI-6262, LI-7700, Licor, USA, and FGGA LGR, USA). First results show that TEA-TM CO2 fluxes were similar to EC fluxes. Remaining differences were similar to those between the three eddy covariance setups (open-, enclosed- and closed-path gas analyzers). Measured TEA-TM CO2 fluxes from our physical sampling system closely reproduced dynamics of simulated TEA-TM fluxes. In conclusion this study introduces a new approach to trace gas flux measurements using transient-mode true eddy accumulation. First TEA-TM CO2 fluxes compared favorably with side-by-side EC fluxes, in agreement with our previous experiments comparing discrete TEA to EC. True eddy accumulation has thus potential for measuring turbulent fluxes of a range of atmospheric tracers using slow response analyzers.
Hijazi, Hassan Y; Bottaro, Christina S
2018-02-26
Water-compatible molecularly imprinted polymer (MIP) thin films are coupled with headspace gas chromatography sulfur chemiluminescence detection (HS-GC-SCD) to create a new approach for the determination of trace concentrations of thiophene compounds in water samples. Thiophene compounds are persistent, typically petrogenic, organic pollutants of concern due to their potential for biomagnification and bioaccumulation, mutagenicity, and carcinogenicity in terrestrial and aquatic fauna. Identification and quantitation in water, particularly following oil spills, is a priority. Following adsorption of the thiophenes to the MIPs, the MIP-bound analytes are analyzed directly by HS-GC-SCD, with minimal sample manipulation and virtually no organic solvent. Calibration curves of spiked seawater were linear from 5 μg L -1 to 100 μg L -1 and limits of detection (LOD) were in the range of 0.24-0.82 μg L -1 . Low matrix effects were observed in the analysis of thiophene compounds in seawater making the method suitable for use in fresh and saline waters without modification. Acceptable reproducibility was obtained for analysis of thiophene compounds from spiked seawater samples at RSDs ≤7.0% (n = 3).
Xiujuan Wang,; ,; Collett, Timothy S.; Lee, Myung W.; Yang, Shengxiong; Guo, Yiqun; Wu, Shiguo
2014-01-01
Multi-channel seismic reflection data, well logs, and recovered sediment cores have been used in this study to characterize the geologic controls on the occurrence of gas hydrate in the Shenhu area of the South China Sea. The concept of the "gas hydrate petroleum system" has allowed for the systematic analysis of the impact of gas source, geologic controls on gas migration, and the role of the host sediment in the formation and stability of gas hydrates as encountered during the 2007 Guangzhou Marine Geological Survey Gas Hydrate Expedition (GMGS-1) in the Shenhu area. Analysis of seismic and bathymetric data identified seventeen sub-linear, near-parallel submarine canyons in this area. These canyons, formed in the Miocene, migrated in a northeasterly direction, and resulted in the burial and abandonment of canyons partially filled by coarse-grained sediments. Downhole wireline log (DWL) data were acquired from eight drill sites and sediment coring was conducted at five of these sites, which revealed the presence of suitable reservoirs for the occurrence of concentrated gas hydrate accumulations. Gas hydrate-bearing sediment layers were identified from well log and core data at three sites mainly within silt and silt clay sediments. Gas hydrate was also discovered in a sand reservoir at one site as inferred from the analysis of the DWL data. Seismic anomalies attributed to the presence of gas below the base of gas hydrate stability zone, provided direct evidence for the migration of gas into the overlying gas hydrate-bearing sedimentary sections. Geochemical analyses of gas samples collected from cores confirmed that the occurrence of gas hydrate in the Shenhu area is controlled by the presence thermogenic methane gas that has migrated into the gas hydrate stability zone from a more deeply buried source.
Tan, Chao; Zhao, Jia; Dong, Feng
2015-03-01
Flow behavior characterization is important to understand gas-liquid two-phase flow mechanics and further establish its description model. An Electrical Resistance Tomography (ERT) provides information regarding flow conditions at different directions where the sensing electrodes implemented. We extracted the multivariate sample entropy (MSampEn) by treating ERT data as a multivariate time series. The dynamic experimental results indicate that the MSampEn is sensitive to complexity change of flow patterns including bubbly flow, stratified flow, plug flow and slug flow. MSampEn can characterize the flow behavior at different direction of two-phase flow, and reveal the transition between flow patterns when flow velocity changes. The proposed method is effective to analyze two-phase flow pattern transition by incorporating information of different scales and different spatial directions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Krzyżaniak, Agnieszka; Weggemans, Wilko; Schuur, Boelo; de Haan, André B
2011-12-16
Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct analysis of aliphatic amines and diamines in aqueous samples by gas chromatography (GC) with silanol deactivation using ionic liquids (ILs). ILs including trihexyl(tetradecyl)phosphonium bis 2,4,4-(trimethylpentyl)phosphinate (Cyphos IL-104), 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide [pmim][Tf(2)N] and N″-ethyl-N,N,N',N'-tetramethylguanidinium tris(pentafluoroethyl)trifluorophosphate [etmg][FAP] were tested as deactivating media for the GC liner. Solutions of these ILs in methanol were injected in the system prior to the analysis of primary amines. Butane-1,4-diamine (putrescine, BDA) was used as a reference amine. The best results were obtained using the imidazolium IL [pmim][Tf(2)N]. With this deactivator, excellent reproducibility of the analysis was achieved, and the detection limit of BDA was as low as 1mM. The applicability of the method was proven for the analysis of two different primary amines (C4-C5) and pentane-1,5-diamine. Copyright © 2011 Elsevier B.V. All rights reserved.
Ai, Guomin; Sun, Tong; Dong, Xiuzhu
2014-08-15
Methanol, ethanol, and acetic acid are not easily extracted from aqueous samples and are susceptible to isotope fractionation in gas chromatography/isotope ratio mass spectrometry (GC/IRMS) analysis. Developing a direct dilution GC/IRMS method for aqueous samples, by adjusting the sample concentrations in common solvents to be similar to each other and using a fixed GC split ratio, is very convenient and important because any linearity effects caused by amount-dependent isotope fractionation can be avoided. The suitability of acetonitrile and acetone solvents for the GC/IRMS analysis of pure methanol, ethanol and acetic acid, and commercial liquor and vinegar samples was evaluated using n-hexane and water as control solvents. All the solvents including water were separated from the analyte on a HP-INNOWAX column and were diverted away from the combustion interface. The influence of liquor matrix on the ethanol GC/IRMS analyses was evaluated by adding pure ethanol to liquor samples. Acetonitrile and acetone gave similar δ(13) C values for pure ethanol and pure acetic acid to those obtained in water and n-hexane, and also gave similar δ(13) C values of ethanol in liquor and acetic acid in white vinegar to that obtained in water. For methanol analysis, acetonitrile and refined acetone gave similar δ(13) C values to that obtained in water, but n-hexane was not a suitable solvent. In addition, isotopic fractionation caused by solvent and solute interactions was observed. We recommend using acetonitrile for the GC/IRMS analysis of aqueous alcoholic samples, and acetone for the analysis of aqueous acetic acid samples. This direct dilution method can provide high accurate and precise GC/IRMS analysis of the relative changes in δ(13) C values of methanol, ethanol, and acetic acid. Copyright © 2014 John Wiley & Sons, Ltd.
Farajzadeh, Mirali; Hatami, Mehdi
2002-11-01
This work describes the application of the previously presented solid phase microextraction (SPME) fiber in direct mode for sampling of C10-C20 n-alkanes from aqueous solution. The fiber has simple composition and is constructed from activated charcoal:PVC suspension in tetrahydrofuran. When the composition of the fiber was optimized that the optimum composition was 90:10 (activated charcoal:PVC) for direct mode, whereas it was 75:25 for sampling from the headspace of aqueous samples. This fiber is completely stable in contact with water. The extraction efficiency is improved in the presence of 0.1 M NaCl. The value is between 17.8-38.5% for the first extraction, which better than the efficiency of similar commercial fibers. After seven extractions, all analytes are removed from the aqueous samples nearly 100%. Single fiber repeatability and fiber-to-fiber reproducibility are good and both are less than 13% for all studied alkanes. Finally, direct mode SPME was used in the determination of n-alkanes in the range of sub microg L(-1) without any additional preconcentration procedure. Gas chromatography along with flame ionization detection were used for separation and detection of the studied analytes.
Dukić, Lora; Simundić, Ana-Maria
2014-01-01
The aim of this survey study was to assess the current practices and policies in use related to the various steps in the blood gas testing process, across hospital laboratories in Croatia. First questionnaire was sent by email to all medical biochemistry laboratories (N = 104) within general, specialized and clinical hospitals and university hospital centres to identify laboratories which perform blood gas analysis. Second questionnaire with detailed questions about sample collection, analysis and quality control procedures, was sent only to 47 laboratories identified by the first survey. Questionnaire was designed as combination of questions and statements with Likert scale. Third questionnaire was sent to all participating laboratories (N=47) for additional clarification for either indeterminate or unclear answers. Blood gas analysis is performed in 47/104 hospital laboratories in Croatia. In 25/41 (0.61) of the laboratories capillary blood gas sampling is the preferred sample type for adult patient population, whereas arterial blood sample is preferentially used in only 5/44 laboratories (0.11). Blood sampling and sample processing for capillary samples is done almost always by laboratory technicians (36/41 and 37/44, respectively), whereas arterial blood sampling is almost always done by the physician (24/29) and only rarely by a nurse (5/28). Sample acceptance criteria and sample analysis are in accordance with international recommendations for majority of laboratories. 43/44 laboratories participate in the national EQA program. POCT analyzers are installed outside of the laboratory in 20/47 (0.43) institutions. Laboratory staff is responsible for education and training of ward personnel, quality control and instrument maintenance in only 12/22, 11/20 and 9/20 institutions, respectively. Practices related to collection and analysis for blood gases in Croatia are not standardised and vary substantially between laboratories. POCT analyzers are not under the direct supervision by laboratory personnel in a large proportion of surveyed institutions. Collective efforts should be made to harmonize and improve policies and procedures related to blood gas testing in Croatian laboratories.
NASA Astrophysics Data System (ADS)
Chassefiere, E.; Jambon, A.; Berthelier, J.-J.; Sarda, Ph.; Agrinier, P.
2003-04-01
The technique of GCMS analysis, which has been used with a great success on several past planetary missions, is not adapted for precise measurements of the isotopic composition of planetary atmospheres (noble gases, stable isotopes), and volatile outgassed products from solid sample pyrolysis. Static mass spectrometry, coupled with gas separation by cryo-separation, and chemical trapping, is commonly used in the laboratory to study volatiles extracted from terrestrial and meteoritic samples. This technique allows to reach a precision on isotopic ratios of the order of a few 0.1 ppm for a typical amount of gas of a few micromoles. We are presently studying an instrument based on the same principle for space exploration applications. The PALOMA instrument (PAyload for Local Observation of Mars Atmosphere) will be proposed in response to the AO for the instrumentation of the NASA Mars Smart Lander mission, planned to be launched in 2009. It might be part as well of the EXOMARS mission presently studied at ESA in the frame of the Aurora program. The miniaturization of major key elements, like the cryogenic device, the mass spectrometer, the line and its ensemble of valves, is presently led in our laboratories under CNES funding. The instrument consists of : (i) a gas purification and separation line, using techniques of cryogenic and chemical trapping, and possibly membrane permeation for molecular hydrogen analysis, (ii) a mass spectrometer working in static mode, without carrier gas (both time-of-flight and magnetic solutions are studied), (iii) a turbo-molecular pump that provides the required level of vacuum in the separation line and in the spectrometer. In the specific case of Mars, it is designed to work during typically 2 years (about 1000 measurement cycles), in order to perform accurate measurements of molecular, elemental and isotopic composition and of their diurnal/seasonal variations. The gas is sampled directly from the ambient atmosphere, without need for an external sample distribution system. The general characteristics of the instrument are as following . The mass is 6 kg, for a size of 30 x 30 x 20 cm. The required power, averaged over a complete measurement cycle, is 20 W (peak value : 30 W). The total energy required for one sequence is 100 Wh. This number must be considered as an upper limit, and corresponds to the most complex sequence (noble gas isotope analysis). Sequences used for stable isotopes measurement, and atmospheric molecular composition (trace gases of geological and/or astrobiological interest), are expected to be simpler, and less power-consuming. The anticipated volume of data produced by one observation sequence is estimated to be in the 3-6 kb range. The gas is sampled directly from the ambient atmosphere.
Determination of fossil carbon content in Swedish waste fuel by four different methods.
Jones, Frida C; Blomqvist, Evalena W; Bisaillon, Mattias; Lindberg, Daniel K; Hupa, Mikko
2013-10-01
This study aimed to determine the content of fossil carbon in waste combusted in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign included 42 solid samples, 21 flue gas samples, 3 sorting analyses and 2 investigations using the balance method. The fossil carbon content in the solid samples and in the flue gas samples was determined using (14)C-analysis. From the analyses it was concluded that about a third of the carbon in mixed Swedish waste (municipal solid waste and industrial waste collected at Swedish industry sites) is fossil. The two other methods (the balance method and calculations from sorting analyses), based on assumptions and calculations, gave similar results in the plants in which they were used. Furthermore, the results indicate that the difference between samples containing as much as 80% industrial waste and samples consisting of solely municipal solid waste was not as large as expected. Besides investigating the fossil content of the waste, the project was also established to investigate the usability of various methods. However, it is difficult to directly compare the different methods used in this project because besides the estimation of emitted fossil carbon the methods provide other information, which is valuable to the plant owner. Therefore, the choice of method can also be controlled by factors other than direct determination of the fossil fuel emissions when considering implementation in the combustion plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodaei, Azin, E-mail: Azin.Khodaei@gmail.com; Hasannasab, Malihe; Amousoltani, Narges
2016-02-15
Highlights: • Ni ultrafine/nanoparticles were produced using the single-step ELGC method. • Ar and He–20%Ar gas mixtures were used as the condensing gas under 1 atm. • Effects of gas type and flow rate on particle size distribution were investigated. • The nanoparticles showed both high saturation magnetization and low coercivity. - Abstract: In this work, Ni ultrafine/nanoparticles were directly produced using the one-step, relatively large-scale electromagnetic levitational gas condensation method. In this process, Ni vapors ascending from the levitated droplet were condensed by Ar and He–20%Ar gas mixtures under atmospheric pressure. Effects of type and flow rate of themore » condensing gas on the size, size distribution and crystallinity of Ni particles were investigated. The particles were characterized by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometer (VSM). The process parameters for the synthesis of the crystalline Ni ultrafine/nanoparticles were determined.« less
Grain boundary dominated electrical conductivity in ultrananocrystalline diamond
NASA Astrophysics Data System (ADS)
Wiora, Neda; Mertens, Michael; Brühne, Kai; Fecht, Hans-Jörg; Tran, Ich C.; Willey, Trevor; van Buuren, Anthony; Biener, Jürgen; Lee, Jun-Sik
2017-10-01
N-type electrically conductive ultrananocrystalline diamond (UNCD) films were deposited using the hot filament chemical vapor deposition technique with a gas mixture of H2, CH4 and NH3. Depending on the deposition temperature and ammonia feed gas concentration, which serves as a nitrogen source, room temperature electrical conductivities in the order of 10-2 to 5 × 101 S/cm and activation energies in the meV range were achieved. In order to understand the origin of the enhanced electrical conductivity and clarify the role of ammonia addition to the process gas, a set of UNCD films was grown by systematically varying the ammonia gas phase concentration. These samples were analyzed with respect to their morphology and electrical properties as well as their carbon and nitrogen bonding environments. Temperature dependent electrical conductivity measurements (300-1200 K) show that the electrical conductivity of the samples increases with temperature. The near edge x-ray absorption fine structure measurements reveal that the electrical conductivity of the UNCD films does not correlate directly with ammonia addition, but depends on the total amount of sp2 bonded carbon in the deposited films.
Connecting Clump Sizes in Turbulent Disk Galaxies to Instability Theory
NASA Astrophysics Data System (ADS)
Fisher, David B.; Glazebrook, Karl; Abraham, Roberto G.; Damjanov, Ivana; White, Heidi A.; Obreschkow, Danail; Basset, Robert; Bekiaris, Georgios; Wisnioski, Emily; Green, Andy; Bolatto, Alberto D.
2017-04-01
In this letter we study the mean sizes of Hα clumps in turbulent disk galaxies relative to kinematics, gas fractions, and Toomre Q. We use ˜100 pc resolution HST images, IFU kinematics, and gas fractions of a sample of rare, nearby turbulent disks with properties closely matched to z˜ 1.5{--}2 main-sequence galaxies (the DYNAMO sample). We find linear correlations of normalized mean clump sizes with both the gas fraction and the velocity dispersion-to-rotation velocity ratio of the host galaxy. We show that these correlations are consistent with predictions derived from a model of instabilities in a self-gravitating disk (the so-called “violent disk instability model”). We also observe, using a two-fluid model for Q, a correlation between the size of clumps and self-gravity-driven unstable regions. These results are most consistent with the hypothesis that massive star-forming clumps in turbulent disks are the result of instabilities in self-gravitating gas-rich disks, and therefore provide a direct connection between resolved clump sizes and this in situ mechanism.
Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.
2003-01-01
We report on compressional- and shear-wave-speed measurements made on compacted polycrystalline sI methane and sII methane-ethane hydrate. The gas hydrate samples are synthesized directly in the measurement apparatus by warming granulated ice to 17??C in the presence of a clathrate-forming gas at high pressure (methane for sI, 90.2% methane, 9.8% ethane for sII). Porosity is eliminated after hydrate synthesis by compacting the sample in the synthesis pressure vessel between a hydraulic ram and a fixed end-plug, both containing shear-wave transducers. Wave-speed measurements are made between -20 and 15??C and 0 to 105 MPa applied piston pressure.
Automated two-dimensional interface for capillary gas chromatography
Strunk, M.R.; Bechtold, W.E.
1996-02-20
A multidimensional gas chromatograph (GC) system is disclosed which has wide bore capillary and narrow bore capillary GC columns in series and has a novel system interface. Heart cuts from a high flow rate sample, separated by a wide bore GC column, are collected and directed to a narrow bore GC column with carrier gas injected at a lower flow compatible with a mass spectrometer. A bimodal six-way valve is connected with the wide bore GC column outlet and a bimodal four-way valve is connected with the narrow bore GC column inlet. A trapping and retaining circuit with a cold trap is connected with the six-way valve and a transfer circuit interconnects the two valves. The six-way valve is manipulated between first and second mode positions to collect analyte, and the four-way valve is manipulated between third and fourth mode positions to allow carrier gas to sweep analyte from a deactivated cold trap, through the transfer circuit, and then to the narrow bore GC capillary column for separation and subsequent analysis by a mass spectrometer. Rotary valves have substantially the same bore width as their associated columns to minimize flow irregularities and resulting sample peak deterioration. The rotary valves are heated separately from the GC columns to avoid temperature lag and resulting sample deterioration. 3 figs.
Automated two-dimensional interface for capillary gas chromatography
Strunk, Michael R.; Bechtold, William E.
1996-02-20
A multidimensional gas chromatograph (GC) system having wide bore capillary and narrow bore capillary GC columns in series and having a novel system interface. Heart cuts from a high flow rate sample, separated by a wide bore GC column, are collected and directed to a narrow bore GC column with carrier gas injected at a lower flow compatible with a mass spectrometer. A bimodal six-way valve is connected with the wide bore GC column outlet and a bimodal four-way valve is connected with the narrow bore GC column inlet. A trapping and retaining circuit with a cold trap is connected with the six-way valve and a transfer circuit interconnects the two valves. The six-way valve is manipulated between first and second mode positions to collect analyte, and the four-way valve is manipulated between third and fourth mode positions to allow carrier gas to sweep analyte from a deactivated cold trap, through the transfer circuit, and then to the narrow bore GC capillary column for separation and subsequent analysis by a mass spectrometer. Rotary valves have substantially the same bore width as their associated columns to minimize flow irregularities and resulting sample peak deterioration. The rotary valves are heated separately from the GC columns to avoid temperature lag and resulting sample deterioration.
Klegerman, Melvin E.; Moody, Melanie R.; Hurling, Jermaine R.; Peng, Tao; Huang, Shao-Ling; McPherson, David D.
2016-01-01
Rationale We have produced a liposomal formulation of xenon (Xe-ELIP) as a neuroprotectant for inhibition of brain damage in stroke patients. This mandates development of a reliable assay to measure the amount of dissolved xenon released from Xe-ELIP in water and blood samples. Methods Gas chromatography-Mass Spectrometry (GC-MS) was used to quantify xenon gas released into the headspace of vials containing Xe-ELIP samples in water or blood. In order to determine blood concentration of xenon in vivo after Xe-ELIP administration, 6 mg Xe-ELIP lipid was infused intravenously into rats. Blood samples were drawn directly from a catheterized right carotid artery. After introduction of the samples, each vial was allowed to equilibrate to 37° C in a water bath, followed by 20 minutes of sonication prior to headspace sampling. Xenon concentrations were calculated from a gas dose-response curve and normalized using the published xenon water-gas solubility coefficient. Results The mean corrected percent of xenon from Xe-ELIP released into water was 3.87 ± 0.56% (SD, n = 8), corresponding to 19.3 ± 2.8 μl/mg lipid, which is consistent with previous independent Xe-ELIP measurements. The corresponding xenon content of Xe-ELIP in rat blood was 23.38 ± 7.36 μl/mg lipid (n = 8). Mean rat blood xenon concentration after IV administration of Xe-ELIP was 14 ± 10 μM, which is approximately 15% of the estimated neuroprotective level. Conclusions Using this approach, we have established a reproducible method for measuring dissolved xenon in fluids. These measurements have established that neuroprotective effects can be elicited by less than 20% of the calculated neuroprotective xenon blood concentration. More work will have to be done to establish the protective xenon pharmacokinetic range. PMID:27689777
Klegerman, Melvin E; Moody, Melanie R; Hurling, Jermaine R; Peng, Tao; Huang, Shao-Ling; McPherson, David D
2017-01-15
We have produced a liposomal formulation of xenon (Xe-ELIP) as a neuroprotectant for inhibition of brain damage in stroke patients. This mandates development of a reliable assay to measure the amount of dissolved xenon released from Xe-ELIP in water and blood samples. Gas chromatography/mass spectrometry (GC/MS) was used to quantify xenon gas released into the headspace of vials containing Xe-ELIP samples in water or blood. In order to determine blood concentration of xenon in vivo after Xe-ELIP administration, 6 mg of Xe-ELIP lipid was infused intravenously into rats. Blood samples were drawn directly from a catheterized right carotid artery. After introduction of the samples, each vial was allowed to equilibrate to 37°C in a water bath, followed by 20 minutes of sonication prior to headspace sampling. Xenon concentrations were calculated from a gas dose-response curve and normalized using the published xenon water-gas solubility coefficient. The mean corrected percent of xenon from Xe-ELIP released into water was 3.87 ± 0.56% (SD, n = 8), corresponding to 19.3 ± 2.8 μL/mg lipid, which is consistent with previous independent Xe-ELIP measurements. The corresponding xenon content of Xe-ELIP in rat blood was 23.38 ± 7.36 μL/mg lipid (n = 8). Mean rat blood xenon concentration after intravenous administration of Xe-ELIP was 14 ± 10 μM, which is approximately 15% of the estimated neuroprotective level. Using this approach, we have established a reproducible method for measuring dissolved xenon in fluids. These measurements have established that neuroprotective effects can be elicited by less than 20% of the calculated neuroprotective xenon blood concentration. More work will have to be done to establish the protective xenon pharmacokinetic range. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Breidi, Salah Eddine; Barker, James; Petróczi, Andrea; Naughton, Declan P
2012-01-01
Gas chromatography-mass spectrometric (GC-MS) methods for drug analysis routinely employ derivatising reagents. The aim of this paper was to develop a method for the analysis of two recreational drugs, delta-9-tetrahydrocannabinol (Δ(9)-THC) and cocaine in hair samples using GC-MS, without prior derivatisation, thus allowing the sample to be reanalysed in its original form. An enzymatic digestion technique was also developed. Ten hair samples, that were known positive for either Δ(9)-THC and/or cocaine, were enzymatically digested, extracted, and then analysed by GC-MS. All samples measured contained Δ(9)-THC and one sample contained cocaine. The limits of detection (LOD) and quantification (LOQ) were 0.02 ng/mg and 0.05 ng/mg, respectively, for cocaine and 0.015 ng/mg and 0.02 ng/mg, respectively, for Δ(9)-THC. The wide detection window, ease of direct analysis by GC-MS, lower detection limits of underivatised samples, and the stability of drugs using this technique may offer an improved method of analysis.
Breidi, Salah Eddine; Barker, James; Petróczi, Andrea; Naughton, Declan P.
2012-01-01
Gas chromatography-mass spectrometric (GC-MS) methods for drug analysis routinely employ derivatising reagents. The aim of this paper was to develop a method for the analysis of two recreational drugs, delta-9-tetrahydrocannabinol (Δ9-THC) and cocaine in hair samples using GC-MS, without prior derivatisation, thus allowing the sample to be reanalysed in its original form. An enzymatic digestion technique was also developed. Ten hair samples, that were known positive for either Δ9-THC and/or cocaine, were enzymatically digested, extracted, and then analysed by GC-MS. All samples measured contained Δ9-THC and one sample contained cocaine. The limits of detection (LOD) and quantification (LOQ) were 0.02 ng/mg and 0.05 ng/mg, respectively, for cocaine and 0.015 ng/mg and 0.02 ng/mg, respectively, for Δ9-THC. The wide detection window, ease of direct analysis by GC-MS, lower detection limits of underivatised samples, and the stability of drugs using this technique may offer an improved method of analysis. PMID:22567573
Method and apparatus for ion mobility spectrometry with alignment of dipole direction (IMS-ADD)
Shvartsburg, Alexandre A [Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA
2007-01-30
Techniques and instrumentation are described for analyses of substances, including complex samples/mixtures that require separation prior to characterization of individual components. A method is disclosed for separation of ion mixtures and identification of ions, including protein and other macromolecular ions and their different structural isomers. Analyte ions are not free to rotate during the separation, but are substantially oriented with respect to the drift direction. Alignment is achieved by applying, at a particular angle to the drift field, a much stronger alternating electric field that "locks" the ion dipoles with moments exceeding a certain value. That value depends on the buffer gas composition, pressure, and temperature, but may be as low as .about.3 Debye under certain conditions. The presently disclosed method measures the direction-specific cross-sections that provide the structural information complementing that obtained from known methods, and, when coupled to those methods, increases the total peak capacity and specificity of gas-phase separations. Simultaneous 2-D separations by direction-specific cross sections along and orthogonally to the ion dipole direction are also possible.
Gas sampling system for reactive gas-solid mixtures
Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.
1989-01-01
An apparatus and method for sampling a gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extend in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.
Gas sampling system for reactive gas-solid mixtures
Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.
1990-01-01
An apparatus and method for sampling gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extends in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.
Measurement of the 8Li(α,n)11B reaction and astrophysical implications
NASA Astrophysics Data System (ADS)
Mizoi, Y.; Fukuda, T.; Matsuyama, Y.; Miyachi, T.; Miyatake, H.; Aoi, N.; Fukuda, N.; Notani, M.; Watanabe, Y. X.; Yoneda, K.; Ishihara, M.; Sakurai, H.; Watanabe, Y.; Yoshida, A.
2000-12-01
We have measured the 8Li(α,n)11B reaction directly and exclusively, and determined the total cross sections in the center-of-mass energy of 1.5-7.0 MeV, by using a new-type gas counter, multiple-sampling and tracking proportional chamber (MSTPC), and neutron counters. This experiment was performed in the condition of inverse kinematics. The 8Li beam was produced by the RIKEN projectile-fragment separator, and injected into the MSTPC filled with 4He gas, which worked as a detector gas and served as a target. The reaction cross section obtained in the present exclusive measurement is about half of the one obtained in previous inclusive measurements.
Wang, Guan-Jie; Tian, Li; Fan, Yu-Ming; Qi, Mei-Ling
2013-01-01
A rapid headspace single-drop microextraction gas chromatography mass spectrometry (SDME-GC-MS) for the analysis of the volatile compounds in Herba Asari was developed in this study. The extraction solvent, extraction temperature and time, sample amount, and particle size were optimized. A mixed solvent of n-tridecane and butyl acetate (1 : 1) was finally used for the extraction with sample amount of 0.750 g and 100-mesh particle size at 70°C for 15 min. Under the determined conditions, the pound samples of Herba Asari were directly applied for the analysis. The result showed that SDME-GC–MS method was a simple, effective, and inexpensive way to measure the volatile compounds in Herba Asari and could be used for the analysis of volatile compounds in Chinese medicine. PMID:23607049
Determination of stream reaeration coefficients by use of tracers
Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, N.; Parker, G.W.; DeLong, L.L.
1987-01-01
Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes.Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed in which a radioactive tracer gas was injected into a stream--the tracer gas being desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas.This manual describes the slug-injection and constant-rate injection methods of performing gas-tracer desorption measurements. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, methods of injection, sampling and analysis, and computational techniques to compute desorption and reaeration coefficients.
Influence of gas law on ultrasonic behaviour of porous media under pressure.
Griffiths, S; Ayrault, C
2010-06-01
This paper deals with the influence of gas law on ultrasonic behaviour of porous media when the saturating fluid is high pressured. Previous works have demonstrated that ultrasonic transmission through a porous sample with variations of the static pressure (up to 18 bars) of the saturating fluid allows the characterization of high damping materials. In these studies, the perfect gas law was used to link static pressure and density, which is disputable for high pressures. This paper compares the effects of real and perfect gas laws on modeled transmission coefficient for porous foams at these pressures. Direct simulations and a mechanical parameters estimation from minimization show that results are very similar in both cases. The real gas law is thus not necessary to describe the acoustic behaviour of porous media at low ultrasonic frequencies (100 kHz) up to 20 bars. 2010 Elsevier B.V. All rights reserved.
Cha, Wansik; Tung, Yi-Chung; Meyerhoff, Mark E.; Takayama, Shuichi
2010-01-01
This manuscript describes a thin amperometric nitric oxide (NO) sensor that can be microchannel embedded to enable direct real-time detection of NO produced by cells cultured within the microdevice. A key for achieving the thin (~ 1 mm) planar sensor configuration required for sensor-channel integration is the use of gold/indium-tin oxide patterned electrode directly on a porous polymer membrane (pAu/ITO) as the base working electrode. Electrochemically deposited Au-hexacyanoferrate layer on pAu/ITO is used to catalyze NO oxidation to nitrite at lower applied potentials (0.65 ~ 0.75 V vs. Ag/AgCl) and stabilize current output. Furthermore, use of a gas-permeable membrane to separate internal sensor compartments from the sample phase imparts excellent NO selectivity over common interferents (e.g., nitrite, ascorbate, ammonia, etc.) present in culture media and biological fluids. The optimized sensor design reversibly detects NO down to ~1 nM level in stirred buffer and <10 nM in flowing buffer when integrated within a polymeric microfluidic device. We demonstrate utility of the channel-embedded sensor by monitoring NO generation from macrophages cultured within non-gas permeable microchannels, as they are stimulated with endotoxin. PMID:20329749
Helium ionization detection apparatus
NASA Technical Reports Server (NTRS)
Nagai, R.
1984-01-01
In a gas chromatograph apparatus comprising a gas supply (He carrier gas), a sample injection apparatus, a chromatograph column, a He ion detector, and connecting tubes, a foreign gas (other than He) injection apparatus is installed between the sample injection apparatus and the detector. Mixing of the sample gas and foreign gas takes place readily, the sample gas is always maintained at a stable concentrator range, and accurate measurements are possible, especially at low sample gas concentrations.
NASA Astrophysics Data System (ADS)
Barrera-Ballesteros, J. K.; García-Lorenzo, B.; Falcón-Barroso, J.; van de Ven, G.; Lyubenova, M.; Wild, V.; Méndez-Abreu, J.; Sánchez, S. F.; Marquez, I.; Masegosa, J.; Monreal-Ibero, A.; Ziegler, B.; del Olmo, A.; Verdes-Montenegro, L.; García-Benito, R.; Husemann, B.; Mast, D.; Kehrig, C.; Iglesias-Paramo, J.; Marino, R. A.; Aguerri, J. A. L.; Walcher, C. J.; Vílchez, J. M.; Bomans, D. J.; Cortijo-Ferrero, C.; González Delgado, R. M.; Bland-Hawthorn, J.; McIntosh, D. H.; Bekeraitė, S.
2015-10-01
We present spatially resolved stellar and/or ionized gas kinematic properties for a sample of 103 interacting galaxies, tracing all merger stages: close companions, pairs with morphological signatures of interaction, and coalesced merger remnants. In order to distinguish kinematic properties caused by a merger event from those driven by internal processes, we compare our galaxies with a control sample of 80 non-interacting galaxies. We measure for both the stellar and the ionized gas components the major (projected) kinematic position angles (PAkin, approaching and receding) directly from the velocity distributions with no assumptions on the internal motions. This method also allow us to derive the deviations of the kinematic PAs from a straight line (δPAkin). We find that around half of the interacting objects show morpho-kinematic PA misalignments that cannot be found in the control sample. In particular, we observe those misalignments in galaxies with morphological signatures of interaction. On the other hand, thelevel of alignment between the approaching and receding sides for both samples is similar, with most of the galaxies displaying small misalignments. Radial deviations of the kinematic PA orientation from a straight line in the stellar component measured by δPAkin are large for both samples. However, for a large fraction of interacting galaxies the ionized gas δPAkin is larger than the typical values derived from isolated galaxies (48%), indicating that this parameter is a good indicator to trace the impact of interaction and mergers in the internal motions of galaxies. By comparing the stellar and ionized gas kinematic PA, we find that 42% (28/66) of the interacting galaxies have misalignments larger than 16°, compared to 10% from the control sample. Our results show the impact of interactions in the motion of stellar and ionized gas as well as the wide the variety of their spatially resolved kinematic distributions. This study also provides a local Universe benchmark for kinematic studies in merging galaxies at high redshift. Appendices are available in electronic form at http://www.aanda.org
2017-01-01
Acetamide has been classified as a possible human carcinogen, but uncertainties exist about its levels in foods. This report presents evidence that thermal decomposition of N-acetylated sugars and amino acids in heated gas chromatograph injectors contributes to artifactual acetamide in milk and beef. An alternative gas chromatography/mass spectrometry protocol based on derivatization of acetamide with 9-xanthydrol was optimized and shown to be free of artifactual acetamide formation. The protocol was validated using a surrogate analyte approach based on d3-acetamide and applied to analyze 23 pasteurized whole milk, 44 raw sirloin beef, and raw milk samples from 14 different cows, and yielded levels about 10-fold lower than those obtained by direct injection without derivatization. The xanthydrol derivatization procedure detected acetamide in every food sample tested at 390 ± 60 ppb in milk, 400 ± 80 ppb in beef, and 39 000 ± 9000 ppb in roasted coffee beans. PMID:29186951
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Anilkumar, A. V.; Lee, C. P.
2003-01-01
Flow visualization experiments during the controlled directional melt back and re-solidification of succinonitrile (SCN) and SCN-water mixtures were conducted using the Pore Formation and Mobility Investigation (PFMI) apparatus in the glovebox facility (GBX) aboard the International Space Station. The study samples were initially 'cast' on earth under 450 millibar of nitrogen into 1 cm ID glass sample tubes approximately 30 cm in length, containing 6 in situ thermocouples. During the Space experiments, the processing parameters and flow visualization settings are remotely monitored and manipulated from the ground Telescience Center (TSC). The ground solidified sample is first subjected to a unidirectional melt back, generally at 10 microns per second, with a constant temperature gradient ahead of the melting interface. Bubbles of different sizes are seen to initiate at the melt interface and, upon release from the melting solid, translate at different speeds in the temperature field ahead of them before coming to rest. Over a period of time these bubbles dissolve into the melt. The gas-laden liquid is then directionally solidified in a controlled manner, generally starting at a rate of 1 micron /sec. Observation and preliminary analysis of bubble formation and mobility in pure SCN samples during melt back and the subsequent structure resulting during gas generation upon re-solidification are presented and discussed.
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Anilkumar, A. V.; Lee, C. P.
2002-01-01
Flow visualization experiments during the controlled directional melt back and re-solidification of succinonitrile (SCN) and SCN-water mixtures were conducted using the Pore Formation and Mobility Investigation (PFMI) apparatus in the glovebox facility (GBX) aboard the International Space Station. The study samples were initially "cast" on earth under 450 millibar of nitrogen into 1 cm ID glass sample tubes approximately 30 cm in length, containing 6 in situ thermocouples. During the Space experiments, the processing parameters and flow visualization settings are remotely monitored and manipulated from the ground Telescience Center (TSC). The ground solidified sample is first subjected to a unidirectional melt back, generally at 10 microns per second, with a constant temperature gradient ahead of the melting interface. Bubbles of different sizes are seen to initiate at the melt interface and, upon release from the melting solid, translate at different speeds in the temperature field ahead of them before coming to rest. Over a period of time these bubbles dissolve into the melt. The gas-laden liquid is then directionally solidified in a controlled manner, generally starting at a rate of 1 micron /sec. Observation and preliminary analysis of bubble formation and mobility in pure SCN samples during melt back and the subsequent structure resulting during gas generation upon re-solidification are presented and discussed.
Diaby, M; Kinani, S; Genty, C; Bouchonnet, S; Sablier, M; Le Negrate, A; El Fassi, M
2009-12-01
This article establishes an alternative method for the characterization of volatiles organic matter (VOM) contained in deposits of the piston first ring grooves of diesel engines using a ChromatoProbe direct sample introduction (DSI) device coupled to gas chromatography/mass spectrometry (GC/MS) analysis. The addition of an organic solvent during thermal desorption leads to an efficient extraction and a good chromatographic separation of extracted products. The method was optimized investigating the effects of several solvents, the volume added to the solid sample, and temperature programming of the ChromatoProbe DSI device. The best results for thermal desorption were found using toluene as an extraction solvent and heating the programmable temperature injector from room temperature to 300 degrees C with a temperature step of 105 degrees C. With the use of the optimized thermal desorption conditions, several components have been positively identified in the volatile fraction of the deposits: aromatics, antioxidants, and antioxidant degradation products. Moreover, this work highlighted the presence of diesel fuel in the VOM of the piston deposits and gave new facts on the absence of the role of diesel fuel in the deposit formation process. Most importantly, it opens the possibility of quickly performing the analysis of deposits with small amounts of samples while having a good separation of the volatiles.
NASA Astrophysics Data System (ADS)
Iverach, Charlotte P.; Cendón, Dioni I.; Hankin, Stuart I.; Lowry, Dave; Fisher, Rebecca E.; France, James L.; Nisbet, Euan G.; Baker, Andy; Kelly, Bryce F. J.
2015-04-01
Unconventional gas developments pose a risk to groundwater quality and quantity in adjacent or overlying aquifers. To manage these risks there is a need to measure the background concentration of indicator groundwater chemicals and to map pathways of hydraulic connectivity between aquifers. This study presents methane (CH4) concentration and isotopic composition, dissolved organic carbon concentration ([DOC]) and tritium (3H) activity data from an area of expanding coal seam gas (CSG) exploration and production (Condamine Catchment, south-east Queensland, Australia). The target formation for gas production within the Condamine Catchment is the Walloon Coal Measures (WCM). This is a 700 m thick, low-rank CSG resource, which consists of numerous thin discontinuous lenses of coal separated by very fine-to medium-grained sandstone, siltstone, and mudstone, with minor calcareous sandstone, impure limestone and ironstone. The thickness of the coal makes up less than 10% of the total thickness of the unit. The WCM are overlain by sandstone formations, which form part of the Great Artesian Basin (GAB). The Condamine Alluvium fills a paleo-valley carved through the above formations. A combination of groundwater and degassing air samples were collected from irrigation bores and government groundwater monitoring boreholes. Degassing air samples were collected using an SKC 222-2301 air pump, which pumped the gas into 3 L Tedlar bags. The groundwater was analysed for 3H and [DOC]. A mobile CH4 survey was undertaken to continuously sample air in and around areas of agricultural and unconventional gas production. The isotopic signature of gas from the WCM was determined by sampling gas that was off-gassing from a co-produced water holding pond as it was the largest emission that could be directly linked to the WCM. This was used to determine the source signature of the CH4 from the WCM. We used Keeling plots to identify the source signature of the gas sampled. For the borehole samples these plots assume that there are only two sources of CH4, each with a unique isotopic signature. When the two sources mix in varying proportions they will plot along a straight line in the Keeling plot. Geometric mean displacement was used to fit a regression line and determine the intercept value. Within the Keeling plot, samples clustered according to their 3H and [DOC] values. One cluster is associated with near surface biological processes, while the other cluster can be attributed to gas sourced from the WCM. This indicates that in places there is hydraulic connectivity between the WCM and the overlying Condamine Alluvium. The results from this case study demonstrate that measuring 3H activity, [DOC] and CH4 concentrations in combination with CH4 isotopic analysis can provide an early indicator of hydraulic connectivity in areas of expanding unconventional gas development.
Polyport atmospheric gas sampler
Guggenheim, S. Frederic
1995-01-01
An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.
NASA Astrophysics Data System (ADS)
Nasir, N. F.; Mirus, M. F.; Ismail, M.
2017-09-01
Crude glycerol which produced from transesterification reaction has limited usage if it does not undergo purification process. It also contains excess methanol, catalyst and soap. Conventionally, purification method of the crude glycerol involves high cost and complex processes. This study aimed to determine the effects of using different purification methods which are direct method (comprises of ion exchange and methanol removal steps) and multistep method (comprises of neutralization, filtration, ion exchange and methanol removal steps). Two crude glycerol samples were investigated; the self-produced sample through the transesterification process of palm oil and the sample obtained from biodiesel plant. Samples were analysed using Fourier Transform Infrared Spectroscopy, Gas Chromatography and High Performance Liquid Chromatography. The results of this study for both samples after purification have showed that the pure glycerol was successfully produced and fatty acid salts were eliminated. Also, the results indicated the absence of methanol in both samples after purification process. In short, the combination of 4 purification steps has contributed to a higher quality of glycerol. Multistep purification method gave a better result compared to the direct method as neutralization and filtration steps helped in removing most excess salt, fatty acid and catalyst.
Denitrification enzyme activity (DEA) was measured in short-term (4 h) anaerobic assays using Membrane Inlet Mass Spectrometry (MIMS) and electron capture gas chromatography (GC-ECD). Using MIMS, modifications of the instrument and sample handling allowed for the simultaneous me...
Takahashi, Masato; Sawada, Yoshisuke; Aoyagi, Hideki
2017-08-23
Monitoring the environmental factors during shake-flask culture of microorganisms can help to optimise the initial steps of bioprocess development. Herein, we developed a circulation direct monitoring and sampling system (CDMSS) that can monitor the behaviour of CO 2 and O 2 in the gas-liquid phases and obtain a sample without interrupting the shaking of the culture in Erlenmeyer flasks capped with breathable culture plugs. Shake-flask culturing of Escherichia coli using this set-up indicated that a high concentration of CO 2 accumulated not only in the headspace (maximum ~100 mg/L) but also in the culture broth (maximum ~85 mg/L) during the logarithmic phase (4.5-9.0 h). By packing a CO 2 absorbent in the gas circulation unit of CDMSS, a specialised shake-flask culture was developed to remove CO 2 from the headspace. It was posited that removing CO 2 from the headspace would suppress increases in the dissolved CO 2 concentration in the culture broth (maximum ~15 mg/L). Furthermore, the logarithmic growth phase (4.5-12.0 h) was extended, the U.O.D. 580 and pH value increased, and acetic acid concentration was reduced, compared with the control. To our knowledge, this is the first report of a method aimed at improving the growth of E. coli cells without changing the composition of the medium, temperature, and shaking conditions.
A wall-free climate unit for acoustic levitators.
Schlegel, M C; Wenzel, K-J; Sarfraz, A; Panne, U; Emmerling, F
2012-05-01
Acoustic levitation represents the physical background of trapping a sample in a standing acoustic wave with no contact to the wave generating device. For the last three decades, sample holders based on this effect have been commonly used for contact free handling of samples coupled with a number of analytical techniques. In this study, a wall-free climate unit is presented, which allows the control of the environmental conditions of suspended samples. The insulation is based on a continuous cold/hot gas flow around the sample and thus does not require any additional isolation material. This provides a direct access to the levitated sample and circumvents any influence of the climate unit material to the running analyses.
A wall-free climate unit for acoustic levitators
NASA Astrophysics Data System (ADS)
Schlegel, M. C.; Wenzel, K.-J.; Sarfraz, A.; Panne, U.; Emmerling, F.
2012-05-01
Acoustic levitation represents the physical background of trapping a sample in a standing acoustic wave with no contact to the wave generating device. For the last three decades, sample holders based on this effect have been commonly used for contact free handling of samples coupled with a number of analytical techniques. In this study, a wall-free climate unit is presented, which allows the control of the environmental conditions of suspended samples. The insulation is based on a continuous cold/hot gas flow around the sample and thus does not require any additional isolation material. This provides a direct access to the levitated sample and circumvents any influence of the climate unit material to the running analyses.
The effect of initial pressure on growth of FeNPs in amorphous carbon films
NASA Astrophysics Data System (ADS)
Mashayekhi, Fatemeh; Shafiekhani, Azizollah; Sebt, S. Ali; Darabi, Elham
2018-04-01
Iron nanoparticles in amorphous hydrogenated carbon films (FeNPs@a-C:H) were prepared with RF-sputtering and RFPECVD methods by acetylene gas and Fe target. In this paper, deposition and sputtering process were carried out under influence of different initial pressure gas. The morphology and roughness of surface of samples were studied by AFM technique and also TEM images show the exact size of FeNPs and encapsulated FeNPs@a-C:H. The localized surface plasmon resonance peak (LSPR) of FeNPs was studied using UV-vis absorption spectrum. The results show that the intensity and position of LSPR peak are increased by increasing initial pressure. Also, direct energy gap of samples obtained by Tauc law is decreased with respect to increasing initial pressure.
New method for determining heats of combustion of gaseous hydrocarbons
NASA Technical Reports Server (NTRS)
Singh, J. J.; Sprinkle, D. R.; Puster, R. L.
1985-01-01
As a spin off of a system developed for monitoring and controlling the oxygen concentration in the Langley 8-foot High Temperature Tunnel, a highly accurate on-line technique was developed for determining heats of combustion of natural gas samples. It is based on measuring the ratio m/n, where m is the (volumetric) flowrate of oxygen required to enrich the carrier air in which the test gas flowing at the rate n is burned, such that the mole fraction of oxygen in the combustion product gases equals that in the carrier air. The m/n ratio is directly related to the heats of combustion of the saturated hydrocarbons present in the natural gas. A measurement of the m/n ratio for the test gas can provide a direct means of determination of its heat of combustion by using the calibration graph relating the m/n values for pure saturated hydrocarbons with their heats of combustion. The accuracy of the technique is determine solely by the accuracy with which the flowrates m and n can be measured and is of the order of 2 percent in the present study. The theoretical principles and experimental results are discussed.
Fiber optic coupled multipass gas minicell, design assembly thereof
Bond, Tiziana C.; Bora, Mihail; Engel, Michael A.; McCarrick, James F.; Moran, Bryan D.
2016-01-12
A method directs a gas of interest into a minicell and uses an emitting laser to produce laser emission light that is directed into the minicell and onto the gas of interest. The laser emission light is reflected within the cell to make multipasses through the gas of interest. After the multipasses through the gas of interest the laser light is analyzed to produces gas spectroscopy data. The minicell receives the gas of interest and a transmitting optic connected to the minicell that directs a beam into the minicell and onto the gas of interest. A receiving optic connected to the minicell receives the beam from the gas of interest and directs the beam to an analyzer that produces gas spectroscopy data.
Practical considerations for measuring hydrogen concentrations in groundwater
Chapelle, F.H.; Vroblesky, D.A.; Woodward, J.C.; Lovley, D.R.
1997-01-01
Several practical considerations for measuring concentrations of dissolved molecular hydrogen (H2) in groundwater including 1 sampling methods 2 pumping methods and (3) effects of well casing materials were evaluated. Three different sampling methodologies (a downhole sampler, a gas- stripping method, and a diffusion sampler) were compared. The downhole sampler and gas-stripping methods gave similar results when applied to the same wells, the other hand, appeared to The diffusion sampler, on overestimate H2 concentrations relative to the downhole sampler. Of these methods, the gas-stripping method is better suited to field conditions because it is faster (~ 30 min for a single analysis as opposed to 2 h for the downhole sampler or 8 h for the diffusion sampler), the analysis is easier (less sample manipulation is required), and the data computations are more straightforward (H2 concentrations need not be corrected for water sample volume). Measurement of H2 using the gas-stripping method can be affected by different pumping equipment. Peristaltic, piston, and bladder pumps all gave similar results when applied to water produced from the same well. It was observed, however, that peristaltic-pumped water (which draws water under a negative pressure) enhanced the gas-stripping process and equilibrated slightly faster than either piston or bladder pumps (which push water under a positive pressure). A direct current(dc) electrically driven submersible pump was observed to produce H2 and was not suitable for measuring H2 in groundwater. Measurements from two field sites indicate that iron or steel well casings, produce H2, which masks H2 concentrations in groundwater. PVC-cased wells or wells cased with other materials that do not produce H2 are necessary for measuring H2 concentrations in groundwater.Several practical considerations for measuring concentrations of dissolved molecular hydrogen in groundwater including sampling methods, pumping methods, and effects of well casing materials were evaluated. The downhole sampler and gas-stripping methods gave similar results when applied to the same wells. The diffusional sampler appears to overestimate H2 concentrations relative to the downhole sampler. Gas-stripping method is better for a single analysis and the data computations are more straightforward. Measurement of H2 using the gas-stripping method can be affected by different pumping equipment.
NASA Astrophysics Data System (ADS)
Giebel, B. M.; Riemer, D. D.; Swart, P. K.
2008-12-01
Determining δ13C values for reduced hydrocarbons in atmospheric samples is emerging as an important area of interest in isotopic analytical chemistry. The importance of stable isotopic data stems from its usefulness to differentiate between multiple sources and allows for an assessment of changing source structure and source strength in a constantly changing environment. Though much stable isotopic work is available on CH4 and other VOCs, particularly NMHCs, few studies have focused on oxygenated volatile organic compounds (OVOCs) such as methanol, ethanol, acetone, and propanal. Both anthropogenic and biogenic sources exist for these OVOCs and their role in atmospheric chemistry is important. The OVOCs of interest here are found in very low concentrations in ambient air (low ppbv to high pptv) and thus provide unique challenges for analysis by GC-C-IRMS. To address the challenges of measuring OVOCs, a Hewlett Packard 6890 gas chromatograph interfaced with a Europa Scientific Geo 20-20 IRMS was modified to accept ambient atmospheric samples. To sharpen peak shape all dead volume within the system was minimized; starting with the addition of a fused silica combustion tube (0.25 mm i.d.) containing Cu, Pt, or Ni wires (0.1 mm dia.). To assist water removal from the sample stream before delivery to the IRMS a small volume nafion dryer (0.20 mm i.d.) and a water-trap submersed in a dry-ice / acetone slurry were tested individually. Deactivated fused silica (0.1 mm i.d.) joins the custom designed open split to the ion source and effectively decreases dead volume while maintaining chromatographic separation and desired source pressure. To decrease the variability of the instrumentation, and to increase the total amount of carbon at the ion source, total carrier gas flow is reduced to 0.7 mL/min. Reference gas addition is manually facilitated by a six port rotary valve upstream of the open split and delivers diluted CO2 reference gas (0.1% CO2 in He) directly to the ion source while maintaining continuous flow conditions from the gas chromatograph. Experimental results of initial biogenic source sampling will be presented and future directions will be discussed.
Moret, Sabrina; Scolaro, Marianna; Barp, Laura; Purcaro, Giorgia; Conte, Lanfranco S
2016-04-01
A high throughput, high-sensitivity procedure, involving simultaneous microwave-assisted extraction (MAS) and unsaponifiable extraction, followed by on-line liquid chromatography (LC)-gas chromatography (GC), has been optimised for rapid and efficient extraction and analytical determination of mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH) in cereal-based products of different composition. MAS has the advantage of eliminating fat before LC-GC analysis, allowing an increase in the amount of sample extract injected, and hence in sensitivity. The proposed method gave practically quantitative recoveries and good repeatability. Among the different cereal-based products analysed (dry semolina and egg pasta, bread, biscuits, and cakes), egg pasta packed in direct contact with recycled paperboard had on average the highest total MOSH level (15.9 mg kg(-1)), followed by cakes (10.4 mg kg(-1)) and bread (7.5 mg kg(-1)). About 50% of the pasta and bread samples and 20% of the biscuits and cake samples had detectable MOAH amounts. The highest concentrations were found in an egg pasta in direct contact with recycled paperboard (3.6 mg kg(-1)) and in a milk bread (3.6 mg kg(-1)). Copyright © 2015 Elsevier Ltd. All rights reserved.
Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M
2015-02-06
A method using direct sample introduction (DSI) coupled to gas chromatography-mass spectrometry (GC-MS) is developed for the determination of six phthalate esters (dimethyl, diethyl, dibutyl, butylbenzyl, diethylhexyl and dioctyl phthalate) in cleaning products. The different variables involved in the DSI step, including venting time and temperature, vaporisation time and temperature, injector heating temperature and gas flow rate and pressure, were evaluated and optimised using Taguchi orthogonal arrays. The proposed method, using calibration against methanolic standards, showed good linearity in the 0.05-15 μg g(-1) range and good repeatability, with RSD values ranging from 3.5% to 5.7%. Quantification limits between 0.010 and 0.041 μg g(-1), depending on the compound, were attained, while recovery assays provided values from 83% to 115%. Twenty-seven cleaning products were analysed using the DSI-GC-MS method, being four phthalates (dimethyl, diethyl, dibutyl and diethylhexyl phthalate) found in fourteen of them at concentration levels in the 0.1-21 μg g(-1) range. Compared with the most common GC injection technique, which uses the split/splitless injector, the proposed DSI procedure provided larger peak areas and lower detection limits, as result of the greater injected volume and reduction in noise. Copyright © 2014 Elsevier B.V. All rights reserved.
Gibb, Stuart W.; Wood, John W.; Fauzi, R.; Mantoura, C.
1995-01-01
The automation and improved design and performance of Flow Injection Gas Diffusion-Ion Chromatography (FIGD-IC), a novel technique for the simultaneous analysis of trace ammonia (NH3) and methylamines (MAs) in aqueous media, is presented. Automated Flow Injection Gas Diffusion (FIGD) promotes the selective transmembrane diffusion of MAs and NH3 from aqueous sample under strongly alkaline (pH > 12, NaOH), chelated (EDTA) conditions into a recycled acidic acceptor stream. The acceptor is then injected onto an ion chromatograph where NH3 and the MAs are fully resolved as their cations and detected conductimetrically. A versatile PC interfaced control unit and data capture unit (DCU) are employed in series to direct the selonoid valve switching sequence, IC operation and collection of data. Automation, together with other modifications improved both linearily (R2 > 0.99 MAs 0-100 nM, NH3 0-1000 nM) and precision (<8%) of FIGD-IC at nanomolar concentrations, compared with the manual procedure. The system was successfully applied to the determination of MAs and NH3 in seawater and in trapped particulate and gaseous atmospheric samples during an oceanographic research cruise. PMID:18925047
Nitrogen isotopic analyses by isotope-ratio-monitoring gas chromatography/mass spectrometry
NASA Technical Reports Server (NTRS)
Merritt, D. A.; Hayes, J. M.
1994-01-01
Amino acids containing natural-abundance levels of 15N were derivatized and analyzed isotopically using a technique in which individual compounds are separated by gas chromatography, combusted on-line, and the product stream sent directly to an isotope-ratio mass spectrometer. For samples of N2 gas, standard deviations of ratio measurement were better than 0.1% (Units for delta are parts per thousand or per million (%).) for samples larger than 400 pmol and better than 0.5% for samples larger than 25 pmol (0.1% 15N is equivalent to 0.00004 atom % 15N). Results duplicated those of conventional, batchwise analyses to within 0.05%. For combustion of organic compounds yielding CO2/N2 ratios between 14 and 28, in particular for N-acetyl n-propyl derivatives of amino acids, delta values were within 0.25% of results obtained using conventional techniques and standard deviations were better than 0.35%. Pooled data for measurements of all amino acids produced an accuracy and precision of 0.04 and 0.23%, respectively, when 2 nmol of each amino acid was injected on column and 20% of the stream of combustion products was delivered to the mass spectrometer.
Sand effects on thermal barrier coatings for gas turbine engines
NASA Astrophysics Data System (ADS)
Walock, Michael; Barnett, Blake; Ghoshal, Anindya; Murugan, Muthuvel; Swab, Jeffrey; Pepi, Marc; Hopkins, David; Gazonas, George; Kerner, Kevin
Accumulation and infiltration of molten/ semi-molten sand and subsequent formation of calcia-magnesia-alumina-silicate (CMAS) deposits in gas turbine engines continues to be a significant problem for aviation assets. This complex problem is compounded by the large variations in the composition, size, and topology of natural sands, gas generator turbine temperatures, thermal barrier coating properties, and the incoming particulate's momentum. In order to simplify the materials testing process, significant time and resources have been spent in the development of synthetic sand mixtures. However, there is debate whether these mixtures accurately mimic the damage observed in field-returned engines. With this study, we provide a direct comparison of CMAS deposits from both natural and synthetic sands. Using spray deposition techniques, 7% yttria-stabilized zirconia coatings are deposited onto bond-coated, Ni-superalloy discs. Each sample is coated with a sand slurry, either natural or synthetic, and exposed to a high temperature flame for 1 hour. Test samples are characterized before and after flame exposure. In addition, the test samples will be compared to field-returned equipment. This research was sponsored by the US Army Research Laboratory, and was accomplished under Cooperative Agreement # W911NF-12-2-0019.
2016-01-01
Although qualitative strategies based on direct injection mass spectrometry (DIMS) have recently emerged as an alternative for the rapid classification of food samples, the potential of these approaches in quantitative tasks has scarcely been addressed to date. In this paper, the applicability of different multivariate regression procedures to data collected by DIMS from simulated mixtures has been evaluated. The most relevant factors affecting quantitation, such as random noise, the number of calibration samples, type of validation, mixture complexity and similarity of mass spectra, were also considered and comprehensively discussed. Based on the conclusions drawn from simulated data, and as an example of application, experimental mass spectral fingerprints collected by direct thermal desorption coupled to mass spectrometry were used for the quantitation of major volatiles in Thymus zygis subsp. zygis chemotypes. The results obtained, validated with the direct thermal desorption coupled to gas chromatography–mass spectrometry method here used as a reference, show the potential of DIMS approaches for the fast and precise quantitative profiling of volatiles in foods. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644978
On the Gas Content and Efficiency of AGN Feedback in Low-redshift Quasars
NASA Astrophysics Data System (ADS)
Shangguan, Jinyi; Ho, Luis C.; Xie, Yanxia
2018-02-01
The interstellar medium is crucial to understanding the physics of active galaxies and the coevolution between supermassive black holes and their host galaxies. However, direct gas measurements are limited by sensitivity and other uncertainties. Dust provides an efficient indirect probe of the total gas. We apply this technique to a large sample of quasars, whose total gas content would be prohibitively expensive to measure. We present a comprehensive study of the full (1 to 500 μm) infrared spectral energy distributions of 87 redshift <0.5 quasars selected from the Palomar-Green sample, using photometric measurements from 2MASS, WISE, and Herschel, combined with Spitzer mid-infrared (5–40 μm) spectra. With a newly developed Bayesian Markov Chain Monte Carlo fitting method, we decompose various overlapping contributions to the integrated spectral energy distribution, including starlight, warm dust from the torus, and cooler dust on galaxy scales. This procedure yields a robust dust mass, which we use to infer the gas mass, using a gas-to-dust ratio constrained by the host galaxy stellar mass. Most (90%) quasar hosts have gas fractions similar to those of massive, star-forming galaxies, although a minority (10%) seem genuinely gas-deficient, resembling present-day massive early-type galaxies. This result indicates that “quasar mode” feedback does not occur or is ineffective in the host galaxies of low-redshift quasars. We also find that quasars can boost the interstellar radiation field and heat dust on galactic scales. This cautions against the common practice of using the far-infrared luminosity to estimate the host galaxy star formation rate.
NASA Astrophysics Data System (ADS)
Gutmann, Alexandra; Rüdiger, Julian; Bobrowski, Nicole; Hoffmann, Thorsten
2017-04-01
Volcanoes emit large amounts of gases into the atmosphere. The gas composition in volcanic plumes vary, driven by subsurface processes (such as magma rising) as well as by chemical reactions within the plume after mixing with ambient air. The knowledge of the gas composition can be a useful tool to monitor volcanic activity changes. However, to use the plume composition as a monitoring parameter, it is essential to understand the chemical reactions inside volcanic plumes, in particular when interpretation of volcanic activity changes is based on reactive gas species, such as bromine monoxide or molecular halogens. Changes in BrO/SO2-ratios, measured by UV spectrometers, have already been interpreted in connection with increasing volcanic activity prior to eruptions. But the abundance of BrO changes as a function of the reaction time, and therefore with distance from the vent, as well as the spatial position in the plume. Actually model and field studies assume a non-direct emission of BrO, but its formation due to photochemical and multiphase reactions involving gas and particle phase of volcanic emission mixed with the surrounding atmosphere. However, same models presume HBr as initially emitted species. Therefore, HBr is an important species linking BrO to geophysical processes in volcanic systems. Due to the lack of analytical methods for the accurate speciation of certain halogens (HBr, Br2, Br, BrCl, HOBr, etc.) there are still large uncertainties about the magnitude of volcanic halogen emissions, and in the understanding of the bromine chemistry in volcanic plumes. Since the concentrations of hydrogen halides are not directly accesable by remote sensing techniques, an in situ method with coated gas diffusion denuder was developed. The method uses selective derivatization reaction of gaseous hydrogen halides with an organic compound for the enrichment and immobilization. For this task 5,6-Epoxy-5,6-dihydro-1,10-phenanthrolin was identified as a suitable derivatization agent. The reaction with HBr results in the formation of 5-Bromo-5,6-dihydro-6-hydroxy-1,10-phenanthrolin. Other hydrogen halides give corresponding products. Using a denuder based sampling system with in situ derivatization it is also possible to differentiate even between gaseous and particulate hydrogen bromine. The derivatized analytes were analyzed with high pressure liquid chromatography-mass spectrometry. We applied this approach to measure hydrogen halide mixing ratios (ppt to ppb range depending on plume age) in the plumes of different volcanoes: Stromboli, Italy; Masaya, Nicaragua; Turrialba, Costa Rica. The results of this measurements will be presented. Samples were taken at various distances to the emission source and have been compared with complementary data (e.g. SO2 from alkaline traps or gas sensors). Furthermore, the sampling method has been applied on an unmanned aerial vehicle for downwind sample collection.
Assessment of porous material anisotropy and its effect on gas permeability
NASA Astrophysics Data System (ADS)
Wałowski, Grzegorz
2017-10-01
The results of experimental research upon the assessment of porous material anisotropy and its effect on gas permeability of porous materials with respect to the gas flow. The conducted research applied to natural materials with an anisotropic gap-porous structure and - for comparative purposes - to model materials such as coke, pumice and polyamide agglomerates. The research was conducted with the use of a special test stand that enables measuring the gas permeability with respect to three flow orientations compared with symmetric cubic-shaped samples. The research results show an explicit impact of the flow direction on the permeability of materials porous, which results from their anisotropic internal structures. The anisotropy coefficient and permeability effective coefficient of such materials was determined and an experimental evaluation of the value of this coefficient was conducted with respect to the gas stream and the total pressure drop across the porous deposit. The process of gas permeability was considered in the category of hydrodynamics of gas flow through porous deposits. It is important to broaden the knowledge of gas hydrodynamics assessment in porous media so far unrecognised for the development of a new generation of clean energy sources, especially in the context of biogas or raw gas production.
NASA Astrophysics Data System (ADS)
Sharon, Chelsea E.; Riechers, Dominik A.; Carilli, Chris Luke; Hodge, Jacqueline; Walter, Fabian
2016-01-01
Theoretical work has suggested that active galactic nuclei (AGN) play an important role in quenching star formation in massive galaxies. Direct evidence for AGN affecting the molecular ISM has so far been limited to detections of molecular outflows in low-redshift systems and extreme excitation regions which represent a tiny fraction of the total gas. Indirect evidence for AGN's impact on their host galaxies' cold gas phase may be provided by measurements of the gas excitation and dynamics. At z~2-3, the peak epoch of star formation and AGN activity, previous observations of the CO(1-0) line revealed that submillimeter galaxies (SMGs) have multi-phase molecular gas, including substantial reservoirs of cold-phase gas. However, the entirety of the molecular gas in AGN-host galaxies appears highly excited, potentially supporting an evolutionary connection between these two populations. I will present a new VLA sample that nearly doubles the number of CO(1-0) detections in z~2-3 SMGs and AGN-host galaxies that allows us to better compare the cold gas properties of these systems and further investigate evidence for the effects of AGN on the star-forming molecular gas.
Shang, Yunling; Wang, Xiaobo; Xu, Erchao; Tong, Changlun; Wu, Jianmin
2011-01-24
An ammonia gas sensor chip was prepared by coating an electrochemically-etched porous Si rugate filter with a chitosan film that is crosslinked by glycidoxypropyltrimethoxysilane (GPTMS). The bromothylmol blue (BTB), a pH indicator, was loaded in the film as ammonia-sensing molecules. White light reflected from the porous Si has a narrow bandwidth spectrum with a peak at 610 nm. Monitoring reflective optical intensity at the peak position allows for direct, real-time observation of changes in the concentration of ammonia gas in air samples. The reflective optical intensity decreased linearly with increasing concentrations of ammonia gas over the range of 0-100 ppm. The lowest detection limit was 0.5 ppm for ammonia gas. At optimum conditions, the full response time of the ammonia gas sensor was less than 15s. The sensor chip also exhibited a good long-term stability over 1 year. Therefore, the simple sensor design has potential application in miniaturized optical measurement for online ammonia gas detection. Copyright © 2010 Elsevier B.V. All rights reserved.
ALMA observations of atomic carbon in z ˜ 4 dusty star-forming galaxies
NASA Astrophysics Data System (ADS)
Bothwell, M. S.; Aguirre, J. E.; Aravena, M.; Bethermin, M.; Bisbas, T. G.; Chapman, S. C.; De Breuck, C.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y.; Ma, J.; Malkan, M.; Marrone, D. P.; Murphy, E. J.; Spilker, J. S.; Strandet, M.; Vieira, J. D.; Weiß, A.
2017-04-01
We present Atacama Large Millimeter Array [C I](1 - 0) (rest frequency 492 GHz) observations for a sample of 13 strongly lensed dusty star-forming galaxies (DSFGs) originally discovered at 1.4 mm in a blank-field survey by the South Pole Telescope (SPT). We compare these new data with available [C I] observations from the literature, allowing a study of the interstellar medium (ISM) properties of ˜30 extreme DSFGs spanning a redshift range 2 < z < 5. Using the [C I] line as a tracer of the molecular ISM, we find a mean molecular gas mass for SPT-DSFGs of 6.6 × 1010 M⊙. This is in tension with gas masses derived via low-J 12CO and dust masses; bringing the estimates into accordance requires either (a) an elevated CO-to-H2 conversion factor for our sample of αCO ˜ 2.5 and a gas-to-dust ratio ˜200, or (b) an high carbon abundance X_{C I} ˜ 7× 10^{-5}. Using observations of a range of additional atomic and molecular lines (including [C I], [C II]and multiple transitions of CO), we use a modern photodissociation region code (3D-PDR) to assess the physical conditions (including the density, UV radiation field strength and gas temperature) within the ISM of the DSFGs in our sample. We find that the ISM within our DSFGs is characterized by dense gas permeated by strong UV fields. We note that previous efforts to characterize photodissociation region regions in DSFGs may have significantly under-estimated the density of the ISM. Combined, our analysis suggests that the ISM of extreme dusty starbursts at high redshift consists of dense, carbon-rich gas not directly comparable to the ISM of starbursts in the local Universe.
NASA Astrophysics Data System (ADS)
Geiger, F.; Warneke, C.; Brown, S. S.; De Gouw, J. A.; Dube, W. P.; Edwards, P.; Gilman, J.; Graus, M.; Helleis, F.; Kofler, J.; Lerner, B. M.; Orphal, J.; Petron, G.; Roberts, J. M.; Zahn, A.
2014-12-01
Ongoing improvements in advanced technologies for crude oil and natural gas extraction from unconventional reserves, such as directional drilling and hydraulic fracturing, have greatly increased the production of fossil fuels within recent years. The latest forecasts even estimate an enhancement of 56% in total natural gas production due to increased development of shale gas, tight gas and offshore natural gas resources from 2012 to 2040 with the largest contribution from shale formations [US EIA: Annual Energy Outlook 2014]. During the field intensive 'Energy and Environment - Uintah Basin Winter Ozone Study (UBWOS)', measurements of volatile organic compounds (VOCs) were made using proton-transfer-reactions mass spectrometry (PTR-MS) at the ground site Horse Pool and using a mobile laboratory in the Uintah Basin, Utah, which is a region well known for intense fossil fuel production. A reworked gas well in the Red Wash fields was sampled regularly within two weeks performing mobile laboratory measurements downwind of the well site. The well had been recently hydraulically refractured at that time and waste water was collected into an open flow-back pond. Very high mixing ratios of aromatic hydrocarbons (C6-C13) up to the ppm range were observed coming from condensate and flow-back reservoirs. The measurements are used to determine sources of specific VOC emissions originating from the different parts of the well site and mass spectra are used to classify the air composition in contrast to samples taken at the Horse Pool field site and crude oil samples from South Louisiana. Enhancement ratios and time series of measured peak values for aromatics showed no clear trend, which indicates changes in emissions with operations at the site.
NASA Astrophysics Data System (ADS)
Wolf, Jan-Christoph; Etter, Raphael; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato
2016-07-01
An active capillary plasma ionization (ACI) source was coupled to a handheld mass spectrometer (Mini 10.5; Aston Labs, West Lafayette, IN, USA) and applied to the direct gas-phase detection and quantification of chemical warfare agent (CWA) related chemicals. Complementing the discontinuous atmospheric pressure interface (DAPI) of the Mini 10.5 mass spectrometer with an additional membrane pump, a quasi-continuous sample introduction through the ACI source was achieved. Nerve agent simulants (three dialkyl alkylphosphonates, a dialkyl phosporamidate, and the pesticide dichlorvos) were detected at low gas-phase concentrations with limits of detection ranging from 1.0 μg/m3 to 6.3 μg/m3. Our results demonstrate a sensitivity enhancement for portable MS-instrumentation by using an ACI source, enabling direct, quantitative measurements of volatile organic compounds. Due to its high sensitivity, selectivity, low power consumption (<80 W) and weight (<13 kg), this instrumentation has the potential for direct on-site CWA detection as required by military or civil protection.
Grain boundary dominated electrical conductivity in ultrananocrystalline diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiora, Neda; Mertens, Michael; Bruhne, Kai
Here, N-type electrically conductive ultrananocrystalline diamond (UNCD) films were deposited using the hot filament chemical vapor deposition technique with a gas mixture of H 2, CH 4 and NH 3. Depending on the deposition temperature and ammonia feed gas concentration, which serves as a nitrogen source, room temperature electrical conductivities in the order of 10 –2 to 5 × 10 1S/cm and activation energies in the meV range were achieved. In order to understand the origin of the enhanced electrical conductivity and clarify the role of ammonia addition to the process gas, a set of UNCD films was grown bymore » systematically varying the ammonia gas phase concentration. These samples were analyzed with respect to their morphology and electrical properties as well as their carbon and nitrogen bonding environments. Temperature dependent electrical conductivity measurements (300–1200 K) show that the electrical conductivity of the samples increases with temperature. The near edge x-ray absorption fine structure measurements reveal that the electrical conductivity of the UNCD films does not correlate directly with ammonia addition, but depends on the total amount of sp2 bonded carbon in the deposited films.« less
Grain boundary dominated electrical conductivity in ultrananocrystalline diamond
Wiora, Neda; Mertens, Michael; Bruhne, Kai; ...
2017-10-09
Here, N-type electrically conductive ultrananocrystalline diamond (UNCD) films were deposited using the hot filament chemical vapor deposition technique with a gas mixture of H 2, CH 4 and NH 3. Depending on the deposition temperature and ammonia feed gas concentration, which serves as a nitrogen source, room temperature electrical conductivities in the order of 10 –2 to 5 × 10 1S/cm and activation energies in the meV range were achieved. In order to understand the origin of the enhanced electrical conductivity and clarify the role of ammonia addition to the process gas, a set of UNCD films was grown bymore » systematically varying the ammonia gas phase concentration. These samples were analyzed with respect to their morphology and electrical properties as well as their carbon and nitrogen bonding environments. Temperature dependent electrical conductivity measurements (300–1200 K) show that the electrical conductivity of the samples increases with temperature. The near edge x-ray absorption fine structure measurements reveal that the electrical conductivity of the UNCD films does not correlate directly with ammonia addition, but depends on the total amount of sp2 bonded carbon in the deposited films.« less
Analysis of selected volatile organic compounds at background level in South Africa.
NASA Astrophysics Data System (ADS)
Ntsasa, Napo; Tshilongo, James; Lekoto, Goitsemang
2017-04-01
Volatile organic compounds (VOC) are measured globally at urban air pollution monitoring and background level at specific locations such as the Cape Point station. The urban pollution monitoring is legislated at government level; however, the background levels are scientific outputs of the World Meteorological Organisation Global Atmospheric Watch program (WMO/GAW). The Cape Point is a key station in the Southern Hemisphere which monitors greenhouse gases and halocarbons, with reported for over the past decade. The Cape Point station does not have the measurement capability VOC's currently. A joint research between the Cape Point station and the National Metrology Institute of South Africa (NMISA) objective is to perform qualitative and quantitative analysis of volatile organic compounds listed in the GAW program. NMISA is responsible for development, maintain and disseminate primary reference gas mixtures which are directly traceable to the International System of Units (SI) The results of some volatile organic compounds which where sampled in high pressure gas cylinders will be presented. The analysis of samples was performed on the gas chromatography with flame ionisation detector and mass selective detector (GC-FID/MSD) with a dedicate cryogenic pre-concentrator system. Keywords: volatile organic compounds, gas chromatography, pre-concentrator
Direct fired absorption machine flue gas recuperator
Reimann, Robert C.; Root, Richard A.
1985-01-01
A recuperator which recovers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine. The recuperator includes a housing with liquid flowing therethrough, the liquid being in direct contact with the combustion gas for increasing the effectiveness of the heat transfer between the gas and the liquid.
Shelley, Jacob T.; Wiley, Joshua S.; Hieftje, Gary M.
2011-01-01
The advent of ambient desorption/ionization mass spectrometry has resulted in a strong interest in ionization sources that are capable of direct analyte sampling and ionization. One source that has enjoyed increasing interest is the Flowing Atmospheric-Pressure Afterglow (FAPA). FAPA has been proven capable of directly desorbing/ionizing samples in any phase (solid, liquid, or gas) and with impressive limits of detection (<100 fmol). The FAPA was also shown to be less affected by competitive-ionization matrix effects than other plasma-based sources. However, the original FAPA design exhibited substantial background levels, cluttered background spectra in the negative-ion mode, and significant oxidation of aromatic analytes, which ultimately compromised analyte identification and quantification. In the present study, a change in the FAPA configuration from a pin-to-plate to a pin-to-capillary geometry was found to vastly improve performance. Background signals in positive- and negative-ionization modes were reduced by 89% and 99%, respectively. Additionally, the capillary anode strongly reduced the amount of atomic oxygen that could cause oxidation of analytes. Temperatures of the gas stream that interacts with the sample, which heavily influences desorption capabilities, were compared between the two sources by means of IR thermography. The performance of the new FAPA configuration is evaluated through the determination of a variety of compounds in positive- and negative-ion mode, including agrochemicals and explosives. A detection limit of 4 amol was found for the direct determination of the agrochemical ametryn, and appears to be spectrometer-limited. The ability to quickly screen for analytes in bulk liquid samples with the pin-to-capillary FAPA is also shown. PMID:21627097
Shelley, Jacob T; Wiley, Joshua S; Hieftje, Gary M
2011-07-15
The advent of ambient desorption/ionization mass spectrometry has resulted in a strong interest in ionization sources that are capable of direct analyte sampling and ionization. One source that has enjoyed increasing interest is the flowing atmospheric-pressure afterglow (FAPA). The FAPA has been proven capable of directly desorbing/ionizing samples in any phase (solid, liquid, or gas) and with impressive limits of detection (<100 fmol). The FAPA was also shown to be less affected by competitive-ionization matrix effects than other plasma-based sources. However, the original FAPA design exhibited substantial background levels, cluttered background spectra in the negative-ion mode, and significant oxidation of aromatic analytes, which ultimately compromised analyte identification and quantification. In the present study, a change in the FAPA configuration from a pin-to-plate to a pin-to-capillary geometry was found to vastly improve performance. Background signals in positive- and negative-ionization modes were reduced by 89% and 99%, respectively. Additionally, the capillary anode strongly reduced the amount of atomic oxygen that could cause oxidation of analytes. Temperatures of the gas stream that interacts with the sample, which heavily influences desorption capabilities, were compared between the two sources by means of IR thermography. The performance of the new FAPA configuration is evaluated through the determination of a variety of compounds in positive- and negative-ion mode, including agrochemicals and explosives. A detection limit of 4 amol was found for the direct determination of the agrochemical ametryn and appears to be spectrometer-limited. The ability to quickly screen for analytes in bulk liquid samples with the pin-to-capillary FAPA is also shown.
The direct influence of ship traffic on atmospheric PM2.5, PM10 and PAH in Venice.
Contini, D; Gambaro, A; Belosi, F; De Pieri, S; Cairns, W R L; Donateo, A; Zanotto, E; Citron, M
2011-09-01
The direct influence of ship traffic on atmospheric levels of coarse and fine particulate matter (PM(2.5), PM(10)) and fifteen polycyclic aromatic hydrocarbons (PAHs) has been estimated in the urban area of Venice. Data analysis has been performed on results collected at three sites over the summer, when ship traffic is at a maximum. Results indicate that monitoring of the PM daily concentrations is not sufficiently detailed for the evaluation of this contribution, even though it could be useful for specific markers such as PAHs. Therefore a new methodology, based on high temporal resolution measurements coupled with wind direction information and the database of ship passages of the Harbour Authority of Venice has been developed. The sampling sites were monitored with optical detectors (DustTrack(®) and Mie pDR-1200) operating at a high temporal resolution (20s and 1s respectively) for PM(2.5) and PM(10). PAH in the particulate and gas phases were recovered from quartz fibre filters and polyurethane foam plugs using pressurised solvent extraction, the extracts were then analysed by gas chromatography- high-resolution mass spectrometry. Our results shows that the direct contribution of ships traffic to PAHs in the gas phase is 10% while the contribution to PM(2.5) and to PM(10) is from 1% up to 8%. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems
Zhang, Tongwei; Ellis, Geoffrey S.; Ruppel, Stephen C.; Milliken, Kitty; Yang, Rongsheng
2012-01-01
A series of methane (CH4) adsorption experiments on bulk organic rich shales and their isolated kerogens were conducted at 35 °C, 50 °C and 65 °C and CH4 pressure of up to 15 MPa under dry conditions. Samples from the Eocene Green River Formation, Devonian–Mississippian Woodford Shale and Upper Cretaceous Cameo coal were studied to examine how differences in organic matter type affect natural gas adsorption. Vitrinite reflectance values of these samples ranged from 0.56–0.58 %Ro. In addition, thermal maturity effects were determined on three Mississippian Barnett Shale samples with measured vitrinite reflectance values of 0.58, 0.81 and 2.01 %Ro. For all bulk and isolated kerogen samples, the total amount of methane adsorbed was directly proportional to the total organic carbon (TOC) content of the sample and the average maximum amount of gas sorption was 1.36 mmol of methane per gram of TOC. These results indicate that sorption on organic matter plays a critical role in shale-gas storage. Under the experimental conditions, differences in thermal maturity showed no significant effect on the total amount of gas sorbed. Experimental sorption isotherms could be fitted with good accuracy by the Langmuir function by adjusting the Langmuir pressure (PL) and maximum sorption capacity (Γmax). The lowest maturity sample (%Ro = 0.56) displayed a Langmuir pressure (PL) of 5.15 MPa, significantly larger than the 2.33 MPa observed for the highest maturity (%Ro > 2.01) sample at 50 °C. The value of the Langmuir pressure (PL) changes with kerogen type in the following sequence: type I > type II > type III. The thermodynamic parameters of CH4 adsorption on organic rich shales were determined based on the experimental CH4 isotherms. For the adsorption of CH4 on organic rich shales and their isolated kerogen, the heat of adsorption (q) and the standard entropy (Δs0) range from 7.3–28.0 kJ/mol and from −36.2 to −92.2 J/mol/K, respectively.
Kinetics of hydrogen isotope exchange in β-phase Pd-H-D
Luo, Weifang; Cowgill, Donald F.
2015-07-22
Hydrogen isotope gas exchange within palladium powders is examined using a batch-type reactor coupled to a residual gas analyzer (RGA). Furthermore, the exchange rates in both directions (H 2 + PdD and D 2 + PdH) are measured in the temperature range 178–323 K for the samples with different particle sizes. The results show this batch-type exchange is closely approximated as a first-order kinetic process with a rate directly proportional to the surface area of the powder particles. An exchange rate constant of 1.40 ± 0.24 μmol H 2/atm cm 2 s is found for H 2 + PdD atmore » 298 K, 1.4 times higher than that for D 2 + PdH, with an activation energy of 25.0 ± 3.2 kJ/mol H for both exchange directions. Finally, a comparison of exchange measurement techniques shows these coefficients, and the fundamental exchange probabilities are in good agreement with those obtained by NMR and flow techniques.« less
NASA Astrophysics Data System (ADS)
Khare, P.; Marcotte, A.; Sheu, R.; Ditto, J.; Gentner, D. R.
2017-12-01
Intermediate- and semi-volatile organic compounds (IVOCs and SVOCs) have high secondary organic aerosol (SOA) yields, as well as significant ozone formation potentials. Yet, their emission sources and oxidation pathways remain largely understudied due to limitations in current analytical capabilities. Online mass spectrometers are able to collect real time data but their limited mass resolving power renders molecular level characterization of IVOCs and SVOCs from the unresolved complex mixture unfeasible. With proper sampling techniques and powerful analytical instrumentation, our offline tandem mass spectrometry (i.e. MS×MS) techniques provide molecular-level and structural identification over wide polarity and volatility ranges. We have designed a novel analytical system for offline analysis of gas-phase SOA precursors collected on custom-made multi-bed adsorbent tubes. Samples are desorbed into helium via a gradual temperature ramp and sample flow is split equally for direct-MS×MS analysis and separation via gas chromatography (GC). The effluent from GC separation is split again for analysis via atmospheric pressure chemical ionization quadrupole time-of-flight mass spectrometry (APCI-Q×TOF) and traditional electron ionization mass spectrometry (EI-MS). The compounds for direct-MS×MS analysis are delivered via a transfer line maintained at 70ºC directly to APCI-Q×TOF, thus preserving the molecular integrity of thermally-labile, or other highly-reactive, organic compounds. Both our GC-MS×MS and direct-MS×MS analyses report high accuracy parent ion masses as well as information on molecular structure via MS×MS, which together increase the resolution of unidentified complex mixtures. We demonstrate instrument performance and present preliminary results from urban atmospheric samples collected from New York City with a wide range of compounds including highly-functionalized organic compounds previously understudied in outdoor air. Our work offers new insights into emerging emission sources in urban environments that can have a major impact on public health and also improves understanding of anthropogenic SOA precursor emissions.
Laser-Launched Flyer Plates and Direct Laser Shocks for Dynamic Material Property Measurements
NASA Astrophysics Data System (ADS)
Paisley, D. L.; Swift, D. C.; Johnson, R. P.; Kopp, R. A.; Kyrala, G. A.
2002-07-01
The Trident laser at Los Alamos was used to impart known and controlled shocks in various materials by launching flyer plates or by irradiating the sample directly. Materials investigated include copper, gold, NiTi, SS316, and other metals and alloys. Tensile spall strength, elastic-plastic transition, phase boundaries, and equation of state can be determined with small samples. Using thin samples (0.1 - 1.0 mm thick) as targets, high pressure gradients can be generated with relatively low pressures, resulting in high tensile strain rates (105 to 108 s-1). Free surface and interface velocities are recorded with point- and line-imaging VISARs. The flexible spatial and temporal pulse profiles of Trident, coupled with the use of laser-launched flyer plates, provides capabilities which complement experiments conducted using gas guns and tensile bars.
Direct detection of density of gap states in C60 single crystals by photoemission spectroscopy
NASA Astrophysics Data System (ADS)
Bussolotti, Fabio; Yang, Janpeng; Hiramoto, Masahiro; Kaji, Toshihiko; Kera, Satoshi; Ueno, Nobuo
2015-09-01
We report on the direct and quantitative evaluation of density of gap states (DOGS) in large-size C60 single crystals by using ultralow-background, high-sensitivity ultraviolet photoemission spectroscopy. The charging of the crystals during photoionization was overcome using photoconduction induced by simultaneous laser irradiation. By comparison with the spectra of as-deposited and gas exposed C60 thin films the following results were found: (i) The DOGS near the highest occupied molecular orbital edge in the C60 single crystals (1019-1021states e V-1c m-3) mainly originates from the exposure to inert and ambient gas atmosphere during the sample preparation, storage, and transfer; (ii) the contribution of other sources of gap states such as structural imperfections at grain boundaries is negligible (<1018states e V-1c m-3) .
NASA Astrophysics Data System (ADS)
Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei
2017-12-01
Experiments with ultracold atoms provide a highly controllable laboratory setting with many unique opportunities for precision exploration of quantum many-body phenomena. The nature of such systems, with strong interaction and quantum entanglement, makes reliable theoretical calculations challenging. Especially difficult are excitation and dynamical properties, which are often the most directly relevant to experiment. We carry out exact numerical calculations, by Monte Carlo sampling of imaginary-time propagation of Slater determinants, to compute the pairing gap in the two-dimensional Fermi gas from first principles. Applying state-of-the-art analytic continuation techniques, we obtain the spectral function and the density and spin structure factors providing unique tools to visualize the BEC-BCS crossover. These quantities will allow for a direct comparison with experiments.
Garrett, W. Ray
1997-01-01
A method and apparatus for measuring partial pressures of gaseous components within a mixture. The apparatus comprises generally at least one tunable laser source, a beam splitter, mirrors, optical filter, an optical spectrometer, and a data recorder. Measured in the forward direction along the path of the laser, the intensity of the emission spectra of the gaseous component, at wavelengths characteristic of the gas component being measured, are suppressed. Measured in the backward direction, the peak intensities characteristic of a given gaseous component will be wavelength shifted. These effects on peak intensity wavelengths are linearly dependent on the partial pressure of the compound being measured, but independent of the partial pressures of other gases which are present within the sample. The method and apparatus allow for efficient measurement of gaseous components.
Garrett, W.R.
1997-11-11
A method and apparatus are disclosed for measuring partial pressures of gaseous components within a mixture. The apparatus comprises generally at least one tunable laser source, a beam splitter, mirrors, optical filter, an optical spectrometer, and a data recorder. Measured in the forward direction along the path of the laser, the intensity of the emission spectra of the gaseous component, at wavelengths characteristic of the gas component being measured, are suppressed. Measured in the backward direction, the peak intensities characteristic of a given gaseous component will be wavelength shifted. These effects on peak intensity wavelengths are linearly dependent on the partial pressure of the compound being measured, but independent of the partial pressures of other gases which are present within the sample. The method and apparatus allow for efficient measurement of gaseous components. 9 figs.
Ding, W H; Liu, C H; Yeh, S P
2000-10-27
This work presents a modified method to analyze chlorophenoxy acid herbicides in water samples. The herbicides 2,4-D (2,4-dichlorophenoxyacetic acid). Silvex (2,4,5-trichlorophenoxypropionic acid) and 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) were used to evaluate the method. The method involves extraction of samples by a graphitized carbon black cartridge, and on-line derivatization in the GC injection port using a large-volume (10-20 microl) direct sample introduction (DSI) device with tetraalkylammonium salts. The analytes were then identified and quantitated by ion-trap gas chromatography-mass spectrometry. The large-volume DSI injection-port derivatization technique provides sensitivity, fast and reproducible results for chlorophenoxy acid herbicides residues, to quantitation at 0.1 to 0.2 microg/l in 500-ml water samples. An enhanced characteristic mass chromatogram of molecular ions of butylated chlorophenoxy acid herbicides with a significant chlorine isotope pattern by electron impact ionization MS allows us to determine herbicides residues at trace levels in aqueous samples. Recovery of the herbicide residues in spiked various water samples ranged from 70 to 99% while RSDs ranged from 1 to 13%.
Miniature Trace Gas Detector Based on Microfabricated Optical Resonators
NASA Technical Reports Server (NTRS)
Aveline, David C.; Yu, Nan; Thompson, Robert J.; Strekalov, Dmitry V.
2013-01-01
While a variety of techniques exist to monitor trace gases, methods relying on absorption of laser light are the most commonly used in terrestrial applications. Cavity-enhanced absorption techniques typically use high-reflectivity mirrors to form a resonant cavity, inside of which a sample gas can be analyzed. The effective absorption length is augmented by the cavity's high quality factor, or Q, because the light reflects many times between the mirrors. The sensitivity of such mirror-based sensors scales with size, generally making them somewhat bulky in volume. Also, specialized coatings for the high-reflectivity mirrors have limited bandwidth (typically just a few nanometers), and the delicate mirror surfaces can easily be degraded by dust or chemical films. As a highly sensitive and compact alternative, JPL is developing a novel trace gas sensor based on a monolithic optical resonator structure that has been modified such that a gas sample can be directly injected into the cavity. This device concept combines ultra-high Q optical whispering gallery mode resonators (WGMR) with microfabrication technology used in the semiconductor industry. For direct access to the optical mode inside a resonator, material can be precisely milled from its perimeter, creating an open gap within the WGMR. Within this open notch, the full optical mode of the resonator can be accessed. While this modification may limit the obtainable Q, calculations show that the reduction is not significant enough to outweigh its utility for trace gas detection. The notch can be milled from the high- Q crystalline WGMR with a focused ion beam (FIB) instrument with resolution much finer than an optical wavelength, thereby minimizing scattering losses and preserving the optical quality. Initial experimental demonstrations have shown that these opened cavities still support high-Q whispering gallery modes. This technology could provide ultrasensitive detection of a variety of molecular species in an extremely compact and robust package. With this type of modified WGMR, one can inject a gas sample into the open gap, allowing highly sensitive trace molecule detection within a roughly 1-cm volume. Other critical components of the instrument, such as the detector and a semiconductor laser, could be directly packaged with the resonator so as to not significantly increase the size of the device. Besides its low mass, volume, and power consumption, the monolithic design makes these resonators intrinsically robust devices, capable of handling significant temperature excursions, without moving parts to wear out or delicate coatings that can be easily damaged. A sensor could integrate with microfluidics technology for a chip-scale device. It could be mounted to the end of a deployable arm, or inserted into a borehole. Also, a network of individual sensors could be dispersed to monitor conditions over a wide region
Effect of surface preparation on gas permeability of wood
E.T. Choong; C.W. McMillin; F.O. Tesoro
1975-01-01
Surface preparation has a profound effect on the rate of flow of fluid through wood, particularly in the longitudinal direction of flow. For best results, the surface must be devoid of any debris and/or obstruction. The use of a sharp, thin knife appears to be an effective way of preparing samples for natural permeability measurements.
Potential semiochemicals in urine from free ranging wolverines (Gulo gulo Pallas, 1780)
William F. Wood; Jeffrey P. Copeland; Richard E. Yates; Iman K. Horsey; Lynne R. McGreevy
2009-01-01
Urine deposition has been observed as an important scent-marking behaviour among wolverines (Gulo gulo, Mustelinae, Mustelidae). Solid phase microextraction (SPME) of headspace volatiles of the urine from free ranging wolverines were examined by gas chromatography-mass spectrometry (GC-MS). Urine samples were collected directly from the bladder of live-trapped animals...
Presence of N-nitrosamines in canned liver patty.
Bosnir, Jasna; Smit, Zdenko; Puntarić, Dinko; Horvat, Tomislav; Klarić, Maja; Simić, Spomenka; Zorić, Ivan
2003-01-01
The presence of N-nitrosamines was determined in samples of industrially manufactured liver patty stored at different temperatures for a variable period of time. Sample preparation included steam distillation and extraction of redistilled samples with dichlormethane. The extracts were analyzed by a gas chromatography--mass spectrometry system (GC-MS-SIM). Study results expressed as total N-nitrosamines, including methylethyl-, diethyl- and dibutyl-N-nitrosamines, ranged from 0.0008 to 2.997 mg/kg, which significantly exceeded the recommended value of 0.002 mg/kg. The increase in the formation of N-nitrosamines was directly dependent on the length and temperature of product storage.
Monte Carlo sampling in diffusive dynamical systems
NASA Astrophysics Data System (ADS)
Tapias, Diego; Sanders, David P.; Altmann, Eduardo G.
2018-05-01
We introduce a Monte Carlo algorithm to efficiently compute transport properties of chaotic dynamical systems. Our method exploits the importance sampling technique that favors trajectories in the tail of the distribution of displacements, where deviations from a diffusive process are most prominent. We search for initial conditions using a proposal that correlates states in the Markov chain constructed via a Metropolis-Hastings algorithm. We show that our method outperforms the direct sampling method and also Metropolis-Hastings methods with alternative proposals. We test our general method through numerical simulations in 1D (box-map) and 2D (Lorentz gas) systems.
Alternative Fuels Research Laboratory
NASA Technical Reports Server (NTRS)
Surgenor, Angela D.; Klettlinger, Jennifer L.; Nakley, Leah M.; Yen, Chia H.
2012-01-01
NASA Glenn has invested over $1.5 million in engineering, and infrastructure upgrades to renovate an existing test facility at the NASA Glenn Research Center (GRC), which is now being used as an Alternative Fuels Laboratory. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch (F-T) synthesis and thermal stability testing. This effort is supported by the NASA Fundamental Aeronautics Subsonic Fixed Wing project. The purpose of this test facility is to conduct bench scale F-T catalyst screening experiments. These experiments require the use of a synthesis gas feedstock, which will enable the investigation of F-T reaction kinetics, product yields and hydrocarbon distributions. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor for catalyst activation studies. Product gas composition and performance data can be continuously obtained with an automated gas sampling system, which directly connects the reactors to a micro-gas chromatograph (micro GC). Liquid and molten product samples are collected intermittently and are analyzed by injecting as a diluted sample into designated gas chromatograph units. The test facility also has the capability of performing thermal stability experiments of alternative aviation fuels with the use of a Hot Liquid Process Simulator (HLPS) (Ref. 1) in accordance to ASTM D 3241 "Thermal Oxidation Stability of Aviation Fuels" (JFTOT method) (Ref. 2). An Ellipsometer will be used to study fuel fouling thicknesses on heated tubes from the HLPS experiments. A detailed overview of the test facility systems and capabilities are described in this paper.
NASA Astrophysics Data System (ADS)
Bereiter, Bernhard; Maechler, Lars; Schmitt, Jochen; Walther, Remo; Tuzson, Béla; Scheidegger, Philipp; Emmenegger, Lukas; Fischer, Hubertus
2017-04-01
Ice cores are unique archives of ancient air providing the only direct record of past greenhouse gases - key in reconstructing the roles of greenhouse gases in past climate changes. The European Partnership in Ice Core Sciences (EuroPICS) plans to drill an ice core extending over 1.5 Ma, nearly doubling the time span of the existing greenhouse record and covering the time period of the Mid Pleistocene Transition. The ice covering the time interval from 1-1.5 Ma is expected to be close to the bedrock and, due to glacial flow, extremely thinned. A 10,000 yr glacial/interglacial transition can be compressed in 1 m of ice. The targeted 100 yr resolution therefore constrains the sample size to 15-30 g containing only 1-2ml STP air. Within the deepSlice project we aim to unlock such atmospheric archives in extremely thinned ice by developing a novel coupled semi-continuous sublimation extraction/laser spectroscopy system. Vacuum sublimation, with an infrared source, has been chosen as extraction method as it allows 100% gas extraction of all gas species from ice without changing the isotopic composition of CO2. In order to reduce ice waste and accelerate sample throughput, we are building a sublimation extraction system that is able to continuously sublimate an ice-core section and subsequently collect discrete full air samples. For the gas analytics, we develop a custom-made mid-infrared laser spectrometer allowing simultaneous measurement of the CO2, CH4 and N2O concentrations as well as the isotopic composition of CO2 on air samples of only 1-2 ml STP. The two systems will be coupled via cryo-trapping of the sample air in dip tubes, followed by expansion of the sample air into the laser spectrometer. Due to the nondestructive laser technique, the air sample can be recollected and reused for further analytics.
NASA Astrophysics Data System (ADS)
Federrath, Christoph; Salim, Diane M.; Medling, Anne M.; Davies, Rebecca L.; Yuan, Tiantian; Bian, Fuyan; Groves, Brent A.; Ho, I.-Ting; Sharp, Robert; Kewley, Lisa J.; Sweet, Sarah M.; Richards, Samuel N.; Bryant, Julia J.; Brough, Sarah; Croom, Scott; Scott, Nicholas; Lawrence, Jon; Konstantopoulos, Iraklis; Goodwin, Michael
2017-07-01
Stars form in cold molecular clouds. However, molecular gas is difficult to observe because the most abundant molecule (H2) lacks a permanent dipole moment. Rotational transitions of CO are often used as a tracer of H2, but CO is much less abundant and the conversion from CO intensity to H2 mass is often highly uncertain. Here we present a new method for estimating the column density of cold molecular gas (Σgas) using optical spectroscopy. We utilize the spatially resolved Hα maps of flux and velocity dispersion from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. We derive maps of Σgas by inverting the multi-freefall star formation relation, which connects the star formation rate surface density (ΣSFR) with Σgas and the turbulent Mach number (M). Based on the measured range of ΣSFR = 0.005-1.5 {M_{⊙} yr^{-1} kpc^{-2}} and M=18-130, we predict Σgas = 7-200 {M_{⊙} pc^{-2}} in the star-forming regions of our sample of 260 SAMI galaxies. These values are close to previously measured Σgas obtained directly with unresolved CO observations of similar galaxies at low redshift. We classify each galaxy in our sample as 'star-forming' (219) or 'composite/AGN/shock' (41), and find that in 'composite/AGN/shock' galaxies the average ΣSFR, M and Σgas are enhanced by factors of 2.0, 1.6 and 1.3, respectively, compared to star-forming galaxies. We compare our predictions of Σgas with those obtained by inverting the Kennicutt-Schmidt relation and find that our new method is a factor of 2 more accurate in predicting Σgas, with an average deviation of 32 per cent from the actual Σgas.
NASA Astrophysics Data System (ADS)
Wright, William J.
Peat soils are known to be a significant source of atmospheric greenhouse gasses. However, the releases of methane and carbon dioxide gasses from peat soils are currently not well understood, particularly since the timing of the releases are poorly constrained. Furthermore, most research work performed on peatlands has been focused on temperate to sub-arctic peatlands, while recent works have suggested that gas production rates from low-latitude peat soils are higher than those from colder climates. The purpose of the work proposed here is to introduce an autonomous Ground Penetrating Radar (GPR) method for investigating the timing of gas releases from peat soils at the lab scale utilizing samples originating from Maine and the Florida Everglades, and at the field scale in a Maine peatland. Geophysical data are supported by direct gas flux measurements using the flux chamber method enhanced by timelapse photography, and terrestrial LiDAR (TLS) monitoring surface deformation.
Gerber, Iann C; Jolibois, Franck
2015-05-14
Chemical shift requires the knowledge of both the sample and a reference magnetic shielding. In few cases as nitrogen (15N), the standard experimental reference corresponds to its liquid phase. Theoretical estimate of NMR magnetic shielding parameters of compounds in their liquid phase is then mandatory but usually replaced by an easily-get gas phase value, forbidding direct comparisons with experiments. We propose here to combine ab initio molecular dynamic simulations with the calculations of magnetic shielding using GIAO approach on extracted cluster's structures from MD. Using several computational strategies, we manage to accurately calculate 15N magnetic shielding of nitromethane in its liquid phase. Theoretical comparison between liquid and gas phase allows us to extrapolate an experimental value for the 15N magnetic shielding of nitromethane in gas phase between -121.8 and -120.8 ppm.
Schipilliti, Luisa; Bonaccorsi, Ivana; Cotroneo, Antonella; Dugo, Paola; Mondello, Luigi
2013-02-27
Citrus liqueurs are alcoholic beverages obtained by maceration. The European Parliament protects these alcoholic beverages, forbidding the addition of nature-identical flavoring substances. However, for economical and technological reasons, producers often add natural and/or synthetic flavors to the alcoholic syrup, obtaining artificial spirit drinks. The aim of this study is to investigate the authenticity of Italian liqueurs, of lemon, bergamot, and mandarin (locally known as "limoncello", "bargamino", and "mandarinetto"), comparing the carbon isotope ratios with values determined in genuine cold-pressed peel oils. Authenticity assessment was performed using headspace-solid phase microextraction coupled to gas chromatography-combustion-isotope ratio mass spectrometry. Additional analyses were performed by direct enantioselective gas chromatography to determine the enantiomeric distribution of selected chiral volatiles and by gas chromatography-mass spectrometry for the qualitative analyses of the samples. The method allowed confirmation of genuineness. Enantioselective gas chromatography analyses confirmed the results, demonstrating the reliability of the method.
Mechanical Properties of Gas Shale During Drilling Operations
NASA Astrophysics Data System (ADS)
Yan, Chuanliang; Deng, Jingen; Cheng, Yuanfang; Li, Menglai; Feng, Yongcun; Li, Xiaorong
2017-07-01
The mechanical properties of gas shale significantly affect the designs of drilling, completion, and hydraulic fracturing treatments. In this paper, the microstructure characteristics of gas shale from southern China containing up to 45.1% clay were analyzed using a scanning electron microscope. The gas shale samples feature strongly anisotropic characteristics and well-developed bedding planes. Their strength is controlled by the strength of both the matrix and the bedding planes. Conventional triaxial tests and direct shear tests are further used to study the chemical effects of drilling fluids on the strength of shale matrix and bedding planes, respectively. The results show that the drilling fluid has a much larger impact on the strength of the bedding plane than that of the shale matrix. The impact of water-based mud (WBM) is much larger compared with oil-based mud. Furthermore, the borehole collapse pressure of shale gas wells considering the effects of drilling fluids are analyzed. The results show that the collapse pressure increases gradually with the increase of drilling time, especially for WBM.
Determination of stream reaeration coefficients by use of tracers
Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, Nobuhiro; Parker, G.W.; DeLong, L.L.
1989-01-01
Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes. Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed whereby a radioactive tracer gas was injected into a stream-the principle being that the tracer gas would be desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas. This manual describes the slug-injection and constant-rate-injection methods of measuring gas-tracer desorption. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, on methods of injection, sampling, and analysis, and on techniques for computing desorption and reaeration coefficients.
Floberg, S; Hartvig, P; Lindström, B; Lönner-Holm, G; Odlind, B
1981-09-11
An analytical procedure was developed for the determination of 6-mercaptopurine in plasma. Owing to the polar character and low plasma concentration of the compound, extraction and derivatization was carried out directly from the plasma sample by extractive alkylation. Determination was made using gas chromatography-mass spectrometry with multiple-ion detection. Conditions with respect to the rate of formation and the stability of the derivative formed in the extractive alkylation step were evaluated. The selectively of the method to azathioprine and to metabolites was thoroughly investigated. No 6-mercaptopurine was formed from azathioprine added to water or plasma and run through the method. The method enables the detection of 2 ng of 6 mercaptopurine in a 1.0-ml plasma sample. Quantitative determinations were done down to 10 ng/ml 6 mercaptopurine in plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.J. Miller; G. Elias; N.C. Schmitt
2010-06-01
High performance liquid chromatography and gas chromatography techniques are well documented and widely used for the detection of trace explosives from organic solvents. These techniques were modified to specifically identify and quantify explosives extracted from various materials taken from people who had recently handled explosives. Documented techniques were modified to specifically detect and quantify RDX, TNT, and PETN from denim, colored flannel, vinyl, and canvas extracted in methanol using no sample cleanup prior to analysis. The methanol extracts were injected directly into several different column types and analyzed by HPLC-UV and/or GC-ECD. This paper describes general screening methods that weremore » used to determine the presence of explosives in unknown samples and techniques that have been optimized for quantification of each explosive from the substrate extracts.« less
40 CFR 86.1509 - Exhaust gas sampling system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Exhaust gas sampling system. 86.1509... Procedures § 86.1509 Exhaust gas sampling system. (a) The exhaust gas sampling system shall transport the... sample (i.e., water removed) to the analysis system. (c) A CVS sampling system with bag or continuous...
Ullah, Md Ahsan; Kim, Ki-Hyun; Szulejko, Jan E; Cho, Jinwoo
2014-04-11
The production of short-chained volatile fatty acids (VFAs) by the anaerobic bacterial digestion of sewage (wastewater) affords an excellent opportunity to alternative greener viable bio-energy fuels (i.e., microbial fuel cell). VFAs in wastewater (sewage) samples are commonly quantified through direct injection (DI) into a gas chromatograph with a flame ionization detector (GC-FID). In this study, the reliability of VFA analysis by the DI-GC method has been examined against a thermal desorption (TD-GC) method. The results indicate that the VFA concentrations determined from an aliquot from each wastewater sample by the DI-GC method were generally underestimated, e.g., reductions of 7% (acetic acid) to 93.4% (hexanoic acid) relative to the TD-GC method. The observed differences between the two methods suggest the possibly important role of the matrix effect to give rise to the negative biases in DI-GC analysis. To further explore this possibility, an ancillary experiment was performed to examine bias patterns of three DI-GC approaches. For instance, the results of the standard addition (SA) method confirm the definite role of matrix effect when analyzing wastewater samples by DI-GC. More importantly, their biases tend to increase systematically with increasing molecular weight and decreasing VFA concentrations. As such, the use of DI-GC method, if applied for the analysis of samples with a complicated matrix, needs a thorough validation to improve the reliability in data acquisition. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Hyo-Seob; Dharmaiah, Peyala; Hong, Soon-Jik
2018-06-01
In this study, p-type (GeTe) x (AgSbTe2)100- x : TAGS- x (where x = 75, 80, 85, and 90) thermoelectric materials were fabricated by a combination of gas atomization and a hot-extrusion process, and the effects of chemical composition on microstructure, thermoelectric, and mechanical properties were investigated. The extruded samples exhibited higher relative densities (> 99%), and a significant orientation degree parallel to the extrusion direction with fine and homogeneous microstructure was observed. The hardness of extruded samples was around 200-260 kgf/mm2, which indicates that they have much better mechanical properties than most other TE materials. The power factor of the extruded samples showed excellent values; the maximum power factor achieved was 3.81 × 10-3 W/mK2 for TAGS-90 at 723 K due to an effective combination of the Seebeck coefficient and electrical conductivity.
Ma, He-Wei; Cheng, Ya
2010-12-10
An analytical approach was developed to determine nonylphenol (NP), octylphenol (OP), nonylphenol ethoxylates (NPEO(n)) and octylphenol ethoxylates (OPEO(n)) in leather samples involving the conversion of NPEO(n) and OPEO(n) into the corresponding NP and OP. The four targets were extracted from samples using ultrasonic-assisted acetonitrile extraction. NP and OP in the extracts were directly isolated with hexane and quantitatively determined with 4-n-nonylphenol as internal standard by gas chromatography-mass spectrometry (GC-MS). For NPEO(n) and OPEO(n) in the extracts, they were first converted into NP and OP with aluminum triiodide as cleavage agent, and the yielded NP and OP were determined by GC-MS. The contents of NPEO(n) and OPEO(n) were calculated by normalizing to NPEO(9) and OPEO(9), respectively. This method was properly validated and the real sample tests revealed the pollution significance of leather by NPEO(n) and OPEO(n). Copyright © 2010 Elsevier B.V. All rights reserved.
Rodríguez-Maecker, Roman; Vyhmeister, Eduardo; Meisen, Stefan; Rosales Martinez, Antonio; Kuklya, Andriy; Telgheder, Ursula
2017-11-01
Static headspace gas chromatography-ion mobility spectrometry (SHS GC-IMS) is a relatively new analytical technique that has considerable potential for analysis of volatile organic compounds (VOCs). In this study, SHS GC-IMS was used for the identification of the major terpene components of various essential oils (EOs). Based on the data obtained from 25 terpene standards and 50 EOs, a database for fingerprint identification of characteristic terpenes and EOs was generated utilizing SHS GC-IMS for authenticity testing of fragrances in foods, cosmetics, and personal care products. This database contains specific normalized IMS drift times and GC retention indices for 50 terpene components of EOs. Initially, the SHS GC-IMS parameters, e.g., drift gas and carrier gas flow rates, drift tube, and column temperatures, were evaluated to determine suitable operating conditions for terpene separation and identification. Gas chromatography-mass spectrometry (GC-MS) was used as a reference method for the identification of terpenes in EOs. The fingerprint pattern based on the normalized IMS drift times and retention indices of 50 terpenes is presented for 50 EOs. The applicability of the method was proven on examples of ten commercially available food, cosmetic, and personal care product samples. The results confirm the suitability of SHS GC-IMS as a powerful analytical technique for direct identification of terpene components in solid and liquid samples without any pretreatment. Graphical abstract Fingerprint pattern identification of terpenes and essential oils using static headspace gas chromatography-ion mobility spectrometry.
Characterization of Microbial Communities in Gas Industry Pipelines
Zhu, Xiang Y.; Lubeck, John; Kilbane, John J.
2003-01-01
Culture-independent techniques, denaturing gradient gel electrophoresis (DGGE) analysis, and random cloning of 16S rRNA gene sequences amplified from community DNA were used to determine the diversity of microbial communities in gas industry pipelines. Samples obtained from natural gas pipelines were used directly for DNA extraction, inoculated into sulfate-reducing bacterium medium, or used to inoculate a reactor that simulated a natural gas pipeline environment. The variable V2-V3 (average size, 384 bp) and V3-V6 (average size, 648 bp) regions of bacterial and archaeal 16S rRNA genes, respectively, were amplified from genomic DNA isolated from nine natural gas pipeline samples and analyzed. A total of 106 bacterial 16S rDNA sequences were derived from DGGE bands, and these formed three major clusters: beta and gamma subdivisions of Proteobacteria and gram-positive bacteria. The most frequently encountered bacterial species was Comamonas denitrificans, which was not previously reported to be associated with microbial communities found in gas pipelines or with microbially influenced corrosion. The 31 archaeal 16S rDNA sequences obtained in this study were all related to those of methanogens and phylogenetically fall into three clusters: order I, Methanobacteriales; order III, Methanomicrobiales; and order IV, Methanosarcinales. Further microbial ecology studies are needed to better understand the relationship among bacterial and archaeal groups and the involvement of these groups in the process of microbially influenced corrosion in order to develop improved ways of monitoring and controlling microbially influenced corrosion. PMID:12957923
Mallette, Jennifer R; Casale, John F
2014-10-17
The isomeric truxillines are a group of minor alkaloids present in all illicit cocaine samples. The relative amount of truxillines in cocaine is indicative of the variety of coca used for cocaine processing, and thus, is useful in source determination. Previously, the determination of isomeric truxillines in cocaine was performed with a gas chromatography/electron capture detection method. However, due to the tedious sample preparation as well as the expense and maintenance required of electron capture detectors, the protocol was converted to a gas chromatography/flame-ionization detection method. Ten truxilline isomers (alpha-, beta-, delta-, epsilon-, gamma-, omega, zeta-, peri-, neo-, and epi-) were quantified relative to a structurally related internal standard, 4',4″-dimethyl-α-truxillic acid dimethyl ester. The method was shown to have a linear response from 0.001 to 1.00 mg/mL and a lower detection limit of 0.001 mg/mL. In this method, the truxillines are directly reduced with lithium aluminum hydride and then acylated with heptafluorobutyric anhydride prior to analysis. The analysis of more than 100 cocaine hydrochloride samples is presented and compared to data obtained by the previous methodology. Authentic cocaine samples obtained from the source countries of Colombia, Bolivia, and Peru were also analyzed, and comparative data on more than 23,000 samples analyzed over the past 10 years with the previous methodology is presented. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Huff, Timothy L.
2002-01-01
Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR. The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected realtime, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in the selection of other appropriate analytical procedures for further material characterization.
Ge, Liya; Yong, Jean Wan Hong; Tan, Swee Ngin; Hua, Lin; Ong, Eng Shi
2008-05-01
In this paper, we present the results of simultaneous screening of eight gibberellins (GAs) in coconut (Cocos nucifera L.) water by MEKC directly coupled to ESI-MS detection. During the development of MEKC-MS, partial filling (PF) was used to prevent the micelles from reaching the mass spectrometer as this is detrimental to the MS signal, and a cationic surfactant, cetyltrimethylammonium hydroxide, was added to the electrolyte to reverse the EOF. On the basis of the resolution of the neighboring peaks, different parameters (i.e., the pH and concentration of buffer, surfactant concentrations, length of the injected micellar plug, organic modifier, and applied separation voltage) were optimized to achieve a satisfactory PF-MEKC separation of eight GA standards. Under optimum conditions, a baseline separation of GA standards, including GA1, GA3, GA5, GA6, GA7, GA9, GA12, and GA13, was accomplished within 25 min. Satisfactory results were obtained in terms of precision (RSD of migration time below 0.9%), sensitivity (LODs in the range of 0.8-1.9 microM) and linearity (R2 between 0.981 and 0.997). MS/MS with multiple reaction monitoring (MRM) detection was carried out to obtain sufficient selectivity. PF-MEKC-MS/MS allowed the direct identification and confirmation of the GAs presented in coconut water (CW) sample after SPE, while, the quantitative analysis of GAs was performed by PF-MEKC-MS approach. GA1 and GA3 were successfully detected and quantified in CW. It is anticipated that the current PF-MEKC-MS method can be applicable to analyze GAs in a wide range of biological samples.
NASA Astrophysics Data System (ADS)
Arellano, Santiago; Galle, Bo; Mulina, Kila; Wallius, Julia; McCormick, Brendan; Salem, Lois; D'aleo, Roberto; Itikarai, Ima; Tirpitz, Lukas; Bobrowski, Nicole; Aiuppa, Alessandro
2017-04-01
Satellite observations reveal that volcanoes from Papua New Guinea contributed with ca. 15{%} of the global emission of volcanic sulfur dioxide (SO2) during the period 2005-2014. Relatively little is known about their carbon dioxide (CO2) outputs and more recent levels and dynamics of degassing activity. During September 2016 we conducted measurements of the CO2/SO2 ratio and the SO2 flux from Tavurvur, Bagana and Ulawun volcanoes using a combination of remote sensing and direct sampling techniques. Tavurvur exhibits low-level passive degassing from a modestly active vent and few other intra-crater fumaroles, which made access possible for direct measurements of the CO2/SO2 ratio with a compact Multi-GAS instrument. A wide-field of view pointing DOAS monitor was deployed for longer term monitoring of the SO2 flux from a distance of about 2 km. Bagana degasses continuously with occasional emissions of ash, and its SO2 flux, plume velocity and height was constrained by simultaneous scanning and dual-beam DOAS measurements. Molar ratios in the plume of Bagana were measured by the compact Multi-GAS aboard a multi-rotor UAV, up to a height of 1.6 km above ground. Ulawun showed continuous passive degassing and measurements with the UAV, up to an altitude of ca. 1.8 km, and mobile-DOAS traverses from a car were used to constrain its gas emission. Here we present an overview of the challenging conditions, measurement strategies and results of this campaign that forms part of the ongoing international effort DECADE aiming to better quantify the global gas emission of carbon- and sulfur containing species from volcanoes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pochan, M.J.; Massey, M.J.
1979-02-01
This report discusses the results of actual raw product gas sampling efforts and includes: Rationale for raw product gas sampling efforts; design and operation of the CMU gas sampling train; development and analysis of a sampling train data base; and conclusions and future application of results. The results of sampling activities at the CO/sub 2/-Acceptor and Hygas pilot plants proved that: The CMU gas sampling train is a valid instrument for characterization of environmental parameters in coal gasification gas-phase process streams; depending on the particular process configuration, the CMU gas sampling train can reduce gasifier effluent characterization activity to amore » single location in the raw product gas line; and in contrast to the slower operation of the EPA SASS Train, CMU's gas sampling train can collect representative effluent data at a rapid rate (approx. 2 points per hour) consistent with the rate of change of process variables, and thus function as a tool for process engineering-oriented analysis of environmental characteristics.« less
NASA Astrophysics Data System (ADS)
Li, Xue; Hou, Guangyue; Xing, Junpeng; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying
2014-12-01
In the present work, direct analysis of real time ionization combined with multi-stage tandem mass spectrometry (DART-MSn) was used to investigate the metabolic profile of aconite alkaloids in rat intestinal bacteria. A total of 36 metabolites from three aconite alkaloids were identified by using DART-MSn, and the feasibility of quantitative analysis of these analytes was examined. Key parameters of the DART ion source, such as helium gas temperature and pressure, the source-to-MS distance, and the speed of the autosampler, were optimized to achieve high sensitivity, enhance reproducibility, and reduce the occurrence of fragmentation. The instrument analysis time for one sample can be less than 10 s for this method. Compared with ESI-MS and UPLC-MS, the DART-MS is more efficient for directly detecting metabolic samples, and has the advantage of being a simple, high-speed, high-throughput method.
Li, Xue; Hou, Guangyue; Xing, Junpeng; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying
2014-12-01
In the present work, direct analysis of real time ionization combined with multi-stage tandem mass spectrometry (DART-MS(n)) was used to investigate the metabolic profile of aconite alkaloids in rat intestinal bacteria. A total of 36 metabolites from three aconite alkaloids were identified by using DART-MS(n), and the feasibility of quantitative analysis of these analytes was examined. Key parameters of the DART ion source, such as helium gas temperature and pressure, the source-to-MS distance, and the speed of the autosampler, were optimized to achieve high sensitivity, enhance reproducibility, and reduce the occurrence of fragmentation. The instrument analysis time for one sample can be less than 10 s for this method. Compared with ESI-MS and UPLC-MS, the DART-MS is more efficient for directly detecting metabolic samples, and has the advantage of being a simple, high-speed, high-throughput method.
NASA Astrophysics Data System (ADS)
Liu, Siqi; Luo, Zhifu; Tan, Zhongqi; Long, Xingwu
2016-11-01
Cavity-enhanced absorption spectroscopy (CEAS) is a technology in which the intracavity absorption is deduced from the intensity of light transmitted by the high finesse optical cavity. Then the samples' parameters, such as their species, concentration and absorption cross section, would be detection. It was first proposed and demonstrated by Engeln R. [1] and O'Keefe[2] in 1998. This technology has extraordinary detection sensitivity, high resolution and good practicability, so it is used in many fields , such as clinical medicine, gas detection and basic physics research. In this paper, we focus on the use of gas trace detection, including the advance of CEAS over the past twenty years, the newest research progresses, and the prediction of this technology's development direction in the future.
Direct injection GC method for measuring light hydrocarbon emissions from cooling-tower water.
Lee, Max M; Logan, Tim D; Sun, Kefu; Hurley, N Spencer; Swatloski, Robert A; Gluck, Steve J
2003-12-15
A Direct Injection GC method for quantifying low levels of light hydrocarbons (C6 and below) in cooling water has been developed. It is intended to overcome the limitations of the currently available technology. The principle of this method is to use a stripper column in a GC to strip waterfrom the hydrocarbons prior to entering the separation column. No sample preparation is required since the water sample is introduced directly into the GC. Method validation indicates that the Direct Injection GC method offers approximately 15 min analysis time with excellent precision and recovery. The calibration studies with ethylene and propylene show that both liquid and gas standards are suitable for routine calibration and calibration verification. The sampling method using zero headspace traditional VOA (Volatile Organic Analysis) vials and a sample chiller has also been validated. It is apparent that the sampling method is sufficient to minimize the potential for losses of light hydrocarbons, and samples can be held at 4 degrees C for up to 7 days with more than 93% recovery. The Direct Injection GC method also offers <1 ppb (w/v) level method detection limits for ethylene, propylene, and benzene. It is superior to the existing El Paso stripper method. In addition to lower detection limits for ethylene and propylene, the Direct Injection GC method quantifies individual light hydrocarbons in cooling water, provides better recoveries, and requires less maintenance and setup costs. Since the instrumentation and supplies are readily available, this technique could easily be established as a standard or alternative method for routine emission monitoring and leak detection of light hydrocarbons in cooling-tower water.
Zhou, Chuncai; Liu, Guijian; Cheng, Siwei; Fang, Ting; Lam, Paul K S
2014-08-28
An investigation focused on the transformation and distribution behaviors of trace elements and natural radionuclides around a coal gangue brick plant was conducted. Simultaneous sampling of coal gangue, brick, fly ash and flue gas were implemented. Soil, soybean and earthworm samples around the brick plant were also collected for comprehensive ecological assessment. During the firing process, trace elements were released and redistributed in the brick, fly ash and the flue gas. Elements can be divided into two groups according to their releasing characteristics, high volatile elements (release ratio higher than 30%) are represented by Cd, Cu, Hg, Pb, Se and Sn, which emitted mainly in flue gas that would travel and deposit at the northeast and southwest direction around the brick plant. Cadmium, Ni and Pb are bio-accumulated in the soybean grown on the study area, which indicates potential health impacts in case of human consumption. The high activity of natural radionuclides in the atmosphere around the plant as well as in the made-up bricks will increase the health risk of respiratory system.
Zhou, Chuncai; Liu, Guijian; Cheng, Siwei; Fang, Ting; Lam, Paul K. S.
2014-01-01
An investigation focused on the transformation and distribution behaviors of trace elements and natural radionuclides around a coal gangue brick plant was conducted. Simultaneous sampling of coal gangue, brick, fly ash and flue gas were implemented. Soil, soybean and earthworm samples around the brick plant were also collected for comprehensive ecological assessment. During the firing process, trace elements were released and redistributed in the brick, fly ash and the flue gas. Elements can be divided into two groups according to their releasing characteristics, high volatile elements (release ratio higher than 30%) are represented by Cd, Cu, Hg, Pb, Se and Sn, which emitted mainly in flue gas that would travel and deposit at the northeast and southwest direction around the brick plant. Cadmium, Ni and Pb are bio-accumulated in the soybean grown on the study area, which indicates potential health impacts in case of human consumption. The high activity of natural radionuclides in the atmosphere around the plant as well as in the made-up bricks will increase the health risk of respiratory system. PMID:25164252
A GC-MS method for the detection of toluene and ethylbenzene in volatile substance abuse.
El-Haj, B M; Al-Amri, A M; Hassan, M H; Bin-Khadem, R K; Al-Hadi, A A
2000-09-01
The interference of some substances with the gas chromatography-flame ionization detection and gas chromatography-Fourier transform infrared detection of toluene and ethylbenzene in volatile substance abuse poses problems. A gas chromatography-mass spectrometry (GC-MS) method that will overcome such interference has been developed for the detection of toluene and/or ethylbenzene in the headspace of preparations and products containing these substances and in the headspace of blood samples in the cases of volatile substance abuse. The method is based on converting toluene to benzoic acid via the formation of benzotrichloride. The latter compound was obtained upon the reaction of toluene with chlorine gas under direct sunlight conditions. In the presence of water, benzotrichloride was converted to benzoic acid. Ethylbenzene was converted to benzoic acid and two phenylethanols via the formation of side chain chloro-substituted phenylethanes followed by reaction with water. The chloro-substituted phenylethanes were obtained by the reaction of ethylbenzene with chlorine under direct sunlight conditions. The benzoic acid resulting from toluene and/or ethylbenzene and the two phenylethanols resulting from ethylbenzene were detected by GC-MS as their trimethylsilyl (TMS) derivatives. For the method to be viable for the detection of volatile substance abuse, the chlorination reactions were effected in the gaseous state.
Ferrographic and spectrometer oil analysis from a failed gas turbine engine
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.
1982-01-01
An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, a plasma, an atomic absorption, and an emission spectrometer to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations ( 2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure.
Apparatus for focusing flowing gas streams
Nogar, N.S.; Keller, R.A.
1985-05-20
Apparatus for focusing gas streams. The principle of hydrodynamic focusing is applied to flowing gas streams in order to provide sample concentration for improved photon and sample utilization in resonance ionization mass spectrometric analysis. In a concentric nozzle system, gas samples introduced from the inner nozzle into the converging section of the outer nozzle are focused to streams 50-250-..mu..m in diameter. In some cases diameters of approximately 100-..mu..m are maintained over distances of several centimeters downstream from the exit orifice of the outer nozzle. The sheath gas employed has been observed to further provide a protective covering around the flowing gas sample, thereby isolating the flowing gas sample from possible unwanted reactions with nearby surfaces. A single nozzle variation of the apparatus for achieving hydrodynamic focusing of gas samples is also described.
Rethink potential risks of toxic emissions from natural gas and oil mining.
Meng, Qingmin
2018-09-01
Studies have showed the increasing environmental and public health risks of toxic emissions from natural gas and oil mining, which have become even worse as fracking is becoming a dominant approach in current natural gas extraction. However, governments and communities often overlook the serious air pollutants from oil and gas mining, which are often quantified lower than the significant levels of adverse health effects. Therefore, we are facing a challenging dilemma: how could we clearly understand the potential risks of air toxics from natural gas and oil mining. This short study aims at the design and application of simple and robust methods to enhance and improve current understanding of the becoming worse toxic air emissions from natural gas and oil mining as fracking is becoming the major approach. Two simple ratios, the min-to-national-average and the max-to-national-average, are designed and applied to each type of air pollutants in a natural gas and oil mining region. The two ratios directly indicate how significantly high a type of air pollutant could be due to natural gas and oil mining by comparing it to the national average records, although it may not reach the significant risks of adverse health effects according to current risk screening methods. The min-to-national-average and the max-to-national-average ratios can be used as a direct and powerful method to describe the significance of air pollution by comparing it to the national average. The two ratios are easy to use for governments, stakeholders, and the public to pay enough attention on the air pollutants from natural gas and oil mining. The two ratios can also be thematically mapped at sampled sites for spatial monitoring, but spatial mitigation and analysis of environmental and health risks need other measurements of environmental and demographic characteristics across a natural gas and oil mining area. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Peltzer, E. T.; Walz, P. M.; Brewer, P. G.
2016-02-01
Oil droplets rising from the sea floor, whether from seeps or well leakage, contain very large quantities of dissolved gas that profoundly affects their density and critical oil-water interfacial characteristics. The primary dissolved gas is methane which may be up to 30% of the molar volume. This can create a hydrate skin as the methane gas is shed from the oil as it rises through the water column, thus decreasing in pressure and increasing in temperature, and steadily changing the rising droplet buoyancy. We have explored this phenomenon by executing controlled ROV based experiments with a "bubble cup" technique in which a small volume of gas saturated decane (saturated with pure methane, a mix of methane and nitrogen , or a mix of methane and CO2) is interrogated by laser Raman spectroscopy. The use of decane as an oil "substitute" is required since natural oil samples are highly fluorescent due to the presence of polycyclic aromatic hydrocarbons. We have devised Matlab techniques for extracting the spectroscopic dissolved methane signal from the thicket of decane peaks that surround it. We have directly observed the rate at which gases are lost from the "oil" per unit area at depths in the water column that are both within and outside the hydrate forming phase boundary. We have compared the behavior of both a non-hydrate forming dissolved gas (nitrogen) with CO2 where the hydrate phase boundary is at significantly shallower depth. The results indicate complex interfacial behavior and physical chemistry. We did not observe direct gas bubble formation on the decane outer surface but did observe gas bubble formation within the oil droplets as they rose through the water column. Because there are significant energy barriers for homogeneous bubble formation within the decane phase, we took this as evidence of significant gas super-saturation within the oil droplet. The gas loss rates increased significantly in all cases when the hydrate phase boundary was crossed.
Dermal bioavailability of benzo[a]pyrene on lampblack: implications for risk assessment.
Stroo, Hans F; Roy, Timothy A; Liban, Cris B; Kreitinger, Joseph P
2005-06-01
Lampblack is the principal source of contamination in soils at manufactured gas plant (MGP) sites where oil was used as the feedstock. Risks and cleanup criteria at these sites are determined primarily by the total carcinogenic polynuclear aromatic hydrocarbon (PAH) content, particularly the concentration of benzo[a]pyrene (BaP). Dermal contact with soils at oil-gas MGP sites is a significant component of the overall risks. Seven samples were collected from oil-gas MGP sites and the steady-state dermal fluxes were measured over 96 h in vitro. The standard dermal bioassay technique (in which 3H-BaP is added to the soil matrix) was modified to allow direct measurement of the dermal absorption of the native BaP in the samples. The experimentally derived dermal absorption factors for BaP were 14 to 107 times lower than the default assumption of 15% over 24 h (55-fold lower on average). The dermal fluxes were correlated positively to the total BaP and total carbon concentrations. The measured dermal absorption factors were compared to the default risk-assessment calculations for all seven samples. The calculated excess cancer risk was reduced as a result of using the measured absorption factors by 97% on average (with reductions ranging from 93 to 99%). This work indicates the risks at oil-gas MGP sites currently are overestimated by one to two orders of magnitude, and provides a protocol for the testing and data analysis needed to generate site-specific cleanup levels.
NASA Astrophysics Data System (ADS)
Thomas, Rick M.; Greatwood, Colin; Richardson, Tom; Freer, Jim; MacKenzie, Rob; Brownlow, Rebecca; Lowry, David; Fisher, Rebecca E.; France, James; Nisbet, Euan G.
2015-04-01
This research project has developed Unmanned Aerial System (UAS) technologies for intelligent targeting and collection of atmospheric gas samples to investigate the so-called Southern Tropical Methane Anomaly, for which it is necessary to sample air below and above the trade-wind inversion. Air parcels above and below the South Atlantic trade-wind inversion can have markedly different trajectories and, hence, encounter very different methane source regions. The system is intelligent in that high resolution temperature and humidity sensors linked to the ground station characterise the atmospheric profile on the upward flight to ensure the platform targets the appropriate sample elevations on the downward trajectory. This capability has been proven to an altitude of 2,700 metres above sea level (masl; ca. 700 mb) at Ascension Island in the South Atlantic and shown that rapid and repeat deployment and sample collection is achievable. Three novel eight motor multirotor UAS (or octocopter) platforms were developed at Bristol Robotics Laboratory (BRL) using primarily off -the-shelf components with a custom-built main fuselage. Gas sampling and atmospheric sensor systems were designed by the University of Birmingham. Our paper explores the capability of this UAS and provides some initial results from the air sampling campaign conducted in September 2014. Thirty-eight sampling flights were conducted over 12 days and the resulting 47 samples analysed for their CH4 concentration using the high-precision Picarro Cavity Ring Down Spectrometer already installed at Ascension Island. A subset of samples were sent for δ13CCH4 analysis in Egham, UK. The flights were conducted up to an altitude of 2,700m with 2,000m being typical. There were no major incidents although variable zero and high wind situations above the trade wind inversion (typically at 1,800m) both presented unique challenges and required careful flight planning strategies and in flight trajectory changes. As a result algorithms were developed to estimate in-flight wind speed and direction from aircraft attitude data. The results from the meteorological samples compared favourably with modelled data from the local Met Office station and we also show comparisons with wind speed and direction as well as insights gained from the CH4 analysis. Finally, system improvements and further measurements planned for our return to the island in mid-2015 are presented. Acknowledgement This work is supported by the Natural Environment Research Council Grant NE/K005979/1.
NASA Astrophysics Data System (ADS)
Harkness, Jennifer S.; Darrah, Thomas H.; Warner, Nathaniel R.; Whyte, Colin J.; Moore, Myles T.; Millot, Romain; Kloppmann, Wolfram; Jackson, Robert B.; Vengosh, Avner
2017-07-01
Since naturally occurring methane and saline groundwater are nearly ubiquitous in many sedimentary basins, delineating the effects of anthropogenic contamination sources is a major challenge for evaluating the impact of unconventional shale gas development on water quality. This study investigates the geochemical variations of groundwater and surface water before, during, and after hydraulic fracturing and in relation to various geospatial parameters in an area of shale gas development in northwestern West Virginia, United States. To our knowledge, we are the first to report a broadly integrated study of various geochemical techniques designed to distinguish natural from anthropogenic sources of natural gas and salt contaminants both before and after drilling. These measurements include inorganic geochemistry (major cations and anions), stable isotopes of select inorganic constituents including strontium (87Sr/86Sr), boron (δ11B), lithium (δ7Li), and carbon (δ13C-DIC), select hydrocarbon molecular (methane, ethane, propane, butane, and pentane) and isotopic tracers (δ13C-CH4, δ13C-C2H6), tritium (3H), and noble gas elemental and isotopic composition (helium, neon, argon) in 105 drinking-water wells, with repeat testing in 33 of the wells (total samples = 145). In a subset of wells (n = 20), we investigated the variations in water quality before and after the installation of nearby (<1 km) shale-gas wells. Methane occurred above 1 ccSTP/L in 37% of the groundwater samples and in 79% of the samples with elevated salinity (chloride > 50 mg/L). The integrated geochemical data indicate that the saline groundwater originated via naturally occurring processes, presumably from the migration of deeper methane-rich brines that have interacted extensively with coal lithologies. These observations were consistent with the lack of changes in water quality observed in drinking-water wells following the installation of nearby shale-gas wells. In contrast to groundwater samples that showed no evidence of anthropogenic contamination, the chemistry and isotope ratios of surface waters (n = 8) near known spills or leaks occurring at disposal sites mimicked the composition of Marcellus flowback fluids, and show direct evidence for impact on surface water by fluids accidentally released from nearby shale-gas well pads and oil and gas wastewater disposal sites. Overall this study presents a comprehensive geochemical framework that can be used as a template for assessing the sources of elevated hydrocarbons and salts to water resources in areas potentially impacted by oil and gas development.
Quantum pump effect induced by a linearly polarized microwave in a two-dimensional electron gas.
Song, Juntao; Liu, Haiwen; Jiang, Hua
2012-05-30
A quantum pump effect is predicted in an ideal homogeneous two-dimensional electron gas (2DEG) that is normally irradiated by linearly polarized microwaves (MW). Without considering effects from spin-orbital coupling or the magnetic field, it is found that a polarized MW can continuously pump electrons from the longitudinal to the transverse direction, or from the transverse to the longitudinal direction, in the central irradiated region. The large pump current is obtained for both the low frequency limit and the high frequency case. Its magnitude depends on sample properties such as the size of the radiated region, the power and frequency of the MW, etc. Through the calculated results, the pump current should be attributed to the dominant photon-assisted tunneling processes as well as the asymmetry of the electron density of states with respect to the Fermi energy.
Direct analysis of organic priority pollutants by IMS
NASA Technical Reports Server (NTRS)
Giam, C. S.; Reed, G. E.; Holliday, T. L.; Chang, L.; Rhodes, B. J.
1995-01-01
Many routine methods for monitoring of trace amounts of atmospheric organic pollutants consist of several steps. Typical steps are: (1) collection of the air sample; (2) trapping of organics from the sample; (3) extraction of the trapped organics; and (4) identification of the organics in the extract by GC (gas chromatography), HPLC (High Performance Liquid Chromatography), or MS (Mass Spectrometry). These methods are often cumbersome and time consuming. A simple and fast method for monitoring atmospheric organics using an IMS (Ion Mobility Spectrometer) is proposed. This method has a short sampling time and does not require extraction of the organics since the sample is placed directly in the IMS. The purpose of this study was to determine the responses in the IMS to organic 'priority pollutants'. Priority pollutants including representative polycyclic aromatic hydrocarbons (PAHs), phthalates, phenols, chlorinated pesticides, and polychlorinated biphenyls (PCB's) were analyzed in both the positive and negative detection mode at ambient atmospheric pressure. Detection mode and amount detected are presented.
A CFD Analysis of Hydrogen Leakage During On-Pad Purge in the ORION/ARES I Shared Volume
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Edwards, Daryl A.
2011-01-01
A common open volume is created by the stacking of the Orion vehicle onto the Ares I Upper Stage. Called the Shared Volume, both vehicles contribute to its gas, fluid, and thermal environment. One of these environments is related to hazardous hydrogen gas. While both vehicles use inert purge gas to mitigate any hazardous gas buildup, there are concerns that hydrogen gas may still accumulate and that the Ares I Hazardous Gas Detection System will not be sufficient for monitoring the integrated volume. This Computational Fluid Dynamics (CFD) analysis has been performed to examine these topics. Results of the analysis conclude that the Ares I Hazardous Gas Detection System will be able to sample the vent effluent containing the highest hydrogen concentrations. A second conclusion is that hydrogen does not accumulate under the Orion Service Module (SM) avionics ring as diffusion and purge flow mixing sufficiently dilute the hydrogen to safe concentrations. Finally the hydrogen concentrations within the Orion SM engine nozzle may slightly exceed the 1 percent volume fraction when the entire worse case maximum full leak is directed vertically into the engine nozzle.
Wagatsuma, Kazuaki
2003-02-01
In glow discharge optical emission spectrometry, an argon-helium mixed gas plasma was investigated to improve the detection sensitivity of arsenic in steel samples. The emission line of arsenic was enhanced and the background intensity was simultaneously reduced when an Ar-He plasma was employed instead of an Ar plasma, which is effective for the sensitive determination of arsenic. The detection limits were calculated to be 0.009 mass% for a 700-V Ar plasma, 0.004 mass% for a 700-V Ar-He plasma, and 0.001 mass% for a 900-V Ar-He plasma.
NASA Technical Reports Server (NTRS)
McAdam, A. C.; Franz, H. B.; Archer, P. D., Jr.; Sutter, B.; Eigenbrode, J. L.; Freissinet, C.; Atreya, S. K.; Bish, D. L.; Blake, D. F.; Brunner, A.;
2014-01-01
Sulfate minerals have been directly detected or strongly inferred from several Mars datasets and indicate that aqueous alteration of martian surface materials has occurred. Indications of reduced sulfur phases (e.g., sulfides) from orbital and in situ investigations of martian materials have been fewer in number, but these phases are observed in martian meteorites and are likely because they are common minor phases in basaltic rocks. Here we discuss potential sources for the S-bearing compounds detected by the Mars Science Laboratory (MSL) Sample Analysis at Mars (SAM) instrument’s evolved gas analysis (EGA) experiments.
The results of gas permeability and leak testing during active soil-gas sampling at Hal’s Chevron LUST Site in Green River, Utah are presented. This study was conducted to support development of a passive soil-gas sampling method. Gas mixtures containing helium and methane were...
Ghacham, Alia Ben; Pasquier, Louis-César; Cecchi, Emmanuelle; Blais, Jean-François; Mercier, Guy
2016-09-01
This work focuses on the influence of different parameters on the efficiency of steel slag carbonation in slurry phase under ambient temperature. In the first part, a response surface methodology was used to identify the effect and the interactions of the gas pressure, liquid/solid (L/S) ratio, gas/liquid ratio (G/L), and reaction time on the CO2 removed/sample and to optimize the parameters. In the second part, the parameters' effect on the dissolution of CO2 and its conversion into carbonates were studied more in detail. The results show that the pressure and the G/L ratio have a positive effect on both the dissolution and the conversion of CO2. These results have been correlated with the higher CO2 mass introduced in the reactor. On the other hand, an important effect of the L/S ratio on the overall CO2 removal and more specifically on the carbonate precipitation has been identified. The best results were obtained L/S ratios of 4:1 and 10:1 with respectively 0.046 and 0.052 gCO2 carbonated/g sample. These yields were achieved after 10 min reaction, at ambient temperature, and 10.68 bar of total gas pressure following direct gas treatment.
NASA Astrophysics Data System (ADS)
Warneke, C.; Geiger, F.; Zahn, A.; Graus, M.; De Gouw, J. A.; Gilman, J. B.; Lerner, B. M.; Roberts, J. M.; Edwards, P. M.; Dube, W. P.; Brown, S. S.; Peischl, J.; Ryerson, T. B.; Williams, E. J.; Petron, G.; Kofler, J.; Sweeney, C.; Karion, A.; Dlugokencky, E. J.
2012-12-01
Technological advances such as hydraulic fracturing have led to a rapid increase in the production of natural gas from several basins in the Rocky Mountain West, including the Denver-Julesburg basin in Colorado, the Uintah basin in Utah and the Upper Green River basin in Wyoming. There are significant concerns about the impact of natural gas production on the atmosphere, including (1) emissions of methane, which determine the net climate impact of this energy source, (2) emissions of reactive hydrocarbons and nitrogen oxides, and their contribution to photochemical ozone formation, and (3) emissions of air toxics with direct health effects. The Energy & Environment - Uintah Basin Wintertime Ozone Study (UBWOS) in 2012 was focused on addressing these issues. During UBWOS, measurements of volatile organic compounds (VOCs) were made using proton-transfer-reaction mass spectrometry (PTR-MS) instruments from a ground site and a mobile laboratory. Measurements at the ground site showed mixing ratios of VOCs related to oil and gas extraction were greatly enhanced in the Uintah basin, including several days long periods of elevated mixing ratios and concentrated short term plumes. Diurnal variations were observed with large mixing ratios during the night caused by low nighttime mixing heights and a shift in wind direction during the day. The mobile laboratory sampled a wide variety of individual parts of the gas production infrastructure including active gas wells and various processing plants. Included in those point sources was a new well that was sampled by the mobile laboratory 11 times within two weeks. This new well was previously hydraulically fractured and had an active flow-back pond. Very high mixing ratios of aromatics were observed close to the flow-back pond. The measurements of the mobile laboratory are used to determine the source composition of the individual point sources and those are compared to the VOC enhancement ratios observed at the ground site. The source composition of most point sources was similar to the typical enhancement ratios observed at the ground site, whereas the new well with the flow-back pond showed a somewhat different composition.
Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.
2000-01-01
A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.
NASA Astrophysics Data System (ADS)
Peterson, B.; Hummerick, M.; Roberts, M.; Krummins, V.; Kish, A.; Garland, J.; Maxwell, S.; Mills, A.
In addition to the mass and energy costs associated with bioregenerative systems for advanced life support, the storage and processing of waste on spacecraft requires both atmospheric and biological management. Risks to crew health may arise from the presence of potential human pathogens in waste or from decay processes during waste storage and/or processing. This study reports on the permanent gas, trace volatile organic and microbiological analyses of crew refuse returned from shuttle missions STS-105, 109 and 110. The research objective is to characterize the biological stability of the waste stream, to assess the risks associated with its storage, and to provide baseline measures for the evaluation of waste processing technologies. Microbiological samples were collected from packaging material, food waste, bathroom waste, and bulk liquid collected from the volume F waste container. The number of culturable bacteria and total bacteria were determined by plating on R2A media and by Acridine Orange direct count, respectively. Samples of the trash were analyzed for the presence of fecal and total coliforms and other human-associated bacteria. Dry and ash weights were determined to estimate both water and organic content of the materials. The aerobic and anaerobic bio-stability of stored waste was determined by on-line monitoring of CO2 and by laboratory analysis of off-gas samples for hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA method TO15 with gas chromatography/mass spectrometry and by gas chromatography with selective detectors . This study establishes a baseline measure of waste composition, labile organics, and microbial load for this material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polacci, M.; Baker, D.R.; Bai, L.
Volcanic degassing is directly linked to magma dynamics and controls the style of eruptive activity. To better understand how gas is transported within basaltic magma we perform a 3D investigation of vesicles preserved in scoria from the 2005 activity at Stromboli volcano (Italy). We find that clasts are characterized by the ubiquitous occurrence of one to a few large vesicles, exhibiting mostly irregular, tortuous, channel-like textures, orders of magnitude greater in volume than all the other vesicles in the sample. We compare observations on natural samples with results from numerical simulations and experimental investigations of vesicle size distributions and demonstratemore » that this type of vesicle invariably forms in magmas with vesicularities > 0.30 (and possibly > 0.10). We suggest that large vesicles represent pathways used by gas to flow non-explosively to the surface and that they indicate the development of an efficient system that sustains persistent degassing in basaltic systems.« less
New radiocarbon measurement methods in the Hertelendi Laboratory, Hungary
NASA Astrophysics Data System (ADS)
Janovics, Róbert; Major, István; Rinyu, László; Veres, Mihály; Molnár, Mihály
2013-04-01
In this paper we present two very different and novel methods for C-14 measurement from dissolved inorganic carbonate (DIC) of water samples. A new LSC sample preparation method for liquid scintillation C-14 measurements was implemented in the ATOMKI. The first method uses direct absorption into a special absorbent (Carbosorb E®) and a following liquid scintillation measurement. Typical sample size is 20-40 litre of water. The developed CO2 absorption method is fast, and simple. The C-14 activities is measured by an ultra low background LSC (TRI-CARB 3170 TR/SL, Perkin Elmer) including quenching parameter (tSIE).The corresponding limit of C-14 dating is 31200 year. Several tests were executed with old borehole CO2 gas without significant content of C-14 and also performed on samples of known C-14 activities between 29 and 7000 pMC, previously measured by GPC. The combined uncertainty of the described determination is about 2 % in the case of recent carbon. It is a very cost-effective and easy to use method based on a novel and simple static absorption process for the CO2 extracted from groundwater. The other very sensitive method is based on accelerator mass spectrometry (AMS) using gas ion source. This method does not require graphite generation and a small volume of water sample (1-20mL) is enough for the radiocarbon measurement. The procedure is very similar to pre-treatment of carbonate contained sample preparation for stable isotope measurement with gasbench technique. We applied a MICADAS type accelerator mass spectrometry (AMS) with gas ion source for C-14 analysis. The radiocarbon content of water was sat free with phosphoric acid and then the headspace gas was rinsed vials. The whole measurement needs only 20 min of each sample. The precision of measurement is better than 1% for modern samples. The preparation is vastly reduced compared to the other AMS methods and principally allows fully automated measurements of groundwater samples with an auto-sampler. The presented two new methods can be suitable for C-14 measurements and dating of hydrological, and environmental samples as well. The new AMS facility in ATOMKI (Debrecen, Hungary) using an EnvironMICADAS AMS system with gas ion source has a great potential in groundwater C-14 analyses. The research was supported by the by TÁMOP-4.2.2.A-11/1/KONV and the Hungarian NSF (OTKA MB08-A 81515)
McGuire, N D; Ewen, R J; de Lacy Costello, B; Garner, C E; Probert, C S J; Vaughan, K.; Ratcliffe, N M
2016-01-01
Rapid volatile profiling of stool sample headspace was achieved using a combination of short multi-capillary chromatography column (SMCC), highly sensitive heated metal oxide semiconductor (MOS) sensor and artificial neural network (ANN) software. For direct analysis of biological samples this prototype offers alternatives to conventional GC detectors and electronic nose technology. The performance was compared to an identical instrument incorporating a long single capillary column (LSCC). The ability of the prototypes to separate complex mixtures was assessed using gas standards and homogenised in house ‘standard’ stool samples, with both capable of detecting more than 24 peaks per sample. The elution time was considerably faster with the SMCC resulting in a run time of 10 minutes compared to 30 minutes for the LSCC. The diagnostic potential of the prototypes was assessed using 50 C. difficile positive and 50 negative samples. The prototypes demonstrated similar capability of discriminating between positive and negative samples with sensitivity and specificity of 85% and 80% respectively. C. difficile is an important cause of hospital acquired diarrhoea, with significant morbidity and mortality around the world. A device capable of rapidly diagnosing the disease at the point of care would reduce cases, deaths and financial burden. PMID:27212803
Selective Sampling with Direct Ion Mobility Spectrometric Detection for Explosives Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Scott D; Ewing, Robert G; Waltman, Melanie J
2009-06-29
This study investigates the potential and limitations of a streamlined, field-deployable analytical approach that involves selective capture of explosive materials with direct analysis by ion mobility spectrometry (IMS). Selective capture of explosives was performed on deactivated quartz fiber filters impregnated with metal β-diketonate polymers. These Lewis acidic polymers selectively interact with Lewis base analytes such as explosives. The filter coupons could be directly inserted into an IMS instrument for analysis. The uptake kinetics of 2,4,6-trinitrotoluene (TNT) from a saturated atmosphere were characterized, and based on these studies, passive equilibrium sampling was applied to estimate the TNT concentration within an ammunitionmore » magazine that contained bulk TNT. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) uptake from a saturated environment also was examined over a one-month period. Each incremental sampling period showed increasing quantities of RDX culminating with collection of approximately 5 ng of RDX on the coupon at the end of one month. This is the first time that gas-phase uptake of RDX has been demonstrated.« less
Gas sampling system for a mass spectrometer
Taylor, Charles E; Ladner, Edward P
2003-12-30
The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.
NASA Astrophysics Data System (ADS)
Idris, N.; Ramli, M.; Khumaeni, A.; Kurihara, K.
2018-04-01
In this work, a nickel metal mesh was used to allow a direct detection of salt in soil sample by LIBS utilizing unique characteristics of a TEA CO2. The metal mesh is placed in the front of the soil sample to prevent the soil sample from blowing off upon focusing the high pulsed laser beam irradiation. LIBS apparatus used in this work is a TEA CO2 laser operated at wavelength of 10.6 μm with pulse energy and duration of 3J and 200 ns, respectively. The laser beam was focused using a ZnSe lens (f = 200 mm) onto soil sample after passing through the metal mesh. The emission spectrum from the induced plasma was detected using an optical multichannel analyzer (OMA) system consisting of a 0.32-m-focal length spectrograph with a grating of 1200 graves/mm and a 1024-channel photodiode detector array with a micro-channel plate intensifier. The soil sample used is a standard soil and ordinary soil containing several salts such as Ca, Mg at high concentration. The LIBS experiment was carried out at high pressure surrounding gas of 1 atmosphere. It was observed that by the aid of the metal mesh, strong breakdown gas plasma can be produced just after TEA CO2 laser irradiation on soil sample without significant sample blowing off. It was found that emission lines from salts, Ca (Ca II 393. 3 nm, Ca II 396.3 nm, Ca I 422.5 nm), and also other salts including Mg and Na can clearly be detected with strong emission intensity and narrow spectral width. This result implies that a TEA CO2 LIBS assisted by the metal mesh (metal mesh method) can be used for direct analysis several salts such as Ca, Mg, and Na in soil sample.
Boosting devices with integral features for recirculating exhaust gas
Wu, Ko-Jen
2015-12-22
According to one embodiment of the invention, a turbine housing includes a turbine inlet in fluid communication with a turbine volute configured to house a turbine wheel, the turbine inlet configured to direct an exhaust gas flow from an engine to the turbine wheel. The turbine housing also includes a turbine outlet in fluid communication with the turbine volute, the turbine outlet configured to direct the exhaust gas flow to an exhaust gas conduit and a first exhaust gas recirculation supply port located on and in fluid communication with the turbine outlet, the first exhaust gas recirculation supply port being configured to direct a portion of the exhaust gas flow to an exhaust gas recirculation supply conduit.
Real-time exhaust gas modular flowmeter and emissions reporting system for mobile apparatus
NASA Technical Reports Server (NTRS)
Breton, Leo Alphonse Gerard (Inventor)
2002-01-01
A real-time emissions reporting system includes an instrument module adapted to be detachably connected to the exhaust pipe of a combustion engine to provide for flow of exhaust gas therethrough. The instrument module includes a differential pressure probe which allows for determination of flow rate of the exhaust gas and a gas sampling tube for continuously feeding a sample of the exhaust gas to a gas analyzer or a mounting location for a non-sampling gas analyzer. In addition to the module, the emissions reporting system also includes an elastomeric boot for detachably connecting the module to the exhaust pipe of the combustion engine, a gas analyzer for receiving and analyzing gases sampled within the module and a computer for calculating pollutant mass flow rates based on concentrations detected by the gas analyzer and the detected flowrate of the exhaust gas. The system may also include a particulate matter detector with a second gas sampling tube feeding same mounted within the instrument module.
Cacho, Juan Ignacio; Campillo, Natalia; Viñas, Pilar; Hernández-Córdoba, Manuel
2016-01-01
A new procedure based on direct insert microvial thermal desorption injection allows the direct analysis of ionic liquid extracts by gas chromatography and mass spectrometry (GC-MS). For this purpose, an in situ ionic liquid dispersive liquid-liquid microextraction (in situ IL DLLME) has been developed for the quantification of bisphenol A (BPA), bisphenol Z (BPZ) and bisphenol F (BPF). Different parameters affecting the extraction efficiency of the microextraction technique and the thermal desorption step were studied. The optimized procedure, determining the analytes as acetyl derivatives, provided detection limits of 26, 18 and 19 ng L(-1) for BPA, BPZ and BPF, respectively. The release of the three analytes from plastic containers was monitored using this newly developed analytical method. Analysis of the migration test solutions for 15 different plastic containers in daily use identified the presence of the analytes at concentrations ranging between 0.07 and 37 μg L(-1) in six of the samples studied, BPA being the most commonly found and at higher concentrations than the other analytes.
Richardson, G.B.
1941-01-01
Based on the records of several hundred deep wells, contour maps have been prepared showing the monoclinal structure of part of western New York, and isopach lines have been drawn showing the westward convergence of the rocks. The mode of occurrence of natural gas in the Medina group is briefly discussed. The location of the gas fields has not been determined by structural traps, but rather stratigraphy and lithology are the controlling factors in trapping the gas, which occurs in porous lenses and streaks of sandstone sealed within impermeable beds. This mode of occurrences of the Medina gas makes the search for new fields in western New York more hazardous than in most natural gas regions. As structure has not formed traps for the gas there is no surface guide to favorable sites for testing, and new fields are found by haphazard drilling. It would be helpful, however, when wells are sunk, to study the lithology of the gas-bearing zone by an examination of the drill cuttings and core samples of the sand and to have electrical logs made of the wells to obtain measurements of permeability and porosity. Such tests may indicate the direction of greatest porosity in which the sand is more likely to contain gas.
NASA Astrophysics Data System (ADS)
Sharon, Chelsea; Riechers, Dominik Alexander; Carilli, Christopher; Hodge, Jacqueline; Walter, Fabian
2015-08-01
Theoretical work has suggested that active galactic nuclei (AGN) may play an important role in quenching star formation in massive galaxies. Due to sensitivity demands, direct evidence for AGN affecting the molecular ISM (the gas phase that fuels star formation) has so far been limited to detections of molecular outflows in low-redshift systems. Indirect evidence for an interplay between AGN and their host galaxies' cold gas phase may be provided by measurements of the gas excitation (and dynamics). At z~2-3, the peak epoch of star formation and AGN activity, previous observations of the CO(1-0) line revealed that submillimeter galaxies have substantial reservoirs of cold molecular gas. However, the molecular gas in AGN-host galaxies appears highly excited, potentially supporting an evolutionary connection between these two populations. We will present a new larger Karl G. Jansky Very Large Array sample that nearly doubles the number of CO(1-0) detections in z~2-3 submillimeter galaxies and AGN-host galaxies with existing CO(3-2) detections (from 13 to 23, plus four new upper limits) that allows us to better compare the low-excitation molecular gas properties of these systems and further investigate potential evidence for gas excitation due to active black holes.
40 CFR 86.509-90 - Exhaust gas sampling system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system. 86.509-90... 1978 and Later New Motorcycles; Test Procedures § 86.509-90 Exhaust gas sampling system. (a)(1) General. The exhaust gas sampling system is designed to measure the true mass emissions of vehicle exhaust. In...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system; Diesel... Vehicles; Cold Temperature Test Procedures § 86.210-08 Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements. (a) General applicability. The exhaust gas sampling...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system; Diesel... Vehicles; Cold Temperature Test Procedures § 86.210-08 Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements. (a) General applicability. The exhaust gas sampling...
40 CFR 86.509-90 - Exhaust gas sampling system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system. 86.509-90... 1978 and Later New Motorcycles; Test Procedures § 86.509-90 Exhaust gas sampling system. (a)(1) General. The exhaust gas sampling system is designed to measure the true mass emissions of vehicle exhaust. In...
Molecular cloud-scale star formation in NGC 300
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faesi, Christopher M.; Lada, Charles J.; Forbrich, Jan
2014-07-01
We present the results of a galaxy-wide study of molecular gas and star formation in a sample of 76 H II regions in the nearby spiral galaxy NGC 300. We have measured the molecular gas at 250 pc scales using pointed CO(J = 2-1) observations with the Atacama Pathfinder Experiment telescope. We detect CO in 42 of our targets, deriving molecular gas masses ranging from our sensitivity limit of ∼10{sup 5} M {sub ☉} to 7 × 10{sup 5} M {sub ☉}. We find a clear decline in the CO detection rate with galactocentric distance, which we attribute primarily tomore » the decreasing radial metallicity gradient in NGC 300. We combine Galaxy Evolution Explorer far-ultraviolet, Spitzer 24 μm, and Hα narrowband imaging to measure the star formation activity in our sample. We have developed a new direct modeling approach for computing star formation rates (SFRs) that utilizes these data and population synthesis models to derive the masses and ages of the young stellar clusters associated with each of our H II region targets. We find a characteristic gas depletion time of 230 Myr at 250 pc scales in NGC 300, more similar to the results obtained for Milky Way giant molecular clouds than the longer (>2 Gyr) global depletion times derived for entire galaxies and kiloparsec-sized regions within them. This difference is partially due to the fact that our study accounts for only the gas and stars within the youngest star-forming regions. We also note a large scatter in the NGC 300 SFR-molecular gas mass scaling relation that is furthermore consistent with the Milky Way cloud results. This scatter likely represents real differences in giant molecular cloud physical properties such as the dense gas fraction.« less
Rocket nozzle coolant channel thermal analysis program (E25107)
NASA Technical Reports Server (NTRS)
Thompson, W. R.
1972-01-01
A complete description of the liquid cooled rocket nozzle analysis program (E25107) is presented, including a users manual, program listing, and a sample problem. The program is recommended for use in designing liquid cooled rocket nozzles. In addition, it is adaptable to any system in which a liquid-cooled tubular structure is used to contain and direct the flow of a hot gas.
Huang, Z H; Gage, D A; Bieber, L L; Sweeley, C C
1991-11-15
A novel approach to the analysis of acylcarnitines has been developed. It involves a direct esterification using propyl chloroformate in aqueous propanol followed by ion-pair extraction with potassium iodide into chloroform and subsequent on-column N-demethylation of the resulting acylcarnitine propyl ester iodides. The products, acyl N-demethylcarnitine propyl esters, are volatile and are easily analyzed by gas chromatography-chemical ionization mass spectrometry. For medium-chain-length (C4-C12) acylcarnitine standards, detection limits are demonstrated to be well below 1 ng starting material using selected ion monitoring. Well-separated gas chromatographic peaks and structure-specific mass spectra are obtained with samples of synthetic and biological origin. Seven acylcarnitines have been characterized in the urine of a patient suffering from medium-chain acyl-CoA dehydrogenase deficiency.
Performance of a Line Loss Correction Method for Gas Turbine Emission Measurements
NASA Astrophysics Data System (ADS)
Hagen, D. E.; Whitefield, P. D.; Lobo, P.
2015-12-01
International concern for the environmental impact of jet engine exhaust emissions in the atmosphere has led to increased attention on gas turbine engine emission testing. The Society of Automotive Engineers Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter from aircraft engines, and is developing an Aerospace Recommended Practice (ARP) for methodology and system specification. The Missouri University of Science and Technology (MST) Center for Excellence for Aerospace Particulate Emissions Reduction Research has led numerous jet engine exhaust sampling campaigns to characterize emissions at different locations in the expanding exhaust plume. Particle loss, due to various mechanisms, occurs in the sampling train that transports the exhaust sample from the engine exit plane to the measurement instruments. To account for the losses, both the size dependent penetration functions and the size distribution of the emitted particles need to be known. However in the proposed ARP, particle number and mass are measured, but size is not. Here we present a methodology to generate number and mass correction factors for line loss, without using direct size measurement. A lognormal size distribution is used to represent the exhaust aerosol at the engine exit plane and is defined by the measured number and mass at the downstream end of the sample train. The performance of this line loss correction is compared to corrections based on direct size measurements using data taken by MST during numerous engine test campaigns. The experimental uncertainty in these correction factors is estimated. Average differences between the line loss correction method and size based corrections are found to be on the order of 10% for number and 2.5% for mass.
Peak exposures in aluminium potrooms: instrument development and field calibration.
Carter, Stephanie R; Seixas, Noah S; Thompson, Mary Lou; Yost, Michael G
2004-11-01
Aluminium smelter potrooms are unique in that workplace exposures to hydrogen fluoride (HF), sulfur dioxide (SO2), and particulate matter occur simultaneously for some tasks. The peak exposures to these contaminants are of increasing interest in discovering the etiology of respiratory health effects. While a variety of direct-reading instruments are available for sulfur dioxide and particulate matter, only a few exist for hydrogen fluoride. The sensors in these HF instruments have a cross-sensitivity to sulfur dioxide making it difficult to monitor HF in an environment that also contains SO2. To overcome this problem, we assessed the simultaneous use of two electrochemical instruments: one with a SO2 sensor that does not respond to HF and the second with a hydrogen fluoride sensor that responds to both HF and SO2 in a 1 : 1 ratio, termed 'total acid gas'. The difference in the response between the two instruments should indicate the HF concentration: [HF + SO2] minus SO2 equals HF. The performance characteristics of this sampling train were evaluated in the laboratory through the generation of both HF and SO2 with permeation tubes. The response and recovery times for the SO2 only instrument were acceptable (6 and 15 s, respectively), but the "total acid gas" instrument exhibited both slow response and slow recovery approaching three and six min. The association between the traditional integrated filter sampling method and the direct-reading instrument for SO2 is 0.80 (Spearman's rho). The use of the digital filter strengthens the association between the HF direct-reading instrument and the integrated samples from 0.41 to 0.68.
Free energy landscape and molecular pathways of gas hydrate nucleation.
Bi, Yuanfei; Porras, Anna; Li, Tianshu
2016-12-07
Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p B histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p B histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.
Free energy landscape and molecular pathways of gas hydrate nucleation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi, Yuanfei; Porras, Anna; Li, Tianshu, E-mail: tsli@gwu.edu
Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p{sub B} histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage ordermore » parameter (H-COP) which we developed for driving FFS, through conducting the p{sub B} histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.« less
Probing the extent and content of low ionization gas in galaxies: QSO absorption and HI emission
NASA Technical Reports Server (NTRS)
Womble, Donna S.
1993-01-01
The small projected separations of some QSO's and low-redshift galaxies provide unique opportunities to study the extent and content of gas in galaxies through observation of absorption in the QSO spectra. Observations of these systems provide valuable information on the connection between the absorbing gas and the galaxy, as well as detailed information on the morphology and environment of the galaxy itself. While there is direct evidence that galaxies can produce the intervening-type QSO absorption lines, over the past decade, the study of such 'QSO-galaxy pairs' (at low redshift) has been considered unsuccessful because new detections of absorption were seldom made. A fundamental problem concerning the relation between these low-redshift systems and those seen at moderate to high redshift remains unresolved. Direct and indirect measures of galaxy absorption cross sections at moderate to high redshifts (z is approximately greater than 20.5) are much larger than the optical and HI sizes of local galaxies. However, direct comparison of the low and moderate to high redshift systems is difficult since different ions are observed in different redshift regimes. Observations are presented for a new sample of QSO-galaxy pairs. Nine new QSO's which shine through nearby galaxies (on the sky-plane) were observed to search for CaII absorption in the QSO spectra at the foreground galaxy redshifts.
Yu, Bofan; Song, Yonghui; Han, Lu; Yu, Huibin; Liu, Yang; Liu, Hongliang
2014-08-22
For the expanded application area, fast trace analysis of certain high boiling point (i.e., 150-250 °C) volatile organic compounds (HVOCs) in water, a large volume-direct aqueous injection-gas chromatography (LV-DAI-GC) method was optimized for the following parameters: packed sorbent for sample on-line pretreatment, inlet temperature and detectors configuration. Using the composite packed sorbent self-prepared with lithium chloride and a type of diatomite, the method enabled safe injection of an approximately 50-100 μL sample at an inlet temperature of 150 °C in the splitless mode and separated HVOCs from water matrix in 2 min. Coupled with a flame ionization detector (FID), an electron capture detector (ECD) and a flame photometric detector (FPD), the method could simultaneously quantify 27 HVOCs that belong to seven subclasses (i.e., halogenated aliphatic hydrocarbons, chlorobenzenes, nitrobenzenes, anilines, phenols, polycyclic aromatic hydrocarbons and organic sulfides) in 26 min. Injecting a 50 μL sample without any enrichment step, such as cryotrap focusing, the limits of quantification (LOQs) for the 27 HVOCs was 0.01-3 μg/L. Replicate analyses of the 27 HVOCs spiked source and river water samples exhibited good precision (relative standard deviations ≤ 11.3%) and accuracy (relative errors ≤ 17.6%). The optimized LV-DAI-GC was robust and applicable for fast determination and automated continuous monitoring of HVOCs in surface water. Copyright © 2014 Elsevier B.V. All rights reserved.
Gschwendtner, Silvia; Alatossava, Tapani; Kublik, Susanne; Fuka, Mirna Mrkonjić; Schloter, Michael; Munsch-Alatossava, Patricia
2016-01-01
The quality and safety of raw milk still remains a worldwide challenge. Culture-dependent methods indicated that the continuous N2 gas-flushing of raw milk reduced the bacterial growth during cold storage by up to four orders of magnitude, compared to cold storage alone. This study investigated the influence of N2 gas-flushing on bacterial diversity in bovine raw-milk samples, that were either cold stored at 6°C or additionally flushed with pure N2 for up to one week. Next-generation sequencing (NGS) of the V1-V2 hypervariable regions of 16S rRNA genes, derived from amplified cDNA, which was obtained from RNA directly isolated from raw-milk samples, was performed. The reads, which were clustered into 2448 operational taxonomic units (OTUs), were phylogenetically classified. Our data revealed a drastic reduction in the diversity of OTUs in raw milk during cold storage at 6°C at 97% similarity level; but, the N2-flushing treatment alleviated this reduction and substantially limited the loss of bacterial diversity during the same cold-storage period. Compared to cold-stored milk, the initial raw-milk samples contained less Proteobacteria (mainly Pseudomonadaceae, Moraxellaceae and Enterobacteriaceae) but more Firmicutes (mainly Ruminococcaceaea, Lachnospiraceae and Oscillospiraceaea) and Bacteroidetes (mainly Bacteroidales). Significant differences between cold-stored and additionally N2-flushed milk were mainly related to higher levels of Pseudomononadaceae (including the genera Pseudomonas and Acinetobacter) in cold-stored milk samples; furthermore, rare taxa were better preserved by the N2 gas flushing compared to the cold storage alone. No major changes in bacterial composition with time were found regarding the distribution of the major 9 OTUs, that dominated the Pseudomonas genus in N2-flushed or non-flushed milk samples, other than an intriguing predominance of bacteria related to P. veronii. Overall, this study established that neither bacteria causing milk spoilage nor any well-known human pathogen or anaerobe benefited from the N2 gas flushing even though the N2-flushed and non-flushed cold-stored milk differed in bacterial counts by up to 104-fold.
Kublik, Susanne; Fuka, Mirna Mrkonjić; Schloter, Michael; Munsch-Alatossava, Patricia
2016-01-01
The quality and safety of raw milk still remains a worldwide challenge. Culture-dependent methods indicated that the continuous N2 gas-flushing of raw milk reduced the bacterial growth during cold storage by up to four orders of magnitude, compared to cold storage alone. This study investigated the influence of N2 gas-flushing on bacterial diversity in bovine raw-milk samples, that were either cold stored at 6°C or additionally flushed with pure N2 for up to one week. Next-generation sequencing (NGS) of the V1-V2 hypervariable regions of 16S rRNA genes, derived from amplified cDNA, which was obtained from RNA directly isolated from raw-milk samples, was performed. The reads, which were clustered into 2448 operational taxonomic units (OTUs), were phylogenetically classified. Our data revealed a drastic reduction in the diversity of OTUs in raw milk during cold storage at 6°C at 97% similarity level; but, the N2-flushing treatment alleviated this reduction and substantially limited the loss of bacterial diversity during the same cold-storage period. Compared to cold-stored milk, the initial raw-milk samples contained less Proteobacteria (mainly Pseudomonadaceae, Moraxellaceae and Enterobacteriaceae) but more Firmicutes (mainly Ruminococcaceaea, Lachnospiraceae and Oscillospiraceaea) and Bacteroidetes (mainly Bacteroidales). Significant differences between cold-stored and additionally N2-flushed milk were mainly related to higher levels of Pseudomononadaceae (including the genera Pseudomonas and Acinetobacter) in cold-stored milk samples; furthermore, rare taxa were better preserved by the N2 gas flushing compared to the cold storage alone. No major changes in bacterial composition with time were found regarding the distribution of the major 9 OTUs, that dominated the Pseudomonas genus in N2-flushed or non-flushed milk samples, other than an intriguing predominance of bacteria related to P. veronii. Overall, this study established that neither bacteria causing milk spoilage nor any well-known human pathogen or anaerobe benefited from the N2 gas flushing even though the N2-flushed and non-flushed cold-stored milk differed in bacterial counts by up to 104-fold. PMID:26730711
Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS
NASA Astrophysics Data System (ADS)
Hamilton, J. F.; Webb, P. J.; Lewis, A. C.; Hopkins, J. R.; Smith, S.; Davy, P.
2004-08-01
Partially oxidised organic compounds associated with PM2.5 aerosol collected in London, England, have been analysed using direct thermal desorption coupled to comprehensive gas chromatography-time of flight mass spectrometry (GCXGC-TOF/MS). Over 10000 individual organic components were isolated from around 10µg of aerosol material in a single procedure and with no sample pre-treatment. Chemical functionalities observed using this analytical technique ranged from alkanes to poly-oxygenated species. The chemical band structures commonly used in GCXGC for group type identifications overlap for this sample type, and have required mass spectrometry as an additional level of instrument dimensionality. An investigation of oxygenated volatile organic compounds (o-VOC) contained within urban aerosol has been performed and in a typical sample around 130 o-VOCs were identified based on retention behaviour and spectral match. In excess of 100 other oxygenated species were also observed but lack of mass spectral library or pure components prevents positive identification. Many of the carbonyl species observed could be mechanistically linked to gas phase aromatic hydrocarbon oxidation and there is good agreement in terms of speciation between the urban samples analysed here and those degradation products observed in smog chamber experiments of aromatic oxidation. The presence of partially oxidised species such as linear chain aldehydes and ketones and cyclic products such as furanones suggests that species generated early in the oxidative process may undergo gas to particle partitioning despite their relatively high volatility.
Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS
NASA Astrophysics Data System (ADS)
Hamilton, J.; Webb, P.; Lewis, A.; Hopkins, J.; Smith, S.; Davy, P.
2004-03-01
Partially oxidised organic compounds associated with PM2.5 aerosol collected in London, England, have been analysed using direct thermal desorption coupled to comprehensive gas chromatography-time of flight mass spectrometry (GCXGC-OF/MS). Over 10 000 individual organic components were isolated from around 10 μg of aerosol material in a single procedure and with no sample pre-treatment. Chemical functionalities observed using this analytical technique ranged from alkanes to poly-oxygenated species. The chemical band structures commonly used in GCXGC for group type identifications overlap for this sample type, and have required mass spectrometry as an additional level of instrument dimensionality. An investigation of oxygenated volatile organic compounds (o-VOC) contained within urban aerosol has been performed and in a typical sample around 130 o-VOCs were identified based on retention behaviour and spectral match. In excess of 100 other oxygenated species were also observed but lack of mass spectral library or pure components prevents positive identification. Many of the carbonyl species observed could be mechanistically linked to gas phase aromatic hydrocarbon oxidation and there is good agreement in terms of speciation between the urban samples analysed here and those degradation products observed in smog chamber experiments of aromatic oxidation. The presence of partially oxidised species such as linear chain aldehydes and ketones and cyclic products such as furanones suggests that species generated relatively early in the oxidative process may undergo gas to particle partitioning despite their relatively high volatility.
Outdoor and indoor benzene evaluation by GC-FID and GC-MS/MS.
Sousa, José A; Domingues, Valentina F; Rosas, Mónica S; Ribeiro, Susana O; Alvim-Ferraz, Conceiçao M; Delerue-Matos, Cristina F
2011-01-01
The evaluation of benzene in different environments such as indoor (with and without tobacco smoke), a city area, countryside, gas stations and near exhaust pipes from cars running on different types of fuels was performed. The samples were analyzed using gas chromatography (GC) with flame ionization detection (FID) and tandem mass spectrometric detection (MS/MS) (to confirm the identification of benzene in the air samples). Operating conditions for the GC-MS analysis were optimized as well as the sampling and sample preparation. The results obtained in this work indicate that i) the type of fuel directly influences the benzene concentration in the air. Gasoline with additives provided the highest amount of benzene followed by unleaded gasoline and diesel; ii) the benzene concentration in the gas station was always higher than the advisable limit established by law (5 μg m⁻³) and during the unloading of gasoline the achieved concentration was 8371 μg m⁻³; iii) the data from the countryside (Taliscas) and the urban city (Matosinhos) were below 5 μg m⁻³ except 5 days after a fire on a petroleum refinery plant located near the city; iv) it was proven that in coffee shops where smoking is allowed the benzene concentration is higher (6 μg m⁻³) than in coffee shops where this is forbidden (4 μg m⁻³). This method may also be helpful for environmental analytical chemists who use GC-MS/MS for the confirmation or/and quantification of benzene.
WIPP waste characterization program sampling and analysis guidance manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
The Waste Isolation Pilot Plant (WIPP) Waste Characterization Program Sampling and Analysis Guidance Manual (Guidance Manual) provides a unified source of information on the sampling and analytical techniques that enable Department of Energy (DOE) facilities to comply with the requirements established in the current revision of the Quality Assurance Program Plan (QAPP) for the WIPP Experimental-Waste Characterization Program (the Program). This Guidance Manual includes all of the sampling and testing methodologies accepted by the WIPP Project Office (DOE/WPO) for use in implementing the Program requirements specified in the QAPP. This includes methods for characterizing representative samples of transuranic (TRU) wastesmore » at DOE generator sites with respect to the gas generation controlling variables defined in the WIPP bin-scale and alcove test plans, as well as waste container headspace gas sampling and analytical procedures to support waste characterization requirements under the WIPP test program and the Resource Conservation and Recovery Act (RCRA). The procedures in this Guidance Manual are comprehensive and detailed and are designed to provide the necessary guidance for the preparation of site specific procedures. The use of these procedures is intended to provide the necessary sensitivity, specificity, precision, and comparability of analyses and test results. The solutions to achieving specific program objectives will depend upon facility constraints, compliance with DOE Orders and DOE facilities' operating contractor requirements, and the knowledge and experience of the TRU waste handlers and analysts. With some analytical methods, such as gas chromatography/mass spectrometry, the Guidance Manual procedures may be used directly. With other methods, such as nondestructive/destructive characterization, the Guidance Manual provides guidance rather than a step-by-step procedure.« less
Davis, William E; Li, Yongtao
2008-07-15
A new isotope dilution gas chromatography/chemical ionization/tandem mass spectrometric method was developed for the analysis of carcinogenic hydrazine in drinking water. The sample preparation was performed by using the optimized derivatization and multiple liquid-liquid extraction techniques. Using the direct aqueous-phase derivatization with acetone, hydrazine and isotopically labeled hydrazine-(15)N2 used as the surrogate standard formed acetone azine and acetone azine-(15)N2, respectively. These derivatives were then extracted with dichloromethane. Prior to analysis using methanol as the chemical ionization reagent gas, the extract was dried with anhydrous sodium sulfate, concentrated through evaporation, and then fortified with isotopically labeled N-nitrosodimethylamine-d6 used as the internal standard to quantify the extracted acetone azine-(15)N2. The extracted acetone azine was quantified against the extracted acetone azine-(15)N2. The isotope dilution standard calibration curve resulted in a linear regression correlation coefficient (R) of 0.999. The obtained method detection limit was 0.70 ng/L for hydrazine in reagent water samples, fortified at a concentration of 1.0 ng/L. For reagent water samples fortified at a concentration of 20.0 ng/L, the mean recoveries were 102% with a relative standard deviation of 13.7% for hydrazine and 106% with a relative standard deviation of 12.5% for hydrazine-(15)N2. Hydrazine at 0.5-2.6 ng/L was detected in 7 out of 13 chloraminated drinking water samples but was not detected in the rest of the chloraminated drinking water samples and the studied chlorinated drinking water sample.
Li, Wenjing; Zhang, Jingjing; Xue, Zhongxin; Wang, Jingming; Jiang, Lei
2018-01-24
Manipulation of gas bubble behaviors is crucial for gas bubble-related applications. Generally, the manipulation of gas bubble behaviors generally takes advantage of their buoyancy force. It is very difficult to control the transportation of gas bubbles in a specific direction. Several approaches have been developed to collect and transport bubbles in aqueous media; however, most reliable and effective manipulation of gas bubbles in aqueous media occurs on the interfaces with simple shapes (i.e., cylinder and cone shapes). Reliable strategies for spontaneous and directional transport of gas bubbles on interfaces with complex shapes remain enormously challenging. Herein, a type of 3D gradient porous network was constructed on copper wire interfaces, with rectangle, wave, and helix shapes. The superhydrophobic copper wires were immersed in water, and continuous and stable gas films then formed on the interfaces. With the assistance of the Laplace pressure gradient between two bubbles, gas bubbles (including microscopic gas bubbles) in the aqueous media were subsequently transported, continuously and directionally, on the copper wires with complex shapes. The small gas bubbles always moved to the larger ones.
Low Ionization Absorbing Gas Kinematics Around Z ~ 1 Galaxies
NASA Astrophysics Data System (ADS)
Churchill, C. W.; Steidel, C. C.; Vogt, S. S.
1996-12-01
Absorption profiles of the Mg II lambda lambda 2796,2803 doublet arising from gas associated with 48 ``normal'' intermediate redshift (0.4 < z < 1.7) galaxies have been resolved in QSO spectra at 6 km s(-1) resolution using HIRES on Keck I. We have found evidence for pronounced redshift evolution in the subcomponent velocity two--point correlation function, suggestive that the gas surrounding galaxies has settled over a 5--10 Gyr look--back time. Based upon a sub--sample of 15 galaxies at z<1, we found no evidence for correlations between the absorbing gas kinematics and the projected galactocentric distance of the gas, galaxy luminosities, or galaxy rest--frame colors (though trends between galaxy properties and absorption properties are apparent from a larger low resolution absorption line sample). The implication is that low ionization gas surrounding early epoch galaxies was not smoothly distributed either spatially or kinematically out to a galactocentric distance ~ 40 kpc. Directly from the profiles, we have measured the number of separate absorbing ``kinematic subsystems'' associated with each galaxy, and each subsystem's profile velocity width, asymmetry (skew), and integrated column density. The distribution in these subsystem properties with velocity is highly peaked at zero, and does not exhibit a bimodality. The lack of a bimodality is suggestive that the gas kinematics is not dominated by quasi--symmetric infall into galactic potential wells. In view of absorption line studies of local galaxies, it appears that extended regions of low ionization gas surrounding galaxies represent a dynamical and active epoch of ``normal'' galaxy evolution. The reservoirs of gas for these extended ``halos'' were probably residual infalling fragments (from earlier formation processes and on--going dynamical events) whose evolution first included a settling in velocity dispersion and then more recently a decline in number. The build up of thick and/or extended gaseous disks (in the case of spirals) may be one manifestation of this process.
NASA Astrophysics Data System (ADS)
Momma, Akihiko; Takano, Kiyonami; Tanaka, Yohei; Negishi, Akira; Kato, Ken; Nozaki, Ken; Kato, Tohru; Ichigi, Takenori; Matsuda, Kazuyuki; Ryu, Takashi
In order to investigate the internal reforming characteristics in a cermet supported solid oxide fuel cell (SOFC) using YSZ as the electrolyte, the concentration profiles of the gaseous species along the gas flow direction in the anode were measured. Partially reformed methane using a pre-reformer kept at a constant temperature is supplied to the center of the cell which is operated with a seal-less structure at the gas outlet. The anode gas is sucked in via silica capillaries to the initially evacuated gas tanks. The process is simultaneously carried out using five sampling ports. The sampled gas is analyzed by a gas chromatograph. Most of the measurements are made at the cell temperature (T cell) of 750 °C and at various temperatures of the pre-reformer (T ref) with various fuel utilizations (U f) of the cell. The composition of the fuel at the inlet of the anode was confirmed to be almost the same as that theoretically calculated assuming equilibrium at the temperature of the pre-reformer. The effect of internal reforming in the anode is clearly observed as a steady decrease in the methane concentration along the flow axis. The effect of the water-gas shift reaction is also observed as a decrease in the CO 2 concentration and an increase of CO concentration around the gas inlet region, as the water-gas shift reaction inversely proceeds when T cell is higher than T ref. The diffusion of nitrogen from the seal-less outermost edge is observed, and the diffusion is confirmed to be more significant as U f decreases. The observations are compared with the results obtained by the SOFC supported by lanthanum gallate electrolyte. With respect to the internal reforming performance, the cell investigated here is found to be more effective when compared to the previously reported electrolyte supported cell.
Novel Apparatus for the Real-Time Quantification of Dissolved Gas Concentrations and Isotope Ratios
NASA Astrophysics Data System (ADS)
Gupta, M.; Leen, J.; Baer, D. S.; Owano, T. G.; Liem, J.
2013-12-01
Measurements of dissolved gases and their isotopic composition are critical in studying a variety of phenomena, including underwater greenhouse gas generation, air-surface exchange, and pollution migration. These studies typically involve obtaining water samples from streams, lakes, or ocean water and transporting them to a laboratory, where they are degased. The gases obtained are then generally measured using gas chromatography and isotope ratio mass spectrometry for concentrations and isotope ratios, respectively. This conventional, off-line methodology is time consuming, significantly limits the number of the samples that can be measured and thus severely inhibits detailed spatial and temporal mapping of gas concentrations and isotope ratios. In this work, we describe the development of a new membrane-based degassing device that interfaces directly to Los Gatos Research (cavity enhanced laser absorption or Off-Axis ICOS) gas analyzers (cavity enhanced laser absorption or Off-Axis ICOS analyzers) to create an autonomous system that can continuously and quickly measure concentrations and isotope ratios of dissolved gases in real time in the field. By accurately controlling the water flow rate through the membrane degasser, gas pressure on the outside of the membrane, and water pressure on the inside of the membrane, the system is able to generate precise and highly reproducible results. Moreover, by accurately measuring the gas flow rates in and out of the degasser, the gas-phase concentrations (ppm) could be converted into dissolved gas concentrations (nM). We will present detailed laboratory test data that quantifies the linearity, precision, and dynamic range of the system for the concentrations and isotope ratios of dissolved methane, carbon dioxide, and nitrous oxide. By interfacing the degassing device to a novel cavity-enhanced spectrometer (developed by LGR), preliminary data will also be presented for dissolved volatile organics (VOC) and other pollutants. Finally, the system was deployed shipboard, and field deployment data will also be presented.
Axnanda, Stephanus; Scheele, Marcus; Crumlin, Ethan; Mao, Baohua; Chang, Rui; Rani, Sana; Faiz, Mohamed; Wang, Suidong; Alivisatos, A Paul; Liu, Zhi
2013-01-01
Work function is a fundamental property of a material's surface. It is playing an ever more important role in engineering new energy materials and efficient energy devices, especially in the field of photovoltaic devices, catalysis, semiconductor heterojunctions, nanotechnology, and electrochemistry. Using ambient pressure X-ray photoelectron spectroscopy (APXPS), we have measured the binding energies of core level photoelectrons of Ar gas in the vicinity of several reference materials with known work functions (Au(111), Pt(111), graphite) and PbS nanoparticles. We demonstrate an unambiguously negative correlation between the work functions of reference samples and the binding energies of Ar 2p core level photoelectrons detected from the Ar gas near the sample surface region. Using this experimentally determined linear relationship between the surface work function and Ar gas core level photoelectron binding energy, we can measure the surface work function of different materials under different gas environments. To demonstrate the potential applications of this ambient pressure XPS technique in nanotechnology and solar energy research, we investigate the work functions of PbS nanoparticles with various capping ligands: methoxide, mercaptopropionic acid, and ethanedithiol. Significant Fermi level position changes are observed for PbS nanoparticles when the nanoparticle size and capping ligands are varied. The corresponding changes in the valence band maximum illustrate that an efficient quantum dot solar cell design has to take into account the electrochemical effect of the capping ligand as well.
Yan, Keyi; Toku, Yuhki; Morita, Yasuyuki; Ju, Yang
2018-06-22
In this research, we propose a new simple method to fabricate hydrogen gas sensor by stacking the multiwall carbon nanotube (MWCNT) sheets. MWCNT sheet offers a larger surface area and more CNT contacts, which are key factors for gas sensing, because of its super-high alignment and end-to-end structure comparing to the traditional CNT film. Besides, MWCNT sheet can be directly drawn from the spinnable CNT array in large scales. Therefore, this method is a potential answer for the mass production and commercialization of CNT based sensor with high response. By stacking different layers of sheet, microstructure and CNT interactions in the layers were changed and their influences towards gas sensing were investigated. It was observed that the sample with 3 layers of sheet and functionalized with 3 nm-thick Pd showed the best gas sensing performance with a response of 12.31% at 4% H2 and response time below 200 s. © 2018 IOP Publishing Ltd.
FAST TRACK COMMUNICATION: Gas liquid phase coexistence in a tetrahedral patchy particle model
NASA Astrophysics Data System (ADS)
Romano, Flavio; Tartaglia, Piero; Sciortino, Francesco
2007-08-01
We evaluate the location of the gas-liquid coexistence line and of the associated critical point for the primitive model for water (PMW), introduced by Kolafa and Nezbeda (1987 Mol. Phys. 61 161). Besides being a simple model for a molecular network forming liquid, the PMW is representative of patchy proteins and novel colloidal particles interacting with localized directional short-range attractions. We show that the gas-liquid phase separation is metastable, i.e. it takes place in the region of the phase diagram where the crystal phase is thermodynamically favoured, as in the case of particles interacting via short-range attractive spherical potentials. We do not observe crystallization close to the critical point. The region of gas-liquid instability of this patchy model is significantly reduced as compared to that from equivalent models of spherically interacting particles, confirming the possibility of observing kinetic arrest in a homogeneous sample driven by bonding as opposed to packing.
Preliminary analysis of species partitioning in the DWPF melter. Sludge batch 7A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, A. S.; Smith III, F. G.; McCabe, D. J.
2017-01-01
The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas carryover from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream (PS) compositions and time-averaged melter operating data over the duration of one canister-filling cycle. The DWPF has been in radioactive operation for over 20 years processing a wide range of high-level waste (HLW) feed compositions under varying conditions such as bubbled vs. non-bubbled and feeding vs. idling. So it is desirable to find out how themore » varying feed compositions and operating parameters would have impacted the off-gas entrainment. However, the DWPF melter is not equipped with off-gas sampling or monitoring capabilities, so it is not feasible to measure off-gas entrainment rates directly. The proposed method provides an indirect way of doing so.« less
Katz, S.; Weber, C.W.
1960-02-16
A reagent gas and a sample gas are chemically combined on a continuous basis in a reaction zone maintained at a selected temperature. The reagent gas and the sample gas are introduced to the reaction zone at preselected. constant molar rates of flow. The reagent gas and the selected gas in the sample mixture combine in the reaction zone to form a product gas having a different number of moles from the sum of the moles of the reactants. The difference in the total molar rates of flow into and out of the reaction zone is measured and indicated to determine the concentration of the selected gas.
Micklash. II, Kenneth James; Dutton, Justin James; Kaye, Steven
2014-06-03
An apparatus for testing of multiple material samples includes a gas delivery control system operatively connectable to the multiple material samples and configured to provide gas to the multiple material samples. Both a gas composition measurement device and pressure measurement devices are included in the apparatus. The apparatus includes multiple selectively openable and closable valves and a series of conduits configured to selectively connect the multiple material samples individually to the gas composition device and the pressure measurement devices by operation of the valves. A mixing system is selectively connectable to the series of conduits and is operable to cause forced mixing of the gas within the series of conduits to achieve a predetermined uniformity of gas composition within the series of conduits and passages.
Advanced Diesel Oil Fuel Processor Development
1986-06-01
water exit 29 sample quencher: gas sample line inlet 30 sample quencher: gas sample line exit 31 sample quencher: cooling water inlet 32 desulfuriser ...exit line 33, 34 desulfurimer 35 heat exchanger: process gas exit (to desulfuriser ) 38 shift reactor inlet (top) 37 shift reactor: cooling air exit
Lu, Yao; Harrington, Peter B
2010-08-01
Direct methylation and solid-phase microextraction (SPME) were used as a sample preparation technique for classification of bacteria based on fatty acid methyl ester (FAME) profiles. Methanolic tetramethylammonium hydroxide was applied as a dual-function reagent to saponify and derivatize whole-cell bacterial fatty acids into FAMEs in one step, and SPME was used to extract the bacterial FAMEs from the headspace. Compared with traditional alkaline saponification and sample preparation using liquid-liquid extraction, the method presented in this work avoids using comparatively large amounts of inorganic and organic solvents and greatly decreases the sample preparation time as well. Characteristic gas chromatography/mass spectrometry (GC/MS) of FAME profiles was achieved for six bacterial species. The difference between Gram-positive and Gram-negative bacteria was clearly visualized with the application of principal component analysis of the GC/MS data of bacterial FAMEs. A cross-validation study using ten bootstrap Latin partitions and the fuzzy rule building expert system demonstrated 87 +/- 3% correct classification efficiency.
NASA Technical Reports Server (NTRS)
Anderson, D. M.; Biemann, K.; Orgel, L. E.; Oro, J.; Owen , T.; Shulman, G. P.; Toulmin, P., III; Urey, H. C.
1972-01-01
An experiment centering around a mass spectrometer is described, which is aimed at the identification of organic substances present in the top 10 cm of the surface of Mars and an analysis of the atmosphere for major and minor constituents as well as isotopic abundances. In addition, an indication of the abundance of water in the surface and some information concerning the mineralogy can be obtained by monitoring the gases produced upon heating the soil sample. The organic material will simply be expelled by heating to 150, 300, and 500 C into the carrier gas stream of a gas chromatograph interfaced to the mass spectrometer or by slowly heating the sample in direct communication with the spectrometer. It is planned to analyze a total of up to nine soil samples in order to study diurnal and seasonal variations. The system is designed to give useful data even for minor constituents if the total of organics should be as low as 5 ppm. The spectrometer covers the mass range of 12-200 with adequate resolution.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system; diesel... Heavy-Duty Vehicles; Test Procedures § 86.110-94 Exhaust gas sampling system; diesel-cycle vehicles, and..., this is indicated by the statement “[Reserved].” (a) General. The exhaust gas sampling system described...
A dryer for rapid response on-line expired gas measurements.
Deno, N S; Kamon, E
1979-06-01
A dryer is described for use in on-line breath-by-breath gas analysis systems. The dryer continuously removes water vapor by condensation and controls the sample gas at 2 degrees C dew-point temperature or 5 Torr water vapor partial pressure. It is designed to operate at gas sampling flow rates from 0.5 to 1 1.min-1. The step-response time for the described system including a Beckman LB-2 CO2 analyzer, sampling tubing, and dryer is 120 ms at 1 l.min-1. The time required for gas samples to transport through the dryer is 105 ms at a gas sampling-flow rate of 1 l.min=1.
How Changing Energy Markets Affect Manufacturing
2000-01-01
The market for natural gas has been changing for quite some time. As part of natural gas restructuring, gas pipelines were opened to multiple users. Manufacturers or their representatives could go directly to the wellhead to purchase their natural gas, arrange the transportation, and have the natural gas delivered either by the local distribution company or directly through a connecting pipeline.
Dwivedi, Prabha; Gazda, Daniel B; Keelor, Joel D; Limero, Thomas F; Wallace, William T; Macatangay, Ariel V; Fernández, Facundo M
2013-10-15
The development of a direct analysis in real time-mass spectrometry (DART-MS) method and first prototype vaporizer for the detection of low molecular weight (∼30-100 Da) contaminants representative of those detected in water samples from the International Space Station is reported. A temperature-programmable, electro-thermal vaporizer (ETV) was designed, constructed, and evaluated as a sampling interface for DART-MS. The ETV facilitates analysis of water samples with minimum user intervention while maximizing analytical sensitivity and sample throughput. The integrated DART-ETV-MS methodology was evaluated in both positive and negative ion modes to (1) determine experimental conditions suitable for coupling DART with ETV as a sample inlet and ionization platform for time-of-flight MS, (2) to identify analyte response ions, (3) to determine the detection limit and dynamic range for target analyte measurement, and (4) to determine the reproducibility of measurements made with the method when using manual sample introduction into the vaporizer. Nitrogen was used as the DART working gas, and the target analytes chosen for the study were ethyl acetate, acetone, acetaldehyde, ethanol, ethylene glycol, dimethylsilanediol, formaldehyde, isopropanol, methanol, methylethyl ketone, methylsulfone, propylene glycol, and trimethylsilanol.
Irei, Satoshi
2016-01-01
Molecular marker analysis of environmental samples often requires time consuming preseparation steps. Here, analysis of low-volatile nonpolar molecular markers (5-6 ring polycyclic aromatic hydrocarbons or PAHs, hopanoids, and n-alkanes) without the preseparation procedure is presented. Analysis of artificial sample extracts was directly conducted by gas chromatography-mass spectrometry (GC-MS). After every sample injection, a standard mixture was also analyzed to make a correction on the variation of instrumental sensitivity caused by the unfavorable matrix contained in the extract. The method was further validated for the PAHs using the NIST standard reference materials (SRMs) and then applied to airborne particulate matter samples. Tests with the SRMs showed that overall our methodology was validated with the uncertainty of ~30%. The measurement results of airborne particulate matter (PM) filter samples showed a strong correlation between the PAHs, implying the contributions from the same emission source. Analysis of size-segregated PM filter samples showed that their size distributions were found to be in the PM smaller than 0.4 μm aerodynamic diameter. The observations were consistent with our expectation of their possible sources. Thus, the method was found to be useful for molecular marker studies. PMID:27127511
Rapid identification of bacteria with miniaturized pyrolysis/GC analysis
NASA Astrophysics Data System (ADS)
Morgan, Catherine H.; Mowry, Curtis; Manginell, Ronald P.; Frye-Mason, Gregory C.; Kottenstette, Richard J.; Lewis, Patrick
2001-02-01
Identification of bacteria and other biological moieties finds a broad range of applications in the environmental, biomedical, agricultural, industrial, and military arenas. Linking these applications are biological markers such as fatty acids, whose mass spectral profiles can be used to characterize biological samples and to distinguish bacteria at the gram-type, genera, and even species level. Common methods of sample analysis require sample preparation that is both lengthy and labor intensive, especially for whole cell bacteria. The background technique relied on here utilizes chemical derivatization of fatty acids to the more volatile fatty acid methyl esters (FAMEs), which can be separated on a gas chromatograph column or input directly into a mass spectrometer. More recent publications demonstrate improved sample preparation time with in situ derivatization of whole bacterial samples using pyrolysis at the inlet; although much faster than traditional techniques, these systems still rely on bench-top analytical equipment and individual sample preparation. Development of a miniaturized pyrolysis/GC instrument by this group is intended to realize the benefits of FAME identification of bacteria and other biological samples while further facilitating sample handling and instrument portability. The technologies being fabricated and tested have the potential of achieving pyrolysis and FAME separation on a very small scale, with rapid detection time (1-10 min from introduction to result), and with a modular sample inlet. Performance results and sensor characterization will be presented for the first phase of instrument development, encompassing the microfabricated pyrolysis and gas chromatograph elements.
NASA Astrophysics Data System (ADS)
Goudfrooij, P.; Hansen, L.; Jorgensen, H. E.; Norgaard-Nielsen, H. U.
1994-06-01
We present results of deep optical CCD imaging for a complete, optical magnitude-limited sample of 56 elliptical galaxies from the RSA catalog. For each galaxy we have obtained broad-band images (in B, V, and I) and narrow-band images using interference filters isolating the Hα+[NII] emission lines to derive the amount and morphology of dust and ionized gas. Detailed consideration of systematic errors due to effects of sky background subtraction and removal of stellar continuum light from the narrow-band images is described. The flux calibration of the narrow-band images is performed by deconvolving actually measured spectral energy distributions with the filter transmission curves. We also present optical long-slit spectroscopy to determine the [NII]/Hα intensity ratio of the ionized gas. Dust lanes and/or patches have been detected in 23 galaxies (41%) from this sample using both colour-index images and division by purely elliptical model images. We achieved a detection limit for dust absorption of A_B_~0.02. Accounting for selection effects, the true fraction of elliptical galaxies containing dust is estimated to be of order 80%. This detection rate is comparable to that of the IRAS satellite, and significantly larger than results of previous optical studies. Ionized gas has been detected in 32 galaxies (57%). The spectroscopic data confirm the presence and distribution of ionized gas as seen in the direct imaging. All elliptical galaxies in our sample in which a number of emission lines is detected show very similar emission-line intensity ratios, which are typical of LINER nuclei. The amounts of detectable dust and ionized gas are generally small--of order 10^4^-10^5^Msun_ of dust and 10^3^-10^4^Msun_ of ionized gas. The dust and ionized gas show a wide variety of distributions-extended along either the apparent major axis, or the minor axis, or a skewed axis, indicating that triaxiality is in general required as a galaxy figure. In some cases (NGC 1275, NGC 2325, NGC 3136, NGC 3962, NGC 4696, NGC 5018, NGC 5044, NGC 5813, IC 1459) the interstellar matter has a patchy or filamentary distribution, suggestive of a recent interaction event. The distributions of dust and ionized gas are consistent with being physically associated with each other.
Ferrographic and spectrometer oil analysis from a failed gas turbine engine
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.
1983-01-01
An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor parts that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, and with plasma, atomic absorption, and emission spectrometers to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations (2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure. Previously announced in STAR as N83-12433
NASA Astrophysics Data System (ADS)
Eigenbrode, J. L.; Steele, A.; Summons, R. E.; Sutter, B.; McAdam, A.; Franz, H. B.; Mahaffy, P. R.; Conrad, P. G.; Freissinet, C.; Glavin, D. P.; Millan, M.; Ming, D. W.
2015-12-01
Volatiles from high-temperature (above 500°C) pyrolysis of drilled and sieved deltaic/lacustrine mudstones at Yellowknife Bay and Pahrump Hills were detected by the Sample Analysis at Mars (SAM) instrument's evolved gas analysis experiment onboard the Curiosity rover in Gale Crater, Mars. Mass fragments detected from the mudstones are consistent with C1-C4 alkyl and single-ring aromatic components that evolve at different temperatures and often in multiple phases. Concurrent release of oxidized sulfur (sulfur dioxide and sulfur trioxide), sulfide gases (hydrogen sulfide, carbonyl sulfide, carbon disulfide, dimethylsulfide or thiol, and thiophene) suggest that either these gases are evolving directly from the mudstone or are products of gas phase reactions in the SAM oven, or both. Multiple chlorohydrocarbon releases are also observed in analysis of the Mojave mudstone indicating punctuated organic releases from the sample. The organic signatures observed are unique to specific samples and are not observed in blanks or all samples, nor can the SAM background explain them. These results suggest that geologically refractory organic matter has been preserved in some Hesperian mudstones despite possible acid-sulfate weathering (as suggested by jarosite in Mojave) and exposure to ionizing cosmic rays after exhumation. We will report on ongoing study of these samples.
Rowan, E.L.; Kraemer, T.F.
2012-01-01
Samples of natural gas were collected as part of a study of formation water chemistry in oil and gas reservoirs in the Appalachian Basin. Nineteen samples (plus two duplicates) were collected from 11 wells producing gas from Upper Devonian sandstones and the Middle Devonian Marcellus Shale in Pennsylvania. The samples were collected from valves located between the wellhead and the gas-water separator. Analyses of the radon content of the gas indicated 222Rn (radon-222) activities ranging from 1 to 79 picocuries per liter (pCi/L) with an overall median of 37 pCi/L. The radon activities of the Upper Devonian sandstone samples overlap to a large degree with the activities of the Marcellus Shale samples.
Direct growth of ZnO tetrapod on glass substrate by Chemical Vapor Deposition Technique
NASA Astrophysics Data System (ADS)
Fadzil, M. F. M.; Rahman, R. A.; Azhar, N. E. A.; Aziz, T. N. T. A.; Zulkifli, Z.
2018-03-01
This research demonstrates the growth of ZnO tetrapod structure on glass substrate for different types of flow gas and at different growth temperatures. The study on the morphological structure and electrical properties of ZnO thin film growth by Chemical Vapour Deposition (CVD) technique showed that the optimum growth temperature was obtained at 750°C with ZnO nanotetrapod morphological structure. Introducing Nitrogen gas flow during the growth process exhibited leg-to-leg linking ZnO tetrapods morphology. The electrical properties of ZnO tetrapods film were measured by using two point probes and it shows that, the sample growth in Ar and O2 atmosphere have better I-V characteristic.
Winters, W.J.
1999-01-01
As part of an ongoing laboratory study, preliminary acoustic, strength, and hydraulic conductivity results are presented from a suite of tests conducted on four natural-gas-hydrate-containing samples from the Mackenzie Delta JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. The gas hydrate samples were preserved in pressure vessels during transport from the Northwest Territories to Woods Hole, Massachusetts, where multistep tests were performed using GHASTLI (Gas Hydrate And Sediment Test Laboratory Instrument), which recreates pressure and temperature conditions that are stable for gas hydrate. Properties and changes in sediment behaviour were measured before, during, and after controlled gas hydrate dissociation. Significant amounts of gas hydrate occupied the sample pores and substantially increased acoustic velocity and shear strength.
Vigneau, Olivier; Machuron-Mandard, Xavier
2009-03-15
The introduction of chloroform into the nebulising gas of a LC/MS electrospray interface (ESI), in a perfectly controlled way, leads to the formation of intense adducts ([M+Cl](-)) when a mobile phase containing HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane or octogen) and RDX (1,3,5-trintro-1,3,5-triazacyclohexane or hexogen) is eluted. This LC/MS method allows the direct analysis of aqueous samples containing HMX and RDX at the pictogram level without a concentration step. The method is used to determine HMX and RDX concentrations in ground water samples from a military site.
Hydrogen leak detection using laser-induced breakdown spectroscopy.
Ball, A J; Hohreiter, V; Hahn, D W
2005-03-01
Laser-induced breakdown spectroscopy (LIBS) is investigated as a technique for real-time monitoring of hydrogen gas. Two methodologies were examined: The use of a 100 mJ laser pulse to create a laser-induced breakdown directly in a sample gas stream, and the use of a 55 mJ laser pulse to create a laser-induced plasma on a solid substrate surface, with the expanding plasma sampling the gas stream. Various metals were analyzed as candidate substrate surfaces, including aluminum, copper, molybdenum, stainless steel, titanium, and tungsten. Stainless steel was selected, and a detailed analysis of hydrogen detection in binary mixtures of nitrogen and hydrogen at atmospheric pressure was performed. Both the gaseous plasma and the plasma initiated on the stainless steel surface generated comparable hydrogen emission signals, using the 656.28 Halpha emission line, and exhibited excellent signal linearity. The limit of detection is about 20 ppm (mass) as determined for both methodologies, with the solid-initiated plasma yielding a slightly better value. Overall, LIBS is concluded to be a viable candidate for hydrogen sensing, offering a combination of high sensitivity with a technique that is well suited to implementation in field environments.
Ionas, Alin C; Ballesteros Gómez, Ana; Uchida, Natsuyo; Suzuki, Go; Kajiwara, Natsuko; Takata, Kyoko; Takigami, Hidetaka; Leonards, Pim E G; Covaci, Adrian
2015-10-01
The presence and levels of flame retardants (FRs), such as polybrominated diphenyl ethers (PBDEs) and organophosphate flame retardants (PFRs), was determined in textile home furnishings, such as carpets and curtains from stores in Belgium. A comprehensive characterisation of FRs in textile was done by ambient high resolution mass spectrometry (qualitative screening), gas chromatography-mass spectrometry (GC-MS) (quantitation), and environmental forensic microscopy (surface distribution). Ambient ionisation coupled to a time-of-flight (TOF) high resolution mass spectrometer (direct probe-TOF-MS) was investigated for the rapid screening of FRs. Direct probe-TOF-MS proved to be useful for a first screening step of textiles to detect FRs below the levels required to impart flame retardancy and to reduce, in this way, the number of samples for further quantitative analysis. Samples were analysed by GC-MS to confirm the results obtained by ambient mass spectrometry and to obtain quantitative information. The levels of PBDEs and PFRs were typically too low to impart flame retardancy. Only high levels of BDE-209 (11-18% by weight) were discovered and investigated in localised hotspots by employing forensic microscopy techniques. Most of the samples were made of polymeric materials known to be inherently flame retarded to some extent, so it is likely that other alternative and halogen-free FR treatments/solutions are preferred for the textiles on the Belgian market. Copyright © 2015 Elsevier Inc. All rights reserved.
An infrared spectroscopy method to detect ammonia in gastric juice.
Giovannozzi, Andrea M; Pennecchi, Francesca; Muller, Paul; Balma Tivola, Paolo; Roncari, Silvia; Rossi, Andrea M
2015-11-01
Ammonia in gastric juice is considered a potential biomarker for Helicobacter pylori infection and as a factor contributing to gastric mucosal injury. High ammonia concentrations are also found in patients with chronic renal failure, peptic ulcer disease, and chronic gastritis. Rapid and specific methods for ammonia detection are urgently required by the medical community. Here we present a method to detect ammonia directly in gastric juice based on Fourier transform infrared spectroscopy. The ammonia dissolved in biological liquid samples as ammonium ion was released in air as a gas by the shifting of the pH equilibrium of the ammonium/ammonia reaction and was detected in line by a Fourier transform infrared spectroscopy system equipped with a gas cell for the quantification. The method developed provided high sensitivity and selectivity in ammonia detection both in pure standard solutions and in a simulated gastric juice matrix over the range of diagnostic concentrations tested. Preliminary analyses were also performed on real gastric juice samples from patients with gastric mucosal injury and with symptoms of H. pylori infection, and the results were in agreement with the clinicopathology information. The whole analysis, performed in less than 10 min, can be directly applied on the sample without extraction procedures and it ensures high specificity of detection because of the ammonia fingerprint absorption bands in the infrared spectrum. This method could be easily used with endoscopy instrumentation to provide information in real time and would enable the endoscopist to improve and integrate gastroscopic examinations.
NASA Astrophysics Data System (ADS)
Majewska, Zofia; Ziętek, Jerzy
2007-09-01
Simultaneous measurements of acoustic emission (AE) and expansion/contraction of coal samples subjected to gas sorption-desorption processes were conducted on high-and medium-rank coal. The aim of this study was to examine the influence of the coal rank and type of sorbate on measured AE and strain characteristics. The experimental equipment employed in this study consisted of a pressure vessel and associated pressurisation and monitoring units. The arrangement of pressure-vacuum valves permitted the coal sample to be pressurised and depressurised. Carbon-dioxide and methane were used as sorbats. Acoustic emission and strains were recorded continuously for a period of 50 hours during sorption and for at least 12 hours during the desorption process. Tests were conducted on cylindrical coal samples at 298 K. The experimental data were presented as plots of AE basic parameters versus time and in strain diagrams. These studies lead to the following conclusions: 1. There are significant differences in AE and strain characteristics for the two systems (coal-CO2 and coal-CH4); 2. There is a direct influence of rank and type of coal on its behaviour during the sorption-desorption of gas. An attempt has been made to interpret the results obtained on the grounds of the copolymer model of coal structure. More research is needed into this topic in order to get a quantitative description of the observed facts.
Hu, Shan-Wen; Xu, Bi-Yi; Qiao, Shu; Zhao, Ge; Xu, Jing-Juan; Chen, Hong-Yuan; Xie, Fu-Wei
2016-04-01
In this work, we report a novel microfluidic gas collecting platform aiming at simultaneous sample extraction and multiplex mass spectrometry (MS) analysis. An alveolar-mimicking elastic polydimethylsiloxane (PDMS) structures was designed to move dynamically driven by external pressure. The movement was well tuned both by its amplitude and rhythm following the natural process of human respiration. By integrating the alveolar units into arrays and assembling them to gas channels, a cyclic contraction/expansion system for gas inhale and exhale was successfully constructed. Upon equipping this system with a droplet array on the alveolar array surface, we were able to get information of inhaled smoke in a new strategy. Here, with cigarette smoke as an example, analysis of accumulation for target molecules during passive smoking is taken. Relationships between the breathing times, distances away from smokers and inhaled content of nicotine are clarified. Further, by applying different types of extraction solvent droplets on different locations of the droplet array, simultaneous extraction of nicotine, formaldehyde and caproic acid in sidestream smoke (SS) are realized. Since the extract droplets are spatially separated, they can be directly analyzed by MS which is fast and can rid us of all complex sample separation and purification steps. Combining all these merits, this small, cheap and portable platform might find wide application in inhaled air pollutant analysis both in and outdoors. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bernard, C.; Leduc, A.; Barbeau, J.; Saoudi, B.; Yahia, L'H.; DeCrescenzo, G.
2006-08-01
Gas plasma is being proposed as an interesting and promising tool to achieve sterilization. The efficacy of gas plasma to destroy bacterial spores (the most resistant living microorganisms) has been demonstrated and documented over the last ten years. In addition to causing damage to deoxyribonucleic acid by UV radiation emitted by excited species originating from the plasma, gas plasma has been shown to promote erosion of the microorganism in addition to possible oxidation reactions within the microorganism. In this work, we used lysozyme as a protein model to assess the effect of gas plasma on protein inactivation. Lysozyme samples have been subjected to the flowing afterglow of a gas discharge achieved in a nitrogen-oxygen mixture. The efficiency of this plasma treatment on lysozyme has been tested by two different assays. These are an enzyme-linked immunosorbent assay (ELISA) and a surface plasmon resonance (SPR)-based biosensor assay. The two methods showed that exposure to gas plasma can abrogate lysozyme interactions with lysozyme-specific antibodies, more likely by destroying the epitopes responsible for the interaction. More specifically, two SPR-based assays were developed since our ELISA approach did not allow us to discriminate between background and low, but still intact, quantities of lysozyme epitope after plasma treatment. Our SPR results clearly demonstrated that significant protein destruction or desorption was achieved when amounts of lysozyme less than 12.5 ng had been deposited in polystyrene 96-well ELISA plates. At higher lysozyme amounts, traces of available lysozyme epitopes were detected by SPR through indirect measurements. Finally, we demonstrated that a direct SPR approach in which biosensor-immobilized lysozyme activity is directly measured prior and after plasma treatment is more sensitive, and thus, more appropriate to define plasma treatment efficacy with more certainty.
Microminiature gas chromatograph
Yu, Conrad M.
1996-01-01
A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.
NASA Astrophysics Data System (ADS)
Zdanowicz, E.; Guarino, V.; Konrad, C.; Williams, B.; Capatina, D.; D'Amico, K.; Arganbright, N.; Zimmerman, K.; Turneaure, S.; Gupta, Y. M.
2017-06-01
The Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS), located at Argonne National Laboratory (ANL), has a diverse set of dynamic compression drivers to obtain time resolved x-ray data in single event, dynamic compression experiments. Because the APS x-ray beam direction is fixed, each driver at DCS must have the capability to move through a large range of linear and angular motions with high precision to accommodate a wide variety of scientific needs. Particularly challenging was the design and implementation of the motion control system for the two-stage light gas gun, which rests on a 26' long structure and weighs over 2 tons. The target must be precisely positioned in the x-ray beam while remaining perpendicular to the gun barrel axis to ensure one-dimensional loading of samples. To accommodate these requirements, the entire structure can pivot through 60° of angular motion and move 10's of inches along four independent linear directions with 0.01° and 10 μm resolution, respectively. This presentation will provide details of how this system was constructed, how it is controlled, and provide examples of the wide range of x-ray/sample geometries that can be accommodated. Work supported by DOE/NNSA.
Lamb, Brian K; Edburg, Steven L; Ferrara, Thomas W; Howard, Touché; Harrison, Matthew R; Kolb, Charles E; Townsend-Small, Amy; Dyck, Wesley; Possolo, Antonio; Whetstone, James R
2015-04-21
Fugitive losses from natural gas distribution systems are a significant source of anthropogenic methane. Here, we report on a national sampling program to measure methane emissions from 13 urban distribution systems across the U.S. Emission factors were derived from direct measurements at 230 underground pipeline leaks and 229 metering and regulating facilities using stratified random sampling. When these new emission factors are combined with estimates for customer meters, maintenance, and upsets, and current pipeline miles and numbers of facilities, the total estimate is 393 Gg/yr with a 95% upper confidence limit of 854 Gg/yr (0.10% to 0.22% of the methane delivered nationwide). This fraction includes emissions from city gates to the customer meter, but does not include other urban sources or those downstream of customer meters. The upper confidence limit accounts for the skewed distribution of measurements, where a few large emitters accounted for most of the emissions. This emission estimate is 36% to 70% less than the 2011 EPA inventory, (based largely on 1990s emission data), and reflects significant upgrades at metering and regulating stations, improvements in leak detection and maintenance activities, as well as potential effects from differences in methodologies between the two studies.
Peng, Shoujian; Fang, Zhiming; Shen, Jian; Xu, Jiang; Wang, Geoff
2017-10-30
The cleat compressibility of coal is a key parameter that is extensively used in modeling the coal reservoir permeability for Coal Bed Methane (CBM) recovery. Cleat compressibility is often determined from the permeability measurement made at different confining pressures but with a constant pore pressure. Hence, this parameter ignores the sorption strain effects on the cleat compressibility. By using the transient pulse decay (TPD) technique, this study presents the results from a laboratory characterization program using coal core drilled from different bedding directions to estimate gas permeability and coal cleat compressibility under different pore pressures while maintaining effective stress constant. Cleat compressibility was determined from permeability and sorption strain measurements that are made at different pore pressures under an effective stress constant. Results show that the cleat compressibility of coal increases slightly with the increase of pore pressure. Moreover, the cleat compressibility of Sample P (representing the face cleats in coal) is larger than that of Sample C (representing the butt cleats in coal). This result suggests that cleat compressibility should not be regarded as constant in the modeling of the CBM recovery. Furthermore, the compressibility of face cleats is considerably sensitive to the sorption-induced swelling/shrinkage and offers significant effects on the coal permeability.
NASA Astrophysics Data System (ADS)
Tang, Kai-Wen; Chen, Cheng-Hong; Liu, Tsung-Kwei
2016-04-01
Annual rainfall in Taiwan is up to 2500 mm, about 2.5 times the average value of the world. However due to high topographic relief of the Central Mountain Range in Taiwan, groundwater storage is critical for water supply. Mountain region of the Goaping river watershed in southern Taiwan is one of the potential areas to develop groundwater recharge model. Therefore the target of this study is to understand sources of groundwater and surface water using dissolved gas and fluid chemistry. Four groundwater and 6 surface water samples were collected from watershed, 5 groundwater and 13 surface water samples were collected from downstream. All samples were analyzed for stable isotopes (hydrogen and oxygen), dissolved gases (including nitrogen, oxygen, argon, methane and carbon dioxide), noble gases (helium and radon) and major ions. Hydrogen and oxygen isotopic ratios of surface water and groundwater samples aligned along meteoric water line. For surface water, dissolved gases are abundant in N2 (>80%) and O2 (>10%); helium isotopic ratio is approximately equal to 1 RA (RA is 3He/4He ratio of air); radon-222 concentration is below the detection limit (<200 Bq/m3); and concentrations of major anions and cations are low (Na+ <20 ppm, Ca2+ < 60 ppm, Cl- <2 ppm). All these features indicate that surface waters are predominately recharged by precipitation. For groundwater, helium isotopic ratios (0.9˜0.23 RA) are lower and radon-222 concentrations (300˜6000 Bq/m3) are much higher than the surface water. Some samples have high amounts of dissolved gases, such as CH4 (>20%) or CO2 (>10%), most likely contributed by biogenic or geogenic sources. On the other hand, few samples that have temperature 5° higher than the average of other samples, show significantly high Na+ (>1000 ppm), Ca2+ (>150 ppm) and Cl- (>80 ppm) concentrations. An interaction between such groundwater and local hot springs is inferred. Watershed and downstream samples differ in dissolved gas species and fluid chemistry for groundwater and surface water. The higher hydrogen and oxygen isotopic ratios for surface water from downstream are most probably caused by evaporation. Low radon-222 concentrations of some groundwater from downstream may represent sources from different aquifers. Therefore, we conclude that surface water from downstream are recharged directly from its watershed, but groundwater are influenced by the local geological environment. Keywords: groundwater, dissolved gas, noble gas, radon in water, 3He/4He
Experimental technique for studying high-temperature phases in reactive molten metal based systems
NASA Astrophysics Data System (ADS)
Ermoline, A.; Schoenitz, M.; Hoffmann, V. K.; Dreizin, E. L.
2004-12-01
Containerless, microgravity experiments for studying equilibria in molten metal-gas systems have been designed and conducted onboard of a NASA KC-135 aircraft flying parabolic trajectories. An experimental apparatus enabling one to acoustically levitate, laser heat, and splat quench 1-3 mm metal and ceramic samples has been developed and equipped with computer-based controller and optical diagnostics. Normal-gravity testing determined the levitator operation parameters providing stable and adjustable sample positioning. A methodology for optimizing the levitator performance using direct observation of levitated samples was developed and found to be more useful than traditional pressure mapping of the acoustic field. In microgravity experiments, spherical specimens prepared of pressed, premixed powders of ZrO2, ZrN, and Zr, were acoustically levitated inside an argon-filled chamber at one atmosphere and heated by a CO2 laser up to 2800 K. Using a uniaxial acoustic levitator in microgravity, the location of the laser-heated samples could be maintained for about 1 s, so that local sample melting was achieved. Oscillations of the levitating samples in horizontal direction became pronounced in microgravity. These oscillations increased during the sample heating and eventually resulted in moving the sample out of the stable position and away from the laser beam.
Multi-Dimensional Measurements of Combustion Species in Flame Tube and Sector Gas Turbine Combustors
NASA Technical Reports Server (NTRS)
Hicks, Yolanda Royce
1996-01-01
The higher temperature and pressure cycles of future aviation gas turbine combustors challenge designers to produce combustors that minimize their environmental impact while maintaining high operation efficiency. The development of low emissions combustors includes the reduction of unburned hydrocarbons, smoke, and particulates, as well as the reduction of oxides of nitrogen (NO(x)). In order to better understand and control the mechanisms that produce emissions, tools are needed to aid the development of combustor hardware. Current methods of measuring species within gas turbine combustors use extractive sampling of combustion gases to determine major species concentrations and to infer the bulk flame temperature. These methods cannot be used to measure unstable combustion products and have poor spatial and temporal resolution. The intrusive nature of gas sampling may also disturb the flow structure within a combustor. Planar laser-induced fluorescence (PLIF) is an optical technique for the measurement of combustion species. In addition to its non-intrusive nature, PLIF offers these advantages over gas sampling: high spatial resolution, high temporal resolution, the ability to measure unstable species, and the potential to measure combustion temperature. This thesis considers PLIF for in-situ visualization of combustion species as a tool for the design and evaluation of gas turbine combustor subcomponents. This work constitutes the first application of PLIF to the severe environment found in liquid-fueled, aviation gas turbine combustors. Technical and applied challenges are discussed. PLIF of OH was used to observe the flame structure within the post flame zone of a flame tube combustor, and within the flame zone of a sector combustor, for a variety of fuel injector configurations. OH was selected for measurement because it is a major combustion intermediate, playing a key role in the chemistry of combustion, and because its presence within the flame zone can serve as a qualitative marker of flame temperature. All images were taken in the environment of actual engines during flight, using actual jet fuel. The results of the PLIF study led directly to the modification of a fuel injector.
NASA Astrophysics Data System (ADS)
Park, Hyanjoo; Choe, Seunghoe; Kim, Hoyoung; Kim, Dong-Kwon; Cho, GeonHee; Park, YoonSu; Jang, Jong Hyun; Ha, Don-Hyung; Ahn, Sang Hyun; Kim, Soo-Kil
2018-06-01
Pt catalysts for water electrolysis were prepared on carbon paper by using both direct current and pulse electrodeposition. Controlling the mass transfer of Pt precursor in the electrolyte by varying the deposition potential enables the formation of various Pt particle shapes such as flower-like and polyhedral particles. Further control of the deposition parameters for pulse electrodeposition resulted in changes to the particle size and density. In particular, the upper potential of pulse was found to be the critical parameter controlling the morphology of the particles and their catalytic activity. In addition to the typical electrochemical measurements, Pt samples deposited on carbon paper were used as cathodes for a proton exchange membrane water electrolyser. This single cell test revealed that our Pt particle samples have exceptional mass activity while being cost effective.
Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels.
Melin, Jessica; van der Wijngaart, Wouter; Stemme, Göran
2005-06-01
This paper introduces a method of combining open and closed microchannels in a single component in a novel way which couples the benefits of both open and closed microfluidic systems and introduces interesting on-chip microfluidic behaviour. Fluid behaviour in such a component, based on continuous pressure driven flow and surface tension, is discussed in terms of cross sectional flow behaviour, robustness, flow-pressure performance, and its application to microfluidic interfacing. The closed-open-closed microchannel possesses the versatility of upstream and downstream closed microfluidics along with open fluidic direct access. The device has the advantage of eliminating gas bubbles present upstream when these enter the open channel section. The unique behaviour of this device opens the door to applications including direct liquid sample interfacing without the need for additional and bulky sample tubing.
Steady state fractionation of heavy noble gas isotopes in a deep unsaturated zone
Seltzer, Alan M.; Severinghaus, Jeffrey P.; Andraski, Brian J.; Stonestrom, David A.
2017-01-01
To explore steady state fractionation processes in the unsaturated zone (UZ), we measured argon, krypton, and xenon isotope ratios throughout a ∼110 m deep UZ at the United States Geological Survey (USGS) Amargosa Desert Research Site (ADRS) in Nevada, USA. Prior work has suggested that gravitational settling should create a nearly linear increase in heavy-to-light isotope ratios toward the bottom of stagnant air columns in porous media. Our high-precision measurements revealed a binary mixture between (1) expected steady state isotopic compositions and (2) unfractionated atmospheric air. We hypothesize that the presence of an unsealed pipe connecting the surface to the water table allowed for direct inflow of surface air in response to extensive UZ gas sampling prior to our first (2015) measurements. Observed isotopic resettling in deep UZ samples collected a year later, after sealing the pipe, supports this interpretation. Data and modeling each suggest that the strong influence of gravitational settling and weaker influences of thermal diffusion and fluxes of CO2 and water vapor accurately describe steady state isotopic fractionation of argon, krypton, and xenon within the UZ. The data confirm that heavy noble gas isotopes are sensitive indicators of UZ depth. Based on this finding, we outline a potential inverse approach to quantify past water table depths from noble gas isotope measurements in paleogroundwater, after accounting for fractionation during dissolution of UZ air and bubbles.
Akhond, Morteza; Absalan, Ghodratollah; Pourshamsi, Tayebe; Ramezani, Amir M
2016-07-01
Gas-assisted dispersive liquid-phase microextraction (GA-DLPME) has been developed for preconcentration and spectrophotometric determination of copper ion in different water samples. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate and argon gas, respectively, were used as the extracting solvent and disperser. The procedure was based on direct reduction of Cu(II) to Cu(I) by hydroxylamine hydrochloride, followed by extracting Cu(I) into ionic liquid phase by using neocuproine as the chelating agent. Several experimental variables that affected the GA-DLPME efficiency were investigated and optimized. Under the optimum experimental conditions (IL volume, 50µL; pH, 6.0; acetate buffer, 1.5molL(-1); reducing agent concentration, 0.2molL(-1); NC concentration, 120µgmL(-1); Ar gas bubbling time, 6min; argon flow rate, 1Lmin(-1); NaCl concentration, 6% w/w; and centrifugation time, 3min), the calibration graph was linear over the concentration range of 0.30-2.00µgmL(-1) copper ion with a limit of detection of 0.07µgmL(-1). Relative standard deviation for five replicate determinations of 1.0µgmL(-1) copper ion was found to be 3.9%. The developed method was successfully applied to determination of both Cu(I) and Cu(II) species in water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Properties of the highly ionized disk and halo gas toward two distant high-latitude stars
NASA Technical Reports Server (NTRS)
Savage, Blair D.; Sembach, K. R.
1994-01-01
Goddard High Resolution Spectrograph (GHRS) intermediate -resolution observations of S III, Si III, Al III, Si IV, C IV, and N V absorption along the sight lines to HD 18100 (l = 217.9 deg, b = -62.7, d = 3.1 kpc, z = -2.8 kpc) and HD 100340 (l = 258.9 deg, b = +61.2 deg, d = 5.3 kpc, z = 4.6 kpc) are presented. These small science aperture spectra have resolutions ranging from 11 to 20 km/s full width at half maximum (FWHM) and S/N from 30 to 65 per diode substep. Strong absorption by moderately and highly ionized gas is seen in each direction. The absorption in the direction of the south Galactic polar region (HD 18100) is kinematically simple, while the absorption in the direction of north Galactic polar region (HD 100304) is kinematically complex. In each case the absorption by the highly ionized gas lies within the velocity range of absorption by neutral and weakly ionized gas. Along each sight line, the velocity dispersion determined from the unsaturated absorption lines increases with the energy required to create each ion. The logarithmic column densities for Al III, Si IV, C IV, and N V are log N(atoms/sq cm = 12.71, 13.10, 13.58, and 12.75 toward HD 18100 and log N = 12.88, 13.31, 13.83, and 13.04 toward HD 100340. Average ionic ratios among these species are very similar along the two sight lines. Differences in profile shape between the absorption for AL II, Si IV, C IV, and N V provide additional support for the claim of Savage, Sembach, & Cardelli (1994) that there exists two types of highly ionized gas in the interstellar medium. One type of highly ionized gas is responsible for the structured Si IV absorption and part of the C IV absorption. In this gas N(C IV)/N(Si IV) approximately 3.0 and N(C IV)/N(N V) greater than 6. The absorption by this gas seems to be associated with some type of self-regulating interface or mixing layer between the warm and hot interstellar medium. The other type of highly ionized gas is responsible for most of the N V absorption, part of the C IV absorption, and has very little associated Si IV absorption. In this gas N(C IV)/N(N V) is approximately 1 to 3. This gas is hot (T greater than 2 x 10(exp 5) K) and may be tracing the cooling gas of supernova (SN) bubbles or a Galactic fountain. The relative mixture of these two types of highly ionized gas varies from one sight line to the next. The two sight lines in this study sample halo gas in the solar neighborhood and have a smaller percentage of the more highly ionized gas than inner Galaxy sight lines.
NASA Astrophysics Data System (ADS)
Yan, Yangqian; Blume, D.
2016-06-01
The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b4 of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b4 , our b4 agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.
Constraints on a possible variation of the fine structure constant from galaxy cluster data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holanda, R.F.L.; Landau, S.J.; Sánchez G, I.E.
2016-05-01
We propose a new method to probe a possible time evolution of the fine structure constant α from X-ray and Sunyaev-Zel'dovich measurements of the gas mass fraction ( f {sub gas}) in galaxy clusters. Taking into account a direct relation between variations of α and violations of the distance-duality relation, we discuss constraints on α for a class of dilaton runaway models. Although not yet competitive with bounds from high- z quasar absorption systems, our constraints, considering a sample of 29 measurements of f {sub gas}, in the redshift interval 0.14 < z < 0.89, provide an independent estimate ofmore » α variation at low and intermediate redshifts. Furthermore, current and planned surveys will provide a larger amount of data and thus allow to improve the limits on α variation obtained in the present analysis.« less
Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia), Mediterranean Sea.
Louati, A; Elleuch, B; Kallel, M; Saliot, A; Dagaut, J; Oudot, J
2001-06-01
The coastal area off the city of Sfax (730,000 inhabitants), well-known for fisheries and industrial activities, receives high inputs of organic matter mostly anthropogenic. Eighteen stations were selected in the vicinity of the direct discharge of industrial sewage effluents in the sea in order to study the spatial distribution of the organic contamination. Surface sediments sampled in the shallow shelf were analysed for hydrocarbons by Fourier transform infrared spectroscopy, gas chromatography and gas chromatography/mass spectrometry. Total hydrocarbon distributions revealed high contamination as compared to other coastal Mediterranean sites, with an average concentration of 1865 ppm/dry weight sediment. Gas chromatographic distribution patterns, values of unresolved mixture/n-alkane ratio and distributions of steranes and hopanes confirmed a petroleum contamination of the Arabian light crude oil type. Biogenic compounds were also identified with a series of short-chain carbon-numbered n-alkenes in the carbon range 16-24.
Stern, Laura A.; Lorenson, T.D.
2014-01-01
We report on grain-scale characteristics and gas analyses of gas-hydrate-bearing samples retrieved by NGHP Expedition 01 as part of a large-scale effort to study gas hydrate occurrences off the eastern-Indian Peninsula and along the Andaman convergent margin. Using cryogenic scanning electron microscopy, X-ray spectroscopy, and gas chromatography, we investigated gas hydrate grain morphology and distribution within sediments, gas hydrate composition, and methane isotopic composition of samples from Krishna–Godavari (KG) basin and Andaman back-arc basin borehole sites from depths ranging 26 to 525 mbsf. Gas hydrate in KG-basin samples commonly occurs as nodules or coarse veins with typical hydrate grain size of 30–80 μm, as small pods or thin veins 50 to several hundred microns in width, or disseminated in sediment. Nodules contain abundant and commonly isolated macropores, in some places suggesting the original presence of a free gas phase. Gas hydrate also occurs as faceted crystals lining the interiors of cavities. While these vug-like structures constitute a relatively minor mode of gas hydrate occurrence, they were observed in near-seafloor KG-basin samples as well as in those of deeper origin (>100 mbsf) and may be original formation features. Other samples exhibit gas hydrate grains rimmed by NaCl-bearing material, presumably produced by salt exclusion during original hydrate formation. Well-preserved microfossil and other biogenic detritus are also found within several samples, most abundantly in Andaman core material where gas hydrate fills microfossil crevices. The range of gas hydrate modes of occurrence observed in the full suite of samples suggests a range of formation processes were involved, as influenced by local in situconditions. The hydrate-forming gas is predominantly methane with trace quantities of higher molecular weight hydrocarbons of primarily microbial origin. The composition indicates the gas hydrate is Structure I.
Pérez, Rosa Ana; Rojo, Maria Dolores; González, Gema; De Lorenzo, Cristina
2008-01-01
A method using solid-phase microextraction (SPME) and gas chromatography/mass spectrometry was developed and applied to the determination of volatile compounds generated in meat, at different times, from ground beef stored under refrigeration. Selection of the extractive fiber, extraction time, and headspace (HS) or direct extraction was optimized for the determination of volatile compounds from ground meat. Various fibers were investigated, and carboxen/polydimethylsiloxane was selected for these analyses. The HS analysis of the solid sample by HS-SPME produced a higher volatile signal than did direct-SPME. The meat samples were stored under refrigeration and analyzed after 0, 3, and 6 days of storage. These analyses at different times showed important changes in the volatile profile of the evaluated samples. The ketones 3-hydroxy-2-butanone and 2,3-butanedione, and the alcohol 3-methyl-1-butanol were the most representative compounds generated during the meat storage. In general, compounds associated with a butter off-flavor were detected during the storage of raw ground beef.
Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis
NASA Astrophysics Data System (ADS)
Horn, R.; Korup, O.; Geske, M.; Zavyalova, U.; Oprea, I.; Schlögl, R.
2010-06-01
The present work describes a reactor that allows in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. The reactor design allows measurements up to temperatures of 1300 °C and 45 bar pressure, i.e., conditions of industrial relevance. The reactor involves reactants flowing through a solid catalyst bed containing a sampling capillary with a side sampling orifice through which a small fraction of the reacting fluid (gas or liquid) is transferred into an analytical device (e.g., mass spectrometer, gas chromatograph, high pressure liquid chromatograph) for quantitative analysis. The sampling capillary can be moved with μm resolution in or against flow direction to measure species profiles through the catalyst bed. Rotation of the sampling capillary allows averaging over several scan lines. The position of the sampling orifice is such that the capillary channel through the catalyst bed remains always occupied by the capillary preventing flow disturbance and fluid bypassing. The second function of the sampling capillary is to provide a well which can accommodate temperature probes such as a thermocouple or a pyrometer fiber. If a thermocouple is inserted in the sampling capillary and aligned with the sampling orifice fluid temperature profiles can be measured. A pyrometer fiber can be used to measure the temperature profile of the solid catalyst bed. Spatial profile measurements are demonstrated for methane oxidation on Pt and methane oxidative coupling on Li/MgO, both catalysts supported on reticulated α -Al2O3 foam supports.
The galaxy cluster outskirts probed by Chandra
NASA Astrophysics Data System (ADS)
Morandi, Andrea; Sun, Ming; Forman, William; Jones, Christine
2015-08-01
Exploring the virialization region of galaxy clusters has recently raised the attention of the scientific community, offering a direct view of structure formation. In this talk, I will present recent results on the physical properties of the intracluster medium in the outer volumes of a sample of 320 clusters (0.056
What metrology can do to improve the quality of your atmospheric ammonia measurements
NASA Astrophysics Data System (ADS)
Leuenberger, Daiana; Martin, Nicholas A.; Pascale, Céline; Guillevic, Myriam; Ackermann, Andreas; Ferracci, Valerio; Cassidy, Nathan; Hook, Josh; Battersby, Ross M.; Tang, Yuk S.; Stevens, Amy C. M.; Jones, Matthew R.; Braban, Christine F.; Gates, Linda; Hangartner, Markus; Sacco, Paolo; Pagani, Diego; Hoffnagle, John A.; Niederhauser, Bernhard
2017-04-01
Measuring ammonia in ambient air is a sensitive and priority issue due to its harmful effects on human health and ecosystems. The European Directive 2001/81/EC on "National Emission Ceilings for Certain Atmospheric Pollutants (NEC)" regulates ammonia emissions in the member states. However, there is a lack of regulation to ensure reliable ammonia measurements, namely in applicable analytical technology, maximum allowed uncertainty, quality assurance and quality control (QC/QA) procedures, as well as in the infrastructure to attain metrological traceability, i.e. that the results of measurements are traceable to SI-units through an unbroken chain of calibrations. In the framework of the European Metrology Research Programme (EMRP) project on the topic "Metrology for Ammonia in Ambient Air" (MetNH3), European national metrology institutes (NMI's) have joined to tackle the issue of generating SI-traceable reference material, i.e. generate reference gas mixtures containing known amount fractions of NH3.This requires special infrastructure and analytical techniques: Measurements of ambient ammonia are commonly carried out with diffusive samplers or by active sampling with denuders, but such techniques have not yet been extensively validated. Improvements in the metrological traceability may be achieved through the determination of NH3 diffusive sampling rates using ammonia Primary Standard Gas Mixtures (PSMs), developed by gravimetry at the National Physical Laboratory NPL and a controlled atmosphere test facility in combination with on-line monitoring with a cavity ring-down spectrometer. The Federal Institute of Metrology METAS has developed an infrastructure to generate SI-traceable NH3 reference gas mixtures dynamically in the amount fraction range 0.5-500 nmol/mol (atmospheric concentrations) and with uncertainties UNH3 <3%. The infrastructure consists of a stationary as well as a mobile device for full flexibility for calibrations in the laboratory and in the field. Both devices apply the method of temperature and pressure dependant permeation of a pure substance through a membrane into a stream of pre-purified matrix gas and subsequent dilution to required amount fractions. All relevant parameters are fully traceable to SI-units. Extractive optical analysers can be connected directly to both, stationary and mobile systems for calibration. Moreover, the resulting gas mixture can also be pressurised into coated cylinders by cryo-filling. The mobile system as well as these cylinders can be applied for calibrations of optical instruments in other laboratories and in the field. In addition, an SI-traceable dilution system based on a cascade of critical orifices has been established to dilute NH3 mixtures in the order of μmol/mol stored in cylinders. It is planned to apply this system to calibrate and re-sample gas mixtures in cylinders due to its very economical gas use. Here we present insights into the development of said infrastructure and results performance tests. Moreover, we include results of the study on adsorption/desorption effects in dry as well as humidified matrix gas into the discussion on the generation of reference gas mixtures. Acknowledgement: This work was supported by the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.
NASA Astrophysics Data System (ADS)
Yang, Huiming; Hu, Liangping
2017-05-01
In order to study the coalbed gas drainage effect and economy of long directional roof borehole, 2 boreholes were laid out in Xinji No. 2 mine to analyze its gas drainage and investment costs comparing with high position roof borehole and high position roof roadway. The result indicates that the long directional roof borehole save investment by 44.8% and shorten the construction period by 30%, comparing with high position roof roadway for controlling gas in the working face. Investment slightly less and shorten the construction period by 47.5%, comparing with the roof high position borehole. Therefore, the method of the long directional roof borehole to drain coalbed gas in working face is the most cost-effective.
NASA Astrophysics Data System (ADS)
Buchholz, Bernhard; Afchine, Armin; Klein, Alexander; Schiller, Cornelius; Krämer, Martina; Ebert, Volker
2017-01-01
The novel Hygrometer for Atmospheric Investigation (HAI) realizes a unique concept for simultaneous gas-phase and total (gas-phase + evaporated cloud particles) water measurements. It has been developed and successfully deployed for the first time on the German HALO research aircraft. This new instrument combines direct tunable diode laser absorption spectroscopy (dTDLAS) with a first-principle evaluation method to allow absolute water vapor measurements without any initial or repetitive sensor calibration using a reference gas or a reference humidity generator. HAI contains two completely independent dual-channel (closed-path, open-path) spectrometers, one at 1.4 and one at 2.6 µm, which together allow us to cover the entire atmospheric H2O range from 1 to 40 000 ppmv with a single instrument. Both spectrometers each comprise a separate, wavelength-individual extractive, closed-path cell for total water (ice and gas-phase) measurements. Additionally, both spectrometers couple light into a common open-path cell outside of the aircraft fuselage for a direct, sampling-free, and contactless determination of the gas-phase water content. This novel twin dual-channel setup allows for the first time multiple self-validation functions, in particular a reliable, direct, in-flight validation of the open-path channels. During the first field campaigns, the in-flight deviations between the independent and calibration-free channels (i.e., closed-path to closed-path and open-path to closed-path) were on average in the 2 % range. Further, the fully autonomous HAI hygrometer allows measurements up to 240 Hz with a minimal integration time of 1.4 ms. The best precision is achieved by the 1.4 µm closed-path cell at 3.8 Hz (0.18 ppmv) and by the 2.6 µm closed-path cell at 13 Hz (0.055 ppmv). The requirements, design, operation principle, and first in-flight performance of the hygrometer are described and discussed in this work.
Direct determination of fatty acids in fish tissues: quantifying top predator trophic connections.
Parrish, Christopher C; Nichols, Peter D; Pethybridge, Heidi; Young, Jock W
2015-01-01
Fatty acids are a valuable tool in ecological studies because of the large number of unique structures synthesized. They provide versatile signatures that are being increasingly employed to delineate the transfer of dietary material through marine and terrestrial food webs. The standard procedure for determining fatty acids generally involves lipid extraction followed by methanolysis to produce methyl esters for analysis by gas chromatography. By directly transmethylating ~50 mg wet samples and adding an internal standard it was possible to greatly simplify the analytical methodology to enable rapid throughput of 20-40 fish tissue fatty acid analyses a day including instrumental analysis. This method was verified against the more traditional lipid methods using albacore tuna and great white shark muscle and liver samples, and it was shown to provide an estimate of sample dry mass, total lipid content, and a condition index. When large fatty acid data sets are generated in this way, multidimensional scaling, analysis of similarities, and similarity of percentages analysis can be used to define trophic connections among samples and to quantify them. These routines were used on albacore and skipjack tuna fatty acid data obtained by direct methylation coupled with literature values for krill. There were clear differences in fatty acid profiles among the species as well as spatial differences among albacore tuna sampled from different locations.
Soil Gas Sample Handling: Evaluation of Water Removal and Sample Ganging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, Brad G.; Abrecht, David G.; Hayes, James C.
2016-10-31
Soil gas sampling is currently conducted in support of Nuclear Test Ban treaty verification. Soil gas samples are collected and analyzed for isotopes of interest. Some issues that can impact sampling and analysis of these samples are excess moisture and sample processing time. Here we discuss three potential improvements to the current sampling protocol; a desiccant for water removal, use of molecular sieve to remove CO 2 from the sample during collection, and a ganging manifold to allow composite analysis of multiple samples.
Radioiodine detector based on laser induced fluorescence
McDonald, Jimmie R.; Baronavski, Andrew P.
1980-01-01
The invention involves the measurement of the concentration of the radioisotope .sup.129 I.sub.2 in the presence of a gas. The invention uses a laser to excite a sample of the .sup.129 I.sub.2 in a sample gas chamber and a reference sample of a known concentration of .sup.129 I.sub.2 in a reference gas chamber. The .sup.129 I.sub.2 in the sample and reference gas chamber each gives off fluorescence emissions which are received by photomultipliers which provide signals to a detector. The detector uses a ratioing technique to determine the concentration of .sup.129 I.sub.2 in the sample gas chamber.
Guzzon, Raffaele; Widmann, Giacomo; Bertoldi, Daniela; Nardin, Tiziana; Callone, Emanuela; Nicolini, Giorgio; Larcher, Roberto
2015-02-01
The paper presents a new approach, covering wood with silica-based material in order to protect it from spoilage due to microbial colonisation and avoiding the loss of the natural features of the wood. Wood specimens derived from wine barrels were treated with methyltriethoxysilane in gas phase, leading to the deposition of a silica nanofilm on the surface. (29)Si and (13)C solid state Nuclear Magnetic Resonance and Scanning Electron Microscope-Energy Dispersive X-ray analysis observations showed the formation of a silica polymeric film on the wood samples, directly bonding with the wood constituents. Inductively Coupled Plasma-Mass Spectroscopy quantification of Si showed a direct correlation between the treatment time and silica deposition on the surface of the wood. The silica-coated wood counteracted colonisation by the main wine spoilage microorganisms, without altering the migration from wood to wine of 21 simple phenols measured using a HPLC-Electrochemical Coulometric Detection. Copyright © 2013 Elsevier Ltd. All rights reserved.
Microminiature gas chromatograph
Yu, C.M.
1996-12-10
A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.
NASA Astrophysics Data System (ADS)
Suzuki, Yoshinari; Ohara, Ryota; Matsunaga, Kirara
2017-09-01
Nuclear power plant accidents release radioactive strontium 90 (90Sr) into the environment. Monitoring of 90Sr, although important, is difficult and time consuming because it emits only beta radiation. We have developed a new analytical system that enables real-time analysis of 90Sr in atmospheric particulate matter with an analytical run time of only 10 min. Briefly, after passage of an air sample through an impactor, a small fraction of the sample is introduced into a gas-exchange device, where the air is replaced by Ar. Then the sample is directly introduced into an inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) system equipped with a collision/reaction cell to eliminate isobaric interferences on 90Sr from 90Zr+, 89Y1H+, and 90Y+. Experiments with various reaction gas conditions revealed that these interferences could be minimized under the following optimized conditions: 1.0 mL min- 1 O2, 10.0 mL min- 1 H2, and 1.0 mL min- 1 NH3. The estimated background equivalent concentration and estimated detection limit of the system were 9.7 × 10- 4 and 3.6 × 10- 4 ng m- 3, respectively, which are equivalent to 4.9 × 10- 6 and 1.8 × 10- 6 Bq cm- 3. Recoveries of Sr in PM2.5 measured by real-time analysis compared to those obtained by simultaneously collection on filter was 53 ± 23%, and using this recovery, the detection limit as PM2.5 was estimated to be 3.4 ± 1.5 × 10- 6 Bq cm- 3. That is, this system enabled detection of 90Sr at concentrations < 5 × 10- 6 Bq cm- 3 even considering the insufficient fusion/vaporization/ionization efficiency of Sr in PM2.5.
NASA Astrophysics Data System (ADS)
Seeger, Tassia S.; Machado, Eduarda Q.; Flores, Erico M. M.; Mello, Paola A.; Duarte, Fabio A.
2018-03-01
In this study, Na and K were determined in desalted crude oil by direct sampling graphite furnace atomic absorption spectrometry (DS-GF AAS), with the use of a Zeeman-effect background correction system with variable magnetic field. The analysis was performed in low and high sensitivity conditions. Sodium determination was performed in two low-sensitivity conditions: 1) main absorption line (589.0 nm), gas stop flow during the atomization step and 3-field dynamic mode (0.6-0.8 T); and 2) secondary absorption line (330.3 nm), gas stop flow during the atomization and 2-field mode (0.8 T). In K determination, some parameters, such as high-sensitivity mode, main absorption line (766.5 nm), gas stop flow during the atomization and 2-field mode (0.8 T), were used. Suitability of chemical modifiers, such as Pd and W-Ir was also evaluated. The heating program for Na and K was based on the pyrolysis and atomization curves. Calibration was performed by aqueous standards. Accuracy was evaluated by the analysis of Green Petroleum Coke (SRM NIST 2718) and Trace Elements in Fuel Oil (SRM NIST 1634c). Recovery tests were also performed and results were compared with those obtained by GF AAS after crude oil digestion by microwave-assisted digestion. The characteristic mass of Na was 17.1 pg and 0.46 ng in conditions 1 and 2, respectively, while the one of K was 1.4 pg. Limits of detection and quantification by DS-GF AAS were 30 and 40 ng g-1 for Na and 3.2 and 4.2 ng g-1 for K, respectively. Sodium and K were determined in three crude oil samples with API density ranging from 20.9 to 28.0. Sodium and K concentration ranged from 1.5 to 73 μg g-1 and from 23 to 522 ng g-1, respectively.
NASA Technical Reports Server (NTRS)
Huff, Timothy L.; Griffin, Dennis E. (Technical Monitor)
2001-01-01
Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR, The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected real-time, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in the selection of other appropriate analytical procedures for further material characterization.
NASA Astrophysics Data System (ADS)
Brumer, S. E.; Zappa, C. J.; Fairall, C. W.; Blomquist, B.; Brooks, I. M.; Tamura, H.; Yang, M.; Huebert, B. J.
2016-02-01
The High Wind Gas exchange Study (HiWinGS) presents the unique opportunity to gain new insights on the poorly understood aspects of air-sea interaction under high winds. The HiWinGS cruise took place in the North Atlantic during October and November 2013. Wind speeds exceeded 15 m s-1 25% of the time, including 48 hrs with U10 > 20 m s-1. Continuous measurements of turbulent fluxes of heat, momentum, and gas were taken from the bow of the R/V Knorr. Visible imagery was acquired from the port and starboard side of the flying bridge during daylight hours at 20Hz and directional wave spectra were obtained when on station from a wave rider buoy. Additional wave field statistics were computed from a laser altimeter as well as from a Wavewatch III hindcast. Taking advantage of the range of physical forcing and wave conditions sampled during HiWinGS, we investigate how the fractional whitecap coverage (W) and gas transfer velocity (K) vary with sea state. We distinguish between windseas and swell based on a separation algorithm applied to directional wave spectra, allowing contrasting pure windseas to swell dominated periods. For mixed seas, system alignment is considered when interpreting results. The four gases sampled during HiWinGS ranged from being mostly waterside controlled to almost entirely airside controlled. While bubble-mediated transfer appears to be small for moderately soluble gases like DMS, the importance of wave breaking turbulence transport has yet to be determined for all gases regardless of their solubility. This will be addressed by correlating measured K to estimates of active whitecap fraction (WA) and turbulent kinetic energy dissipation rate (ɛ). WA and ɛ are estimated from moments of the breaking crest length distribution derived from the imagery, focusing on young seas, when it is likely that large-scale breaking waves (i.e., whitecapping) will dominate the ɛ.
Fernández-Ramos, C; Ballesteros, O; Blanc, R; Zafra-Gómez, A; Jiménez-Díaz, I; Navalón, A; Vílchez, J L
2012-08-30
In the present paper, we developed an accurate method for the analysis of alcohol sulfates (AS) in wastewater samples from wastewater treatment plant (WWTP) influents and effluents. Although many methodologies have been published in the literature concerning the study of anionic surfactants in environmental samples, at present, the number of analytical methodologies that focus in the determination of AS by gas chromatography in the different environmental compartments is limited. The reason for this is that gas chromatography-mass spectrometry (GC-MS) technique requires a previous hydrolysis reaction followed by derivatization reactions. In the present work, we proposed a new procedure in which the hydrolysis and derivatization reactions take place in one single step and AS are directly converted to trimethylsilyl derivatives. The main factors affecting solid-phase extraction (SPE), hydrolysis/derivatization and GC-MS procedures were accurately optimised. Quantification of the target compounds was performed by using GC-MS in selected ion monitoring (SIM) mode. The limits of detection (LOD) obtained ranged from 0.2 to 0.3 μg L(-1), and limits of quantification (LOQ) from 0.5 to 1.0 μg L(-1), while inter- and intra-day variability was under 5%. A recovery assay was also carried out. Recovery rates for homologues in spiked samples ranged from 96 to 103%. The proposed method was successfully applied for the determination of anionic surfactants in wastewater samples from one WWTP located in Granada (Spain). Concentration levels for the homologues up to 39.4 μg L(-1) in influent and up to 8.1 μg L(-1) in effluent wastewater samples. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McDannell, Kalin T.; Zeitler, Peter K.; Janes, Darwin G.; Idleman, Bruce D.; Fayon, Annia K.
2018-02-01
Old slowly-cooled apatites often yield dispersed (U-Th)/He ages for a variety of reasons, some well understood and some not. Analytical protocols like careful grain selection can reduce the impact of this dispersion but add costs in time and resources and too often have proven insufficient. We assess a new analytical protocol that utilizes static-gas measurement during continuous ramped heating (CRH) as a means to rapidly screen apatite samples. In about the time required for a conventional total-gas analysis, this method can discriminate between samples showing expected volume-diffusion behavior and those showing anomalous release patterns inconsistent with their direct use in thermochronologic applications. This method also appears able to discriminate between the radiogenic and extraneous 4He fractions released by a sample, potentially allowing ages to be corrected. Well-behaved examples such as the Durango standard and other apatites with good age reproducibility show the expected smooth, sigmoidal gas-release curves predicted for volume diffusion using typical apatite kinetics, with complete exhaustion by ∼900 °C for linear heating at 20 °C/min. Secondary factors such as U and Th zoning and alpha-loss distribution have a relatively minor impact on such profiles. In contrast, samples having greater age dispersion show significant He release in the form of outgassing spikes and He release deferred to higher temperatures. Screening results for a range of samples permit us to assess the degree to which CRH screening can identify misbehaving grains, give insight into the source of extraneous He, and suggest that in some cases it may be possible to correct ages for the presence of such components.
Tewfik, Ihab
2008-01-01
2-Alkylcyclobutanones (cyclobutanones) are accepted as chemical markers for irradiated foods containing lipid. However, current extraction procedures (Soxhlet-florisil chromatography) for the isolation of these markers involve a long and tedious clean-up regime prior to gas chromatography-mass spectrophotometry identification. This paper outlines an alternative isolation and clean-up method for the extraction of cyclobutanones in irradiated Camembert cheese. The newly developed direct solvent extraction method enables the efficient screening of large numbers of food samples and is not as resource intensive as the BS EN 1785:1997 method. Direct solvent extraction appears to be a simple, robust method and has the added advantage of a considerably shorter extraction time for the analysis of foods containing lipid.
System automatically supplies precise analytical samples of high-pressure gases
NASA Technical Reports Server (NTRS)
Langdon, W. M.
1967-01-01
High-pressure-reducing and flow-stabilization system delivers analytical gas samples from a gas supply. The system employs parallel capillary restrictors for pressure reduction and downstream throttling valves for flow control. It is used in conjunction with a sampling valve and minimizes alterations of the sampled gas.
40 CFR 1065.342 - Sample dryer verification.
Code of Federal Regulations, 2011 CFR
2011-07-01
...)(2) to remove water from the sample gas, verify the performance upon installation, after major... before the sample gas reaches the analyzer. For example water can negatively interfere with a CLD's NOX... time. You may run this verification on the sample dryer alone, but you must use the maximum gas flow...
40 CFR 1065.342 - Sample dryer verification.
Code of Federal Regulations, 2010 CFR
2010-07-01
...)(2) to remove water from the sample gas, verify the performance upon installation, after major... before the sample gas reaches the analyzer. For example water can negatively interfere with a CLD's NOX... time. You may run this verification on the sample dryer alone, but you must use the maximum gas flow...
NASA Astrophysics Data System (ADS)
Manicke, Nicholas Edward; Abu-Rabie, Paul; Spooner, Neil; Ouyang, Zheng; Cooks, R. Graham
2011-09-01
A method is presented for the direct quantitative analysis of therapeutic drugs from dried blood spot samples by mass spectrometry. The method, paper spray mass spectrometry, generates gas phase ions directly from the blood card paper used to store dried blood samples without the need for complex sample preparation and separation; the entire time for preparation and analysis of blood samples is around 30 s. Limits of detection were investigated for a chemically diverse set of some 15 therapeutic drugs; hydrophobic and weakly basic drugs, such as sunitinib, citalopram, and verapamil, were found to be routinely detectable at approximately 1 ng/mL. Samples were prepared by addition of the drug to whole blood. Drug concentrations were measured quantitatively over several orders of magnitude, with accuracies within 10% of the expected value and relative standard deviation (RSD) of around 10% by prespotting an internal standard solution onto the paper prior to application of the blood sample. We have demonstrated that paper spray mass spectrometry can be used to quantitatively measure drug concentrations over the entire therapeutic range for a wide variety of drugs. The high quality analytical data obtained indicate that the technique may be a viable option for therapeutic drug monitoring.
Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming
2012-08-21
The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.
Torri, Cristian; Cordiani, Helena; Samorì, Chiara; Favaro, Lorenzo; Fabbri, Daniele
2014-09-12
Poly(hydroxyalkanoates) (PHAs) are polyesters formed by saturated short chain hydroxyacids, among which 3-hydroxybutanoic (HB) and 3-hydroxypentanoic (3-hydroxyvalerate, HV) are the most common monomers of homopolymers (e.g. poly(3-hydroxybutyrate), PHB) and copolymers (e.g. poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), PHB-HC). The most widely used approach for their determination is the polymer methanolysis followed by gas chromatography-mass spectrometry (GC-MS) analysis of the methylated monomers; this procedure generally requires the use of additional reagents (e.g. sulfuric acid) and is performed with harmful chlorinated solvents, such as chloroform. The development of fast routine solventless methods for the quantitative determination of PHAs and their monomeric composition is highly desirable to reduce sample pretreatment, speed up the analysis and decrease overall costs. It has been reported that under thermal treatment (e.g. pyrolysis, Py), PHAs are degraded in high yield (>40%, w/wPHA) into the corresponding 2-alkenoic acid (e.g. crotonic acid from PHB). This work aimed at investigating this reaction for direct analysis of PHAs in bacterial cells. The sample was directly subjected to pyrolysis and trapped pyrolysis products were analyzed by GC-FID. Off-line Py/GC-FID was first optimized on pure polymers with different monomer composition (PHB, PHB-HV, PHB-HC) and then applied to bacterial samples deriving from both mixed microbial cultures or selected strains, containing various types and amounts of PHAs. The Py/GC-FID method provided RSD <15% range, limit of detection of 100μg (1% PHAs in biomass), and results comparable to that of methanolysis (R(2)=0.9855), but with minimal sample pretreatment. Copyright © 2014 Elsevier B.V. All rights reserved.
Ghiasvand, Ali Reza; Hajipour, Somayeh
2016-01-01
Acrylamide is a potentially toxic and carcinogenic substance present in many high-consumption foods. Recently, this matter has been placed in category of "reasonably anticipated to be a human carcinogen" by National Toxicology Program (NTP). Therefore, simple and cost-effective determination of acrylamide in food samples has attracted intense interest. The most reported techniques for this purpose are GC-MS and LC-MS, which are very expensive and available in few laboratories. In this research, for the first time, a rapid, easy and low-cost method is introduced for sensitive and precise determination of acrylamide in foodstuffs, using gas chromatography-flame ionization detection (GC-FID) system after its direct trapping in the upper atmosphere of samples by headspace solid-phase microextraction (HS-SPME). The effects of main experimental variables were studied and the optimized parameters were obtained as the type of fiber, carboxen/divinylbenzene/polydimethylsiloxane (CAR/DVB/PDMS); extraction time, 30 min; extraction temperature, 60°C; moisture content, 10 µL water per 1g of sample; desorption time, 2 min; and desorption temperature, 230°C. The linear calibration graph was obtained in the range of 0.77-50 µg g(-1), with regression coefficient of 0.998. The detection and quantification limits of the proposed method were 0.22 and 0.77 µg g(-1), respectively. The recoveries, for different food samples, were 79.6-95.7%. The repeatability of measurements, expressed as relative standard deviation (RSD), were found to be 4.1-8.0% (n=9). The proposed HS-SPME-GC-FID method was successfully carried out for quantifying of trace levels of acrylamide in some processed food products (chips and French fries), sold in open local markets. Copyright © 2015 Elsevier B.V. All rights reserved.
Yılmazcan, Ö; Kanakaki, C; Izgi, B; Rosenberg, E
2015-07-01
A fast gas chromatography/mass spectrometry method was developed and validated for the analysis of the potential endocrine disrupters octinoxate and oxybenzone in swimming pool water samples based on the solvent-free solid-phase microextraction technique. The low-pressure gas chromatography/mass spectrometry method used for the fast identification of UV filter substances was compared to a conventional method in terms of sensitivity and speed. The fast method proposed resulted in 2 min runs, leading to an eightfold decrease in the total analysis time and a sevenfold improvement in detection limits. The main parameters affecting the solid-phase microextraction process were also studied in detail and the optimized conditions were as follows: fiber coating, polyacrylate; extraction mode, direct immersion; extraction temperature, 25°C; sample volume, 5 mL; extraction time 45 min; pH 6.5. Under the optimized conditions, a linear response was obtained in the concentration range of 0.5-25 μg/L with correlation coefficients in the range 0.990-0.999. The limits of detection were 0.17-0.29 μg/L, and the recoveries were 80-83%. Combined method uncertainty was assessed and found to be less than 7% for both analytes for concentrations equal to or higher than 5 μg/L. Pool water samples were analyzed to demonstrate the applicability of the proposed method. Neither octinoxate nor oxybenzone were detected in the swimming pool water samples at concentrations above the respective limits of detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lewicki, J. L.; Kelly, P. J.; Bergfeld, D.; Vaughan, R. G.; Lowenstern, J. B.
2017-11-01
We quantified gas and heat emissions in an acid-sulfate, vapor-dominated area (0.04-km2) of Norris Geyser Basin, located just north of the 0.63 Ma Yellowstone Caldera and near an area of anomalous uplift. From 14 May to 3 October 2016, an eddy covariance system measured half-hourly CO2, H2O and sensible (H) and latent (LE) heat fluxes and a Multi-GAS instrument measured (1 Hz frequency) atmospheric H2O, CO2 and H2S volumetric mixing ratios. We also measured soil CO2 fluxes using the accumulation chamber method and temperature profiles on a grid and collected fumarole gas samples for geochemical analysis. Eddy covariance CO2 fluxes ranged from - 56 to 885 g m- 2 d- 1. Using wavelet analysis, average daily eddy covariance CO2 fluxes were locally correlated with average daily environmental parameters on several-day to monthly time scales. Estimates of CO2 emission rate from the study area ranged from 8.6 t d- 1 based on eddy covariance measurements to 9.8 t d- 1 based on accumulation chamber measurements. Eddy covariance water vapor fluxes ranged from 1178 to 24,600 g m- 2 d- 1. Nighttime H and LE were considered representative of hydrothermal heat fluxes and ranged from 4 to 183 and 38 to 504 W m- 2, respectively. The total hydrothermal heat emission rate (H + LE + radiant) estimated for the study area was 11.6 MW and LE contributed 69% of the output. The mean ± standard deviation of H2O, CO2 and H2S mixing ratios measured by the Multi-GAS system were 9.3 ± 3.1 parts per thousand, 467 ± 61 ppmv, and 0.5 ± 0.6 ppmv, respectively, and variations in the gas compositions were strongly correlated with diurnal variations in environmental parameters (wind speed and direction, atmospheric temperature). After removing ambient H2O and CO2, the observed variations in the Multi-GAS data could be explained by the mixing of relatively H2O-CO2-H2S-rich fumarole gases with CO2-rich and H2O-H2S-poor soil gases. The fumarole H2O/CO2 and CO2/H2S end member ratios (101.7 and 27.1, respectively, on average) were invariant during the measurement period and fell within the range of values measured in direct fumarole gas samples. The soil gas H2O/CO2 end member ratios ( 15-30) were variable and low relative to the fumarole end member, likely resulting from water vapor loss during cooling and condensation in the shallow subsurface, whereas the CO2/H2S end member ratio was high ( 160), presumably related to transport of CO2-dominated soil gas emissions mixed with trace fumarolic emissions to the Multi-GAS station. Nighttime eddy covariance ratios of H2O to CO2 flux were typically between the soil gas and fumarole end member H2O/CO2 ratios defined by Multi-GAS measurements. Overall, the combined eddy covariance and Multi-GAS approach provides a powerful tool for quasi-continuous measurements of gas and heat emissions for improved volcano-hydrothermal monitoring.
Urakami, K; Saito, Y; Fujiwara, Y; Watanabe, C; Umemoto, K; Godo, M; Hashimoto, K
2000-12-01
Thermal desorption (TD) techniques followed by capillary GC/MS were applied for the analysis of residual solvents in bulk pharmaceuticals. Solvents desorbed from samples by heating were cryofocused at the head of a capillary column prior to GC/MS analysis. This method requires a very small amount of sample and no sample pretreatment. Desorption temperature was set at the point about 20 degrees C higher than the melting point of each sample individually. The relative standard deviations of this method tested by performing six consecutive analyses of 8 different samples were 1.1 to 3.1%, and analytical results of residual solvents were in agreement with those obtained by direct injection of N,N-dimethylformamide solution of the samples into the GC. This novel TD/GC/MS method was demonstrated to be very useful for the identification and quantification of residual solvents in bulk pharmaceuticals.
Huygens Gas Chromatograph Mass Spectrometer Results from Titan
NASA Technical Reports Server (NTRS)
Niemann, Hasso
2008-01-01
The Huygens Probe executed a successful entry, descent and impact on the Saturnian moon of Titan on January 14, 2005. Gas Chromatograph Mass Spectrometer (GCMS) instrument conducted isotopic and compositional measurements throughout the two and one half hour descent from 146 km altitude, and on the surface for 69 minutes until loss of signal from the orbiting Cassini spacecraft. The GCMS incorporated a quadrupole mass filter with a secondary electron multiplier detection system. The gas sampling system provided continuous direct atmospheric composition measurements and batch sampling through three gas chromatographic (GC) columns, a chemical scrubber and a hydrocarbon enrichment cell. The GCMS gas inlet was heated to prevent condensation, and to evaporate volatiles from the surface after impact. Data products from the GCMS included altitude profiles of the major atmospheric constituents dinitrogen (N2) and methane (CH4), isotope ratios of N-14/N-15, C-12/C-13, and D/H, mole fractions of radiogenic argon (Ar-40)and primordial argon Ar-36), and upper limits on the mole fractions of neon, krypton and xenon, which were found to be below the detection limit of the instrument or absent. Surface measurements confirmed the presence of ethane (C2H6) and cyanogen (C2N2). Later data products include the instrument response to surface outgassing of C2N2, C2H6, acetylene (C2H2),and carbon dioxide (CO2). More recent results include the detection of benzene (C6H6) and height profiles of molecular hydrogen (H2). Numerous other trace species evaporating from the surface were also identified using the GCMS data.
40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or methanol-fueled engines. In the CVS... test period. (2) Engine exhaust to CVS duct. For methanol-fueled engines, reactions of the exhaust... samples for the bag sample, the methanol sample (Figure N90-2), and the formaldehyde sample (Figure N90-3...
NASA Astrophysics Data System (ADS)
Barnhoorn, Auke; Houben, Maartje; Lie-A-Fat, Joella; Ravestein, Thomas; Drury, Martyn
2015-04-01
In unconventional tough gas reservoirs (e.g. tight sandstones or shales) the presence of fractures, either naturally formed or hydraulically induced, is almost always a prerequisite for hydrocarbon productivity to be economically viable. One of the formations classified so far as a potential interesting formation for shale gas exploration in the Netherlands is the Lower Jurassic Posidonia Shale Formation (PSF). However data of the Posidonia Shale Formation is scarce so far and samples are hard to come by, especially on the variability and heterogeneity of the petrophysical parameters of this shale little is known. Therefore research and sample collection is conducted on a time and depositional analogue of the PSF: the Whitby Mudstone Formation (WMF) in the United Kingdom. A large number of samples along a ~7m stratigraphic section of the Whitby Mudstone Formation have been collected and analysed. Standard petrophysical properties such as porosity and matrix densities are quantified for a number of samples throughout the section, as well as mineral composition analysis based on XRD/XRF and SEM analyses. Seismic velocity measurements are also conducted at multiple heights in the section and in multiple directions to elaborate on anisotropy of the material. Attenuation anisotropy is incorporated as well as Thomsen's parameters combined with elastic parameters, e.g. Young's modulus and Poisson's ratio, to quantify the elastic anisotropy. Furthermore rock mechanical experiments are conducted to determine the elastic constants, rock strength, fracture characteristics, brittleness index, fraccability and rock mechanical anisotropy across the stratigraphic section of the Whitby mudstone formation. Results show that the WMF is highly anisotropic and it exhibits an anisotropy on the large limit of anisotropy reported for US gas shales. The high anisotropy of the Whitby shales has an even larger control on the formation of the fracture network. Furthermore, most petrophysical properties are highly variable. They vary per sample, but even within a sample on a mm-scale, large variations in e.g. the porosity occur. These relatively large variations influence the potential for future shale gas exploration for these Lower Jurassic shales in northern Europe and need to be quantified in detail beforehand. Compositional analyses and rock deformation experiments on the first samples indicate relatively low brittleness indices for the Whitby shale, but variation of these parameters within the stratigraphy are present. All petrophysical analyses combined will provide a complete assessment of the potential for shale gas exploration of these Lower Jurassic shales.
Simulation of Ejecta Production and Mixing Process of Sn Sample under shock loading
NASA Astrophysics Data System (ADS)
Wang, Pei; Chen, Dawei; Sun, Haiquan; Ma, Dongjun
2017-06-01
Ejection may occur when a strong shock wave release at the free surface of metal material and the ejecta of high-speed particulate matter will be formed and further mixed with the surrounding gas. Ejecta production and its mixing process has been one of the most difficult problems in shock physics remain unresolved, and have many important engineering applications in the imploding compression science. The present paper will introduce a methodology for the theoretical modeling and numerical simulation of the complex ejection and mixing process. The ejecta production is decoupled with the particle mixing process, and the ejecta state can be achieved by the direct numerical simulation for the evolution of initial defect on the metal surface. Then the particle mixing process can be simulated and resolved by a two phase gas-particle model which uses the aforementioned ejecta state as the initial condition. A preliminary ejecta experiment of planar Sn metal Sample has validated the feasibility of the proposed methodology.
Lab-based ambient pressure X-ray photoelectron spectroscopy from past to present
NASA Astrophysics Data System (ADS)
Arble, Chris; Jia, Meng; Newberg, John T.
2018-05-01
Chemical interactions which occur at a heterogeneous interface between a gas and substrate are critical in many technological and natural processes. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental and chemical specific, with the ability to probe sample surfaces in the presence of a gas phase. In this review, we discuss the evolution of lab-based AP-XPS instruments, from the first development by Siegbahn and coworkers up through modern day systems. A comprehensive overview is given of heterogeneous experiments investigated to date via lab-based AP-XPS along with the different instrumental metrics that affect the quality of sample probing. We conclude with a discussion of future directions for lab-based AP-XPS, highlighting the efficacy for this in-demand instrument to continue to expand in its ability to significantly advance our understanding of surface chemical processes under in situ conditions in a technologically multidisciplinary setting.
Methods and apparatus for measuring small leaks from carbon dioxide sequestration facilities
Nelson, Jr., David D.; Herndon, Scott C.
2018-01-02
In one embodiment, a CO.sub.2 leak detection instrument detects leaks from a site (e.g., a CO.sub.2 sequestration facility) using rapid concentration measurements of CO.sub.2, O.sub.2 and optionally water concentration that are achieved, for example, using laser spectroscopy (e.g. direct absorption laser spectroscopy). Water vapor in the sample gas may not be removed, or only partially removed. The sample gas may be collected using a multiplexed inlet assembly from a plurality of locations. CO.sub.2 and O.sub.2 concentrations may be corrected based on the water concentration. A resulting dataset of the CO.sub.2 and O.sub.2 concentrations is analyzed over time intervals to detect any changes in CO.sub.2 concentration that are not anti-correlated with O.sub.2 concentration, and to identify a potential CO.sub.2 leak in response thereto. The analysis may include determining eddy covariance flux measurements of sub-surface potential carbon.
Reproducible direct exposure environmental testing of metal-based magnetic media
NASA Technical Reports Server (NTRS)
Sides, Paul J.
1994-01-01
A flow geometry and flow rate for mixed flowing gas testing is proposed. Use of an impinging jet of humid polluted air can provide a uniform and reproducible exposure of coupons of metal-based magnetic media. Numerical analysis of the fluid flow and mass transfer in such as system has shown that samples confined within a distance equal to the nozzle radius on the surface of impingement are uniformly accessible to pollutants in the impinging gas phase. The critical factor is the nozzle height above the surface of impingement. In particular, the uniformity of exposure is less than plus/minus 2% for a volumetric flow rate of 1600 cm(exp 3)/minute total flow with the following specifications: For a one inch nozzle, the height of the nozzle opening above the stage should be 0.177 inches; for a 2 inch nozzle - 0.390 inches. Not only is the distribution uniform, but one can calculate the maximum delivery rate of pollutants to the samples for comparison with the observed deterioration.
Deep Atmosphere Ammonia Mixing Ratio at Jupiter from the Galileo Probe Mass Spectrometer
NASA Technical Reports Server (NTRS)
Mahaffy, P. R.; Niemann, H. B.; Demick, J. E.
1999-01-01
New laboratory studies employing the Engineering Unit (EU) of the Galileo Probe Mass Spectrometer (GPMS) have resulted in a substantial reduction in the previously reported upper limit on the ammonia mixing ratio derived from the GPMS experiment at Jupiter. This measurement is complicated by background ammonia contributions in the GPMS during direct atmospheric sampling produced from the preceding gas enrichment experiments. These backgrounds can be quantified with the data from the EU studies when they are carried out in a manner that duplicates the descent profile of pressure and enrichment cell loading. This background is due to the tendency of ammonia to interact strongly with the walls of the mass spectrometer and on release to contribute to the gas being directly directed into the ion source from the atmosphere through a capillary pressure reduction leak. It is evident from the GPMS and other observations that the mixing ratio of ammonia at Jupiter reaches the deep atmosphere value at substantially higher pressures than previously assumed. This is a likely explanation for the previously perceived discrepancy between ammonia values derived from ground based microwave observations and those obtained from attenuation of the Galileo Probe radio signal.
Ye, Diru; Wu, Susu; Xu, Jianqiao; Jiang, Ruifen; Zhu, Fang; Ouyang, Gangfeng
2016-02-01
Direct immersion solid-phase microextraction (DI-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was developed for rapid analysis of clenbuterol in pork for the first time. In this work, a low-cost homemade 44 µm polydimethylsiloxane (PDMS) SPME fiber was employed to extract clenbuterol in pork. After extraction, derivatization was performed by suspending the fiber in the headspace of the 2 mL sample vial saturated with a vapor of 100 µL hexamethyldisilazane. Lastly, the fiber was directly introduced to GC-MS for analysis. All parameters that influenced absorption (extraction time), derivatization (derivatization reagent, time and temperature) and desorption (desorption time) were optimized. Under optimized conditions, the method offered a wide linear range (10-1000 ng g(-1)) and a low detection limit (3.6 ng g(-1)). Finally, the method was successfully applied in the analysis of pork from the market, and recoveries of the method for spiked pork were 97.4-105.7%. Compared with the traditional solvent extraction method, the proposed method was much cheaper and fast. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Directional mass transport in an atmospheric pressure surface barrier discharge.
Dickenson, A; Morabit, Y; Hasan, M I; Walsh, J L
2017-10-25
In an atmospheric pressure surface barrier discharge the inherent physical separation between the plasma generation region and downstream point of application reduces the flux of reactive chemical species reaching the sample, potentially limiting application efficacy. This contribution explores the impact of manipulating the phase angle of the applied voltage to exert a level of control over the electrohydrodynamic forces generated by the plasma. As these forces produce a convective flow which is the primary mechanism of species transport, the technique facilitates the targeted delivery of reactive species to a downstream point without compromising the underpinning species generation mechanisms. Particle Imaging Velocimetry measurements are used to demonstrate that a phase shift between sinusoidal voltages applied to adjacent electrodes in a surface barrier discharge results in a significant deviation in the direction of the plasma induced gas flow. Using a two-dimensional numerical air plasma model, it is shown that the phase shift impacts the spatial distribution of the deposited charge on the dielectric surface between the adjacent electrodes. The modified surface charge distribution reduces the propagation length of the discharge ignited on the lagging electrode, causing an imbalance in the generated forces and consequently a variation in the direction of the resulting gas flow.
NASA Astrophysics Data System (ADS)
Sollberger, S.; Perez, K.; Schubert, C. J.; Eugster, W.; Wehrli, B.; Del Sontro, T.
2013-12-01
Currently, carbon dioxide (CO2) and methane (CH4) emissions from lakes, reservoirs and rivers are readily investigated due to the global warming potential of those gases and the role these inland waters play in the carbon cycle. However, there is a lack of high spatiotemporally-resolved emission estimates, and how to accurately assess the gas transfer velocity (K) remains controversial. In anthropogenically-impacted systems where run-of-river reservoirs disrupt the flow of sediments by increasing the erosion and load accumulation patterns, the resulting production of carbonic greenhouse gases (GH-C) is likely to be enhanced. The GH-C flux is thus counteracting the terrestrial carbon sink in these environments that act as net carbon emitters. The aim of this project was to determine the GH-C emissions from a medium-sized river heavily impacted by several impoundments and channelization through a densely-populated region of Switzerland. Estimating gas emission from rivers is not trivial and recently several models have been put forth to do so; therefore a second goal of this project was to compare the river emission models available with direct measurements. Finally, we further validated the modeled fluxes by using a combined approach with water sampling, chamber measurements, and highly temporal GH-C monitoring using an equilibrator. We conducted monthly surveys along the 120 km of the lower Aare River where we sampled for dissolved CH4 (';manual' sampling) at a 5-km sampling resolution, and measured gas emissions directly with chambers over a 35 km section. We calculated fluxes (F) via the boundary layer equation (F=K×(Cw-Ceq)) that uses the water-air GH-C concentration (C) gradient (Cw-Ceq) and K, which is the most sensitive parameter. K was estimated using 11 different models found in the literature with varying dependencies on: river hydrology (n=7), wind (2), heat exchange (1), and river width (1). We found that chamber fluxes were always higher than boundary layer results based on ';manual' sampling. The closest flux approximation was obtained using the river width-dependent model. The higher fluxes obtained by the chambers could partially be explained by an enhanced turbulence created in the chambers themselves, especially because the ratio between the water surface area and chamber volume was rather small. The high resolution combined sampling approach helped constrain K and determine which river model best fits Aare River emissions. This experimental setup ultimately allows us to (1) define the dependence of K, (2) measure CH4 and CO2 fluxes from the main river and different tributaries more accurately, (3) estimate more spatially-resolved fluxes via either models or water sampling and the newly found K, and (4) determine one of the fates of carbon in the Aare River.
Fitzgerald, J Edward F; Malik, Momin; Ahmed, Irfan
2012-02-01
Surgical smoke containing potentially carcinogenic and irritant chemicals is an inevitable consequence of intraoperative energized dissection. Different energized dissection methods have not been compared directly in human laparoscopic surgery or against commonly encountered pollutants. This study undertook an analysis of carcinogenic and irritant volatile hydrocarbon concentrations in electrocautery and ultrasonic scalpel plumes compared with cigarette smoke and urban city air control samples. Once ethical approval was obtained, gas samples were aspirated from the peritoneal cavity after human laparoscopic intraabdominal surgery solely using either electrocautery or ultrasonic scalpels. All were adsorbed in Tenax tubes and concentrations of carcinogenic or irritant volatile hydrocarbons measured by gas chromatography. The results were compared with cigarette smoke and urban city air control samples. The analyzing laboratory was blinded to sample origin. A total of 10 patients consented to intraoperative gas sampling in which only one method of energized dissection was used. Six carcinogenic or irritant hydrocarbons (benzene, ethylbenzene, styrene, toluene, heptene, and methylpropene) were identified in one or more samples. With the exception of styrene (P = 0.016), a nonsignificant trend toward lower hydrocarbon concentrations was observed with ultrasonic scalpel use. Ultrasonic scalpel plumes had significantly lower hydrocarbon concentrations than cigarette smoke, with the exception of methylpropene (P = 0.332). No significant difference was observed with city air. Electrocautery samples contained significantly lower hydrocarbon concentrations than cigarette smoke, with the exception of toluene (P = 0.117) and methyl propene (P = 0.914). Except for toluene (P = 0.028), city air showed no significant difference. Both electrocautery and ultrasonic dissection are associated with significantly lower concentrations of the most commonly detected carcinogenic and irritant hydrocarbons than cigarette smoke. A nonsignificant trend toward lower hydrocarbon concentrations was seen with ultrasonic scalpel dissection compared with diathermy. The contamination levels in city air were largely comparable with those seen after ultrasonic scalpel use. Although hydrocarbon concentrations are low, cumulative exposures may increase health risks. Where concerns arise, ultrasonic scalpel dissection may be preferable.
ALMA Reveals Weak [N II] Emission in "Typical" Galaxies and Intense Starbursts at z = 5-6
NASA Astrophysics Data System (ADS)
Pavesi, Riccardo; Riechers, Dominik A.; Capak, Peter L.; Carilli, Christopher L.; Sharon, Chelsea E.; Stacey, Gordon J.; Karim, Alexander; Scoville, Nicholas Z.; Smolčić, Vernesa
2016-12-01
We report interferometric measurements of [N II] 205 μm fine-structure line emission from a representative sample of three galaxies at z = 5-6 using the Atacama Large (sub)Millimeter Array (ALMA). These galaxies were previously detected in [C II] and far-infrared continuum emission and span almost two orders of magnitude in star formation rate (SFR). Our results show at least two different regimes of ionized interstellar medium properties for galaxies in the first billion years of cosmic time, separated by their {L}[{{C}{{II}}]}/{L}[{{N}{{II}}]} ratio. We find extremely low [N II] emission compared to [C II] ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}={68}-28+200) from a “typical” ˜ {L}{UV}* star-forming galaxy, likely directly or indirectly (by its effect on the radiation field) related to low dust abundance and low metallicity. The infrared-luminous modestly star-forming Lyman-break galaxy (LBG) in our sample is characterized by an ionized-gas fraction ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}≲ 20) typical of local star-forming galaxies and shows evidence for spatial variations in its ionized-gas fraction across an extended gas reservoir. The extreme SFR, warm and compact dusty starburst AzTEC-3 shows an ionized fraction higher than expected given its SFR surface density ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}=22+/- 8) suggesting that [N II] dominantly traces a diffuse ionized medium rather than star-forming H II regions in this type of galaxy. This highest redshift sample of [N II] detections provides some of the first constraints on ionized and neutral gas modeling attempts and on the structure of the interstellar medium at z = 5-6 in “normal” galaxies and starbursts.
OT2_tvelusam_4: Probing Galactic Spiral Arm Tangencies with [CII
NASA Astrophysics Data System (ADS)
Velusamy, T.
2011-09-01
We propose to use the unique viewing geometry of the Galactic spiral arm tangents , which provide an ideal environment for studying the effects of density waves on spiral structure. We propose a well-sampled map of the[C II] 1.9 THz line emission along a 15-degree longitude region across the Norma-3kpc arm tangential, which includes the edge of the Perseus Arm. The COBE-FIRAS instrument observed the strongest [C II] and [N II] emission along these spiral arm tangencies.. The Herschel Open Time Key Project Galactic Observations of Terahertz C+ (GOT C+), also detects the strongest [CII] emission near these spiral arm tangential directions in its sparsely sampled HIFI survey of [CII] in the Galactic plane survey. The [C II] 158-micron line is the strongest infrared line emitted by the ISM and is an excellent tracer and probe of both the diffuse gases in the cold neutral medium (CNM) and the warm ionized medium (WIM). Furthermore, as demonstrated in the GOTC+ results, [C II] is an efficient tracer of the dark H2 gas in the ISM that is not traced by CO or HI observations. Thus, taking advantage of the long path lengths through the spiral arm across the tangencies, we can use the [C II] emission to trace and characterize the diffuse atomic and ionized gas as well as the diffuse H2 molecular gas in cloud transitions from HI to H2 and C+ to C and CO, throughout the ISM. The main goal of our proposal is to use the well sampled (at arcmin scale) [C II] to study these gas components of the ISM in the spiral-arm, and inter-arm regions, to constrain models of the spiral structure and to understand the influence of spiral density waves on the Galactic gas and the dynamical interaction between the different components. The proposed HIFI observations will consist of OTF 15 degree longitude scans and one 2-degree latitude scan sampled every 40arcsec across the Norma- 3kpc Perseus Spiral tangency.
Two research studies funded and overseen by EPA have been conducted since October 2006 on soil gas sampling methods and variations in shallow soil gas concentrations with the purpose of improving our understanding of soil gas methods and data for vapor intrusion applications. Al...
NASA Astrophysics Data System (ADS)
Rolfe, T.; Rice, A. L.; Radda, J.
2015-12-01
The quantification of greenhouse gas concentrations in the atmosphere is important for monitoring imbalances in their global budgets between sources and sinks and their changes in time. Nitrous oxide (N2O) is a strong radiative trace gas with a GWP of ~300 times CO2 over a 100 year period and an atmospheric lifetime of ~100 years. The preindustrial revolution background concentration of N2O was ~270 ppb. Today, the concentration is ~330 ppb. Sulfur hexafluoride (SF6) is another potent greenhouse gas with a long lifetime (800 to 3200 years) and very large GWP (~23000 times CO2 over a 100 year period). Its current atmospheric concentration is low (~8 ppt today). Direct measurements of N2O and SF6 in air prior to the mid-1990s are few. Over 200 archived atmospheric gas samples collected at Cape Meares, Oregon between 1977 and 1998 were analyzed for their N2O and SF6 concentrations using an Agilent (model 6890 N) gas chromatograph fitted with an electron capture detector using a two column "heart-cut" technique. Precision of measurement of N2O and SF6 is calculated at 0.13% (1σ) and 1.35% (1σ) respectively. N2O concentrations in the late 1970s and early 1980s average around 303 ppb, rising to 309 ppb in the early 1990s. Between 1980 and 1990, the increase in N2O concentrations is found to be ~0.5 ppb/yr. SF6 concentrations during the late 1970s and early 1980s average around 0.9 ppt and rise slowly, reaching 1.6 ppt in the 1990s. We find that the increase in SF6 between 1980 and 1990 to be ~0.07 ppt/yr. We also discuss sample integrity in storage and observed temporal trends of N2O and SF6.
NASA Astrophysics Data System (ADS)
Jones, T.; Wang, X.; Schmidt, K. B.; Treu, T.; Brammer, G. B.; Bradač, M.; Dressler, A.; Henry, A. L.; Malkan, M. A.; Pentericci, L.; Trenti, M.
2015-03-01
We present spatially resolved gas-phase metallicity for a system of three galaxies at z = 1.85 detected in the Grism Lens-Amplified Survey from Space (GLASS). The combination of Hubble Space Telescope (HST’s) diffraction limit and strong gravitational lensing by the cluster MACS J0717+3745 results in a spatial resolution of ≃200-300 pc, enabling good spatial sampling despite the intrinsically small galaxy sizes. The galaxies in this system are separated by ≃50-200 kpc in projection and are likely in an early stage of interaction, evidenced by relatively high specific star formation rates. Their gas-phase metallicities are consistent with larger samples at similar redshift, star formation rate (SFR), and stellar mass. We obtain a precise measurement of the metallicity gradient for one galaxy and find a shallow slope compared to isolated galaxies at high redshift, consistent with a flattening of the gradient due to gravitational interaction. An alternative explanation for the shallow metallicity gradient and elevated SFR is rapid recycling of metal-enriched gas, but we find no evidence for enhanced gas-phase metallicities which should result from this effect. Notably, the measured stellar masses log {{M}*}/{{M}} = 7.2-9.1 probe to an order of magnitude below previous mass-metallicity studies at this redshift. The lowest mass galaxy has properties similar to those expected for Fornax at this redshift, indicating that GLASS is able to directly study the progenitors of local group dwarf galaxies on spatially resolved scales. Larger samples from the full GLASS survey will be ideal for studying the effects of feedback, and the time evolution of metallicity gradients. These initial results demonstrate the utility of HST spectroscopy combined with gravitational lensing for characterizing resolved physical properties of galaxies at high redshift.
Bidirectional Pressure-Regulator System
NASA Technical Reports Server (NTRS)
Burke, Kenneth; Miller, John R.
2008-01-01
A bidirectional pressure-regulator system has been devised for use in a regenerative fuel cell system. The bidirectional pressure-regulator acts as a back-pressure regulator as gas flows through the bidirectional pressure-regulator in one direction. Later, the flow of gas goes through the regulator in the opposite direction and the bidirectional pressure-regulator operates as a pressure- reducing pressure regulator. In the regenerative fuel cell system, there are two such bidirectional regulators, one for the hydrogen gas and another for the oxygen gas. The flow of gases goes from the regenerative fuel cell system to the gas storage tanks when energy is being stored, and reverses direction, flowing from the storage tanks to the regenerative fuel cell system when the stored energy is being withdrawn from the regenerative fuel cell system. Having a single bidirectional regulator replaces two unidirectional regulators, plumbing, and multiple valves needed to reverse the flow direction. The term "bidirectional" refers to both the bidirectional nature of the gas flows and capability of each pressure regulator to control the pressure on either its upstream or downstream side, regardless of the direction of flow.
Liquid- and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks
Zhou, Wencai; Wöll, Christof; Heinke, Lars
2015-01-01
The mass transfer of the guest molecules in nanoporous host materials, in particular in metal-organic frameworks (MOFs), is among the crucial features of their applications. By using thin surface-mounted MOF films in combination with a quartz crystal microbalance (QCM), the diffusion of ferrocene vapor and of ethanolic and hexanic ferrocene solution in HKUST-1 was investigated. For the first time, liquid- and gas-phase diffusion in MOFs was compared directly in the identical sample. The diffusion coefficients are in the same order of magnitude (~10−16 m2·s−1), whereas the diffusion coefficient of ferrocene in the empty framework is roughly 3-times smaller than in the MOF which is filled with ethanol or n-hexane.
Carbon dioxide capture strategies from flue gas using microalgae: a review.
Thomas, Daniya M; Mechery, Jerry; Paulose, Sylas V
2016-09-01
Global warming and pollution are the twin crises experienced globally. Biological offset of these crises are gaining importance because of its zero waste production and the ability of the organisms to thrive under extreme or polluted condition. In this context, this review highlights the recent developments in carbon dioxide (CO2) capture from flue gas using microalgae and finding the best microalgal remediation strategy through contrast and comparison of different strategies. Different flue gas microalgal remediation strategies discussed are as follows: (i) Flue gas to CO2 gas segregation using adsorbents for microalgal mitigation, (ii) CO2 separation from flue gas using absorbents and later regeneration for microalgal mitigation, (iii) Flue gas to liquid conversion for direct microalgal mitigation, and (iv) direct flue gas mitigation using microalgae. This work also studies the economic feasibility of microalgal production. The study discloses that the direct convening of flue gas with high carbon dioxide content, into microalgal system is cost-effective.
Interface for the rapid analysis of liquid samples by accelerator mass spectrometry
Turteltaub, Kenneth; Ognibene, Ted; Thomas, Avi; Daley, Paul F; Salazar Quintero, Gary A; Bench, Graham
2014-02-04
An interface for the analysis of liquid sample having carbon content by an accelerator mass spectrometer including a wire, defects on the wire, a system for moving the wire, a droplet maker for producing droplets of the liquid sample and placing the droplets of the liquid sample on the wire in the defects, a system that converts the carbon content of the droplets of the liquid sample to carbon dioxide gas in a helium stream, and a gas-accepting ion source connected to the accelerator mass spectrometer that receives the carbon dioxide gas of the sample in a helium stream and introduces the carbon dioxide gas of the sample into the accelerator mass spectrometer.
Nelson, Philip H.; Ewald, Shauna M.; Santus, Stephen L.; Trainor, Patrick K.
2010-01-01
Gas, oil, and water production data were compiled from selected wells in four gas fields in rocks of Late Cretaceous age in southwestern Wyoming. This study is one of a series of reports examining fluid production from tight-gas reservoirs, which are characterized by low permeability, low porosity, and the presence of clay minerals in pore space. Production from each well is represented by two samples spaced five years apart, the first sample typically taken two years after commencement of production. For each producing interval, summary diagrams of oil versus gas and water versus gas production show fluid production rates, the change in rates during five years, the water-gas and oil-gas ratios, and the fluid type. These diagrams permit well-to-well and field-to-field comparisons. Fields producing water at low rates (water dissolved in gas in the reservoir) can be distinguished from fields producing water at moderate or high rates, and the water-gas ratios are quantified. The ranges of first-sample gas rates in Pinedale field and Jonah field are quite similar, and the average gas production rate for the second sample, taken five years later, is about one-half that of the first sample for both fields. Water rates are generally substantially higher in Pinedale than in Jonah, and water-gas ratios in Pinedale are roughly a factor of ten greater in Pinedale than in Jonah. Gas and water production rates from each field are fairly well grouped, indicating that Pinedale and Jonah fields are fairly cohesive gas-water systems. Pinedale field appears to be remarkably uniform in its flow behavior with time. Jonah field, which is internally faulted, exhibits a small spread in first-sample production rates. In the Greater Wamsutter field, gas production from the upper part of the Almond Formation is greater than from the main part of the Almond. Some wells in the main and the combined (upper and main parts) Almond show increases in water production with time, whereas increases in water production are rare in the upper part of the Almond, and a higher percentage of wells in the upper part of the Almond show water decreasing at the same rate as gas than in the main or combined parts of the Almond. In Stagecoach Draw field, the gas production rate after five years is about one-fourth that of the first sample, whereas in Pinedale, Jonah, and Greater Wamsutter fields, the production rate after five years is about one-half that of the first sample. The more rapid gas decline rate seems to be the outstanding feature distinguishing Stagecoach Draw field, which is characterized as a conventional field, from Pinedale, Jonah, and Greater Wamsutter fields, which are generally characterized as tight-gas accumulations. Oil-gas ratios are fairly consistent within Jonah, Pinedale, and Stagecoach Draw fields, suggesting similar chemical composition and pressure-temperature conditions within each field, and are less than the 20 bbl/mmcf upper limit for wet gas. However, oil-gas ratios vary considerably from one area to another in the Greater Wamsutter field, demonstrating a lack of commonality in either chemistry or pressure-temperature conditions among the six areas. In all wells in all four fields examined here, water production commences with gas production-there are no examples of wells with water-free production and no examples where water production commences after first-sample gas production. The fraction of records with water production higher in the second sample than in the first sample varies from field to field, with Pinedale field showing the lowest percentage of such cases and Jonah field showing the most. Most wells have water-gas ratios exceeding the amount that could exist dissolved in gas at reservoir pressure and temperature.
A gas sampling system for withdrawing humid gases from deep boreholes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousseau, J.P.; Thordarson, W.; Kurzmack, M.A.
A gas sampling system, designed to withdraw nearly vapor-saturated gases (93 to 100% relative humidity) from deep, unsaturated zone boreholes, was developed by the U.S. Geological Survey for use in the unsaturated zone borehole instrumentation and monitoring program at Yucca Mountain, Nye County, Nevada. This gas sampling system will be used to: (1) sample formation rock gases in support of the unsaturated zone hydrochemical characterization program; and (2) verify downhole, thermocouple psychrometer measurements of water potential in support of the unsaturated zone borehole instrumentation and monitoring program. Using this sampling system, nearly vapor-saturated formation rock-gases can be withdrawn from deepmore » boreholes without condensing water vapor in the sampling tubes, and fractionating heavy isotopes of oxygen, hydrogen, and carbon. The sampling system described in this paper uses a dry carrier-gas (nitrogen) to lower the dew point temperature of the formation rock-gas at its source. Mixing of the dry carrier gas with the source gas takes place inside a specially designed downhole instrument station apparatus (DISA). Nitrogen inflow is regulated in a manner that lowers the dew point temperature of the source gas to a temperature that is colder than the coldest temperature that the mixed gas will experience in moving from warmer, deeper depths, to colder, shallower depths near the land surface. A test of this gas sampling system was conducted in December, 1992, in a 12.2 meter deep borehole that was instrumented in October, 1991. The water potential calculated using this system reproduced in-situ measurements of water potential to within five percent of the average value, as recorded by two thermocouple psychrometers that had been in operation for over 12 months.« less
Rate of disappearance of gas bubble trauma signs in juvenile salmonids
Hans, K.M.; Mesa, M.G.; Maule, A.G.
1999-01-01
To assess the rate of disappearance of gas bubble trauma (GBT) signs in juvenile salmonids, we exposed spring chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss to water containing high levels of dissolved gas supersaturation (DGS) for a time period sufficient to induce signs of GBT, reduced the DGS to minimal levels, and then sampled fish through time to document changes in severity of GBT. Because of the tendency of GBT signs to dissipate at different rates, we conducted trials focusing on emboli (bubbles) in the gill filaments and lateral line and separate trials that focused on bubbles in the external surfaces (fins, eyes, and opercula). Bubbles in gill filaments dissipated almost completely within 2 h after transfer of fish to water of nearly normal DGS (104%), whereas bubbles in the lateral line dissipated to negligible levels within 5 h. Bubbles on external surfaces were more persistent through time than they were in gill filaments and the lateral line. Although typically dissipating to low levels within 48 h, external bubbles sometimes remained for 4 d. Assuming a direct relation exists between easily observable signs and direct mortality, our results suggest that fish can recover quickly from the potentially lethal effects of DGS once they move from water with high DGS to water of almost normal gas saturation. These results should be of fundamental importance to fishery managers interpreting the results of monitoring for the severity and prevalence of GBT in juvenile salmonids in the Columbia River system and perhaps elsewhere.
High-pressure sapphire cell for phase equilibria measurements of CO2/organic/water systems.
Pollet, Pamela; Ethier, Amy L; Senter, James C; Eckert, Charles A; Liotta, Charles L
2014-01-24
The high pressure sapphire cell apparatus was constructed to visually determine the composition of multiphase systems without physical sampling. Specifically, the sapphire cell enables visual data collection from multiple loadings to solve a set of material balances to precisely determine phase composition. Ternary phase diagrams can then be established to determine the proportion of each component in each phase at a given condition. In principle, any ternary system can be studied although ternary systems (gas-liquid-liquid) are the specific examples discussed herein. For instance, the ternary THF-Water-CO2 system was studied at 25 and 40 °C and is described herein. Of key importance, this technique does not require sampling. Circumventing the possible disturbance of the system equilibrium upon sampling, inherent measurement errors, and technical difficulties of physically sampling under pressure is a significant benefit of this technique. Perhaps as important, the sapphire cell also enables the direct visual observation of the phase behavior. In fact, as the CO2 pressure is increased, the homogeneous THF-Water solution phase splits at about 2 MPa. With this technique, it was possible to easily and clearly observe the cloud point and determine the composition of the newly formed phases as a function of pressure. The data acquired with the sapphire cell technique can be used for many applications. In our case, we measured swelling and composition for tunable solvents, like gas-expanded liquids, gas-expanded ionic liquids and Organic Aqueous Tunable Systems (OATS)(1-4). For the latest system, OATS, the high-pressure sapphire cell enabled the study of (1) phase behavior as a function of pressure and temperature, (2) composition of each phase (gas-liquid-liquid) as a function of pressure and temperature and (3) catalyst partitioning in the two liquid phases as a function of pressure and composition. Finally, the sapphire cell is an especially effective tool to gather accurate and reproducible measurements in a timely fashion.
Quantifying Fugitive Methane Emissions from Natural Gas Production with Mobile Technology
NASA Astrophysics Data System (ADS)
Tsai, T.; Rella, C.; Crosson, E.
2013-12-01
Quantification of fugitive methane (CH4) emissions to determine the environmental impact of natural gas production is challenging with current methods. We present a new mobile method known as the Plume Scanner that can quickly quantify CH4 emissions of point sources. The Plume Scanner is a direct measurement technique which utilizes a mobile Picarro cavity ring-down spectrometer and a gas sampling system based on AirCore technology [1]. As the Plume Scanner vehicle drives through the plume, the air is simultaneously sampled at four different heights, and therefore, the spatial CH4 distribution can be captured (Fig. 1). The flux of the plume is then determined by multiplying the spatial CH4 distribution data with the anemometer measurements. In this way, fugitive emission rates of highly localized sources such as natural gas production pads can be made quickly (~7 min). Verification with controlled CH4 releases demonstrate that under stable atmospheric conditions (Pasquill stability class is C or greater), the Plume Scanner measurements have an error of 2% and a repeatability of 15% [2]. Under unstable atmospheric conditions (Class A or B), the error is 6%, and the repeatability increases to 70% due to the variability of wind conditions. Over two weeks, 275 facilities in the Barnett Shale were surveyed from public roads by sampling the air for elevations in CH4 concentration, and 77% were found leaking. Emissions from 52 sites have been quantified with the Plume Scanner (Fig. 2), and the total emission is 4,900 liters per min (lpm) or 39,000 metric tons/yr CO2e. 1. Karion, A., C. Sweeney, P. Tans, and T. Newberger (2010), AirCore: An innovative atmospheric sampling system, J. Atmos. Oceanic Tech, 27, 1839-1853. 2. F. Pasquill (1961), The estimation of the dispersion of wind borne material, Meterol. Mag., 90(1063), 33-49 Figure 1. Plume Scanner Cartoon Figure 2. Distribution of methane fugitive emissions with error bars associated with the Pasquill stability classes drawn for reference.
The characterisation of diesel exhaust particles - composition, size distribution and partitioning.
Alam, Mohammed S; Zeraati-Rezaei, Soheil; Stark, Christopher P; Liang, Zhirong; Xu, Hongming; Harrison, Roy M
2016-07-18
A number of major research questions remain concerning the sources and properties of road traffic generated particulate matter. A full understanding of the composition of primary vehicle exhaust aerosol and its contribution to secondary organic aerosol (SOA) formation still remains elusive, and many uncertainties exist relating to the semi-volatile component of the particles. Semi-Volatile Organic Compounds (SVOCs) are compounds which partition directly between the gas and aerosol phases under ambient conditions. The SVOCs in engine exhaust are typically hydrocarbons in the C15-C35 range, and are largely uncharacterised because they are unresolved by traditional gas chromatography, forming a large hump in the chromatogram referred to as Unresolved Complex Mixture (UCM). In this study, thermal desorption coupled to comprehensive Two Dimensional Gas-Chromatography Time-of-Flight Mass-Spectrometry (TD-GC × GC-ToF-MS) was exploited to characterise and quantify the composition of SVOCs from the exhaust emission. Samples were collected from the exhaust of a diesel engine, sampling before and after a diesel oxidation catalyst (DOC), while testing at steady state conditions. Engine exhaust was diluted with air and collected using both filter and impaction (nano-MOUDI), to resolve total mass and size resolved mass respectively. Adsorption tubes were utilised to collect SVOCs in the gas phase and they were then analysed using thermal desorption, while particle size distribution was evaluated by sampling with a DMS500. The SVOCs were observed to contain predominantly n-alkanes, branched alkanes, alkyl-cycloalkanes, alkyl-benzenes, PAHs and various cyclic aromatics. Particle phase compounds identified were similar to those observed in engine lubricants, while vapour phase constituents were similar to those measured in fuels. Preliminary results are presented illustrating differences in the particle size distribution and SVOCs composition when collecting samples with and without a DOC. The results indicate that the DOC tested is of very limited efficiency, under the studied engine operating conditions, for removal of SVOCs, especially at the upper end of the molecular weight range.
Reduced sulfur compounds in gas from construction and demolition debris landfills.
Lee, Sue; Xu, Qiyong; Booth, Matthew; Townsend, Timothy G; Chadik, Paul; Bitton, Gabriel
2006-01-01
The biological conversion of sulfate from disposed gypsum drywall to hydrogen sulfide (H(2)S) in the anaerobic environment of a landfill results in odor problems and possible health concerns at many disposal facilities. To examine the extent and magnitude of such emissions, landfill gas samples from wells, soil vapor samples from the interface of the waste and cover soil, and ambient air samples, were collected from 10 construction and demolition (C&D) debris landfills in Florida and analyzed for H(2)S and other reduced sulfur compounds (RSC). H(2)S was detected in the well gas and soil vapor at all 10 sites. The concentrations in the ambient air above the surface of the landfill were much lower than those observed in the soil vapor, and no direct correlation was observed between the two sampling locations. Methyl mercaptan and carbonyl sulfide were the most frequently observed other RSC, though they occurred at smaller concentrations than H(2)S. This research confirmed the presence of H(2)S at C&D debris landfills. High concentrations of H(2)S may be a concern for employees working on the landfill site. These results indicate that workers should use proper personal protection at C&D debris landfills when involved in excavation, landfill gas collection, or confined spaces. The results indicate that H(2)S is sufficiently diluted in the atmosphere to not commonly pose acute health impacts for these landfill workers in normal working conditions. H(2)S concentrations were extremely variable with measurements occurring over a very large range (from less than 3 ppbv to 12,000 ppmv in the soil vapor and from less than 3 ppbv to 50 ppmv in ambient air). Possible reasons for the large intra- and inter-site variability observed include waste and soil heterogeneities, impact of weather conditions, and different site management practices.
Historical Carbon Dioxide Record from the Vostok Ice Core (417,160 - 2,342 years BP)
Barnola, J. M. [CNRS, Saint Martin d'Heres Cedex, France; Raynaud, D. [CNRS, Saint Martin d'Heres Cedex, France; Lorius, C. [CNRS, Saint Martin d'Heres Cedex, France; Barkov, N. I.
2003-01-01
In January 1998, the collaborative ice-drilling project between Russia, the United States, and France at the Russian Vostok station in East Antarctica yielded the deepest ice core ever recovered, reaching a depth of 3,623 m (Petit et al. 1997, 1999). Ice cores are unique with their entrapped air inclusions enabling direct records of past changes in atmospheric trace-gas composition. Preliminary data indicate the Vostok ice-core record extends through four climate cycles, with ice slightly older than 400 kyr (Petit et al. 1997, 1999). Because air bubbles do not close at the surface of the ice sheet but only near the firn-ice transition (that is, at ~90 m below the surface at Vostok), the air extracted from the ice is younger than the surrounding ice (Barnola et al. 1991). Using semiempirical models of densification applied to past Vostok climate conditions, Barnola et al. (1991) reported that the age difference between air and ice may be ~6000 years during the coldest periods instead of ~4000 years, as previously assumed. Ice samples were cut with a bandsaw in a cold room (at about -15°C) as close as possible to the center of the core in order to avoid surface contamination (Barnola et al. 1983). Gas extraction and measurements were performed with the "Grenoble analytical setup," which involved crushing the ice sample (~40 g) under vacuum in a stainless steel container without melting it, expanding the gas released during the crushing in a pre-evacuated sampling loop, and analyzing the CO2 concentrations by gas chromatography (Barnola et al. 1983). The analytical system, except for the stainless steel container in which the ice was crushed, was calibrated for each ice sample measurement with a standard mixture of CO2 in nitrogen and oxygen. For further details on the experimental procedures and the dating of the successive ice layers at Vostok, see Barnola et al. (1987, 1991), Lorius et al. (1985), and Petit et al. (1999).
NASA Astrophysics Data System (ADS)
Li, Dong; Feng, Chi; Gao, Shan; Chen, Liwei; Daniel, Ketui
2018-06-01
Accurate measurement of gas turbine blade temperature is of great significance as far as blade health monitoring is concerned. An important method for measuring this temperature is the use of a radiation pyrometer. In this research, error of the pyrometer caused by reflected radiation from the surfaces surrounding the target and the emission angle of the target was analyzed. Important parameters for this analysis were the view factor between interacting surfaces, spectral directional emissivity, pyrometer operating wavelength and the surface temperature distribution on the blades and the vanes. The interacting surface of the rotor blade and the vane models used were discretized using triangular surface elements from which contour integral was used to calculate the view factor between the surface elements. Spectral directional emissivities were obtained from an experimental setup of Ni based alloy samples. A pyrometer operating wavelength of 1.6 μm was chosen. Computational fluid dynamics software was used to simulate the temperature distribution of the rotor blade and the guide vane based on the actual gas turbine input parameters. Results obtained in this analysis show that temperature error introduced by reflected radiation and emission angle ranges from ‑23 K to 49 K.
NASA Astrophysics Data System (ADS)
Shimada, Haruo; Maeno, Katsuyuki; Kinoshita, Kazumasa; Shida, Yasuo
2017-07-01
A novel method for the simultaneous detection of ingredients in pharmaceutical applications such as creams and lotions was developed. An ultrasonic atomizer has been used to produce a mist containing ingredients. The analyte molecules in the mist can be ionized by using direct analysis in real time (DART) at lower temperature than traditionally used, and we thus solved the problem of normal DART-MS measurement using a high-temperature gas. Thereby, molecular-related ions of heat-unstable components and nonvolatile components became detectable. The deprotonated molecular ion of glycyrrhizic acid (m/z 821), which is unstable at high temperatures, was detected without pyrolysis by ultrasonic mist-DART-MS using unheated helium gas, although it was not detected by normal DART-MS using heated helium gas. The cationized molecular ions of derivatives of polyethylene glycol fatty acid monoesters, which are nonvolatile compounds, were also detected as m/z peaks observed from 800 to 2300. Although the protonated molecular ion of tocopherol acetate was not detected in ionization by ultrasonic mist, it was detected by ultrasonic mist-DART-MS even in the emulsion. It was not necessary to dissolve a sample completely to detect its ions. This method enabled us to obtain the composition of pharmaceutical applications simply and rapidly.
Bianchini, Gregory M.; McRae, Thomas G.
1985-01-01
Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.
Omar, Jone; Olivares, Maitane; Alonso, Ibone; Vallejo, Asier; Aizpurua-Olaizola, Oier; Etxebarria, Nestor
2016-04-01
Seven monoterpenes in 4 aromatic plants (sage, cardamom, lavender, and rosemary) were quantified in liquid extracts and directly in solid samples by means of dynamic headspace-gas chromatography-mass spectrometry (DHS-GC-MS) and multiple headspace extraction-gas chromatography-mass spectrometry (MHSE), respectively. The monoterpenes were 1st extracted by means of supercritical fluid extraction (SFE) and analyzed by an optimized DHS-GC-MS. The optimization of the dynamic extraction step and the desorption/cryo-focusing step were tackled independently by experimental design assays. The best working conditions were set at 30 °C for the incubation temperature, 5 min of incubation time, and 40 mL of purge volume for the dynamic extraction step of these bioactive molecules. The conditions of the desorption/cryo-trapping step from the Tenax TA trap were set at follows: the temperature was increased from 30 to 300 °C at 150 °C/min, although the cryo-trapping was maintained at -70 °C. In order to estimate the efficiency of the SFE process, the analysis of monoterpenes in the 4 aromatic plants was directly carried out by means of MHSE because it did not require any sample preparation. Good linearity (r2) > 0.99) and reproducibility (relative standard deviation % <12) was obtained for solid and liquid quantification approaches, in the ranges of 0.5 to 200 ng and 10 to 500 ng/mL, respectively. The developed methods were applied to analyze the concentration of 7 monoterpenes in aromatic plants obtaining concentrations in the range of 2 to 6000 ng/g and 0.25 to 110 μg/mg, respectively. © 2016 Institute of Food Technologists®
Monitoring Volatile Organic Compounds (VOCs) in real-time on oil and natural gas production sites
NASA Astrophysics Data System (ADS)
Lupardus, R.; Franklin, S. B.
2017-12-01
Oil and Natural Gas (O&NG) development, production, infrastructure, and associated processing activities can be a substantial source of air pollution, yet relevant data and real-time quantification methods are lacking. In the current study, O&NG fugitive emissions of Volatile Organic Compounds (VOCs) were quantified in real-time and used to determine the spatial and temporal windows of exposure for proximate flora and fauna. Eleven O&NG sites on the Pawnee National Grassland in Northeastern Colorado were randomly selected and grouped according to production along with 13 control sites from three geographical locations. At each site, samples were collected 25 m from the wellhead in NE, SE, and W directions. In each direction, two samples were collected with a Gasmet DX4040 gas analyzer every hour from 8:00 am to 2:00 pm (6 hours total), July to October, 2016 (N=864). VOC concentrations generally increased during the 6 hr. day with the exception of N2O and were predominately the result of O&NG production and not vehicle exhaust. Thirteen of 24 VOCs had significantly different levels between production groups, frequently above reference standards and at biologically relevant levels for flora and fauna. The most biologically relevant VOCs, found at concentrations exceeding time weighted average permissible exposure limits (TWA PELs), were benzene and acrolein. Generalized Estimating Equations (GEEs) measured the relative quality of statistical models predicting benzene concentrations on sites. The data not only confirms that O&NG emissions are impacting the region, but also that this influence is present at all sites, including controls. Increased real-time VOC monitoring on O&NG sites is required to identify and contain fugitive emissions and to protect human and environmental health.
Environmental consequences of shale gas exploitation and the crucial role of rock microfracturing
NASA Astrophysics Data System (ADS)
Renard, Francois
2015-04-01
The growing exploitation of unconventional gas and oil resources has dramatically changed the international market of hydrocarbons in the past ten years. However, several environmental concerns have also been identified such as the increased microseismicity, the leakage of gas into freshwater aquifers, and the enhanced water-rock interactions inducing the release of heavy metals and other toxic elements in the produced water. In all these processes, fluids are transported into a network of fracture, ranging from nanoscale microcracks at the interface between minerals and the kerogen of the source rock, to well-developed fractures at the meter scale. Characterizing the fracture network and the mechanisms of its formation remains a crucial goal. A major difficulty when analyzing fractures from core samples drilled at depth is that some of them are produced by the coring process, while some other are produced naturally at depth by the coupling between geochemical and mechanical forces. Here, I present new results of high resolution synchrotron 3D X-ray microtomography imaging of shale samples, at different resolutions, to characterize their microfractures and their mechanisms of formation. The heterogeneities of rock microstructure are also imaged, as they create local stress concentrations where cracks may nucleate or along which they propagate. The main results are that microcracks form preferentially along kerogen-mineral interfaces and propagate along initial heterogeneities according to the local stress direction, connecting to increase the total volume of fractured rock. Their lifetime is also an important parameter because they may seal by fluid circulation, fluid-rock interactions, and precipitation of a cement. Understanding the multi-scale processes of fracture network development in shales and the coupling with fluid circulation represents a key challenge for future research directions.
Brandão, Pedro F; Ramos, Rui M; Valente, Inês M; Almeida, Paulo J; Carro, Antonia M; Lorenzo, Rosa A; Rodrigues, José A
2017-04-01
In this work, a simple methodology was developed for the extraction and determination of free formaldehyde content in cork agglomerate samples. For the first time, gas-diffusion microextraction was used for the extraction of volatile formaldehyde directly from samples, with simultaneous derivatization with acetylacetone (Hantzsch reaction). The absorbance of the coloured solution was read in a spectrophotometer at 412 nm. Different extraction parameters were studied and optimized (extraction temperature, sample mass, volume of acceptor solution, extraction time and concentration of derivatization reagent) by means of an asymmetric screening. The developed methodology proved to be a reliable tool for the determination of formaldehyde in cork agglomerates with the following suitable method features: low LOD (0.14 mg kg -1 ) and LOQ (0.47 mg kg -1 ), r 2 = 0.9994, and intraday and interday precision of 3.5 and 4.9%, respectively. The developed methodology was applied to the determination of formaldehyde in different cork agglomerate samples, and contents between 1.9 and 9.4 mg kg -1 were found. Furthermore, formaldehyde was also determined by the standard method EN 717-3 for comparison purposes; no significant differences between the results of both methods were observed. Graphical abstract Representation of the GDME system and its main components.
Healy, R.W.; DeVries, M.P.; Striegl, Robert G.
1986-01-01
A study of water and radionuclide movement through the unsaturated zone is being conducted at the low level radioactive waste disposal site near Sheffield, Illinois. Included in the study are detailed investigations of evapotranspiration, movement of water through waste trench covers, and movement of water and radionuclides (dissolved and gaseous) from the trenches. An energy balance/Bowen ratio approach is used to determine evapotranspiration. Precipitation, net radiation, soil-heat flux, air temperature and water vapor content gradients, wind speed, and wind direction are measured. Soil water tension is measured with tensiometers which are connected to pressure transducers. Meteorological sensors and tensiometers which are connected to pressure transducers. Meteorological sensors and tensiometers are monitored with automatic data loggers. Soil moisture contents are measured through small-diameter access tubes with neutron and gamma-ray attenuation gages. Data beneath the trenches are obtained through a 130-meter-long tunnel which extends under four of the trenches. Water samples are obtained with suction lysimeters, and samples of the geologic material are obtained with core tubes. These samples are analyzed for radiometric and inorganic chemistry. Gas samples are obtained from gas piezometers and analyzed for partial pressures of major constituents, Radon-222, tritiated water vapor, and carbon-14 dioxide. (USGS)
NASA Astrophysics Data System (ADS)
Guha, Jayanta; Lu, Huan-Zhang; Gagnon, Michel
1990-03-01
A quadrupole mass spectrometer and a solid probe which can be inserted directly into the ionization chamber have been used to analyze gas compositions of fluid inclusions. The probe holds a solid sample which can be heated continuously or stepwise from 30 to 750°C using variable heating rates. The decrepitated gas is released directly into the spectrometer source, thus reducing contamination. A Single Ion Monitoring mode program is used for the analysis, which is capable of detecting 26 preselected gases separately, and gases at picogram levels have been analyzed with this method. Each single burst of inclusions is detected and analyzed separately using a surface area integrator, and the computer program automatically traces the baseline above the background. Gas ratios are calculated for single bursts, or bursts over different ranges of temperature, as well as the sum of the total range. Routine petrographic and microthermometric analyses are used to determine the different generations of inclusions and their decrepitation temperatures. Then tiny pieces of the doubly polished section containing representative fluid inclusions or inclusions targeted for analysis are cut and introduced into the solid probe and heated accordingly. The principal gas species which have been analyzed are CO 2, CON 2 (not discriminated), H 2O, H 2S, and nearly all light hydrocarbons. Fluid inclusions from different host minerals such as quartz, fluorite, barite, and sulfides have also been analyzed. The most important advantage of this method is that analytical results can be correlated with specific inclusion types since a small amount of sample material is required which makes it easier to choose specific areas from doubly polished sections. Another advantage is its capability to match the presence of gases in inclusions in quartz with those in associated sulfides, thereby confirming or denying that similar fluids were trapped by both the minerals. More tests are underway to examine the use of fluid inclusion data from sulfides. Preliminary tests on samples from an Archean gold deposit indicate the potential of this method, not only to detect the presence of different gases in the fluid, but also to determine gas ratios of fluid inclusions rapidly and fairly accurately. It has previously been established through alteration assemblage studies that CO 2H 2O ratios of the fluid decreased outwards from the gold-bearing zones and the new fluid inclusion data confirm this. This method also detected the presence of other gases such as CO/N 2, CH 4, C 2H 6, and H 2S, indicating a multi-component C-O-N-H-S system. This method can be useful for both reconnaissance and detailed investigations where gas compositions of fluid inclusions are important for the understanding of fluid evolution processes.
Mechanical Twinning and Microstructures in Experimentally Stressed Quartzite
NASA Astrophysics Data System (ADS)
Minor, A.; Sintubin, M.; Wenk, H. R.; Rybacki, E.
2015-12-01
Since Dauphiné twins in quartz have been identified as a stress-related intracrystalline microstructure, several electron backscatter diffraction (EBSD) studies revealed that Dauphiné twins are present in naturally deformed quartz-bearing rocks in a wide range of tectono-metamorphic conditions. EBSD studies on experimentally stressed quartzite showed that crystals with particular crystallographic orientations contain many Dauphiné twin boundaries, while neighboring crystals with different orientations are largely free of twin boundaries. To understand the relationship between stress direction and orientation of Dauphiné twinned quartz crystals, a detailed EBSD study was performed on experimentally stressed quartzite samples and compared with an undeformed reference sample. We stressed 4 cylindrical samples in triaxial compression in a Paterson type gas deformation apparatus at GFZ Potsdam. Experimental conditions were 300MPa confining pressure, 500°C temperature and axial stresses of 145MPa, 250MPa and 460MPa for about 30 hours, resulting in a minor strain <0.04%. EBSD scans were obtained with a Zeiss Evo scanning electron microscope and TSL software at UC Berkeley. The EBSD maps show that Dauphiné twinning is present in the starting material as well as in experimentally stressed samples. Pole figures of the bulk orientation of the reference sample compared with stressed samples show a significant difference regarding the distribution for the r and z directions. The reference sample shows an indistinct maximum for r and z, whereas the stressed samples show a maximum for r poles and a minimum for z poles in the axial stress direction. EBSD scans of the reference and stressed samples were further analyzed manually to identify the orientations of single grains, which are free of twin boundaries and those, which contain twin boundaries. This analysis aims to quantify the relationship of crystal orientation and stress magnitude to initiate mechanical twinning.
Frentrup, Hendrik; Hart, Kyle E.; Colina, Coray M.; Müller, Erich A.
2015-01-01
We study the permeation dynamics of helium and carbon dioxide through an atomistically detailed model of a polymer of intrinsic microporosity, PIM-1, via non-equilibrium molecular dynamics (NEMD) simulations. This work presents the first explicit molecular modeling of gas permeation through a high free-volume polymer sample, and it demonstrates how permeability and solubility can be obtained coherently from a single simulation. Solubilities in particular can be obtained to a very high degree of confidence and within experimental inaccuracies. Furthermore, the simulations make it possible to obtain very specific information on the diffusion dynamics of penetrant molecules and yield detailed maps of gas occupancy, which are akin to a digital tomographic scan of the polymer network. In addition to determining permeability and solubility directly from NEMD simulations, the results shed light on the permeation mechanism of the penetrant gases, suggesting that the relative openness of the microporous topology promotes the anomalous diffusion of penetrant gases, which entails a deviation from the pore hopping mechanism usually observed in gas diffusion in polymers. PMID:25764366
Carbothermal Reduction of Quartz with Carbon from Natural Gas
NASA Astrophysics Data System (ADS)
Li, Fei; Tangstad, Merete
2017-04-01
Carbothermal reaction between quartz and two different carbons originating from natural gas were investigated in this paper. One of two carbons is the commercial carbon black produced from natural gas in a medium thermal production process. The other carbon is obtained from natural gas cracking at 1273 K (1000 °C) deposited directly on the quartz pellet. At the 1923 K (1650 °C) and CO atmosphere, the impact of carbon content, pellet structure, gas transfer, and heating rate are investigated in a thermo-gravimetric furnace. The reaction process can be divided into two steps: an initial SiC-producing step followed by a SiO-producing step. Higher carbon content and increased gas transfer improves the reaction rate of SiC-producing step, while the thicker carbon coating in carbon-deposited pellet hinders reaction rate. Better gas transfer of sample holder improves reaction rate but causes more SiO loss. Heating rate has almost no influence on reaction. Mass balance analysis shows that mole ratios between SiO2, free carbon, and SiC in the SiC-producing step and SiO-producing step in CO and Ar fit the reaction SiO2(s) + 3 C(s) = SiC(s) + 2 CO(g). SiC-particle and SiC-coating formation process in mixed pellet and carbon-deposited pellet are proposed. SiC whiskers formed in the voids of these two types of pellets.
Fischer, Jochen; Brinkmann, Detert; Elsinghorst, Paul W; Wüst, Matthias
2012-07-01
A novel SIDA-DI-SPME-GC/MS procedure for the quantitation of skatole in pork meat juice was developed and validated as a substitute for back fat sample analysis. System suitability was evaluated by determining the correlation between skatole concentrations in a subset of 38 paired meat juice and back fat samples selected from 90 fattened boars. High correlation was observed between both matrices and conclusions about the partitioning of skatole as well as of androstenone between fat and lean compartments in vivo were drawn. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gomes Neto, J A; Zara, L F; Rocha, J C; Santos, A; Dakuzaku, C S; Nóbrega, J A
2000-03-06
A flow-injection system with a Chelite-S(R) cationic resin packed minicolumn is proposed for the determination of trace levels of mercury in agroindustrial samples by cold vapor atomic absorption spectrometry. Improved sensitivity and selectivity are attained since mercuric ions are on-line concentrated whereas other potential interferents are discarded. With on-line reductive elution procedure, concentrated hydrochloric acid could be replaced by 10% w/v SnCl(2), in 6 M HCl as eluent. The reversed-intermittent stream either carries the atomic mercury to the flow cell in the forward direction or removes the residue from reactor/gas-liquid separator to a discarding flask in the opposite direction. Concentration and volume of reagent, acidity, flow rates, commutation times and potential interfering species were investigated. For 120 s preconcentration time, the proposed system handles about 25 samples h(-1) (50.0-500 ng l(-1)), consuming about 10 ml sample and 5 mg SnCl(2) per determination. The detection limit is 0.8 ng l(-1) and the relative standard deviation (RSD) (n=12) of a 76.7 ng l(-1) sample is about 5%. Results are in agreement with certified value of standard materials at 95% confidence level and good recoveries (97-128%) of spiked samples were found.
Darwin; WipaCharles; Cord-Ruwisch, Ralf
2018-01-01
Organic acid analysis of fermentation samples can be readily achieved by gas chromatography (GC), which detects volatile organic acids. However, lactic acid, a key fermentation acid is non-volatile and can hence not be quantified by regular GC analysis. However the addition of periodic acid to organic acid samples has been shown to enable lactic acid analysis by GC, as periodic acid oxidizes lactic acid to the volatile acetaldehyde. Direct GC injection of lactic acid standards and periodic acid generated inconsistent and irreproducible peaks, possibly due to incomplete lactic acid oxidation to acetaldehyde. The described method is developed to improve lactic acid analysis by GC by using a heat treated derivatization pre-treatment, such that it becomes independent of the retention time and temperature selection of the GC injector. Samples containing lactic acid were amended by periodic acid and heated in a sealed test tube at 100°C for at least 45 min before injecting it to the GC. Reproducible and consistent peaks of acetaldehyde were obtained. Simultaneous determination of lactic acid, acetone, ethanol, butanol, volatile fatty acids could also be accomplished by applying this GC method, enabling precise and convenient organic acid analysis of biological samples such as anaerobic digestion and fermentation processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Polo, Maria; Garcia-Jares, Carmen; Llompart, Maria; Cela, Rafael
2007-08-01
A solid-phase microextraction method (SPME) followed by gas chromatography with micro electron capture detection for determining trace levels of nitro musk fragrances in residual waters was optimized. Four nitro musks, musk xylene, musk moskene, musk tibetene and musk ketone, were selected for the optimization of the method. Factors affecting the extraction process were studied using a multivariate approach. Two extraction modes (direct SPME and headspace SPME) were tried at different extraction temperatures using two fiber coatings [Carboxen-polydimethylsiloxane (CAR/PDMS) and polydimethylsiloxane-divinylbenzene (PDMS/DVB)] selected among five commercial tested fibers. Sample agitation and the salting-out effect were also factors studied. The main effects and interactions between the factors were studied for all the target compounds. An extraction temperature of 100 degrees C and sampling the headspace over the sample, using either CAR/PDMS or PDMS/DVB as fiber coatings, were found to be the experimental conditions that led to a more effective extraction. High sensitivity, with detection limits in the low nanogram per liter range, and good linearity and repeatability were achieved for all nitro musks. Since the method proposed performed well for real samples, it was applied to different water samples, including wastewater and sewage, in which some of the target compounds (musk xylene and musk ketone) were detected and quantified.
Lamas, J Pablo; Salgado-Petinal, Carmen; García-Jares, Carmen; Llompart, María; Cela, Rafael; Gómez, Mariano
2004-08-13
The continuous contamination of surface waters by pharmaceuticals is of most environmental concern. Selective serotonin reuptake inhibitors (SSRIs) are drugs currently prescribed for the treatment of depressions and other psychiatric disorders and then, they are among the pharmaceuticals that can occur in environmental waters. Solid-phase microextraction (SPME) coupled to gas chromatography-mass spectrometry has been applied to the extraction of five SSRIs--venlafaxine, fluvoxamine, fluoxetine, citalopram and sertraline--from water samples. Some of the analytes were not efficiently extracted as underivatized compounds and so, an in situ acetylation step was introduced in the sample preparation procedure. Different parameters affecting extraction efficiency such as extraction mode, fiber coating and temperature were studied. A mixed-level fractional factorial design was also performed to simultaneously study the influence of other five experimental factors. Finally, a method based on direct SPME at 100 degrees C using polydimethylsiloxane-divinylbenzene fibers is proposed. The performance of the method was evaluated, showing good linearity and precision. The detection limits were in the sub-ng/mL level. Practical applicability was demonstrated through the analysis of real samples. Recoveries obtained for river water and wastewater samples were satisfactory in all cases. An important aspect of the proposed method is that no matrix effects were observed. Two of the target compounds, venlafaxine and citalopram, were detected and quantified in a sewage water sample.
Alexandrou, Lydon D; Meehan, Barry J; Morrison, Paul D; Jones, Oliver A H
2017-05-15
Chemical disinfection of water supplies brings significant public health benefits by reducing microbial contamination. The process can however, result in the formation of toxic compounds through interactions between disinfectants and organic material in the source water. These new compounds are termed disinfection by-products (DBPs). The most common are the trihalomethanes (THMs) such as trichloromethane (chloroform), dichlorobromomethane, chlorodibromomethane and tribromomethane (bromoform); these are commonly reported as a single value for total trihalomethanes (TTHMs). Analysis of DBPs is commonly performed via time- and solvent-intensive sample preparation techniques such as liquid-liquid and solid phase extraction. In this study, a method using headspace gas chromatography with micro-electron capture detection was developed and applied for the analysis of THMs in drinking and recycled waters from across Melbourne (Victoria, Australia). The method allowed almost complete removal of the sample preparation step whilst maintaining trace level detection limits (>1 ppb). All drinking water samples had TTHM concentrations below the Australian regulatory limit of 250 µg/L but some were above the U.S. EPA limit of 60 µg/L. The highest TTHM concentration was 67.2 µg/L and lowest 22.9 µg/L. For recycled water, samples taken directly from treatment plants held significantly higher concentrations (153.2 µg/L TTHM) compared to samples from final use locations (4.9-9.3 µg/L).
Hot hydrogen testing of metallic turbo pump materials
NASA Technical Reports Server (NTRS)
Zee, Ralph; Chin, Bryan; Inamdar, Rohit
1993-01-01
The objectives of this investigation are to expose heat resistant alloys to hydrogen at elevated temperatures and to use various microstructural and analytical techniques to determine the chemical and rate process involved in degradation of these materials due to hydrogen environment. Inconel 718 and NASA-23 (wrought and cast) are candidate materials. The degradation of these materials in the presence of 1 to 5 atmospheric pressure of hydrogen from 450 C to 1100 C was examined. The hydrogen facility at Auburn University was used for this purpose. Control experiments were also conducted wherein the samples were exposed to vacuum so that a direct comparison of the results would separate the thermal contribution from the hydrogen effects. The samples were analyzed prior to and after exposure. A residual gas collection system was used to determine the gaseous species produced by any chemical reaction that may have occurred during the exposure. Analysis of this gas sample shows only the presence of H2 as expected. Analyses of the samples were conducted using optical microscopy, x-ray diffraction, scanning electron microscopy, and weight change. There appears to be no change in weight of the samples as a result of hydrogen exposure. In addition no visible change on the surface structure was detected. This indicates that the materials of interest do not have strong interaction with hot hydrogen. This is consistent with the microstructure results.
Lu, H.; Lorenson, T.D.; Moudrakovski, I.L.; Ripmeester, J.A.; Collett, T.S.; Hunter, R.B.; Ratcliffe, C.I.
2011-01-01
Systematic analyses have been carried out on two gas hydrate-bearing sediment core samples, HYPV4, which was preserved by CH4 gas pressurization, and HYLN7, which was preserved in liquid-nitrogen, recovered from the BPXA-DOE-USGS Mount Elbert Stratigraphic Test Well. Gas hydrate in the studied core samples was found by observation to have developed in sediment pores, and the distribution of hydrate saturation in the cores imply that gas hydrate had experienced stepwise dissociation before it was stabilized by either liquid nitrogen or pressurizing gas. The gas hydrates were determined to be structure Type I hydrate with hydration numbers of approximately 6.1 by instrumentation methods such as powder X-ray diffraction, Raman spectroscopy and solid state 13C NMR. The hydrate gas composition was predominantly methane, and isotopic analysis showed that the methane was of thermogenic origin (mean ??13C=-48.6??? and ??D=-248??? for sample HYLN7). Isotopic analysis of methane from sample HYPV4 revealed secondary hydrate formation from the pressurizing methane gas during storage. ?? 2010 Elsevier Ltd.
Sorbents for High Temperature Removal of Arsenic from Coal-Derived Synthesis Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alptekin, G.O.; Copeland, R.; Dubovik, M.
2002-09-20
Gasification technologies convert coal and other heavy feedstocks into synthesis gas feed streams that can be used in the production of a wide variety of chemicals, ranging from hydrogen through methanol, ammonia, acetic anhydride, dimethyl ether (DME), methyl tertiary butyl ether (MTBE), high molecular weight liquid hydrocarbons and waxes. Syngas can also be burned directly as a fuel in advanced power cycles to generate electricity with very high efficiency. However, the coal-derived synthesis gas contains a myriad of trace contaminants that may poison the catalysts that are used in the downstream manufacturing processes and may also be regulated in powermore » plant emissions. Particularly, the catalysts used in the conversion of synthesis gas to methanol and other liquid fuels (Fischer-Tropsch liquids) have been found to be very sensitive to the low levels of poisons, especially arsenic, that are present in the synthesis gas from coal. TDA Research, Inc. (TDA) is developing an expendable high capacity, low-cost chemical absorbent to remove arsenic from coal-derived syngas. Unlike most of the commercially available sorbents that physically adsorb arsenic, TDA's sorbent operates at elevated temperatures and removes the arsenic through chemical reaction. The arsenic content in the coal gas stream is reduced to ppb levels with the sorbent by capturing and stabilizing the arsenic gas (As4) and arsenic hydrides (referred to as arsine, AsH3) in the solid state. To demonstrate the concept of high temperature arsenic removal from coal-derived syngas, we carried out bench-scale experiments to test the absorption capacity of a variety of sorbent formulations under representative conditions. Using on-line analysis techniques, we monitored the pre- and post-breakthrough arsine concentrations over different sorbent samples. Some of these samples exhibited pre-breakthrough arsine absorption capacity over 40% wt. (capacity is defined as lb of arsenic absorbed/lb of sorbent), while maintaining an arsine outlet concentration at less than 10 ppb.« less
Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph
2014-05-13
Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.
Draft evaluation of the frequency for gas sampling for the high burnup confirmatory data project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stockman, Christine T.; Alsaed, Halim A.; Bryan, Charles R.
2015-03-26
This report fulfills the M3 milestone M3FT-15SN0802041, “Draft Evaluation of the Frequency for Gas Sampling for the High Burn-up Storage Demonstration Project” under Work Package FT-15SN080204, “ST Field Demonstration Support – SNL”. This report provides a technically based gas sampling frequency strategy for the High Burnup (HBU) Confirmatory Data Project. The evaluation of: 1) the types and magnitudes of gases that could be present in the project cask and, 2) the degradation mechanisms that could change gas compositions culminates in an adaptive gas sampling frequency strategy. This adaptive strategy is compared against the sampling frequency that has been developed basedmore » on operational considerations. Gas sampling will provide information on the presence of residual water (and byproducts associated with its reactions and decomposition) and breach of cladding, which could inform the decision of when to open the project cask.« less
NASA Astrophysics Data System (ADS)
Lee, James D.; Mobbs, Stephen D.; Wellpott, Axel; Allen, Grant; Bauguitte, Stephane J.-B.; Burton, Ralph R.; Camilli, Richard; Coe, Hugh; Fisher, Rebecca E.; France, James L.; Gallagher, Martin; Hopkins, James R.; Lanoiselle, Mathias; Lewis, Alastair C.; Lowry, David; Nisbet, Euan G.; Purvis, Ruth M.; O'Shea, Sebastian; Pyle, John A.; Ryerson, Thomas B.
2018-03-01
An uncontrolled gas leak from 25 March to 16 May 2012 led to evacuation of the Total Elgin wellhead and neighbouring drilling and production platforms in the UK North Sea. Initially the atmospheric flow rate of leaking gas and condensate was very poorly known, hampering environmental assessment and well control efforts. Six flights by the UK FAAM chemically instrumented BAe-146 research aircraft were used to quantify the flow rate. The flow rate was calculated by assuming the plume may be modelled by a Gaussian distribution with two different solution methods: Gaussian fitting in the vertical and fitting with a fully mixed layer. When both solution methods were used they compared within 6 % of each other, which was within combined errors. Data from the first flight on 30 March 2012 showed the flow rate to be 1.3 ± 0.2 kg CH4 s-1, decreasing to less than half that by the second flight on 17 April 2012. δ13CCH4 in the gas was found to be -43 ‰, implying that the gas source was unlikely to be from the main high pressure, high temperature Elgin gas field at 5.5 km depth, but more probably from the overlying Hod Formation at 4.2 km depth. This was deemed to be smaller and more manageable than the high pressure Elgin field and hence the response strategy was considerably simpler. The first flight was conducted within 5 days of the blowout and allowed a flow rate estimate within 48 h of sampling, with δ13CCH4 characterization soon thereafter, demonstrating the potential for a rapid-response capability that is widely applicable to future atmospheric emissions of environmental concern. Knowledge of the Elgin flow rate helped inform subsequent decision making. This study shows that leak assessment using appropriately designed airborne plume sampling strategies is well suited for circumstances where direct access is difficult or potentially dangerous. Measurements such as this also permit unbiased regulatory assessment of potential impact, independent of the emitting party, on timescales that can inform industry decision makers and assist rapid-response planning by government.
Analysis of problems and failures in the measurement of soil-gas radon concentration.
Neznal, Martin; Neznal, Matěj
2014-07-01
Long-term experience in the field of soil-gas radon concentration measurements allows to describe and explain the most frequent causes of failures, which can appear in practice when various types of measurement methods and soil-gas sampling techniques are used. The concept of minimal sampling depth, which depends on the volume of the soil-gas sample and on the soil properties, is shown in detail. Consideration of minimal sampling depth at the time of measurement planning allows to avoid the most common mistakes. The ways how to identify influencing parameters, how to avoid a dilution of soil-gas samples by the atmospheric air, as well as how to recognise inappropriate sampling methods are discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Siebicke, Lukas
2017-04-01
The eddy covariance (EC) method is state-of-the-art in directly measuring vegetation-atmosphere exchange of CO2 and H2O at ecosystem scale. However, the EC method is currently limited to a small number of atmospheric tracers by the lack of suitable fast-response analyzers or poor signal-to-noise ratios. High resource and power demands may further restrict the number of spatial sampling points. True eddy accumulation (TEA) is an alternative method for direct and continuous flux observations. Key advantages are the applicability to a wider range of air constituents such as greenhouse gases, isotopes, volatile organic compounds and aerosols using slow-response analyzers. In contrast to relaxed eddy accumulation (REA), true eddy accumulation (Desjardins, 1977) has the advantage of being a direct method which does not require proxies. True Eddy Accumulation has the potential to overcome above mentioned limitations of eddy covariance but has hardly ever been successfully demonstrated in practice in the past. This study presents flux measurements using an innovative approach to true eddy accumulation by directly, continuously and automatically measuring trace gas fluxes using a flow-through system. We merge high-frequency flux contributions from TEA with low-frequency covariances from the same sensors. We show flux measurements of CO2, CH4 and H2O by TEA and EC above an old-growth forest at the ICOS flux tower site "Hainich" (DE-Hai). We compare and evaluate the performance of the two direct turbulent flux measurement methods eddy covariance and true eddy accumulation using side-by-side trace gas flux observations. We further compare performance of seven instrument complexes, i.e. combinations of sonic anemometers and trace gas analyzers. We compare gas analyzers types of open-path, enclosed-path and closed-path design. We further differentiate data from two gas analysis technologies: infrared gas analysis (IRGA) and laser spectrometry (open path and CRDS closed-path laser spectrometers). We present results of CO2 and H2O fluxes from the following six instruments, i.e. combinations of sonic anemometers/gas analyzers (and methods): METEK-uSonic3/Picarro-G2301 (TEA), METEK-uSonic3/LI-7500 (EC), Gill-R3/LI-6262 (EC), Gill-R3/LI-7200 (EC), Gill-HS/LI-7200 (EC), Gill-R3/LGR-FGGA (EC). Further, we present results of much more difficult to measure CH4 fluxes from the following three instruments, i.e. combinations of sonic anemometers/gas analyzers (and methods): METEK-uSonic3/Picarro-G2301 (TEA), Gill-R3/LI-7700 (EC), Gill-R3/LGR-FGGA (EC). We observed that CO2, CH4 and H2O fluxes from the side-by-side measurements by true eddy accumulation and eddy covariance methods correlated well. Secondly, the difference between the TEA and EC methods using the same sonic anemometer but different gas analyzer was often smaller than the mismatch of the various side-by-side eddy covariance measurements using different sonic anemometers and gas analyzers. Signal-to-noise ratios of CH4 fluxes from the true eddy accumulation system system were superior to both eddy covariance sensors (open-path LI-7700 and closed-path CRDS LGR-FGGA sensors). We conclude that our novel implementation of the true eddy accumulation method demonstrated high signal-to-noise ratios, applicability to slow-response gas analyzers, small power consumption and direct proxy-free ecosystem-scale trace gas flux measurements of CO2, CH4 and H2O. The current results suggest that true eddy accumulation would be suitable and should be applied as the method-of-choice for direct flux measurements of a large number of atmospheric constituents beyond CO2 and H2O, including isotopes, aerosols, volatile organic compounds and other trace gases for which eddy covariance might not be a viable alternative. We will further develop true eddy accumulation as a novel approach using multiplexed systems for spatially distributed flux measurements.
Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes
2008-10-01
Two new procedures for wine ethanol 13C/12C isotope ratio determination, using high-performance liquid chromatography and gas chromatography isotope ratio mass spectrometry (HPLC/IRMS and GC/IRMS), have been developed to improve isotopic methods dedicated to the study of wine authenticity. Parameters influencing separation of ethanol from wine matrix such as column, temperature, mobile phase, flow rates and injection mode were investigated. Twenty-three wine samples from various origins were analyzed for validation of the procedures. The analytical precision was better than 0.15 per thousand, and no significant isotopic fractionation was observed employing both separative techniques coupled to IRMS. No significant differences and a very strong correlation (r = 0.99) were observed between the 13C/12C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The potential advantages of the developed methods over the traditional one are speed (reducing time required from hours to minutes) and simplicity. In addition, these are the first isotopic methods that allow 13C/12C determination directly from a liquid sample with no previous ethanol isolation, overcoming technical difficulties associated with sample treatment.
Pulsed, atmospheric pressure plasma source for emission spectrometry
Duan, Yixiang; Jin, Zhe; Su, Yongxuan
2004-05-11
A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.
NASA Astrophysics Data System (ADS)
Seong, Tae-Yeon; Bae, In-Tae; Choi, Chel-Jong; Noh, D. Y.; Zhao, Y.; Tu, C. W.
1999-03-01
Transmission electron microscope (TEM), transmission electron diffraction (TED), and synchrotron x-ray diffraction (XRD) studies have been performed to investigate microstructural behavior of gas source molecular beam epitaxial GaN1-xPx layers grown on (0001) GaN/sapphire at temperatures (Tg) in the range 500-760 °C. TEM, TED, and XRD results indicate that the samples grown at Tg⩽600 °C undergo phase separation resulting in a mixture of GaN-rich and GaP-rich GaNP with zinc-blende structure. However, the samples grown at Tg⩾730 °C are found to be binary zinc-blende GaN(P) single crystalline materials. As for the 500 °C layer, the two phases are randomly oriented and distributed, whereas the 600 °C layer consists of phases that are elongated and inclined by 60°-70° clockwise from the [0001]α-GaN direction. The samples grown at Tg⩾730 °C are found to consist of two types of microdomains, namely, GaN(P)I and GaN(P)II; the former having twin relation to the latter.
Winters, William J.; Waite, William F.; Mason, David H.; Kumar, P.
2008-01-01
As part of an international cooperative research program, the U.S. Geological Survey (USGS) and researchers from the National Gas Hydrate Program (NGHP) of India are studying the physical properties of sediment recovered during the NGHP-01 cruise conducted offshore India during 2006. Here we report on index property, acoustic velocity, and triaxial shear test results for samples recovered from the Krishna-Godavari Basin. In addition, we discuss the effects of sample storage temperature, handling, and change in structure of fine-grained sediment. Although complex, sub-vertical planar gas-hydrate structures were observed in the silty clay to clayey silt samples prior to entering the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI), the samples yielded little gas post test. This suggests most, if not all, gas hydrate dissociated during sample transfer. Mechanical properties of hydrate-bearing marine sediment are best measured by avoiding sample depressurization. By contrast, mechanical properties of hydrate-free sediments, that are shipped and stored at atmospheric pressure can be approximated by consolidating core material to the original in situ effective stress.
Construction and testing of a simple and economical soil greenhouse gas automatic sampler
Ginting, D.; Arnold, S.L.; Arnold, N.S.; Tubbs, R.S.
2007-01-01
Quantification of soil greenhouse gas emissions requires considerable sampling to account for spatial and/or temporal variation. With manual sampling, additional personnel are often not available to sample multiple sites within a narrow time interval. The objectives were to construct an automatic gas sampler and to compare the accuracy and precision of automatic versus manual sampling. The automatic sampler was tested with carbon dioxide (CO2) fluxes that mimicked the range of CO2 fluxes during a typical corn-growing season in eastern Nebraska. Gas samples were drawn from the chamber at 0, 5, and 10 min manually and with the automatic sampler. The three samples drawn with the automatic sampler were transferred to pre-vacuumed vials after 1 h; thus the samples in syringe barrels stayed connected with the increasing CO2 concentration in the chamber. The automatic sampler sustains accuracy and precision in greenhouse gas sampling while improving time efficiency and reducing labor stress. Copyright ?? Taylor & Francis Group, LLC.
Differential atmospheric tritium sampler
Griesbach, O.A.; Stencel, J.R.
1987-10-02
An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.
Differential atmospheric tritium sampler
Griesbach, Otto A.; Stencel, Joseph R.
1990-01-01
An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.
Non-proximate mass spectrometry using a heated 1-m long PTFE tube and an air-tight APCI ion source.
Usmanov, Dilshadbek T; Hiraoka, Kenzo; Wada, Hiroshi; Matsumura, Masaya; Sanada-Morimura, Sachiyo; Nonami, Hiroshi; Yamabe, Shinichi
2017-06-22
Direct and rapid trace-level gas analysis is highly needed in various fields such as safety and security, quality control, food analysis, and forensic medicine. In many cases, the real samples are bulky and are not accessible to the space-limited ion source of the mass spectrometer. In order to circumvent this problem, we developed an airtight atmospheric-pressure chemical ionization (APCI) ion source equipped with a flexible 1-m-long, 2-mm-i.d. PTFE sniffing tube. The ambient air bearing sample gas was sucked into the heated PTFE tube (130 °C) and was transported to the air-tight ion source without using any extra pumping system or a Venturi device. Analytes were ionized by an ac corona discharge located at 1.5 mm from the inlet of the mass spectrometer. By using the airtight ion source, all the ionized gas in the ion source was introduced into the vacuum of the mass spectrometer via only the evacuation of the mass spectrometer (1.6 l min -1 ). Sub-pg limits of detection were obtained for carbaryl and trinitrotoluene. Owing to its flexibility and high sensitivity, the sniffing tube coupled with a mass spectrometer can be used as the stethoscope for the high-sensitive gas analysis. The experimental results obtained for drugs, hydrogen peroxide and small alkanes were discussed by DFT calculations. Copyright © 2017 Elsevier B.V. All rights reserved.
XPS studies of nitrogen doping niobium used for accelerator applications
NASA Astrophysics Data System (ADS)
Yang, Ziqin; Lu, Xiangyang; Tan, Weiwei; Zhao, Jifei; Yang, Deyu; Yang, Yujia; He, Yuan; Zhou, Kui
2018-05-01
Nitrogen doping study on niobium (Nb) samples used for the fabrication of superconducting radio frequency (SRF) cavities was carried out. The samples' surface treatment was attempted to replicate that of the Nb SRF cavities, which includes heavy electropolishing (EP), nitrogen doping and the subsequent EP with different amounts of material removal. The surface chemical composition of Nb samples with different post treatments has been studied by XPS. The chemical composition of Nb, O, C and N was presented before and after Gas Cluster Ion Beam (GCIB) etching. No signals of poorly superconducting nitrides NbNx was found on the surface of any doped Nb sample with the 2/6 recipe before GCIB etching. However, in the depth range greater than 30 nm, the content of N element is below the XPS detection precision scope even for the Nb sample directly after nitrogen doping treatment with the 2/6 recipe.
Zhang, Ning; Chen, Haitao; Sun, Baoguo; Mao, Xueying; Zhang, Yuyu; Zhou, Ying
2016-01-01
To compare the volatile compounds of Chinese black truffle and white truffle from Yunnan province, this study presents the application of a direct solvent extraction/solvent-assisted flavor evaporation (DSE-SAFE) coupled with a comprehensive two-dimensional gas chromatography (GC × GC) high resolution time-of-flight mass spectrometry (HR-TOF/MS) and an electronic nose. Both of the analytical methods could distinguish the aroma profile of the two samples. In terms of the overall profile of truffle samples in this research, more kinds of acids were detected via the method of DSE-SAFE. Besides, compounds identified in black truffle (BT), but not in white truffle (WT), or vice versa, and those detected in both samples at different levels were considered to play an important role in differentiating the two samples. According to the analysis of electronic nose, the two samples could be separated, as well. PMID:27058524
Li, Tianling; Panther, Jared; Qiu, Yuan; Liu, Chang; Huang, Jianyin; Wu, Yonghong; Wong, Po Keung; An, Taicheng; Zhang, Shanqing; Zhao, Huijun
2017-11-21
Aquatic ammonia has toxic effects on aquatic life. This work reports a gas-permeable membrane-based conductivity probe (GPMCP) developed for real-time monitoring of ammonia in aquatic environments. The GPMCP innovatively combines a gas-permeable membrane with a boric acid receiving phase to selectively extract ammonia from samples and form ammonium at the inner membrane interface. The rate of the receiving phase conductivity increase is directly proportional to the instantaneous ammonia concentration in the sample, which can be rapidly and sensitively determined by the embedded conductivity detector. A precalibration strategy was developed to eliminate the need for an ongoing calibration. The analytical principle and GPMCP performance were systematically validated. The laboratory results showed that ammonia concentrations ranging from 2 to 50 000 μg L -1 can be detected. The field deployment results demonstrated the GPMCP's ability to obtain high-resolution continuous ammonia concentration profiles and the absolute average ammonia concentration over a prolonged deployment period. By inputting the temperature and pH data, the ammonium concentration can be simultaneously derived from the corresponding ammonia concentration. The GPMCP embeds a sophisticated analytical principle with the inherent advantages of high selectivity, sensitivity, and accuracy, and it can be used as an effective tool for long-term, large-scale, aquatic-environment assessments.
Miniature open channel scrubbers for gas collection.
Toda, Kei; Koga, Tomoko; Tanaka, Toshinori; Ohira, Shin-Ichi; Berg, Jordan M; Dasgupta, Purnendu K
2010-10-15
An open channel scrubber is proposed as a miniature fieldable gas collector. The device is 100mm in length, 26 mm in width and 22 mm in thickness. The channel bottom is rendered hydrophilic and liquid flows as a thin layer on the bottom. Air sample flows atop the appropriately chosen flowing liquid film and analyte molecules are absorbed into the liquid. There is no membrane at the air-liquid interface: they contact directly each other. Analyte species collected over a 10 min interval are determined by fluorometric flow analysis or ion chromatography. A calculation algorithm was developed to estimate the collection efficiency a priori; experimental and simulated results agreed well. The characteristics of the open channel scrubber are discussed in this paper from both theoretical and experimental points of view. In addition to superior collection efficiencies at relatively high sample air flow rates, this geometry is particularly attractive that there is no change in collection performance due to membrane fouling. We demonstrate field use for analysis of ambient SO(2) near an active volcano. This is basic investigation of membraneless miniature scrubber and is expected to lead development of an excellent micro-gas analysis system integrated with a detector for continuous measurements. Copyright © 2010 Elsevier B.V. All rights reserved.
Fenaille, François; Visani, Piero; Fumeaux, René; Milo, Christian; Guy, Philippe A
2003-04-23
Two headspace techniques based on mass spectrometry detection (MS), electronic nose, and solid phase microextraction coupled to gas chromatography-mass spectrometry (SPME-GC/MS) were evaluated for their ability to differentiate various infant formula powders based on changes of their volatiles upon storage. The electronic nose gave unresolved MS fingerprints of the samples gas phases that were further submitted to principal component analysis (PCA). Such direct MS recording combined to multivariate treatment enabled a rapid differentiation of the infant formulas over a 4 week storage test. Although MS-based electronic nose advantages are its easy-to-use aspect and its meaningful data interpretation obtained with a high throughput (100 samples per 24 h), its greatest disadvantage is that the present compounds could not be identified and quantified. For these reasons, a SPME-GC/MS measurement was also investigated. This technique allowed the identification of saturated aldehydes as the main volatiles present in the headspace of infant milk powders. An isotope dilution assay was further developed to quantitate hexanal as a potential indicator of infant milk powder oxidation. Thus, hexanal content was found to vary from roughly 500 and 3500 microg/kg for relatively non-oxidized and oxidized infant formulas, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perko, Z.; Gilli, L.; Lathouwers, D.
2013-07-01
Uncertainty quantification plays an increasingly important role in the nuclear community, especially with the rise of Best Estimate Plus Uncertainty methodologies. Sensitivity analysis, surrogate models, Monte Carlo sampling and several other techniques can be used to propagate input uncertainties. In recent years however polynomial chaos expansion has become a popular alternative providing high accuracy at affordable computational cost. This paper presents such polynomial chaos (PC) methods using adaptive sparse grids and adaptive basis set construction, together with an application to a Gas Cooled Fast Reactor transient. Comparison is made between a new sparse grid algorithm and the traditionally used techniquemore » proposed by Gerstner. An adaptive basis construction method is also introduced and is proved to be advantageous both from an accuracy and a computational point of view. As a demonstration the uncertainty quantification of a 50% loss of flow transient in the GFR2400 Gas Cooled Fast Reactor design was performed using the CATHARE code system. The results are compared to direct Monte Carlo sampling and show the superior convergence and high accuracy of the polynomial chaos expansion. Since PC techniques are easy to implement, they can offer an attractive alternative to traditional techniques for the uncertainty quantification of large scale problems. (authors)« less
NASA Astrophysics Data System (ADS)
Zhu, Linqi; Zhang, Chong; Zhang, Chaomo; Wei, Yang; Zhou, Xueqing; Cheng, Yuan; Huang, Yuyang; Zhang, Le
2018-06-01
There is increasing interest in shale gas reservoirs due to their abundant reserves. As a key evaluation criterion, the total organic carbon content (TOC) of the reservoirs can reflect its hydrocarbon generation potential. The existing TOC calculation model is not very accurate and there is still the possibility for improvement. In this paper, an integrated hybrid neural network (IHNN) model is proposed for predicting the TOC. This is based on the fact that the TOC information on the low TOC reservoir, where the TOC is easy to evaluate, comes from a prediction problem, which is the inherent problem of the existing algorithm. By comparing the prediction models established in 132 rock samples in the shale gas reservoir within the Jiaoshiba area, it can be seen that the accuracy of the proposed IHNN model is much higher than that of the other prediction models. The mean square error of the samples, which were not joined to the established models, was reduced from 0.586 to 0.442. The results show that TOC prediction is easier after logging prediction has been improved. Furthermore, this paper puts forward the next research direction of the prediction model. The IHNN algorithm can help evaluate the TOC of a shale gas reservoir.
40 CFR 86.1537 - Idle test run.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled... dilute sampling. (6) For bag sampling, sample idle emissions long enough to obtain a sufficient bag...
A new in-situ method to determine the apparent gas diffusion coefficient of soils
NASA Astrophysics Data System (ADS)
Laemmel, Thomas; Paulus, Sinikka; Schack-Kirchner, Helmer; Maier, Martin
2015-04-01
Soil aeration is an important factor for the biological activity in the soil and soil respiration. Generally, gas exchange between soil and atmosphere is assumed to be governed by diffusion and Fick's Law is used to describe the fluxes in the soil. The "apparent soil gas diffusion coefficient" represents the proportional factor between the flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gases through the soil. One common way to determine this coefficient is to take core samples in the field and determine it in the lab. Unfortunately this method is destructive and needs laborious field work and can only reflect a small fraction of the whole soil. As a consequence insecurity about the resulting effective diffusivity on the profile scale must remain. We developed a new in-situ method using new gas sampling device, tracer gas and inverse soil gas modelling. The gas sampling device contains several sampling depths and can be easily installed into vertical holes of an auger, which allows for fast installation of the system. At the lower end of the device inert tracer gas is injected continuously. The tracer gas diffuses into the surrounding soil. The resulting distribution of the tracer gas concentrations is used to deduce the diffusivity profile of the soil. For Finite Element Modeling of the gas sampling device/soil system the program COMSOL is used. We will present the results of a field campaign comparing the new in-situ method with lab measurements on soil cores. The new sampling pole has several interesting advantages: it can be used in-situ and over a long time; so it allows following modifications of diffusion coefficients in interaction with rain but also vegetation cycle and wind.
Lease Operations Environmental Guidance Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bureau of Land Management
This report contains discussions in nine different areas as follows: (1) Good Lease Operating Practices; (2) Site Assessment and Sampling; (3) Spills/Accidents; (4) Containment and Disposal of Produced Waters; (5) Restoration of Hydrocarbon Impacted Soils; (6) Restoration of Salt Impacted Soils; (7) Pit Closures; (8) Identification, Removal and Disposal of Naturally Occurring Radioactive Materials (NORM); and (9) Site Closure and Construction Methods for Abandonment Wells/Locations. This report is primary directed towards the operation of oil and gas producing wells.
Stonestrom, David A.; Prudic, David E.; Striegl, Robert G.; Morganwalp, David W.; Buxton, Herbert T.
1999-01-01
The isotopic composition of water in deep unsaturated zones is of interest because it provides information relevant to hydrologic processes and contaminant migration. Profiles of oxygen-18 (18O), deuterium (D), and tritium (3H) from a 110-meter deep unsaturated zone, together with data on the isotopic composition of ground water and modern-day precipitation, are interpreted in the context of water-content, water-potential, and pore-gas profiles. At depths greater than about three meters, water vapor and liquid water are in approximate equilibrium with respect to D and 18O. The vapor-phase concentrations of D and 18O have remained stable through repeated samplings. Vapor-phase 3H concentrations have generally increased with time, requiring synchronous sampling of liquid and vapor to assess equilibrium. Below 30 meters, concentrations of D and 18O in pore water become approximately equal to the composition of ground water, which is isotopically lighter than modern precipitation and has a carbon-14 (14C) concentration of about 26 percent modern carbon. These data indicate that net gradients driving fluxes of water, gas, and heat are directed upwards for undisturbed conditions at the Amargosa Desert Research Site (ADRS). Superimposed on the upward-directed flow field, tritium is migrating away from waste in response to gradients in tritium concentrations.
Development and experimental study of large size composite plasma immersion ion implantation device
NASA Astrophysics Data System (ADS)
Falun, SONG; Fei, LI; Mingdong, ZHU; Langping, WANG; Beizhen, ZHANG; Haitao, GONG; Yanqing, GAN; Xiao, JIN
2018-01-01
Plasma immersion ion implantation (PIII) overcomes the direct exposure limit of traditional beam-line ion implantation, and is suitable for the treatment of complex work-piece with large size. PIII technology is often used for surface modification of metal, plastics and ceramics. Based on the requirement of surface modification of large size insulating material, a composite full-directional PIII device based on RF plasma source and metal plasma source is developed in this paper. This device can not only realize gas ion implantation, but also can realize metal ion implantation, and can also realize gas ion mixing with metal ions injection. This device has two metal plasma sources and each metal source contains three cathodes. Under the condition of keeping the vacuum unchanged, the cathode can be switched freely. The volume of the vacuum chamber is about 0.94 m3, and maximum vacuum degree is about 5 × 10-4 Pa. The density of RF plasma in homogeneous region is about 109 cm-3, and plasma density in the ion implantation region is about 1010 cm-3. This device can be used for large-size sample material PIII treatment, the maximum size of the sample diameter up to 400 mm. The experimental results show that the plasma discharge in the device is stable and can run for a long time. It is suitable for surface treatment of insulating materials.
Soil gas screening for chlorinated solvents at three contaminated karst sites in Tennessee
Wolfe, W.J.; Williams, S.D.
2002-01-01
Soil gas was sampled using active sampling techniques and passive collectors at three sites in Tennessee to evaluate the effectiveness of these techniques for locating chlorinated solvent sources and flowpaths in karst aquifers. Actively collected soil gas samples were analyzed in the field with a portable gas chromatograph, and the passive soil gas collectors were analyzed in the lab with gas chromatography/mass spectrometry. Results of the sampling indicate that the effectiveness of both techniques is highly dependent on the distribution of the contaminants in the subsurface, the geomorphic and hydrogeologic characteristics of the site, and, in one case, on seasonal conditions. Both active and passive techniques identified areas of elevated subsurface chlorinated solvent concentrations at a landfill site where contamination remains concentrated in the regolith. Neither technique detected chlorinated solvents known to be moving in the bedrock at a manufacturing site characterized by thick regolith and an absence of surficial karst features. Passive soil gas sampling had varied success detecting flowpaths for chloroform in the bedrock at a train derailment site characterized by shallow regolith and abundant surficial karst features. At the train derailment site, delineation of the contaminant flowpath through passive soil gas sampling was stronger and more detailed under Winter conditions than summer.
How Do Deep Saline Aquifer Microbial Communities Respond to Supercritical CO2 Injection?
NASA Astrophysics Data System (ADS)
Mu, A.; Billman-Jacobe, H.; Boreham, C.; Schacht, U.; Moreau, J. W.
2011-12-01
Carbon Capture and Storage (CCS) is currently seen as a viable strategy for mitigating anthropogenic carbon dioxide pollution. The Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) is currently conducting a field experiment in the Otway Basin (Australia) studying residual gas saturation in the water-saturated reservoir of the Paaratte Formation. As part of this study, a suite of pre-CO2 injection water samples were collected from approximately 1400 meters depth (60°C, 13.8 MPa) via an in situ sampling system. The in situ sampling system isolates aquifer water from sources of contamination while maintaining the formation pressure. Whole community DNA was extracted from these samples to investigate the prokaryotic biodiversity of the saline Paaratte aquifer (EC = 1509.6 uS/cm). Bioinformatic analysis of preliminary 16S ribosomal gene data revealed Thermincola, Acinetobacter, Sphingobium, and Dechloromonas amongst the closest related genera to environmental clone sequences obtained from a subset of pre-CO2 injection groundwater samples. Epifluorescent microscopy with 4',6-diamidino-2-phenylindole (DAPI) highlighted an abundance of filamentous cells ranging from 5 to 45 μM. Efforts are currently directed towards utilising a high throughput sequencing approach to capture an exhaustive profile of the microbial diversity of the Paaratte aquifer CO2 injection site, and to understand better the response of in situ microbial populations to the injection of large volumes (e.g. many kilotonnes) of supercritical CO2 (sc-CO2). Sequencing results will be used to direct cultivation efforts towards enrichment of a CO2-tolerant microorganism. Understanding the microbial response to sc-CO2 is an integral aspect of carbon dioxide storage, for which very little information exists in the literature. This study aims to elucidate molecular mechanisms, through genomic and cultivation-based methods, for CO2 tolerance with the prospect of engineering biofilms to enhance trapping of CO2 in saline aquifers.
Hashimoto, Shunji; Takazawa, Yoshikatsu; Fushimi, Akihiro; Tanabe, Kiyoshi; Shibata, Yasuyuki; Ieda, Teruyo; Ochiai, Nobuo; Kanda, Hirooki; Ohura, Takeshi; Tao, Qingping; Reichenbach, Stephen E
2011-06-17
We successfully detected halogenated compounds from several kinds of environmental samples by using a comprehensive two-dimensional gas chromatograph coupled with a tandem mass spectrometer (GC×GC-MS/MS). For the global detection of organohalogens, fly ash sample extracts were directly measured without any cleanup process. The global and selective detection of halogenated compounds was achieved by neutral loss scans of chlorine, bromine and/or fluorine using an MS/MS. It was also possible to search for and identify compounds using two-dimensional mass chromatograms and mass profiles obtained from measurements of the same sample with a GC×GC-high resolution time-of-flight mass spectrometer (HRTofMS) under the same conditions as those used for the GC×GC-MS/MS. In this study, novel software tools were also developed to help find target (halogenated) compounds in the data provided by a GC×GC-HRTofMS. As a result, many dioxin and polychlorinated biphenyl congeners and many other halogenated compounds were found in fly ash extract and sediment samples. By extracting the desired information, which concerned organohalogens in this study, from huge quantities of data with the GC×GC-HRTofMS, we reveal the possibility of realizing the total global detection of compounds with one GC measurement of a sample without any pre-treatment. Copyright © 2011 Elsevier B.V. All rights reserved.