Smeared star spot location estimation using directional integral method.
Hou, Wang; Liu, Haibo; Lei, Zhihui; Yu, Qifeng; Liu, Xiaochun; Dong, Jing
2014-04-01
Image smearing significantly affects the accuracy of attitude determination of most star sensors. To ensure the accuracy and reliability of a star sensor under image smearing conditions, a novel directional integral method is presented for high-precision star spot location estimation to improve the accuracy of attitude determination. Simulations based on the orbit data of the challenging mini-satellite payload satellite were performed. Simulation results demonstrated that the proposed method exhibits high performance and good robustness, which indicates that the method can be applied effectively.
A method for direct numerical integration of the Boltzmann equation
NASA Technical Reports Server (NTRS)
Cheremisin, F. G.
1972-01-01
The principal difficulties in numerical solution of the Boltzmann equation are considered. The study is aimed at formulating a numerical solution in such a manner that it contains a minimum amount of excess information at the distribution function level. It is pointed out that the accurate calculation of the distribution function at each point in phase space requires a tremendous number of operations, due to the necessity of solving five-fold quadratures in the collision integral. This results in the operational memory of the digital computer being insufficient to store all the data on the distribution functions at the necessary points in phase space. An algorithm is constructed involving successive iterations of the Boltzmann equation which does not require storage of each step of the new distribution function.
NASA Astrophysics Data System (ADS)
Zhou, Liwei; Li, Yuan; Zhang, Zhiquan; Monastyrskiy, Mikhail A.; Schelev, Mikhail Y.
2005-03-01
A new approach to the theory of temporal aberration for the dynamic electron optical imaging systems is given in the present paper. A new definition of temporal aberrations is given in which a certain initial energy of electron emission along the axial direction ɛz1(0<=ɛz1<=ɛ0max) is considered. A new method to calculate the temporal aberration coefficients of dynamic electron optical imaging system, which is named "Direct Integral Method", is also presented. All of the formulae of the temporal aberration coefficients deduced from "Direct Integral Method" and "-Variation Method" have been verified by an electrostatic concentric spherical system model, and contrasted with the analytical solutions. Results show that these two methods have got identical solution and the solutions of temporal aberration coefficients of first and second-order are the same with the analytical solutions. Thus it can be concluded these two methods given by us are equivalent and correct, but the "Direct Integral Method" is related to solve integral expressions, which is more convenient for computation and could be suggested to use in the practical design.
Mixed direct-iterative methods for boundary integral formulations of dielectric solvation models.
Corcelli, S A; Kress, J D; Pratt, L R; Tawa, G J
1996-01-01
This paper describes a mixed direct-iterative method for boundary integral formulations of dielectric solvation models. We give an example for which a direct solution at thermal accuracy is nontrivial and for which Gauss-Seidel iteration diverges in rare but reproducible cases. This difficulty is analyzed by obtaining the eigenvalues and the spectral radius of the iteration matrix. This establishes that the nonconvergence is due to inaccuracies of the asymptotic approximations for the matrix elements for accidentally close boundary element pairs on different spheres. This difficulty is cured by checking for boundary element pairs closer than the typical spatial extent of the boundary elements and for those pairs performing an 'in-line' Monte Carlo integration to evaluate the required matrix elements. This difficulty are not expected and have not been observed when only a direct solution is sought. Finally, we give an example application of these methods to deprotonation of monosilicic acid in water.
Tuning of PID controllers for integrating systems using direct synthesis method.
Anil, Ch; Padma Sree, R
2015-07-01
A PID controller is designed for various forms of integrating systems with time delay using direct synthesis method. The method is based on comparing the characteristic equation of the integrating system and PID controller with a filter with the desired characteristic equation. The desired characteristic equation comprises of multiple poles which are placed at the same desired location. The tuning parameter is adjusted so as to achieve the desired robustness. Tuning rules in terms of process parameters are given for various forms of integrating systems. The tuning parameter can be selected for the desired robustness by specifying Ms value. The proposed controller design method is applied to various transfer function models and to the nonlinear model equations of jacketed CSTR to show its effectiveness and applicability.
NASA Astrophysics Data System (ADS)
Sato, Seichi; Kurihara, Toru; Ando, Shigeru
This paper proposes an exact direct method to determine all parameters including an envelope peak of the white-light interferogram. A novel mathematical technique, the weighted integral method (WIM), is applied that starts from the characteristic differential equation of the target signal, interferogram in this paper, to obtain the algebraic relation among the finite-interval weighted integrals (observations) of the signal and the waveform parameters (unknowns). We implemented this method using FFT and examined through various numerical simulations. The results show the method is able to localize the envelope peak very accurately even if it is not included in the observed interval. The performance comparisons reveal the superiority of the proposed algorithm over conventional algorithms in all terms of accuracy, efficiency, and estimation range.
A robust direct-integration method for rotorcraft maneuver and periodic response
NASA Technical Reports Server (NTRS)
Panda, Brahmananda
1992-01-01
The Newmark-Beta method and the Newton-Raphson iteration scheme are combined to develop a direct-integration method for evaluating the maneuver and periodic-response expressions for rotorcraft. The method requires the generation of Jacobians and includes higher derivatives in the formulation of the geometric stiffness matrix to enhance the convergence of the system. The method leads to effective convergence with nonlinear structural dynamics and aerodynamic terms. Singularities in the matrices can be addressed with the method as they arise from a Lagrange multiplier approach for coupling equations with nonlinear constraints. The method is also shown to be general enough to handle singularities from quasisteady control-system models. The method is shown to be more general and robust than the similar 2GCHAS method for analyzing rotorcraft dynamics.
NASA Astrophysics Data System (ADS)
Ding, Nenggen; Taheri, Saied
2010-10-01
In this article, an adaptive integrated control algorithm based on active front steering and direct yaw moment control using direct Lyapunov method is proposed. Variation of cornering stiffness is considered through adaptation laws in the algorithm to ensure robustness of the integrated controller. A simple two degrees of freedom (DOF) vehicle model is used to develop the control algorithm. To evaluate the control algorithm developed here, a nonlinear eight-DOF vehicle model along with a combined-slip tyre model and a single-point preview driver model are used. Control commands are executed through correction steering angle on front wheels and braking torque applied on one of the four wheels. Simulation of a double lane change manoeuvre using Matlab®/Simulink is used for evaluation of the control algorithm. Simulation results show that the integrated control algorithm can significantly enhance vehicle stability during emergency evasive manoeuvres on various road conditions ranging from dry asphalt to very slippery packed snow road surfaces.
Study of methods for direct optical address of integrated optical circuits
NASA Technical Reports Server (NTRS)
Wood, V. E.; Verber, C. M.
1979-01-01
Methods for introducing optical information directly, without intervening recording and storage steps, into integrated optical data-processing devices are surveyed. The information is taken to be in the form of a one-dimensional variation of intensity across the beam. Physical phenomena that may be utilized are evaluated, and the most suitable presently known classes of materials for exploitation of each type of interaction are discussed. A variety of possible device configurations are suggested and general principles are outlined whereby many more device types can be generated. A simple experimental device was demonstrated and its operation was analyzed.
Direction and Integration of Experimental Ground Test Capabilities and Computational Methods
NASA Technical Reports Server (NTRS)
Dunn, Steven C.
2016-01-01
This paper groups and summarizes the salient points and findings from two AIAA conference panels targeted at defining the direction, with associated key issues and recommendations, for the integration of experimental ground testing and computational methods. Each panel session utilized rapporteurs to capture comments from both the panel members and the audience. Additionally, a virtual panel of several experts were consulted between the two sessions and their comments were also captured. The information is organized into three time-based groupings, as well as by subject area. These panel sessions were designed to provide guidance to both researchers/developers and experimental/computational service providers in defining the future of ground testing, which will be inextricably integrated with the advancement of computational tools.
McCammon, R.B.; Finch, W.I.; Kork, J.O.; Bridges, N.J.
1994-01-01
An integrated data-directed numerical method has been developed to estimate the undiscovered mineral endowment within a given area. The method has been used to estimate the undiscovered uranium endowment in the San Juan Basin, New Mexico, U.S.A. The favorability of uranium concentration was evaluated in each of 2,068 cells defined within the Basin. Favorability was based on the correlated similarity of the geologic characteristics of each cell to the geologic characteristics of five area-related deposit models. Estimates of the undiscovered endowment for each cell were categorized according to deposit type, depth, and cutoff grade. The method can be applied to any mineral or energy commodity provided that the data collected reflect discovered endowment. ?? 1994 Oxford University Press.
A facile method for integrating direct-write devices into three-dimensional printed parts
NASA Astrophysics Data System (ADS)
Chang, Yung-Hang; Wang, Kan; Wu, Changsheng; Chen, Yiwen; Zhang, Chuck; Wang, Ben
2015-06-01
Integrating direct-write (DW) devices into three-dimensional (3D) printed parts is key to continuing innovation in engineering applications such as smart material systems and structural health monitoring. However, this integration is challenging because: (1) most 3D printing techniques leave rough or porous surfaces if they are untreated; (2) the thermal sintering process required for most conductive inks could degrade the polymeric materials of 3D printed parts; and (3) the extensive pause needed for the DW process during layer-by-layer fabrication may cause weaker interlayer bonding and create structural weak points. These challenges are rather common during the insertion of conductive patterns inside 3D printed structures. As an avoidance tactic, we developed a simple ‘print-stick-peel’ method to transfer the DW device from the polytetrafluoroethylene or perfluoroalkoxy alkanes film onto any layer of a 3D printed object. This transfer can be achieved using the self-adhesion of 3D printing materials or applying additional adhesive. We demonstrated this method by transferring Aerosol Jet® printed strain sensors into parts fabricated by PolyJet™ printing. This report provides an investigation and discussion on the sensitivity, reliability, and influence embedding the sensor has on mechanical properties.
Strandberg-Larsen, Martin; Krasnik, Allan
2009-01-01
Integrated healthcare delivery is a policy goal of healthcare systems. There is no consensus on how to measure the concept, which makes it difficult to monitor progress. To identify the different types of methods used to measure integrated healthcare delivery with emphasis on structural, cultural and process aspects. Medline/Pubmed, EMBASE, Web of Science, Cochrane Library, WHOLIS, and conventional internet search engines were systematically searched for methods to measure integrated healthcare delivery (published - April 2008). Twenty-four published scientific papers and documents met the inclusion criteria. In the 24 references we identified 24 different measurement methods; however, 5 methods shared theoretical framework. The methods can be categorized according to type of data source: a) questionnaire survey data, b) automated register data, or c) mixed data sources. The variety of concepts measured reflects the significant conceptual diversity within the field, and most methods lack information regarding validity and reliability. Several methods have been developed to measure integrated healthcare delivery; 24 methods are available and some are highly developed. The objective governs the method best used. Criteria for sound measures are suggested and further developments should be based on an explicit conceptual framework and focus on simplifying and validating existing methods.
Transient Response of Shells of Revolution by Direct Integration and Modal Superposition Methods
NASA Technical Reports Server (NTRS)
Stephens, W. B.; Adelman, H. M.
1974-01-01
The results of an analytical effort to obtain and evaluate transient response data for a cylindrical and a conical shell by use of two different approaches: direct integration and modal superposition are described. The inclusion of nonlinear terms is more important than the inclusion of secondary linear effects (transverse shear deformation and rotary inertia) although there are thin-shell structures where these secondary effects are important. The advantages of the direct integration approach are that geometric nonlinear and secondary effects are easy to include and high-frequency response may be calculated. In comparison to the modal superposition technique the computer storage requirements are smaller. The advantages of the modal superposition approach are that the solution is independent of the previous time history and that once the modal data are obtained, the response for repeated cases may be efficiently computed. Also, any admissible set of initial conditions can be applied.
NASA Technical Reports Server (NTRS)
Young, D. P.; Woo, A. C.; Bussoletti, J. E.; Johnson, F. T.
1986-01-01
A general method is developed combining fast direct methods and boundary integral equation methods to solve Poisson's equation on irregular exterior regions. The method requires O(N log N) operations where N is the number of grid points. Error estimates are given that hold for regions with corners and other boundary irregularities. Computational results are given in the context of computational aerodynamics for a two-dimensional lifting airfoil. Solutions of boundary integral equations for lifting and nonlifting aerodynamic configurations using preconditioned conjugate gradient are examined for varying degrees of thinness.
Song, Yuelin; Song, Qingqing; Li, Jun; Zheng, Jiao; Li, Chun; Zhang, Yuan; Zhang, Lingling; Jiang, Yong; Tu, Pengfei
2016-07-08
Direct analysis is of great importance to understand the real chemical profile of a given sample, notably biological materials, because either chemical degradation or diverse errors and uncertainties might be resulted from sophisticated protocols. In comparison with biofluids, it is still challenging for direct analysis of solid biological samples using high performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Herein, a new analytical platform was configured by online hyphenating pressurized liquid extraction (PLE), turbulent flow chromatography (TFC), and LC-MS/MS. A facile, but robust PLE module was constructed based on the phenomenon that noticeable back-pressure can be generated during rapid fluid passing through a narrow tube. TFC column that is advantageous at extracting low molecular analytes from rushing fluid was employed to link at the outlet of the PLE module to capture constituents-of-interest. An electronic 6-port/2-position valve was introduced between TFC column and LC-MS/MS to fragment each measurement into extraction and elution phases, whereas LC-MS/MS took the charge of analyte separation and monitoring. As a proof of concept, simultaneous determination of 24 endogenous substances including eighteen steroids, five eicosanoids, and one porphyrin in feces was carried out in this paper. Method validation assays demonstrated the analytical platform to be qualified for directly simultaneous measurement of diverse endogenous analytes in fecal matrices. Application of this integrated platform on homolog-focused profiling of feces is discussed in a companion paper.
Statistical Methods in Integrative Genomics.
Richardson, Sylvia; Tseng, George C; Sun, Wei
2016-06-01
Statistical methods in integrative genomics aim to answer important biology questions by jointly analyzing multiple types of genomic data (vertical integration) or aggregating the same type of data across multiple studies (horizontal integration). In this article, we introduce different types of genomic data and data resources, and then review statistical methods of integrative genomics, with emphasis on the motivation and rationale of these methods. We conclude with some summary points and future research directions.
Statistical Methods in Integrative Genomics
Richardson, Sylvia; Tseng, George C.; Sun, Wei
2016-01-01
Statistical methods in integrative genomics aim to answer important biology questions by jointly analyzing multiple types of genomic data (vertical integration) or aggregating the same type of data across multiple studies (horizontal integration). In this article, we introduce different types of genomic data and data resources, and then review statistical methods of integrative genomics, with emphasis on the motivation and rationale of these methods. We conclude with some summary points and future research directions. PMID:27482531
NASA Astrophysics Data System (ADS)
Wei, Jian-Gong; Peng, Zhen; Lee, Jin-Fa
2012-10-01
The implementation details of a fast direct solver is described herein for solving dense matrix equations from the application of surface integral equation methods for electromagnetic field scatterings from non-penetrable targets. The proposed algorithm exploits the smoothness of the far field and computes a low rank decomposition of the off-diagonal coupling blocks of the matrices through a set of skeletonization processes. Moreover, an artificial surface (the Huygens' surface) is introduced for each clustering group to efficiently account for the couplings between well-separated groups. Furthermore, a recursive multilevel version of the algorithm is presented. Although asymptotically the algorithm would not alter the bleak outlook of the complexity of the worst case scenario,O(N3) for required CPU time where N denotes the number of unknowns, for electrically large electromagnetic (EM) problems; through numerical examples, we found that the proposed multilevel direct solver can scale as good as O(N1.3) in memory consumption and O(N1.8) in CPU time for moderate-sized EM problems. Note that our conclusions are drawn based on a few sample examples that we have conducted and should not be taken as a true complexity analysis for general electrodynamic applications. However, for the fixed frequency (h-refinement) scenario, where the discretization size decreases, the computational complexities observed agree well with the theoretical predictions. Namely, the algorithm exhibits O(N) and O(N1.5) complexities for memory consumption and CPU time, respectively.
NASA Technical Reports Server (NTRS)
Mendelson, A.
1977-01-01
Two advances in the numerical techniques of utilizing the BIE method are presented. The boundary unknowns are represented by parabolas over each interval which are integrated in closed form. These integrals are listed for easy use. For problems involving crack tip singularities, these singularities are included in the boundary integrals so that the stress intensity factor becomes just one more unknown in the set of boundary unknowns thus avoiding the uncertainties of plotting and extrapolating techniques. The method is applied to the problems of a notched beam in tension and bending, with excellent results.
Sasaki, Akira; Kojo, Masashi; Hirose, Kikuji; Goto, Hidekazu
2011-11-02
The path-integral renormalization group and direct energy minimization method of practical first-principles electronic structure calculations for multi-body systems within the framework of the real-space finite-difference scheme are introduced. These two methods can handle higher dimensional systems with consideration of the correlation effect. Furthermore, they can be easily extended to the multicomponent quantum systems which contain more than two kinds of quantum particles. The key to the present methods is employing linear combinations of nonorthogonal Slater determinants (SDs) as multi-body wavefunctions. As one of the noticeable results, the same accuracy as the variational Monte Carlo method is achieved with a few SDs. This enables us to study the entire ground state consisting of electrons and nuclei without the need to use the Born-Oppenheimer approximation. Recent activities on methodological developments aiming towards practical calculations such as the implementation of auxiliary field for Coulombic interaction, the treatment of the kinetic operator in imaginary-time evolutions, the time-saving double-grid technique for bare-Coulomb atomic potentials and the optimization scheme for minimizing the total-energy functional are also introduced. As test examples, the total energy of the hydrogen molecule, the atomic configuration of the methylene and the electronic structures of two-dimensional quantum dots are calculated, and the accuracy, availability and possibility of the present methods are demonstrated.
ERIC Educational Resources Information Center
Cliff, William H.; Curtin, Leslie Nesbitt
2000-01-01
Provides an example of a directed case on human anatomy and physiology. Uses brief real life newspaper articles and clinical descriptions of medical reference texts to describe an actual, fictitious, or composite event. Includes interrelated human anatomy and physiology topics in the scenario. (YDS)
ERIC Educational Resources Information Center
Cliff, William H.; Curtin, Leslie Nesbitt
2000-01-01
Provides an example of a directed case on human anatomy and physiology. Uses brief real life newspaper articles and clinical descriptions of medical reference texts to describe an actual, fictitious, or composite event. Includes interrelated human anatomy and physiology topics in the scenario. (YDS)
Integrated College Methods Courses.
ERIC Educational Resources Information Center
Freeland, Kent; Willis, Melinda
This study compared the performance of two groups of preservice teachers at Kentucky's Morehead State University. One group had taken four of their methods courses (reading, language arts, social studies, and mathematics) in an integrated fashion from four faculty members. This group was termed the block group. The other group (the nonblock group)…
Farace, Paolo; Righetto, Roberto; Deffet, Sylvain; Meijers, Arturs; Vander Stappen, Francois
2016-12-01
To introduce a fast ray-tracing algorithm in pencil proton radiography (PR) with a multilayer ionization chamber (MLIC) for in vivo range error mapping. Pencil beam PR was obtained by delivering spots uniformly positioned in a square (45 × 45 mm(2) field-of-view) of 9 × 9 spots capable of crossing the phantoms (210 MeV). The exit beam was collected by a MLIC to sample the integral depth dose (IDDMLIC). PRs of an electron-density and of a head phantom were acquired by moving the couch to obtain multiple 45 × 45 mm(2) frames. To map the corresponding range errors, the two-dimensional set of IDDMLIC was compared with (i) the integral depth dose computed by the treatment planning system (TPS) by both analytic (IDDTPS) and Monte Carlo (IDDMC) algorithms in a volume of water simulating the MLIC at the CT, and (ii) the integral depth dose directly computed by a simple ray-tracing algorithm (IDDdirect) through the same CT data. The exact spatial position of the spot pattern was numerically adjusted testing different in-plane positions and selecting the one that minimized the range differences between IDDdirect and IDDMLIC. Range error mapping was feasible by both the TPS and the ray-tracing methods, but very sensitive to even small misalignments. In homogeneous regions, the range errors computed by the direct ray-tracing algorithm matched the results obtained by both the analytic and the Monte Carlo algorithms. In both phantoms, lateral heterogeneities were better modeled by the ray-tracing and the Monte Carlo algorithms than by the analytic TPS computation. Accordingly, when the pencil beam crossed lateral heterogeneities, the range errors mapped by the direct algorithm matched better the Monte Carlo maps than those obtained by the analytic algorithm. Finally, the simplicity of the ray-tracing algorithm allowed to implement a prototype procedure for automated spatial alignment. The ray-tracing algorithm can reliably replace the TPS method in MLIC PR for in vivo range
Accelerated Adaptive Integration Method
2015-01-01
Conformational changes that occur upon ligand binding may be too slow to observe on the time scales routinely accessible using molecular dynamics simulations. The adaptive integration method (AIM) leverages the notion that when a ligand is either fully coupled or decoupled, according to λ, barrier heights may change, making some conformational transitions more accessible at certain λ values. AIM adaptively changes the value of λ in a single simulation so that conformations sampled at one value of λ seed the conformational space sampled at another λ value. Adapting the value of λ throughout a simulation, however, does not resolve issues in sampling when barriers remain high regardless of the λ value. In this work, we introduce a new method, called Accelerated AIM (AcclAIM), in which the potential energy function is flattened at intermediate values of λ, promoting the exploration of conformational space as the ligand is decoupled from its receptor. We show, with both a simple model system (Bromocyclohexane) and the more complex biomolecule Thrombin, that AcclAIM is a promising approach to overcome high barriers in the calculation of free energies, without the need for any statistical reweighting or additional processors. PMID:24780083
NASA Astrophysics Data System (ADS)
Doughty, Christine; Tsang, Chin-Fu; Hatanaka, Koichiro; Yabuuchi, Satoshi; Kurikami, Hiroshi
2008-08-01
The flowing fluid electric conductivity (FFEC) logging method is an efficient way to provide information on the depths, salinities, and inflow strengths of individual conductive features intercepted by a borehole, without the use of specialized probes. Using it in a multiple-flow rate mode allows, in addition, an estimate of the transmissivities and inherent (far-field) hydraulic heads in each of the conductive features. The multirate method was successfully applied to a 500-m borehole in a granitic formation and reported recently. The present paper describes the application of the method to two zones within a 1000-m borehole in sedimentary rock, which produced, for each zone, three sets of logs at different pumping rates, each set measured over a period of about 1 day. The data sets involve several complications, such as variable well diameter, gradual water level decline in the well during logging, possible fluid flow through the unfractured rock matrix, and effects of drilling mud. Various techniques were applied to analyze the FFEC logs: direct-fitting, mass integral, and the multirate method mentioned above. In spite of complications associated with the tests, analysis was able to identify 44 hydraulically conducting fractures distributed over the depth interval 150-775 m below ground surface. The salinities (in FEC), and transmissivities and hydraulic heads (in dimensionless form) of these 44 features were obtained and found to vary significantly among one another. These results were compared with transmissivity and head values inferred from eight packer tests that were conducted in this borehole over the same depth interval. FFEC results were found to be consistent with packer test results, thus demonstrating the robustness of the FFEC logging method under nonideal conditions.
Directed random polymers via nested contour integrals
NASA Astrophysics Data System (ADS)
Borodin, Alexei; Bufetov, Alexey; Corwin, Ivan
2016-05-01
We study the partition function of two versions of the continuum directed polymer in 1 + 1 dimension. In the full-space version, the polymer starts at the origin and is free to move transversally in R, and in the half-space version, the polymer starts at the origin but is reflected at the origin and stays in R-. The partition functions solve the stochastic heat equation in full-space or half-space with mixed boundary condition at the origin; or equivalently the free energy satisfies the Kardar-Parisi-Zhang equation. We derive exact formulas for the Laplace transforms of the partition functions. In the full-space this is expressed as a Fredholm determinant while in the half-space this is expressed as a Fredholm Pfaffian. Taking long-time asymptotics we show that the limiting free energy fluctuations scale with exponent 1 / 3 and are given by the GUE and GSE Tracy-Widom distributions. These formulas come from summing divergent moment generating functions, hence are not mathematically justified. The primary purpose of this work is to present a mathematical perspective on the polymer replica method which is used to derive these results. In contrast to other replica method work, we do not appeal directly to the Bethe ansatz for the Lieb-Liniger model but rather utilize nested contour integral formulas for moments as well as their residue expansions.
Comparison of directed self-assembly integrations
NASA Astrophysics Data System (ADS)
Somervell, Mark; Gronheid, Roel; Hooge, Joshua; Nafus, Kathleen; Rincon Delgadillo, Paulina; Thode, Chris; Younkin, Todd; Matsunaga, Koichi; Rathsack, Ben; Scheer, Steven; Nealey, Paul
2012-03-01
Directed Self-Assembly (DSA) is gaining momentum as a means for extending optical lithography past its current limits. There are many forms of the technology, and it can be used for creating both line/space and hole patterns.1-3 As with any new technology, adoption of DSA faces several key challenges. These include creation of a new materials infrastructure, fabrication of new processing hardware, and the development of implementable integrations. Above all else, determining the lowest possible defect density remains the industry's most critical concern. Over the past year, our team, working at IMEC, has explored various integrations for making 12-14nm half-pitch line/space arrays. Both grapho- and chemo-epitaxy implementations have been investigated in order to discern which offers the best path to high volume manufacturing. This paper will discuss the manufacturing readiness of the various implementations by comparing the process margin for different DSA processing steps and defect density for the entirety of the flow. As part of this work, we will describe our method for using programmed defectivity on reticle to elucidate the mechanisms that drive self-assembly defectivity on wafer.
Direct methods in protein crystallography.
Karle, J
1989-11-01
It is pointed out that the 'direct methods' of phase determination for small-structure crystallography do not have immediate applicability to macromolecular structures. The term 'direct methods in macromolecular crystallography' is suggested to categorize a spectrum of approaches to macromolecular structure determination in which the analyses are characterized by the use of two-phase and higher-order-phase invariants. The evaluation of the invariants is generally obtained by the use of heavy-atom techniques. The results of a number of the more recent algebraic and probabilistic studies involving isomorphous replacement and anomalous dispersion thus become valid subjects for discussion here. These studies are described and suggestions are also presented concerning future applicability. Additional discussion concerns the special techniques of filtering, the use of non-crystallographic symmetry, some features of maximum entropy and attempts to apply phase-determining formulas to the refinement of macromolecular structure. It is noted that, in addition to the continuing remarkable progress in macromolecular crystallography based on the traditional applications of isomorphous replacement and anomalous dispersion, recent valuable advances have been made in the application of non-crystallographic symmetry, in particular, to virus structures and in applications of filtering. Good progress has also been reported in the application of exact linear algebra to multiple-wavelength anomalous-dispersion investigations of structures containing anomalous scatterers of only moderate scattering power.
Method for directional hydraulic fracturing
Swanson, David E.; Daly, Daniel W.
1994-01-01
A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.
Femtosecond direct-written integrated mode couplers.
Riesen, Nicolas; Gross, Simon; Love, John D; Withford, Michael J
2014-12-01
We report the design and fabrication of three-dimensional integrated mode couplers operating in the C-band. These mode-selective couplers were inscribed into a boro-aluminosilicate photonic chip using the femtosecond laser direct-write technique. Horizontally and vertically written two-core couplers are shown to allow for the multiplexing of the LP11a and LP11b spatial modes of an optical fiber, respectively, with excellent mode extinction ratios (25-37 + dB) and low loss (~1 dB) between 1500 and 1580 nm. Furthermore, optimized fabrication parameters enable coupling ratios close to 100%. When written in sequence, the couplers allow for the multiplexing of all LP01, LP11a and LP11b modes. This is also shown to be possible using a single 3-dimensional three-core coupler. These integrated mode couplers have considerable potential to be used in mode-division multiplexing for increasing optical fiber capacity. The three-dimensional capability of the femtosecond direct-write technique provides the versatility to write linear cascades of such two- and three-core couplers into a single compact glass chip, with arbitrary routing of waveguides to ensure a small footprint. This technology could be used for high-performance, compact and cost-effective multiplexing of large numbers of modes of an optical fiber.
Investigation of direct integrated optics modulators
NASA Technical Reports Server (NTRS)
Batchman, T. E.; Mcwright, G. M.
1981-01-01
Direct optical modulation techniques applicable to integrated optical data preprocessors were studied. Emphasis was placed on the analysis and fabrication of a field effect type modulator. A series of computer modeling studies were performed to determine the effects of semiconductor cladding on the fields of propagating waves in planar dielectric waveguides. These studies predicted that changes in the propagation characteristics of waveguides clad with silicon and gallium arsenide could be made large enough to be useful in modulators. These effects are dependent on the complex permittivity and thickness of the cladding. Since the conductivity of the cladding can be changed by the photon generation of hole-electron pairs, incoherent light may be used as the input to modulate a coherent light beam. Waveguides were fabricated and silicon claddings were applied to verify the theoretical predictions.
Directional microwave applicator and methods
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Lin, Greg Y. (Inventor); Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor)
2008-01-01
A miniature microwave antenna is disclosed which may be utilized for biomedical applications such as, for example, radiation induced hyperthermia through catheter systems. One feature of the antenna is that it possesses azimuthal directionality despite its small size. This directionality permits targeting of certain tissues while limiting thermal exposure of adjacent tissue. One embodiment has an outer diameter of about 0.095'' (2.4 mm) but the design permits for smaller diameters.
Direct integration of transient rotor dynamics
NASA Technical Reports Server (NTRS)
Kascak, A. F.
1980-01-01
An implicit method was developed for integrating the equations of motion for a lumped mass model of a rotor dynamics system. As an aside, a closed form solution to the short bearing theory was also developed for a damper with arbitrary motion. The major conclusions are that the method is numerically stable and that the computation time is proportional to the number of elements in the rotor dynamics model rather than to the cube of the number. This computer code allowed the simulation of a complex rotor bearing system experiencing nonlinear transient motion and displayed the vast amount of results in an easily understood motion picture format - a 10 minute, 16 millimeter, color, sound motion picture supplement. An example problem with 19 mass elements in the rotor dynamics model took 0.7 second of central processing unit time per time step on an IBM 360-67 computer in a time sharing mode.
Direct Extraction of One-loop Integral Coefficients
Forde, Darren
2007-04-16
We present a general procedure for obtaining the coefficients of the scalar bubble and triangle integral functions of one-loop amplitudes. Coefficients are extracted by considering two-particle and triple unitarity cuts of the corresponding bubble and triangle integral functions. After choosing a specific parameterization of the cut loop momentum we can uniquely identify the coefficients of the desired integral functions simply by examining the behavior of the cut integrand as the unconstrained parameters of the cut loop momentum approach infinity. In this way we can produce compact forms for scalar integral coefficients. Applications of this method are presented for both QCD and electroweak processes, including an alternative form for the recently computed three-mass triangle coefficient in the six-photon amplitude A{sub 6}(1{sup -}, 2{sup +}, 3{sup -}, 4{sup +}, 5{sup -}, 6{sup +}). The direct nature of this extraction procedure allows for a very straightforward automation of the procedure.
Alternating Direction Methods on Multiprocessors
1985-10-01
without contention for storage or access conflicts has been investigated by Sameh et al. [18]. Various parallel implementations of the Alternate Direction...variation of an algorithm first presented by Kuck and Sameh [19, 10]. Advantages of Wang’s variant are its low arithmetic complexity with almost no...1975. [10] D. Lawrie, A.H. Sameh , The Computation and Communication Complexity of a Parallel Banded Linear System Solver, ACM-TOMS, 10/2 (1984), pp. 185
Perturbative Methods in Path Integration
NASA Astrophysics Data System (ADS)
Johnson-Freyd, Theodore Paul
This dissertation addresses a number of related questions concerning perturbative "path" integrals. Perturbative methods are one of the few successful ways physicists have worked with (or even defined) these infinite-dimensional integrals, and it is important as mathematicians to check that they are correct. Chapter 0 provides a detailed introduction. We take a classical approach to path integrals in Chapter 1. Following standard arguments, we posit a Feynman-diagrammatic description of the asymptotics of the time-evolution operator for the quantum mechanics of a charged particle moving nonrelativistically through a curved manifold under the influence of an external electromagnetic field. We check that our sum of Feynman diagrams has all desired properties: it is coordinate-independent and well-defined without ultraviolet divergences, it satisfies the correct composition law, and it satisfies Schrodinger's equation thought of as a boundary-value problem in PDE. Path integrals in quantum mechanics and elsewhere in quantum field theory are almost always of the shape ∫ f es for some functions f (the "observable") and s (the "action"). In Chapter 2 we step back to analyze integrals of this type more generally. Integration by parts provides algebraic relations between the values of ∫ (-) es for different inputs, which can be packaged into a Batalin--Vilkovisky-type chain complex. Using some simple homological perturbation theory, we study the version of this complex that arises when f and s are taken to be polynomial functions, and power series are banished. We find that in such cases, the entire scheme-theoretic critical locus (complex points included) of s plays an important role, and that one can uniformly (but noncanonically) integrate out in a purely algebraic way the contributions to the integral from all "higher modes," reducing ∫ f es to an integral over the critical locus. This may help explain the presence of analytic continuation in questions like the
Oswer integrated health and safety standard operating practices. Directive
Not Available
1993-02-01
The directive implements the OSWER (Office of Solid Waste and Emergency Response) Integrated Health and Safety Standards Operating Practices in conjunction with the OSHA (Occupational Safety and Health Act) Worker Protection Standards, replacing the OSWER Integrated Health and Safety Policy.
Retroviral DNA Integration Directed by HIV Integration Protein in Vitro
NASA Astrophysics Data System (ADS)
Bushman, Frederic D.; Fujiwara, Tamio; Craigie, Robert
1990-09-01
Efficient retroviral growth requires integration of a DNA copy of the viral RNA genome into a chromosome of the host. As a first step in analyzing the mechanism of integration of human immunodeficiency virus (HIV) DNA, a cell-free system was established that models the integration reaction. The in vitro system depends on the HIV integration (IN) protein, which was partially purified from insect cells engineered to express IN protein in large quantities. Integration was detected in a biological assay that scores the insertion of a linear DNA containing HIV terminal sequences into a λ DNA target. Some integration products generated in this assay contained five-base pair duplications of the target DNA at the recombination junctions, a characteristic of HIV integration in vivo; the remaining products contained aberrant junctional sequences that may have been produced in a variation of the normal reaction. These results indicate that HIV IN protein is the only viral protein required to insert model HIV DNA sequences into a target DNA in vitro.
NASA Astrophysics Data System (ADS)
Whitaker, Matthew L.; Baldwin, Kenneth J.; Huebsch, William R.
2017-03-01
A new experimental system to measure elastic wave velocities in samples in situ under extreme conditions of pressure and temperature in a multi-anvil apparatus has been installed at Beamline 6-BM-B of the Advanced Photon Source at Argonne National Laboratory. This system allows for measurement of acoustic velocities via ultrasonic interferometry, and makes use of the synchrotron beam to measure sample densities via X-ray diffraction and sample lengths using X-radiographic imaging. This system is fully integrated into the automated software controls of the beamline and is capable of collecting robust data on elastic wave travel times in less than 1 s, which is an improvement of more than one to two orders of magnitude over existing systems. Moreover, this fast data collection time has been shown to have no effect on the obtained travel time results. This allows for more careful study of time-dependent phenomena with tighter snapshots in time of processes that would otherwise be lost or averaged out in other acoustic measurement systems.
Novel Random Mutagenesis Method for Directed Evolution.
Feng, Hong; Wang, Hai-Yan; Zhao, Hong-Yan
2017-01-01
Directed evolution is a powerful strategy for gene mutagenesis, and has been used for protein engineering both in scientific research and in the biotechnology industry. The routine method for directed evolution was developed by Stemmer in 1994 (Stemmer, Proc Natl Acad Sci USA 91, 10747-10751, 1994; Stemmer, Nature 370, 389-391, 1994). Since then, various methods have been introduced, each of which has advantages and limitations depending upon the targeted genes and procedure. In this chapter, a novel alternative directed evolution method which combines mutagenesis PCR with dITP and fragmentation by endonuclease V is described. The kanamycin resistance gene is used as a reporter gene to verify the novel method for directed evolution. This method for directed evolution has been demonstrated to be efficient, reproducible, and easy to manipulate in practice.
Investigation of direct integrated optics modulators. [applicable to data preprocessors
NASA Technical Reports Server (NTRS)
Batchman, T. E.
1980-01-01
Direct modulation techniques applicable to integrated optics data preprocessors were investigated. Several methods of modulating a coherent optical beam by interaction with an incoherent beam were studied. It was decided to investigate photon induced conductivity changes in thin semiconductor cladding layers on optical waveguides. Preliminary calculations indicate significant changes can be produced in the phase shift in a propagating wave when the conductivity is changed by ten percent or more. Experimental devices to verify these predicted phase changes and experiments designed to prove the concept are described.
Direct-Broadcast Satellites and Cultural Integrity
ERIC Educational Resources Information Center
Pool, Ithiel de Sola
1975-01-01
Argues that progress in satellite communications depends upon the assurance that satellites are useful to people in all countries, and that a world television network and a worldwide packet data communication system would help achieve that goal, and asserts that direct-satellite television broadcasting does not represent, at present, an active…
Direct-Broadcast Satellites and Cultural Integrity
ERIC Educational Resources Information Center
Pool, Ithiel de Sola
1975-01-01
Argues that progress in satellite communications depends upon the assurance that satellites are useful to people in all countries, and that a world television network and a worldwide packet data communication system would help achieve that goal, and asserts that direct-satellite television broadcasting does not represent, at present, an active…
[Etnography as an Integrative Method].
Gómez, Ángela Viviana Pérez
2012-06-01
Ethnography is understood from three perspectives: approach, methodology and text. In the health field, ethnography can be used not only from the standpoint of the research process, but also from the very instances of medical consultation, diagnose and treatment. The pacient appreciates the fact of being heard and understood as a subject who has her/his own story and is involved in a particular culture related to her/his own status and to the effectsa caused by life experiences. Analysis of the literature related to ethnography, participanting observation and an relationship between health and qualitative research. There is a diversity of opinions and attitudes about ethnography, its validity and usefulness as well as in considerations related to its method and the techniques that nourish it. Ethnography is an integrative approach that may resorty to multiple tools for collecting, analyzing and interpreting the data. Therefore, ethnography constitutes an option for the physician when performing individual assessment. Ethnography provides an opportunity to approach the reality of an individual or group of individuals in order to obtain information about the matter under investigation, its understanding and interpretation. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
GaN directional couplers for integrated quantum photonics
Zhang Yanfeng; McKnight, Loyd; Watson, Ian M.; Gu, Erdan; Calvez, Stephane; Dawson, Martin D.; Engin, Erman; Cryan, Martin J.; Thompson, Mark G.; O'Brien, Jeremy L.
2011-10-17
Large cross-section GaN waveguides are proposed as a suitable architecture to achieve integrated quantum photonic circuits. Directional couplers with this geometry have been designed with aid of the beam propagation method and fabricated using inductively coupled plasma etching. Scanning electron microscopy inspection shows high quality facets for end coupling and a well defined gap between rib pairs in the coupling region. Optical characterization at 800 nm shows single-mode operation and coupling-length-dependent splitting ratios. Two photon interference of degenerate photon pairs has been observed in the directional coupler by measurement of the Hong-Ou-Mandel dip [C. K. Hong, et al., Phys. Rev. Lett. 59, 2044 (1987)] with 96% visibility.
Integration of speed signals in the direction of motion
NASA Technical Reports Server (NTRS)
Vreven, Dawn; Verghese, Preeti
2002-01-01
Speed discrimination tasks were used to examine the spatial and temporal characteristics of the integration mechanism involved when signals are extended in the direction of motion. We varied the aspect ratio of a signal patch whose speed differed from the background, while holding the area of the signal patch constant, so that the signal patch could be either extended in the direction of motion or extended orthogonal to the direction of motion. Speed discrimination thresholds decreased dramatically as the signal patch was extended in the direction of motion. The spatial and temporal integration regions were larger than would be expected if the integration mechanism were a low-level motion detector. The mechanism was tuned for direction of motion. The data are discussed with reference to two alternative integration mechanisms: a low-level detector that is elongated in the direction of motion and a higher level integration mechanism characterized by cooperative or facilitatory interactions between low-level detectors tuned to the same direction of motion. Our data are consistent with a second-level, direction-specific process that integrates the responses of low-level motion detectors.
Methods of conditioning direct methanol fuel cells
Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon
2005-11-08
Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.
Dissecting direct reprogramming through integrative genomic analysis
Mikkelsen, Tarjei S.; Hanna, Jacob; Zhang, Xiaolan; Ku, Manching; Wernig, Marius; Schorderet, Patrick; Bernstein, Bradley E.; Jaenisch, Rudolf; Lander, Eric S.; Meissner, Alexander
2009-01-01
Somatic cells can be reprogrammed to a pluripotent state through the ectopic expression of defined transcription factors. Understanding the mechanism and kinetics of this transformation may shed light on the nature of developmental potency and suggest strategies with improved efficiency or safety. Here we report an integrative genomic analysis of reprogramming of mouse fibroblasts and B lymphocytes. Lineage-committed cells show a complex response to the ectopic expression involving induction of genes downstream of individual reprogramming factors. Fully reprogrammed cells show gene expression and epigenetic states that are highly similar to embryonic stem cells. In contrast, stable partially reprogrammed cell lines show reactivation of a distinctive subset of stem-cell-related genes, incomplete repression of lineage-specifying transcription factors, and DNA hypermethylation at pluripotency-related loci. These observations suggest that some cells may become trapped in partially reprogrammed states owing to incomplete repression of transcription factors, and that DNA de-methylation is an inefficient step in the transition to pluripotency. We demonstrate that RNA inhibition of transcription factors can facilitate reprogramming, and that treatment with DNA methyltransferase inhibitors can improve the overall efficiency of the reprogramming process. PMID:18509334
Integrating Sphere Microscopy for Direct Absorption Measurements of Single Nanostructures.
Mann, Sander A; Sciacca, Beniamino; Zhang, Yunyan; Wang, Jia; Kontoleta, Evgenia; Liu, Huiyun; Garnett, Erik C
2017-02-28
Nanoscale materials are promising for optoelectronic devices because their physical dimensions are on the order of the wavelength of light. This leads to a variety of complex optical phenomena that, for instance, enhance absorption and emission. However, quantifying the performance of these nanoscale devices frequently requires measuring absolute absorption at the nanoscale, and remarkably, there is no general method capable of doing so directly. Here, we present such a method based on an integrating sphere but modified to achieve submicron spatial resolution. We explore the limits of this technique by using it to measure spatial and spectral absorptance profiles on a wide variety of nanoscale systems, including different combinations of weakly and strongly absorbing and scattering nanomaterials (Si and GaAs nanowires, Au nanoparticles). This measurement technique provides quantitative information about local optical properties that are crucial for improving any optoelectronic device with nanoscale dimensions or nanoscale surface texturing.
Integrating Sphere Microscopy for Direct Absorption Measurements of Single Nanostructures
2017-01-01
Nanoscale materials are promising for optoelectronic devices because their physical dimensions are on the order of the wavelength of light. This leads to a variety of complex optical phenomena that, for instance, enhance absorption and emission. However, quantifying the performance of these nanoscale devices frequently requires measuring absolute absorption at the nanoscale, and remarkably, there is no general method capable of doing so directly. Here, we present such a method based on an integrating sphere but modified to achieve submicron spatial resolution. We explore the limits of this technique by using it to measure spatial and spectral absorptance profiles on a wide variety of nanoscale systems, including different combinations of weakly and strongly absorbing and scattering nanomaterials (Si and GaAs nanowires, Au nanoparticles). This measurement technique provides quantitative information about local optical properties that are crucial for improving any optoelectronic device with nanoscale dimensions or nanoscale surface texturing. PMID:28056171
Integrated Force Method for Indeterminate Structures
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Halford, Gary R.; Patnaik, Surya N.
2008-01-01
Two methods of solving indeterminate structural-mechanics problems have been developed as products of research on the theory of strain compatibility. In these methods, stresses are considered to be the primary unknowns (in contrast to strains and displacements being considered as the primary unknowns in some prior methods). One of these methods, denoted the integrated force method (IFM), makes it possible to compute stresses, strains, and displacements with high fidelity by use of modest finite-element models that entail relatively small amounts of computation. The other method, denoted the completed Beltrami Mitchell formulation (CBMF), enables direct determination of stresses in an elastic continuum with general boundary conditions, without the need to first calculate displacements as in traditional methods. The equilibrium equation, the compatibility condition, and the material law are the three fundamental concepts of the theory of structures. For almost 150 years, it has been commonly supposed that the theory is complete. However, until now, the understanding of the compatibility condition remained incomplete, and the compatibility condition was confused with the continuity condition. Furthermore, the compatibility condition as applied to structures in its previous incomplete form was inconsistent with the strain formulation in elasticity.
Automatic numerical integration methods for Feynman integrals through 3-loop
NASA Astrophysics Data System (ADS)
de Doncker, E.; Yuasa, F.; Kato, K.; Ishikawa, T.; Olagbemi, O.
2015-05-01
We give numerical integration results for Feynman loop diagrams through 3-loop such as those covered by Laporta [1]. The methods are based on automatic adaptive integration, using iterated integration and extrapolation with programs from the QUADPACK package, or multivariate techniques from the ParInt package. The Dqags algorithm from QuadPack accommodates boundary singularities of fairly general types. PARINT is a package for multivariate integration layered over MPI (Message Passing Interface), which runs on clusters and incorporates advanced parallel/distributed techniques such as load balancing among processes that may be distributed over a network of nodes. Results are included for 3-loop self-energy diagrams without IR (infra-red) or UV (ultra-violet) singularities. A procedure based on iterated integration and extrapolation yields a novel method of numerical regularization for integrals with UV terms, and is applied to a set of 2-loop self-energy diagrams with UV singularities.
ERIC Educational Resources Information Center
Tillema, Harm H.
2003-01-01
The Educational Development and Assessment System in a Dutch university's vocational education program involves student-directed, self-regulated evaluation methods and integrates assessment with instruction. Evaluation focuses on competencies and portfolio assessments. (Contains 29 references.) (SK)
Integration methods for molecular dynamics
Leimkuhler, B.J.; Reich, S.; Skeel, R.D.
1996-12-31
Classical molecular dynamics simulation of a macromolecule requires the use of an efficient time-stepping scheme that can faithfully approximate the dynamics over many thousands of timesteps. Because these problems are highly nonlinear, accurate approximation of a particular solution trajectory on meaningful time intervals is neither obtainable nor desired, but some restrictions, such as symplecticness, can be imposed on the discretization which tend to imply good long term behavior. The presence of a variety of types and strengths of interatom potentials in standard molecular models places severe restrictions on the timestep for numerical integration used in explicit integration schemes, so much recent research has concentrated on the search for alternatives that possess (1) proper dynamical properties, and (2) a relative insensitivity to the fastest components of the dynamics. We survey several recent approaches. 48 refs., 2 figs.
Item method directed forgetting diminishes false memory.
Marche, Tammy A; Brainerd, Charles J; Lane, David G; Loehr, Janeen D
2005-10-01
Directed forgetting may reduce DRM false memory illusion by interfering with meaning processing. Participants were presented with a list composed of six 10-word semantically associated sub-lists, and they were either (a) asked to remember all list items of (b) asked to remember all associates from sub-lists and to forget all associates from other sub-lists. All participants were requested to recall and recognise list items. Although directed forgetting effects have been previously reported only for true responses in the DRM paradigm with the list method, we also found directed forgetting for false responses with the item method. Such forgetting instructions reduced both verbatim and meaning processing, decreasing both the intrusion and the false alarm rate. These results are consistent with two-process explanations of DRM false memories, such as fuzzy-trace theory, and add to our understanding of false memory editing.
Pixel extraction based integral imaging with controllable viewing direction
NASA Astrophysics Data System (ADS)
Ji, Chao-Chao; Deng, Huan; Wang, Qiong-Hua
2012-09-01
We propose pixel extraction based integral imaging with a controllable viewing direction. The proposed integral imaging can provide viewers three-dimensional (3D) images in a very small viewing angle. The viewing angle and the viewing direction of the reconstructed 3D images are controlled by the pixels extracted from an elemental image array. Theoretical analysis and a 3D display experiment of the viewing direction controllable integral imaging are carried out. The experimental results verify the correctness of the theory. A 3D display based on the integral imaging can protect the viewer’s privacy and has huge potential for a television to show multiple 3D programs at the same time.
The Direct Method of Cash Flows.
ERIC Educational Resources Information Center
Bosserman, David C.; Fischer, Mary
2000-01-01
Explains to college/university business officers how to comply with Governmental Accounting Standards Board Statements Nos. 34, 35, and 9, which require the direct method of presenting cash flows from operating activities and reconciliation of operating cash flows to operating income by fiscal year 2001. Institutions are urged to begin immediately…
The Direct Method of Cash Flows.
ERIC Educational Resources Information Center
Bosserman, David C.; Fischer, Mary
2000-01-01
Explains to college/university business officers how to comply with Governmental Accounting Standards Board Statements Nos. 34, 35, and 9, which require the direct method of presenting cash flows from operating activities and reconciliation of operating cash flows to operating income by fiscal year 2001. Institutions are urged to begin immediately…
Direct-write fabrication of integrated, multilayer ceramic components
Dimos, D.; Yang, P.
1998-03-01
The need for advanced (electronic) ceramic components with smaller size, greater functionality, and enhanced reliability requires the ability to integrate electronic ceramics in complex 3-D architectures. However, traditional tape casting and screen printing approaches are poorly suited to the requirements of rapid prototyping and small lot manufacturing. To address this need, the authors are developing a direct write approach for fabricating highly integrated, multilayer components using a micropen to deposit slurries in precise patterns. This approach provides the ability to fabricate multifunctional, multimaterial integrated ceramic components (MMICCs) in an agile and rapid way, and has been used to make integrated passive devices such RC filters, inductors, and voltage transformers.
Comparison of photopeak integration methods
NASA Astrophysics Data System (ADS)
Kennedy, G.
1990-12-01
Several methods for the calculation of gamma-ray photopeak areas have been compared for the case of a small peak on a high Compton background. 980 similar spectra were accumulated with a germanium detector using a weak 137Cs source to produce a peak at 662 keV on a Compton background generated by a 60Co source. A computer program was written to calculate the area of the 662 keV peak using the total- and partial-peak-area methods, a modification of Sterlinski's method, Loska's method and least-squares fitting of Gaussian peak shapes with linear and quadratic background. The precision attained was highly dependent on the number of channels used to estimate the background, and the best precision, about 9.5%, was obtained with the partial-peak-area method, the modified Sterlinski method and least-squares fitting with variable peak position, fixed peak width and linear background. The methods were also evaluated for their sensitivity to uncertainty in the peak centroid position. Considering precision, ease of use, reliability and universal applicability, the total-peak-area method using several channels for background estimation and the least-squares-fitting method are recommended.
Integrated control system and method
Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin
2013-10-29
An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.
Robust rotational-velocity-Verlet integration methods
NASA Astrophysics Data System (ADS)
Rozmanov, Dmitri; Kusalik, Peter G.
2010-05-01
Two rotational integration algorithms for rigid-body dynamics are proposed in velocity-Verlet formulation. The first method uses quaternion dynamics and was derived from the original rotational leap-frog method by Svanberg [Mol. Phys. 92, 1085 (1997)]; it produces time consistent positions and momenta. The second method is also formulated in terms of quaternions but it is not quaternion specific and can be easily adapted for any other orientational representation. Both the methods are tested extensively and compared to existing rotational integrators. The proposed integrators demonstrated performance at least at the level of previously reported rotational algorithms. The choice of simulation parameters is also discussed.
Fast integral methods for integrated optical systems simulations: a review
NASA Astrophysics Data System (ADS)
Kleemann, Bernd H.
2015-09-01
Boundary integral equation methods (BIM) or simply integral methods (IM) in the context of optical design and simulation are rigorous electromagnetic methods solving Helmholtz or Maxwell equations on the boundary (surface or interface of the structures between two materials) for scattering or/and diffraction purposes. This work is mainly restricted to integral methods for diffracting structures such as gratings, kinoforms, diffractive optical elements (DOEs), micro Fresnel lenses, computer generated holograms (CGHs), holographic or digital phase holograms, periodic lithographic structures, and the like. In most cases all of the mentioned structures have dimensions of thousands of wavelengths in diameter. Therefore, the basic methods necessary for the numerical treatment are locally applied electromagnetic grating diffraction algorithms. Interestingly, integral methods belong to the first electromagnetic methods investigated for grating diffraction. The development started in the mid 1960ies for gratings with infinite conductivity and it was mainly due to the good convergence of the integral methods especially for TM polarization. The first integral equation methods (IEM) for finite conductivity were the methods by D. Maystre at Fresnel Institute in Marseille: in 1972/74 for dielectric, and metallic gratings, and later for multiprofile, and other types of gratings and for photonic crystals. Other methods such as differential and modal methods suffered from unstable behaviour and slow convergence compared to BIMs for metallic gratings in TM polarization from the beginning to the mid 1990ies. The first BIM for gratings using a parametrization of the profile was developed at Karl-Weierstrass Institute in Berlin under a contract with Carl Zeiss Jena works in 1984-1986 by A. Pomp, J. Creutziger, and the author. Due to the parametrization, this method was able to deal with any kind of surface grating from the beginning: whether profiles with edges, overhanging non
Directed-Loop Quantum Monte Carlo Method for Retarded Interactions
NASA Astrophysics Data System (ADS)
Weber, Manuel; Assaad, Fakher F.; Hohenadler, Martin
2017-09-01
The directed-loop quantum Monte Carlo method is generalized to the case of retarded interactions. Using the path integral, fermion-boson or spin-boson models are mapped to actions with retarded interactions by analytically integrating out the bosons. This yields an exact algorithm that combines the highly efficient loop updates available in the stochastic series expansion representation with the advantages of avoiding a direct sampling of the bosons. The application to electron-phonon models reveals that the method overcomes the previously detrimental issues of long autocorrelation times and exponentially decreasing acceptance rates. For example, the resulting dramatic speedup allows us to investigate the Peierls quantum phase transition on chains of up to 1282 sites.
Methods for direct alkene diamination, new & old
de Jong, Sam; Nosal, Daniel G.; Wardrop, Duncan J.
2012-01-01
The 1,2-diamine moiety is a ubiquitous structural motif present in a wealth of natural products, including non-proteinogenic amino acids and numerous alkaloids, as well as in pharmaceutical agents, chiral ligands and organic reagents. The biological activity associated with many of these systems and their chemical utility in general has ensured that the development of methods for their preparation is of critical importance. While a wide range of strategies for the preparation of 1,2-diamines have been established, the diamination of alkenes offers a particularly direct and efficient means of accessing these systems. The purpose of this review is to provide an overview of all methods of direct alkene diamination, metal-mediated or otherwise. PMID:22888177
Physicians' intention to leave direct patient care: an integrative review.
Degen, Christiane; Li, Jian; Angerer, Peter
2015-09-08
In light of the growing shortage of physicians worldwide, the problem of physicians who intend to leave direct patient care has become more acute, particularly in terms of quality of care and health-care costs. A literature search was carried out following Cooper's five-stage model for conducting an integrative literature review. Database searches were made in MEDLINE, PsycINFO and Web of Science in May 2014. A total of 17 studies from five countries were identified and the study results synthesized. Measures and percentages of physicians' intention to leave varied between the studies. Variables associated with intention to leave were demographics, with age- and gender-specific findings, family or personal domain, working time and psychosocial working conditions, job-related well-being and other career-related aspects. Gender differences were identified in several risk clusters. Factors such as long working hours and work-family conflict were particularly relevant for female physicians' intention to leave. Health-care managers and policy-makers should take action to improve physicians' working hours and psychosocial working conditions in order to prevent a high rate of intention to leave and limit the number of physicians actually leaving direct patient care. Further research is needed on gender-specific needs in the workplace, the connection between intention to leave and actually leaving and measures of intention to leave as well as using qualitative methods to gain a deeper understanding and developing validated questionnaires.
Integrating gaze direction and expression in preferences for attractive faces.
Jones, Benedict C; Debruine, Lisa M; Little, Anthony C; Conway, Claire A; Feinberg, David R
2006-07-01
Few studies have investigated how physical and social facial cues are integrated in the formation of face preferences. Here we show that expression differentially qualifies the strength of attractiveness preferences for faces with direct and averted gaze. For judgments of faces with direct gaze, attractiveness preferences were stronger for smiling faces than for faces with neutral expressions. By contrast, for judgments of faces with averted gaze, attractiveness preferences were stronger for faces with neutral expressions than for smiling faces. Because expressions can differ in meaning depending on whether they are directed toward or away from oneself, it is only by integrating gaze direction, facial expression, and physical attractiveness that one can unambiguously identify the most attractive individuals who are likely to reciprocate one's own social interest.
Non-contact method for directing electrotaxis
NASA Astrophysics Data System (ADS)
Ahirwar, Dinesh K.; Nasser, Mohd W.; Jones, Travis H.; Sequin, Emily K.; West, Joseph D.; Henthorne, Timothy L.; Javor, Joshua; Kaushik, Aniruddha M.; Ganju, Ramesh K.; Subramaniam, Vish V.
2015-06-01
We present a method to induce electric fields and drive electrotaxis (galvanotaxis) without the need for electrodes to be in contact with the media containing the cell cultures. We report experimental results using a modification of the transmembrane assay, demonstrating the hindrance of migration of breast cancer cells (SCP2) when an induced a.c. electric field is present in the appropriate direction (i.e. in the direction of migration). Of significance is that migration of these cells is hindered at electric field strengths many orders of magnitude (5 to 6) below those previously reported for d.c. electrotaxis, and even in the presence of a chemokine (SDF-1α) or a growth factor (EGF). Induced a.c. electric fields applied in the direction of migration are also shown to hinder motility of non-transformed human mammary epithelial cells (MCF10A) in the presence of the growth factor EGF. In addition, we also show how our method can be applied to other cell migration assays (scratch assay), and by changing the coil design and holder, that it is also compatible with commercially available multi-well culture plates.
Non-contact method for directing electrotaxis
Ahirwar, Dinesh K.; Nasser, Mohd W.; Jones, Travis H.; Sequin, Emily K.; West, Joseph D.; Henthorne, Timothy L.; Javor, Joshua; Kaushik, Aniruddha M.; Ganju, Ramesh K.; Subramaniam, Vish V.
2015-01-01
We present a method to induce electric fields and drive electrotaxis (galvanotaxis) without the need for electrodes to be in contact with the media containing the cell cultures. We report experimental results using a modification of the transmembrane assay, demonstrating the hindrance of migration of breast cancer cells (SCP2) when an induced a.c. electric field is present in the appropriate direction (i.e. in the direction of migration). Of significance is that migration of these cells is hindered at electric field strengths many orders of magnitude (5 to 6) below those previously reported for d.c. electrotaxis, and even in the presence of a chemokine (SDF-1α) or a growth factor (EGF). Induced a.c. electric fields applied in the direction of migration are also shown to hinder motility of non-transformed human mammary epithelial cells (MCF10A) in the presence of the growth factor EGF. In addition, we also show how our method can be applied to other cell migration assays (scratch assay), and by changing the coil design and holder, that it is also compatible with commercially available multi-well culture plates. PMID:26055698
EMERGY METHODS: VALUABLE INTEGRATED ASSESSMENT TOOLS
NHEERL's Atlantic Ecology Division is investigating emergy methods as tools for integrated assessment in several projects evaluating environmental impacts, policies, and alternatives for remediation and intervention. Emergy accounting is a methodology that provides a quantitative...
EMERGY METHODS: VALUABLE INTEGRATED ASSESSMENT TOOLS
NHEERL's Atlantic Ecology Division is investigating emergy methods as tools for integrated assessment in several projects evaluating environmental impacts, policies, and alternatives for remediation and intervention. Emergy accounting is a methodology that provides a quantitative...
Direct anharmonic correction method by molecular dynamics
NASA Astrophysics Data System (ADS)
Liu, Zhong-Li; Li, Rui; Zhang, Xiu-Lu; Qu, Nuo; Cai, Ling-Cang
2017-04-01
The quick calculation of accurate anharmonic effects of lattice vibrations is crucial to the calculations of thermodynamic properties, the construction of the multi-phase diagram and equation of states of materials, and the theoretical designs of new materials. In this paper, we proposed a direct free energy interpolation (DFEI) method based on the temperature dependent phonon density of states (TD-PDOS) reduced from molecular dynamics simulations. Using the DFEI method, after anharmonic free energy corrections we reproduced the thermal expansion coefficients, the specific heat, the thermal pressure, the isothermal bulk modulus, and the Hugoniot P- V- T relationships of Cu easily and accurately. The extensive tests on other materials including metal, alloy, semiconductor and insulator also manifest that the DFEI method can easily uncover the rest anharmonicity that the quasi-harmonic approximation (QHA) omits. It is thus evidenced that the DFEI method is indeed a very efficient method used to conduct anharmonic effect corrections beyond QHA. More importantly it is much more straightforward and easier compared to previous anharmonic methods.
Direct volume rendering methods for cell structures.
Martišek, Dalibor; Martišek, Karel
2012-01-01
The study of the complicated architecture of cell space structures is an important problem in biology and medical research. Optical cuts of cells produced by confocal microscopes enable two-dimensional (2D) and three-dimensional (3D) reconstructions of observed cells. This paper discuses new possibilities for direct volume rendering of these data. We often encounter 16 or more bit images in confocal microscopy of cells. Most of the information contained in these images is unsubstantial for the human vision. Therefore, it is necessary to use mathematical algorithms for visualization of such images. Present software tools as OpenGL or DirectX run quickly in graphic station with special graphic cards, run very unsatisfactory on PC without these cards and outputs are usually poor for real data. These tools are black boxes for a common user and make it impossible to correct and improve them. With the method proposed, more parameters of the environment can be set, making it possible to apply 3D filters to set the output image sharpness in relation to the noise. The quality of the output is incomparable to the earlier described methods and is worth increasing the computing time. We would like to offer mathematical methods of 3D scalar data visualization describing new algorithms that run on standard PCs very well.
Direct Instruction vs. Arts Integration: A False Dichotomy
ERIC Educational Resources Information Center
Aprill, Arnold
2010-01-01
In this article, the author takes on what he considers to be the false dichotomy between direct instruction and arts integration. He contends that at a time when national issues of sustainability and conservation of energy and resources become ever more urgent, it is time that those committed to quality arts education stop squandering time, money,…
Direct Instruction vs. Arts Integration: A False Dichotomy
ERIC Educational Resources Information Center
Aprill, Arnold
2010-01-01
In this article, the author takes on what he considers to be the false dichotomy between direct instruction and arts integration. He contends that at a time when national issues of sustainability and conservation of energy and resources become ever more urgent, it is time that those committed to quality arts education stop squandering time, money,…
Integrating Advance Research Directives into the European Legal Framework.
Andorno, Roberto; Gennet, Eloïse; Jongsma, Karin; Elger, Bernice
2016-04-01
The possibility of using advance directives to prospectively consent to research participation in the event of dementia remains largely unexplored in Europe. Moreover, the legal status of advance directives for research is unclear in the European regulations governing biomedical research. The article explores the place that advance research directives have in the current European legal framework, and considers the possibility of integrating them more explicitly into the existing regulations. Special focus is placed on issues regarding informed consent, the role of proxies, and the level of acceptable risks and burdens.
Relationships in consumer-directed care: An integrative literature review.
Cash, Tracee; Moyle, Wendy; O'Dwyer, Siobhan
2017-09-01
To undertake an integrative review of the literature on relationships between community aged care recipients, family carers and care providers under consumer-directed care (CDC). Seven databases were systematically searched. Peer-reviewed and grey literature on CDC between 1998 and 2014 were assessed using an integrative literature review (ILR) framework. Search terms included CDC, self-directed care, direct payments, community aged care, community dwelling and older adults. Full-text copies were assessed against the inclusion criteria. Fifteen studies met the inclusion criteria. This ILR found no research with a specific focus on caregiving relationships for older adults. The literature did however identify relational issues such as support, planning and provider attitude as fundamental to the success of CDC. Relationships within the caregiving triad have important implications for the way CDC is enacted, particularly when the care recipient has dementia, suggesting this population as a priority for future research. © 2017 AJA Inc.
The present state and future directions of PDF methods
NASA Technical Reports Server (NTRS)
Pope, S. B.
1992-01-01
The objectives of the workshop are presented in viewgraph format, as is this entire article. The objectives are to discuss the present status and the future direction of various levels of engineering turbulence modeling related to Computational Fluid Dynamics (CFD) computations for propulsion; to assure that combustion is an essential part of propulsion; and to discuss Probability Density Function (PDF) methods for turbulent combustion. Essential to the integration of turbulent combustion models is the development of turbulent model, chemical kinetics, and numerical method. Some turbulent combustion models typically used in industry are the k-epsilon turbulent model, the equilibrium/mixing limited combustion, and the finite volume codes.
Clustering method for estimating principal diffusion directions
Nazem-Zadeh, Mohammad-Reza; Jafari-Khouzani, Kourosh; Davoodi-Bojd, Esmaeil; Jiang, Quan; Soltanian-Zadeh, Hamid
2012-01-01
Diffusion tensor magnetic resonance imaging (DTMRI) is a non-invasive tool for the investigation of white matter structure within the brain. However, the traditional tensor model is unable to characterize anisotropies of orders higher than two in heterogeneous areas containing more than one fiber population. To resolve this issue, high angular resolution diffusion imaging (HARDI) with a large number of diffusion encoding gradients is used along with reconstruction methods such as Q-ball. Using HARDI data, the fiber orientation distribution function (ODF) on the unit sphere is calculated and used to extract the principal diffusion directions (PDDs). Fast and accurate estimation of PDDs is a prerequisite for tracking algorithms that deal with fiber crossings. In this paper, the PDDs are defined as the directions around which the ODF data is concentrated. Estimates of the PDDs based on this definition are less sensitive to noise in comparison with the previous approaches. A clustering approach to estimate the PDDs is proposed which is an extension of fuzzy c-means clustering developed for orientation of points on a sphere. MDL (Minimum description length) principle is proposed to estimate the number of PDDs. Using both simulated and real diffusion data, the proposed method has been evaluated and compared with some previous protocols. Experimental results show that the proposed clustering algorithm is more accurate, more resistant to noise, and faster than some of techniques currently being utilized. PMID:21642005
NASA Astrophysics Data System (ADS)
Liu, Xiaofeng; Siddle-Mitchell, Seth
2015-11-01
This paper presents a novel pressure reconstruction method featuring rotating parallel ray omni-directional integration, as an improvement over the circular virtual boundary integration method introduced by Liu and Katz (2003, 2006, 2008 and 2013) for non-intrusive instantaneous pressure measurement in incompressible flow field. Unlike the virtual boundary omni-directional integration, where the integration path is originated from a virtual circular boundary at a finite distance from the real boundary of the integration domain, the new method utilizes parallel rays, which can be viewed as being originated from a distance of infinity, as guidance for integration paths. By rotating the parallel rays, omni-directional paths with equal weights coming from all directions toward the point of interest at any location within the computation domain will be generated. In this way, the location dependence of the integration weight inherent in the old algorithm will be eliminated. By implementing this new algorithm, the accuracy of the reconstructed pressure for a synthetic rotational flow in terms of r.m.s. error from theoretical values is reduced from 1.03% to 0.30%. Improvement is further demonstrated from the comparison of the reconstructed pressure with that from the Johns Hopkins University isotropic turbulence database (JHTDB). This project is funded by the San Diego State University.
Thermally tunable resonator using directly integrated metallic heater
NASA Astrophysics Data System (ADS)
Chen, Ruobing; Li, Xinbai; Deng, Qingzhong; Michel, Jurgen; Zhou, Zhiping
2015-08-01
A thermally tunable half-disk resonator (HDR) with directly-integrated metallic heater is presented. The proposed resonator is based on the structure of HDR, which allows direct electrical contacts in HDR region without causing extra loss. The metallic heater is designed to be directly integrated on the silicon devices, and single-mode operation can be retained simultaneously. Metallic heater deposited on inner side of the ring, which cannot realize before because of weakened light confinement resulting in substantial leakage and loss, guides most heat power to the waveguide. This thermal localization enhances tuning efficiency. The simulation result shows a wavelength shift of 0.855 nm under ultralow driving voltage of 0.02V, corresponding to high thermal tuning efficiency of 2.831 nm/mW. The structure possesses both the advantages of high thermal tuning efficiency and low resistance, hence requiring smaller voltage and energy to drive, desirable for optical interconnects applications. Moreover, the proposed structure also eliminates the need to use doped silicon slab for electrical contacts, as widely used in conventional directly integrated heaters. Undoped strip waveguide in HDR enables higher Q-factor and improves optical performance.
Integral Deferred Correction methods for scientific computing
NASA Astrophysics Data System (ADS)
Morton, Maureen Marilla
Since high order numerical methods frequently can attain accurate solutions more efficiently than low order methods, we develop and analyze new high order numerical integrators for the time discretization of ordinary and partial differential equations. Our novel methods address some of the issues surrounding high order numerical time integration, such as the difficulty of many popular methods' construction and handling the effects of disparate behaviors produce by different terms in the equations to be solved. We are motivated by the simplicity of how Deferred Correction (DC) methods achieve high order accuracy [72, 27]. DC methods are numerical time integrators that, rather than calculating tedious coefficients for order conditions, instead construct high order accurate solutions by iteratively improving a low order preliminary numerical solution. With each iteration, an error equation is solved, the error decreases, and the order of accuracy increases. Later, DC methods were adjusted to include an integral formulation of the residual, which stabilizes the method. These Spectral Deferred Correction (SDC) methods [25] motivated Integral Deferred Corrections (IDC) methods. Typically, SDC methods are limited to increasing the order of accuracy by one with each iteration due to smoothness properties imposed by the gridspacing. However, under mild assumptions, explicit IDC methods allow for any explicit rth order Runge-Kutta (RK) method to be used within each iteration, and then an order of accuracy increase of r is attained after each iteration [18]. We extend these results to the construction of implicit IDC methods that use implicit RK methods, and we prove analogous results for order of convergence. One means of solving equations with disparate parts is by semi-implicit integrators, handling a "fast" part implicitly and a "slow" part explicitly. We incorporate additive RK (ARK) integrators into the iterations of IDC methods in order to construct new arbitrary order
Direct synthesis and integration of functional nanostructures in microfluidic devices.
Kim, Jung; Li, Zhiyong; Park, Inkyu
2011-06-07
Integration of functional nanostructures within a microfluidic device can synergize the advantages of both unique properties of nanomaterials and diverse functionalities of microfluidics. In this paper, we report a novel and simple method for the in situ synthesis and integration of ZnO nanowires by controlled hydrothermal reaction within microfluidic devices. By modulating synthesis parameters such as the seed preparation, synthesis time, and heating locations, the morphology and location of synthesized nanowires can be easily controlled. The applications of such nanostructure-integrated microfluidics for particle trapping and chemiresistive pH sensing were demonstrated.
Monolithically integrated semiconductor ring lasers: Design, fabrication, and directional control
NASA Astrophysics Data System (ADS)
Cao, Hongjun
Monolithic semiconductor ring lasers (SRLs) are attractive light sources for optoelectronic integrated circuits (OEICs) due to their convenience in monolithic integration: neither cleaved facets nor gratings are required for optical feedback. They are promising candidates for wavelength filtering, multiplexing-demultiplexing applications, electrical or all-optical switching, gating, and memories, and particularly, optical inertial rotation sensors or ring laser gyros. As the major part of a NASA-supported project "Monolithically integrated semiconductor ring laser gyro for space applications," this dissertation research was focused on design, fabrication, and directional control of monolithically integrated SRLs with relatively large size and sophisticated OEIC structures. The main potential application is the next-generation monolithic ring laser gyros. Specifically, monolithic SRLs with the longest reported cavity of 10.28 mm have been demonstrated. In device characterization, differential I-V analysis has been used for the first time in SRLs for purely electrical identification of lasing threshold and directional switching. Sophisticated device structures have been devised, including optically independent novel ring laser pairs, from which frequency beating between monolithically integrated SRLs was reported for the first time. In addition, no frequency lock-in was observed in the beating spectra, indicating an important progress for proposed gyro applications. Functional OEIC components including photodetectors, passive and active waveguides, and novel Joule heaters have been integrated on-chip along with the ring lasers. Mode competition, directional switching, bistability, and bidirectional and unidirectional operation in SRLs have been investigated. Directional control techniques with asymmetric mechanisms including spiral and S-section waveguides have been implemented. The S-section was investigated and analyzed in great detail for its suppression of
NASA Astrophysics Data System (ADS)
Xie, Guizhong; Zhang, Dehai; Zhang, Jianming; Meng, Fannian; Du, Wenliao; Wen, Xiaoyu
2016-12-01
As a widely used numerical method, boundary element method (BEM) is efficient for computer aided engineering (CAE). However, boundary integrals with near singularity need to be calculated accurately and efficiently to implement BEM for CAE analysis on thin bodies successfully. In this paper, the distance in the denominator of the fundamental solution is first designed as an equivalent form using approximate expansion and the original sinh method can be revised into a new form considering the minimum distance and the approximate expansion. Second, the acquisition of the projection point by Newton-Raphson method is introduced. We acquire the nearest point between the source point and element edge by solving a cubic equation if the location of the projection point is outside the element, where boundary integrals with near singularity appear. Finally, the subtriangles of the local coordinate space are mapped into the integration space and the sinh method is applied in the integration space. The revised sinh method can be directly performed in the integration element. Averification test of our method is proposed. Results demonstrate that our method is effective for regularizing the boundary integrals with near singularity.
Integral function method for determination of nonlinear harmonic distortion
NASA Astrophysics Data System (ADS)
Cerdeira, Antonio; Alemán, Miguel A.; Estrada, Magali; Flandre, Denis
2004-12-01
The analysis of harmonic distortion is of prime importance for the analog and mixed integrated circuits. Recently we presented a new integral function method (IFM), based on a completely new principle, which allows the calculation of harmonic distortion using the DC output characteristic of devices or circuits. In this work we complement the integral function method to provide direct calculation of the following distortion figures: total harmonic distortion (THD), second harmonic distortion (HD2) and third harmonic distortion (HD3), voltage intercept points (VIP) and the intermodulation distortion (IMD). The comparison with the same distortion figures calculated by the Fourier coefficients (FC), by direct AC measurements and from FFT in simulators, indicates that results obtained by IFM give an excellent agreement in the full range of the analyzed active regions. The IFM combines simplicity and computer efficiency with accuracy and with the possibility to easily analyze the distortion when varying any of the circuit or device parameters.
Direct ultrafiltration performance and membrane integrity monitoring by microbiological analysis.
Ferrer, O; Casas, S; Galvañ, C; Lucena, F; Bosch, A; Galofré, B; Mesa, J; Jofre, J; Bernat, X
2015-10-15
The feasibility of substituting a conventional pre-treatment, consisting of dioxi-chlorination, coagulation/flocculation, settling and sand filtration, of a drinking water treatment plant (DWTP) by direct ultrafiltration (UF) has been assessed from a microbiological standpoint. Bacterial indicators, viral indicators and human viruses have been monitored in raw river, ultrafiltered and conventionally pre-treated water samples during two years. Direct UF has proven to remove bacterial indicators quite efficiently and to a greater extent than the conventional process does. Nevertheless, the removal of small viruses such as some small bacteriophages and human viruses (e.g. enteroviruses and noroviruses) is lower than the current conventional pre-treatment. Membrane integrity has been assessed during two years by means of tailored tests based on bacteriophages with different properties (MS-2, GA and PDR-1) and bacterial spores (Bacillus spores). Membrane integrity has not been compromised despite the challenging conditions faced by directly treating raw river water. Bacteriophage PDR-1 appears as a suitable microbe to test membrane integrity, as its size is slightly larger than the considered membrane pore size. However, its implementation at full scale plant is still challenging due to difficulties in obtaining enough phages for its seeding.
Methods of geometrical integration in accelerator physics
NASA Astrophysics Data System (ADS)
Andrianov, S. N.
2016-12-01
In the paper we consider a method of geometric integration for a long evolution of the particle beam in cyclic accelerators, based on the matrix representation of the operator of particles evolution. This method allows us to calculate the corresponding beam evolution in terms of two-dimensional matrices including for nonlinear effects. The ideology of the geometric integration introduces in appropriate computational algorithms amendments which are necessary for preserving the qualitative properties of maps presented in the form of the truncated series generated by the operator of evolution. This formalism extends both on polarized and intense beams. Examples of practical applications are described.
Differential temperature integrating diagnostic method and apparatus
Doss, James D.; McCabe, Charles W.
1976-01-01
A method and device for detecting the presence of breast cancer in women by integrating the temperature difference between the temperature of a normal breast and that of a breast having a malignant tumor. The breast-receiving cups of a brassiere are each provided with thermally conductive material next to the skin, with a thermistor attached to the thermally conductive material in each cup. The thermistors are connected to adjacent arms of a Wheatstone bridge. Unbalance currents in the bridge are integrated with respect to time by means of an electrochemical integrator. In the absence of a tumor, both breasts maintain substantially the same temperature, and the bridge remains balanced. If the tumor is present in one breast, a higher temperature in that breast unbalances the bridge and the electrochemical cells integrate the temperature difference with respect to time.
Weighted cue integration in the rodent head direction system.
Knight, Rebecca; Piette, Caitlin E; Page, Hector; Walters, Daniel; Marozzi, Elizabeth; Nardini, Marko; Stringer, Simon; Jeffery, Kathryn J
2014-02-05
How the brain combines information from different sensory modalities and of differing reliability is an important and still-unanswered question. Using the head direction (HD) system as a model, we explored the resolution of conflicts between landmarks and background cues. Sensory cue integration models predict averaging of the two cues, whereas attractor models predict capture of the signal by the dominant cue. We found that a visual landmark mostly captured the HD signal at low conflicts: however, there was an increasing propensity for the cells to integrate the cues thereafter. A large conflict presented to naive rats resulted in greater visual cue capture (less integration) than in experienced rats, revealing an effect of experience. We propose that weighted cue integration in HD cells arises from dynamic plasticity of the feed-forward inputs to the network, causing within-trial spatial redistribution of the visual inputs onto the ring. This suggests that an attractor network can implement decision processes about cue reliability using simple architecture and learning rules, thus providing a potential neural substrate for weighted cue integration.
Integrated force method versus displacement method for finite element analysis
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Berke, L.; Gallagher, R. H.
1991-01-01
A novel formulation termed the integrated force method (IFM) has been developed in recent years for analyzing structures. In this method all the internal forces are taken as independent variables, and the system equilibrium equations (EEs) are integrated with the global compatibility conditions (CCs) to form the governing set of equations. In IFM the CCs are obtained from the strain formulation of St. Venant, and no choices of redundant load systems have to be made, in constrast to the standard force method (SFM). This property of IFM allows the generation of the governing equation to be automated straightforwardly, as it is in the popular stiffness method (SM). In this report IFM and SM are compared relative to the structure of their respective equations, their conditioning, required solution methods, overall computational requirements, and convergence properties as these factors influence the accuracy of the results. Overall, this new version of the force method produces more accurate results than the stiffness method for comparable computational cost.
Integrated force method versus displacement method for finite element analysis
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Berke, Laszlo; Gallagher, Richard H.
1990-01-01
A novel formulation termed the integrated force method (IFM) has been developed in recent years for analyzing structures. In this method all the internal forces are taken as independent variables, and the system equilibrium equations (EE's) are integrated with the global compatibility conditions (CC's) to form the governing set of equations. In IFM the CC's are obtained from the strain formulation of St. Venant, and no choices of redundant load systems have to be made, in constrast to the standard force method (SFM). This property of IFM allows the generation of the governing equation to be automated straightforwardly, as it is in the popular stiffness method (SM). In this report IFM and SM are compared relative to the structure of their respective equations, their conditioning, required solution methods, overall computational requirements, and convergence properties as these factors influence the accuracy of the results. Overall, this new version of the force method produces more accurate results than the stiffness method for comparable computational cost.
Group sparse optimization by alternating direction method
NASA Astrophysics Data System (ADS)
Deng, Wei; Yin, Wotao; Zhang, Yin
2013-09-01
This paper proposes efficient algorithms for group sparse optimization with mixed l2,1-regularization, which arises from the reconstruction of group sparse signals in compressive sensing, and the group Lasso problem in statistics and machine learning. It is known that encoding the group information in addition to sparsity can often lead to better signal recovery/feature selection. The l2,1-regularization promotes group sparsity, but the resulting problem, due to the mixed-norm structure and possible grouping irregularity, is considered more difficult to solve than the conventional l1-regularized problem. Our approach is based on a variable splitting strategy and the classic alternating direction method (ADM). Two algorithms are presented, one derived from the primal and the other from the dual of the l2,1-regularized problem. The convergence of the proposed algorithms is guaranteed by the existing ADM theory. General group configurations such as overlapping groups and incomplete covers can be easily handled by our approach. Computational results show that on random problems the proposed ADM algorithms exhibit good efficiency, and strong stability and robustness.
Bioluminescent bioreporter integrated circuit detection methods
Simpson, Michael L.; Paulus, Michael J.; Sayler, Gary S.; Applegate, Bruce M.; Ripp, Steven A.
2005-06-14
Disclosed are monolithic bioelectronic devices comprising a bioreporter and an OASIC. These bioluminescent bioreporter integrated circuit are useful in detecting substances such as pollutants, explosives, and heavy-metals residing in inhospitable areas such as groundwater, industrial process vessels, and battlefields. Also disclosed are methods and apparatus for detection of particular analytes, including ammonia and estrogen compounds.
Collaborative Teaching of an Integrated Methods Course
ERIC Educational Resources Information Center
Zhou, George; Kim, Jinyoung; Kerekes, Judit
2011-01-01
With an increasing diversity in American schools, teachers need to be able to collaborate in teaching. University courses are widely considered as a stage to demonstrate or model the ways of collaboration. To respond to this call, three authors team taught an integrated methods course at an urban public university in the city of New York.…
Implicit integration methods for dislocation dynamics
Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; ...
2015-01-20
In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events, and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. Here, this paper investigates the viability of high order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a waymore » of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.« less
Implicit integration methods for dislocation dynamics
Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; Hommes, G.; Aubry, S.; Arsenlis, A.
2015-01-20
In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events, and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. Here, this paper investigates the viability of high order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a way of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.
Implicit integration methods for dislocation dynamics
NASA Astrophysics Data System (ADS)
Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; Hommes, G.; Aubry, S.; Arsenlis, A.
2015-03-01
In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. This paper investigates the viability of high-order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a way of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.
Fidelity of the Integrated Force Method Solution
NASA Technical Reports Server (NTRS)
Hopkins, Dale; Halford, Gary; Coroneos, Rula; Patnaik, Surya
2002-01-01
The theory of strain compatibility of the solid mechanics discipline was incomplete since St. Venant's 'strain formulation' in 1876. We have addressed the compatibility condition both in the continuum and the discrete system. This has lead to the formulation of the Integrated Force Method. A dual Integrated Force Method with displacement as the primal variable has also been formulated. A modest finite element code (IFM/Analyzers) based on the IFM theory has been developed. For a set of standard test problems the IFM results were compared with the stiffness method solutions and the MSC/Nastran code. For the problems IFM outperformed the existing methods. Superior IFM performance is attributed to simultaneous compliance of equilibrium equation and compatibility condition. MSC/Nastran organization expressed reluctance to accept the high fidelity IFM solutions. This report discusses the solutions to the examples. No inaccuracy was detected in the IFM solutions. A stiffness method code with a small programming effort can be improved to reap the many IFM benefits when implemented with the IFMD elements. Dr. Halford conducted a peer-review on the Integrated Force Method. Reviewers' response is included.
Numerical methods for engine-airframe integration
Murthy, S.N.B.; Paynter, G.C.
1986-01-01
Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison of full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment.
Package for integrated optic circuit and method
Kravitz, S.H.; Hadley, G.R.; Warren, M.E.; Carson, R.F.; Armendariz, M.G.
1998-08-04
A structure and method are disclosed for packaging an integrated optic circuit. The package comprises a first wall having a plurality of microlenses formed therein to establish channels of optical communication with an integrated optic circuit within the package. A first registration pattern is provided on an inside surface of one of the walls of the package for alignment and attachment of the integrated optic circuit. The package in one embodiment may further comprise a fiber holder for aligning and attaching a plurality of optical fibers to the package and extending the channels of optical communication to the fibers outside the package. In another embodiment, a fiber holder may be used to hold the fibers and align the fibers to the package. The fiber holder may be detachably connected to the package. 6 figs.
Package for integrated optic circuit and method
Kravitz, Stanley H.; Hadley, G. Ronald; Warren, Mial E.; Carson, Richard F.; Armendariz, Marcelino G.
1998-01-01
A structure and method for packaging an integrated optic circuit. The package comprises a first wall having a plurality of microlenses formed therein to establish channels of optical communication with an integrated optic circuit within the package. A first registration pattern is provided on an inside surface of one of the walls of the package for alignment and attachment of the integrated optic circuit. The package in one embodiment may further comprise a fiber holder for aligning and attaching a plurality of optical fibers to the package and extending the channels of optical communication to the fibers outside the package. In another embodiment, a fiber holder may be used to hold the fibers and align the fibers to the package. The fiber holder may be detachably connected to the package.
A Method for Obtaining Integrable Couplings
NASA Astrophysics Data System (ADS)
Zhang, Yu-Sen; Chen, Wei; Liao, Bo; Gong, Xin-Bo
2006-06-01
By making use of the vector product in R3, a commuting operation is introduced so that R3 becomes a Lie algebra. The resulting loop algebra tilde R3 is presented, from which the well-known AKNS hierarchy is produced. Again via applying the superposition of the commuting operations of the Lie algebra, a commuting operation in R6 is constructed so that R6 becomes a Lie algebra. Thanks to the corresponding loop algebra tilde R3 of the Lie algebra R3, the integrable coupling of the AKNS system is obtained. The method presented in this paper is rather simple and can be used to work out integrable coupling systems of the other known integrable hierarchies of soliton equations.
NASA Astrophysics Data System (ADS)
Wang, Qiao; Zhou, Wei; Cheng, Yonggang; Ma, Gang; Chang, Xiaolin
2017-04-01
A line integration method (LIM) is proposed to calculate the domain integrals for 3D problems. In the proposed method, the domain integrals are transformed into boundary integrals and only line integrals on straight lines are needed to be computed. A background cell structure is applied to further simplify the line integrals and improve the accuracy. The method creates elements only on the boundary, and the integral lines are created from the boundary elements. The procedure is quite suitable for the boundary element method, and we have applied it to 3D situations. Directly applying the method is time-consuming since the complexity of the computational time is O( NM), where N and M are the numbers of nodes and lines, respectively. To overcome this problem, the fast multipole method is used with the LIM for large-scale computation. The numerical results show that the proposed method is efficient and accurate.
Recursive integral method for transmission eigenvalues
NASA Astrophysics Data System (ADS)
Huang, Ruihao; Struthers, Allan A.; Sun, Jiguang; Zhang, Ruming
2016-12-01
Transmission eigenvalue problems arise from inverse scattering theory for inhomogeneous media. These non-selfadjoint problems are numerically challenging because of a complicated spectrum. In this paper, we propose a novel recursive contour integral method for matrix eigenvalue problems from finite element discretizations of transmission eigenvalue problems. The technique tests (using an approximate spectral projection) if a region contains eigenvalues. Regions that contain eigenvalues are subdivided and tested recursively until eigenvalues are isolated with a specified precision. The method is fully parallel and requires no a priori spectral information. Numerical examples show the method is effective and robust.
Direct acting hydraulic valve lifter with integral plunger
Kunz, T.W.; Cole, D.G.; Knape, R.S.; Krein, A.N.
1988-07-12
A direct acting hydraulic valve lifter is described which is adapted to be reciprocably guided in a guide bore in the cylinder head of an engine and which is adapted to be engaged at one end by a cam on an engine driven camshaft and to engage a valve at its opposite end, the direct acting hydraulic valve lifter including a follower body having a tubular outer wall with a first end and a second end and defining an outer peripheral surface for sliding engagement in the guide bore. The follower body further includes a web portion extending radially inwardly from the outer wall adjacent to the first end thereof, the web portion having a central aperture therethrough and a tubular plunger with a stepped bore therethrough depending integrally from the web portion concentric with the central aperture and extending axially toward the second end.
A bin integral method for solving the kinetic collection equation
NASA Astrophysics Data System (ADS)
Wang, Lian-Ping; Xue, Yan; Grabowski, Wojciech W.
2007-09-01
A new numerical method for solving the kinetic collection equation (KCE) is proposed, and its accuracy and convergence are investigated. The method, herein referred to as the bin integral method with Gauss quadrature (BIMGQ), makes use of two binwise moments, namely, the number and mass concentration in each bin. These two degrees of freedom define an extended linear representation of the number density distribution for each bin following Enukashvily (1980). Unlike previous moment-based methods in which the gain and loss integrals are evaluated for a target bin, the concept of source-bin pair interactions is used to transfer bin moments from source bins to target bins. Collection kernels are treated by bilinear interpolations. All binwise interaction integrals are then handled exactly by Gauss quadrature of various orders. In essence the method combines favorable features in previous spectral moment-based and bin-based pair-interaction (or flux) methods to greatly enhance the logic, consistency, and simplicity in the numerical method and its implementation. Quantitative measures are developed to rigorously examine the accuracy and convergence properties of BIMGQ for both the Golovin kernel and hydrodynamic kernels. It is shown that BIMGQ has a superior accuracy for the Golovin kernel and a monotonic convergence behavior for hydrodynamic kernels. Direct comparisons are also made with the method of Berry and Reinhardt (1974), the linear flux method of Bott (1998), and the linear discrete method of Simmel et al. (2002).
Multistep Methods for Integrating the Solar System
1988-07-01
Technical Report 1055 [Multistep Methods for Integrating the Solar System 0 Panayotis A. Skordos’ MIT Artificial Intelligence Laboratory DTIC S D g8...RMA ELEENT. PROECT. TASK Artific ial Inteligence Laboratory ARE1A G WORK UNIT NUMBERS 545 Technology Square Cambridge, MA 02139 IL. CONTROLLING...describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology, supported by the Advanced Research Projects
Integration of multimodality images: success and future directions
NASA Astrophysics Data System (ADS)
Chen, Chin-Tu
1993-07-01
The concept of multi-modality image integration, in which images obtained from different sensors are co-registered spatially and various aspects of object characteristics revealed by individual imaging techniques are synergistically fused in order to yield new information, has received considerable attention in recent years. The initial success was made in visualizing integrated brain images which show the overlay of physiological information from PET or SPECT with anatomical information from CT or MRI, providing new knowledge of correlates of brain function and brain structure that was difficult to access previously. Extension of this concept to cardiac and pulmonary imaging is still in its infancy. One additional difficulty in dealing with cardiac/pulmonary data sets is the issue of motion. However, some features in periodic motion may offer additional information for the purpose of spatial co-registration. In addition to visualization of the fused image data in 2-D and 3-D, future directions in the arena of image integration from multiple modalities include multi-modal image reconstruction, multi-modal image segmentation and feature extraction, and other image analysis tasks that incorporate information available from multiple sources.
A direct potential fitting RKR method: Semiclassical vs. quantal comparisons
NASA Astrophysics Data System (ADS)
Tellinghuisen, Joel
2016-12-01
Quantal and semiclassical (SC) eigenvalues are compared for three diatomic molecular potential curves: the X state of CO, the X state of Rb2, and the A state of I2. The comparisons show higher levels of agreement than generally recognized, when the SC calculations incorporate a quantum defect correction to the vibrational quantum number, in keeping with the Kaiser modification. One particular aspect of this is better agreement between quantal and SC estimates of the zero-point vibrational energy, supporting the need for the Y00 correction in this context. The pursuit of a direct-potential-fitting (DPF) RKR method is motivated by the notion that some of the limitations of RKR potentials may be innate, from their generation by an exact inversion of approximate quantities: the vibrational energy Gυ and rotational constant Bυ from least-squares analysis of spectroscopic data. In contrast, the DPF RKR method resembles the quantal DPF methods now increasingly used to analyze diatomic spectral data, but with the eigenvalues obtained from SC phase integrals. Application of this method to the analysis of 9500 assigned lines in the I2A ← X spectrum fails to alter the quantal-SC disparities found for the A-state RKR curve from a previous analysis. On the other hand, the SC method can be much faster than the quantal method in exploratory work with different potential functions, where it is convenient to use finite-difference methods to evaluate the partial derivatives required in nonlinear fitting.
Approximation method to compute domain related integrals in structural studies
NASA Astrophysics Data System (ADS)
Oanta, E.; Panait, C.; Raicu, A.; Barhalescu, M.; Axinte, T.
2015-11-01
Various engineering calculi use integral calculus in theoretical models, i.e. analytical and numerical models. For usual problems, integrals have mathematical exact solutions. If the domain of integration is complicated, there may be used several methods to calculate the integral. The first idea is to divide the domain in smaller sub-domains for which there are direct calculus relations, i.e. in strength of materials the bending moment may be computed in some discrete points using the graphical integration of the shear force diagram, which usually has a simple shape. Another example is in mathematics, where the surface of a subgraph may be approximated by a set of rectangles or trapezoids used to calculate the definite integral. The goal of the work is to introduce our studies about the calculus of the integrals in the transverse section domains, computer aided solutions and a generalizing method. The aim of our research is to create general computer based methods to execute the calculi in structural studies. Thus, we define a Boolean algebra which operates with ‘simple’ shape domains. This algebraic standpoint uses addition and subtraction, conditioned by the sign of every ‘simple’ shape (-1 for the shapes to be subtracted). By ‘simple’ shape or ‘basic’ shape we define either shapes for which there are direct calculus relations, or domains for which their frontiers are approximated by known functions and the according calculus is carried out using an algorithm. The ‘basic’ shapes are linked to the calculus of the most significant stresses in the section, refined aspect which needs special attention. Starting from this idea, in the libraries of ‘basic’ shapes, there were included rectangles, ellipses and domains whose frontiers are approximated by spline functions. The domain triangularization methods suggested that another ‘basic’ shape to be considered is the triangle. The subsequent phase was to deduce the exact relations for the
Development of Improved Surface Integral Methods for Jet Aeroacoustic Predictions
NASA Technical Reports Server (NTRS)
Pilon, Anthony R.; Lyrintzis, Anastasios S.
1997-01-01
The accurate prediction of aerodynamically generated noise has become an important goal over the past decade. Aeroacoustics must now be an integral part of the aircraft design process. The direct calculation of aerodynamically generated noise with CFD-like algorithms is plausible. However, large computer time and memory requirements often make these predictions impractical. It is therefore necessary to separate the aeroacoustics problem into two parts, one in which aerodynamic sound sources are determined, and another in which the propagating sound is calculated. This idea is applied in acoustic analogy methods. However, in the acoustic analogy, the determination of far-field sound requires the solution of a volume integral. This volume integration again leads to impractical computer requirements. An alternative to the volume integrations can be found in the Kirchhoff method. In this method, Green's theorem for the linear wave equation is used to determine sound propagation based on quantities on a surface surrounding the source region. The change from volume to surface integrals represents a tremendous savings in the computer resources required for an accurate prediction. This work is concerned with the development of enhancements of the Kirchhoff method for use in a wide variety of aeroacoustics problems. This enhanced method, the modified Kirchhoff method, is shown to be a Green's function solution of Lighthill's equation. It is also shown rigorously to be identical to the methods of Ffowcs Williams and Hawkings. This allows for development of versatile computer codes which can easily alternate between the different Kirchhoff and Ffowcs Williams-Hawkings formulations, using the most appropriate method for the problem at hand. The modified Kirchhoff method is developed primarily for use in jet aeroacoustics predictions. Applications of the method are shown for two dimensional and three dimensional jet flows. Additionally, the enhancements are generalized so that
Direct current power delivery system and method
Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin
2016-09-06
A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.
Jung, Sungyong; Park, Jae-Hyeung; Choi, Heejin; Lee, Byoungho
2003-06-16
Integral three-dimensional (3D) imaging provides full-motion parallax, unlike other conventional stereoscopy-based techniques. To maximize this advantage, a 3D system with a wide view along all directions is required. We propose and demonstrate a new integral imaging (InIm) method to enhance the viewing angle along both horizontal and vertical directions. Elemental lens switching is performed by a combination of spatial and time multiplexing by use of double display devices and orthogonal polarizations. Experimental results show that the viewing angle of the system is enhanced along all directions without any mechanical movement or any cross talk between afterimages. We believe that the proposed method has the potential to facilitate practical use of the wideviewing InIm system.
Cabbages--And Kings: Research Directions in Integrated/Interdisciplinary Curriculum.
ERIC Educational Resources Information Center
Kain, Daniel L.
1993-01-01
Examines past research into integrated or interdisciplinary studies and explores future directions for research. Discusses reasons for integrating curricula, characteristics of integrated studies, benefits of curriculum integration, and pedagogical changes accompanying integrated studies. Predicts an unstable future for integrated studies.…
Cabbages--And Kings: Research Directions in Integrated/Interdisciplinary Curriculum.
ERIC Educational Resources Information Center
Kain, Daniel L.
1993-01-01
Examines past research into integrated or interdisciplinary studies and explores future directions for research. Discusses reasons for integrating curricula, characteristics of integrated studies, benefits of curriculum integration, and pedagogical changes accompanying integrated studies. Predicts an unstable future for integrated studies.…
Can we estimate total magnetization directions from aeromagnetic data using Helbig's integrals?
Phillips, J.D.
2005-01-01
An algorithm that implements Helbig's (1963) integrals for estimating the vector components (mx, my, mz) of tile magnetic dipole moment from the first order moments of the vector magnetic field components (??X, ??Y, ??Z) is tested on real and synthetic data. After a grid of total field aeromagnetic data is converted to vector component grids using Fourier filtering, Helbig's infinite integrals are evaluated as finite integrals in small moving windows using a quadrature algorithm based on the 2-D trapezoidal rule. Prior to integration, best-fit planar surfaces must be removed from the component data within the data windows in order to make the results independent of the coordinate system origin. Two different approaches are described for interpreting the results of the integration. In the "direct" method, results from pairs of different window sizes are compared to identify grid nodes where the angular difference between solutions is small. These solutions provide valid estimates of total magnetization directions for compact sources such as spheres or dipoles, but not for horizontally elongated or 2-D sources. In the "indirect" method, which is more forgiving of source geometry, results of the quadrature analysis are scanned for solutions that are parallel to a specified total magnetization direction.
[General integral medicine: the strategic direction for complex health interventions].
Hou, Zheng-kun; Liu, Feng-bin; Yang, Yun-ying; Chen, Xin-lin; Li, Li-juan; Li, Pei-wu; Liu, Yuan-peng
2014-06-01
Nowadays, the simple combination of Western medicine (WM) and complementary and alternative medicine (CAM) cannot resolve all the health problems and various requirements. This article proposed the general integral medicine (GIM) theoretical model, which declares the disease causes analysis, clinical intervention and outcomes assessment should be recognized, managed and evaluated both from physiological, psychological, and spiritual status, and all the four dimensions: orthodox medicine (WM, Chinese medicine, etc.), individual inherent characteristics (emotion, attitude, psychology, etc.), cultural influences (doctors, caregivers, groups care, etc.), and natural environment and social systems (economic status, social security system, environmental pollution, etc). As for health outcomes assessment, a more comprehensive system including biological, doctors, patients, health intimate, social and environmental evaluations were required. The GIM model has individualized, dynamic, standardized, objective, systematic inherent characteristics, and opening and compatible external characteristics. It aims to provide the new theoretical guidance and strategic development direction for complex health interventions, and solve various medical related psychological and social problems.
Ultrafast electron microscopy integrated with a direct electron detection camera
Lee, Young Min; Kim, Young Jae; Kim, Ye-Jin; Kwon, Oh-Hoon
2017-01-01
In the past decade, we have witnessed the rapid growth of the field of ultrafast electron microscopy (UEM), which provides intuitive means to watch atomic and molecular motions of matter. Yet, because of the limited current of the pulsed electron beam resulting from space-charge effects, observations have been mainly made to periodic motions of the crystalline structure of hundreds of nanometers or higher by stroboscopic imaging at high repetition rates. Here, we develop an advanced UEM with robust capabilities for circumventing the present limitations by integrating a direct electron detection camera for the first time which allows for imaging at low repetition rates. This approach is expected to promote UEM to a more powerful platform to visualize molecular and collective motions and dissect fundamental physical, chemical, and materials phenomena in space and time. PMID:28529964
Methods of Genomic Competency Integration in Practice
Jenkins, Jean; Calzone, Kathleen A.; Caskey, Sarah; Culp, Stacey; Weiner, Marsha; Badzek, Laurie
2015-01-01
Purpose Genomics is increasingly relevant to health care, necessitating support for nurses to incorporate genomic competencies into practice. The primary aim of this project was to develop, implement, and evaluate a year-long genomic education intervention that trained, supported, and supervised institutional administrator and educator champion dyads to increase nursing capacity to integrate genomics through assessments of program satisfaction and institutional achieved outcomes. Design Longitudinal study of 23 Magnet Recognition Program® Hospitals (21 intervention, 2 controls) participating in a 1-year new competency integration effort aimed at increasing genomic nursing competency and overcoming barriers to genomics integration in practice. Methods Champion dyads underwent genomic training consisting of one in-person kick-off training meeting followed by monthly education webinars. Champion dyads designed institution-specific action plans detailing objectives, methods or strategies used to engage and educate nursing staff, timeline for implementation, and outcomes achieved. Action plans focused on a minimum of seven genomic priority areas: champion dyad personal development; practice assessment; policy content assessment; staff knowledge needs assessment; staff development; plans for integration; and anticipated obstacles and challenges. Action plans were updated quarterly, outlining progress made as well as inclusion of new methods or strategies. Progress was validated through virtual site visits with the champion dyads and chief nursing officers. Descriptive data were collected on all strategies or methods utilized, and timeline for achievement. Descriptive data were analyzed using content analysis. Findings The complexity of the competency content and the uniqueness of social systems and infrastructure resulted in a significant variation of champion dyad interventions. Conclusions Nursing champions can facilitate change in genomic nursing capacity through
Validation Methods for Direct Writing Assessment.
ERIC Educational Resources Information Center
Miller, M. David; Crocker, Linda
1990-01-01
This review of methods for validating writing assessments was conceptualized within a framework suggested by S. Messick (1989) that included five operational components of construct validation: (1) content representativeness; (2) structural fidelity; (3) nomological validity; (4) criterion-related validity; and (5) nomothetic span. (SLD)
Solution methods for very highly integrated circuits.
Nong, Ryan; Thornquist, Heidi K.; Chen, Yao; Mei, Ting; Santarelli, Keith R.; Tuminaro, Raymond Stephen
2010-12-01
While advances in manufacturing enable the fabrication of integrated circuits containing tens-to-hundreds of millions of devices, the time-sensitive modeling and simulation necessary to design these circuits poses a significant computational challenge. This is especially true for mixed-signal integrated circuits where detailed performance analyses are necessary for the individual analog/digital circuit components as well as the full system. When the integrated circuit has millions of devices, performing a full system simulation is practically infeasible using currently available Electrical Design Automation (EDA) tools. The principal reason for this is the time required for the nonlinear solver to compute the solutions of large linearized systems during the simulation of these circuits. The research presented in this report aims to address the computational difficulties introduced by these large linearized systems by using Model Order Reduction (MOR) to (i) generate specialized preconditioners that accelerate the computation of the linear system solution and (ii) reduce the overall dynamical system size. MOR techniques attempt to produce macromodels that capture the desired input-output behavior of larger dynamical systems and enable substantial speedups in simulation time. Several MOR techniques that have been developed under the LDRD on 'Solution Methods for Very Highly Integrated Circuits' will be presented in this report. Among those presented are techniques for linear time-invariant dynamical systems that either extend current approaches or improve the time-domain performance of the reduced model using novel error bounds and a new approach for linear time-varying dynamical systems that guarantees dimension reduction, which has not been proven before. Progress on preconditioning power grid systems using multi-grid techniques will be presented as well as a framework for delivering MOR techniques to the user community using Trilinos and the Xyce circuit simulator
Future Directions of Electromagnetic Methods for Hydrocarbon Applications
NASA Astrophysics Data System (ADS)
Strack, K. M.
2014-01-01
For hydrocarbon applications, seismic exploration is the workhorse of the industry. Only in the borehole, electromagnetic (EM) methods play a dominant role, as they are mostly used to determine oil reserves and to distinguish water from oil-bearing zones. Throughout the past 60 years, we had several periods with an increased interest in EM. This increased with the success of the marine EM industry and now electromagnetics in general is considered for many new applications. The classic electromagnetic methods are borehole, onshore and offshore, and airborne EM methods. Airborne is covered elsewhere (see Smith, this issue). Marine EM material is readily available from the service company Web sites, and here I will only mention some future technical directions that are visible. The marine EM success is being carried back to the onshore market, fueled by geothermal and unconventional hydrocarbon applications. Oil companies are listening to pro-EM arguments, but still are hesitant to go through the learning exercises as early adopters. In particular, the huge business drivers of shale hydrocarbons and reservoir monitoring will bring markets many times bigger than the entire marine EM market. Additional applications include support for seismic operations, sub-salt, and sub-basalt, all areas where seismic exploration is costly and inefficient. Integration with EM will allow novel seismic methods to be applied. In the borehole, anisotropy measurements, now possible, form the missing link between surface measurements and ground truth. Three-dimensional (3D) induction measurements are readily available from several logging contractors. The trend to logging-while-drilling measurements will continue with many more EM technologies, and the effort of controlling the drill bit while drilling including look-ahead-and-around the drill bit is going on. Overall, the market for electromagnetics is increasing, and a demand for EM capable professionals will continue. The emphasis will
77 FR 21158 - VA Directive 0005 on Scientific Integrity: Availability for Review and Comment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
... AFFAIRS VA Directive 0005 on Scientific Integrity: Availability for Review and Comment AGENCY: Office of... (VA) Directive 0005 on Scientific Integrity. The Draft Directive incorporates the principles of scientific integrity contained in the Presidential Memorandum of March 9, 2009, and the Director, Office of...
Fourier-sparsity integrated method for complex target ISAR imagery.
Gao, Xunzhang; Liu, Zhen; Chen, Haowen; Li, Xiang
2015-01-26
In existing sparsity-driven inverse synthetic aperture radar (ISAR) imaging framework a sparse recovery (SR) algorithm is usually applied to azimuth compression to achieve high resolution in the cross-range direction. For range compression, however, direct application of an SR algorithm is not very effective because the scattering centers resolved in the high resolution range profiles at different view angles always exhibit irregular range cell migration (RCM), especially for complex targets, which will blur the ISAR image. To alleviate the sparse recovery-induced RCM in range compression, a sparsity-driven framework for ISAR imaging named Fourier-sparsity integrated (FSI) method is proposed in this paper, which can simultaneously achieve better focusing performance in both the range and cross-range domains. Experiments using simulated data and real data demonstrate the superiority of our proposed framework over existing sparsity-driven methods and range-Doppler methods.
The method of common search direction of joint inversion
NASA Astrophysics Data System (ADS)
Zhao, C.; Tang, R.
2013-12-01
In geophysical inversion, the first step is to construct an objective function. The second step is using the optimization algorithm to minimize the objective function, such as the gradient method and the conjugate gradient method. Compared with the former, the conjugate gradient method can find a better direction to make the error decreasing faster and has been widely used for a long time. At present, the joint inversion is generally using the conjugate gradient method. The most important thing of joint inversion is to construct the partial derivative matrix with respect to different physical properties. Then we should add the constraints among different physical properties into the integrated matrix and also use the cross gradient as constrained of joint inversion. There are two ways to apply the cross gradient into inverse process that can be added to the data function or the model function. One way is adding the cross gradient into data function. The partial derivative matrix will grow two times, meanwhile it's also requested to calculate the cross gradient of each grid and bring great computation cost.
Recent Advances in the Method of Forces: Integrated Force Method of Structural Analysis
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.
1998-01-01
Stress that can be induced in an elastic continuum can be determined directly through the simultaneous application of the equilibrium equations and the compatibility conditions. In the literature, this direct stress formulation is referred to as the integrated force method. This method, which uses forces as the primary unknowns, complements the popular equilibrium-based stiffness method, which considers displacements as the unknowns. The integrated force method produces accurate stress, displacement, and frequency results even for modest finite element models. This version of the force method should be developed as an alternative to the stiffness method because the latter method, which has been researched for the past several decades, may have entered its developmental plateau. Stress plays a primary role in the development of aerospace and other products, and its analysis is difficult. Therefore, it is advisable to use both methods to calculate stress and eliminate errors through comparison. This paper examines the role of the integrated force method in analysis, animation and design.
Recent Advances in the Method of Forces: Integrated Force Method of Structural Analysis
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.
1998-01-01
Stress that can be induced in an elastic continuum can be determined directly through the simultaneous application of the equilibrium equations and the compatibility conditions. In the literature, this direct stress formulation is referred to as the integrated force method. This method, which uses forces as the primary unknowns, complements the popular equilibrium-based stiffness method, which considers displacements as the unknowns. The integrated force method produces accurate stress, displacement, and frequency results even for modest finite element models. This version of the force method should be developed as an alternative to the stiffness method because the latter method, which has been researched for the past several decades, may have entered its developmental plateau. Stress plays a primary role in the development of aerospace and other products, and its analysis is difficult. Therefore, it is advisable to use both methods to calculate stress and eliminate errors through comparison. This paper examines the role of the integrated force method in analysis, animation and design.
NASA Astrophysics Data System (ADS)
Frómeta, M.; Moreno, G.; Ricardo, J.; Arias, Y.; Muramatsu, M.; Gomes, L. F.; Palácios, G.; Palácios, F.; Velázquez, H.; Valin, J. L.; Ramirez Q, L.
2017-03-01
In this paper the integral refractive index of a microscopic sample was directly measured by applying Digital Holographic Microscopy (DHM) capturing transmission and reflection holograms simultaneously, of the same sample's region, using Mach-Zehnder and Michelson micro interferometers for transmission and reflection holograms capture and modeling the 3D sample in a medium of known refractive index nm. The system was calibrated using standard polystyrene sphere immersed in water with known diameter and refractive index, and the method was applied for erythrocyte integral refractive index determination. The results are in accordance with predicted, the measurements error of the order of ± 0.005 in absolute values.
CELSS system control: issues, methods, and directions.
Blackwell, C C; Blackwell, A L
1992-01-01
In the general control perspective, the CELSS concept implies a very complex system and presents challenges at every level. These challenges are generated by: (1) the prospect that the system will be inherently unstable, (2) the prospective difficulty of establishing an adequate mathematical model of the system for the purpose of control law synthesis (dimensionality is high, and the dynamics and interactive processes of some of the subsystems are not understood well), (3) assuring control law robustness (assuring that the resulting control law(s) will be effective over the domain of the specified uncertainties), (4) hardware realization of the control law, (5) hardware system robustness ("fault tolerance") and (6) achieving the logistics of the automation (or "management") aspects of the problem. A suggested organization of the problem, a sketch of the issues related to perceived difficulties, a commentary/evaluation of the issues, a review of methods available to address the issues, and a suggested strategy to address the broad CELSS systems control problem are presented.
Integrating Function-Directed Treatments into Palliative Care.
Cheville, Andrea L; Morrow, Melissa; Smith, Sean Robinson; Basford, Jeffrey R
2017-09-01
The growing acceptance of palliative care has created opportunities to increase the use of rehabilitation services among populations with advanced disease, particularly those with cancer. Broader delivery has been impeded by the lack of a shared definition for palliative rehabilitation and a mismatch between patient needs and established rehabilitation service delivery models. We propose the definition that, in the advanced cancer population, palliative rehabilitation is function-directed care delivered in partnership with other clinical disciplines and aligned with the values of patients who have serious and often incurable illnesses in contexts marked by intense and dynamic symptoms, psychological stress, and medical morbidity to realize potentially time-limited goals. Although palliative rehabilitation is most often delivered by inpatient physical medicine and rehabilitation consultation/liaison services and by physical therapists in skilled nursing facilities, outcomes in these settings have received little scrutiny. In contrast, outpatient cancer rehabilitation programs have gained robust evidentiary support attesting to their benefits across diverse settings. Advancing palliative rehabilitation will require attention to historical barriers to the uptake of cancer rehabilitation services, which include the following: patient and referring physicians' expectation that effective cancer treatment will reverse disablement; breakdown of linear models of disablement due to presence of concurrent symptoms and psychological distress; tension between reflexive palliation and impairment-directed treatment; palliative clinicians' limited familiarity with manual interventions and rehabilitation services; and challenges in identifying receptive patients with the capacity to benefit from rehabilitation services. The effort to address these admittedly complex issues is warranted, as consideration of function in efforts to control symptoms and mood is vital to optimize
Path Integral Monte Carlo Methods for Fermions
NASA Astrophysics Data System (ADS)
Ethan, Ethan; Dubois, Jonathan; Ceperley, David
2014-03-01
In general, Quantum Monte Carlo methods suffer from a sign problem when simulating fermionic systems. This causes the efficiency of a simulation to decrease exponentially with the number of particles and inverse temperature. To circumvent this issue, a nodal constraint is often implemented, restricting the Monte Carlo procedure from sampling paths that cause the many-body density matrix to change sign. Unfortunately, this high-dimensional nodal surface is not a priori known unless the system is exactly solvable, resulting in uncontrolled errors. We will discuss two possible routes to extend the applicability of finite-temperatue path integral Monte Carlo. First we extend the regime where signful simulations are possible through a novel permutation sampling scheme. Afterwards, we discuss a method to variationally improve the nodal surface by minimizing a free energy during simulation. Applications of these methods will include both free and interacting electron gases, concluding with discussion concerning extension to inhomogeneous systems. Support from DOE DE-FG52-09NA29456, DE-AC52-07NA27344, LLNL LDRD 10- ERD-058, and the Lawrence Scholar program.
Integrability: mathematical methods for studying solitary waves theory
NASA Astrophysics Data System (ADS)
Wazwaz, Abdul-Majid
2014-03-01
real features in a variety of vital areas in science, technology and engineering. In recognition of the importance of solitary waves theory and the underlying concept of integrable equations, a variety of powerful methods have been developed to carry out the required analysis. Examples of such methods which have been advanced are the inverse scattering method, the Hirota bilinear method, the simplified Hirota method, the Bäcklund transformation method, the Darboux transformation, the Pfaffian technique, the Painlevé analysis, the generalized symmetry method, the subsidiary ordinary differential equation method, the coupled amplitude-phase formulation, the sine-cosine method, the sech-tanh method, the mapping and deformation approach and many new other methods. The inverse scattering method, viewed as a nonlinear analogue of the Fourier transform method, is a powerful approach that demonstrates the existence of soliton solutions through intensive computations. At the center of the theory of integrable equations lies the bilinear forms and Hirota's direct method, which can be used to obtain soliton solutions by using exponentials. The Bäcklund transformation method is a useful invariant transformation that transforms one solution into another of a differential equation. The Darboux transformation method is a well known tool in the theory of integrable systems. It is believed that there is a connection between the Bäcklund transformation and the Darboux transformation, but it is as yet not known. Archetypes of integrable equations are the Korteweg-de Vries (KdV) equation, the modified KdV equation, the sine-Gordon equation, the Schrödinger equation, the Vakhnenko equation, the KdV6 equation, the Burgers equation, the fifth-order Lax equation and many others. These equations yield soliton solutions, multiple soliton solutions, breather solutions, quasi-periodic solutions, kink solutions, homo-clinic solutions and other solutions as well. The couplings of linear and
Borja, Angel; Bricker, Suzanne B; Dauer, Daniel M; Demetriades, Nicolette T; Ferreira, João G; Forbes, Anthony T; Hutchings, Pat; Jia, Xiaoping; Kenchington, Richard; Carlos Marques, João; Zhu, Changbo
2008-09-01
In recent years, several sets of legislation worldwide (Oceans Act in USA, Australia or Canada; Water Framework Directive or Marine Strategy in Europe, National Water Act in South Africa, etc.) have been developed in order to address ecological quality or integrity, within estuarine and coastal systems. Most such legislation seeks to define quality in an integrative way, by using several biological elements, together with physico-chemical and pollution elements. Such an approach allows assessment of ecological status at the ecosystem level ('ecosystem approach' or 'holistic approach' methodologies), rather than at species level (e.g. mussel biomonitoring or Mussel Watch) or just at chemical level (i.e. quality objectives) alone. Increasing attention has been paid to the development of tools for different physico-chemical or biological (phytoplankton, zooplankton, benthos, algae, phanerogams, fishes) elements of the ecosystems. However, few methodologies integrate all the elements into a single evaluation of a water body. The need for such integrative tools to assess ecosystem quality is very important, both from a scientific and stakeholder point of view. Politicians and managers need information from simple and pragmatic, but scientifically sound methodologies, in order to show to society the evolution of a zone (estuary, coastal area, etc.), taking into account human pressures or recovery processes. These approaches include: (i) multidisciplinarity, inherent in the teams involved in their implementation; (ii) integration of biotic and abiotic factors; (iii) accurate and validated methods in determining ecological integrity; and (iv) adequate indicators to follow the evolution of the monitored ecosystems. While some countries increasingly use the establishment of marine parks to conserve marine biodiversity and ecological integrity, there is awareness (e.g. in Australia) that conservation and management of marine ecosystems cannot be restricted to Marine Protected
2012-02-17
with an integrated " tool changer " capable of interchangeably using a "direct write tool " for electronic material deposition, a "material extrusion head...Pump Fig. 26. The nScrypt direct write "Smart Pump" system (www.nscryptinc.com) Direct Write Deposition & CNC Milling Flexible FDM Machine Heated...oflntegrated Naval Systems Using Ultrasonic Consolidation, Support Material Deposition and Direct Write Technologies 5a. CONTRACT NUMBER N00014-07-1-0633
Rim, You Seung; Chen, Huajun; Liu, Yongsheng; Bae, Sang-Hoon; Kim, Hyun Jae; Yang, Yang
2014-09-23
The rise of solution-processed electronics, together with their processing methods and materials, provides unique opportunities to achieve low-cost and low-temperature roll-to-roll printing of non-Si-based devices. Here, we demonstrate a wafer-scale direct light-patterned, fully transparent, all-solution-processed, and layer-by-layer-integrated electronic device. The deep ultraviolet irradiation of specially designed metal oxide gel films can generate fine-patterned shapes of ∼3 μm, which easily manifest their intrinsic properties at low-temperature annealing. This direct light patterning can be easily applied to the 4 in. wafer scale and diverse pattern shapes and provides feasibility for integrated circuit applications through the penetration of the deep ultraviolet range on the quartz mask. With this approach, we successfully fabricate all-oxide-based high-performance transparent thin-film transistors on flexible polymer substrates.
On time integration methods and errors for ASCI applications
Knoll, D. A.; Mousseau, V. A.
2004-01-01
This talk is one of four to be given in the Multiphysics Solution Methods section of the workshop, Methods for Computational Physics. Some background and motivation is given for the various multiphysics time integration approaches. Various splitting methods as well as more modern coupled methods are discussed. Methods for assessing solution accuracy and time integration error are discussed. Finally, important open issues are highlighted.
a Simple Method to Construct Integrable Coupling System for the MKdV Equation Hierarchy
NASA Astrophysics Data System (ADS)
Yu, Fajun
In this paper, we will extend Ma's method to construct the integrable couplings of soliton equation hierarchy with the Kronecker product and two-nilpotent matrix. A direct application to the MKdV spectral problem leads to a novel integrable coupling system of soliton equation hierarchy. It is shown that the study of integrable couplings using the Kronecker product is an efficient and straightforward method.
Maintaining Institutional Integrity. New Directions for Community Colleges, Number 52.
ERIC Educational Resources Information Center
Puyear, Donald E., Ed.; Vaughan, George B., Ed.
1985-01-01
This collection of articles addresses ways in which community colleges can maintain institutional integrity while at the same time adapting the colleges' mission to a changing environment. The following articles are included: (1) "The Search for Mission and Integrity: A Retrospective View," by Jennings L. Wagoner, Jr.; (2) "Maintaining Open Access…
NASA Astrophysics Data System (ADS)
He, Han; Wang, Huaning
2008-05-01
The boundary integral equation (BIE) method was first proposed by Yan and Sakurai (2000) and used to extrapolate the nonlinear force-free magnetic field in the solar atmosphere. Recently, Yan and Li (2006) improved the BIE method and proposed the direct boundary integral equation (DBIE) formulation, which represents the nonlinear force-free magnetic field by direct integration of the magnetic field on the bottom boundary surface. On the basis of this new method, we devised a practical calculation scheme for the nonlinear force-free field extrapolation above solar active regions. The code of the scheme was tested by the analytical solutions of Low and Lou (1990) and was applied to the observed vector magnetogram of solar active region NOAA 9077. The results of the calculations show that the improvement of the new computational scheme to the scheme of Yan and Li (2006) is significant, and the force-free and divergence-free constraints are well satisfied in the extrapolated fields. The calculated field lines for NOAA 9077 present the X-shaped structure and can be helpful for understanding the magnetic configuration of the filament channel as well as the magnetic reconnection process during the Bastille Day flare on 14 July 2000.
Boundary-integral methods in elasticity and plasticity. [solutions of boundary value problems
NASA Technical Reports Server (NTRS)
Mendelson, A.
1973-01-01
Recently developed methods that use boundary-integral equations applied to elastic and elastoplastic boundary value problems are reviewed. Direct, indirect, and semidirect methods using potential functions, stress functions, and displacement functions are described. Examples of the use of these methods for torsion problems, plane problems, and three-dimensional problems are given. It is concluded that the boundary-integral methods represent a powerful tool for the solution of elastic and elastoplastic problems.
Comparison of haemoglobin estimates using direct & indirect cyanmethaemoglobin methods
Bansal, Priyanka Gupta; Toteja, Gurudayal Singh; Bhatia, Neena; Gupta, Sanjeev; Kaur, Manpreet; Adhikari, Tulsi; Garg, Ashok Kumar
2016-01-01
Background & objectives: Estimation of haemoglobin is the most widely used method to assess anaemia. Although direct cyanmethaemoglobin method is the recommended method for estimation of haemoglobin, but it may not be feasible under field conditions. Hence, the present study was undertaken to compare indirect cyanmethaemoglobin method against the conventional direct method for haemoglobin estimation. Methods: Haemoglobin levels were estimated for 888 adolescent girls aged 11-18 yr residing in an urban slum in Delhi by both direct and indirect cyanmethaemoglobin methods, and the results were compared. Results: The mean haemoglobin levels for 888 whole blood samples estimated by direct and indirect cyanmethaemoglobin method were 116.1 ± 12.7 and 110.5 ± 12.5 g/l, respectively, with a mean difference of 5.67 g/l (95% confidence interval: 5.45 to 5.90, P<0.001); which is equivalent to 0.567 g%. The prevalence of anaemia was reported as 59.6 and 78.2 per cent by direct and indirect methods, respectively. Sensitivity and specificity of indirect cyanmethaemoglobin method were 99.2 and 56.4 per cent, respectively. Using regression analysis, prediction equation was developed for indirect haemoglobin values. Interpretation & conclusions: The present findings revealed that indirect cyanmethaemoglobin method overestimated the prevalence of anaemia as compared to the direct method. However, if a correction factor is applied, indirect method could be successfully used for estimating true haemoglobin level. More studies should be undertaken to establish agreement and correction factor between direct and indirect cyanmethaemoglobin methods. PMID:28256465
Methods and systems for integrating fluid dispensing technology with stereolithography
Medina, Francisco; Wicker, Ryan; Palmer, Jeremy A.; Davis, Don W.; Chavez, Bart D.; Gallegos, Phillip L.
2010-02-09
An integrated system and method of integrating fluid dispensing technologies (e.g., direct-write (DW)) with rapid prototyping (RP) technologies (e.g., stereolithography (SL)) without part registration comprising: an SL apparatus and a fluid dispensing apparatus further comprising a translation mechanism adapted to translate the fluid dispensing apparatus along the Z-, Y- and Z-axes. The fluid dispensing apparatus comprises: a pressurized fluid container; a valve mechanism adapted to control the flow of fluid from the pressurized fluid container; and a dispensing nozzle adapted to deposit the fluid in a desired location. To aid in calibration, the integrated system includes a laser sensor and a mechanical switch. The method further comprises building a second part layer on top of the fluid deposits and optionally accommodating multi-layered circuitry by incorporating a connector trace. Thus, the present invention is capable of efficiently building single and multi-material SL fabricated parts embedded with complex three-dimensional circuitry using DW.
Comparison of haemoglobin estimates using direct & indirect cyanmethaemoglobin methods.
Bansal, Priyanka Gupta; Toteja, Gurudayal Singh; Bhatia, Neena; Gupta, Sanjeev; Kaur, Manpreet; Adhikari, Tulsi; Garg, Ashok Kumar
2016-10-01
Estimation of haemoglobin is the most widely used method to assess anaemia. Although direct cyanmethaemoglobin method is the recommended method for estimation of haemoglobin, but it may not be feasible under field conditions. Hence, the present study was undertaken to compare indirect cyanmethaemoglobin method against the conventional direct method for haemoglobin estimation. Haemoglobin levels were estimated for 888 adolescent girls aged 11-18 yr residing in an urban slum in Delhi by both direct and indirect cyanmethaemoglobin methods, and the results were compared. The mean haemoglobin levels for 888 whole blood samples estimated by direct and indirect cyanmethaemoglobin method were 116.1 ± 12.7 and 110.5 ± 12.5 g/l, respectively, with a mean difference of 5.67 g/l (95% confidence interval: 5.45 to 5.90, P<0.001); which is equivalent to 0.567 g%. The prevalence of anaemia was reported as 59.6 and 78.2 per cent by direct and indirect methods, respectively. Sensitivity and specificity of indirect cyanmethaemoglobin method were 99.2 and 56.4 per cent, respectively. Using regression analysis, prediction equation was developed for indirect haemoglobin values. The present findings revealed that indirect cyanmethaemoglobin method overestimated the prevalence of anaemia as compared to the direct method. However, if a correction factor is applied, indirect method could be successfully used for estimating true haemoglobin level. More studies should be undertaken to establish agreement and correction factor between direct and indirect cyanmethaemoglobin methods.
Fast Fourier transform based direct integration algorithm for the linear canonical transform
NASA Astrophysics Data System (ADS)
Wang, Dayong; Liu, Changgeng; Wang, Yunxin; Zhao, Jie
2011-03-01
The linear canonical transform(LCT) is a parameterized linear integral transform, which is the general case of many well-known transforms such as the Fourier transform(FT), the fractional Fourier transform(FRT) and the Fresnel transform(FST). These integral transforms are of great importance in wave propagation problems because they are the solutions of the wave equation under a variety of circumstances. In optics, the LCT can be used to model paraxial free space propagation and other quadratic phase systems such as lens and graded-index media. A number of algorithms have been presented to fast compute the LCT. When they are used to compute the LCT, the sampling period in the transform domain is dependent on that in the signal domain. This drawback limits their applicability in some cases such as color digital holography. In this paper, a Fast-Fourier-Transform-based Direct Integration algorithm(FFT-DI) for the LCT is presented. The FFT-DI is a fast computational method of the Direct Integration(DI) for the LCT. It removes the dependency of the sampling period in the transform domain on that in the signal domain. Simulations and experimental results are presented to validate this idea.
Fast Fourier transform based direct integration algorithm for the linear canonical transform
NASA Astrophysics Data System (ADS)
Wang, Dayong; Liu, Changgeng; Wang, Yunxin; Zhao, Jie
2010-07-01
The linear canonical transform(LCT) is a parameterized linear integral transform, which is the general case of many well-known transforms such as the Fourier transform(FT), the fractional Fourier transform(FRT) and the Fresnel transform(FST). These integral transforms are of great importance in wave propagation problems because they are the solutions of the wave equation under a variety of circumstances. In optics, the LCT can be used to model paraxial free space propagation and other quadratic phase systems such as lens and graded-index media. A number of algorithms have been presented to fast compute the LCT. When they are used to compute the LCT, the sampling period in the transform domain is dependent on that in the signal domain. This drawback limits their applicability in some cases such as color digital holography. In this paper, a Fast-Fourier-Transform-based Direct Integration algorithm(FFT-DI) for the LCT is presented. The FFT-DI is a fast computational method of the Direct Integration(DI) for the LCT. It removes the dependency of the sampling period in the transform domain on that in the signal domain. Simulations and experimental results are presented to validate this idea.
Cell-directed integration into three-dimensional lipid-silica nanostructured matrices.
Harper, Jason C; Khripin, Constantine Y; Khirpin, Constantine Y; Carnes, Eric C; Ashley, Carlee E; Lopez, DeAnna M; Savage, Travis; Jones, Howland D T; Davis, Ryan W; Nunez, Dominique E; Brinker, Lina M; Kaehr, Bryan; Brozik, Susan M; Brinker, C Jeffrey
2010-10-26
We report a unique approach in which living cells direct their integration into 3D solid-state nanostructures. Yeast cells deposited on a weakly condensed lipid/silica thin film mesophase actively reconstruct the surface to create a fully 3D bio/nano interface, composed of localized lipid bilayers enveloped by a lipid/silica mesophase, through a self-catalyzed silica condensation process. Remarkably, this integration process selects exclusively for living cells over the corresponding apoptotic cells (those undergoing programmed cell death), via the development of a pH gradient, which catalyzes silica deposition and the formation of a coherent interface between the cell and surrounding silica matrix. Added long-chain lipids or auxiliary nanocomponents are localized within the pH gradient, allowing the development of complex active and accessible bio/nano interfaces not achievable by other synthetic methods. Overall, this approach provides the first demonstration of active cell-directed integration into a nominally solid-state three-dimensional architecture. It promises a new means to integrate "bio" with "nano" into platforms useful to study and manipulate cellular behavior at the individual cell level and to interface living organisms with electronics, photonics, and fluidics.
Integrative interventions for MSDs: nature, evidence, challenges & directions.
Cole, Donald C; Van Eerd, Dwayne; Bigelow, Philip; Rivilis, Irina
2006-09-01
When applied to workplace interventions, integrative may be seen in various ways, requiring elucidation. Identification of primary studies through systematic reviews, limited bibliographic literature searches, the Cochrane Occupational Health Field database on intervention studies, and authors' files. Focus was 2000 on. Categorization according to the Cochrane classes and lenses on integrative. Synthesis as narrative review. Examples of each lens on integrative were uncovered: biomechanical and psychosocial, multiple component, primary and secondary prevention, organizational, and system. Each contributed different understanding to the potential impacts on different knowledge, exposure, behavior, health and administrative outcomes. Considerable opportunities exist to expand the range of integrative interventions, particularly at the organizational and system levels, and incorporate a combination of knowledge transfer and exchange with intervention evaluation.
Multigrid method for integral equations and automatic programs
NASA Technical Reports Server (NTRS)
Lee, Hosae
1993-01-01
Several iterative algorithms based on multigrid methods are introduced for solving linear Fredholm integral equations of the second kind. Automatic programs based on these algorithms are introduced using Simpson's rule and the piecewise Gaussian rule for numerical integration.
A Modified Alternating Direction Method for Variational Inequality Problems
Han, D.
2002-07-01
The alternating direction method is an attractive method for solving large-scale variational inequality problems whenever the subproblems can be solved efficiently. However, the subproblems are still variational inequality problems, which are as structurally difficult to solve as the original one. To overcome this disadvantage, in this paper we propose a new alternating direction method for solving a class of nonlinear monotone variational inequality problems. In each iteration the method just makes an orthogonal projection to a simple set and some function evaluations. We report some preliminary computational results to illustrate the efficiency of the method.
Integration by differentiation: new proofs, methods and examples
NASA Astrophysics Data System (ADS)
Jia, Ding; Tang, Eugene; Kempf, Achim
2017-06-01
Recently, new methods were introduced which allow one to solve ordinary integrals by performing only derivatives. These studies were originally motivated by the difficulties of the quantum field theoretic path integral, and correspondingly, the results were derived by heuristic methods. Here, we give rigorous proofs for the methods to hold on fully specified function spaces. We then illustrate the efficacy of the new methods by applying them to the study of the surprising behavior of so-called Borwein integrals.
Calculation of transonic flows using an extended integral equation method
NASA Technical Reports Server (NTRS)
Nixon, D.
1976-01-01
An extended integral equation method for transonic flows is developed. In the extended integral equation method velocities in the flow field are calculated in addition to values on the aerofoil surface, in contrast with the less accurate 'standard' integral equation method in which only surface velocities are calculated. The results obtained for aerofoils in subcritical flow and in supercritical flow when shock waves are present compare satisfactorily with the results of recent finite difference methods.
Richman, Eric E.; Merzouk, Massine B.
2014-06-12
A Comparison of 2pi and 4pi Photometric Testing of Directional and Omnidirectional Sources in an Integrating Sphere. These data will help determine if differences in methods should be addresed in test methods specifically for LED products but applicable to other technologies as well
An Integral-Direct Linear-Scaling Second-Order Møller-Plesset Approach.
Nagy, Péter R; Samu, Gyula; Kállay, Mihály
2016-10-11
An integral-direct, iteration-free, linear-scaling, local second-order Møller-Plesset (MP2) approach is presented, which is also useful for spin-scaled MP2 calculations as well as for the efficient evaluation of the perturbative terms of double-hybrid density functionals. The method is based on a fragmentation approximation: the correlation contributions of the individual electron pairs are evaluated in domains constructed for the corresponding localized orbitals, and the correlation energies of distant electron pairs are computed with multipole expansions. The required electron repulsion integrals are calculated directly invoking the density fitting approximation; the storage of integrals and intermediates is avoided. The approach also utilizes natural auxiliary functions to reduce the size of the auxiliary basis of the domains and thereby the operation count and memory requirement. Our test calculations show that the approach recovers 99.9% of the canonical MP2 correlation energy and reproduces reaction energies with an average (maximum) error below 1 kJ/mol (4 kJ/mol). Our benchmark calculations demonstrate that the new method enables MP2 calculations for molecules with more than 2300 atoms and 26000 basis functions on a single processor.
A direct-inverse method for transonic and separated flows about airfoils
NASA Technical Reports Server (NTRS)
Carlson, K. D.
1985-01-01
A direct-inverse technique and computer program called TAMSEP that can be sued for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicing the flowfield about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.
A direct-inverse method for transonic and separated flows about airfoils
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1990-01-01
A direct-inverse technique and computer program called TAMSEP that can be used for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicting the flow field about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.
Direct Linear Transformation Method for Three-Dimensional Cinematography
ERIC Educational Resources Information Center
Shapiro, Robert
1978-01-01
The ability of Direct Linear Transformation Method for three-dimensional cinematography to locate points in space was shown to meet the accuracy requirements associated with research on human movement. (JD)
A study of direct moxibustion using mathematical methods.
Liu, Miao; Kauh, Sang Ken; Lim, Sabina
2012-01-01
Direct moxibustion is an important and widely used treatment method in traditional medical science. The use of a mathematical method to analyse direct moxibustion treatment is necessary and helpful in exploring the new direct moxibustion instruments and their standardisation. Thus, this paper aims to use a mathematical method to study direct moxibustion in skin to demonstrate a direct relationship between direct moxibustion and skin stimuli. In this paper, the transient thermal response of skin layers is analysed to study direct moxibustion using the data got from standardised method to measure the temperature of a burning moxa cone. Numerical simulations based on an appropriate finite element model are developed to predict the heat transfer, thermal damage and thermal stress distribution of barley moxa cones and jujube moxa cones in the skin tissue. The results are verified by the ancient literatures of traditional Chinese medicine and clinical application, and showed that mathematical method can be a good interface between moxa cone and skin tissue providing the numerical value basis for moxibustion.
An integrated modeling method for wind turbines
NASA Astrophysics Data System (ADS)
Fadaeinedjad, Roohollah
To study the interaction of the electrical, mechanical, and aerodynamic aspects of a wind turbine, a detailed model that considers all these aspects must be used. A drawback of many studies in the area of wind turbine simulation is that either a very simple mechanical model is used with a detailed electrical model, or vice versa. Hence the interactions between electrical and mechanical aspects of wind turbine operation are not accurately taken into account. In this research, it will be shown that a combination of different simulation packages, namely TurbSim, FAST, and Simulink can be used to model the aerodynamic, mechanical, and electrical aspects of a wind turbine in detail. In this thesis, after a review of some wind turbine concepts and software tools, a simulation structure is proposed for studying wind turbines that integrates the mechanical and electrical components of a wind energy conversion device. Based on the simulation structure, a comprehensive model for a three-bladed variable speed wind turbine with doubly-fed induction generator is developed. Using the model, the impact of a voltage sag on the wind turbine tower vibration is investigated under various operating conditions such as power system short circuit level, mechanical parameters, and wind turbine operating conditions. It is shown how an electrical disturbance can cause more sustainable tower vibrations under high speed and turbulent wind conditions, which may disrupt the operation of pitch control system. A similar simulation structure is used to model a two-bladed fixed speed wind turbine with an induction generator. An extension of the concept is introduced by adding a diesel generator system. The model is utilized to study the impact of the aeroelastic aspects of wind turbine (i.e. tower shadow, wind shears, yaw error, turbulence, and mechanical vibrations) on the power quality of a stand-alone wind-diesel system. Furthermore, an IEEE standard flickermeter model is implemented in a
Electron beam directed energy device and methods of using same
Retsky, Michael W.
2007-10-16
A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.
Pervasive genetic integration directs the evolution of human skull shape.
Martínez-Abadías, Neus; Esparza, Mireia; Sjøvold, Torstein; González-José, Rolando; Santos, Mauro; Hernández, Miquel; Klingenberg, Christian Peter
2012-04-01
It has long been unclear whether the different derived cranial traits of modern humans evolved independently in response to separate selection pressures or whether they resulted from the inherent morphological integration throughout the skull. In a novel approach to this issue, we combine evolutionary quantitative genetics and geometric morphometrics to analyze genetic and phenotypic integration in human skull shape. We measured human skulls in the ossuary of Hallstatt (Austria), which offer a unique opportunity because they are associated with genealogical data. Our results indicate pronounced covariation of traits throughout the skull. Separate simulations of selection for localized shape changes corresponding to some of the principal derived characters of modern human skulls produced outcomes that were similar to each other and involved a joint response in all of these traits. The data for both genetic and phenotypic shape variation were not consistent with the hypothesis that the face, cranial base, and cranial vault are completely independent modules but relatively strongly integrated structures. These results indicate pervasive integration in the human skull and suggest a reinterpretation of the selective scenario for human evolution where the origin of any one of the derived characters may have facilitated the evolution of the others. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Solution of elastoplastic torsion problem by boundary integral method
NASA Technical Reports Server (NTRS)
Mendelson, A.
1975-01-01
The boundary integral method was applied to the elastoplastic analysis of the torsion of prismatic bars, and the results are compared with those obtained by the finite difference method. Although fewer unknowns were used, very good accuracy was obtained with the boundary integral method. Both simply and multiply connected bodies can be handled with equal ease.
NASA Technical Reports Server (NTRS)
Nixon, D.
1978-01-01
The linear transonic perturbation integral equation previously derived for nonlifting airfoils is formulated for lifting cases. In order to treat shock wave motions, a strained coordinate system is used in which the shock location is invariant. The tangency boundary conditions are either formulated using the thin airfoil approximation or by using the analytic continuation concept. A direct numerical solution to this equation is derived in contrast to the iterative scheme initially used, and results of both lifting and nonlifting examples indicate that the method is satisfactory.
Method for calculating directivity index of a directional microphone in a hearing aid on a manikin
NASA Astrophysics Data System (ADS)
Dittberner, Andrew; Bentler, Ruth
2005-09-01
A method for computing a directivity index (DI) on a manikin for directional microphones in hearing aids is proposed and investigated. Test devices included first- and second-order directional microphones in hearing aids. Signal presentation involved a single noise source rotated completely around the directional microphone, in free field and on a manikin, at a defined radius. The area covered was equivalent to the approximate surface area of a sphere. It was anticipated that an equal angular resolution of 10 deg (elevation and azimuth) would effectively estimate the DI of first-, second-, and higher-order directional microphone systems located in a hearing aid on a manikin. A total of 450 spatially varied presentation points was analyzed, each weighted in reference to direction of arrival on the directional microphone. The absolute difference between the Directivity Index derived from the modified method proposed in this investigation and the conventionally derived Directivity Index on a manikin were as large as 3.8 dB in the higher frequencies, depending on the device under test. The magnitude of these differences was dependent on microphone location. In other words, the further the microphone was placed into the ear of the manikin, the larger the absolute difference.
Multiple methods integration for structural mechanics analysis and design
NASA Technical Reports Server (NTRS)
Housner, J. M.; Aminpour, M. A.
1991-01-01
A new research area of multiple methods integration is proposed for joining diverse methods of structural mechanics analysis which interact with one another. Three categories of multiple methods are defined: those in which a physical interface are well defined; those in which a physical interface is not well-defined, but selected; and those in which the interface is a mathematical transformation. Two fundamental integration procedures are presented that can be extended to integrate various methods (e.g., finite elements, Rayleigh Ritz, Galerkin, and integral methods) with one another. Since the finite element method will likely be the major method to be integrated, its enhanced robustness under element distortion is also examined and a new robust shell element is demonstrated.
New directions for Artificial Intelligence (AI) methods in optimum design
NASA Technical Reports Server (NTRS)
Hajela, Prabhat
1989-01-01
Developments and applications of artificial intelligence (AI) methods in the design of structural systems is reviewed. Principal shortcomings in the current approach are emphasized, and the need for some degree of formalism in the development environment for such design tools is underscored. Emphasis is placed on efforts to integrate algorithmic computations in expert systems.
Couple Beads: An integrated method of natural family planning
Mulcaire-Jones, George; Fehring, Richard J.; Bradshaw, Megan; Brower, Karen; Lubega, Gonzaga; Lubega, Paskazia
2016-01-01
Various fertility indicators are used by natural family planning methods to identify the fertile and infertile phases of a woman's menstrual cycle: mucus observations, cycle-day probabilities, basal body temperature readings, and hormonal measures of LH and estrogen. Simplified NFP methods generally make use of a single fertility indicator such as cycle-day probabilities (Standard Days Method) or mucus observations (Billings Ovulation Method). The Couple Bead Method integrates the two simplest fertility indicators, cycle-day probabilities and mucus observations, expanding its applicability to all women, regardless of cycle regularity and length. In determining cycle-day probabilities, the Couple Bead Method relies on a new data set from ultrasound-derived determinants of gestational age that more directly define the day of conception and the fertile window. By using a visual-based system of inexpensive colored beads, the Couple Bead Method can be used by couples of all educational and income levels. Lay Summary: Natural family planning methods provide education in regard to the signs of a woman's body which indicate if she is possibly fertile or not. Two important signs are the day of her menstrual cycle and her observations of bleeding and cervical mucus or dryness. The Couple Bead Method teaches a couple how to observe these signs and chart them with a system of colored beads. The Couple Bead Method can be used by women with regular or irregular cycles. The bead sets are inexpensive and consist of a length of plastic cord, colored “pony beads” and safety pins. PMID:27833183
Integrated navigation method based on inertial navigation system and Lidar
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyue; Shi, Haitao; Pan, Jianye; Zhang, Chunxi
2016-04-01
An integrated navigation method based on the inertial navigational system (INS) and Lidar was proposed for land navigation. Compared with the traditional integrated navigational method and dead reckoning (DR) method, the influence of the inertial measurement unit (IMU) scale factor and misalignment was considered in the new method. First, the influence of the IMU scale factor and misalignment on navigation accuracy was analyzed. Based on the analysis, the integrated system error model of INS and Lidar was established, in which the IMU scale factor and misalignment error states were included. Then the observability of IMU error states was analyzed. According to the results of the observability analysis, the integrated system was optimized. Finally, numerical simulation and a vehicle test were carried out to validate the availability and utility of the proposed INS/Lidar integrated navigational method. Compared with the test result of a traditional integrated navigation method and DR method, the proposed integrated navigational method could result in a higher navigation precision. Consequently, the IMU scale factor and misalignment error were effectively compensated by the proposed method and the new integrated navigational method is valid.
An Integrative Conceptual Framework of Disability: New Directions for Research.
ERIC Educational Resources Information Center
Tate, Denise G.; Pledger, Constance
2003-01-01
Examines various disability paradigms across time, assessing the relative contribution of the socioecological perspective in guiding research designed to improve the lives of people with disabilities. Recommends new research directions that include a focus on life span issues, biomedicine, biotechnology, the efficacy and effectiveness of current…
Direct Assessment of IS Student Learning Using an Integrative Exercise
ERIC Educational Resources Information Center
McKell, Lynn J.; Hansen, Gary; Albrecht, Conan
2008-01-01
The assessment of learning objectives has become an important element in the improvement and accreditation of academic programs, including information systems (IS). Indirect assessments have been common in these endeavors, but direct assessments have been sparse. In the first semester at Brigham Young University (BYU), IS students take four…
Direct Assessment of IS Student Learning Using an Integrative Exercise
ERIC Educational Resources Information Center
McKell, Lynn J.; Hansen, Gary; Albrecht, Conan
2008-01-01
The assessment of learning objectives has become an important element in the improvement and accreditation of academic programs, including information systems (IS). Indirect assessments have been common in these endeavors, but direct assessments have been sparse. In the first semester at Brigham Young University (BYU), IS students take four…
Psychiatric Advance Directives and Social Workers: An Integrative Review
ERIC Educational Resources Information Center
Van Dorn, Richard A.; Scheyett, Anna; Swanson, Jeffrey W.; Swartz, Marvin S.
2010-01-01
Psychiatric advance directives (PADs) are legal documents that allow individuals to express their wishes for future psychiatric care and to authorize a legally appointed proxy to make decisions on their behalf during incapacitating crises. PADs are viewed as an alternative to the coercive interventions that sometimes accompany mental health crises…
Comparison of tissue/disease specific integrated networks using directed graphlet signatures.
Sonmez, Arzu Burcak; Can, Tolga
2017-03-22
Analysis of integrated genome-scale networks is a challenging problem due to heterogeneity of high-throughput data. There are several topological measures, such as graphlet counts, for characterization of biological networks. In this paper, we present methods for counting small sub-graph patterns in integrated genome-scale networks which are modeled as labeled multidigraphs. We have obtained physical, regulatory, and metabolic interactions between H. sapiens proteins from the Pathway Commons database. The integrated network is filtered for tissue/disease specific proteins by using a large-scale human transcriptional profiling study, resulting in several tissue and disease specific sub-networks. We have applied and extended the idea of graphlet counting in undirected protein-protein interaction (PPI) networks to directed multi-labeled networks and represented each network as a vector of graphlet counts. Graphlet counts are assessed for statistical significance by comparison against a set of randomized networks. We present our results on analysis of differential graphlets between different conditions and on the utility of graphlet count vectors for clustering multiple condition specific networks. Our results show that there are numerous statistically significant graphlets in integrated biological networks and the graphlet signature vector can be used as an effective representation of a multi-labeled network for clustering and systems level analysis of tissue/disease specific networks.
An equivalent domain integral method for three-dimensional mixed-mode fracture problems
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Raju, I. S.
1991-01-01
A general formulation of the equivalent domain integral (EDI) method for mixed mode fracture problems in cracked solids is presented. The method is discussed in the context of a 3-D finite element analysis. The J integral consists of two parts: the volume integral of the crack front potential over a torus enclosing the crack front and the crack surface integral due to the crack front potential plus the crack face loading. In mixed mode crack problems the total J integral is split into J sub I, J sub II, and J sub III representing the severity of the crack front in three modes of deformations. The direct and decomposition methods are used to separate the modes. These two methods were applied to several mixed mode fracture problems, were analyzed, and results were found to agree well with those available in the literature. The method lends itself to be used as a post-processing subroutine in a general purpose finite element program.
An equivalent domain integral method for three-dimensional mixed-mode fracture problems
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Raju, I. S.
1992-01-01
A general formulation of the equivalent domain integral (EDI) method for mixed mode fracture problems in cracked solids is presented. The method is discussed in the context of a 3-D finite element analysis. The J integral consists of two parts: the volume integral of the crack front potential over a torus enclosing the crack front and the crack surface integral due to the crack front potential plus the crack face loading. In mixed mode crack problems the total J integral is split into J sub I, J sub II, and J sub III representing the severity of the crack front in three modes of deformations. The direct and decomposition methods are used to separate the modes. These two methods were applied to several mixed mode fracture problems, were analyzed, and results were found to agree well with those available in the literature. The method lends itself to be used as a post-processing subroutine in a general purpose finite element program.
An equivalent domain integral method for three-dimensional mixed-mode fracture problems
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Raju, I. S.
1992-01-01
A general formulation of the equivalent domain integral (EDI) method for mixed mode fracture problems in cracked solids is presented. The method is discussed in the context of a 3-D finite element analysis. The J integral consists of two parts: the volume integral of the crack front potential over a torus enclosing the crack front and the crack surface integral due to the crack front potential plus the crack face loading. In mixed mode crack problems the total J integral is split into J sub I, J sub II, and J sub III representing the severity of the crack front in three modes of deformations. The direct and decomposition methods are used to separate the modes. These two methods were applied to several mixed mode fracture problems, were analyzed, and results were found to agree well with those available in the literature. The method lends itself to be used as a post-processing subroutine in a general purpose finite element program.
Wang, Pengfei; Hatta, Agus Muhamad; Zhao, Haoyu; Zheng, Jie; Farrell, Gerald; Brambilla, Gilberto
2015-01-01
A ratiometric wavelength measurement based on a Silicon-on-Insulator (SOI) integrated device is proposed and designed, which consists of directional couplers acting as two edge filters with opposite spectral responses. The optimal separation distance between two parallel silicon waveguides and the interaction length of the directional coupler are designed to meet the desired spectral response by using local supermodes. The wavelength discrimination ability of the designed ratiometric structure is demonstrated by a beam propagation method numerically and then is verified experimentally. The experimental results have shown a general agreement with the theoretical models. The ratiometric wavelength system demonstrates a resolution of better than 50 pm at a wavelength around 1550 nm with ease of assembly and calibration. PMID:26343668
NASA Astrophysics Data System (ADS)
Wu, Yaw-Dong; Shih, Tien-Tsorng; Lee, Jian-Jang
2009-11-01
In this paper, we proposed the design of directional coupler integrated with ring resonator based on two-dimensional photonic crystals (2D PCs) to develop a triplexer filter. It can be widely used as the fiber access network element for multiplexer-demultiplexer wavelength selective in fiber-to-the-home (FTTH) communication systems. The directional coupler is chosen to separate the wavelengths of 1490nm and 1310nm. The ring resonator separates the wavelength of 1550nm. The transmission efficiency is larger than 90%. Besides, the total size of propose triplexer is only 19μm×12μm. We present simulation results using the finite-difference time-domain (FDTD) method for the proposed structure.
Bi-directional evolutionary level set method for topology optimization
NASA Astrophysics Data System (ADS)
Zhu, Benliang; Zhang, Xianmin; Fatikow, Sergej; Wang, Nianfeng
2015-03-01
A bi-directional evolutionary level set method for solving topology optimization problems is presented in this article. The proposed method has three main advantages over the standard level set method. First, new holes can be automatically generated in the design domain during the optimization process. Second, the dependency of the obtained optimized configurations upon the initial configurations is eliminated. Optimized configurations can be obtained even being started from a minimum possible initial guess. Third, the method can be easily implemented and is computationally more efficient. The validity of the proposed method is tested on the mean compliance minimization problem and the compliant mechanisms topology optimization problem.
Accelerometer method and apparatus for integral display and control functions
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1992-01-01
Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily
Accelerometer method and apparatus for integral display and control functions
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1992-06-01
Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily
Apparatus and method for a light direction sensor
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
2011-01-01
The present invention provides a light direction sensor for determining the direction of a light source. The system includes an image sensor; a spacer attached to the image sensor, and a pattern mask attached to said spacer. The pattern mask has a slit pattern that as light passes through the slit pattern it casts a diffraction pattern onto the image sensor. The method operates by receiving a beam of light onto a patterned mask, wherein the patterned mask as a plurality of a slit segments. Then, diffusing the beam of light onto an image sensor and determining the direction of the light source.
Indium phosphide nanowires integrated directly on carbon fibers
NASA Astrophysics Data System (ADS)
Lohn, Andrew J.; Longson, Timothy J.; Kobayashi, Nobuhiko P.
2011-10-01
We have demonstrated the growth of a group III-V semiconductor binary alloy, indium phosphide (InP), directly on carbon fibers thereby enabling a union of semiconductor and structural materials. Carbon fibers were prepared by electrospinning solutions of polyacrilonitrile (PAN) and dimethylformamide (DMF) followed by carbonization at 750 °C in inert atmosphere. Gold nanoparticles dispersed on the fibers catalyzed nanowire growth by metal organic chemical vapor deposition. X-ray diffraction suggests that the nanowires appear to be epitaxially grown along the (110) direction. Geometrical parameters have been determined by scanning electron microscopy and transmission electron microscopy and elemental analysis has been carried out using energy dispersive spectroscopy. The nanowires grown from carbon fibers are composed of an amorphous shell and crystalline core which alternates at high spatial frequency.mountai
Integrated GNSS Attitude Determination and Positioning for Direct Geo-Referencing
Nadarajah, Nandakumaran; Paffenholz, Jens-André; Teunissen, Peter J. G.
2014-01-01
Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS navigation system to provide estimates of the position and attitude (orientation) of a 3D laser scanner. The proposed multi-sensor system (MSS) consists of multiple GNSS antennas rigidly mounted on the frame of a rotating laser scanner and a reference GNSS station with known coordinates. Precise GNSS navigation requires the resolution of the carrier phase ambiguities. The proposed method uses the multivariate constrained integer least-squares (MC-LAMBDA) method for the estimation of rotating frame ambiguities and attitude angles. MC-LAMBDA makes use of the known antenna geometry to strengthen the underlying attitude model and, hence, to enhance the reliability of rotating frame ambiguity resolution and attitude determination. The reliable estimation of rotating frame ambiguities is consequently utilized to enhance the relative positioning of the rotating frame with respect to the reference station. This integrated (array-aided) method improves ambiguity resolution, as well as positioning accuracy between the rotating frame and the reference station. Numerical analyses of GNSS data from a real-data campaign confirm the improved performance of the proposed method over the existing method. In particular, the integrated method yields reliable ambiguity resolution and reduces position standard deviation by a factor of about 0.8, matching the theoretical gain of 3/4 for two antennas on the rotating frame and a single antenna at the reference station. PMID:25036330
Integrated GNSS attitude determination and positioning for direct geo-referencing.
Nadarajah, Nandakumaran; Paffenholz, Jens-André; Teunissen, Peter J G
2014-07-17
Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS navigation system to provide estimates of the position and attitude (orientation) of a 3D laser scanner. The proposed multi-sensor system (MSS) consists of multiple GNSS antennas rigidly mounted on the frame of a rotating laser scanner and a reference GNSS station with known coordinates. Precise GNSS navigation requires the resolution of the carrier phase ambiguities. The proposed method uses the multivariate constrained integer least-squares (MC-LAMBDA) method for the estimation of rotating frame ambiguities and attitude angles. MC-LAMBDA makes use of the known antenna geometry to strengthen the underlying attitude model and, hence, to enhance the reliability of rotating frame ambiguity resolution and attitude determination. The reliable estimation of rotating frame ambiguities is consequently utilized to enhance the relative positioning of the rotating frame with respect to the reference station. This integrated (array-aided) method improves ambiguity resolution, as well as positioning accuracy between the rotating frame and the reference station. Numerical analyses of GNSS data from a real-data campaign confirm the improved performance of the proposed method over the existing method. In particular, the integrated method yields reliable ambiguity resolution and reduces position standard deviation by a factor of about 0:8, matching the theoretical gain of √ 3/4 for two antennas on the rotating frame and a single antenna at the reference station.
A conjugate gradient method with descent direction for unconstrained optimization
NASA Astrophysics Data System (ADS)
Yuan, Gonglin; Lu, Xiwen; Wei, Zengxin
2009-11-01
A modified conjugate gradient method is presented for solving unconstrained optimization problems, which possesses the following properties: (i) The sufficient descent property is satisfied without any line search; (ii) The search direction will be in a trust region automatically; (iii) The Zoutendijk condition holds for the Wolfe-Powell line search technique; (iv) This method inherits an important property of the well-known Polak-Ribière-Polyak (PRP) method: the tendency to turn towards the steepest descent direction if a small step is generated away from the solution, preventing a sequence of tiny steps from happening. The global convergence and the linearly convergent rate of the given method are established. Numerical results show that this method is interesting.
NASA Astrophysics Data System (ADS)
Choudhury, A. Ghose; Guha, Partha; Khanra, Barun
2009-10-01
The Darboux integrability method is particularly useful to determine first integrals of nonplanar autonomous systems of ordinary differential equations, whose associated vector fields are polynomials. In particular, we obtain first integrals for a variant of the generalized Raychaudhuri equation, which has appeared in string inspired modern cosmology.
Alternating direction methods for latent variable gaussian graphical model selection.
Ma, Shiqian; Xue, Lingzhou; Zou, Hui
2013-08-01
Chandrasekaran, Parrilo, and Willsky (2012) proposed a convex optimization problem for graphical model selection in the presence of unobserved variables. This convex optimization problem aims to estimate an inverse covariance matrix that can be decomposed into a sparse matrix minus a low-rank matrix from sample data. Solving this convex optimization problem is very challenging, especially for large problems. In this letter, we propose two alternating direction methods for solving this problem. The first method is to apply the classic alternating direction method of multipliers to solve the problem as a consensus problem. The second method is a proximal gradient-based alternating-direction method of multipliers. Our methods take advantage of the special structure of the problem and thus can solve large problems very efficiently. A global convergence result is established for the proposed methods. Numerical results on both synthetic data and gene expression data show that our methods usually solve problems with 1 million variables in 1 to 2 minutes and are usually 5 to 35 times faster than a state-of-the-art Newton-CG proximal point algorithm.
A three-dimensional equivalent domain integral method for cracked solids
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Raju, I. S.
1991-01-01
Three-dimensional FEM analysis is presently undertaken via the general formulation of the equivalent-domain integral method for mixed-mode fracture problems in general anisotropic and nonlinear materials. In mixed-mode integrals, the total J-integral is split into three separate modes of fracture; direct and decomposition methods are effective in this separation of the modes, as presently demonstrated by their application to several pure and mixed-mode fracture problems. The results are found to agree well with those reported in the literature, and suggest the usefulness of the method as a FEM-program postprocessing subroutines.
A three-dimensional equivalent domain integral method for cracked solids
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Raju, I. S.
1991-01-01
Three-dimensional FEM analysis is presently undertaken via the general formulation of the equivalent-domain integral method for mixed-mode fracture problems in general anisotropic and nonlinear materials. In mixed-mode integrals, the total J-integral is split into three separate modes of fracture; direct and decomposition methods are effective in this separation of the modes, as presently demonstrated by their application to several pure and mixed-mode fracture problems. The results are found to agree well with those reported in the literature, and suggest the usefulness of the method as a FEM-program postprocessing subroutines.
ERIC Educational Resources Information Center
Huerta, Juan Carlos; Sperry, Rita
2013-01-01
This article outlines a systematic and manageable method for learning community program assessment based on collecting empirical direct measures of student learning. Developed at Texas A&M University--Corpus Christi where all full-time, first-year students are in learning communities, the approach ties integrative assignment design to a rubric…
Thermally integrated staged methanol reformer and method
Skala, Glenn William; Hart-Predmore, David James; Pettit, William Henry; Borup, Rodney Lynn
2001-01-01
A thermally integrated two-stage methanol reformer including a heat exchanger and first and second reactors colocated in a common housing in which a gaseous heat transfer medium circulates to carry heat from the heat exchanger into the reactors. The heat transfer medium comprises principally hydrogen, carbon dioxide, methanol vapor and water vapor formed in a first stage reforming reaction. A small portion of the circulating heat transfer medium is drawn off and reacted in a second stage reforming reaction which substantially completes the reaction of the methanol and water remaining in the drawn-off portion. Preferably, a PrOx reactor will be included in the housing upstream of the heat exchanger to supplement the heat provided by the heat exchanger.
Application of two direct runoff prediction methods in Puerto Rico
Sepulveda, N.
1997-01-01
Two methods for predicting direct runoff from rainfall data were applied to several basins and the resulting hydrographs compared to measured values. The first method uses a geomorphology-based unit hydrograph to predict direct runoff through its convolution with the excess rainfall hyetograph. The second method shows how the resulting hydraulic routing flow equation from a kinematic wave approximation is solved using a spectral method based on the matrix representation of the spatial derivative with Chebyshev collocation and a fourth-order Runge-Kutta time discretization scheme. The calibrated Green-Ampt (GA) infiltration parameters are obtained by minimizing the sum, over several rainfall events, of absolute differences between the total excess rainfall volume computed from the GA equations and the total direct runoff volume computed from a hydrograph separation technique. The improvement made in predicting direct runoff using a geomorphology-based unit hydrograph with the ephemeral and perennial stream network instead of the strictly perennial stream network is negligible. The hydraulic routing scheme presented here is highly accurate in predicting the magnitude and time of the hydrograph peak although the much faster unit hydrograph method also yields reasonable results.
The Integrated Landscape Modeling partnership - Current status and future directions
Mushet, David M.; Scherff, Eric J.
2016-01-28
The Integrated Landscape Modeling (ILM) partnership is an effort by the U.S. Geological Survey (USGS) and U.S. Department of Agriculture (USDA) to identify, evaluate, and develop models to quantify services derived from ecosystems, with a focus on wetland ecosystems and conservation effects. The ILM partnership uses the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) modeling platform to facilitate regional quantifications of ecosystem services under various scenarios of land-cover change that are representative of differing conservation program and practice implementation scenarios. To date, the ILM InVEST partnership has resulted in capabilities to quantify carbon stores, amphibian habitat, plant-community diversity, and pollination services. Work to include waterfowl and grassland bird habitat quality is in progress. Initial InVEST modeling has been focused on the Prairie Pothole Region (PPR) of the United States; future efforts might encompass other regions as data availability and knowledge increase as to how functions affecting ecosystem services differ among regions.The ILM partnership is also developing the capability for field-scale process-based modeling of depressional wetland ecosystems using the Agricultural Policy/Environmental Extender (APEX) model. Progress was made towards the development of techniques to use the APEX model for closed-basin depressional wetlands of the PPR, in addition to the open systems that the model was originally designed to simulate. The ILM partnership has matured to the stage where effects of conservation programs and practices on multiple ecosystem services can now be simulated in selected areas. Future work might include the continued development of modeling capabilities, as well as development and evaluation of differing conservation program and practice scenarios of interest to partner agencies including the USDA’s Farm Service Agency (FSA) and Natural Resources Conservation Service (NRCS). When
Ionized Gaseous Nebulae Abundance Determination from the Direct Method
NASA Astrophysics Data System (ADS)
Pérez-Montero, Enrique
2017-04-01
This tutorial explains the procedure used to analyze an optical emission-line spectrum produced by a nebula ionized by massive star formation. Particularly, the methodology used to derive physical properties, such as electron density and temperature, and the ionic abundances of the most representative elements whose emission lines are present in the optical spectrum is described. The main focus is on the direct method, which is based on the measurement of the electron temperature to derive the abundances, given that the ionization and thermal equilibrium of the ionized gas is dominated by the metallicity. The ionization correction factors used to obtain total abundances from the abundances of some of their ions are also given. Finally, some strong-line methods to derive abundances are described. Such methods are used when no estimation of the temperature can be derived, but which can be consistent with the direct method if they are empirically calibrated.
ERIC Educational Resources Information Center
Cui, Zhongmin; Kolen, Michael J.
2009-01-01
This article considers two new smoothing methods in equipercentile equating, the cubic B-spline presmoothing method and the direct presmoothing method. Using a simulation study, these two methods are compared with established methods, the beta-4 method, the polynomial loglinear method, and the cubic spline postsmoothing method, under three sample…
ERIC Educational Resources Information Center
Cui, Zhongmin; Kolen, Michael J.
2009-01-01
This article considers two new smoothing methods in equipercentile equating, the cubic B-spline presmoothing method and the direct presmoothing method. Using a simulation study, these two methods are compared with established methods, the beta-4 method, the polynomial loglinear method, and the cubic spline postsmoothing method, under three sample…
Sleep can eliminate list-method directed forgetting.
Abel, Magdalena; Bäuml, Karl-Heinz T
2013-05-01
Recent work suggests a link between sleep and memory consolidation, indicating that sleep in comparison to wakefulness stabilizes memories. However, relatively little is known about how sleep affects forgetting. Here we examined whether sleep influences directed forgetting, the finding that people can intentionally forget obsolete memories when cued to do so. We applied the list-method directed forgetting task and assessed memory performance after 3 delay intervals. Directed forgetting was present after a short 20-min delay and after a 12-hr delay filled with diurnal wakefulness; in contrast, the forgetting was absent after a 12-hr delay that included regular nocturnal sleep. Successful directed forgetting after a delay thus can depend on whether sleep or wakefulness follows upon encoding: When wakefulness follows upon encoding, the forgetting can be successful; when sleep follows upon encoding, no forgetting may arise. Connections of the results to recent studies on the interplay between forgetting and sleep are discussed.
Radiation direction control by optical slot antenna integrated with plasmonic waveguide
NASA Astrophysics Data System (ADS)
Park, Yeonsang; Kim, Jineun; Roh, Young-Geun; Lee, Chang-Won
2016-04-01
We present an optical slot antenna integrated with a metal-dielectric-metal (MIM) plasmonic waveguide. By integrating optical slot antenna on top metal layer of MIM waveguide, we can couple the plasmon guide mode into the feed antenna directly. The resonantly excited slot antenna works as a magnetic dipole and then radiates in dipole-like far-field pattern. By adding an auxiliary groove structure along with the slot antenna, the radiation can be directed into the direction where the structure determined. The demonstrated optical slot antenna integrated with a plasmonic waveguide can be used as a "plasmonic via" in plasmonic nanocircuits.
Direct Time Integration Methods in Nonlinear Structural Dynamics
1978-08-01
three main sections. An introductory- section provides an overview of the transient response analysis problem. A section on computational aspects... analysis were hampered by three factors: (1) Lack of reliable, computationally-oriented formulations; (2) High computational costs; (3) Unfamiliarity...this effect are reached. 3.6 Areas for Future Research The increasing importance of dynamic analysis in design and verification of complex structures
Root microbiota drive direct integration of phosphate stress and immunity
Castrillo, Gabriel; Lima Teixeira, Paulo José Pereira; Paredes, Sur Herrera; Law, Theresa F.; de Lorenzo, Laura; Feltcher, Meghan E.; Finkel, Omri M.; Breakfield, Natalie W.; Mieczkowski, Piotr; Jones, Corbin D.; Paz-Ares, Javier; Dangl, Jeffery L.
2017-01-01
Plants live in biogeochemically diverse soils that harbor extraordinarily diverse microbiota. Plant organs associate intimately with a subset of these microbes; this community’s structure can be altered by soil nutrient content. Plant-associated microbes can compete with the plant and with each other for nutrients; they can also provide traits that increase plant productivity. It is unknown how the plant immune system coordinates microbial recognition with nutritional cues during microbiome assembly. We establish that a genetic network controlling phosphate stress response influences root microbiome community structure, even under non-stress phosphate conditions. We define a molecular mechanism regulating coordination between nutrition and defense in the presence of a synthetic bacterial community. We demonstrate that the master transcriptional regulators of phosphate stress response in Arabidopsis also directly repress defense, consistent with plant prioritization of nutritional stress over defense. Our work will impact efforts to define and deploy useful microbes to enhance plant performance. PMID:28297714
Direct current uninterruptible power supply method and system
Sinha, Gautam
2003-12-02
A method and system are described for providing a direct current (DC) uninterruptible power supply with the method including, for example: continuously supplying fuel to a turbine; converting mechanical power from the turbine into alternating current (AC) electrical power; converting the AC electrical power to DC power within a predetermined voltage level range; supplying the DC power to a load; and maintaining a DC load voltage within the predetermined voltage level range by adjusting the amount of fuel supplied to the turbine.
Method to directly radiolabel antibodies for diagnostic imaging and therapy
Thakur, M.L.
1994-05-03
The invention is a novel method and kit for directly radiolabeling proteins such as antibodies or antibody fragments for diagnostic and therapeutic purposes. The method comprises incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein. A kit is also provided wherein the protein and/or reducing agents may be in lyophilized form. No Drawings
Advances and future directions of research on spectral methods
NASA Technical Reports Server (NTRS)
Patera, A. T.
1986-01-01
Recent advances in spectral methods are briefly reviewed and characterized with respect to their convergence and computational complexity. Classical finite element and spectral approaches are then compared, and spectral element (or p-type finite element) approximations are introduced. The method is applied to the full Navier-Stokes equations, and examples are given of the application of the technique to several transitional flows. Future directions of research in the field are outlined.
Advances and future directions of research on spectral methods
NASA Technical Reports Server (NTRS)
Patera, A. T.
1986-01-01
Recent advances in spectral methods are briefly reviewed and characterized with respect to their convergence and computational complexity. Classical finite element and spectral approaches are then compared, and spectral element (or p-type finite element) approximations are introduced. The method is applied to the full Navier-Stokes equations, and examples are given of the application of the technique to several transitional flows. Future directions of research in the field are outlined.
Method to directly radiolabel antibodies for diagnostic imaging and therapy
Thakur, Mathew L.
1991-01-01
The invention is a novel method and kit for directly radiolabeling proteins such as antibodies or antibody fragments for diagnostic and therapeutic purposes. The method comprises incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein. A kit is also provided wherein the protein and/or reducing agents may be in lyophilized form.
Method to directly radiolabel antibodies for diagnostic imaging and therapy
Thakur, Mathew L.
1994-01-01
The invention is a novel method and kit for directly radiolabeling proteins such as antibodies or antibody fragments for diagnostic and therapeutic purposes. The method comprises incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein. A kit is also provided wherein the protein and/or reducing agents may be in lyophilized form.
Integrated molecular mechanism directing nucleosome reorganization by human FACT.
Tsunaka, Yasuo; Fujiwara, Yoshie; Oyama, Takuji; Hirose, Susumu; Morikawa, Kosuke
2016-03-15
Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT-histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3-H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid-H2A steric collision on the H2A-docking surface of the H3-H4 tetramer within the nucleosome induces H2A-H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone.
Integrated molecular mechanism directing nucleosome reorganization by human FACT
Tsunaka, Yasuo; Fujiwara, Yoshie; Oyama, Takuji; Hirose, Susumu; Morikawa, Kosuke
2016-01-01
Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT–histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3–H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid–H2A steric collision on the H2A-docking surface of the H3–H4 tetramer within the nucleosome induces H2A–H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone. PMID:26966247
A Sequential Quadratically Constrained Quadratic Programming Method of Feasible Directions
Jian Jinbao Hu Qingjie; Tang Chunming; Zheng Haiyan
2007-12-15
In this paper, a sequential quadratically constrained quadratic programming method of feasible directions is proposed for the optimization problems with nonlinear inequality constraints. At each iteration of the proposed algorithm, a feasible direction of descent is obtained by solving only one subproblem which consist of a convex quadratic objective function and simple quadratic inequality constraints without the second derivatives of the functions of the discussed problems, and such a subproblem can be formulated as a second-order cone programming which can be solved by interior point methods. To overcome the Maratos effect, an efficient higher-order correction direction is obtained by only one explicit computation formula. The algorithm is proved to be globally convergent and superlinearly convergent under some mild conditions without the strict complementarity. Finally, some preliminary numerical results are reported.
High-Precision Direct Method for the Radiative Transfer Problems
NASA Astrophysics Data System (ADS)
Zhang, Yan; Hou, Su-Qing; Yang, Ping; Wu, Kai-Su
2013-06-01
It is the main aim of this paper to investigate the numerical methods of the radiative transfer equation. Using the five-point formula to approximate the differential part and the Simpson formula to substitute for integral part respectively, a new high-precision numerical scheme, which has 4-order local truncation error, is obtained. Subsequently, a numerical example for radiative transfer equation is carried out, and the calculation results show that the new numerical scheme is more accurate.
Higher order time integration methods for two-phase flow
NASA Astrophysics Data System (ADS)
Kees, Christopher E.; Miller, Cass T.
Time integration methods that adapt in both the order of approximation and time step have been shown to provide efficient solutions to Richards' equation. In this work, we extend the same method of lines approach to solve a set of two-phase flow formulations and address some mass conservation issues from the previous work. We analyze these formulations and the nonlinear systems that result from applying the integration methods, placing particular emphasis on their index, range of applicability, and mass conservation characteristics. We conduct numerical experiments to study the behavior of the numerical models for three test problems. We demonstrate that higher order integration in time is more efficient than standard low-order methods for a variety of practical grids and integration tolerances, that the adaptive scheme successfully varies the step size in response to changing conditions, and that mass balance can be maintained efficiently using variable-order integration and an appropriately chosen numerical model formulation.
Treatment of domain integrals in boundary element methods
Nintcheu Fata, Sylvain
2012-01-01
A systematic and rigorous technique to calculate domain integrals without a volume-fitted mesh has been developed and validated in the context of a boundary element approximation. In the proposed approach, a domain integral involving a continuous or weakly-singular integrand is first converted into a surface integral by means of straight-path integrals that intersect the underlying domain. Then, the resulting surface integral is carried out either via analytic integration over boundary elements or by use of standard quadrature rules. This domain-to-boundary integral transformation is derived from an extension of the fundamental theorem of calculus to higher dimension, and the divergence theorem. In establishing the method, it is shown that the higher-dimensional version of the first fundamental theorem of calculus corresponds to the well-known Poincare lemma. The proposed technique can be employed to evaluate integrals defined over simply- or multiply-connected domains with Lipschitz boundaries which are embedded in an Euclidean space of arbitrary but finite dimension. Combined with the singular treatment of surface integrals that is widely available in the literature, this approach can also be utilized to effectively deal with boundary-value problems involving non-homogeneous source terms by way of a collocation or a Galerkin boundary integral equation method using only the prescribed surface discretization. Sample problems associated with the three-dimensional Poisson equation and featuring the Newton potential are successfully solved by a constant element collocation method to validate this study.
Direct Solve of Electrically Large Integral Equations for Problem Sizes to 1M Unknowns
NASA Technical Reports Server (NTRS)
Shaeffer, John
2008-01-01
Matrix methods for solving integral equations via direct solve LU factorization are presently limited to weeks to months of very expensive supercomputer time for problems sizes of several hundred thousand unknowns. This report presents matrix LU factor solutions for electromagnetic scattering problems for problem sizes to one million unknowns with thousands of right hand sides that run in mere days on PC level hardware. This EM solution is accomplished by utilizing the numerical low rank nature of spatially blocked unknowns using the Adaptive Cross Approximation for compressing the rank deficient blocks of the system Z matrix, the L and U factors, the right hand side forcing function and the final current solution. This compressed matrix solution is applied to a frequency domain EM solution of Maxwell's equations using standard Method of Moments approach. Compressed matrix storage and operations count leads to orders of magnitude reduction in memory and run time.
One directional polarized neutron reflectometry with optimized reference layer method
Masoudi, S. Farhad; Jahromi, Saeed S.
2012-09-01
In the past decade, several neutron reflectometry methods for determining the modulus and phase of the complex reflection coefficient of an unknown multilayer thin film have been worked out among which the method of variation of surroundings and reference layers are of highest interest. These methods were later modified for measurement of the polarization of the reflected beam instead of the measurement of the intensities. In their new architecture, these methods not only suffered from the necessity of change of experimental setup but also another difficulty was added to their experimental implementations. This deficiency was related to the limitations of the technology of the neutron reflectometers that could only measure the polarization of the reflected neutrons in the same direction as the polarization of the incident beam. As the instruments are limited, the theory has to be optimized so that the experiment could be performed. In a recent work, we developed the method of variation of surroundings for one directional polarization analysis. In this new work, the method of reference layer with polarization analysis has been optimized to determine the phase and modulus of the unknown film with measurement of the polarization of the reflected neutrons in the same direction as the polarization of the incident beam.
Method to directly radiolabel antibodies for diagnostic imaging and therapy
Thakur, M.L.
1991-04-30
This patent describes a method for directly labeling proteins with radionuclides for use in diagnostic imaging and therapy. It comprises: the steps of incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein-containing solution and incubating.
Stevens' Direct Scaling Methods and the Uniqueness Problem
ERIC Educational Resources Information Center
Augustin, Thomas
2006-01-01
Stevens postulated that we can use the responses of a participant in a ratio scaling experiment directly to construct a psychophysical function representing the participant's sensations. Although Stevens' methods of constructing measurement scales are widely used in the behavioral sciences, the problem of which scale type is appropriate to…
Assessing Students' Writing Skills: A Comparison of Direct & Indirect Methods.
ERIC Educational Resources Information Center
Koffler, Stephen L.
This research examined the results from direct and indirect writing assessments to determine the most effective method of discrimination. The New Jersey State Department of Education developed a test for ninth-grade students which was designed to measure the ability to apply writing mechanics to written text and to communicate effectively in…
Integral Education: New Directions for Higher Learning. SUNY Series in Integral Theory
ERIC Educational Resources Information Center
Esbjorn-Hargens, Sean, Ed.; Reams, Jonathan, Ed.; Gunnlaugson, Olen, Ed.
2010-01-01
The educational challenges faced today are driving us toward a new step in the evolution of educational theory and practice. Educators are called to go beyond simply presenting alternatives, to integrating the best of mainstream and alternative approaches and taking them to the next level. "Integral Education" accomplishes this by…
Integral Education: New Directions for Higher Learning. SUNY Series in Integral Theory
ERIC Educational Resources Information Center
Esbjorn-Hargens, Sean, Ed.; Reams, Jonathan, Ed.; Gunnlaugson, Olen, Ed.
2010-01-01
The educational challenges faced today are driving us toward a new step in the evolution of educational theory and practice. Educators are called to go beyond simply presenting alternatives, to integrating the best of mainstream and alternative approaches and taking them to the next level. "Integral Education" accomplishes this by bringing…
Geometric and Integral Equation Methods for Scattering in Layered Media
NASA Astrophysics Data System (ADS)
Wiskin, James Walter
This dissertation is an extension of the Stenger -Johnson-Borup sinc and Fast Fourier Transform (FFT) based integral equation imaging algorithms to the case of a layered ambient medium. This scenario has medical, geophysical and nondestructive testing applications. It is also a first step in the direction of incorporating a geometric point of view in forward and inverse scattering. The construction of layered Green's functions and concomitant inverse scattering algorithms for inhomogeneities residing within a layered medium whose layers are known a priori is carried out. Computer simulations and numerical experiments investigate the ill -posedness of inverse scattering in this context. Both 2 and 3D ambient media are considered and the relationship to the distorted wave Born approximation are discussed. Noise contamination and attenuation in both the layered background medium and the inhomogeneity are included for realism. Global minimization techniques based on homotopy are introduced and generalized. Concepts from Cartan/Kahler differential geometry play a natural role in understanding homotopy methods of global minimization. These minimization methods have application to biomolecular modelling as well as scattering. Exterior Differential Forms provide a natural vehicle for extending results determined here to include shear effects in fully elastic media. It is also shown that the methods developed here can be extended to ambient media with different types of known structure.
Integrated method for chaotic time series analysis
Hively, L.M.; Ng, E.G.
1998-09-29
Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data are disclosed. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated. 8 figs.
Integrated method for chaotic time series analysis
Hively, Lee M.; Ng, Esmond G.
1998-01-01
Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated.
Integrating Formal Methods and Testing 2002
NASA Technical Reports Server (NTRS)
Cukic, Bojan
2002-01-01
Traditionally, qualitative program verification methodologies and program testing are studied in separate research communities. None of them alone is powerful and practical enough to provide sufficient confidence in ultra-high reliability assessment when used exclusively. Significant advances can be made by accounting not only tho formal verification and program testing. but also the impact of many other standard V&V techniques, in a unified software reliability assessment framework. The first year of this research resulted in the statistical framework that, given the assumptions on the success of the qualitative V&V and QA procedures, significantly reduces the amount of testing needed to confidently assess reliability at so-called high and ultra-high levels (10-4 or higher). The coming years shall address the methodologies to realistically estimate the impacts of various V&V techniques to system reliability and include the impact of operational risk to reliability assessment. Combine formal correctness verification, process and product metrics, and other standard qualitative software assurance methods with statistical testing with the aim of gaining higher confidence in software reliability assessment for high-assurance applications. B) Quantify the impact of these methods on software reliability. C) Demonstrate that accounting for the effectiveness of these methods reduces the number of tests needed to attain certain confidence level. D) Quantify and justify the reliability estimate for systems developed using various methods.
Integrating Formal Methods and Testing 2002
NASA Technical Reports Server (NTRS)
Cukic, Bojan
2002-01-01
Traditionally, qualitative program verification methodologies and program testing are studied in separate research communities. None of them alone is powerful and practical enough to provide sufficient confidence in ultra-high reliability assessment when used exclusively. Significant advances can be made by accounting not only tho formal verification and program testing. but also the impact of many other standard V&V techniques, in a unified software reliability assessment framework. The first year of this research resulted in the statistical framework that, given the assumptions on the success of the qualitative V&V and QA procedures, significantly reduces the amount of testing needed to confidently assess reliability at so-called high and ultra-high levels (10-4 or higher). The coming years shall address the methodologies to realistically estimate the impacts of various V&V techniques to system reliability and include the impact of operational risk to reliability assessment. Combine formal correctness verification, process and product metrics, and other standard qualitative software assurance methods with statistical testing with the aim of gaining higher confidence in software reliability assessment for high-assurance applications. B) Quantify the impact of these methods on software reliability. C) Demonstrate that accounting for the effectiveness of these methods reduces the number of tests needed to attain certain confidence level. D) Quantify and justify the reliability estimate for systems developed using various methods.
ERIC Educational Resources Information Center
Glass, Gene V.; And Others
Integrative analysis, or what is coming to be known as meta-analysis, is the integration of the findings of many empirical research studies of a topic. Meta-analysis differs from traditional narrative forms of research reviewing in that it is more quantitative and statistical. Thus, the methods of meta-analysis are merely statistical methods,…
Shape integral method for magnetospheric shapes. [boundary layer calculations
NASA Technical Reports Server (NTRS)
Michel, F. C.
1979-01-01
A method is developed for calculating the shape of any magnetopause to arbitrarily high precision. The method uses an integral equation which is evaluated for a trial shape. The resulting values of the integral equation as a function of auxiliary variables indicate how close one is to the desired solution. A variational method can then be used to improve the trial shape. Some potential applications are briefly mentioned.
Intentional Forgetting of Actions: Comparison of List-Method and Item-Method Directed Forgetting
ERIC Educational Resources Information Center
Sahakyan, Lili; Foster, Nathaniel L.
2009-01-01
Performing action phrases (subject-performed tasks, SPTs) leads to better memory than verbal learning instructions (verbal tasks, VTs). In Experiments 1-3, the list-method directed forgetting design produced equivalent directed forgetting impairment for VTs and SPTs; however, directed forgetting enhancement emerged only for VTs, but not SPTs.…
Intentional Forgetting of Actions: Comparison of List-Method and Item-Method Directed Forgetting
ERIC Educational Resources Information Center
Sahakyan, Lili; Foster, Nathaniel L.
2009-01-01
Performing action phrases (subject-performed tasks, SPTs) leads to better memory than verbal learning instructions (verbal tasks, VTs). In Experiments 1-3, the list-method directed forgetting design produced equivalent directed forgetting impairment for VTs and SPTs; however, directed forgetting enhancement emerged only for VTs, but not SPTs.…
Yu, Zhao-Yan; Yuan, Ping; Pan, Yang; Zhang, Zhong-Min
2016-02-01
The aim of the present study was to explore a simple and safe method for central venous catheterization (CVC) from the right internal jugular vein (RIJV) by comparing carotid artery (CA) positioning with sternocleidomastoid (SCM) positioning. The medical records of patients who underwent CVC between January 2011 and January 2015 were retrospectively reviewed. Central venous catheters were inserted into the RIJV either above the level of the cricoid cartilage using the CA-directed method (419 patients, Group 1) or below the level of the cricoid cartilage using the SCM-directed method (436 patients, Group 2). Success rate and related complications of catheterization were evaluated in the two groups. The total success rate of RIJV cannulation in Group 1 (97.2%) was higher than that in Group 2 (94.5%). Moreover, the success rate at first attempt was significantly higher in Group 1 than in Group 2 (92.4% vs 86.9%). The incidence of hematoma was 1.6 per cent in Group 1 and 3.8 per cent in Group 2. The rate of other complications such as pneumothorax, catheter-related infections, and catheter occlusion did not significantly differ between the groups. In conclusions, CA-directed RIJV cannulation is more effective and simple to perform than the SCM-directed method, and should become the preferred CVC technique in the absence of ultrasound guidance.
Root microbiota drive direct integration of phosphate stress and immunity.
Castrillo, Gabriel; Teixeira, Paulo José Pereira Lima; Paredes, Sur Herrera; Law, Theresa F; de Lorenzo, Laura; Feltcher, Meghan E; Finkel, Omri M; Breakfield, Natalie W; Mieczkowski, Piotr; Jones, Corbin D; Paz-Ares, Javier; Dangl, Jeffery L
2017-03-23
Plants live in biogeochemically diverse soils with diverse microbiota. Plant organs associate intimately with a subset of these microbes, and the structure of the microbial community can be altered by soil nutrient content. Plant-associated microbes can compete with the plant and with each other for nutrients, but may also carry traits that increase the productivity of the plant. It is unknown how the plant immune system coordinates microbial recognition with nutritional cues during microbiome assembly. Here we establish that a genetic network controlling the phosphate stress response influences the structure of the root microbiome community, even under non-stress phosphate conditions. We define a molecular mechanism regulating coordination between nutrition and defence in the presence of a synthetic bacterial community. We further demonstrate that the master transcriptional regulators of phosphate stress response in Arabidopsis thaliana also directly repress defence, consistent with plant prioritization of nutritional stress over defence. Our work will further efforts to define and deploy useful microbes to enhance plant performance.
Psychiatric Advance Directives and Social Workers: An Integrative Review
Van Dorn, Richard A.; Scheyett, Anna; Swanson, Jeffrey W.; Swartz, Marvin S.
2013-01-01
Psychiatric Advance Directives (PADs) are legal documents that allow individuals to express their wishes for future psychiatric care and to authorize a legally appointed proxy to make decisions on their behalf during incapacitating crises. PADs are viewed as an alternative to the coercive interventions that sometimes accompany mental health crises for persons with mental illness. Insofar as coercive interventions can abridge clients’ autonomy and self-determination -- values supported by the Profession’s Code of Ethics -- social workers have a vested interest in finding ways to reduce coercion and increase autonomy and self-determination in their practice. However, PADs are also viewed as having the potential to positively affect a variety of other clinical outcomes, including but not limited to treatment engagement, treatment satisfaction, and working alliance. This article reviews the clinical and legal history of PADs and empirical evidence for their implementation and effectiveness. Despite what should be an inherent interest in PADs, and the fact that laws authorizing PADs have proliferated in the past decade, there is little theoretical or empirical research in the social work literature. PMID:20408357
Damping identification in frequency domain using integral method
NASA Astrophysics Data System (ADS)
Guo, Zhiwei; Sheng, Meiping; Ma, Jiangang; Zhang, Wulin
2015-03-01
A new method for damping identification of linear system in frequency domain is presented, by using frequency response function (FRF) with integral method. The FRF curve is firstly transformed to other type of frequency-related curve by changing the representations of horizontal and vertical axes. For the newly constructed frequency-related curve, integral is conducted and the area forming from the new curve is used to determine the damping. Three different methods based on integral are proposed in this paper, which are called FDI-1, FDI-2 and FDI-3 method, respectively. For a single degree of freedom (Sdof) system, the formulated relation of each method between integrated area and loss factor is derived theoretically. The numeral simulation and experiment results show that, the proposed integral methods have high precision, strong noise resistance and are very stable in repeated measurements. Among the three integral methods, FDI-3 method is the most recommended because of its higher accuracy and simpler algorithm. The new methods are limited to linear system in which modes are well separated, and for closely spaced mode system, mode decomposition process should be conducted firstly.
Integrated management of thesis using clustering method
NASA Astrophysics Data System (ADS)
Astuti, Indah Fitri; Cahyadi, Dedy
2017-02-01
Thesis is one of major requirements for student in pursuing their bachelor degree. In fact, finishing the thesis involves a long process including consultation, writing manuscript, conducting the chosen method, seminar scheduling, searching for references, and appraisal process by the board of mentors and examiners. Unfortunately, most of students find it hard to match all the lecturers' free time to sit together in a seminar room in order to examine the thesis. Therefore, seminar scheduling process should be on the top of priority to be solved. Manual mechanism for this task no longer fulfills the need. People in campus including students, staffs, and lecturers demand a system in which all the stakeholders can interact each other and manage the thesis process without conflicting their timetable. A branch of computer science named Management Information System (MIS) could be a breakthrough in dealing with thesis management. This research conduct a method called clustering to distinguish certain categories using mathematics formulas. A system then be developed along with the method to create a well-managed tool in providing some main facilities such as seminar scheduling, consultation and review process, thesis approval, assessment process, and also a reliable database of thesis. The database plays an important role in present and future purposes.
Direct methods for detecting picorna-like virus from dead and alive triatomine insects.
Rozas Dennis, G; La Torre, J; Muscio, O; Guérin, D
2000-01-01
In this work we report four different destructive and non-destructive methods for detecting picorna-like virus particles in triatomines. The methods are based on direct observation under transmission electron microscope and they consist of four ways to prepare samples of presumable infected material. The samples are prepared processing dead or alive insect parts, or even dry or fresh insect feces. The methods can be used as analytical or preparative techniques, for quantifying virus infection and checking virus integrity as well. In this work the four methods are applied in order to detect Triatoma virus (TrV) particles in T. infestans colonies.
NASA Astrophysics Data System (ADS)
Meng, Yang; Gao, Shesheng; Zhong, Yongmin; Hu, Gaoge; Subic, Aleksandar
2016-03-01
The use of the direct filtering approach for INS/GNSS integrated navigation introduces nonlinearity into the system state equation. As the unscented Kalman filter (UKF) is a promising method for nonlinear problems, an obvious solution is to incorporate the UKF concept in the direct filtering approach to address the nonlinearity involved in INS/GNSS integrated navigation. However, the performance of the standard UKF is dependent on the accurate statistical characterizations of system noise. If the noise distributions of inertial instruments and GNSS receivers are not appropriately described, the standard UKF will produce deteriorated or even divergent navigation solutions. This paper presents an adaptive UKF with noise statistic estimator to overcome the limitation of the standard UKF. According to the covariance matching technique, the innovation and residual sequences are used to determine the covariance matrices of the process and measurement noises. The proposed algorithm can estimate and adjust the system noise statistics online, and thus enhance the adaptive capability of the standard UKF. Simulation and experimental results demonstrate that the performance of the proposed algorithm is significantly superior to that of the standard UKF and adaptive-robust UKF under the condition without accurate knowledge on system noise, leading to improved navigation precision.
Advances in direct and diffraction methods for surface structural determination
NASA Astrophysics Data System (ADS)
Tong, S. Y.
1999-08-01
I describe recent advances in low-energy electron diffraction holography and photoelectron diffraction holography. These are direct methods for determining the surface structure. I show that for LEED and PD spectra taken in an energy and angular mesh, the relative phase between the reference wave and the scattered wave has a known geometric form if the spectra are always taken from within a small angular cone in the near backscattering direction. By using data in the backscattering small cone at each direction of interest, a simple algorithm is developed to invert the spectra and extract object atomic positions with no input of calculated dynamic factors. I also describe the use of a convergent iterative method of PD and LEED. The computation time of this method scales as N2, where N is the dimension of the propagator matrix, rather than N3 as in conventional Gaussian substitutional methods. Both the Rehr-Albers separable-propagator cluster approach and the slab-type non-separable approach can be cast in the new iterative form. With substantial savings in computational time and no loss in numerical accuracy, this method is very useful in applications of multiple scattering theory, particularly for systems involving either very large unit cells (>300 atoms) or where no long-range order is present.
Mollet, B; Knol, J; Poolman, B; Marciset, O; Delley, M
1993-01-01
Several pGEM5- and pUC19-derived plasmids containing a selectable erythromycin resistance marker were integrated into the chromosome of Streptococcus thermophilus at the loci of the lactose-metabolizing genes. Integration occurred via homologous recombination and resulted in cointegrates between plasmid and genome, flanked by the homologous DNA used for integration. Selective pressure on the plasmid-located erythromycin resistance gene resulted in multiple amplifications of the integrated plasmid. Release of this selective pressure, however, gave way to homologous resolution of the cointegrate structures. By integration and subsequent resolution, we were able to replace the chromosomal lacZ gene with a modified copy carrying an in vitro-generated deletion. In the same way, we integrated a promoterless chloramphenicol acetyltransferase (cat) gene between the chromosomal lacS and lacZ genes of the lactose operon. The inserted cat gene became a functional part of the operon and was expressed and regulated accordingly. Selective pressure on the essential lacS and lacZ genes under normal growth conditions in milk ensures the maintenance and expression of the integrated gene. As there are only minimal repeated DNA sequences (an NdeI site) flanking the inserted cat gene, it was stably maintained even in the absence of lactose, i.e., when grown on sucrose or glucose. The methodology represents a stable system in which to express and regulate foreign genes in S. thermophilus, which could qualify in the future for an application with food. Images PMID:8331064
Direct LSC method for measurements of biofuels in fuel.
Krištof, Romana; Logar, Jasmina Kožar
2013-07-15
Direct liquid scintillation counting (LSC) for quantification of biofuels content in fuels was implemented and validated on three liquid fossil fuel matrices-ethanol, gasoline and diesel. Fatty acid methyl esters (FAMEs), hydrogenated vegetable oils (HVO) and bio-ethanol were used as biofuels. The method is applicable in the range up to 100% for all tested combinations of bio components. The sensitivity and precision of the method are suitable for determination of bio component content in the blends which is appearing on the global market. The method does not require special equipment for sample preparation. Copyright © 2013 Elsevier B.V. All rights reserved.
Lean direct wall fuel injection method and devices
NASA Technical Reports Server (NTRS)
Choi, Kyung J. (Inventor); Tacina, Robert (Inventor)
2000-01-01
A fuel combustion chamber, and a method of and a nozzle for mixing liquid fuel and air in the fuel combustion chamber in lean direct injection combustion for advanced gas turbine engines, including aircraft engines. Liquid fuel in a form of jet is injected directly into a cylindrical combustion chamber from the combustion chamber wall surface in a direction opposite to the direction of the swirling air at an angle of from about 50.degree. to about 60.degree. with respect to a tangential line of the cylindrical combustion chamber and at a fuel-lean condition, with a liquid droplet momentum to air momentum ratio in the range of from about 0.05 to about 0.12. Advanced gas turbines benefit from lean direct wall injection combustion. The lean direct wall injection technique of the present invention provides fast, uniform, well-stirred mixing of fuel and air. In addition, in order to further improve combustion, the fuel can be injected at a venturi located in the combustion chamber at a point adjacent the air swirler.
Exponential Methods for the Time Integration of Schroedinger Equation
Cano, B.; Gonzalez-Pachon, A.
2010-09-30
We consider exponential methods of second order in time in order to integrate the cubic nonlinear Schroedinger equation. We are interested in taking profit of the special structure of this equation. Therefore, we look at symmetry, symplecticity and approximation of invariants of the proposed methods. That will allow to integrate till long times with reasonable accuracy. Computational efficiency is also our aim. Therefore, we make numerical computations in order to compare the methods considered and so as to conclude that explicit Lawson schemes projected on the norm of the solution are an efficient tool to integrate this equation.
Stringer, Simon M; Rolls, Edmund T
2006-12-01
A key issue is how networks in the brain learn to perform path integration, that is update a represented position using a velocity signal. Using head direction cells as an example, we show that a competitive network could self-organize to learn to respond to combinations of head direction and angular head rotation velocity. These combination cells can then be used to drive a continuous attractor network to the next head direction based on the incoming rotation signal. An associative synaptic modification rule with a short term memory trace enables preceding combination cell activity during training to be associated with the next position in the continuous attractor network. The network accounts for the presence of neurons found in the brain that respond to combinations of head direction and angular head rotation velocity. Analogous networks in the hippocampal system could self-organize to perform path integration of place and spatial view representations.
A Rationale for Mixed Methods (Integrative) Research Programmes in Education
ERIC Educational Resources Information Center
Niaz, Mansoor
2008-01-01
Recent research shows that research programmes (quantitative, qualitative and mixed) in education are not displaced (as suggested by Kuhn) but rather lead to integration. The objective of this study is to present a rationale for mixed methods (integrative) research programs based on contemporary philosophy of science (Lakatos, Giere, Cartwright,…
A Rationale for Mixed Methods (Integrative) Research Programmes in Education
ERIC Educational Resources Information Center
Niaz, Mansoor
2008-01-01
Recent research shows that research programmes (quantitative, qualitative and mixed) in education are not displaced (as suggested by Kuhn) but rather lead to integration. The objective of this study is to present a rationale for mixed methods (integrative) research programs based on contemporary philosophy of science (Lakatos, Giere, Cartwright,…
Mutant fatty acid desaturase and methods for directed mutagenesis
Shanklin, John [Shoreham, NY; Whittle, Edward J [Greenport, NY
2008-01-29
The present invention relates to methods for producing fatty acid desaturase mutants having a substantially increased activity towards substrates with fewer than 18 carbon atom chains relative to an unmutagenized precursor desaturase having an 18 carbon chain length specificity, the sequences encoding the desaturases and to the desaturases that are produced by the methods. The present invention further relates to a method for altering a function of a protein, including a fatty acid desaturase, through directed mutagenesis involving identifying candidate amino acid residues, producing a library of mutants of the protein by simultaneously randomizing all amino acid candidates, and selecting for mutants which exhibit the desired alteration of function. Candidate amino acids are identified by a combination of methods. Enzymatic, binding, structural and other functions of proteins can be altered by the method.
Method for observing phase objects without halos and directional shadows
NASA Astrophysics Data System (ADS)
Suzuki, Yoshimasa; Kajitani, Kazuo; Ohde, Hisashi
2015-03-01
A new microscopy method for observing phase objects without halos and directional shadows is proposed. The key optical element is an annular aperture at the front focal plane of a condenser with a larger diameter than those used in standard phase contrast microscopy. The light flux passing through the annular aperture is changed by the specimen's surface profile and then passes through an objective and contributes to image formation. This paper presents essential conditions for realizing the method. In this paper, images of colonies formed by induced pluripotent stem (iPS) cells using this method are compared with the conventional phase contrast method and the bright-field method when the NA of the illumination is small to identify differences among these techniques. The outlines of the iPS cells are clearly visible with this method, whereas they are not clearly visible due to halos when using the phase contrast method or due to weak contrast when using the bright-field method. Other images using this method are also presented to demonstrate a capacity of this method: a mouse ovum and superimposition of several different images of mouse iPS cells.
Earle, J R; Blacklocke, S; Bruen, M; Almeida, G; Keating, D
2011-01-01
Water Framework Directive (WFD) statutory authorities and stakeholders in Ireland are now challenged with the issue of how the proposed programmes of measures in the newly required River Basin Management Plans - designed to protect and restore good ecology by reverting as closely as possible back to natural conditions - are to be implemented in a way that concurrently complies with other existing and emerging intersecting European Union legislation, such as the Floods Directive (FD). The WFD is driven largely by ecological considerations, whereas the FD and other legislation are more geared towards protecting physical property and mitigating public safety risks. Thus many of the same waterbodies, especially heavily modified waterbodies, arguably have somewhat competing policy objectives put upon them. This paper explores the means by which Ireland might best achieve the highest degrees of cost effectiveness, economic efficiency and institutional durability in pursuing the common and overarching objective of the WFD and FD - to ensure Irish waterways are put to their highest valued uses.
Quantitative methods to direct exploration based on hydrogeologic information
Graettinger, A.J.; Lee, J.; Reeves, H.W.; Dethan, D.
2006-01-01
Quantitatively Directed Exploration (QDE) approaches based on information such as model sensitivity, input data covariance and model output covariance are presented. Seven approaches for directing exploration are developed, applied, and evaluated on a synthetic hydrogeologic site. The QDE approaches evaluate input information uncertainty, subsurface model sensitivity and, most importantly, output covariance to identify the next location to sample. Spatial input parameter values and covariances are calculated with the multivariate conditional probability calculation from a limited number of samples. A variogram structure is used during data extrapolation to describe the spatial continuity, or correlation, of subsurface information. Model sensitivity can be determined by perturbing input data and evaluating output response or, as in this work, sensitivities can be programmed directly into an analysis model. Output covariance is calculated by the First-Order Second Moment (FOSM) method, which combines the covariance of input information with model sensitivity. A groundwater flow example, modeled in MODFLOW-2000, is chosen to demonstrate the seven QDE approaches. MODFLOW-2000 is used to obtain the piezometric head and the model sensitivity simultaneously. The seven QDE approaches are evaluated based on the accuracy of the modeled piezometric head after information from a QDE sample is added. For the synthetic site used in this study, the QDE approach that identifies the location of hydraulic conductivity that contributes the most to the overall piezometric head variance proved to be the best method to quantitatively direct exploration. ?? IWA Publishing 2006.
A new fast direct solver for the boundary element method
NASA Astrophysics Data System (ADS)
Huang, S.; Liu, Y. J.
2017-04-01
A new fast direct linear equation solver for the boundary element method (BEM) is presented in this paper. The idea of the new fast direct solver stems from the concept of the hierarchical off-diagonal low-rank matrix. The hierarchical off-diagonal low-rank matrix can be decomposed into the multiplication of several diagonal block matrices. The inverse of the hierarchical off-diagonal low-rank matrix can be calculated efficiently with the Sherman-Morrison-Woodbury formula. In this paper, a more general and efficient approach to approximate the coefficient matrix of the BEM with the hierarchical off-diagonal low-rank matrix is proposed. Compared to the current fast direct solver based on the hierarchical off-diagonal low-rank matrix, the proposed method is suitable for solving general 3-D boundary element models. Several numerical examples of 3-D potential problems with the total number of unknowns up to above 200,000 are presented. The results show that the new fast direct solver can be applied to solve large 3-D BEM models accurately and with better efficiency compared with the conventional BEM.
Method for determining shear direction using liquid crystal coatings
NASA Technical Reports Server (NTRS)
Reda, Daniel C.
1995-01-01
A method is provided for determining shear direction wherein a beam of white light is directed onto the surface of a liquid crystal coating to cause the white light to be dispersed (reflected) from the surface in a spectrum having bands of different colors in a fixed spatial 2 (angular) sequence. The system is calibrated by locating an observer, e.g., a video and movie camera, such that a particular color band (preferably at or near the center of the reflected spectrum) is observed to thereby provide a reference color band. Because the application of shear causes either clockwise or counterclockwise rotation of the reflected spectrum dependent on the direction of the shear, a determination is then made of the reflected color band observed by the observer when the surface of the liquid crystal is subjected to shear to thereby determine the direction of the shear based on the directional (rotation) relation of the observed color band with respect to the reference color band in the spatial sequence of color bands.
NASA Astrophysics Data System (ADS)
Shen, Fabin; Wang, Anbo
2006-02-01
The numerical calculation of the Rayleigh-Sommerfeld diffraction integral is investigated. The implementation of a fast-Fourier-transform (FFT) based direct integration (FFT-DI) method is presented, and Simpson's rule is used to improve the calculation accuracy. The sampling interval, the size of the computation window, and their influence on numerical accuracy and on computational complexity are discussed for the FFT-DI and the FFT-based angular spectrum (FFT-AS) methods. The performance of the FFT-DI method is verified by numerical simulation and compared with that of the FFT-AS method.
Application of Patterson-function direct methods to materials characterization
Rius, Jordi
2014-01-01
The aim of this article is a general description of the so-called Patterson-function direct methods (PFDM), from their origin to their present state. It covers a 20-year period of methodological contributions to crystal structure solution, most of them published in Acta Crystallographica Section A. The common feature of these variants of direct methods is the introduction of the experimental intensities in the form of the Fourier coefficients of origin-free Patterson-type functions, which allows the active use of both strong and weak reflections. The different optimization algorithms are discussed and their performances compared. This review focuses not only on those PFDM applications related to powder diffraction data but also on some recent results obtained with electron diffraction tomography data. PMID:25295171
Application of Patterson-function direct methods to materials characterization.
Rius, Jordi
2014-09-01
The aim of this article is a general description of the so-called Patterson-function direct methods (PFDM), from their origin to their present state. It covers a 20-year period of methodological contributions to crystal structure solution, most of them published in Acta Crystallographica Section A. The common feature of these variants of direct methods is the introduction of the experimental intensities in the form of the Fourier coefficients of origin-free Patterson-type functions, which allows the active use of both strong and weak reflections. The different optimization algorithms are discussed and their performances compared. This review focuses not only on those PFDM applications related to powder diffraction data but also on some recent results obtained with electron diffraction tomography data.
[Connotation of ecological integrity and its assessment methods: a review].
Huang, Baorong; Ouyang, Zhiyun; Zheng, Hua; Wang, Xiaoke; Miao, Hong
2006-11-01
Ecological integrity is the capability to support and maintain a balanced, integrative and adaptive biologic system, having the full range of elements and processes expected in the natural habitats of a region. Assessment of ecological integrity has great significance for preventing sensitive nature habitats from human disturbance. The theory of dissipative structures suggests that the stressors from human activities, as well as the biological, physical and chemical integrity and ecosystem function that reflect the ability of self-organizing, can well indicate the integrity of an ecosystem. This paper summarized the experiential indicators for assessing the integrity of aquatic and terrestrial ecosystems and the stressors from human disturbance, and discussed the methods for selecting priority indicators and comprehensive assessment in actual assessment programs. The prospects of further study were discussed, according to some issues existed in published researches.
Maximum patch method for directional dark matter detection
NASA Astrophysics Data System (ADS)
Henderson, Shawn; Monroe, Jocelyn; Fisher, Peter
2008-07-01
Present and planned dark matter detection experiments search for WIMP-induced nuclear recoils in poorly known background conditions. In this environment, the maximum gap statistical method provides a way of setting more sensitive cross section upper limits by incorporating known signal information. We give a recipe for the numerical calculation of upper limits for planned directional dark matter detection experiments, that will measure both recoil energy and angle, based on the gaps between events in two-dimensional phase space.
A direct method for the N-tetraalkylation of azamacrocycles.
Counsell, Andrew J; Jones, Angus T; Todd, Matthew H; Rutledge, Peter J
2016-01-01
An efficient protocol for the direct synthesis of N-tetraalkylated derivatives of the azamacrocycles cyclam and cyclen has been developed, using a partially miscible aqueous-organic solvent system with propargyl bromide, benzyl bromide, and related halides. The method works most effectively when the reaction mixture is shaken, not stirred. A crystal structure of the N-tetrapropargyl cyclam derivative 1,4,8,11-tetra(prop-2-yn-1-yl)-1,4,8,11-tetraazacyclotetradecane diperchlorate is reported.
Research on measurement of total luminous flux of single LED in direct comparison method
NASA Astrophysics Data System (ADS)
Huang, Biyong; Lai, Lei; Yin, Dejin; Cheng, Weihai; Lin, Fangsheng
2016-09-01
This paper focuses on traceability work on total luminous flux of single LED based on the direct camparison method applied for quantity transfer of incandescent lamps. During the test different color groups of LEDs have been chosen as standard to measure total luminous flux of sample LEDs. The test is accomplished in the current integrating sphere measurement system under specific conditions according to LED characteristics. As results obtained from the experiment, the uncertainties are also evaluated.
An adaptive penalty method for DIRECT algorithm in engineering optimization
NASA Astrophysics Data System (ADS)
Vilaça, Rita; Rocha, Ana Maria A. C.
2012-09-01
The most common approach for solving constrained optimization problems is based on penalty functions, where the constrained problem is transformed into a sequence of unconstrained problem by penalizing the objective function when constraints are violated. In this paper, we analyze the implementation of an adaptive penalty method, within the DIRECT algorithm, in which the constraints that are more difficult to be satisfied will have relatively higher penalty values. In order to assess the applicability and performance of the proposed method, some benchmark problems from engineering design optimization are considered.
Effects of directionality in deductive reasoning: II. Premise integration and conclusion evaluation.
Oberauer, Klaus; Hörnig, Robin; Weidenfeld, Andrea; Wilhelm, Oliver
2005-10-01
Previous research (Oberauer & Wilhelm, 2000) has shown an inherent directionality between the two terms linked in premises of typical deductive reasoning tasks. With three experiments we investigated the effect of inherent directionality on the time to integrate two premises and for the derivation of a conclusion. We varied figure (i.e., order of terms in the premises) and direction of inference (i.e., order of terms in the conclusion) in deduction tasks from various domains (propositional reasoning, syllogisms, spatial, temporal, and linear order reasoning). Effects of figure on premise reading times varied with the directionality of the relations. Effects of direction of inference reflected the same directionality for a subset of relations. We propose that two factors are jointly responsible for a large part of observed directionality effects in premise integration: the inherent directionality of relational statements and a general advantage for a given-new order of terms in the second premise. Difficulty of deriving a conclusion is affected by the directionality or relations if and only if the relation is semantically asymmetric, so that the directionality must be preserved in the integrated mental model.
Toward a Micro-Scale Acoustic Direction-Finding Sensor with Integrated Electronic Readout
2013-06-01
1998. [4] A. C. Mason , M. L. Oshinsky, and R. R. Hoy, “Hyperacute directional hearing in a mi- croscale auditory system,” Nature, vol. 410, pp. 686...mechanical (MEMS) sound sensor,” Master’s thesis, Naval Postgraduate School, 2012. [35] J. D. Roth , “Integration of a high sensitivity MEMS directional
An extension of A-stability to alternating direction implicit methods
NASA Technical Reports Server (NTRS)
Warming, R. F.; Beam, R. M.
1978-01-01
An alternating direction implicit (ADI) scheme was constructed by the method of approximate factorization. An A-stable linear multistep method (LMM) was used to integrate a model two-dimensional hyperbolic-parabolic partial differential equation. Sufficient conditions for the A-stability of the LMM were determined by applying the theory of positive real functions to reduce the stability analysis of the partial differential equations to a simple algebraic test. A linear test equation for partial differential equations is defined and then used to analyze the stability of approximate factorization schemes. An ADI method for the three-dimensional heat equation is also presented.
Integrated resonant micro-optical gyroscope and method of fabrication
Vawter, G. Allen; Zubrzycki, Walter J.; Guo, Junpeng; Sullivan, Charles T.
2006-09-12
An integrated optic gyroscope is disclosed which is based on a photonic integrated circuit (PIC) having a bidirectional laser source, a pair of optical waveguide phase modulators and a pair of waveguide photodetectors. The PIC can be connected to a passive ring resonator formed either as a coil of optical fiber or as a coiled optical waveguide. The lasing output from each end of the bidirectional laser source is phase modulated and directed around the passive ring resonator in two counterpropagating directions, with a portion of the lasing output then being detected to determine a rotation rate for the integrated optical gyroscope. The coiled optical waveguide can be formed on a silicon, glass or quartz substrate with a silicon nitride core and a silica cladding, while the PIC includes a plurality of III V compound semiconductor layers including one or more quantum well layers which are disordered in the phase modulators and to form passive optical waveguides.
Mixed time integration methods for transient thermal analysis of structures
NASA Technical Reports Server (NTRS)
Liu, W. K.
1982-01-01
The computational methods used to predict and optimize the thermal structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a different yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.
The predictive integration method for dynamics of infrequent events
NASA Astrophysics Data System (ADS)
Cubuk, Ekin; Waterland, Amos; Kaxiras, Efthimios
2012-02-01
With the increasing prominence and availability of multi-processor computers, recasting problems in a form amenable to parallel solution is becoming a critical step in effective scientific computation. We present a method for parallelizing molecular dynamics simulations in time scale, by using predictive integration. Our method is closely related to Voter's parallel replica method, but goes beyond that approach in that it involves speculatively initializing processors in more than one basin. Our predictive integration method requires predicting possible future configurations while it does not suffer from restrictions due to correlation time after transitions between basins.
An integrated lean-methods approach to hospital facilities redesign.
Nicholas, John
2012-01-01
Lean production methods for eliminating waste and improving processes in manufacturing are now being applied in healthcare. As the author shows, the methods are appropriate for redesigning hospital facilities. When used in an integrated manner and employing teams of mostly clinicians, the methods produce facility designs that are custom-fit to patient needs and caregiver work processes, and reduce operational costs. The author reviews lean methods and an approach for integrating them in the redesign of hospital facilities. A case example of the redesign of an emergency department shows the feasibility and benefits of the approach.
Ran, Changyan; Cheng, Xianghong
2016-09-02
This paper presents a direct and non-singular approach based on an unscented Kalman filter (UKF) for the integration of strapdown inertial navigation systems (SINSs) with the aid of velocity. The state vector includes velocity and Euler angles, and the system model contains Euler angle kinematics equations. The measured velocity in the body frame is used as the filter measurement. The quaternion nonlinear equality constraint is eliminated, and the cross-noise problem is overcome. The filter model is simple and easy to apply without linearization. Data fusion is performed by an UKF, which directly estimates and outputs the navigation information. There is no need to process navigation computation and error correction separately because the navigation computation is completed synchronously during the filter time updating. In addition, the singularities are avoided with the help of the dual-Euler method. The performance of the proposed approach is verified by road test data from a land vehicle equipped with an odometer aided SINS, and a singularity turntable test is conducted using three-axis turntable test data. The results show that the proposed approach can achieve higher navigation accuracy than the commonly-used indirect approach, and the singularities can be efficiently removed as the result of dual-Euler method.
Ran, Changyan; Cheng, Xianghong
2016-01-01
This paper presents a direct and non-singular approach based on an unscented Kalman filter (UKF) for the integration of strapdown inertial navigation systems (SINSs) with the aid of velocity. The state vector includes velocity and Euler angles, and the system model contains Euler angle kinematics equations. The measured velocity in the body frame is used as the filter measurement. The quaternion nonlinear equality constraint is eliminated, and the cross-noise problem is overcome. The filter model is simple and easy to apply without linearization. Data fusion is performed by an UKF, which directly estimates and outputs the navigation information. There is no need to process navigation computation and error correction separately because the navigation computation is completed synchronously during the filter time updating. In addition, the singularities are avoided with the help of the dual-Euler method. The performance of the proposed approach is verified by road test data from a land vehicle equipped with an odometer aided SINS, and a singularity turntable test is conducted using three-axis turntable test data. The results show that the proposed approach can achieve higher navigation accuracy than the commonly-used indirect approach, and the singularities can be efficiently removed as the result of dual-Euler method. PMID:27598169
Comparison of time integration methods for the evolution of galaxies
NASA Astrophysics Data System (ADS)
Degraaf, W.
In the simulation of the evolution of elliptical galaxies, Leap-Frog is currently the most frequently used time integration method. The question is whether other methods perform better than this classical method. Improvements may also be expected from the use of variable step-lengths. We compare Leap-Frog with several other methods, namely: a fourth-order Nystrom method, a symplectic method, and DOPRI-five and eight. DOPRI uses variable steps of its own accord. For the other methods we construct a variable step procedure ourselves. The comparison of the methods is carried out in three Hamiltonian test problems.
A Dynamic Integrated Fault Diagnosis Method for Power Transformers
Gao, Wensheng; Liu, Tong
2015-01-01
In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified. PMID:25685841
A dynamic integrated fault diagnosis method for power transformers.
Gao, Wensheng; Bai, Cuifen; Liu, Tong
2015-01-01
In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified.
Achieving integration in mixed methods designs-principles and practices.
Fetters, Michael D; Curry, Leslie A; Creswell, John W
2013-12-01
Mixed methods research offers powerful tools for investigating complex processes and systems in health and health care. This article describes integration principles and practices at three levels in mixed methods research and provides illustrative examples. Integration at the study design level occurs through three basic mixed method designs-exploratory sequential, explanatory sequential, and convergent-and through four advanced frameworks-multistage, intervention, case study, and participatory. Integration at the methods level occurs through four approaches. In connecting, one database links to the other through sampling. With building, one database informs the data collection approach of the other. When merging, the two databases are brought together for analysis. With embedding, data collection and analysis link at multiple points. Integration at the interpretation and reporting level occurs through narrative, data transformation, and joint display. The fit of integration describes the extent the qualitative and quantitative findings cohere. Understanding these principles and practices of integration can help health services researchers leverage the strengths of mixed methods.
Achieving Integration in Mixed Methods Designs—Principles and Practices
Fetters, Michael D; Curry, Leslie A; Creswell, John W
2013-01-01
Mixed methods research offers powerful tools for investigating complex processes and systems in health and health care. This article describes integration principles and practices at three levels in mixed methods research and provides illustrative examples. Integration at the study design level occurs through three basic mixed method designs—exploratory sequential, explanatory sequential, and convergent—and through four advanced frameworks—multistage, intervention, case study, and participatory. Integration at the methods level occurs through four approaches. In connecting, one database links to the other through sampling. With building, one database informs the data collection approach of the other. When merging, the two databases are brought together for analysis. With embedding, data collection and analysis link at multiple points. Integration at the interpretation and reporting level occurs through narrative, data transformation, and joint display. The fit of integration describes the extent the qualitative and quantitative findings cohere. Understanding these principles and practices of integration can help health services researchers leverage the strengths of mixed methods. PMID:24279835
Methods for biological data integration: perspectives and challenges
Gligorijević, Vladimir; Pržulj, Nataša
2015-01-01
Rapid technological advances have led to the production of different types of biological data and enabled construction of complex networks with various types of interactions between diverse biological entities. Standard network data analysis methods were shown to be limited in dealing with such heterogeneous networked data and consequently, new methods for integrative data analyses have been proposed. The integrative methods can collectively mine multiple types of biological data and produce more holistic, systems-level biological insights. We survey recent methods for collective mining (integration) of various types of networked biological data. We compare different state-of-the-art methods for data integration and highlight their advantages and disadvantages in addressing important biological problems. We identify the important computational challenges of these methods and provide a general guideline for which methods are suited for specific biological problems, or specific data types. Moreover, we propose that recent non-negative matrix factorization-based approaches may become the integration methodology of choice, as they are well suited and accurate in dealing with heterogeneous data and have many opportunities for further development. PMID:26490630
Explicit Integration of Extremely Stiff Reaction Networks: Partial Equilibrium Methods
Guidry, Mike W; Billings, J. J.; Hix, William Raphael
2013-01-01
In two preceding papers [1,2] we have shown that, when reaction networks are well removed from equilibrium, explicit asymptotic and quasi-steady-state approximations can give algebraically stabilized integration schemes that rival standard implicit methods in accuracy and speed for extremely stiff systems. However, we also showed that these explicit methods remain accurate but are no longer competitive in speed as the network approaches equilibrium. In this paper we analyze this failure and show that it is associated with the presence of fast equilibration timescales that neither asymptotic nor quasi-steady-state approximations are able to remove efficiently from the numerical integration. Based on this understanding, we develop a partial equilibrium method to deal effectively with the new partial equilibrium methods, give an integration scheme that plausibly can deal with the stiffest networks, even in the approach to equilibrium, with accuracy and speed competitive with that of implicit methods. Thus we demonstrate that algebraically stabilized explicit methods may offer alternatives to implicit integration of even extremely stiff systems, and that these methods may permit integration of much larger networks than have been feasible previously in a variety of fields.
Method of bond strength evaluation for silicon direct wafer bonding
NASA Astrophysics Data System (ADS)
Spivak, Alexander; Avagyan, Avag; Davies, Brady R.
2001-09-01
A crack-opening method used for characterization of silicon direct wafer bonding (DWB) techniques was analyzed. Mathematical model describing the influence of the pattern shape on the wafer pair resistance curve, so-called the R-curve, was developed. Two-dimensional patterns were created on a mirror-polished silicon wafer surface by a combination of photolithography, deposition and etching steps. Experimental observations did show that structured wafers can be used for large bond energy measurements. We propose utilization of structured wafers for bond energy measurements. It allows R-curve shape manipulation, increases the method sensitivity, and reduces probability of wafer failure. The resulting theory can also be used for developing new experimental methods for large bond energy measurements.
NASA Technical Reports Server (NTRS)
Madsen, Niel K.
1992-01-01
Several new discrete surface integral (DSI) methods for solving Maxwell's equations in the time-domain are presented. These methods, which allow the use of general nonorthogonal mixed-polyhedral unstructured grids, are direct generalizations of the canonical staggered-grid finite difference method. These methods are conservative in that they locally preserve divergence or charge. Employing mixed polyhedral cells, (hexahedral, tetrahedral, etc.) these methods allow more accurate modeling of non-rectangular structures and objects because the traditional stair-stepped boundary approximations associated with the orthogonal grid based finite difference methods can be avoided. Numerical results demonstrating the accuracy of these new methods are presented.
Liu, Peigui; Elshall, Ahmed S.; Ye, Ming; Beerli, Peter; Zeng, Xiankui; Lu, Dan; Tao, Yuezan
2016-02-05
Evaluating marginal likelihood is the most critical and computationally expensive task, when conducting Bayesian model averaging to quantify parametric and model uncertainties. The evaluation is commonly done by using Laplace approximations to evaluate semianalytical expressions of the marginal likelihood or by using Monte Carlo (MC) methods to evaluate arithmetic or harmonic mean of a joint likelihood function. This study introduces a new MC method, i.e., thermodynamic integration, which has not been attempted in environmental modeling. Instead of using samples only from prior parameter space (as in arithmetic mean evaluation) or posterior parameter space (as in harmonic mean evaluation), the thermodynamic integration method uses samples generated gradually from the prior to posterior parameter space. This is done through a path sampling that conducts Markov chain Monte Carlo simulation with different power coefficient values applied to the joint likelihood function. The thermodynamic integration method is evaluated using three analytical functions by comparing the method with two variants of the Laplace approximation method and three MC methods, including the nested sampling method that is recently introduced into environmental modeling. The thermodynamic integration method outperforms the other methods in terms of their accuracy, convergence, and consistency. The thermodynamic integration method is also applied to a synthetic case of groundwater modeling with four alternative models. The application shows that model probabilities obtained using the thermodynamic integration method improves predictive performance of Bayesian model averaging. As a result, the thermodynamic integration method is mathematically rigorous, and its MC implementation is computationally general for a wide range of environmental problems.
NEW COMPLETENESS METHODS FOR ESTIMATING EXOPLANET DISCOVERIES BY DIRECT DETECTION
Brown, Robert A.; Soummer, Remi
2010-05-20
We report on new methods for evaluating realistic observing programs that search stars for planets by direct imaging, where observations are selected from an optimized star list and stars can be observed multiple times. We show how these methods bring critical insight into the design of the mission and its instruments. These methods provide an estimate of the outcome of the observing program: the probability distribution of discoveries (detection and/or characterization) and an estimate of the occurrence rate of planets ({eta}). We show that these parameters can be accurately estimated from a single mission simulation, without the need for a complete Monte Carlo mission simulation, and we prove the accuracy of this new approach. Our methods provide tools to define a mission for a particular science goal; for example, a mission can be defined by the expected number of discoveries and its confidence level. We detail how an optimized star list can be built and how successive observations can be selected. Our approach also provides other critical mission attributes, such as the number of stars expected to be searched and the probability of zero discoveries. Because these attributes depend strongly on the mission scale (telescope diameter, observing capabilities and constraints, mission lifetime, etc.), our methods are directly applicable to the design of such future missions and provide guidance to the mission and instrument design based on scientific performance. We illustrate our new methods with practical calculations and exploratory design reference missions for the James Webb Space Telescope (JWST) operating with a distant starshade to reduce scattered and diffracted starlight on the focal plane. We estimate that five habitable Earth-mass planets would be discovered and characterized with spectroscopy, with a probability of zero discoveries of 0.004, assuming a small fraction of JWST observing time (7%), {eta} = 0.3, and 70 observing visits, limited by starshade
Reliable Transition State Searches Integrated with the Growing String Method.
Zimmerman, Paul
2013-07-09
The growing string method (GSM) is highly useful for locating reaction paths connecting two molecular intermediates. GSM has often been used in a two-step procedure to locate exact transition states (TS), where GSM creates a quality initial structure for a local TS search. This procedure and others like it, however, do not always converge to the desired transition state because the local search is sensitive to the quality of the initial guess. This article describes an integrated technique for simultaneous reaction path and exact transition state search. This is achieved by implementing an eigenvector following optimization algorithm in internal coordinates with Hessian update techniques. After partial convergence of the string, an exact saddle point search begins under the constraint that the maximized eigenmode of the TS node Hessian has significant overlap with the string tangent near the TS. Subsequent optimization maintains connectivity of the string to the TS as well as locks in the TS direction, all but eliminating the possibility that the local search leads to the wrong TS. To verify the robustness of this approach, reaction paths and TSs are found for a benchmark set of more than 100 elementary reactions.
Wang, Jin; Zhang, Chen; Wang, Yuanyuan
2017-05-30
In photoacoustic tomography (PAT), total variation (TV) based iteration algorithm is reported to have a good performance in PAT image reconstruction. However, classical TV based algorithm fails to preserve the edges and texture details of the image because it is not sensitive to the direction of the image. Therefore, it is of great significance to develop a new PAT reconstruction algorithm to effectively solve the drawback of TV. In this paper, a directional total variation with adaptive directivity (DDTV) model-based PAT image reconstruction algorithm, which weightedly sums the image gradients based on the spatially varying directivity pattern of the image is proposed to overcome the shortcomings of TV. The orientation field of the image is adaptively estimated through a gradient-based approach. The image gradients are weighted at every pixel based on both its anisotropic direction and another parameter, which evaluates the estimated orientation field reliability. An efficient algorithm is derived to solve the iteration problem associated with DDTV and possessing directivity of the image adaptively updated for each iteration step. Several texture images with various directivity patterns are chosen as the phantoms for the numerical simulations. The 180-, 90- and 30-view circular scans are conducted. Results obtained show that the DDTV-based PAT reconstructed algorithm outperforms the filtered back-projection method (FBP) and TV algorithms in the quality of reconstructed images with the peak signal-to-noise rations (PSNR) exceeding those of TV and FBP by about 10 and 18 dB, respectively, for all cases. The Shepp-Logan phantom is studied with further discussion of multimode scanning, convergence speed, robustness and universality aspects. In-vitro experiments are performed for both the sparse-view circular scanning and linear scanning. The results further prove the effectiveness of the DDTV, which shows better results than that of the TV with sharper image edges and
Laser housing having integral mounts and method of manufacturing same
Herron, Michael Alan; Brickeen, Brian Keith
2004-10-19
A housing adapted to position, support, and facilitate aligning various components, including an optical path assembly, of a laser. In a preferred embodiment, the housing is constructed from a single piece of material and broadly comprises one or more through-holes; one or more cavities; and one or more integral mounts, wherein the through-holes and the cavities cooperate to define the integral mounts. Securement holes machined into the integral mounts facilitate securing components within the integral mounts using set screws, adhesive, or a combination thereof. In a preferred method of making the housing, the through-holes and cavities are first machined into the single piece of material, with at least some of the remaining material forming the integral mounts.
ERIC Educational Resources Information Center
Hardison, Debra M.
This paper describes a teacher education program that integrates second language acquisition theory and research with language teaching methods, practical issues, and the development of collegiality in a cooperative professor-student approach. Although not all theoretical approaches may find direct application in the classroom, many have informed…
Application of integrated fluid-thermal-structural analysis methods
NASA Technical Reports Server (NTRS)
Wieting, Allan R.; Dechaumphai, Pramote; Bey, Kim S.; Thornton, Earl A.; Morgan, Ken
1988-01-01
Hypersonic vehicles operate in a hostile aerothermal environment which has a significant impact on their aerothermostructural performance. Significant coupling occurs between the aerodynamic flow field, structural heat transfer, and structural response creating a multidisciplinary interaction. Interfacing state-of-the-art disciplinary analysis methods is not efficient, hence interdisciplinary analysis methods integrated into a single aerothermostructural analyzer are needed. The NASA Langley Research Center is developing such methods in an analyzer called LIFTS (Langley Integrated Fluid-Thermal-Structural) analyzer. The evolution and status of LIFTS is reviewed and illustrated through applications.
Application of integrated fluid-thermal structural analysis methods
NASA Technical Reports Server (NTRS)
Wieting, Allan R.; Dechaumphai, Pramote; Bey, Kim S.; Thornton, Earl A.; Morgan, Ken
1988-01-01
Hypersonic vehicles operate in a hostile aerothermal environment which has a significant impact on their aerothermostructural performance. Significant coupling occurs between the aerodynamic flow field, structural heat transfer, and structural response creating a multidisciplinary interaction. Interfacing state-of-the-art disciplinary analysis methods are not efficient, hence interdisciplinary analysis methods integrated into a single aerothermostructural analyzer are needed. The NASA Langley Research Center is developing such methods in an analyzer called LIFTS (Langley Integrated Fluid-Thermal-Structural) analyzer. The evolution and status of LIFTS is reviewed and illustrated through applications.
Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.
2013-01-01
Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.
[Study on plastic film thickness measurement by integral spectrum method].
Qiu, Chao; Sun, Xiao-Gang
2013-01-01
Band integral transmission was defined and plastic film thickness measurement model was built by analyzing the intensity variation when the light passes plastic film, after the concept of band Lambert Law was proposed. Polypropylene film samples with different thickness were taken as the research object, and their spectral transmission was measured by the spectrometer. The relationship between thickness and band integral transmission is fitted using the model mentioned before. The feasibility of developing new broad band plastic film thickness on-line measurement system based on this method was analysed employing the ideal blackbody at temperature of 500 K. The experimental results indicate that plastic film thickness will be measured accurately by integral spectrum method. Plastic film thickness on-line measurement system based on this method will hopefully solve the problems of that based on dual monochromatic light contrast method, such as low accuracy, poor universality and so on.
A Comparison of Treatment Integrity Assessment Methods for Behavioral Intervention
ERIC Educational Resources Information Center
Koh, Seong A.
2010-01-01
The purpose of this study was to examine the similarity of outcomes from three different treatment integrity (TI) methods, and to identify the method which best corresponded to the assessment of a child's behavior. Six raters were recruited through individual contact via snowball sampling. A modified intervention component list and 19 video clips…
Method and system of integrating information from multiple sources
Alford, Francine A.; Brinkerhoff, David L.
2006-08-15
A system and method of integrating information from multiple sources in a document centric application system. A plurality of application systems are connected through an object request broker to a central repository. The information may then be posted on a webpage. An example of an implementation of the method and system is an online procurement system.
When Curriculum and Technology Meet: Technology Integration in Methods Courses
ERIC Educational Resources Information Center
Keeler, Christy G.
2008-01-01
Reporting on the results of an action research study, this manuscript provides examples of strategies used to integrate technology into a content methods course. The study used reflective teaching of a social studies methods course at a major Southwestern university in 10 course sections over a four-semester period. In alignment with the research…
A Comparison of Treatment Integrity Assessment Methods for Behavioral Intervention
ERIC Educational Resources Information Center
Koh, Seong A.
2010-01-01
The purpose of this study was to examine the similarity of outcomes from three different treatment integrity (TI) methods, and to identify the method which best corresponded to the assessment of a child's behavior. Six raters were recruited through individual contact via snowball sampling. A modified intervention component list and 19 video clips…
Liu, Changchun; Cui, Dafu; Chen, Xing
2007-11-02
In this paper, one poly(dimethylsiloxane) (PDMS) sandwich microchip integrated with one direct-contacting optical fiber was fabricated by using a thin-casting method. This novel integrated PDMS sandwich microchip included top glass plate, PDMS membrane replica with microfluidic networks and optical fiber, flat PDMS membrane and bottom glass plate. As the tip of excitation optical fiber completely contacted with the separation microchannel in this integrated microchip, it not only increased the excitation light intensity to achieve the high sensitivity, but also reduced the diameter of excitation beam to obtain high resolution. In addition, we found that this rigid PDMS sandwich microchip structure effectively prevented PDMS microchannel distortion from rigid optical fiber, and provided a substantial convenience for microchips manipulating. A blue light-emitting diode (LED) was applied as excitation source by using optical fiber to couple excitation light into its direct-contacting microchannel for fluorescence detection. The performances of this integrated PDMS sandwich microchip was demonstrated by separating the mixture of sodium fluorescein (SF) and fluorescein isothiocyanate isomer I (FITC), and showed a higher sensitive and resolution than those obtained from the conventional integrated optical-fiber PDMS microchip with a 100-microm distance between fiber tip and separation microchannel. Additionally, the reproducibility of this integrated microchip with LED-induced fluorescence detection was also examined by separation of a mixture of FITC-labeled amino acids.
A Flow SPR Immunosensor Based on a Sandwich Direct Method
Tomassetti, Mauro; Conta, Giorgia; Campanella, Luigi; Favero, Gabriele; Sanzò, Gabriella; Mazzei, Franco; Antiochia, Riccarda
2016-01-01
In this study, we report the development of an SPR (Surface Plasmon Resonance) immunosensor for the detection of ampicillin, operating under flow conditions. SPR sensors based on both direct (with the immobilization of the antibody) and competitive (with the immobilization of the antigen) methods did not allow the detection of ampicillin. Therefore, a sandwich-based sensor was developed which showed a good linear response towards ampicillin between 10−3 and 10−1 M, a measurement time of ≤20 min and a high selectivity both towards β-lactam antibiotics and antibiotics of different classes. PMID:27187486
A direct method for the N-tetraalkylation of azamacrocycles
Counsell, Andrew J; Jones, Angus T
2016-01-01
An efficient protocol for the direct synthesis of N-tetraalkylated derivatives of the azamacrocycles cyclam and cyclen has been developed, using a partially miscible aqueous–organic solvent system with propargyl bromide, benzyl bromide, and related halides. The method works most effectively when the reaction mixture is shaken, not stirred. A crystal structure of the N-tetrapropargyl cyclam derivative 1,4,8,11-tetra(prop-2-yn-1-yl)-1,4,8,11-tetraazacyclotetradecane diperchlorate is reported. PMID:28144313
New inversion methods for the Lorentz Integral Transform
NASA Astrophysics Data System (ADS)
Andreasi, D.; Leidemann, W.; Reiß, C.; Schwamb, M.
2005-06-01
The Lorentz Integral Transform approach allows microscopic calculations of electromagnetic reaction cross-sections without explicit knowledge of final-state wave functions. The necessary inversion of the transform has to be treated with great care, since it constitutes a so-called ill-posed problem. In this work new inversion techniques for the Lorentz Integral Transform are introduced. It is shown that they all contain a regularization scheme, which is necessary to overcome the ill-posed problem. In addition, it is illustrated that the new techniques have a much broader range of application than the present standard inversion method of the Lorentz Integral Transform.
Jacobi-Integral Method For Two-Body Problem
NASA Technical Reports Server (NTRS)
Bond, Victor R.; Gottlieb, Robert G.; Fraietta, Michael F.
1991-01-01
Jacobi-integral method enables efficient, accurate computation of trajectory of natural satellite or spacecraft perturbed by component of gravitational potential depending explicitly on both position and time. Instead of total energy, Jacobi integral, which is energylike constant of motion in this case, embedded in Newtonian differential equations of motion. Trajectories computed in fewer steps. With modifications, applicable to such terrestrial problems as motions of rotors and of beams of electrically charged particles in changing electrical and magnetic fields.
Solodov, A. A.; Anderson, K. S.; Betti, R.; Gotcheva, V.; Myatt, J.; Delettrez, J. A.; Skupsky, S.; Theobald, W.; Stoeckl, C.
2009-05-15
A thorough understanding of future integrated fast-ignition experiments combining compression and heating of high-density thermonuclear fuel requires hybrid (fluid+particle) simulations of the implosion and ignition process. Different spatial and temporal scales need to be resolved to model the entire fast-ignition experiment. The two-dimensional (2D) axisymmetric hydrocode DRACO[P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)] and the 2D/three-dimensional hybrid particle-in-cell code LSP[D. R. Welch et al., Nucl. Instrum. Methods Phys. Res. A 464, 134 (2001)] have been integrated to simulate the implosion and heating of direct-drive, fast-ignition fusion targets. DRACO includes the physics required to simulate compression, ignition, and burn of fast-ignition targets. LSP simulates the transport of hot electrons from the place where they are generated to the dense fuel core where their energy is absorbed. The results from integrated simulations of cone-in-shell CD targets designed for fast-ignition experiments on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997); C. Stoeckl et al., Fusion Sci. Technol. 49, 367 (2006)] are presented. Target heating and neutron yields are computed. The results from LSP simulations of electron transport in solid-density plastic targets are also presented. They confirm an increase in the electron divergence angle with the laser intensity in the current experiments. The self-generated resistive magnetic field is found to collimate the hot-electron beam and increase the coupling efficiency of hot electrons with the target. Resistive filamentation of the hot-electron beam is also observed.
Solodov, A.A.; Anderson, K.S.; Betti, R.; Gotcheva, V.; Myatt, J.; Delettrez, J.A.; Skupsky, S.; Theobald, W.; Stoeckl, C.
2009-04-28
A thorough understanding of future integrated fast-ignition experiments combining compression and heating of high-density thermonuclear fuel requires hybrid (fluid+particle) simulations of the implosion and ignition process. Different spatial and temporal scales need to be resolved to model the entire fast-ignition experiment. The two-dimensional (2D) axisymmetric hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)] and the 2D/three-dimensional hybrid particle-in-cell code LSP [D. R. Welch et al., Nucl. Instrum. Methods Phys. Res. A 464, 134 (2001)] have been integrated to simulate the implosion and heating of direct-drive, fast-ignition fusion targets. DRACO includes the physics required to simulate compression, ignition, and burn of fast-ignition targets. LSP simulates the transport of hot electrons from the place where they are generated to the dense fuel core where their energy is absorbed. The results from integrated simulations of cone-in-shell CD targets designed for fast-ignition experiments on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997); C. Stoeckl et al., Fusion Sci. Technol. 49, 367 (2006)] are presented. Target heating and neutron yields are computed. The results from LSP simulations of electron transport in solid-density plastic targets are also presented. They confirm an increase in the electron divergence angle with the laser intensity in the current experiments. The self-generated resistive magnetic field is found to collimate the hot-electron beam and increase the coupling efficiency of hot electrons with the target. Resistive filamentation of the hot-electron beam is also observed.
Directed self-assembly process integration: Fin patterning approaches and challenges
NASA Astrophysics Data System (ADS)
Sayan, Safak; Chan, B. T.; Gronheid, Roel; Van Roey, Frieda; Kim, Min-Soo; Williamson, Lance; Nealey, Paul
2014-03-01
Resolution requirements for photolithography have reached beyond the wavelength of light. Consequently, it is becoming increasingly complicated and expensive to further minimize feature dimensions as required to push the limits of Moore's law. EUV lithography has been the much anticipated solution; however, its insertion timing for High Volume Manufacturing is still an uncertainty due to source power and EUV mask infrastructure limitations. Extending the limits of 193nm immersion lithography requires pitch division using either Double Patterning Pitch Division (DPPD), and/or Spacer Based Pitch Division (SBPD) schemes (e.g. Hard mask image transfer methods (Double, Triple, Quadruple)). While these approaches reduce pitch, there is an associated risk/compromise of process complexity, and overlay accuracy budget issues. Directed Self Assembly (DSA) processes offer the promise of providing alternative ways to extend optical lithography cost-effectively for sub-10nm nodes and present itself as an alternative pitch division approach. As a result, DSA has gained increased momentum in recent years, as a means for extending optical lithography past its current limits. The availability of a DSA processing line can enable to further push the limits of 193nm immersion lithography and overcome some of the critical concerns for EUV lithography. Robust etch transfer of DSA patterns into commonly used device integration materials such as silicon, silicon nitride, and silicon dioxide had been previously demonstrated [1,2]. However DSA integration to CMOS process flows, including cut/keep structures to form fin arrays, is yet to be demonstrated on relevant film stacks (front-end-of-line device integration such as hard mask stacks, and STI stacks). Such a demonstration will confirm and reinforce its viability as a candidate for sub-10nm technology nodes.
Holographic LEED: A direct method for surface crystallography
NASA Astrophysics Data System (ADS)
Vamvakas, John Athanasios
Since 1960's Low Energy Electron Diffraction (LEED) has been one of the most reliable methods for surface crystallography. It has solved hundreds of structures over the past 20-25 years and continues to be a powerful tool in the hands of crystallographers. Yet, the main disadvantage of the method is the fact that it is very time consuming. The programs that do the multiple scattering calculations can run literally for days! The key part of the method is the initial "guess" of a structure that will be close the one being seeked. A wrong guess would lead to huge amounts of wasted time and effort. We suggest a direct method that can give us a pretty good idea of the structure under determination. We call this method of ours: Holographic LEED (h-LEED) because it is based on the ideas of Dennis Gabor, the inventor of holography. The 3D images h-LEED reconstructs from LEED diffraction patterns can be reliably used to initialize LEED thus reducing the annoying computation time as well as the effort required by the crystallographer. We show that h-LEED produces good images for p(2× 2) reconstruction of adsorbed atoms by testing it on two adsorption systems: O/Ni(001) and K/Ni(001). The images were reconstructed from both diffuse LEED patterns from disordered adsorbates and superstructure Bragg spots from ordered adsorbates.
Parallel Performance Optimization of the Direct Simulation Monte Carlo Method
NASA Astrophysics Data System (ADS)
Gao, Da; Zhang, Chonglin; Schwartzentruber, Thomas
2009-11-01
Although the direct simulation Monte Carlo (DSMC) particle method is more computationally intensive compared to continuum methods, it is accurate for conditions ranging from continuum to free-molecular, accurate in highly non-equilibrium flow regions, and holds potential for incorporating advanced molecular-based models for gas-phase and gas-surface interactions. As available computer resources continue their rapid growth, the DSMC method is continually being applied to increasingly complex flow problems. Although processor clock speed continues to increase, a trend of increasing multi-core-per-node parallel architectures is emerging. To effectively utilize such current and future parallel computing systems, a combined shared/distributed memory parallel implementation (using both Open Multi-Processing (OpenMP) and Message Passing Interface (MPI)) of the DSMC method is under development. The parallel implementation of a new state-of-the-art 3D DSMC code employing an embedded 3-level Cartesian mesh will be outlined. The presentation will focus on performance optimization strategies for DSMC, which includes, but is not limited to, modified algorithm designs, practical code-tuning techniques, and parallel performance optimization. Specifically, key issues important to the DSMC shared memory (OpenMP) parallel performance are identified as (1) granularity (2) load balancing (3) locality and (4) synchronization. Challenges and solutions associated with these issues as they pertain to the DSMC method will be discussed.
Direct field method for root biomass quantification in agroecosystems.
Frasier, Ileana; Noellemeyer, Elke; Fernández, Romina; Quiroga, Alberto
2016-01-01
The present article describes a field auger sampling method for row-crop root measurements. In agroecosystems where crops are planted in a specific design (row crops), sampling procedures for root biomass quantification need to consider the spatial variability of the root system. This article explains in detail how to sample and calculate root biomass considering the sampling position in the field and the differential weight of the root biomass in the inter-row compared to the crop row when expressing data per area unit. This method is highly reproducible in the field and requires no expensive equipment and/or special skills. It proposes to use a narrow auger thus reducing field labor with less destructive sampling, and decreases laboratory time because samples are smaller. The small sample size also facilitates the washing and root separation with tweezers. This method is suitable for either winter- or summer crop roots. •Description of a direct field method for row-crop root measurements.•Description of data calculation for total root-biomass estimation per unit area.•The proposed method is simple, less labor- and less time consuming.
Retrieval practice can eliminate list method directed forgetting.
Abel, Magdalena; Bäuml, Karl-Heinz T
2016-01-01
It has recently been shown that retrieval practice can reduce memories' susceptibility to interference, like retroactive and proactive interference. In this study, we therefore examined whether retrieval practice can also reduce list method directed forgetting, a form of intentional forgetting that presupposes interference. In each of two experiments, subjects successively studied two lists of items. After studying each single list, subjects restudied the list items to enhance learning, or they were asked to recall the items. Following restudy or retrieval practice of list 1 items, subjects were cued to either forget the list or remember it for an upcoming final test. Experiment 1 employed a free-recall and Experiment 1 a cued-recall procedure on the final memory test. In both experiments, directed forgetting was present in the restudy condition but was absent in the retrieval-practice condition, indicating that retrieval practice can reduce or even eliminate this form of forgetting. The results are consistent with the view that retrieval practice enhances list segregation processes. Such processes may reduce interference between lists and thus reduce directed forgetting.
A flexible importance sampling method for integrating subgrid processes
Raut, E. K.; Larson, V. E.
2016-01-29
Numerical models of weather and climate need to compute grid-box-averaged rates of physical processes such as microphysics. These averages are computed by integrating subgrid variability over a grid box. For this reason, an important aspect of atmospheric modeling is spatial integration over subgrid scales. The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integration is simple and general but requires many evaluations of the physical process rate. To reduce the number of function evaluations, this paper describes a new, flexible method of importance sampling. It divides the domain of integration into eight categories, such as the portion that containsmore » both precipitation and cloud, or the portion that contains precipitation but no cloud. It then allows the modeler to prescribe the density of sample points within each of the eight categories. The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler (SILHS). The resulting method is tested on drizzling cumulus and stratocumulus cases. In the cumulus case, the sampling error can be considerably reduced by drawing more sample points from the region of rain evaporation.« less
A flexible importance sampling method for integrating subgrid processes
NASA Astrophysics Data System (ADS)
Raut, E. K.; Larson, V. E.
2016-01-01
Numerical models of weather and climate need to compute grid-box-averaged rates of physical processes such as microphysics. These averages are computed by integrating subgrid variability over a grid box. For this reason, an important aspect of atmospheric modeling is spatial integration over subgrid scales. The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integration is simple and general but requires many evaluations of the physical process rate. To reduce the number of function evaluations, this paper describes a new, flexible method of importance sampling. It divides the domain of integration into eight categories, such as the portion that contains both precipitation and cloud, or the portion that contains precipitation but no cloud. It then allows the modeler to prescribe the density of sample points within each of the eight categories. The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler (SILHS). The resulting method is tested on drizzling cumulus and stratocumulus cases. In the cumulus case, the sampling error can be considerably reduced by drawing more sample points from the region of rain evaporation.
Li, Shanzhi; Wang, Haoping; Tian, Yang; Aitouch, Abdel; Klein, John
2016-09-01
This paper presents an intelligent proportional-integral sliding mode control (iPISMC) for direct power control of variable speed-constant frequency wind turbine system. This approach deals with optimal power production (in the maximum power point tracking sense) under several disturbance factors such as turbulent wind. This controller is made of two sub-components: (i) an intelligent proportional-integral module for online disturbance compensation and (ii) a sliding mode module for circumventing disturbance estimation errors. This iPISMC method has been tested on FAST/Simulink platform of a 5MW wind turbine system. The obtained results demonstrate that the proposed iPISMC method outperforms the classical PI and intelligent proportional-integral control (iPI) in terms of both active power and response time. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Ya; Liao, Yang; Sugioka, Koji
2014-03-01
The creation of complex three-dimensional (3D) fluidic systems composed of hollow micro- and nanostructures embedded in transparent substrates has attracted significant attention from both scientific and applied research communities. However, it is by now still a formidable challenge to build 3D micro- and nanofluidic structures with arbitrary configurations using conventional planar lithographic fabrication methods. As a direct and maskless fabrication technique, femtosecond laser micromachining provides a straightforward approach for high-precision spatial-selective modification inside transparent materials through nonlinear optical absorption. Here, we demonstrate rapid fabrication of high-aspect-ratio micro- and/or nanofluidic structures with various 3D configurations in glass substrates by femtosecond laser direct writing. Based on this approach, we demonstrate several functional micro- and nanofluidic devices including a 3D passive microfluidic mixer, a capillary electrophoresis (CE) analysis chip, and an integrated micro-nanofluidic system for single DNA analysis. This technology offers new opportunities to develop novel 3D micro-nanofluidic systems for a variety of lab-on-a-chip applications.
Explicit Integration of Extremely Stiff Reaction Networks: Asymptotic Methods
Guidry, Mike W; Budiardja, R.; Feger, E.; Billings, J. J.; Hix, William Raphael; Messer, O.E.B.; Roche, K. J.; McMahon, E.; He, M.
2013-01-01
We show that, even for extremely stiff systems, explicit integration may compete in both accuracy and speed with implicit methods if algebraic methods are used to stabilize the numerical integration. The stabilizing algebra differs for systems well removed from equilibrium and those near equilibrium. This paper introduces a quantitative distinction between these two regimes and addresses the former case in depth, presenting explicit asymptotic methods appropriate when the system is extremely stiff but only weakly equilibrated. A second paper [1] examines quasi-steady-state methods as an alternative to asymptotic methods in systems well away from equilibrium and a third paper [2] extends these methods to equilibrium conditions in extremely stiff systems using partial equilibrium methods. All three papers present systematic evidence for timesteps competitive with implicit methods. Because explicit methods can execute a timestep faster than an implicit method, our results imply that algebraically stabilized explicit algorithms may offer a means to integration of larger networks than have been feasible previously in various disciplines.
Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide
Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won
2015-01-01
We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits. PMID:26135115
Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide.
Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Kim, Un Jeong; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won
2015-07-02
We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a "plasmonic via" in plasmonic nanocircuits.
Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide
NASA Astrophysics Data System (ADS)
Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won
2015-07-01
We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits.
A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting.
Liu, Chong; Tang, Jinyao; Chen, Hao Ming; Liu, Bin; Yang, Peidong
2013-06-12
Artificial photosynthesis, the biomimetic approach to converting sunlight's energy directly into chemical fuels, aims to imitate nature by using an integrated system of nanostructures, each of which plays a specific role in the sunlight-to-fuel conversion process. Here we describe a fully integrated system of nanoscale photoelectrodes assembled from inorganic nanowires for direct solar water splitting. Similar to the photosynthetic system in a chloroplast, the artificial photosynthetic system comprises two semiconductor light absorbers with large surface area, an interfacial layer for charge transport, and spatially separated cocatalysts to facilitate the water reduction and oxidation. Under simulated sunlight, a 0.12% solar-to-fuel conversion efficiency is achieved, which is comparable to that of natural photosynthesis. The result demonstrates the possibility of integrating material components into a functional system that mimics the nanoscopic integration in chloroplasts. It also provides a conceptual blueprint of modular design that allows incorporation of newly discovered components for improved performance.
A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting
Liu, Chong; Tang, Jinyao; Chen, Hao Ming; Liu, Bin; Yang, Peidong
2013-06-12
Artificial photosynthesis, the biomimetic approach to converting sunlight?s energy directly into chemical fuels, aims to imitate nature by using an integrated system of nanostructures, each of which plays a specific role in the sunlight-to-fuel conversion process. Here we describe a fully integrated system of nanoscale photoelectrodes assembled from inorganic nanowires for direct solar water splitting. Similar to the photosynthetic system in a chloroplast, the artificial photosynthetic system comprises two semiconductor light absorbers with large surface area, an interfacial layer for charge transport, and spatially separated cocatalysts to facilitate the water reduction and oxidation. Under simulated sunlight, a 0.12percent solar-to-fuel conversion efficiency is achieved, which is comparable to that of natural photosynthesis. The result demonstrates the possibility of integrating material components into a functional system that mimics the nanoscopic integration in chloroplasts. It also provides a conceptual blueprint of modular design that allows incorporation of newly discovered components for improved performance.
Methods and future directions for paleoclimatology in the Maya Lowlands
NASA Astrophysics Data System (ADS)
Douglas, Peter M. J.; Brenner, Mark; Curtis, Jason H.
2016-03-01
A growing body of paleoclimate data indicates that periods of severe drought affected the Maya Lowlands of southeastern Mexico and northern Central America, especially during the Terminal Classic period (ca. 800-950 CE), raising the possibility that climate change contributed to the widespread collapse of many Maya polities at that time. A broad range of paleoclimate proxy methods have been applied in the Maya Lowlands and the data derived from these methods are sometimes challenging for archeologists and other non-specialists to interpret. This paper reviews the principal methods used for paleoclimate inference in the region and the rationale for climate proxy interpretation to help researchers working in the Maya Lowlands make sense of paleoclimate datasets. In particular, we focus on analyses of speleothems and lake sediment cores. These two paleoclimate archives have been most widely applied in the Maya Lowlands and have the greatest potential to provide insights into climate change impacts on the ancient Maya. We discuss the development of chronologies for these climate archives, the proxies for past climate change found within them, and how these proxy variables are interpreted. Finally, we present strategies for improving our understanding of proxy paleoclimate data from the Maya Lowlands, including multi-proxy analyses, assessment of spatial variability in past climate change, combined analysis of climate models and proxy data, and the integration of paleoclimatology and archeology.
Method and apparatus for high-efficiency direct contact condensation
Bharathan, Desikan; Parent, Yves; Hassani, A. Vahab
1999-01-01
A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions. and the geometric properties of the contact medium.
Method and apparatus for high-efficiency direct contact condensation
Bharathan, D.; Parent, Y.; Hassani, A.V.
1999-07-20
A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions, and the geometric properties of the contact medium. 39 figs.
A direct method for e-cigarette aerosol sample collection.
Olmedo, Pablo; Navas-Acien, Ana; Hess, Catherine; Jarmul, Stephanie; Rule, Ana
2016-08-01
E-cigarette use is increasing in populations around the world. Recent evidence has shown that the aerosol produced by e-cigarettes can contain a variety of toxicants. Published studies characterizing toxicants in e-cigarette aerosol have relied on filters, impingers or sorbent tubes, which are methods that require diluting or extracting the sample in a solution during collection. We have developed a collection system that directly condenses e-cigarette aerosol samples for chemical and toxicological analyses. The collection system consists of several cut pipette tips connected with short pieces of tubing. The pipette tip-based collection system can be connected to a peristaltic pump, a vacuum pump, or directly to an e-cigarette user for the e-cigarette aerosol to flow through the system. The pipette tip-based system condenses the aerosol produced by the e-cigarette and collects a liquid sample that is ready for analysis without the need of intermediate extraction solutions. We tested a total of 20 e-cigarettes from 5 different brands commercially available in Maryland. The pipette tip-based collection system condensed between 0.23 and 0.53mL of post-vaped e-liquid after 150 puffs. The proposed method is highly adaptable, can be used during field work and in experimental settings, and allows collecting aerosol samples from a wide variety of e-cigarette devices, yielding a condensate of the likely exact substance that is being delivered to the lungs.
Revisiting Seismic Tomography Through Direct Methods and High Performance Computing
NASA Astrophysics Data System (ADS)
Ishii, M.; Bogiatzis, P.; Davis, T. A.
2015-12-01
Over the last two decades, the rapid increase in data availability and computational power significantly increased the number of data and model parameters that can be investigated in seismic tomography problems. Often, the model space consists of 105-106 unknown parameters and there are comparable numbers of observations, making direct computational methods such as the singular value decomposition prohibitively expensive or impossible, leaving iterative solvers as the only alternative option. Among the disadvantages of the iterative algorithms is that the inverse of the matrix that defines the system is not explicitly formed. As a consequence, the model resolution and covariance matrices, that are crucial for the quantitative assessment of the uncertainty of the tomographic models, cannot be computed. Despite efforts in finding computationally affordable approximations of these matrices, challenges remain, and approaches such as the checkerboard resolution tests continue to be used. Based upon recent developments in sparse algorithms and high performance computing resources, we demonstrate that direct methods are becoming feasible for large seismic tomography problems, and apply the technique to obtain a regional P-wave tomography model and its full resolution matrix with 267,520 parameters. Furthermore, we show that the structural analysis of the forward operators of the seismic tomography problems can provide insights into the inverse problem, and allows us to determine and exploit approximations that yield accurate solutions.
Voice/Data Integration in Mobile Radio Networks: Overview and Future Research Directions
1989-09-30
INTEGRATION IN MOBILE RADIO NETWORKS: Overview and Future Research Directions 1. INTRODUCTION The traditional approach in communication network design has been...analytical techniques are not available. In addi- tion, the interrelationships between voice/data integration and other aspects of network design , such...the major issues that must be addressed when designing such networks and represents our understanding of this problem after a short period of
Integrative methods for analyzing big data in precision medicine.
Gligorijević, Vladimir; Malod-Dognin, Noël; Pržulj, Nataša
2016-03-01
We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of "Big Data" in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simulation of turbulent flows using nodal integral method
NASA Astrophysics Data System (ADS)
Singh, Suneet
Nodal methods are the backbone of the production codes for neutron-diffusion and transport equations. Despite their high accuracy, use of these methods for simulation of fluid flow is relatively new. Recently, a modified nodal integral method (MNIM) has been developed for simulation of laminar flows. In view of its high accuracy and efficiency, extension of this method for the simulation of turbulent flows is a logical step forward. In this dissertation, MNIM is extended in two ways to simulate incompressible turbulent flows---a new MNIM is developed for the 2D k-epsilon equations; and 3D, parallel MNIM is developed for direct numerical simulations. Both developments are validated, and test problems are solved. In this dissertation, a new nodal numerical scheme is developed to solve the k-epsilon equations to simulate turbulent flows. The MNIM developed earlier for laminar flow equations is modified to incorporate eddy viscosity approximation and coupled with the above mentioned schemes for the k and epsilon equations, to complete the implementation of the numerical scheme for the k-epsilon model. The scheme developed is validated by comparing the results obtained by the developed method with the results available in the literature obtained using direct numerical simulations (DNS). The results of current simulations match reasonably well with the DNS results. The discrepancies in the results are mainly due to the limitations of the k-epsilon model rather than the deficiency in the developed MNIM. A parallel version of the MNIM is needed to enhance its capability, in order to carry out DNS of the turbulent flows. The parallelization of the scheme, however, presents some unique challenges as dependencies of the discrete variables are different from those that exist in other schemes (for example in finite volume based schemes). Hence, a parallel MNIM (PMNIM) is developed and implemented into a computer code with communication strategies based on the above mentioned
Statistical length measurement method by direct imaging of carbon nanotubes.
Bengio, E Amram; Tsentalovich, Dmitri E; Behabtu, Natnael; Kleinerman, Olga; Kesselman, Ellina; Schmidt, Judith; Talmon, Yeshayahu; Pasquali, Matteo
2014-05-14
The influence of carbon nanotube (CNT) length on their macroscopic properties requires an accurate methodology for CNT length measurement. So far, existing techniques are limited to short (less than a few micrometers) CNTs and sample preparation methods that bias the measured values. Here, we show that the average length of carbon nanotubes (CNTs) can be measured by cryogenic transmission electron microscopy (cryo-TEM) of CNTs in chlorosulfonic acid. The method consists of dissolving at low concentration CNTs in chlorosulfonic acid (a true solvent), imaging the individual CNTs by cryo-TEM, and processing and analyzing the images to determine CNT length. By measuring the total CNT contour length and number of CNT ends in each image, and by applying statistical analysis, we extend the method to cases where each CNT is long enough to span many cryo-TEM images, making the direct length measurement of an entire CNT impractical. Hence, this new technique can be used effectively to estimate samples in a wide range of CNT lengths, although we find that cryo-TEM imaging may bias the measurement towards longer CNTs, which are easier to detect. Our statistical method is also applied to AFM images of CNTs to show that, by using only a few AFM images, it yields estimates that are consistent with literature techniques, based on individually measuring a higher number of CNTs.
A direct simulation method for flows with suspended paramagnetic particles
Kang, Tae Gon; Hulsen, Martien A. Toonder, Jaap M.J. den; Anderson, Patrick D.; Meijer, Han E.H.
2008-04-20
A direct numerical simulation method based on the Maxwell stress tensor and a fictitious domain method has been developed to solve flows with suspended paramagnetic particles. The numerical scheme enables us to take into account both hydrodynamic and magnetic interactions between particles in a fully coupled manner. Particles are assumed to be non-Brownian with negligible inertia. Rigid body motions of particles in 2D are described by a rigid-ring description implemented by Lagrange multipliers. The magnetic force, acting on the particles due to magnetic fields, is represented by the divergence of the Maxwell stress tensor, which acts as a body force added to the momentum balance equation. Focusing on two-dimensional problems, we solve a single-particle problem for verification. With the magnetic force working on the particle, the proper number of collocation points is found to be two points per element. The convergence with mesh refinement is verified by comparing results from regular mesh problems with those from a boundary-fitted mesh problem as references. We apply the developed method to two application problems: two-particle interaction in a uniform magnetic field and the motion of a magnetic chain in a rotating field, demonstrating the capability of the method to tackle general problems. In the motion of a magnetic chain, especially, the deformation pattern at break-up is similar to the experimentally observed one. The present formulation can be extended to three-dimensional and viscoelastic flow problems.
Methods of centers and methods of feasible directions for the solution of optimal control problems.
NASA Technical Reports Server (NTRS)
Polak, E.; Mukai, H.; Pironneau, O.
1971-01-01
Demonstration of the applicability of methods of centers and of methods of feasible directions to optimal control problems. Presented experimental results show that extensions of Frank-Wolfe (1956), Zoutendijk (1960), and Pironneau-Polak (1971) algorithms for nonlinear programming problems can be quite efficient in solving optimal control problems.
Conjugated carbon monolayer membranes: methods for synthesis and integration.
Unarunotai, Sakulsuk; Murata, Yuya; Chialvo, Cesar E; Mason, Nadya; Petrov, Ivan; Nuzzo, Ralph G; Moore, Jeffrey S; Rogers, John A
2010-03-12
Monolayer membranes of conjugated carbon represent a class of nanomaterial with demonstrated uses in various areas of electronics, ranging from transparent, flexible, and stretchable thin film conductors, to semiconducting materials in moderate and high-performance field-effect transistors. Although graphene represents the most prominent example, many other more structurally and chemically diverse systems are also of interest. This article provides a review of demonstrated synthetic and integration strategies, and speculates on future directions for the field.
An advanced Gibbs-Duhem integration method: theory and applications.
van 't Hof, A; Peters, C J; de Leeuw, S W
2006-02-07
The conventional Gibbs-Duhem integration method is very convenient for the prediction of phase equilibria of both pure components and mixtures. However, it turns out to be inefficient. The method requires a number of lengthy simulations to predict the state conditions at which phase coexistence occurs. This number is not known from the outset of the numerical integration process. Furthermore, the molecular configurations generated during the simulations are merely used to predict the coexistence condition and not the liquid- and vapor-phase densities and mole fractions at coexistence. In this publication, an advanced Gibbs-Duhem integration method is presented that overcomes above-mentioned disadvantage and inefficiency. The advanced method is a combination of Gibbs-Duhem integration and multiple-histogram reweighting. Application of multiple-histogram reweighting enables the substitution of the unknown number of simulations by a fixed and predetermined number. The advanced method has a retroactive nature; a current simulation improves the predictions of previously computed coexistence points as well. The advanced Gibbs-Duhem integration method has been applied for the prediction of vapor-liquid equilibria of a number of binary mixtures. The method turned out to be very convenient, much faster than the conventional method, and provided smooth simulation results. As the employed force fields perfectly predict pure-component vapor-liquid equilibria, the binary simulations were very well suitable for testing the performance of different sets of combining rules. Employing Lorentz-Hudson-McCoubrey combining rules for interactions between unlike molecules, as opposed to Lorentz-Berthelot combining rules for all interactions, considerably improved the agreement between experimental and simulated data.
Digital methods of photopeak integration in activation analysis.
NASA Technical Reports Server (NTRS)
Baedecker, P. A.
1971-01-01
A study of the precision attainable by several methods of gamma-ray photopeak integration has been carried out. The 'total peak area' method, the methods proposed by Covell, Sterlinski, and Quittner, and some modifications of these methods have been considered. A modification by Wasson of the total peak area method is considered to be the most advantageous due to its simplicity and the relatively high precision obtainable with this technique. A computer routine for the analysis of spectral data from nondestructive activation analysis experiments employing a Ge(Li) detector-spectrometer system is described.
Scenario driven data modelling: a method for integrating diverse sources of data and data streams
Brettin, Thomas S.; Cottingham, Robert W.; Griffith, Shelton D.; Quest, Daniel J.
2015-09-08
A system and method of integrating diverse sources of data and data streams is presented. The method can include selecting a scenario based on a topic, creating a multi-relational directed graph based on the scenario, identifying and converting resources in accordance with the scenario and updating the multi-directed graph based on the resources, identifying data feeds in accordance with the scenario and updating the multi-directed graph based on the data feeds, identifying analytical routines in accordance with the scenario and updating the multi-directed graph using the analytical routines and identifying data outputs in accordance with the scenario and defining queries to produce the data outputs from the multi-directed graph.
Ab initio solution of macromolecular crystal structures without direct methods.
McCoy, Airlie J; Oeffner, Robert D; Wrobel, Antoni G; Ojala, Juha R M; Tryggvason, Karl; Lohkamp, Bernhard; Read, Randy J
2017-04-04
The majority of macromolecular crystal structures are determined using the method of molecular replacement, in which known related structures are rotated and translated to provide an initial atomic model for the new structure. A theoretical understanding of the signal-to-noise ratio in likelihood-based molecular replacement searches has been developed to account for the influence of model quality and completeness, as well as the resolution of the diffraction data. Here we show that, contrary to current belief, molecular replacement need not be restricted to the use of models comprising a substantial fraction of the unknown structure. Instead, likelihood-based methods allow a continuum of applications depending predictably on the quality of the model and the resolution of the data. Unexpectedly, our understanding of the signal-to-noise ratio in molecular replacement leads to the finding that, with data to sufficiently high resolution, fragments as small as single atoms of elements usually found in proteins can yield ab initio solutions of macromolecular structures, including some that elude traditional direct methods.
A method for direct measurement of protein stability in vivo.
Ignatova, Zoya; Gierasch, Lila M
2009-01-01
The stability of proteins is tuned by evolution to enable them to perform their cellular functions for the success of an organism. Yet, most of the arsenal of biophysical techniques at our disposal to characterize the thermodynamic stability of proteins is limited to in vitro samples. We describe an approach that we have developed to observe a protein directly in a cell and to monitor a fluorescence signal that reports the unfolding transition of the protein, yielding quantitatively interpretable stability data in vivo. The method is based on incorporation of structurally nonperturbing, specific binding motifs for a bis-arsenical fluorescein derivative in sites that result in dye fluorescence differences between the folded and unfolded states of the protein under study. This fluorescence labeling approach makes possible the determination of thermodynamic stability by direct urea titration in Escherichia coli cells. The specific case study we describe was carried out on the predominantly beta-sheet intracellular lipid-binding protein, cellular retinoic acid-binding protein (CRABP), expressed in E. coli.
A copula method for modeling directional dependence of genes
Kim, Jong-Min; Jung, Yoon-Sung; Sungur, Engin A; Han, Kap-Hoon; Park, Changyi; Sohn, Insuk
2008-01-01
Background Genes interact with each other as basic building blocks of life, forming a complicated network. The relationship between groups of genes with different functions can be represented as gene networks. With the deposition of huge microarray data sets in public domains, study on gene networking is now possible. In recent years, there has been an increasing interest in the reconstruction of gene networks from gene expression data. Recent work includes linear models, Boolean network models, and Bayesian networks. Among them, Bayesian networks seem to be the most effective in constructing gene networks. A major problem with the Bayesian network approach is the excessive computational time. This problem is due to the interactive feature of the method that requires large search space. Since fitting a model by using the copulas does not require iterations, elicitation of the priors, and complicated calculations of posterior distributions, the need for reference to extensive search spaces can be eliminated leading to manageable computational affords. Bayesian network approach produces a discretely expression of conditional probabilities. Discreteness of the characteristics is not required in the copula approach which involves use of uniform representation of the continuous random variables. Our method is able to overcome the limitation of Bayesian network method for gene-gene interaction, i.e. information loss due to binary transformation. Results We analyzed the gene interactions for two gene data sets (one group is eight histone genes and the other group is 19 genes which include DNA polymerases, DNA helicase, type B cyclin genes, DNA primases, radiation sensitive genes, repaire related genes, replication protein A encoding gene, DNA replication initiation factor, securin gene, nucleosome assembly factor, and a subunit of the cohesin complex) by adopting a measure of directional dependence based on a copula function. We have compared our results with those from
Algebraic direct methods for few-atoms structure models.
Hauptman, Herbert A; Guo, D Y; Xu, Hongliang; Blessing, Robert H
2002-07-01
As a basis for direct-methods phasing at very low resolution for macromolecular crystal structures, normalized structure-factor algebra is presented for few-atoms structure models with N = 1, 2, 3, em leader equal atoms or polyatomic globs per unit cell. Main results include: [see text]. Triplet discriminant Delta(hk) and triplet weight W(hk) parameters, a approximately 4.0 and b approximately 3.0, respectively, were determined empirically in numerical error analyses. Tests with phases calculated for few-atoms 'super-glob' models of the protein apo-D-glyceraldehyde-3-phosphate dehydrogenase (approximately 10000 non-H atoms) showed that low-resolution phases from the new few-atoms tangent formula were much better than conventional tangent formula phases for N = 2 and 3; phases from the two formulae were essentially the same for N > or = 4.
Accelerometer Method and Apparatus for Integral Display and Control Functions
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1998-01-01
Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto is discussed. An accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.
Mechanical System Reliability and Cost Integration Using a Sequential Linear Approximation Method
NASA Technical Reports Server (NTRS)
Kowal, Michael T.
1997-01-01
The development of new products is dependent on product designs that incorporate high levels of reliability along with a design that meets predetermined levels of system cost. Additional constraints on the product include explicit and implicit performance requirements. Existing reliability and cost prediction methods result in no direct linkage between variables affecting these two dominant product attributes. A methodology to integrate reliability and cost estimates using a sequential linear approximation method is proposed. The sequential linear approximation method utilizes probability of failure sensitivities determined from probabilistic reliability methods as well a manufacturing cost sensitivities. The application of the sequential linear approximation method to a mechanical system is demonstrated.
Multistep and Multistage Boundary Integral Methods for the Wave Equation
NASA Astrophysics Data System (ADS)
Banjai, Lehel
2009-09-01
We describe how time-discretized wave equation in a homogeneous medium can be solved by boundary integral methods. The time discretization can be a multistep, Runge-Kutta, or a more general multistep-multistage method. The resulting convolutional system of boundary integral equations falls in the family of convolution quadratures of Ch. Lubich. In this work our aim is to discuss a new technique for efficiently solving the discrete convolutional system and to present large scale 3D numerical experiments with a wide range of time-discretizations that have up to now not appeared in print. One of the conclusions is that Runge-Kutta methods are often the method of choice even at low accuracy; yet, in connection with hyperbolic problems BDF (backward difference formulas) have been predominant in the literature on convolution quadrature.
Processing of alnico permanent magnets by advanced directional solidification methods
NASA Astrophysics Data System (ADS)
Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.
2016-12-01
Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yielded anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti
Processing of alnico permanent magnets by advanced directional solidification methods
Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.
2016-07-05
Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (H_{ci}) of 2.0 kOe, a remanence (B_{r}) of 10.2 kG, and an energy product (BH)_{max} of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yielded anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m^{2} were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying
Processing of alnico permanent magnets by advanced directional solidification methods
Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.
2016-07-05
Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (H_{ci}) of 2.0 kOe, a remanence (B_{r}) of 10.2 kG, and an energy product (BH)_{max} of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yielded anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m^{2} were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying
Processing of alnico permanent magnets by advanced directional solidification methods
Zou, Min; Johnson, Francis; Zhang, Wanming; ...
2016-07-05
Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yieldedmore » anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti
An Integrated Inquiry Activity in an Elementary Teaching Methods Classroom
ERIC Educational Resources Information Center
Khalid, Tahsin
2010-01-01
In this integrated inquiry, students in an elementary teaching methods class investigate a real-world problem outside the classroom. The students use the Cognitive Research Trust (CoRT) thinking strategy to find the causes of, impact of, and possible solutions to the problem. They present their findings and then discuss implementation of this…
Integrating Methods and Materials: Developing Trainees' Reading Skills.
ERIC Educational Resources Information Center
Jarvis, Jennifer
1987-01-01
Explores issues arising from a research project which studied ways of meeting the reading needs of trainee primary school teachers (from Malawi and Tanzania) of English as a foreign language. Topics discussed include: the classroom teaching situation; teaching "quality"; and integration of materials and methods. (CB)
An Integrated Approach to Research Methods and Capstone
ERIC Educational Resources Information Center
Postic, Robert; McCandless, Ray; Stewart, Beth
2014-01-01
In 1991, the AACU issued a report on improving undergraduate education suggesting, in part, that a curriculum should be both comprehensive and cohesive. Since 2008, we have systematically integrated our research methods course with our capstone course in an attempt to accomplish the twin goals of comprehensiveness and cohesion. By taking this…
An Integrated Approach to Research Methods and Capstone
ERIC Educational Resources Information Center
Postic, Robert; McCandless, Ray; Stewart, Beth
2014-01-01
In 1991, the AACU issued a report on improving undergraduate education suggesting, in part, that a curriculum should be both comprehensive and cohesive. Since 2008, we have systematically integrated our research methods course with our capstone course in an attempt to accomplish the twin goals of comprehensiveness and cohesion. By taking this…
Integrating Multiple Teaching Methods into a General Chemistry Classroom.
ERIC Educational Resources Information Center
Francisco, Joseph S.; Nicoll, Gayle; Trautmann, Marcella
1998-01-01
Four different methods of teaching--cooperative learning, class discussions, concept maps, and lectures--were integrated into a freshman-level general chemistry course to compare students' levels of participation. Findings support the idea that multiple modes of learning foster the metacognitive skills necessary for mastering general chemistry.…
Analysis of integral method for fault detection in transformers
Hijazi, M.E.A.; Basak, A. . Wolfson Centre for Magnetics Technology)
1993-11-01
Test results obtained from using the integral method in transformer differential protection against internal fault current, are presented. The effect of various factors on the transient waveforms are considered and conditions to predict the magnetizing inrush current and a faulty system have been digitally simulated.
Singularity Preserving Numerical Methods for Boundary Integral Equations
NASA Technical Reports Server (NTRS)
Kaneko, Hideaki (Principal Investigator)
1996-01-01
In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the following five projects: a note on the finite element method with singular basis functions; numerical quadrature for weakly singular integrals; superconvergence of degenerate kernel method; superconvergence of the iterated collocation method for Hammersteion equations; and singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. This final report consists of five papers describing these projects. Each project is preceeded by a brief abstract.
Adaptive Transmission Control Method for Communication-Broadcasting Integrated Services
NASA Astrophysics Data System (ADS)
Koto, Hideyuki; Furuya, Hiroki; Nakamura, Hajime
This paper proposes an adaptive transmission control method for massive and intensive telecommunication traffic generated by communication-broadcasting integrated services. The proposed method adaptively controls data transmissions from viewers depending on the congestion states, so that severe congestion can be effectively avoided. Furthermore, it utilizes the broadcasting channel which is not only scalable, but also reliable for controlling the responses from vast numbers of viewers. The performance of the proposed method is evaluated through experiments on a test bed where approximately one million viewers are emulated. The obtained results quantitatively demonstrate the performance of the proposed method and its effectiveness under massive and intensive traffic conditions.
Heilmann, R.; Keil, R.; Gräfe, M.; Nolte, S.; Szameit, A.
2014-08-11
We present an innovative approach for ultra-precise phase manipulation in integrated photonic quantum circuits. To this end, we employ generalized directional couplers that utilize a detuning of the propagation constant in optical waveguides by the overlap of adjacent waveguide modes. We demonstrate our findings in experiments with classical as well as quantum light.
NASA Technical Reports Server (NTRS)
Vess, Melissa F.; Starin, Scott R.
2007-01-01
During design of the SDO Science and Inertial mode PID controllers, the decision was made to disable the integral torque whenever system stability was in question. Three different schemes were developed to determine when to disable or enable the integral torque, and a trade study was performed to determine which scheme to implement. The trade study compared complexity of the control logic, risk of not reenabling the integral gain in time to reject steady-state error, and the amount of integral torque space used. The first scheme calculated a simplified Routh criterion to determine when to disable the integral torque. The second scheme calculates the PD part of the torque and looked to see if that torque would cause actuator saturation. If so, only the PD torque is used. If not, the integral torque is added. Finally, the third scheme compares the attitude and rate errors to limits and disables the integral torque if either of the errors is greater than the limit. Based on the trade study results, the third scheme was selected. Once it was decided when to disable the integral torque, analysis was performed to determine how to disable the integral torque and whether or not to reset the integrator once the integral torque was reenabled. Three ways to disable the integral torque were investigated: zero the input into the integrator, which causes the integral part of the PID control torque to be held constant; zero the integral torque directly but allow the integrator to continue integrating; or zero the integral torque directly and reset the integrator on integral torque reactivation. The analysis looked at complexity of the control logic, slew time plus settling time between each calibration maneuver step, and ability to reject steady-state error. Based on the results of the analysis, the decision was made to zero the input into the integrator without resetting it. Throughout the analysis, a high fidelity simulation was used to test the various implementation methods.
Monte Carlo methods for multidimensional integration for European option pricing
NASA Astrophysics Data System (ADS)
Todorov, V.; Dimov, I. T.
2016-10-01
In this paper, we illustrate examples of highly accurate Monte Carlo and quasi-Monte Carlo methods for multiple integrals related to the evaluation of European style options. The idea is that the value of the option is formulated in terms of the expectation of some random variable; then the average of independent samples of this random variable is used to estimate the value of the option. First we obtain an integral representation for the value of the option using the risk neutral valuation formula. Then with an appropriations change of the constants we obtain a multidimensional integral over the unit hypercube of the corresponding dimensionality. Then we compare a specific type of lattice rules over one of the best low discrepancy sequence of Sobol for numerical integration. Quasi-Monte Carlo methods are compared with Adaptive and Crude Monte Carlo techniques for solving the problem. The four approaches are completely different thus it is a question of interest to know which one of them outperforms the other for evaluation multidimensional integrals in finance. Some of the advantages and disadvantages of the developed algorithms are discussed.
On resolution of the method of directional magnetotelluric soundings
NASA Astrophysics Data System (ADS)
Savin, Mihail
2015-12-01
The problem is to examine the resolution of directional magnetotelluric soundings (DMTS). Abrupt changes of impedances Z^e,h of electrical and magnetic types in critical region of parameters R 0, Jωμσ where R=Re[(K_x)2+(K_y)2], J=Im[(K_x)2+(K_y)2] are shown to result in significantly higher resolution of the method as compared with the traditional interpretation using Tikhonov-Cagniard impedance Z^0. The stability of solution of DMTS method inverse problem is considered subject to field measurement errors limited the resolution. The minimum of the limits is determined for the conductivity Δσ/σ small variations. For studying DMTS resolution as applied to MT monitoring of earthquake site the mathematical experiment for three-layer geoelectric model was carried out. When changing the earthquake site conductivity of Δσ ˜ ±10 variations of reflection coefficient of electric mode ΔQe are in the range of 20% that is significantly more than the field measurement error. The possibility for prediction modeling in the context of obtained results is discussed.
Alternating Direction Method of Multiplier for Tomography With Nonlocal Regularizers
Dewaraja, Yuni K.; Fessler, Jeffrey A.
2015-01-01
The ordered subset expectation maximization (OSEM) algorithm approximates the gradient of a likelihood function using a subset of projections instead of using all projections so that fast image reconstruction is possible for emission and transmission tomography such as SPECT, PET, and CT. However, OSEM does not significantly accelerate reconstruction with computationally expensive regularizers such as patch-based nonlocal (NL) regularizers, because the regularizer gradient is evaluated for every subset. We propose to use variable splitting to separate the likelihood term and the regularizer term for penalized emission tomographic image reconstruction problem and to optimize it using the alternating direction method of multiplier (ADMM). We also propose a fast algorithm to optimize the ADMM parameter based on convergence rate analysis. This new scheme enables more sub-iterations related to the likelihood term. We evaluated our ADMM for 3-D SPECT image reconstruction with a patch-based NL regularizer that uses the Fair potential function. Our proposed ADMM improved the speed of convergence substantially compared to other existing methods such as gradient descent, EM, and OSEM using De Pierro’s approach, and the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. PMID:25291351
Cardiac power integral: a new method for monitoring cardiovascular performance
Rimehaug, Audun E; Lyng, Oddveig; Nordhaug, Dag O; Løvstakken, Lasse; Aadahl, Petter; Kirkeby-Garstad, Idar
2013-01-01
Cardiac power (PWR) is the continuous product of flow and pressure in the proximal aorta. Our aim was to validate the PWR integral as a marker of left ventricular energy transfer to the aorta, by comparing it to stroke work (SW) under multiple different loading and contractility conditions in subjects without obstructions in the left ventricular outflow tract. Six pigs were under general anesthesia equipped with transit time flow probes on their proximal aortas and Millar micromanometer catheters in their descending aortas to measure PWR, and Leycom conductance catheters in their left ventricles to measure SW. The PWR integral was calculated as the time integral of PWR per cardiac cycle. SW was calculated as the area encompassed by the pressure–volume loop (PV loop). The relationship between the PWR integral and SW was tested during extensive mechanical and pharmacological interventions that affected the loading conditions and myocardial contractility. The PWR integral displayed a strong correlation with SW in all pigs (R2 > 0.95, P < 0.05) under all conditions, using a linear model. Regression analysis and Bland Altman plots also demonstrated a stable relationship. A mixed linear analysis indicated that the slope of the SW-to-PWR-integral relationship was similar among all six animals, whereas loading and contractility conditions tended to affect the slope. The PWR integral followed SW and appeared to be a promising parameter for monitoring the energy transferred from the left ventricle to the aorta. This conclusion motivates further studies to determine whether the PWR integral can be evaluated using less invasive methods, such as echocardiography combined with a radial artery catheter. PMID:24400160
Cardiac power integral: a new method for monitoring cardiovascular performance.
Rimehaug, Audun E; Lyng, Oddveig; Nordhaug, Dag O; Løvstakken, Lasse; Aadahl, Petter; Kirkeby-Garstad, Idar
2013-11-01
Cardiac power (PWR) is the continuous product of flow and pressure in the proximal aorta. Our aim was to validate the PWR integral as a marker of left ventricular energy transfer to the aorta, by comparing it to stroke work (SW) under multiple different loading and contractility conditions in subjects without obstructions in the left ventricular outflow tract. Six pigs were under general anesthesia equipped with transit time flow probes on their proximal aortas and Millar micromanometer catheters in their descending aortas to measure PWR, and Leycom conductance catheters in their left ventricles to measure SW. The PWR integral was calculated as the time integral of PWR per cardiac cycle. SW was calculated as the area encompassed by the pressure-volume loop (PV loop). The relationship between the PWR integral and SW was tested during extensive mechanical and pharmacological interventions that affected the loading conditions and myocardial contractility. The PWR integral displayed a strong correlation with SW in all pigs (R (2) > 0.95, P < 0.05) under all conditions, using a linear model. Regression analysis and Bland Altman plots also demonstrated a stable relationship. A mixed linear analysis indicated that the slope of the SW-to-PWR-integral relationship was similar among all six animals, whereas loading and contractility conditions tended to affect the slope. The PWR integral followed SW and appeared to be a promising parameter for monitoring the energy transferred from the left ventricle to the aorta. This conclusion motivates further studies to determine whether the PWR integral can be evaluated using less invasive methods, such as echocardiography combined with a radial artery catheter.
Liu, Peigui; Elshall, Ahmed S.; Ye, Ming; ...
2016-02-05
Evaluating marginal likelihood is the most critical and computationally expensive task, when conducting Bayesian model averaging to quantify parametric and model uncertainties. The evaluation is commonly done by using Laplace approximations to evaluate semianalytical expressions of the marginal likelihood or by using Monte Carlo (MC) methods to evaluate arithmetic or harmonic mean of a joint likelihood function. This study introduces a new MC method, i.e., thermodynamic integration, which has not been attempted in environmental modeling. Instead of using samples only from prior parameter space (as in arithmetic mean evaluation) or posterior parameter space (as in harmonic mean evaluation), the thermodynamicmore » integration method uses samples generated gradually from the prior to posterior parameter space. This is done through a path sampling that conducts Markov chain Monte Carlo simulation with different power coefficient values applied to the joint likelihood function. The thermodynamic integration method is evaluated using three analytical functions by comparing the method with two variants of the Laplace approximation method and three MC methods, including the nested sampling method that is recently introduced into environmental modeling. The thermodynamic integration method outperforms the other methods in terms of their accuracy, convergence, and consistency. The thermodynamic integration method is also applied to a synthetic case of groundwater modeling with four alternative models. The application shows that model probabilities obtained using the thermodynamic integration method improves predictive performance of Bayesian model averaging. As a result, the thermodynamic integration method is mathematically rigorous, and its MC implementation is computationally general for a wide range of environmental problems.« less
Spatial integration of optic flow information in direction of heading judgments
Issen, Laurel; Huxlin, Krystel R.; Knill, David
2015-01-01
While we know that humans are extremely sensitive to optic flow information about direction of heading, we do not know how they integrate information across the visual field. We adapted the standard cue perturbation paradigm to investigate how young adult observers integrate optic flow information from different regions of the visual field to judge direction of heading. First, subjects judged direction of heading when viewing a three-dimensional field of random dots simulating linear translation through the world. We independently perturbed the flow in one visual field quadrant to indicate a different direction of heading relative to the other three quadrants. We then used subjects' judgments of direction of heading to estimate the relative influence of flow information in each quadrant on perception. Human subjects behaved similarly to the ideal observer in terms of integrating motion information across the visual field with one exception: Subjects overweighted information in the upper half of the visual field. The upper-field bias was robust under several different stimulus conditions, suggesting that it may represent a physiological adaptation to the uneven distribution of task-relevant motion information in our visual world. PMID:26024461
Spatial integration of optic flow information in direction of heading judgments.
Issen, Laurel; Huxlin, Krystel R; Knill, David
2015-01-01
While we know that humans are extremely sensitive to optic flow information about direction of heading, we do not know how they integrate information across the visual field. We adapted the standard cue perturbation paradigm to investigate how young adult observers integrate optic flow information from different regions of the visual field to judge direction of heading. First, subjects judged direction of heading when viewing a three-dimensional field of random dots simulating linear translation through the world. We independently perturbed the flow in one visual field quadrant to indicate a different direction of heading relative to the other three quadrants. We then used subjects' judgments of direction of heading to estimate the relative influence of flow information in each quadrant on perception. Human subjects behaved similarly to the ideal observer in terms of integrating motion information across the visual field with one exception: Subjects overweighted information in the upper half of the visual field. The upper-field bias was robust under several different stimulus conditions, suggesting that it may represent a physiological adaptation to the uneven distribution of task-relevant motion information in our visual world.
Criteria for quantitative and qualitative data integration: mixed-methods research methodology.
Lee, Seonah; Smith, Carrol A M
2012-05-01
Many studies have emphasized the need and importance of a mixed-methods approach for evaluation of clinical information systems. However, those studies had no criteria to guide integration of multiple data sets. Integrating different data sets serves to actualize the paradigm that a mixed-methods approach argues; thus, we require criteria that provide the right direction to integrate quantitative and qualitative data. The first author used a set of criteria organized from a literature search for integration of multiple data sets from mixed-methods research. The purpose of this article was to reorganize the identified criteria. Through critical appraisal of the reasons for designing mixed-methods research, three criteria resulted: validation, complementarity, and discrepancy. In applying the criteria to empirical data of a previous mixed methods study, integration of quantitative and qualitative data was achieved in a systematic manner. It helped us obtain a better organized understanding of the results. The criteria of this article offer the potential to produce insightful analyses of mixed-methods evaluations of health information systems.
Xiong, Ying-Zi; Xie, Xin-Yu; Yu, Cong
2016-02-01
Recent studies reported significantly less location specificity in motion direction learning than in previous classical studies. The latter performed training with the method of constant stimuli containing a single level of direction difference. In contrast the former used staircase methods that varied the direction difference trial by trial. We suspect that extensive practice with a single direction difference could allow an observer to use some subtle local cues for direction discrimination. Such local cues may be unavailable at a new stimulus location, leading to higher location specificity. To test this hypothesis, we jittered slightly the directions of a stimulus pair by the same amount while keeping the direction difference constant, so as to disturb the potential local cues. We observed significantly more transfer of learning to untrained locations. The local cue effects may also explain the recent controversies regarding the finding that foveal motion direction learning becomes significantly more transferrable to a new direction with TPE (training-plus-exposure) training. One specific study by Zili Liu and collaborators that challenges this finding also used a single-level direction difference for training. We first replicated their results. But we found that if the directions of the stimulus pair were again jittered while the direction difference was kept constant, motion direction learning transferred significantly more to an orthogonal direction with TPE training. Our results thus demonstrate the importance of using appropriate psychophysical methods in training to reduce local-cue related specificity in perceptual learning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Principles and methods of integrative genomic analyses in cancer.
Kristensen, Vessela N; Lingjærde, Ole Christian; Russnes, Hege G; Vollan, Hans Kristian M; Frigessi, Arnoldo; Børresen-Dale, Anne-Lise
2014-05-01
Combined analyses of molecular data, such as DNA copy-number alteration, mRNA and protein expression, point to biological functions and molecular pathways being deregulated in multiple cancers. Genomic, metabolomic and clinical data from various solid cancers and model systems are emerging and can be used to identify novel patient subgroups for tailored therapy and monitoring. The integrative genomics methodologies that are used to interpret these data require expertise in different disciplines, such as biology, medicine, mathematics, statistics and bioinformatics, and they can seem daunting. The objectives, methods and computational tools of integrative genomics that are available to date are reviewed here, as is their implementation in cancer research.
NASA Astrophysics Data System (ADS)
M. H. M., Moussa; Rehab, M. El-Shiekh
2011-04-01
Based on the closed connections among the homogeneous balance (HB) method and Clarkson—Kruskal (CK) method, we study the similarity reductions of the generalized variable coefficients 2D KdV equation. In the meantime it is shown that this leads to a direct reduction in the form of ordinary differential equation under some integrability conditions between the variable coefficients. Two different cases have been discussed, the search for solutions of those ordinary differential equations yielded many exact travelling and solitonic wave solutions in the form of hyperbolic and trigonometric functions under some constraints between the variable coefficients.
Yu, Jue; Zhuang, Jian; Yu, Dehong
2015-01-01
This paper concerns a state feedback integral control using a Lyapunov function approach for a rotary direct drive servo valve (RDDV) while considering parameter uncertainties. Modeling of this RDDV servovalve reveals that its mechanical performance is deeply influenced by friction torques and flow torques; however, these torques are uncertain and mutable due to the nature of fluid flow. To eliminate load resistance and to achieve satisfactory position responses, this paper develops a state feedback control that integrates an integral action and a Lyapunov function. The integral action is introduced to address the nonzero steady-state error; in particular, the Lyapunov function is employed to improve control robustness by adjusting the varying parameters within their value ranges. This new controller also has the advantages of simple structure and ease of implementation. Simulation and experimental results demonstrate that the proposed controller can achieve higher control accuracy and stronger robustness.
Adaptive integration of habits into depth-limited planning defines a habitual-goal–directed spectrum
Keramati, Mehdi; Smittenaar, Peter; Dolan, Raymond J.; Dayan, Peter
2016-01-01
Behavioral and neural evidence reveal a prospective goal-directed decision process that relies on mental simulation of the environment, and a retrospective habitual process that caches returns previously garnered from available choices. Artificial systems combine the two by simulating the environment up to some depth and then exploiting habitual values as proxies for consequences that may arise in the further future. Using a three-step task, we provide evidence that human subjects use such a normative plan-until-habit strategy, implying a spectrum of approaches that interpolates between habitual and goal-directed responding. We found that increasing time pressure led to shallower goal-directed planning, suggesting that a speed-accuracy tradeoff controls the depth of planning with deeper search leading to more accurate evaluation, at the cost of slower decision-making. We conclude that subjects integrate habit-based cached values directly into goal-directed evaluations in a normative manner. PMID:27791110
Method to integrate full particle orbit in toroidal plasmas
NASA Astrophysics Data System (ADS)
Wei, X. S.; Xiao, Y.; Kuley, A.; Lin, Z.
2015-09-01
It is important to integrate full particle orbit accurately when studying charged particle dynamics in electromagnetic waves with frequency higher than cyclotron frequency. We have derived a form of the Boris scheme using magnetic coordinates, which can be used effectively to integrate the cyclotron orbit in toroidal geometry over a long period of time. The new method has been verified by a full particle orbit simulation in toroidal geometry without high frequency waves. The full particle orbit calculation recovers guiding center banana orbit. This method has better numeric properties than the conventional Runge-Kutta method for conserving particle energy and magnetic moment. The toroidal precession frequency is found to match that from guiding center simulation. Many other important phenomena in the presence of an electric field, such as E × B drift, Ware pinch effect and neoclassical polarization drift are also verified by the full orbit simulation.
Modern microbiological methods for foods: colony count and direct count methods. A review.
García-Armesto, M R; Prieto, M; García-López, M L; Otero, A; Moreno, B
1993-04-01
Over the last years methods for enumeration of microorganisms in foods are changing rapidly. Techniques based on totally new concepts as well as instruments and miniaturized systems that allow the automation and simplification of existing microbiological procedures have been developed. These rapid methodologies should satisfy the increasing requirements for effective quality assurance of foods. In the present paper we review some of the more interesting methods based on colony count or direct bacterial count.
Lajis, Mohd Amri; Ahmad, Azlan
2017-01-01
Meltless recycling technique has been utilized to overcome the lack of primary resources, focusing on reducing the usage of energy and materials. Hot press was proposed as a novel direct recycling technique which results in astoundingly low energy usage in contrast with conventional recycling. The aim of this study is to prove the technical feasibility of this approach by characterizing the recycled samples. For this purpose, AA6061 aluminium chips were recycled by utilizing hot press process under various operating temperature (Ts = 430, 480, and 530 °C) and holding times (ts = 60, 90, and 120 min). The maximum mechanical properties of recycled chip are Ultimate tensile strength (UTS) = 266.78 MPa, Elongation to failure (ETF) = 16.129%, while, for surface integrity of the chips, the calculated microhardness is 81.744 HV, exhibited at Ts = 530 °C and ts = 120 min. It is comparable to theoretical AA6061 T4-temper where maximum UTS and microhardness is increased up to 9.27% and 20.48%, respectively. As the desired mechanical properties of forgings can only be obtained by means of a final heat treatment, T5-temper, aging after forging process was employed. Heat treated recycled billet AA6061 (T5-temper) are considered comparable with as-received AA6061 T6, where the value of microhardness (98.649 HV) at 175 °C and 120 min of aging condition was revealed to be greater than 3.18%. Although it is quite early to put a base mainly on the observations in experimental settings, the potential for significant improvement offered by the direct recycling methods for production aluminium scrap can be clearly demonstrated. This overtures perspectives for industrial development of solid state recycling processes as environmentally benign alternatives of current melting based practices. PMID:28771207
Yusuf, Nur Kamilah; Lajis, Mohd Amri; Ahmad, Azlan
2017-08-03
Meltless recycling technique has been utilized to overcome the lack of primary resources, focusing on reducing the usage of energy and materials. Hot press was proposed as a novel direct recycling technique which results in astoundingly low energy usage in contrast with conventional recycling. The aim of this study is to prove the technical feasibility of this approach by characterizing the recycled samples. For this purpose, AA6061 aluminium chips were recycled by utilizing hot press process under various operating temperature (Ts = 430, 480, and 530 °C) and holding times (ts = 60, 90, and 120 min). The maximum mechanical properties of recycled chip are Ultimate tensile strength (UTS) = 266.78 MPa, Elongation to failure (ETF) = 16.129%, while, for surface integrity of the chips, the calculated microhardness is 81.744 HV, exhibited at Ts = 530 °C and ts = 120 min. It is comparable to theoretical AA6061 T4-temper where maximum UTS and microhardness is increased up to 9.27% and 20.48%, respectively. As the desired mechanical properties of forgings can only be obtained by means of a final heat treatment, T5-temper, aging after forging process was employed. Heat treated recycled billet AA6061 (T5-temper) are considered comparable with as-received AA6061 T6, where the value of microhardness (98.649 HV) at 175 °C and 120 min of aging condition was revealed to be greater than 3.18%. Although it is quite early to put a base mainly on the observations in experimental settings, the potential for significant improvement offered by the direct recycling methods for production aluminium scrap can be clearly demonstrated. This overtures perspectives for industrial development of solid state recycling processes as environmentally benign alternatives of current melting based practices.
NASA Astrophysics Data System (ADS)
Wong, Kin-Yiu; Gao, Jiali
2007-12-01
Based on Kleinert's variational perturbation (KP) theory [Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 3rd ed. (World Scientific, Singapore, 2004)], we present an analytic path-integral approach for computing the effective centroid potential. The approach enables the KP theory to be applied to any realistic systems beyond the first-order perturbation (i.e., the original Feynman-Kleinert [Phys. Rev. A 34, 5080 (1986)] variational method). Accurate values are obtained for several systems in which exact quantum results are known. Furthermore, the computed kinetic isotope effects for a series of proton transfer reactions, in which the potential energy surfaces are evaluated by density-functional theory, are in good accordance with experiments. We hope that our method could be used by non-path-integral experts or experimentalists as a "black box" for any given system.
NASA Astrophysics Data System (ADS)
Wang, Jin; Zhang, Cao; Katz, Joseph
2016-11-01
A PIV based method to reconstruct the volumetric pressure field by direct integration of the 3D material acceleration directions has been developed. Extending the 2D virtual-boundary omni-directional method (Omni2D, Liu & Katz, 2013), the new 3D parallel-line omni-directional method (Omni3D) integrates the material acceleration along parallel lines aligned in multiple directions. Their angles are set by a spherical virtual grid. The integration is parallelized on a Tesla K40c GPU, which reduced the computing time from three hours to one minute for a single realization. To validate its performance, this method is utilized to calculate the 3D pressure fields in isotropic turbulence and channel flow using the JHU DNS Databases (http://turbulence.pha.jhu.edu). Both integration of the DNS acceleration as well as acceleration from synthetic 3D particles are tested. Results are compared to other method, e.g. solution to the Pressure Poisson Equation (e.g. PPE, Ghaemi et al., 2012) with Bernoulli based Dirichlet boundary conditions, and the Omni2D method. The error in Omni3D prediction is uniformly low, and its sensitivity to acceleration errors is local. It agrees with the PPE/Bernoulli prediction away from the Dirichlet boundary. The Omni3D method is also applied to experimental data obtained using tomographic PIV, and results are correlated with deformation of a compliant wall. ONR.
Integration of offshore wind farms through high voltage direct current networks
NASA Astrophysics Data System (ADS)
Livermore, Luke
The integration of offshore wind farms through Multi Terminal DC (MTDC) networks into the GB network was investigated. The ability of Voltage Source Converter (VSC) High Voltage Direct Current (HVDC) to damp Subsynchronous Resonance (SSR) and ride through onshore AC faults was studied. Due to increased levels of wind generation in Scotland, substantial onshore and offshore reinforcements to the GB transmission network are proposed. Possible inland reinforcements include the use of series compensation through fixed capacitors. This potentially can lead to SSR. Offshore reinforcements are proposed by two HVDC links. In addition to its primary functions of bulk power transmission, a HVDC link can be used to provide damping against SSR, and this function has been modelled. Simulation studies have been carried out in PSCAD. In addition, a real-time hardware-in-the-loop HVDC test rig has been used to implement and validate the proposed damping scheme on an experimental platform. When faults occur within AC onshore networks, offshore MTDC networks are vulnerable to DC overvoltages, potentially damaging the DC plant and cables. Power reduction and power dissipation control systems were investigated to ride through onshore AC faults. These methods do not require dedicated fast communication systems. Simulations and laboratory experiments are carried out to evaluate the control systems, with the results from the two platforms compared..
NASA Technical Reports Server (NTRS)
Atluri, Satya N.; Shen, Shengping
2002-01-01
In this paper, a very simple method is used to derive the weakly singular traction boundary integral equation based on the integral relationships for displacement gradients. The concept of the MLPG method is employed to solve the integral equations, especially those arising in solid mechanics. A moving Least Squares (MLS) interpolation is selected to approximate the trial functions in this paper. Five boundary integral Solution methods are introduced: direct solution method; displacement boundary-value problem; traction boundary-value problem; mixed boundary-value problem; and boundary variational principle. Based on the local weak form of the BIE, four different nodal-based local test functions are selected, leading to four different MLPG methods for each BIE solution method. These methods combine the advantages of the MLPG method and the boundary element method.
A Definite Integration Method of Calculating Inclination Function and its Derivative
NASA Astrophysics Data System (ADS)
Wu, L. D.; Wang, H. B.
2012-01-01
The paper gives a definite integration method of calculating inclination function and its derivative. The expression is simple, but its accuracy is very well. It is about 10-15 and 10-13 for inclination function and its derivative, respectively. This level is comparable to the accuracy of Gooding's method. Through a lot of numerical simulations, it is proved that the method has good stability and wide-scope application of inclination. It takes very little time to calculate low-order function (less than 50), so the method can be directly used in calculating terrestrial and sun-moon gravitational perturbation.
Blood viscosity measurement: an integral method using Doppler ultrasonic profiles
NASA Astrophysics Data System (ADS)
Flaud, P.; Bensalah, A.
2005-12-01
The aim of this work is to present a new indirect and noninvasive method for the measurement of the Newtonian blood viscosity. Based on an integral form of the axial Navier-Stokes equation, this method is particularly suited for in vivo investigations using ultrasonic arterial blood velocity profiles. Its main advantage is that it is applicable to periodic as well as non periodic flows. Moreover it does not require classical filtering methods enhancing signal to noise ratio of the physiological signals. This method only requires the knowledge of the velocimetric data measured inside a spatially and temporally optimized zone of the Doppler velocity profiles. The results obtained using numerical simulation as well as in vitro or in vivo experiments prove the effectiveness of the method. It is then well adapted to the clinical environment as a systematic quasi on-line method for the measurement of the blood viscosity.
Cross-guide Moreno directional coupler in empty substrate integrated waveguide
NASA Astrophysics Data System (ADS)
Miralles, E.; Belenguer, A.; Esteban, H.; Boria, V.
2017-05-01
Substrate integrated waveguides (SIWs) combine the advantages of rectangular waveguides (low losses) and planar circuits (low cost and low profile). Empty substrate integrated waveguide (ESIW) has been proposed as a novel configuration in SIWs recently. This technology significantly reduces the losses of conventional SIW by removing its inner dielectric. The cross-guide directional coupler is a well-known low-profile design for having a broadband waveguide coupler. In this paper a cross-guide coupler with ESIW technique is proposed. In such a manner, the device can be integrated with microwave circuits and other printed circuit board components. It is the first time that a cross-guide coupler is implemented in ESIW technology. The designed, fabricated, and measured device presents good results as a matter of insertion loss of 1 dB (including transitions), reflection under 20 dB, coupling between 19.5 and 21.5 dB, and directivity higher than 15 dB over targeted frequency range from 12.4 GHz to 18 GHz. The coupler implemented in ESIW improves the directivity when compared to similar solutions in other empty substrate integrated waveguide solutions.
Integration of isothermal amplification methods in microfluidic devices: Recent advances.
Giuffrida, Maria Chiara; Spoto, Giuseppe
2017-04-15
The integration of nucleic acids detection assays in microfluidic devices represents a highly promising approach for the development of convenient, cheap and efficient diagnostic tools for clinical, food safety and environmental monitoring applications. Such tools are expected to operate at the point-of-care and in resource-limited settings. The amplification of the target nucleic acid sequence represents a key step for the development of sensitive detection protocols. The integration in microfluidic devices of the most popular technology for nucleic acids amplifications, polymerase chain reaction (PCR), is significantly limited by the thermal cycling needed to obtain the target sequence amplification. This review provides an overview of recent advances in integration of isothermal amplification methods in microfluidic devices. Isothermal methods, that operate at constant temperature, have emerged as promising alternative to PCR and greatly simplify the implementation of amplification methods in point-of-care diagnostic devices and devices to be used in resource-limited settings. Possibilities offered by isothermal methods for digital droplet amplification are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Galerkin boundary integral equation method for spontaneous rupture propagation problems
NASA Astrophysics Data System (ADS)
Goto, H.; Bielak, J.
2007-12-01
We develop a Galerkin finite element boundary integral equation method (GaBIEM) for spontaneous rupture propagation problems for a planar fault embedded in a homogeneous full 2D space. A simple 2D anti plane rupture propagation problem, with a slip-weakening friction law, is simulated by the GaBIEM. This method allows one to separate explicitly the kernel into singular static and time-dependent parts, and a nonsingular dynamic component. The simulated results throw light into the performance of the GaBIEM and highlight differences with respect to that of the traditional, collocation, boundary integral equation method (BIEM). The rate of convergence of the GaBIEM, as measured from a root mean square (RMS) analysis of the difference of approximate solutions corresponding to increasingly finer element sizes is of a higher order than that of the BIEM. There is no restriction on the CFL stability number since an implicit, unconditionally stable method is used for the time integration. The error of the approximation increases with the time step, as expected, and it can remain below that of the BIEM.
Method for directly recovering fluorine from gas streams
Orlett, Michael J.; Saraceno, Anthony J.
1981-01-01
This invention is a process for the direct recovery of gaseous fluorine from waste-gas streams or the like. The process comprises passing the gas stream through a bed of anhydrous K.sub.3 NiF.sub.6 pellets to fluorinate the same to K.sub.3 NiF.sub.7 and subsequently desorbing the fluorine by heating the K.sub.3 NiF.sub.7 pellets to a temperature re-converting them to K.sub.3 NiF.sub.6. The efficiency of the fluorine-absorption step is maximized by operating in a selected and conveniently low temperature. The desorbed fluorine is highly pure and is at a pressure of several atmospheres. Preferably, the K.sub.3 NiF.sub.6 pellets are prepared by a method including the steps of forming agglomerates of hydrated K.sub.3 NiF.sub.5, sintering the agglomerates to form K.sub.3 NiF.sub.5 pellets of enhanced reactivity with respect to fluorine, and fluorinating the sintered pellets to K.sub.3 NiF.sub.6.
Ionoacoustics: A new direct method for range verification
NASA Astrophysics Data System (ADS)
Parodi, Katia; Assmann, Walter
2015-05-01
The superior ballistic properties of ion beams may offer improved tumor-dose conformality and unprecedented sparing of organs at risk in comparison to other radiation modalities in external radiotherapy. However, these advantages come at the expense of increased sensitivity to uncertainties in the actual treatment delivery, resulting from inaccuracies of patient positioning, physiological motion and uncertainties in the knowledge of the ion range in living tissue. In particular, the dosimetric selectivity of ion beams depends on the longitudinal location of the Bragg peak, making in vivo knowledge of the actual beam range the greatest challenge to full clinical exploitation of ion therapy. Nowadays, in vivo range verification techniques, which are already, or close to, being investigated in the clinical practice, rely on the detection of the secondary annihilation photons or prompt gammas, resulting from nuclear interaction of the primary ion beam with the irradiated tissue. Despite the initial promising results, these methods utilize a not straightforward correlation between nuclear and electromagnetic processes, and typically require massive and costly instrumentation. On the contrary, the long-term known, yet only recently revisited process of "ionoacoustics", which is generated by local tissue heating especially at the Bragg peak, may offer a more direct approach to in vivo range verification, as reviewed here.
Calibration of CNC milling machine by direct method
NASA Astrophysics Data System (ADS)
Khan, Abdul Wahid; Chen, Wuyi
2008-12-01
Calibration refers to the system of quantity value determination of instruments, equipments and test devices according to industrial requirement, based on metrological characteristics. In present research critical parameter which affects the accuracy and product quality of a CNC milling machine, was investigated and quantified by using direct method. These parameters consist of position dependent or position independent parameters, like linear displacement errors, angular errors of linear axes, straightness error of linear axes and squareness error between the axes. Repeatability, lead screw and resolution error of the CNC milling machine were also quantified to provide additional information to the user, because in absence of this additional information a misconception persists causing a major contributor to the inaccuracy and quality of the product. Parameters were measured and quantified by using a laser interferometer and artifacts as working standards under controlled environmental conditions on a manufacturing CNC milling machine. Polynomial regression analyses were carried out for finding the coefficients to predict the errors at each and every desired position which is quite useful for compensation and enhancing the accuracy of a machine system. Machine accuracy detailed chart was also made to assess and assure the accuracy, capability or for accuracy monitoring of the CNC milling machine
Globbic approximation in low-resolution direct-methods phasing.
Guo, D Y; Blessing, R H; Langs, D A
2000-09-01
Probabilistic direct-methods phasing theory, originally based on a uniform atomic distribution hypothesis, is shown to be adaptable to a non-uniform bulk-solvent-compensated globbic approximation for protein crystals at low resolution. The effective number n(g) of non-H protein atoms per polyatomic glob increases with decreasing resolution; low-resolution phases depend on the positions of only N(g) = N(a)/n(g) globs rather than N(a) atoms. Test calculations were performed with measured structure-factor data and the refined structural parameters from a protein crystal with approximately 10 000 non-H protein atoms per molecule and approximately 60% solvent volume. Low-resolution data sets with d(min) ranging from 15 to 5 A gave n(g) = ad(min) + b, with a = 1.0 A(-1) and b = -1.9 for the test case. Results of tangent-formula phase-estimation trials emphasize that completeness of the low-resolution data is critically important for probabilistic phasing.
Method of optical image coding by time integration
NASA Astrophysics Data System (ADS)
Evtikhiev, Nikolay N.; Starikov, Sergey N.; Cheryomkhin, Pavel A.; Krasnov, Vitaly V.; Rodin, Vladislav G.
2012-06-01
Method of optical image coding by time integration is proposed. Coding in proposed method is accomplished by shifting object image over photosensor area of digital camera during registration. It results in optically calculated convolution of original image with shifts trajectory. As opposed to optical coding methods based on the use of diffractive optical elements the described coding method is feasible for implementation in totally incoherent light. The method was preliminary tested by using LC monitor for image displaying and shifting. Shifting of object image is realized by displaying video consisting of frames with image to be encoded at different locations on screen of LC monitor while registering it by camera. Optical encoding and numerical decoding of test images were performed successfully. Also more practical experimental implementation of the method with use of LCOS SLM Holoeye PLUTO VIS was realized. Objects images to be encoded were formed in monochromatic spatially incoherent light. Shifting of object image over camera photosensor area was accomplished by displaying video consisting of frames with blazed gratings on LCOS SLM. Each blazed grating deflects reflecting from SLM light at different angle. Results of image optical coding and encoded images numerical restoration are presented. Obtained experimental results are compared with results of numerical modeling. Optical image coding with time integration could be used for accessible quality estimation of optical image coding using diffractive optical elements or as independent optical coding method which can be implemented in incoherent light.
Frontal transcranial direct current stimulation (tDCS) abolishes list-method directed forgetting.
Silas, Jonathan; Brandt, Karen R
2016-03-11
It is a point of controversy as to whether directed forgetting effects are a result of active inhibition or a change of context initiated by the instruction to forget. In this study we test the causal role of active inhibition in directed forgetting. By applying cathodal transcranial direct current stimulation (tDCS) over the right prefrontal cortex we suppressed cortical activity commonly associated with inhibitory control. Participants who underwent real brain stimulation before completing the directed forgetting paradigm showed no directed forgetting effects. Conversely, those who underwent sham brain stimulation demonstrated classical directed forgetting effects. We argue that these findings suggest that inhibition is the primary mechanism that results in directed forgetting costs and benefits.
The integration of sequential aiming movements: Switching hand and direction at the first target.
Lawrence, G P; Khan, Michael A; Mottram, Thomas M; Adam, Jos J; Buckolz, Eric
2016-02-01
Movement times to a single target are typically shorter compared to when movement to a second target is required. This one target movement time advantage has been shown to emerge when participants use a single hand throughout the target sequence and when there is a switch between hands at the first target. Our goal was to investigate the lacuna in the movement integration literature surrounding the interactive effects between switching hands and changing movement direction at the first target. Participants performed rapid hand movements in five conditions; movements to a single target; two target movements with a single hand in which the second target required an extension or reversal in direction; and movements to two targets where the hands were switched at the first target and the second target required an extension or reversal in direction. The significance of including these latter two (multiple hand-multiple direction) movements meant that for the first time research could differentiate between peripheral and central processes within movement integration strategies. Reaction times were significantly shorter in the single task compared to the two target tasks. More importantly, movement times to the first target were significantly shorter in the single target task compared to all two target tasks (reflecting the so-called one target advantage), except when the second movement was a reversal movement with the same hand. These findings demonstrate for the first time the contrasting effects of movement integration at central and peripheral levels. Copyright © 2016 Elsevier B.V. All rights reserved.
Directly laser-written integrated photonics devices including diffractive optical elements
NASA Astrophysics Data System (ADS)
Choi, Jiyeon; Ramme, Mark; Richardson, Martin
2016-08-01
Femtosecond laser-written integrated devices involving Fresnel Zone Plates (FZPs) and waveguide arrays are demonstrated as built-in optical couplers. These structures were fabricated in borosilicate glass using a direct laser writing technique. The optical properties of these integrated photonic structures were investigated using CW lasers and high-resolution CCDs. For a single FZP coupled to a single waveguide, the overall coupling efficiency was 9%. A multiplexed optical coupler composed of three FZP layers was demonstrated to couple three waveguides simultaneously in a waveguide array. Structures of this type can be used as platforms for multichannel waveguide coupling elements or as microfluidic sensors that require higher light collecting efficiency.
Keck, Tara; Toyoizumi, Taro; Chen, Lu; Doiron, Brent; Feldman, Daniel E; Fox, Kevin; Gerstner, Wulfram; Haydon, Philip G; Hübener, Mark; Lee, Hey-Kyoung; Lisman, John E; Rose, Tobias; Sengpiel, Frank; Stellwagen, David; Stryker, Michael P; Turrigiano, Gina G; van Rossum, Mark C
2017-03-05
We summarize here the results presented and subsequent discussion from the meeting on Integrating Hebbian and Homeostatic Plasticity at the Royal Society in April 2016. We first outline the major themes and results presented at the meeting. We next provide a synopsis of the outstanding questions that emerged from the discussion at the end of the meeting and finally suggest potential directions of research that we believe are most promising to develop an understanding of how these two forms of plasticity interact to facilitate functional changes in the brain.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
ERIC Educational Resources Information Center
Liebowitz, Steven E.
This paper introduces the Pause Model, an innovative means of integrating self-directed learning and continuing professional education. Since the method was developed for professionals such as counselors, educators, and managers who practice in social settings, the paper begins with an explanation of a few of the unique attributes of professional…
Chen, Zhongxian; Yu, Haitao; Wen, Cheng
2014-01-01
The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability. PMID:25152913
Chen, Zhongxian; Yu, Haitao; Wen, Cheng
2014-01-01
The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability.
Integration of sample analysis method (SAM) for polychlorinated biphenyls
Monagle, M.; Johnson, R.C.
1996-05-01
A completely integrated Sample Analysis Method (SAM) has been tested as part of the Contaminant Analysis Automation program. The SAM system was tested for polychlorinated biphenyl samples using five Standard Laboratory Modules{trademark}: two Soxtec{trademark} modules, a high volume concentrator module, a generic materials handling module, and the gas chromatographic module. With over 300 samples completed within the first phase of the validation, recovery and precision data were comparable to manual methods. Based on experience derived from the first evaluation of the automated system, efforts are underway to improve sample recoveries and integrate a sample cleanup procedure. In addition, initial work in automating the extraction of semivolatile samples using this system will also be discussed.
Computing thermal Wigner densities with the phase integration method
Beutier, J.; Borgis, D.; Vuilleumier, R.; Bonella, S.
2014-08-28
We discuss how the Phase Integration Method (PIM), recently developed to compute symmetrized time correlation functions [M. Monteferrante, S. Bonella, and G. Ciccotti, Mol. Phys. 109, 3015 (2011)], can be adapted to sampling/generating the thermal Wigner density, a key ingredient, for example, in many approximate schemes for simulating quantum time dependent properties. PIM combines a path integral representation of the density with a cumulant expansion to represent the Wigner function in a form calculable via existing Monte Carlo algorithms for sampling noisy probability densities. The method is able to capture highly non-classical effects such as correlation among the momenta and coordinates parts of the density, or correlations among the momenta themselves. By using alternatives to cumulants, it can also indicate the presence of negative parts of the Wigner density. Both properties are demonstrated by comparing PIM results to those of reference quantum calculations on a set of model problems.
Methods for Developing Emissions Scenarios for Integrated Assessment Models
Prinn, Ronald; Webster, Mort
2007-08-20
The overall objective of this research was to contribute data and methods to support the future development of new emissions scenarios for integrated assessment of climate change. Specifically, this research had two main objectives: 1. Use historical data on economic growth and energy efficiency changes, and develop probability density functions (PDFs) for the appropriate parameters for two or three commonly used integrated assessment models. 2. Using the parameter distributions developed through the first task and previous work, we will develop methods of designing multi-gas emission scenarios that usefully span the joint uncertainty space in a small number of scenarios. Results on the autonomous energy efficiency improvement (AEEI) parameter are summarized, an uncertainty analysis of elasticities of substitution is described, and the probabilistic emissions scenario approach is presented.
A simple and direct method for generating travelling wave solutions for nonlinear equations
Bazeia, D. Das, Ashok; Silva, A.
2008-05-15
We propose a simple and direct method for generating travelling wave solutions for nonlinear integrable equations. We illustrate how nontrivial solutions for the KdV, the mKdV and the Boussinesq equations can be obtained from simple solutions of linear equations. We describe how using this method, a soliton solution of the KdV equation can yield soliton solutions for the mKdV as well as the Boussinesq equations. Similarly, starting with cnoidal solutions of the KdV equation, we can obtain the corresponding solutions for the mKdV as well as the Boussinesq equations. Simple solutions of linear equations can also lead to cnoidal solutions of nonlinear systems. Finally, we propose and solve some new families of KdV equations and show how soliton solutions are also obtained for the higher order equations of the KdV hierarchy using this method.
Linear Multistep Methods for Integrating Reversible Differential Equations
NASA Astrophysics Data System (ADS)
Evans, N. Wyn; Tremaine, Scott
1999-10-01
This paper studies multistep methods for the integration of reversible dynamical systems, with particular emphasis on the planar Kepler problem. It has previously been shown by Cano & Sanz-Serna that reversible linear multisteps for first-order differential equations are generally unstable. Here we report on a subset of these methods-the zero-growth methods-that evade these instabilities. We provide an algorithm for identifying these rare methods. We find and study all zero-growth, reversible multisteps with six or fewer steps. This select group includes two well-known second-order multisteps (the trapezoidal and explicit midpoint methods), as well as three new fourth-order multisteps-one of which is explicit. Variable time steps can be readily implemented without spoiling the reversibility. Tests on Keplerian orbits show that these new reversible multisteps work well on orbits with low or moderate eccentricity, although at least 100 steps per radian are required for stability.
Inclusion of Separation in Integral Boundary Layer Methods
NASA Astrophysics Data System (ADS)
Wallace, Brodie; O'Neill, Charles
2016-11-01
An integral boundary layer (IBL) method coupled with a potential flow solver quickly allows simulating aerodynamic flows, allowing for aircraft geometries to be rapidly designed and optimized. However, most current IBL methods lack the ability to accurately model three-dimensional separated flows. Various IBL equations and closure relations were investigated in an effort to develop an IBL capable of modeling separation. Solution techniques, including a Newton's method and the inverse matrix solving program GMRES, as well as methods for coupling an IBL with a potential flow solver were also investigated. Results for two-dimensional attached flow as well as methods for expanding an IBL to model three-dimensional separation are presented. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.
Integrating MCH/FP and STD/HIV services: current debates and future directions.
Mayhew, S
1996-12-01
The issue of integrating MCH/FP and STD/HIV services has gained an increasingly high priority on public health agendas in recent years. In the prevailing climate of health sector reform, policy-makers are likely to be increasingly pressed to address the broader concept of "reproductive health' in the terms consolidated at the Cairo International Conference on Population and Development, and the UN Conference on Women in Beijing. Integrated MCH/FP and STD/HIV services could be regarded as a significant step towards providing integrated reproductive health services, but clarity of issues and concerns is essential. A number of rationales have emerged which argue for the integration of these services, and many concerns have been voiced. There is little consensus, however, on the definition of "integrated services' and there are few documented case studies which might clarify the issues. This paper reviews the context in which rationales for "integrated services' emerged, the issues of concern and the case studies available. It concludes by suggesting future directions for research, noting in particular the need for country-specific and multi-dimensional frameworks and the appropriateness of a policy analysis approach.
Stochastic Methods in Protective Structure Design: An Integrated Approach
1988-09-01
189a. Histogram and Probability for Monte Carlo Method .................................... 2 1 9a. Histogram and Probability for Response...Monte Carlo Simulation for ACI Shear and Shear Response .............. 26 1 lb. Static Monte Carlo Simulation for Direct Shear and Shear Response...problem to a wave-propagation, breaching, or penetration problem. A simple Monte- Carlo simulation of the range versus pressure function would
A Comparison of Direct and Indirect Writing Assessment Methods.
ERIC Educational Resources Information Center
Stiggins, Richard J.
An area of current concern is that of the advantages and disadvantages of measuring writing proficiency directly via writing samples, and indirectly via objective tests. Much research has been completed documenting the correlation between direct and indirect measures. However, there had not yet been a systematic and detailed conceptual analysis…
Electrochemical synthesis of nanosized hydroxyapatite by pulsed direct current method
Nur, Adrian; Rahmawati, Alifah; Ilmi, Noor Izzati; Affandi, Samsudin; Widjaja, Arief
2014-02-24
Synthesis of nanosized of hydroxyapatite (HA) by electrochemical pulsed direct current (PDC) method has been studied. The aim of this work is to study the influence of various PDC parameters (pH initial, electrode distance, duty cycle, frequency, and amplitude) on particle surface area of HA powders. The electrochemical synthesis was prepared in solution Ca{sup 2+}/EDTA{sup 4−}/PO{sub 4}{sup 3+} at concentration 0.25/0.25/0.15 M for 24 h. The electrochemical cell was consisted of two carbon rectangular electrodes connected to a function generator to produce PDC. There were two treatments for particles after electrosynthesized, namely without aging and aged for 2 days at 40 °C. For both cases, the particles were filtered and washed by demineralized water to eliminate the impurities and unreacted reactants. Then, the particles were dried at 100 °C for 2 days. The dried particles were characterized by X-ray diffraction, surface area analyzer, scanning electron microscopy (SEM), Fourier transform infrared spectra and thermogravimetric and differential thermal analysis. HA particles can be produced when the initial pH > 6. The aging process has significant effect on the produced HA particles. SEM images of HA particles showed that the powders consisted of agglomerates composed of fine crystallites and have morphology plate-like and sphere. The surface area of HA particles is in the range of 25 – 91 m{sup 2}/g. The largest particle surface area of HA was produced at 4 cm electrode distance, 80% cycle duty, frequency 0.1 Hz, amplitude 9 V and with aging process.
AI/OR computational model for integrating qualitative and quantitative design methods
NASA Technical Reports Server (NTRS)
Agogino, Alice M.; Bradley, Stephen R.; Cagan, Jonathan; Jain, Pramod; Michelena, Nestor
1990-01-01
A theoretical framework for integrating qualitative and numerical computational methods for optimally-directed design is described. The theory is presented as a computational model and features of implementations are summarized where appropriate. To demonstrate the versatility of the methodology we focus on four seemingly disparate aspects of the design process and their interaction: (1) conceptual design, (2) qualitative optimal design, (3) design innovation, and (4) numerical global optimization.
AI/OR computational model for integrating qualitative and quantitative design methods
NASA Technical Reports Server (NTRS)
Agogino, Alice M.; Bradley, Stephen R.; Cagan, Jonathan; Jain, Pramod; Michelena, Nestor
1990-01-01
A theoretical framework for integrating qualitative and numerical computational methods for optimally-directed design is described. The theory is presented as a computational model and features of implementations are summarized where appropriate. To demonstrate the versatility of the methodology we focus on four seemingly disparate aspects of the design process and their interaction: (1) conceptual design, (2) qualitative optimal design, (3) design innovation, and (4) numerical global optimization.
Method for integrating microelectromechanical devices with electronic circuitry
Montague, Stephen; Smith, James H.; Sniegowski, Jeffry J.; McWhorter, Paul J.
1998-01-01
A method for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry.
Method for integrating microelectromechanical devices with electronic circuitry
Montague, S.; Smith, J.H.; Sniegowski, J.J.; McWhorter, P.J.
1998-08-25
A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry. 13 figs.
[Integrated use of psychotherapeutic treatment methods in therapy of alcoholism].
Scholz, H; McCutchan, J
1998-01-01
The treatment of alcoholism is more promising than commonly assumed. Its success is based on the acceptance of a long-term treatment concept over a period of approximately 2 years, the willingness to differentiate between the individual treatment courses according to their underlying individual psychopathologies as well as adapting treatment measures to the actual phases during restitution. Many years of experience with various psychotherapeutic methods have proven that not so much one certain method, but their integrative application depending on the individual situation is relevant to treatment success. Thus, during treatment, a change between supportive, confrontative, systemic and family therapy-oriented elements can occur.
Synthesis of aircraft structures using integrated design and analysis methods
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Goetz, R. C.
1978-01-01
A systematic research is reported to develop and validate methods for structural sizing of an airframe designed with the use of composite materials and active controls. This research program includes procedures for computing aeroelastic loads, static and dynamic aeroelasticity, analysis and synthesis of active controls, and optimization techniques. Development of the methods is concerned with the most effective ways of integrating and sequencing the procedures in order to generate structural sizing and the associated active control system, which is optimal with respect to a given merit function constrained by strength and aeroelasticity requirements.
NASA Astrophysics Data System (ADS)
Yeom, Jiwoon; Hong, Jisoo; Park, Soon-gi; Min, Sung-Wook; Lee, Byoungho
2012-10-01
A bi-directional 2D/3D convertible integral imaging system is proposed. Two optical modules composed of a scattering polarizer and a linear polarizer are adopted, and 2D or 3D mode operation is easily changed by converting polarization states of the projected images. In the 2D mode, the incident light is scattered at the scattering polarizer and the scattered light facing the lens-array is blocked, a 2D image is observable only at the same side as the projector. In the 3D mode, the incident light with the transmission polarization is directly projected onto a lens-array, and the 3D images are integrated. Our proposed system is able to display the 3D images as well as the 2D images for the observers who are placed in front and rear side of the system.
NASA Technical Reports Server (NTRS)
Boyd, Joseph T.; Radens, Carl J.; Kauffman, Michael T.
1991-01-01
Because directional couplers involve channel waveguides which are very close to one another, transition regions to regions where channel waveguides are widely separated are utilized. The total length of a directional coupler and transition regions can be minimized for a particular degree of field confinement. Calculations presented for LiNbO3-, GaAlAs-, and SiO2/Si-based optical channel waveguides demonstrate the presence of a minimum total length corresponding to a particular degree of field confinement. The overall length at the minimum is shown to be significantly lower than for other values of field confinement allowing single-mode operation. This implies that either more devices can be integrated on a substrate or that less material is needed for an integrated optical circuit.
A monolithic integrated micro direct methanol fuel cell based on sulfo functionalized porous silicon
NASA Astrophysics Data System (ADS)
Wang, M.; Lu, Y. X.; Liu, L. T.; Wang, X. H.
2016-11-01
In this paper, we demonstrate a monolithic integrated micro direct methanol fuel cell (μDMFC) for the first time. The monolithic integrated μDMFC combines proton exchange membrane (PEM) and Pt nanocatalysts, in which PEM is achieved by the functionalized porous silicon membrane and 3D Pt nanoflowers being synthesized in situ on it as catalysts. Sulfo groups functionalized porous silicon membrane serves as a PEM and a catalyst support simultaneously. The μDMFC prototype achieves an open circuit voltage of 0.3 V, a maximum power density of 5.5 mW/cm2. The monolithic integrated μDMFC offers several desirable features such as compatibility with micro fabrication techniques, an undeformable solid PEM and the convenience of assembly.
Method and apparatus for determining material structural integrity
Pechersky, Martin
1996-01-01
A non-destructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis techniques to determine the damping loss factor of a material. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity as a function of time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method. If an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the amount of coil current used in vibrating the magnet. If a reciprocating transducer is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by a force gauge in the reciprocating transducer. Using known vibrational analysis methods, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity measurements. The damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.
Yang, Yoosoo; Hong, Yeonsun; Nam, Gi-Hoon; Chung, Jin Hwa; Koh, Eunee; Kim, In-San
2017-02-06
An efficient system for direct delivery of integral membrane proteins is successfully developed using a new biocompatible exosome-based platform. Fusogenic exosomes harboring viral fusogen, vascular stomatitis virus (VSV)-G protein, can fuse with and modify plasma membranes in a process called "membrane editing." This can facilitate the transfer of biologically active membrane proteins into the target cell membranes both in vitro and in vivo.
An Adaptive Fast Direct Solver for Boundary Integral Equations in Two Dimensions
2009-08-21
described in Sections 5 and 6. In each of the experiments, we apply Nystrom discretization to one of the following boundary integral 19 I I I equations...7.5) via the Nystrom method with piecewise Gaussian quadrature displays high rates of convergence, so long as the kernel K(x,y) and the layer density...Analysis, Ann. of Math. Stud., 112 (1986), pp. 131-183. [17] R. KRESS, Integral Equations, Springer-Verlag, New York, 1999. [18] R. KRESS, A Nystrom method
An inverse method was developed to integrate satellite observations of atmospheric pollutant column concentrations and direct sensitivities predicted by a regional air quality model in order to discern biases in the emissions of the pollutant precursors.
An inverse method was developed to integrate satellite observations of atmospheric pollutant column concentrations and direct sensitivities predicted by a regional air quality model in order to discern biases in the emissions of the pollutant precursors.
NASA Technical Reports Server (NTRS)
Yu, F. P.; Pyle, B. H.; McFeters, G. A.
1993-01-01
This report describes the adaptation of an in situ direct viable count (in situ DVC) method in biofilm disinfection studies. The results obtained with this technique were compared to two other enumeration methods, the plate count (PC) and conventional direct viable count (c-DVC). An environmental isolate (Klebsiella pneumoniae Kp1) was used to form biofilms on stainless steel coupons in a stirred batch reactor. The in situ DVC method was applied to directly assess the viability of bacteria in biofilms without disturbing the integrity of the interfacial community. As additional advantages, the results were observed after 4 h instead of the 24 h incubation time required for colony formation and total cell numbers that remained on the substratum were enumerated. Chlorine and monochloramine were used to determine the susceptibilities of attached and planktonic bacteria to disinfection treatment using this novel analytical approach. The planktonic cells in the reactor showed no significant change in susceptibility to disinfectants during the period of biofilm formation. In addition, the attached cells did not reveal any more resistance to disinfection than planktonic cells. The disinfection studies of young biofilms indicated that 0.25 mg/l free chlorine (at pH 7.2) and 1 mg/l monochloramine (at pH 9.0) have comparable disinfection efficiencies at 25 degrees C. Although being a weaker disinfectant, monochloramine was more effective in removing attached bacteria from the substratum than free chlorine. The in situ DVC method always showed at least one log higher viable cell densities than the PC method, suggesting that the in situ DVC method is more efficient in the enumeration of biofilm bacteria. The results also indicated that the in situ DVC method can provide more accurate information regarding the cell numbers and viability of bacteria within biofilms following disinfection.
NASA Technical Reports Server (NTRS)
Yu, F. P.; Pyle, B. H.; McFeters, G. A.
1993-01-01
This report describes the adaptation of an in situ direct viable count (in situ DVC) method in biofilm disinfection studies. The results obtained with this technique were compared to two other enumeration methods, the plate count (PC) and conventional direct viable count (c-DVC). An environmental isolate (Klebsiella pneumoniae Kp1) was used to form biofilms on stainless steel coupons in a stirred batch reactor. The in situ DVC method was applied to directly assess the viability of bacteria in biofilms without disturbing the integrity of the interfacial community. As additional advantages, the results were observed after 4 h instead of the 24 h incubation time required for colony formation and total cell numbers that remained on the substratum were enumerated. Chlorine and monochloramine were used to determine the susceptibilities of attached and planktonic bacteria to disinfection treatment using this novel analytical approach. The planktonic cells in the reactor showed no significant change in susceptibility to disinfectants during the period of biofilm formation. In addition, the attached cells did not reveal any more resistance to disinfection than planktonic cells. The disinfection studies of young biofilms indicated that 0.25 mg/l free chlorine (at pH 7.2) and 1 mg/l monochloramine (at pH 9.0) have comparable disinfection efficiencies at 25 degrees C. Although being a weaker disinfectant, monochloramine was more effective in removing attached bacteria from the substratum than free chlorine. The in situ DVC method always showed at least one log higher viable cell densities than the PC method, suggesting that the in situ DVC method is more efficient in the enumeration of biofilm bacteria. The results also indicated that the in situ DVC method can provide more accurate information regarding the cell numbers and viability of bacteria within biofilms following disinfection.
Advances in directed self assembly integration and manufacturability at 300 mm
NASA Astrophysics Data System (ADS)
Rathsack, Benjamen; Somervell, Mark; Muramatsu, Makato; Tanouchi, Keiji; Kitano, Takahiro; Nishimura, Eiichi; Yatsuda, Koichi; Nagahara, Seiji; Iwaki, Hiroyuki; Akai, Keiji; Ozawa, Mariko; Romo Negreira, Ainhoa; Tahara, Shigeru; Nafus, Kathleen
2013-03-01
Directed self-assembly (DSA) has the potential to extend scaling for both line/space and hole patterns. DSA has shown the capability for pitch reduction (multiplication), hole shrinks, CD self-healing as well as a pathway towards LWR and pattern collapse improvement [1-10]. TEL has developed a DSA development ecosystem (collaboration with customers, consortia, inspection vendors and material suppliers) to successfully demonstrate directed PS-PMMA DSA patterns using chemo-epitaxy (lift-off and etch guide) and grapho-epitaxy integrations on 300 mm wafers. New processes are being developed to simplify process integration, to reduce defects and to address design integration challenges with the long term goal of robust manufacturability. For hole DSA applications, a wet development process has been developed that enables traditional post-develop metrology through the high selectivity removal of PMMA cylindrical cores. For line/ space DSA applications, new track, cleans and etch processes have been developed to improve manufacturability. In collaboration with universities and consortia, fundamental process studies and simulations are used to drive process improvement and defect investigation. To extend DSA resolution beyond a PS-PMMA system, high chi materials and processes are also explored. In this paper, TEL's latest process solutions for both hole and line/space DSA process integrations are presented.
Direct evidence for distance measurement via flexible stride integration in the fiddler crab.
Walls, Michael L; Layne, John E
2009-01-13
While on foraging excursions, fiddler crabs track their burrow location despite having no visual contact with it . They do this by path integration, a common navigational process in which motion vectors (the direction and distance of animals' movements) are summed to form a single "home vector" linking the current location with the point of origin. Here, we identify the mechanism by which the integrator measures distance, by decoupling motor output from both inertial and visual feedback. Fiddler crabs were passively translated to a position such that the home vector lay across an acetate sheet on the ground. After being frightened, crabs tried to escape but slipped as they did so. Detailed high-speed video analysis reveals that crabs measure distance by integrating strides, rather than linear acceleration or optic flow: the number of steps they took depended on both the length of the home vector and how large their steps were, whether they slipped and fell short or not. This is the most direct evidence to date of a stride integrator that is flexible enough to account for significant variation in stride length and frequency.
Li, Huahui; Kong, Lingzhi; Wu, Xihong; Li, Liang
2013-01-01
In reverberant rooms with multiple-people talking, spatial separation between speech sources improves recognition of attended speech, even though both the head-shadowing and interaural-interaction unmasking cues are limited by numerous reflections. It is the perceptual integration between the direct wave and its reflections that bridges the direct-reflection temporal gaps and results in the spatial unmasking under reverberant conditions. This study further investigated (1) the temporal dynamic of the direct-reflection-integration-based spatial unmasking as a function of the reflection delay, and (2) whether this temporal dynamic is correlated with the listeners’ auditory ability to temporally retain raw acoustic signals (i.e., the fast decaying primitive auditory memory, PAM). The results showed that recognition of the target speech against the speech-masker background is a descending exponential function of the delay of the simulated target reflection. In addition, the temporal extent of PAM is frequency dependent and markedly longer than that for perceptual fusion. More importantly, the temporal dynamic of the speech-recognition function is significantly correlated with the temporal extent of the PAM of low-frequency raw signals. Thus, we propose that a chain process, which links the earlier-stage PAM with the later-stage correlation computation, perceptual integration, and attention facilitation, plays a role in spatially unmasking target speech under reverberant conditions. PMID:23658664
Schellekens, Wouter; Van Wezel, Richard J. A.; Petridou, Natalia; Ramsey, Nick F.; Raemaekers, Mathijs
2013-01-01
Recent imaging studies have reported directional motion biases in human visual cortex when perceiving moving random dot patterns. It has been hypothesized that these biases occur as a result of the integration of motion detector activation along the path of motion in visual cortex. In this study we investigate the nature of such motion integration with functional MRI (fMRI) using different motion stimuli. Three types of moving random dot stimuli were presented, showing either coherent motion, motion with spatial decorrelations or motion with temporal decorrelations. The results from the coherent motion stimulus reproduced the centripetal and centrifugal directional motion biases in V1, V2 and V3 as previously reported. The temporally decorrelated motion stimulus resulted in both centripetal and centrifugal biases similar to coherent motion. In contrast, the spatially decorrelated motion stimulus resulted in small directional motion biases that were only present in parts of visual cortex coding for higher eccentricities of the visual field. In combination with previous results, these findings indicate that biased motion responses in early visual cortical areas most likely depend on the spatial integration of a simultaneously activated motion detector chain. PMID:23840711
Efficient Fully Implicit Time Integration Methods for Modeling Cardiac Dynamics
Rose, Donald J.; Henriquez, Craig S.
2013-01-01
Implicit methods are well known to have greater stability than explicit methods for stiff systems, but they often are not used in practice due to perceived computational complexity. This paper applies the Backward Euler method and a second-order one-step two-stage composite backward differentiation formula (C-BDF2) for the monodomain equations arising from mathematically modeling the electrical activity of the heart. The C-BDF2 scheme is an L-stable implicit time integration method and easily implementable. It uses the simplest Forward Euler and Backward Euler methods as fundamental building blocks. The nonlinear system resulting from application of the Backward Euler method for the monodomain equations is solved for the first time by a nonlinear elimination method, which eliminates local and non-symmetric components by using a Jacobian-free Newton solver, called Newton-Krylov solver. Unlike other fully implicit methods proposed for the monodomain equations in the literature, the Jacobian of the global system after the nonlinear elimination has much smaller size, is symmetric and possibly positive definite, which can be solved efficiently by standard optimal solvers. Numerical results are presented demonstrating that the C-BDF2 scheme can yield accurate results with less CPU times than explicit methods for both a single patch and spatially extended domains. PMID:19126449
NASA Astrophysics Data System (ADS)
Isaenkova, M.; Perlovich, Yu; Fesenko, V.
2016-04-01
Currently used methods for constructing texture complete direct pole figure (CDPF) based on the results of X-ray diffractometric measurements were considered with respect to the products of Zr-based alloys and, in particular, used in a nuclear reactor cladding tubes, for which the accuracy of determination of integral texture parameters is of the especial importance. The main attention was devoted to technical issues which are solved by means of computer processing of large arrays of obtained experimental data. Among considered questions there are amendments of the defocusing, techniques for constructing of complete direct pole figures and determination of integral textural parameters. The methods of reconstruction of complete direct pole figures by partial direct pole figures recorded up to tilt angles of sample ψ=70-80°: the method of extrapolation of data to an uninvestigated region of the stereographic projection, and the method of "sewing" of partial pole figures measured for three mutually perpendicular plane sections of the product. The limits of applicability of these methods, depending on the shape of the test product and the degree of inhomogeneity of the layer-by-layer texture, were revealed. On the basis of a large number of experimental data, the accuracy of the integral parameters used for calculation of the physical and mechanical properties of metals with a hexagonal crystal structure was found to be equal to 0.02, when taking into account the texture heterogeneity of regular products from Zr-based alloys.
Method and apparatus for determining material structural integrity
Pechersky, M.J.
1994-01-01
Disclosed are a nondestructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis to determine the damping loss factor. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity vs time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method: if an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the coil current. If a reciprocating transducer is used, the vibrational force is determined by a force gauge in the transducer. Using vibrational analysis, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity data. Damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.
Integral structural-functional method for characterizing microbial populations
NASA Astrophysics Data System (ADS)
Yakushev, A. V.
2015-04-01
An original integral structural-functional method has been proposed for characterizing microbial communities. The novelty of the approach is the in situ study of microorganisms based on the growth kinetics of microbial associations in liquid nutrient broth media under selective conditions rather than on the level of taxa or large functional groups. The method involves the analysis of the integral growth model of a periodic culture. The kinetic parameters of such associations reflect their capacity of growing on different media, i.e., their physiological diversity, and the metabolic capacity of the microorganisms for growth on a nutrient medium. Therefore, the obtained parameters are determined by the features of the microbial ecological strategies. The inoculation of a dense medium from the original inoculate allows characterizing the taxonomic composition of the dominants in the soil community. The inoculation from the associations developed on selective media characterizes the composition of syntrophic groups, which fulfill a specific function in nature. This method is of greater information value than the classical methods of inoculation on selective media.
Integrated Force Method Solution to Indeterminate Structural Mechanics Problems
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.; Halford, Gary R.
2004-01-01
Strength of materials problems have been classified into determinate and indeterminate problems. Determinate analysis primarily based on the equilibrium concept is well understood. Solutions of indeterminate problems required additional compatibility conditions, and its comprehension was not exclusive. A solution to indeterminate problem is generated by manipulating the equilibrium concept, either by rewriting in the displacement variables or through the cutting and closing gap technique of the redundant force method. Compatibility improvisation has made analysis cumbersome. The authors have researched and understood the compatibility theory. Solutions can be generated with equal emphasis on the equilibrium and compatibility concepts. This technique is called the Integrated Force Method (IFM). Forces are the primary unknowns of IFM. Displacements are back-calculated from forces. IFM equations are manipulated to obtain the Dual Integrated Force Method (IFMD). Displacement is the primary variable of IFMD and force is back-calculated. The subject is introduced through response variables: force, deformation, displacement; and underlying concepts: equilibrium equation, force deformation relation, deformation displacement relation, and compatibility condition. Mechanical load, temperature variation, and support settling are equally emphasized. The basic theory is discussed. A set of examples illustrate the new concepts. IFM and IFMD based finite element methods are introduced for simple problems.
NASA Astrophysics Data System (ADS)
Cho, Jaepil; Shin, Chang-Min; Choi, Hwan-Kyu; Kim, Kyong-Hyeon; Choi, Ji-Yong
2016-10-01
The APEC Climate Center (APCC) produces climate prediction information utilizing a multi-climate model ensemble (MME) technique. In this study, four different downscaling methods, in accordance with the degree of utilizing the seasonal climate prediction information, were developed in order to improve predictability and to refine the spatial scale. These methods include: (1) the Simple Bias Correction (SBC) method, which directly uses APCC's dynamic prediction data with a 3 to 6 month lead time; (2) the Moving Window Regression (MWR) method, which indirectly utilizes dynamic prediction data; (3) the Climate Index Regression (CIR) method, which predominantly uses observation-based climate indices; and (4) the Integrated Time Regression (ITR) method, which uses predictors selected from both CIR and MWR. Then, a sampling-based temporal downscaling was conducted using the Mahalanobis distance method in order to create daily weather inputs to the Soil and Water Assessment Tool (SWAT) model. Long-term predictability of water quality within the Wecheon watershed of the Nakdong River Basin was evaluated. According to the Korean Ministry of Environment's Provisions of Water Quality Prediction and Response Measures, modeling-based predictability was evaluated by using 3-month lead prediction data issued in February, May, August, and November as model input of SWAT. Finally, an integrated approach, which takes into account various climate information and downscaling methods for water quality prediction, was presented. This integrated approach can be used to prevent potential problems caused by extreme climate in advance.
NASA Astrophysics Data System (ADS)
Lang, Zhi-Guo; Tan, Jiu-Bin
2009-11-01
In order to improve the precision of profile measurement based on ultra-precise thin light beam scanning, an assessment method that compares different numerical integration algorithms in frequency-domain is put forward. The compared numerical integration methods are regarded as recursive digital filters. Through comparing their functions of frequency response in frequency-domain, the delivering role of noise with different frequencies can be analyzed directly and clearly in the process of integrating measured slope data. Analyzing results show that the method of cubic spline is better than trapezoidal, Simpson and 3/8 Simpson rules.
NASA Technical Reports Server (NTRS)
Cataldo, Giuseppe
2014-01-01
The far-infrared and submillimeter portions of the electromagnetic spectrum provide a unique view of the astrophysical processes present in the early universe. Our ability to fully explore this rich spectral region has been limited, however, by the size and cost of the cryogenic spectrometers required to carry out such measurements. Micro-Spec (u-Spec) is a high-sensitivity, direct-detection spectrometer concept working in the 450-1000 micromillimeter wavelength range which will enable a wide range of flight missions that would otherwise be challenging due to the large size of current instruments with the required spectral resolution and sensitivity. The spectrometer design utilizes two internal antenna arrays, one for transmitting and one for receiving, superconducting microstrip transmission lines for power division and phase delay, and an array of microwave kinetic inductance detectors (MKIDs) to achieve these goals. The instrument will be integrated on a approximately 10 square cm silicon chip and can therefore become an important capability under the low background conditions accessible via space and high-altitude borne platforms. In this paper, an optical design methodology for Micro-Spec is presented, with particular attention given to its twodimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the maximization of the instrument resolving power and minimization of the RMS phase error on the instrument focal plane. This two-step optimization can generate geometrical configurations given specific requirements on spectrometer size, operating spectral range and performance. A point design with resolving power of 257, an RMS phase error less than 0.1 radians and four stigmatic points was developed for initial demonstration and will be the basis of future instruments with resolving power up to about 1200.
Micro-spec: an Integrated Direct-detection Spectrometer for Far-infrared Space Telescopes
NASA Technical Reports Server (NTRS)
Cataldo, Giuseppe; Hsieh, Wen-Ting; Huang, Wei-Chung; Moseley, S. Harvey; Stevenson, Thomas R.; Wollack, Edward J.
2014-01-01
The far-infrared and submillimeter portions of the electromagnetic spectrum provide a unique view of the astrophysical processes present in the early universe. Our ability to fully explore this rich spectral region has been limited, however, by the size and cost of the cryogenic spectrometers required to carry out such measurements.Micro-Spec (µ-Spec) is a high-sensitivity, direct-detection spectrometer concept working in the 450-1000 (micrometers) wavelength range which will enable a wide range of flight missions that would otherwise be challenging due tothe large size of current instruments with the required spectral resolution and sensitivity. The spectrometer design utilizes two internal antenna arrays, one for transmitting and one for receiving, superconducting microstrip transmission lines for power division and phase delay, and an array of microwave kinetic inductance detectors (MKIDs) to achieve these goals. The instrument will be integrated on a approximately 10 sq cm silicon chip and can therefore become an important capability under the low background conditions accessible via space and high-altitude borne platforms. In this paper, an optical design methodology for micro-Spec is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the maximization of the instrument resolving power and minimization of the RMS phase error on the instrument focal plane. This two-step optimization can generate geometrical configurations given specific requirements on spectrometer size, operating spectral range and performance.Two point designs with resolving power of 260 and 520 and an RMS phase error less than approximately 0.004 radians were developed for initial demonstration and will be the basis of future instruments with resolving power up to about 1200.
Path integration: how the head direction signal maintains and corrects spatial orientation.
Valerio, Stephane; Taube, Jeffrey S
2012-10-01
Head-direction cells have frequently been regarded as an internal 'compass' that can be used for navigation, although there is little evidence showing a link between their activity and spatial behavior. In a navigational task requiring the use of internal cues to return to a home location without vision (path integration), we found a robust correlation between head-direction cell activity and the rat's heading error in the rat's homing behavior. We observed two different correction processes that rats used to improve performance after an error. The more frequent one consists of 'resetting' the cell whenever the rat returns to the home location. However, we found that when large errors occur, the head-direction system has the ability to 'remap' and set a new reference frame, which is then used in subsequent trials. We also offer some insight into how these two correction processes operate when rats make an error.
deForest, Erin Kate; Thompson, Graham Cameron
2012-01-01
In an effort to improve the quality and flow of care provided to children presenting to the emergency department the implementation of nurse-initiated protocols is on the rise. We review the current literature on nurse-initiated protocols, validated emergency department clinical scoring systems, and the merging of the two to create Advanced Nursing Directives (ANDs). The process of developing a clinical pathway for children presenting to our pediatric emergency department (PED) with suspected appendicitis will be used to demonstrate the successful integration of validated clinical scoring systems into practice through the use of Advanced Nursing Directives. Finally, examples of 2 other Advanced Nursing Directives for common clinical PED presentations will be provided. PMID:22778944
NASA Astrophysics Data System (ADS)
Masychev, Victor I.
2000-11-01
In this research we present the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyses parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries-involved bacterias. He-Ne-laser ((lambda) =632,8 nm, 1-2mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) =655 nm, 0.1 mW and 630nm, 1mW) and He-Ne laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries.
Lin, Fang-Zheng; Chiu, Yi-Jen; Tsai, Shun-An; Wu, Tsu-Hsiu
2008-05-26
A novel structure, namely a laterally tapered undercut active-waveguide (LTUAWG) for an optical spot-size converter (SSC) is proposed and demonstrated in this paper. Using a selectively undercut-etching-active-region (UEAR) on a laterally tapered ridge to define a LTUAWG, a vertical waveguide directional coupler (VWGDC) can be fabricated simply by a wet etching-based technique. The VWGDC comprises a top LTUAWG and a bottom passive waveguide (PWG). An electroabsorption modulator (EAM) is monolithically integrated with a LTUAWG-VWGDC serving as the connecting active waveguide (AWG) and the optical transmission testing device. Through a loss budget analysis on an EAM-integrated VWGDC, an optical mode transfer loss of -1.6 dB is observed between the PWG and the AWG. By comparing the reverse directions of optical excitation, the identical optical transmission relations with bias are observed, further verifying the high efficiency properties in a SSC. Optical misalignment tolerance is employed to test the two transferred optical modes. 1dB misalignment tolerance of +/-2.9 microm (horizontal) and +/-2.2 microm (vertical) is obtained from the PWG, which is better than the value of +/-1.9 microm (horizontal) and +/-1.6 microm (vertical) from the AWG. Far-field angle measurement shows 6.0 degrees (horizontal) 9.3 degrees (vertical) and 11 degrees (horizontal) x 20 degrees (vertical) for the PWG and the AWG, respectively, exhibiting the capability of a mode transformer. All of these measurements are also examined by a 3D beam propagation method (BPM) showing quite consistent results. In this wet etching technique, no regrowth is needed during processing. Furthermore, UEAR processing controlled by in situ monitoring can lead to a simple way for submicron-size processing, showing that a highly reliable processing technique can thus be expected. A low cost of fabrication can also be realized, indicating that this method can be potentially used in optoelectronic integration.
White-Traut, Rosemary; Emerita; Rankin, Kristin M.; Pham, Thao; Li, Zhuoying; Liu, Li
2014-01-01
Preterm infants are challenged by immature infant behavioral organization which may negatively influence their ability to oral feed. The purpose of this study was to determine whether the integrated H-HOPE (Hospital to Home: Optimizing the Infant’s Environment) intervention would improve infant behavioral organization by increasing the frequency of orally directed behaviors and the proportion of time spent in an alert behavioral state when offered prior to oral feeding. Mother–infant dyads (n = 198) were randomly assigned to the H-HOPE intervention or the Attention Control groups. Infants were born at 29 to 34 weeks gestation and were clinically stable. Mothers had at least two social environmental risk factors such as minority status or less than high school education. H-HOPE is an integrated intervention that included (1) twice-daily infant directed stimulation using the ATVV intervention (auditory, tactile, visual, and vestibular stimuli) and (2) maternal participatory guidance sessions by a nurse-community advocate team. Orally directed behaviors and behavioral states were assessed weekly prior to feeding during hospitalization when infants were able to feed orally. There were no differences between the groups at baseline (Day 0, prior to the initiation of the integrated H-HOPE intervention). We observed a pattern of increased frequency of orally directed behaviors in the H-HOPE intervention group when compared to the Attention Control group, however, the proportion of time spent in an alert behavioral state remained stable in both groups over the course of the study. On Day 7, the H-HOPE intervention group exhibited a significantly higher mean frequency of orally directed behaviors than the Attention Control group (12.6 vs. 7.1 pre-intervention, 51.8 vs. 33.2 during intervention, 4.3 vs. 3.2 immediately after intervention, and 8.9 vs. 5.3 immediately prior to feeding). On Day 7, the H-HOPE intervention group exhibited a significantly higher proportion of
Integration of Directional Antennas in an RSS Fingerprinting-Based Indoor Localization System.
Guzmán-Quirós, Raúl; Martínez-Sala, Alejandro; Gómez-Tornero, José Luis; García-Haro, Joan
2015-12-23
In this paper, the integration of directional antennas in a room-level received signal strength (RSS) fingerprinting-based indoor localization system (ILS) is studied. The sensor reader (SR), which is in charge of capturing the RSS to infer the tag position, can be attached to an omnidirectional or directional antenna. Unlike commonly-employed omnidirectional antennas, directional antennas can receive a stronger signal from the direction in which they are pointed, resulting in a different RSS distributions in space and, hence, more distinguishable fingerprints. A simulation tool and a system management software have been also developed to control the system and assist the initial antenna deployment, reducing time-consuming costs. A prototype was mounted in a real scenario, with a number of SRs with omnidirectional and directional antennas properly positioned. Different antenna configurations have been studied, evidencing a promising capability of directional antennas to enhance the performance of RSS fingerprinting-based ILS, reducing the number of required SRs and also increasing the localization success.
Integration of Directional Antennas in an RSS Fingerprinting-Based Indoor Localization System
Guzmán-Quirós, Raúl; Martínez-Sala, Alejandro; Gómez-Tornero, José Luis; García-Haro, Joan
2015-01-01
In this paper, the integration of directional antennas in a room-level received signal strength (RSS) fingerprinting-based indoor localization system (ILS) is studied. The sensor reader (SR), which is in charge of capturing the RSS to infer the tag position, can be attached to an omnidirectional or directional antenna. Unlike commonly-employed omnidirectional antennas, directional antennas can receive a stronger signal from the direction in which they are pointed, resulting in a different RSS distributions in space and, hence, more distinguishable fingerprints. A simulation tool and a system management software have been also developed to control the system and assist the initial antenna deployment, reducing time-consuming costs. A prototype was mounted in a real scenario, with a number of SRs with omnidirectional and directional antennas properly positioned. Different antenna configurations have been studied, evidencing a promising capability of directional antennas to enhance the performance of RSS fingerprinting-based ILS, reducing the number of required SRs and also increasing the localization success. PMID:26703620
Application of the boundary integral method to immiscible displacement problems
Masukawa, J.; Horne, R.N.
1988-08-01
This paper presents an application of the boundary integral method (BIM) to fluid displacement problems to demonstrate its usefulness in reservoir simulation. A method for solving two-dimensional (2D), piston-like displacement for incompressible fluids with good accuracy has been developed. Several typical example problems with repeated five-spot patterns were solved for various mobility ratios. The solutions were compared with the analytical solutions to demonstrate accuracy. Singularity programming was found to be a major advantage in handling flow in the vicinity of wells. The BIM was found to be an excellent way to solve immiscible displacement problems. Unlike analytic methods, it can accommodate complex boundary shapes and does not suffer from numerical dispersion at the front.
Application of integrated methods in mapping waste disposal areas
NASA Astrophysics Data System (ADS)
Soupios, Pantelis; Papadopoulos, Nikos; Papadopoulos, Ilias; Kouli, Maria; Vallianatos, Filippos; Sarris, Apostolos; Manios, Thrassyvoulos
2007-11-01
An integrated suite of environmental methods was used to characterize the hydrogeological, geological and tectonic regime of the largest waste disposal landfill of Crete Island, the Fodele municipal solid waste site (MSW), to determine the geometry of the landfill (depth and spatial extent of electrically conductive anomalies), to define the anisotropy caused by bedrock fabric fractures and to locate potential zones of electrically conductive contamination. A combination of geophysical methods and chemical analysis was implemented for the characterization and management of the landfill. Five different types of geophysical surveys were performed: (1) 2D electrical resistance tomography (ERT), (2) electromagnetic measurements using very low frequencies (VLF), (3) electromagnetic conductivity (EM31), (4) seismic refraction measurements (SR), and (5) ambient noise measurements (HVSR). The above geophysical methods were used with the aim of studying the subsurface properties of the landfill and to define the exact geometrical characteristics of the site under investigation.
Comparison of four stable numerical methods for Abel's integral equation
NASA Technical Reports Server (NTRS)
Murio, Diego A.; Mejia, Carlos E.
1991-01-01
The 3-D image reconstruction from cone-beam projections in computerized tomography leads naturally, in the case of radial symmetry, to the study of Abel-type integral equations. If the experimental information is obtained from measured data, on a discrete set of points, special methods are needed in order to restore continuity with respect to the data. A new combined Regularized-Adjoint-Conjugate Gradient algorithm, together with two different implementations of the Mollification Method (one based on a data filtering technique and the other on the mollification of the kernal function) and a regularization by truncation method (initially proposed for 2-D ray sample schemes and more recently extended to 3-D cone-beam image reconstruction) are extensively tested and compared for accuracy and numerical stability as functions of the level of noise in the data.
Ma, Rong-Hua; Wang, Dung-An; Hsueh, Tzu-Han; Lee, Chia-Yen
2009-01-01
This study develops a MEMS-based low-cost sensing platform for sensing gas flow rate and flow direction comprising four silicon nitride cantilever beams arranged in a cross-form configuration, a circular hot-wire flow meter suspended on a silicon nitride membrane, and an integrated resistive temperature detector (RTD). In the proposed device, the flow rate is inversely derived from the change in the resistance signal of the flow meter when exposed to the sensed air stream. To compensate for the effects of the ambient temperature on the accuracy of the flow rate measurements, the output signal from the flow meter is compensated using the resistance signal generated by the RTD. As air travels over the surface of the cross-form cantilever structure, the upstream cantilevers are deflected in the downward direction, while the downstream cantilevers are deflected in the upward direction. The deflection of the cantilever beams causes a corresponding change in the resistive signals of the piezoresistors patterned on their upper surfaces. The amount by which each beam deflects depends on both the flow rate and the orientation of the beam relative to the direction of the gas flow. Thus, following an appropriate compensation by the temperature-corrected flow rate, the gas flow direction can be determined through a suitable manipulation of the output signals of the four piezoresistors. The experimental results have confirmed that the resulting variation in the output signals of the integrated sensors can be used to determine not only the ambient temperature and the velocity of the air flow, but also its direction relative to the sensor with an accuracy of ± 7.5° error.
Li, Shasha; Nie, Hongchao; Lu, Xudong; Duan, Huilong
2015-02-01
Integration of heterogeneous systems is the key to hospital information construction due to complexity of the healthcare environment. Currently, during the process of healthcare information system integration, people participating in integration project usually communicate by free-format document, which impairs the efficiency and adaptability of integration. A method utilizing business process model and notation (BPMN) to model integration requirement and automatically transforming it to executable integration configuration was proposed in this paper. Based on the method, a tool was developed to model integration requirement and transform it to integration configuration. In addition, an integration case in radiology scenario was used to verify the method.
Direct spraying method for fabrication of paper-based microfluidic devices
NASA Astrophysics Data System (ADS)
Liu, Ning; Xu, Jing; An, Hong-Jie; Phan, Dinh-Tuan; Hashimoto, Michinao; Siang Lew, Wen
2017-10-01
Direct spraying of hydrophobic materials is an affordable, easy-to-use and equipment-free method for fabrication of flexible microsensors, albeit not yet widely adopted. To explore its application potential, in this paper, we propose and demonstrate two novel hybrid methods to fabricate paper-based components. Firstly, through combing direct spraying with Parafilm embedding, a leak-free paper-based sample preconcentrator for fluorescence sensing was fabricated. The leak-free device worked on the principle of ion concentration polarization (ICP) effect, and achieved enhancement of fluorescent tracer by 220 folds on a paper substrate. Secondly, by using the sprayed hydrophobic patterns, paper-based microsized supercapacitors (mSCs) were fabricated. Vacuum filtration was used to deposit multi-wall carbon nanotubes (MWCNT)-dispersed solution on a porous substrate to form electrodes. A volumetric capacitance of 42.5 mF cm‑3 at a current density of 2 mA cm‑3 was obtained on the paper-based mSC. Our demonstrations have shown the versatility of direct spraying for the fabrication of integrative paper-based microfluidic devices.
Learning in Robot Vision Directed Reaching: A Comparison of Methods
1994-11-01
networks trained to significant errors. Two secondary error correction procedures were then tested. Both further reduced errors, but one method that...was used for the visual feedback of end-effector velocity in the second error correction method.
Series-parallel method of direct solar array regulation
NASA Technical Reports Server (NTRS)
Gooder, S. T.
1976-01-01
A 40 watt experimental solar array was directly regulated by shorting out appropriate combinations of series and parallel segments of a solar array. Regulation switches were employed to control the array at various set-point voltages between 25 and 40 volts. Regulation to within + or - 0.5 volt was obtained over a range of solar array temperatures and illumination levels as an active load was varied from open circuit to maximum available power. A fourfold reduction in regulation switch power dissipation was achieved with series-parallel regulation as compared to the usual series-only switching for direct solar array regulation.
Pattern scaling with directed self assembly through lithography and etch process integration
NASA Astrophysics Data System (ADS)
Rathsack, Benjamen; Somervell, Mark; Hooge, Josh; Muramatsu, Makoto; Tanouchi, Keiji; Kitano, Takahiro; Nishimura, Eiichi; Yatsuda, Koichi; Nagahara, Seiji; Hiroyuki, Iwaki; Akai, Keiji; Hayakawa, Takashi
2012-03-01
Directed self-assembly (DSA) has the potential to extend scaling for both line/space and hole patterns. DSA has shown the capability for pitch reduction (multiplication), hole shrinks, CD self-healing as well as a pathway towards line edge roughness (LER) and pattern collapse improvement [1-4]. The current challenges for industry adoption are materials maturity, practical process integration, hardware capability, defect reduction and design integration. Tokyo Electron (TEL) has created close collaborations with customers, consortia and material suppliers to address these challenges with the long term goal of robust manufacturability. This paper provides a wide range of DSA demonstrations to accommodate different device applications. In collaboration with IMEC, directed line/space patterns at 12.5 and 14 nm HP are demonstrated with PS-b-PMMA (poly(styrene-b-methylmethacrylate)) using both chemo and grapho-epitaxy process flows. Pre-pattern exposure latitudes of >25% (max) have been demonstrated with 4X directed self-assembly on 300 mm wafers for both the lift off and etch guide chemo-epitaxy process flows. Within TEL's Technology Development Center (TDC), directed selfassembly processes have been applied to holes for both CD shrink and variation reduction. Using a PS-b-PMMA hole shrink process, negative tone developed pre-pattern holes are reduced to below 30 nm with critical dimension uniformity (CDU) of 0.9 nm (3s) and contact edge roughness (CER) of 0.8 nm. To generate higher resolution beyond a PS-b-PMMA system, a high chi material is used to demonstrate 9 nm HP line/ space post-etch patterns. In this paper, TEL presents process solutions for both line/space and hole DSA process integrations.
Indirect (source-free) integration method. I. Wave-forms from geodesic generic orbits of EMRIs
NASA Astrophysics Data System (ADS)
Ritter, Patxi; Aoudia, Sofiane; Spallicci, Alessandro D. A. M.; Cordier, Stéphane
2016-12-01
The Regge-Wheeler-Zerilli (RWZ) wave-equation describes Schwarzschild-Droste black hole perturbations. The source term contains a Dirac distribution and its derivative. We have previously designed a method of integration in time domain. It consists of a finite difference scheme where analytic expressions, dealing with the wave-function discontinuity through the jump conditions, replace the direct integration of the source and the potential. Herein, we successfully apply the same method to the geodesic generic orbits of EMRI (Extreme Mass Ratio Inspiral) sources, at second order. An EMRI is a Compact Star (CS) captured by a Super-Massive Black Hole (SMBH). These are considered the best probes for testing gravitation in strong regime. The gravitational wave-forms, the radiated energy and angular momentum at infinity are computed and extensively compared with other methods, for different orbits (circular, elliptic, parabolic, including zoom-whirl).
A Dynamic Integration Method for Borderland Database using OSM data
NASA Astrophysics Data System (ADS)
Zhou, X.-G.; Jiang, Y.; Zhou, K.-X.; Zeng, L.
2013-11-01
Spatial data is the fundamental of borderland analysis of the geography, natural resources, demography, politics, economy, and culture. As the spatial region used in borderland researching usually covers several neighboring countries' borderland regions, the data is difficult to achieve by one research institution or government. VGI has been proven to be a very successful means of acquiring timely and detailed global spatial data at very low cost. Therefore VGI will be one reasonable source of borderland spatial data. OpenStreetMap (OSM) has been known as the most successful VGI resource. But OSM data model is far different from the traditional authoritative geographic information. Thus the OSM data needs to be converted to the scientist customized data model. With the real world changing fast, the converted data needs to be updated. Therefore, a dynamic integration method for borderland data is presented in this paper. In this method, a machine study mechanism is used to convert the OSM data model to the user data model; a method used to select the changed objects in the researching area over a given period from OSM whole world daily diff file is presented, the change-only information file with designed form is produced automatically. Based on the rules and algorithms mentioned above, we enabled the automatic (or semiautomatic) integration and updating of the borderland database by programming. The developed system was intensively tested.
A Method of Integrated Description of Design Information for Reusability
NASA Astrophysics Data System (ADS)
Tsumaya, Akira; Nagae, Masao; Wakamatsu, Hidefumi; Shirase, Keiichi; Arai, Eiji
Much of product design is executed concurrently these days. For such concurrent design, the method which can share and ueuse varioud kind of design information among designers is needed. However, complete understanding of the design information among designers have been a difficult issue. In this paper, design process model with use of designers’ intention is proposed. A method to combine the design process information and the design object information is also proposed. We introduce how to describe designers’ intention by providing some databases. Keyword Database consists of ontological data related to design object/activities. Designers select suitable keyword(s) from Keyword Database and explain the reason/ideas for their design activities by the description with use of keyword(s). We also developed the integration design information management system architecture by using a method of integrated description with designers’ intension. This system realizes connections between the information related to design process and that related to design object through designers’ intention. Designers can communicate with each other to understand how others make decision in design through that. Designers also can re-use both design process information data and design object information data through detabase management sub-system.
ERIC Educational Resources Information Center
Boeije, Hennie; Slagt, Meike; van Wesel, Floryt
2013-01-01
In mixed methods research (MMR), integrating the quantitative and the qualitative components of a study is assumed to result in additional knowledge (or "yield"). This narrative review examines the extent to which MMR is used in the field of childhood trauma and provides directions for improving mixed methods studies in this field. A…
ERIC Educational Resources Information Center
Boeije, Hennie; Slagt, Meike; van Wesel, Floryt
2013-01-01
In mixed methods research (MMR), integrating the quantitative and the qualitative components of a study is assumed to result in additional knowledge (or "yield"). This narrative review examines the extent to which MMR is used in the field of childhood trauma and provides directions for improving mixed methods studies in this field. A…
Compact integration factor methods for complex domains and adaptive mesh refinement.
Liu, Xinfeng; Nie, Qing
2010-08-10
Implicit integration factor (IIF) method, a class of efficient semi-implicit temporal scheme, was introduced recently for stiff reaction-diffusion equations. To reduce cost of IIF, compact implicit integration factor (cIIF) method was later developed for efficient storage and calculation of exponential matrices associated with the diffusion operators in two and three spatial dimensions for Cartesian coordinates with regular meshes. Unlike IIF, cIIF cannot be directly extended to other curvilinear coordinates, such as polar and spherical coordinate, due to the compact representation for the diffusion terms in cIIF. In this paper, we present a method to generalize cIIF for other curvilinear coordinates through examples of polar and spherical coordinates. The new cIIF method in polar and spherical coordinates has similar computational efficiency and stability properties as the cIIF in Cartesian coordinate. In addition, we present a method for integrating cIIF with adaptive mesh refinement (AMR) to take advantage of the excellent stability condition for cIIF. Because the second order cIIF is unconditionally stable, it allows large time steps for AMR, unlike a typical explicit temporal scheme whose time step is severely restricted by the smallest mesh size in the entire spatial domain. Finally, we apply those methods to simulating a cell signaling system described by a system of stiff reaction-diffusion equations in both two and three spatial dimensions using AMR, curvilinear and Cartesian coordinates. Excellent performance of the new methods is observed.
Investigation of system integration methods for bubble domain flight recorders
NASA Technical Reports Server (NTRS)
Chen, T. T.; Bohning, O. D.
1975-01-01
System integration methods for bubble domain flight records are investigated. Bubble memory module packaging and assembly, the control electronics design and construction, field coils, and permanent magnet bias structure design are studied. A small 60-k bit engineering model was built and tested to demonstrate the feasibility of the bubble recorder. Based on the various studies performed, a projection is made on a 50,000,000-bit prototype recorder. It is estimated that the recorder will occupy 190 cubic in., weigh 12 lb, and consume 12 w power when all of its four tracks are operated in parallel at 150 kHz data rate.
Methods of and apparatus for testing the integrity of filters
Herman, R.L.
1984-01-01
A method of and apparatus for testing the integrity of individual filters or filter stages of a multistage filtering system including a diffuser permanently mounted upstream and/or downstream of the filter stage to be tested for generating pressure differentials to create sufficient turbulence for uniformly dispersing trace agent particles within the airstram upstream and downstream of such filter stage. Samples of the particel concentration are taken upstream and downstream of the filter stage for comparison to determine the extent of particle leakage past the filter stage.
Method for deposition of a conductor in integrated circuits
Creighton, J. Randall; Dominguez, Frank; Johnson, A. Wayne; Omstead, Thomas R.
1997-01-01
A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten.
Method for deposition of a conductor in integrated circuits
Creighton, J.R.; Dominguez, F.; Johnson, A.W.; Omstead, T.R.
1997-09-02
A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten. 2 figs.
Method of and apparatus for testing the integrity of filters
Herman, Raymond L [Richland, WA
1985-01-01
A method of and apparatus for testing the integrity of individual filters or filter stages of a multistage filtering system including a diffuser permanently mounted upstream and/or downstream of the filter stage to be tested for generating pressure differentials to create sufficient turbulence for uniformly dispersing trace agent particles within the airstream upstream and downstream of such filter stage. Samples of the particle concentration are taken upstream and downstream of the filter stage for comparison to determine the extent of particle leakage past the filter stage.
Method of and apparatus for testing the integrity of filters
Herman, R.L.
1985-05-07
A method of and apparatus are disclosed for testing the integrity of individual filters or filter stages of a multistage filtering system including a diffuser permanently mounted upstream and/or downstream of the filter stage to be tested for generating pressure differentials to create sufficient turbulence for uniformly dispersing trace agent particles within the airstream upstream and downstream of such filter stage. Samples of the particle concentration are taken upstream and downstream of the filter stage for comparison to determine the extent of particle leakage past the filter stage. 5 figs.
The biocommunication method: On the road to an integrative biology
Witzany, Guenther
2016-01-01
ABSTRACT Although molecular biology, genetics, and related special disciplines represent a large amount of empirical data, a practical method for the evaluation and overview of current knowledge is far from being realized. The main concepts and narratives in these fields have remained nearly the same for decades and the more recent empirical data concerning the role of noncoding RNAs and persistent viruses and their defectives do not fit into this scenario. A more innovative approach such as applied biocommunication theory could translate empirical data into a coherent perspective on the functions within and between biological organisms and arguably lead to a sustainable integrative biology. PMID:27195071
Primal and Dual Integrated Force Methods Used for Stochastic Analysis
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.
2005-01-01
At the NASA Glenn Research Center, the primal and dual integrated force methods are being extended for the stochastic analysis of structures. The stochastic simulation can be used to quantify the consequence of scatter in stress and displacement response because of a specified variation in input parameters such as load (mechanical, thermal, and support settling loads), material properties (strength, modulus, density, etc.), and sizing design variables (depth, thickness, etc.). All the parameters are modeled as random variables with given probability distributions, means, and covariances. The stochastic response is formulated through a quadratic perturbation theory, and it is verified through a Monte Carlo simulation.
Method of producing an integral resonator sensor and case
NASA Technical Reports Server (NTRS)
Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)
2005-01-01
The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.
Integration of Boltzmann machine and reverse analysis method
NASA Astrophysics Data System (ADS)
Mamuda, Mamman; Sathasivam, Saratha
2015-10-01
Reverse analysis method is actually a data mining technique to unearth relationships between data. By knowing the connection strengths by using Hopfield network, we can extract the relationships in data sets. Hopfield networks have recognized that some relaxation schemes have a joined cost function and the states of the network converge to local minima of this function. It had performed optimization of a well-defined function. However, there is no guarantee to find the best minimum in the network. Thus, Boltzmann machine has been introduced to overcome this problem. In this paper, we integrate both approaches to enhance data mining. We limit our work to Horn clauses.
Systems and methods for bi-directional energy delivery with galvanic isolation
Kajouke, Lateef A.
2013-06-18
Systems and methods are provided for bi-directional energy delivery. A charging system comprises a first bi-directional conversion module, a second bi-directional conversion module, and an isolation module coupled between the first bi-directional conversion module and the second bi-directional conversion module. The isolation module provides galvanic isolation between the first bi-directional conversion module and the second bi-directional conversion module.
Sensitivity method for integrated structure/active control law design
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.
1987-01-01
The development is described of an integrated structure/active control law design methodology for aeroelastic aircraft applications. A short motivating introduction to aeroservoelasticity is given along with the need for integrated structures/controls design algorithms. Three alternative approaches to development of an integrated design method are briefly discussed with regards to complexity, coordination and tradeoff strategies, and the nature of the resulting solutions. This leads to the formulation of the proposed approach which is based on the concepts of sensitivity of optimum solutions and multi-level decompositions. The concept of sensitivity of optimum is explained in more detail and compared with traditional sensitivity concepts of classical control theory. The analytical sensitivity expressions for the solution of the linear, quadratic cost, Gaussian (LQG) control problem are summarized in terms of the linear regulator solution and the Kalman Filter solution. Numerical results for a state space aeroelastic model of the DAST ARW-II vehicle are given, showing the changes in aircraft responses to variations of a structural parameter, in this case first wing bending natural frequency.
Sleep Can Eliminate List-Method Directed Forgetting
ERIC Educational Resources Information Center
Abel, Magdalena; Bäuml, Karl-Heinz T.
2013-01-01
Recent work suggests a link between sleep and memory consolidation, indicating that sleep in comparison to wakefulness stabilizes memories. However, relatively little is known about how sleep affects forgetting. Here we examined whether sleep influences directed forgetting, the finding that people can intentionally forget obsolete memories when…
Sleep Can Eliminate List-Method Directed Forgetting
ERIC Educational Resources Information Center
Abel, Magdalena; Bäuml, Karl-Heinz T.
2013-01-01
Recent work suggests a link between sleep and memory consolidation, indicating that sleep in comparison to wakefulness stabilizes memories. However, relatively little is known about how sleep affects forgetting. Here we examined whether sleep influences directed forgetting, the finding that people can intentionally forget obsolete memories when…
A Comparison of Direct and Indirect Writing Assessment Methods.
ERIC Educational Resources Information Center
Stiggins, Richard J.
1982-01-01
Compares direct and indirect writing assessment strategies and contrasts them in terms of the relationship each has to specific classroom decision-making situations, the components of writing assessed, practical testing matters, characteristics of test exercises, test scoring procedures, and procedures for determining test quality. (HOD)
Method of making direct seal between niobium and ceramics
Rhodes, W. H.; Gutta, J. J.; Pitt, C. S.
1985-10-08
A high pressure arc lamp has a ceramic arc tube envelope. A niobium feedthrough positions electrodes within the tube. A ceramic insert at each end of the tube forms a direct high temperature hermetic seal with the niobium feedthrough and the ceramic tube without the use of frits or brazing.
Integrated Data Collection Analysis (IDCA) Program - SSST Testing Methods
Sandstrom, Mary M.; Brown, Geoffrey W.; Preston, Daniel N.; Pollard, Colin J.; Warner, Kirstin F.; Remmers, Daniel L.; Sorensen, Daniel N.; Whinnery, LeRoy L.; Phillips, Jason J.; Shelley, Timothy J.; Reyes, Jose A.; Hsu, Peter C.; Reynolds, John G.
2013-03-25
The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the methods used for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis during the IDCA program. These methods changed throughout the Proficiency Test and the reasons for these changes are documented in this report. The most significant modifications in standard testing methods are: 1) including one specified sandpaper in impact testing among all the participants, 2) diversifying liquid test methods for selected participants, and 3) including sealed sample holders for thermal testing by at least one participant. This effort, funded by the Department of Homeland Security (DHS), is putting the issues of safe handling of these materials in perspective with standard military explosives. The study is adding SSST testing results for a broad suite of different HMEs to the literature. Ultimately the study will suggest new guidelines and methods and possibly establish the SSST testing accuracies needed to develop safe handling practices for HMEs. Each participating testing laboratory uses identical test materials and preparation methods wherever possible. The testing performers involved are Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Indian Head Division, Naval Surface Warfare Center, (NSWC IHD), Sandia National Laboratories (SNL), and Air Force Research Laboratory (AFRL/RXQL). These tests are conducted as a proficiency study in order to establish some consistency in test protocols, procedures, and experiments and to compare results when these testing variables cannot be made consistent.
Verification of E-Beam direct write integration into 28nm BEOL SRAM technology
NASA Astrophysics Data System (ADS)
Hohle, Christoph; Choi, Kang-Hoon; Gutsch, Manuela; Hanisch, Norbert; Seidel, Robert; Steidel, Katja; Thrun, Xaver; Werner, Thomas
2015-03-01
Electron beam direct write lithography (EBDW) potentially offers advantages for low-volume semiconductor manufacturing, rapid prototyping or design verification due to its high flexibility without the need of costly masks. However, the integration of this advanced patterning technology into complex CMOS manufacturing processes remains challenging. The low throughput of today's single e-Beam tools limits high volume manufacturing applications and maturity of parallel (multi) beam systems is still insufficient [1,2]. Additional concerns like transistor or material damage of underlying layers during exposure at high electron density or acceleration voltage have to be addressed for advanced technology nodes. In the past we successfully proved that potential degradation effects of high-k materials or ULK shrink can be neglected and were excluded by demonstrating integrated electrical results of 28nm node transistor and BEOL performance following 50kV electron beam dry exposure [3]. Here we will give an update on the integration of EBDW in the 300mm CMOS manufacturing processes of advanced integrated circuits at the 28nm SRAM node of GLOBALFOUNDRIES Dresden. The work is an update to what has been previously published [4]. E-beam patterning results of BEOL full chip metal and via layers with a dual damascene integration scheme using a 50kV VISTEC SB3050DW variable shaped electron beam direct writer at Fraunhofer IPMSCNT are demonstrated. For the patterning of the Metal layer a Mix & Match concept based on the sequence litho - etch -litho -etch (LELE) was developed and evaluated wherein several exposure fields were blanked out during the optical exposure. Etch results are shown and compared to the POR. Results are also shown on overlay performance and optimized e-Beam exposure time using most advanced data prep solutions and resist processes. The patterning results have been verified using fully integrated electrical measurement of metal lines and vias on wafer level. In
NASA Astrophysics Data System (ADS)
Jiang, Tian; Zhang, Yong-Tao
2016-04-01
Implicit integration factor (IIF) methods were developed in the literature for solving time-dependent stiff partial differential equations (PDEs). Recently, IIF methods were combined with weighted essentially non-oscillatory (WENO) schemes in Jiang and Zhang (2013) [19] to efficiently solve stiff nonlinear advection-diffusion-reaction equations. The methods can be designed for arbitrary order of accuracy. The stiffness of the system is resolved well and the methods are stable by using time step sizes which are just determined by the non-stiff hyperbolic part of the system. To efficiently calculate large matrix exponentials, Krylov subspace approximation is directly applied to the implicit integration factor (IIF) methods. So far, the IIF methods developed in the literature are multistep methods. In this paper, we develop Krylov single-step IIF-WENO methods for solving stiff advection-diffusion-reaction equations. The methods are designed carefully to avoid generating positive exponentials in the matrix exponentials, which is necessary for the stability of the schemes. We analyze the stability and truncation errors of the single-step IIF schemes. Numerical examples of both scalar equations and systems are shown to demonstrate the accuracy, efficiency and robustness of the new methods.
Fang, Zhichao; Soleymani, Leyla; Pampalakis, Georgios; Yoshimoto, Maisa; Squire, Jeremy A; Sargent, Edward H; Kelley, Shana O
2009-10-27
The analysis of panels of nucleic acid biomarkers offers valuable diagnostic and prognostic information for cancer management. A cost-effective, highly sensitive electronic chip would offer an ideal platform for clinical biomarker readout and would have maximal utility if it was (i) multiplexed, enabling on-chip assays of multiple biomarkers, and (ii) able to perform direct (PCR-free) readout of disease-related genes. Here we report a chip onto which we integrate novel nanostructured microelectrodes and with which we directly detect cancer biomarkers in heterogeneous biological samples-both cell extracts and tumor tissues. Coarse photolithographic microfabrication defines a multiplexed sensing array; bottom-up fabrication of nanostructured microelectrodes then provides sensing elements. We analyzed a panel of mRNA samples for prostate cancer related gene fusions using the chip. We accurately identified gene fusions that correlate with aggressive prostate cancer and distinguished these from fusions associated with slower-progressing forms of the disease. The multiplexed nanostructured microelectrode integrated circuit reported herein provides direct, amplification-free, sample-to-answer in under 1 h using the 10 ng of mRNA readily available in biopsy samples.
Integration of direction cues is invariant to the temporal gap between them.
Kiani, Roozbeh; Churchland, Anne K; Shadlen, Michael N
2013-10-16
Many decisions involve integration of evidence conferred by discrete cues over time. However, the neural mechanism of this integration is poorly understood. Several decision-making models suggest that integration of evidence is implemented by a dynamic system whose state evolves toward a stable point representing the decision outcome. The internal dynamics of such point attractor models render them sensitive to the temporal gaps between cues because their internal forces push the state forward once it is dislodged from the initial stable point. We asked whether human subjects are as sensitive to such temporal gaps. Subjects reported the net direction of stochastic random dot motion, which was presented in one or two brief observation windows (pulses). Pulse strength and interpulse interval varied randomly from trial to trial. We found that subjects' performance was largely invariant to the interpulse intervals up to at least 1 s. The findings question the implementation of the integration process via mechanisms that rely on autonomous changes of network state. The mechanism should be capable of freezing the state of the network at a variety of firing rate levels during temporal gaps between the cues, compatible with a line of stable attractor states.
Impact of beam smoothing method on direct drive target performance for the NIF
Rothenberg, J.E.; Weber, S.V.
1997-01-01
The impact of smoothing method on the performance of a direct drive target is modeled and examined in terms of its 1-mode spectrum. In particular, two classes of smoothing methods are compared, smoothing by spectral dispersion (SSD) and the induced spatial incoherence (ISI) method. It is found that SSD using sinusoidal phase modulation (FM) results in poor smoothing at low 1-modes and therefore inferior target performance at both peak velocity and ignition. This disparity is most notable if the effective imprinting integration time of the target is small. However, using SSD with more generalized phase modulation can result in smoothing at low l-modes which is identical to that obtained with ISI. For either smoothing method, the calculations indicate that at peak velocity the surface perturbations are about 100 times larger than that which leads to nonlinear hydrodynamics. Modeling of the hydrodynamic nonlinearity shows that saturation can reduce the amplified nonuniformities to the level required to achieve ignition for either smoothing method. The low l- mode behavior at ignition is found to be strongly dependent on the induced divergence of the smoothing method. For the NIF parameters the target performance asymptotes for smoothing divergence larger than {approximately}100 {mu}rad.
NASA Astrophysics Data System (ADS)
Xu, Fujun; Yao, Lan; Zhao, Da; Jiang, Muwen; Qiu, Yipping
2013-10-01
A three-dimensionally integrated microstrip antenna (3DIMA) is a microstrip antenna woven into the three-dimensional woven composite for load bearing while functioning as an antenna. In this study, the effect of weaving direction of conductive yarns on electromagnetic performance of 3DIMAs are investigated by designing, simulating and experimental testing of two microstrip antennas with different weaving directions of conductive yarns: one has the conductive yarns along the antenna feeding direction (3DIMA-Exp1) and the other has the conductive yarns perpendicular the antenna feeding direction (3DIMA-Exp2). The measured voltage standing wave ratio (VSWR) of 3DIMA-Exp1 was 1.4 at the resonant frequencies of 1.39 GHz; while that of 3DIMA-Exp2 was 1.2 at the resonant frequencies of 1.35 GHz. In addition, the measured radiation pattern of the 3DIMA-Exp1 has smaller back lobe and higher gain value than those of the 3DIMA-Exp2. This result indicates that the waving direction of conductive yarns may have a significant impact on electromagnetic performance of textile structural antennas.
Method of forming grooves in the [011] crystalline direction
NASA Technical Reports Server (NTRS)
Marinelli, Donald Paul (Inventor)
1977-01-01
An A-B etchant is applied to a (100) surface of a body of semiconductor material, a portion of which along the (100) surface of the body is either gallium arsenide or gallium aluminum arsenide. The etchant is applied for at least 15 seconds at a temperature of approximately 80.degree. C. The A-B etchant is a solution by weight percent of 47.5%, water, 0.2% silver nitrate, 23.8% chromium trioxide and 28.5% of a 48% aqueous solution of hydrofluoric acid. As a result of the application of the A-B etchant a pattern of elongated etch pits form having their longitudinal axes along the [011] crystalline direction. Grooves are formed in the body at a surface opposite the (100) surface on which was applied the etchant. The grooves are formed along the [011] crystalline direction by aligning the longitudinal axes of the grooves with the longitudinal axes of the etch pits.
Method for direct conversion of gaseous hydrocarbons to liquids
Kong, Peter C.; Lessing, Paul A.
2006-03-07
A chemical reactor for direct conversion of hydrocarbons includes a dielectric barrier discharge plasma cell and a solid oxide electrochemical cell in fluid communication therewith. The discharge plasma cell comprises a pair of electrodes separated by a dielectric material and passageway therebetween. The electrochemical cell comprises a mixed-conducting solid oxide electrolyte membrane tube positioned between a porous cathode and a porous anode, and a gas inlet tube for feeding oxygen containing gas to the porous cathode. An inlet is provided for feeding hydrocarbons to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a light source for directing ultraviolet light into the discharge plasma cell and the electrochemical cell.
Push-through direct injection NMR: an optimized automation method applied to metabolomics.
Teng, Quincy; Ekman, Drew R; Huang, Wenlin; Collette, Timothy W
2012-05-07
There is a pressing need to increase the throughput of NMR analysis in fields such as metabolomics and drug discovery. Direct injection (DI) NMR automation is recognized to have the potential to meet this need due to its suitability for integration with the 96-well plate format. However, DI NMR has not been widely used as a result of some insurmountable technical problems; namely: carryover contamination, sample diffusion (causing reduction of spectral sensitivity), and line broadening caused by entrapped air bubbles. Several variants of DI NMR, such as flow injection analysis (FIA) and microflow NMR, have been proposed to address one or more of these issues, but not all of them. The push-through direct injection technique reported here overcomes all of these problems. The method recovers samples after NMR analysis, uses a "brush-wash" routine to eliminate carryover, includes a procedure to push wash solvent out of the flow cell via the outlet to prevent sample diffusion, and employs an injection valve to avoid air bubbles. Herein, we demonstrate the robustness, efficiency, and lack of carryover characteristics of this new method, which is ideally suited for relatively high throughput analysis of the complex biological tissue extracts used in metabolomics, as well as many other sample types. While simple in concept and setup, this new method provides a substantial improvement over current approaches.
NASA Technical Reports Server (NTRS)
Hueser, J. E.; Brock, F. J.; Melfi, L. T., Jr.; Bird, G. A.
1984-01-01
A new solution procedure has been developed to analyze the flowfield properties in the vicinity of the Inertial Upper Stage/Spacecraft during the 1st stage (SRMI) burn. Continuum methods are used to compute the nozzle flow and the exhaust plume flowfield as far as the boundary where the breakdown of translational equilibrium leaves these methods invalid. The Direct Simulation Monte Carlo (DSMC) method is applied everywhere beyond this breakdown boundary. The flowfield distributions of density, velocity, temperature, relative abundance, surface flux density, and pressure are discussed for each species for 2 sets of boundary conditions: vacuum and freestream. The interaction of the exhaust plume and the freestream with the spacecraft and the 2-stream direct interaction are discussed. The results show that the low density, high velocity, counter flowing free-stream substantially modifies the flowfield properties and the flux density incident on the spacecraft. A freestream bow shock is observed in the data, located forward of the high density region of the exhaust plume into which the freestream gas does not penetrate. The total flux density incident on the spacecraft, integrated over the SRM1 burn interval is estimated to be of the order of 10 to the 22nd per sq m (about 1000 atomic layers).
Electrohydrodynamic direct printing on hydrogel: a novel method to obtain fine fibers
NASA Astrophysics Data System (ADS)
Liu, Yuanyuan; Jiang, Chen; Liu, Yi; Li, Dongdong; Hu, Qingxi
2016-09-01
In this study, we proposed a novel method to obtain fine fibers: electrohydrodynamic (EHD) direct printing PCL on hydrogel. The effects of applied voltage, flow rate, plotting speed, hydrogel viscosity on the EHD direct writing process were investigated to obtain the most appropriate set of process conditions. We also compared the fibers obtained from this method with traditional EHD which deposited on aluminum and ethanol-based collectors. We found that fibers collected on the hydrogel were thinner and exhibited pores on the surface due to the hydrogel's facilitation of organic solvents' volatilization in the PCL fibers, which can benefit the attachment of cells. Besides, in our previous study, we found the freeze-thaw crosslinking process could greatly increase mechanical properties of the hydrogel used in our research, so this integration will not only mimic the composition of ECM which is a composite structure with a combination of fibrous proteins within a gelatinous grounded substance but also improve the mechanical properties of the scaffold. This novel method will broaden the application of EHD technology in the field of tissue engineering and other related areas.
Wen, Yahong; Liao, Grace; Pritchard, Thomas; Zhao, Ting-Ting; Connelly, Jon P; Pruett-Miller, Shondra M; Blanc, Valerie; Davidson, Nicholas O; Madison, Blair B
2017-02-22
The discovery and application of CRISPR/Cas9 technology for genome editing has greatly accelerated targeted mutagenesis in a variety of organisms. CRISPR/Cas9-mediated site-specific cleavage is typically exploited for the generation of insertions or deletions (indels) following aberrant dsDNA repair via the endogenous non-homology end-joining (NHEJ) pathway, or alternatively, for enhancing homology directed repair (HDR) to facilitate the generation of a specific mutation (or knock-in). However, there is a need for efficient cellular assays that can measure Cas9/guide RNA (gRNA) activity. Reliable methods for enriching and identifying desired mutants are also lacking. Here we describe a method using the Piggybac transposon for stable genomic integration of an H2B-GFP reporter or a hygromycin resistance gene for assaying Cas9 target cleavage and homology-directed repair (HDR). The H2B-GFP fusion protein provides increased stability and an obvious pattern of nuclear localization. This method, called SRIRACCHA (i.e., a stable, but reversible, integrated reporter for assaying CRISPR/Cas-stimulated HDR activity), enables the enrichment of mutants via selection of GFP-positive or hygromycin-resistant mammalian cells (immortalized or non-immortalized) as a surrogate for the modification of the endogenous target site. Currently available hyperactive Piggybac transposase mutants allow both delivery and removal of the surrogate reporters, with minimal risk of generating undesirable mutations. This assay permits rapid screening for efficient gRNAs, and the accelerated identification of mutant clones, and is applicable to many cell types. We foresee the utility of this approach in contexts in which the maintenance of genomic integrity is essential, for example, when engineering cells for therapeutic purposes.
The role of direct broadcasting satellites in the integrated communications environment
NASA Astrophysics Data System (ADS)
Rutkowski, A. M.
The global integration of information sources, telecommunication systems, and user terminals into a computer-controlled distributed communication network, known as the Integrated Services Digital Network (ISDN), will markedly affect the role of direct broadcasting satellites (DBS). DBS facilities will be increasingly used for the dissemination of non-video materials and will become a dominant means of electronic publishing. These facilities will also be used to selectively address information to dynamically definable classes of users, thus altering the very concept and definition of broadcasting. Finally, DBS will transform into multipoint distribution systems emanating from the ISDN. It is pointed out that although some of these developments wil not fully emerge for one or two decades, consideration should be given to the impact of the ISDN on society and its legal systems.
Jiang, Zhenyu; Atalla, Mahmoud R M; You, Guanjun; Wang, Li; Li, Xiaoyun; Liu, Jie; Elahi, Asim M; Wei, Lai; Xu, Jian
2014-10-01
Design and fabrication of monolithically integrated III-nitride visible light-emitting-diodes (LEDs) and ultraviolet Schottky barrier-photodetectors (SB-PDs) have been proposed and demonstrated. Responsivity up to 0.2 AW(-1) at 365 nm for GaN SB-PDs has been achieved. It is shown that those UV SB-PDs were capable of sensitive UV light detection down to 7.16×10(-4) W/cm2 at 365 nm, whereas simultaneous operation of on-chip blue LEDs has produced negligible crosstalk at practical illumination brightness. Monolithically integrated LEDs and SB-PDs can function as transmitters to emit visible light signals, and as receivers to analyze incoming UV signals, respectively; this offers the potential of using such devices for bi-directional optical wireless communication applications.
Limitations of backward integration method for asteroid family age estimation
NASA Astrophysics Data System (ADS)
Radović, Viktor
2017-10-01
Determining the age of an asteroid family is important as it gives us a better understanding of the dynamics, formation and collisional evolution of a family. So far, a few methods for determining the age of a family have been developed. The most accurate one is probably the backward integration method (BIM) that works very well for young families. In this paper, we try to study its characteristics and limitations in more detail using a fictional asteroid family. The analysis is performed with two numerical packages: orbfit and mercury. We studied the clustering of the secular angles Ω and ϖ and obtained linear relationship between the depth of the clustering and the age of the family. Our results suggest that the BIM could be successfully applied only to families not older than 18 Myr.
[Integrative review: concepts and methods used in nursing].
Soares, Cassia Baldini; Hoga, Luiza Akiko Komura; Peduzzi, Marina; Sangaleti, Carine; Yonekura, Tatiana; Silva, Deborah Rachel Audebert Delage
2014-04-01
Integrative review (IR) has an international reputation in nursing research and evidence-based practice. This IR aimed at identifying and analyzing the concepts and methods recommended to undertaking IR in nursing. Nine information resources,including electronic databases and grey literature were searched. Seventeen studies were included. The results indicate that: primary studies were mostly from USA; it is possible to have several research questions or hypotheses and include primary studies in the review from different theoretical and methodological approaches; it is a type of review that can go beyond the analysis and synthesis of findings from primary studies allowing exploiting other research dimensions, and that presents potentialities for the development of new theories and new problems for research. IR is understood as a very complex type of review and it is expected to be developed using standardized and systematic methods to ensure the required rigor of scientific research and therefore the legitimacy of the established evidence.
The reduced basis method for the electric field integral equation
Fares, M.; Hesthaven, J.S.; Maday, Y.; Stamm, B.
2011-06-20
We introduce the reduced basis method (RBM) as an efficient tool for parametrized scattering problems in computational electromagnetics for problems where field solutions are computed using a standard Boundary Element Method (BEM) for the parametrized electric field integral equation (EFIE). This combination enables an algorithmic cooperation which results in a two step procedure. The first step consists of a computationally intense assembling of the reduced basis, that needs to be effected only once. In the second step, we compute output functionals of the solution, such as the Radar Cross Section (RCS), independently of the dimension of the discretization space, for many different parameter values in a many-query context at very little cost. Parameters include the wavenumber, the angle of the incident plane wave and its polarization.
Integral equation methods for vesicle electrohydrodynamics in three dimensions
NASA Astrophysics Data System (ADS)
Veerapaneni, Shravan
2016-12-01
In this paper, we develop a new boundary integral equation formulation that describes the coupled electro- and hydro-dynamics of a vesicle suspended in a viscous fluid and subjected to external flow and electric fields. The dynamics of the vesicle are characterized by a competition between the elastic, electric and viscous forces on its membrane. The classical Taylor-Melcher leaky-dielectric model is employed for the electric response of the vesicle and the Helfrich energy model combined with local inextensibility is employed for its elastic response. The coupled governing equations for the vesicle position and its transmembrane electric potential are solved using a numerical method that is spectrally accurate in space and first-order in time. The method uses a semi-implicit time-stepping scheme to overcome the numerical stiffness associated with the governing equations.
Integrating Multiple Teaching Methods into a General Chemistry Classroom
NASA Astrophysics Data System (ADS)
Francisco, Joseph S.; Nicoll, Gayle; Trautmann, Marcella
1998-02-01
In addition to the traditional lecture format, three other teaching strategies (class discussions, concept maps, and cooperative learning) were incorporated into a freshman level general chemistry course. Student perceptions of their involvement in each of the teaching methods, as well as their perceptions of the utility of each method were used to assess the effectiveness of the integration of the teaching strategies as received by the students. Results suggest that each strategy serves a unique purpose for the students and increased student involvement in the course. These results indicate that the multiple teaching strategies were well received by the students and that all teaching strategies are necessary for students to get the most out of the course.
Finite element methods for integrated aerodynamic heating analysis
NASA Technical Reports Server (NTRS)
Peraire, J.
1990-01-01
Over the past few years finite element based procedures for the solution of high speed viscous compressible flows were developed. The objective of this research is to build upon the finite element concepts which have already been demonstrated and to develop these ideas to produce a method which is applicable to the solution of large scale practical problems. The problems of interest range from three dimensional full vehicle Euler simulations to local analysis of three-dimensional viscous laminar flow. Transient Euler flow simulations involving moving bodies are also to be included. An important feature of the research is to be the coupling of the flow solution methods with thermal/structural modeling techniques to provide an integrated fluid/thermal/structural modeling capability. The progress made towards achieving these goals during the first twelve month period of the research is presented.
A new method for the evaluation of the direct effect of the ship traffic on PAHs
NASA Astrophysics Data System (ADS)
Gregoris, Elena; De Pieri, Silvia; Barbaro, Elena; Piazza, Rossano; Gambaro, Andrea; Contini, Daniele
2015-04-01
Emissions of exhaust gases and particles from ships can affect significantly the chemical composition of the atmosphere, local and regional air quality and climate. These emissions might have harmful effects on human health, since Mediterranean harbors are often located near or within the cities. Moreover ships and harbours emissions are currently increasing, due to the grow of tourism and trade, further amplifying this issue. International legislation and local agreements are mainly based on the use of low-sulphur fuel content, but also other chemicals, such as polycyclic aromatic hydrocarbons (PAHs), play an important role. Because of their low reactivity PAHs can persist in the environment for a long time; moreover they bioaccumulate, causing adverse effect on human health, such as reproductive and immune effects, developmental anomalies and cancer. This work is linked to the POSEIDON project (POllution monitoring of Ship Emission: an IntegrateD approach fOr harbor of the Adriatic basiN), that aims to quantify the atmospheric pollution generated by ship traffic and harbor activities in four port-cities of the Adriatic Sea (Brindisi, Venice, Rijeka, Patras). Here, a new method for the evaluation of the direct effect of ship traffic and harbour activities on polycyclic aromatic hydrocarbons is presented. In this method two high-volume samplers are operating: one of them collecting air from all directions; the other one is programmed to activate only when the wind is blowing from a specific sector (the harbour area). From the compared results, information about the effect of the harbour on the global PAHs concentration can be obtained. The method was applied in Venice in two summer sampling campaigns, in 2009 and 2012.
A spectral boundary integral method for flowing blood cells
NASA Astrophysics Data System (ADS)
Zhao, Hong; Isfahani, Amir H. G.; Olson, Luke N.; Freund, Jonathan B.
2010-05-01
A spectral boundary integral method for simulating large numbers of blood cells flowing in complex geometries is developed and demonstrated. The blood cells are modeled as finite-deformation elastic membranes containing a higher viscosity fluid than the surrounding plasma, but the solver itself is independent of the particular constitutive model employed for the cell membranes. The surface integrals developed for solving the viscous flow, and thereby the motion of the massless membrane, are evaluated using an O(NlogN) particle-mesh Ewald (PME) approach. The cell shapes, which can become highly distorted under physiologic conditions, are discretized with spherical harmonics. The resolution of these global basis functions is, of course, excellent, but more importantly they facilitate an approximate de-aliasing procedure that stabilizes the simulations without adding any numerical dissipation or further restricting the permissible numerical time step. Complex geometry no-slip boundaries are included using a constraint method that is coupled into an implicit system that is solved as part of the time advancement routine. The implementation is verified against solutions for axisymmetric flows reported in the literature, and its accuracy is demonstrated by comparison against exact solutions for relaxing surface deformations. It is also used to simulate flow of blood cells at 30% volume fraction in tubes between 4.9 and 16.9 μm in diameter. For these, it is shown to reproduce the well-known non-monotonic dependence of the effective viscosity on the tube diameter.
The Flux-integral Method for Multidimensional Convection and Diffusion
NASA Technical Reports Server (NTRS)
Leonard, B. P.; Macvean, M. K.; Lock, A. P.
1994-01-01
The flux-integral method is a procedure for constructing an explicit, single-step, forward-in-time, conservative, control volume update of the unsteady, multidimensional convection-diffusion equation. The convective plus diffusive flux at each face of a control-volume cell is estimated by integrating the transported variable and its face-normal derivative over the volume swept out by the convecting velocity field. This yields a unique description of the fluxes, whereas other conservative methods rely on nonunique, arbitrary pseudoflux-difference splitting procedures. The accuracy of the resulting scheme depends on the form of the subcell interpolation assumed, given cell-average data. Cellwise constant behavior results in a (very artificially diffusive) first-order convection scheme. Second-order convection-diffusion schemes correspond to cellwise linear (or bilinear) subcell interpolation. Cellwise quadratic subcell interpolants generate a highly accurate convection-diffusion scheme with excellent phase accuracy. Under constant-coefficient conditions, this is a uniformly third-order polynomial interpolation algorithm (UTOPIA).
Directions for Mind, Brain, and Education: Methods, Models, and Morality
ERIC Educational Resources Information Center
Stein, Zachary; Fischer, Kurt W.
2011-01-01
In this article we frame a set of important issues in the emerging field of Mind, Brain, and Education in terms of three broad headings: methods, models, and morality. Under the heading of methods we suggest that the need for synthesis across scientific and practical disciplines entails the pursuit of usable knowledge via a catalytic symbiosis…
Directions for Mind, Brain, and Education: Methods, Models, and Morality
ERIC Educational Resources Information Center
Stein, Zachary; Fischer, Kurt W.
2011-01-01
In this article we frame a set of important issues in the emerging field of Mind, Brain, and Education in terms of three broad headings: methods, models, and morality. Under the heading of methods we suggest that the need for synthesis across scientific and practical disciplines entails the pursuit of usable knowledge via a catalytic symbiosis…
Combined Overlap Extension PCR Method for Improved Site Directed Mutagenesis
Chong, Nikson Fatt-Ming
2016-01-01
The combined overlap extension PCR (COE-PCR) method developed in this work combines the strengths of the overlap extension PCR (OE-PCR) method with the speed and ease of the asymmetrical overlap extension (AOE-PCR) method. This combined method allows up to 6 base pairs to be mutated at a time and requires a total of 40–45 PCR cycles. A total of eight mutagenesis experiments were successfully carried out, with each experiment mutating between two to six base pairs. Up to four adjacent codons were changed in a single experiment. This method is especially useful for codon optimization, where doublet or triplet rare codons can be changed using a single mutagenic primer set, in a single experiment. PMID:27995143
Validation of a new method for directional dust monitoring
NASA Astrophysics Data System (ADS)
Datson, Hugh; Hall, David; Birch, Bill
2012-04-01
Fugitive dust from industrial sites is problematic to quantify and can be associated with nuisance complaints. Despite significant limitations, the British Standard 1747 Part 5 (BS 1747:5) directional dust gauge remains preferred for monitoring fugitive dust flux on site boundaries. An alternative directional dust gauge, DustScan, was developed at the University of Leeds, UK, and uses cylindrical adhesive 'sticky pads' to sample dust in flux. With this sampler, dust capture is measured as soiling, as opposed to mass, with the BS 1747:5 sampler. An Aerosol Test Tunnel (ATT) was developed to evaluate the performance of the DustScan sampler. Atmospheric turbulence was simulated using a coarse grid generator and maintained as rough-wall channel flow by roughness elements fixed to its floor and roof of the ATT. A polydisperse test dust was introduced upwind to form a cloud at the sampler. DustScan directional dust gauges were repeatedly exposed to aliquots of test dust at wind speeds of 2-10 m s-1 in the ATT. Dust soiling levels either side of the gauge's centreline (relative to the incident direction) were compared to demonstrate that the DustScan sampler is directionally accurate. Much lower proportions of antithetic sampling (dust catch on the downwind face of the gauge) occurred than for the BS 1747:5 sampler. The sampled particle size selection was related to the ratio of particle stop distance (s) to sampler diameter (D) ratio, s/D, showing that the particle size cut point fell with increasing wind speeds. A preliminary assessment of collection efficiency (CE) was made by determining dust mass after controlled ignition of selected sticky pad samples. Although dust saturation of the sticky pads can lead to sample loss over prolonged exposure periods, this loss is relatively small over the 1-2 week intervals established as appropriate for the DustScan sampler. This need for shorter sampling intervals is considered to outweigh the convenience of the longer exposure
Walters, Daniel; Stringer, Simon; Rolls, Edmund
2013-01-01
The head direction cell system is capable of accurately updating its current representation of head direction in the absence of visual input. This is known as the path integration of head direction. An important question is how the head direction cell system learns to perform accurate path integration of head direction. In this paper we propose a model of velocity path integration of head direction in which the natural time delay of axonal transmission between a linked continuous attractor network and competitive network acts as a timing mechanism to facilitate the correct speed of path integration. The model effectively learns a "look-up" table for the correct speed of path integration. In simulation, we show that the model is able to successfully learn two different speeds of path integration across two different axonal conduction delays, and without the need to alter any other model parameters. An implication of this model is that, by learning look-up tables for each speed of path integration, the model should exhibit a degree of robustness to damage. In simulations, we show that the speed of path integration is not significantly affected by degrading the network through removing a proportion of the cells that signal rotational velocity.
Walters, Daniel; Stringer, Simon; Rolls, Edmund
2013-01-01
The head direction cell system is capable of accurately updating its current representation of head direction in the absence of visual input. This is known as the path integration of head direction. An important question is how the head direction cell system learns to perform accurate path integration of head direction. In this paper we propose a model of velocity path integration of head direction in which the natural time delay of axonal transmission between a linked continuous attractor network and competitive network acts as a timing mechanism to facilitate the correct speed of path integration. The model effectively learns a “look-up” table for the correct speed of path integration. In simulation, we show that the model is able to successfully learn two different speeds of path integration across two different axonal conduction delays, and without the need to alter any other model parameters. An implication of this model is that, by learning look-up tables for each speed of path integration, the model should exhibit a degree of robustness to damage. In simulations, we show that the speed of path integration is not significantly affected by degrading the network through removing a proportion of the cells that signal rotational velocity. PMID:23526976
Integrated tool for fabrication of electronic components by laser direct write
NASA Astrophysics Data System (ADS)
Mathews, Scott A.; Zhang, Chengping; Kegresse, Todd; Liu, David
2002-06-01
A prototype workstation has been developed that allows the fabrication of passive electronic components at low temperatures using a laser direct-write process. The work station combines a variety of laser processing techniques onto a single, integrated platform. These techniques include material deposition, laser micromachining, laser sintering, and laser trimming. One particular process, referred to as 'mill and fill', combines the laser micromachining ability of the tool with 'off-the-shelf' conductor pastes to allow the fabrication of high density metalization at very low temperatures. The present work describes the details of the 'mill and fill' process and shows examples of prototype devices fabricated using this technique.
An Accelerated Linearized Alternating Direction Method of Multipliers
2014-02-01
The idea of analyzing (1.8) in order to solve (1.1) is essentially the augmented Lagrangian method ( ALM ) by Hestenes [26] and Powell [44] (It is...originally called the method of multipliers in [26, 44]; see also the textbooks, e.g., [5, 41, 6]). The ALM is a special case of the Douglas-Rachford...splitting method [19, 16, 32], which is also an instance of the proximal point algorithm [17, 46]. The iteration complexity of an inexact version of ALM
Novel computational methods for increasing PCR primer design effectiveness in directed sequencing
Li, Kelvin; Brownley, Anushka; Stockwell, Timothy B; Beeson, Karen; McIntosh, Tina C; Busam, Dana; Ferriera, Steve; Murphy, Sean; Levy, Samuel
2008-01-01
Background Polymerase chain reaction (PCR) is used in directed sequencing for the discovery of novel polymorphisms. As the first step in PCR directed sequencing, effective PCR primer design is crucial for obtaining high-quality sequence data for target regions. Since current computational primer design tools are not fully tuned with stable underlying laboratory protocols, researchers may still be forced to iteratively optimize protocols for failed amplifications after the primers have been ordered. Furthermore, potentially identifiable factors which contribute to PCR failures have yet to be elucidated. This inefficient approach to primer design is further intensified in a high-throughput laboratory, where hundreds of genes may be targeted in one experiment. Results We have developed a fully integrated computational PCR primer design pipeline that plays a key role in our high-throughput directed sequencing pipeline. Investigators may specify target regions defined through a rich set of descriptors, such as Ensembl accessions and arbitrary genomic coordinates. Primer pairs are then selected computationally to produce a minimal amplicon set capable of tiling across the specified target regions. As part of the tiling process, primer pairs are computationally screened to meet the criteria for success with one of two PCR amplification protocols. In the process of improving our sequencing success rate, which currently exceeds 95% for exons, we have discovered novel and accurate computational methods capable of identifying primers that may lead to PCR failures. We reveal the laboratory protocols and their associated, empirically determined computational parameters, as well as describe the novel computational methods which may benefit others in future primer design research. Conclusion The high-throughput PCR primer design pipeline has been very successful in providing the basis for high-quality directed sequencing results and for minimizing costs associated with labor and
Multisensor satellite data integration for sea surface wind speed and direction determination
NASA Technical Reports Server (NTRS)
Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.
1984-01-01
Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.