Science.gov

Sample records for direct intracortical microstimulation

  1. Computational modeling of direct neuronal recruitment during intracortical microstimulation in somatosensory cortex

    NASA Astrophysics Data System (ADS)

    Overstreet, C. K.; Klein, J. D.; Helms Tillery, S. I.

    2013-12-01

    Objective. Electrical stimulation of cortical tissue could be used to deliver sensory information as part of a neuroprosthetic device, but current control of the location, resolution, quality, and intensity of sensations elicited by intracortical microstimulation (ICMS) remains inadequate for this purpose. One major obstacle to resolving this problem is the poor understanding of the neural activity induced by ICMS. Even with new imaging methods, quantifying the activity of many individual neurons within cortex is difficult. Approach. We used computational modeling to examine the response of somatosensory cortex to ICMS. We modeled the axonal arbors of eight distinct morphologies of interneurons and seven types of pyramidal neurons found in somatosensory cortex and identified their responses to extracellular stimulation. We then combined these axonal elements to form a multi-layered slab of simulated cortex and investigated the patterns of neural activity directly induced by ICMS. Specifically we estimated the number, location, and variety of neurons directly recruited by stimulation on a single penetrating microelectrode. Main results. The population of neurons activated by ICMS was dependent on both stimulation strength and the depth of the electrode within cortex. Strikingly, stimulation recruited interneurons and pyramidal neurons in very different patterns. Interneurons are primarily recruited within a dense, continuous region around the electrode, while pyramidal neurons were recruited in a sparse fashion both near the electrode and up to several millimeters away. Thus ICMS can lead to an unexpectedly complex spatial distribution of firing neurons. Significance. These results lend new insights to the complexity and range of neural activity that can be induced by ICMS. This work also suggests mechanisms potentially responsible for the inconsistency and unnatural quality of sensations initiated by ICMS. Understanding these mechanisms will aid in the design of

  2. Microstimulation with Chronically Implanted Intracortical Electrodes

    NASA Astrophysics Data System (ADS)

    McCreery, Douglas

    Stimulating microelectrodes that penetrate into the brain afford a means of accessing the basic functional units of the central nervous system. Microstimulation in the region of the cerebral cortex that subserve vision may be an alternative, or an adjunct, to a retinal prosthesis, and may be particularly attractive as a means of restoring a semblance of high-resolution central vision. There also is the intriguing possibility that such a prosthesis could convey higher order visual percepts, many of which are mediated by neural circuits in the secondary or "extra-striate" visual areas that surround the primary visual cortex. The technologies of intracortical stimulating microelectrodes and investigations of the effects of microstimulation on neural tissue have advanced to the point where a cortical-level prosthesis is at least feasible. The imperative of protecting neural tissue from stimulation-induced damage imposes constraints on the selection of stimulus parameters, as does the requirement that the stimulation not greatly affect the electrical excitability of the neurons that are to be activated. The latter is especially likely to occur when many adjacent microelectrodes are pulsed, as will be necessary in a visual prosthesis. However, data from animal studies indicates that these restrictions on stimulus parameter are compatible with those that can evoke visual percepts in humans and in experimental animals. These findings give cause to be optimistic about the prospects for realizing a visual prosthesis utilizing intracortical microstimulation.

  3. Behavioral detection of intra-cortical microstimulation in the primary and secondary auditory cortex of cats

    PubMed Central

    Zhao, Zhenling; Liu, Yongchun; Ma, Lanlan; Sato, Yu; Qin, Ling

    2015-01-01

    Although neural responses to sound stimuli have been thoroughly investigated in various areas of the auditory cortex, the results electrophysiological recordings cannot establish a causal link between neural activation and brain function. Electrical microstimulation, which can selectively perturb neural activity in specific parts of the nervous system, is an important tool for exploring the organization and function of brain circuitry. To date, the studies describing the behavioral effects of electrical stimulation have largely been conducted in the primary auditory cortex. In this study, to investigate the potential differences in the effects of electrical stimulation on different cortical areas, we measured the behavioral performance of cats in detecting intra-cortical microstimulation (ICMS) delivered in the primary and secondary auditory fields (A1 and A2, respectively). After being trained to perform a Go/No-Go task cued by sounds, we found that cats could also learn to perform the task cued by ICMS; furthermore, the detection of the ICMS was similarly sensitive in A1 and A2. Presenting wideband noise together with ICMS substantially decreased the performance of cats in detecting ICMS in A1 and A2, consistent with a noise masking effect on the sensation elicited by the ICMS. In contrast, presenting ICMS with pure-tones in the spectral receptive field of the electrode-implanted cortical site reduced ICMS detection performance in A1 but not A2. Therefore, activation of A1 and A2 neurons may produce different qualities of sensation. Overall, our study revealed that ICMS-induced neural activity could be easily integrated into an animal’s behavioral decision process and had an implication for the development of cortical auditory prosthetics. PMID:25964744

  4. Long-term stability of sensitivity to intracortical microstimulation of somatosensory cortex

    NASA Astrophysics Data System (ADS)

    Callier, Thierri; Schluter, Erik W.; Tabot, Gregg A.; Miller, Lee E.; Tenore, Francesco V.; Bensmaia, Sliman J.

    2015-10-01

    Objective. The dexterous manipulation of objects depends heavily on somatosensory signals from the limb. The development of anthropomorphic robotic arms and of algorithms to decode intended movements from neuronal signals has stimulated the need to restore somatosensation for use in upper-limb neuroprostheses. Without touch and proprioception, patients have difficulty controlling prosthetic limbs to a level that justifies the required invasive surgery. Intracortical microstimulation (ICMS) through chronically implanted electrode arrays has the potential to provide rich and intuitive sensory feedback. This approach to sensory restoration requires, however, that the evoked sensations remain stable over time. Approach. To investigate the stability of ICMS-evoked sensations, we measured the ability of non-human primates to detect ICMS over experimental sessions that spanned years. Main results. We found that the performance of the animals remained highly stable over time, even when they were tested with electrodes that had experienced extensive stimulation. Significance. Given the stability of the sensations that it evokes, ICMS may thus be a viable approach for sensory restoration.

  5. The effects of chronic intracortical microstimulation on neural tissue and fine motor behavior

    NASA Astrophysics Data System (ADS)

    Rajan, Alexander T.; Boback, Jessica L.; Dammann, John F.; Tenore, Francesco V.; Wester, Brock A.; Otto, Kevin J.; Gaunt, Robert A.; Bensmaia, Sliman J.

    2015-12-01

    Objective. One approach to conveying sensory feedback in neuroprostheses is to electrically stimulate sensory neurons in the cortex. For this approach to be viable, it is critical that intracortical microstimulation (ICMS) causes minimal damage to the brain. Here, we investigate the effects of chronic ICMS on the neuronal tissue across a variety of stimulation regimes in non-human primates. We also examine each animal’s ability to use their hand—the cortical representation of which is targeted by the ICMS—as a further assay of possible neuronal damage. Approach. We implanted electrode arrays in the primary somatosensory cortex of three Rhesus macaques and delivered ICMS four hours per day, five days per week, for six months. Multiple regimes of ICMS were delivered to investigate the effects of stimulation parameters on the tissue and behavior. Parameters included current amplitude (10-100 μA), pulse train duration (1, 5 s), and duty cycle (1/1, 1/3). We then performed a range of histopathological assays on tissue near the tips of both stimulated and unstimulated electrodes to assess the effects of chronic ICMS on the tissue and their dependence on stimulation parameters. Main results. While the implantation and residence of the arrays in the cortical tissue did cause significant damage, chronic ICMS had no detectable additional effect; furthermore, the animals exhibited no impairments in fine motor control. Significance. Chronic ICMS may be a viable means to convey sensory feedback in neuroprostheses as it does not cause significant damage to the stimulated tissue.

  6. The Duration of Motor Responses Evoked with Intracortical Microstimulation in Rats Is Primarily Modulated by Stimulus Amplitude and Train Duration

    PubMed Central

    Watson, Meghan; Sawan, Mohamad

    2016-01-01

    Microstimulation of brain tissue plays a key role in a variety of sensory prosthetics, clinical therapies and research applications, however the effects of stimulation parameters on the responses they evoke remain widely unknown. In particular, the effects of parameters when delivered in the form of a stimulus train as opposed to a single pulse are not well understood despite the prevalence of stimulus train use. We aimed to investigate the contribution of each parameter of a stimulus train to the duration of the motor responses they evoke in forelimb muscles. We used constant-current, biphasic, square wave pulse trains in acute terminal experiments under ketamine anaesthesia. Stimulation parameters were systematically tested in a pair-wise fashion in the caudal forelimb region of the motor cortex in 7 Sprague-Dawley rats while motor evoked potential (MEP) recordings from the forelimb were used to quantify the influence of each parameter in the train. Stimulus amplitude and train duration were shown to be the dominant parameters responsible for increasing the total duration of the MEP, while interphase interval had no effect. Increasing stimulus frequency from 100–200 Hz or pulse duration from 0.18–0.34 ms were also effective methods of extending response durations. Response duration was strongly correlated with peak time and amplitude. Our findings suggest that motor cortex intracortical microstimulations are often conducted at a higher frequency rate and longer train duration than necessary to evoke maximal response duration. We demonstrated that the temporal properties of the evoked response can be both predicted by certain response metrics and modulated via alterations to the stimulation signal parameters. PMID:27442588

  7. Voltage-sensitive-dye imaging of microstimulation-evoked neural activity through intracortical horizontal and callosal connections in cat visual cortex

    NASA Astrophysics Data System (ADS)

    Suzurikawa, Jun; Tani, Toshiki; Nakao, Masayuki; Tanaka, Shigeru; Takahashi, Hirokazu

    2009-12-01

    Recently, intrinsic signal optical imaging has been widely used as a routine procedure for visualizing cortical functional maps. We do not, however, have a well-established imaging method for visualizing cortical functional connectivity indicating spatio-temporal patterns of activity propagation in the cerebral cortex. In the present study, we developed a novel experimental setup for investigating the propagation of neural activities combining the intracortical microstimulation (ICMS) technique with voltage sensitive dye (VSD) imaging, and demonstrated the feasibility of this setup applying to the measurement of time-dependent intra- and inter-hemispheric spread of ICMS-evoked excitation in the cat visual cortices, areas 17 and 18. A microelectrode array for the ICMS was inserted with a specially designed easy-to-detach electrode holder around the 17/18 transition zones (TZs), where the left and right hemispheres were interconnected via the corpus callosum. The microelectrode array was stably anchored in agarose without any holder, which enabled us to visualize evoked activities even in the vicinity of penetration sites as well as in a wide recording region that covered a part of both hemispheres. The VSD imaging could successfully visualize ICMS-evoked excitation and subsequent propagation in the visual cortices contralateral as well as ipsilateral to the ICMS. Using the orientation maps as positional references, we showed that the activity propagation patterns were consistent with previously reported anatomical patterns of intracortical and interhemispheric connections. This finding indicates that our experimental system can serve for the investigation of cortical functional connectivity.

  8. Multiple factors may influence the performance of a visual prosthesis based on intracortical microstimulation: nonhuman primate behavioural experimentation

    NASA Astrophysics Data System (ADS)

    Torab, K.; Davis, T. S.; Warren, D. J.; House, P. A.; Normann, R. A.; Greger, B.

    2011-06-01

    We hypothesize that a visual prosthesis capable of evoking high-resolution visual perceptions can be produced using high-electrode-count arrays of penetrating microelectrodes implanted into the primary visual cortex of a blind human subject. To explore this hypothesis, and as a prelude to human psychophysical experiments, we have conducted a set of experiments in primary visual cortex (V1) of non-human primates using chronically implanted Utah Electrode Arrays (UEAs). The electrical and recording properties of implanted electrodes, the high-resolution visuotopic organization of V1, and the stimulation levels required to evoke behavioural responses were measured. The impedances of stimulated electrodes were found to drop significantly immediately following stimulation sessions, but these post-stimulation impedances returned to pre-stimulation values by the next experimental session. Two months of periodic microstimulation at currents of up to 96 µA did not impair the mapping of receptive fields from local field potentials or multi-unit activity, or impact behavioural visual thresholds of light stimuli that excited regions of V1 that were implanted with UEAs. These results demonstrate that microstimulation at the levels used did not cause functional impairment of the electrode array or the neural tissue. However, microstimulation with current levels ranging from 18 to 76 µA (46 ± 19 µA, mean ± std) was able to elicit behavioural responses on eight out of 82 systematically stimulated electrodes. We suggest that the ability of microstimulation to evoke phosphenes and elicit a subsequent behavioural response may depend on several factors: the location of the electrode tips within the cortical layers of V1, distance of the electrode tips to neuronal somata, and the inability of nonhuman primates to recognize and respond to a generalized set of evoked percepts.

  9. Neural Activity during Voluntary Movements in Each Body Representation of the Intracortical Microstimulation-Derived Map in the Macaque Motor Cortex

    PubMed Central

    Kunori, Nobuo; Murata, Yumi

    2016-01-01

    In order to accurately interpret experimental data using the topographic body map identified by conventional intracortical microstimulation (ICMS), it is important to know how neurons in each division of the map respond during voluntary movements. Here we systematically investigated neuronal responses in each body representation of the ICMS map during a reach-grasp-retrieval task that involves the movements of multiple body parts. The topographic body map in the primary motor cortex (M1) generally corresponds to functional divisions of voluntary movements; neurons at the recording sites in each body representation with movement thresholds of 10 μA or less were differentially activated during the task, and the timing of responses was consistent with the movements of the body part represented. Moreover, neurons in the digit representation responded differently for the different types of grasping. In addition, the present study showed that neural activity depends on the ICMS current threshold required to elicit body movements and the location of the recording on the cortical surface. In the ventral premotor cortex (PMv), no correlation was found between the response properties of neurons and the body representation in the ICMS map. Neural responses specific to forelimb movements were often observed in the rostral part of PMv, including the lateral bank of the lower arcuate limb, in which ICMS up to 100 μA evoked no detectable movement. These results indicate that the physiological significance of the ICMS-derived maps is different between, and even within, areas M1 and PMv. PMID:27494282

  10. Optimal space-time precoding of artificial sensory feedback through mutichannel microstimulation in bi-directional brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Daly, John; Liu, Jianbo; Aghagolzadeh, Mehdi; Oweiss, Karim

    2012-12-01

    Brain-machine interfaces (BMIs) aim to restore lost sensorimotor and cognitive function in subjects with severe neurological deficits. In particular, lost somatosensory function may be restored by artificially evoking patterns of neural activity through microstimulation to induce perception of tactile and proprioceptive feedback to the brain about the state of the limb. Despite an early proof of concept that subjects could learn to discriminate a limited vocabulary of intracortical microstimulation (ICMS) patterns that instruct the subject about the state of the limb, the dynamics of a moving limb are unlikely to be perceived by an arbitrarily-selected, discrete set of static microstimulation patterns, raising questions about the generalization and the scalability of this approach. In this work, we propose a microstimulation protocol intended to activate optimally the ascending somatosensory pathway. The optimization is achieved through a space-time precoder that maximizes the mutual information between the sensory feedback indicating the limb state and the cortical neural response evoked by thalamic microstimulation. Using a simplified multi-input multi-output model of the thalamocortical pathway, we show that this optimal precoder can deliver information more efficiently in the presence of noise compared to suboptimal precoders that do not account for the afferent pathway structure and/or cortical states. These results are expected to enhance the way microstimulation is used to induce somatosensory perception during sensorimotor control of artificial devices or paralyzed limbs.

  11. Optimal space-time precoding of artificial sensory feedback through mutichannel microstimulation in bi-directional brain-machine interfaces.

    PubMed

    Daly, John; Liu, Jianbo; Aghagolzadeh, Mehdi; Oweiss, Karim

    2012-12-01

    Brain-machine interfaces (BMIs) aim to restore lost sensorimotor and cognitive function in subjects with severe neurological deficits. In particular, lost somatosensory function may be restored by artificially evoking patterns of neural activity through microstimulation to induce perception of tactile and proprioceptive feedback to the brain about the state of the limb. Despite an early proof of concept that subjects could learn to discriminate a limited vocabulary of intracortical microstimulation (ICMS) patterns that instruct the subject about the state of the limb, the dynamics of a moving limb are unlikely to be perceived by an arbitrarily-selected, discrete set of static microstimulation patterns, raising questions about the generalization and the scalability of this approach. In this work, we propose a microstimulation protocol intended to activate optimally the ascending somatosensory pathway. The optimization is achieved through a space-time precoder that maximizes the mutual information between the sensory feedback indicating the limb state and the cortical neural response evoked by thalamic microstimulation. Using a simplified multi-input multi-output model of the thalamocortical pathway, we show that this optimal precoder can deliver information more efficiently in the presence of noise compared to suboptimal precoders that do not account for the afferent pathway structure and/or cortical states. These results are expected to enhance the way microstimulation is used to induce somatosensory perception during sensorimotor control of artificial devices or paralyzed limbs.

  12. Optimal space-time precoding of artificial sensory feedback through mutichannel microstimulation in bi-directional brain-machine interfaces.

    PubMed

    Daly, John; Liu, Jianbo; Aghagolzadeh, Mehdi; Oweiss, Karim

    2012-12-01

    Brain-machine interfaces (BMIs) aim to restore lost sensorimotor and cognitive function in subjects with severe neurological deficits. In particular, lost somatosensory function may be restored by artificially evoking patterns of neural activity through microstimulation to induce perception of tactile and proprioceptive feedback to the brain about the state of the limb. Despite an early proof of concept that subjects could learn to discriminate a limited vocabulary of intracortical microstimulation (ICMS) patterns that instruct the subject about the state of the limb, the dynamics of a moving limb are unlikely to be perceived by an arbitrarily-selected, discrete set of static microstimulation patterns, raising questions about the generalization and the scalability of this approach. In this work, we propose a microstimulation protocol intended to activate optimally the ascending somatosensory pathway. The optimization is achieved through a space-time precoder that maximizes the mutual information between the sensory feedback indicating the limb state and the cortical neural response evoked by thalamic microstimulation. Using a simplified multi-input multi-output model of the thalamocortical pathway, we show that this optimal precoder can deliver information more efficiently in the presence of noise compared to suboptimal precoders that do not account for the afferent pathway structure and/or cortical states. These results are expected to enhance the way microstimulation is used to induce somatosensory perception during sensorimotor control of artificial devices or paralyzed limbs. PMID:23187009

  13. Ventral premotor-motor cortex interactions in the macaque monkey during grasp: response of single neurons to intracortical microstimulation.

    PubMed

    Kraskov, Alexander; Prabhu, Gita; Quallo, Marsha M; Lemon, Roger N; Brochier, Thomas

    2011-06-15

    Recent stimulation studies in monkeys and humans have shown strong interactions between ventral premotor cortex (area F5) and the hand area of primary motor cortex (M1). These short-latency interactions usually involve facilitation from F5 of M1 outputs to hand muscles, although suppression has also been reported. This study, performed in three awake macaque monkeys, sought evidence that these interactions could be mediated by short-latency excitatory and inhibitory responses of single M1 neurons active during grasping tasks. We recorded responses of these M1 neurons to single low-threshold (≤40 μA) intracortical microstimuli delivered to F5 sites at which grasp-related neurons were recorded. In 29 sessions, we tested 232 M1 neurons with stimuli delivered to between one and four sites in F5. Of the 415 responses recorded, 142 (34%) showed significant effects. The most common type of response was pure excitation (53% of responses), with short latency (1.8-3.0 ms) and brief duration (∼1 ms); purely inhibitory responses had slightly longer latencies (2-5 ms) and were of small amplitude and longer duration (5-7 ms). They accounted for 13% of responses, whereas mixed excitation then inhibition was seen in 34%. Remarkably, a rather similar set of findings applied to 280 responses of 138 F5 neurons to M1 stimulation; 109 (34%) responses showed significant effects. Thus, with low-intensity stimuli, the dominant interaction between these two cortical areas is one of short-latency, brief excitation, most likely mediated by reciprocal F5-M1 connections. Some neurons were tested with stimuli at both 20 and 40 μA; inhibition tended to dominate at the higher intensity. PMID:21677165

  14. Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: an intracortical microstimulation study in the macaque monkey.

    PubMed

    Luppino, G; Matelli, M; Camarda, R M; Gallese, V; Rizzolatti, G

    1991-09-22

    The mesial agranular frontal cortex that lies rostral to area 4 (F1) is formed by two distinct cytoarchitectonic areas: F3, located caudally, and F6, located rostrally. In the present experiments we investigated the organization of F3 and F6 by observing the motor responses evoked by their intracortical electrical microstimulation. Our main purpose was to find out whether the cytoarchitectonic subdivision of the mesial agranular frontal cortex into two areas has a physiological counterpart. The result showed that F3 (the caudal area) contains a complete motor representation with hindlimb movements located caudally, forelimb movements located centrally, and orofacial movements located rostrally. The great majority of limb movements involved proximal joints. With respect to F1, F3 showed the following functional characteristics: (1) lack of segregation between proximal and distal movements, (2) larger percentage of complex movements, and (3) higher excitability threshold. Movements were more difficult to elicit from F6 (the rostral area) than from F3. However, by using a longer stimulus train duration (100 ms) 39.3% of tested sites produced body movements. This percentage increased (50.5%) when the electrical stimulation was applied during monkey natural movements instead of when the monkey was still in its chair. Most of the evoked movements concerned the forelimb. More rarely, neck and upper face movements were observed. Unlike F1 and F3 where most movements were fast, slow movements were frequently observed with stimulation of F6. Many of them mimicked natural movements of the animal. Eye movements were evoked from F7 (superior area 6) but not from F6. An additional motor representation was found in the dorsocaudal part of area 24 (24d). This area is topographically organized with a forelimb representation located caudally and ventrally and a hindlimb representation located rostrally and dorsally. The excitability threshold of area 24d is higher than that of F1

  15. Complex movement topography and extrinsic space representation in the rat forelimb motor cortex as defined by long-duration intracortical microstimulation.

    PubMed

    Bonazzi, Laura; Viaro, Riccardo; Lodi, Enrico; Canto, Rosario; Bonifazzi, Claudio; Franchi, Gianfranco

    2013-01-30

    Electrical stimulation of the motor cortex in the rat can evoke complex forelimb multi-joint movements, including movement of limb and paw. In this study, these movements have been quantified in terms of 3D displacement and kinematic variables of two markers positioned on the wrist and middle digits (limb and paw movement, respectively). Electrical microstimulation was applied to the motor cortex using a pulse train of 500 ms duration. Movements were measured using a high-resolution 3D optical system. Five classes of limb movements (abduction, adduction, extension, retraction, elevation) and four classes of paw movements (opening, closure, opening/closure sequence, supination) were described according to their kinematics. A consistent topography of these classes of movements was presented across the motor cortex together with a topography of spatial locations to which the paw was directed. In about one-half of cortical sites, a specific pattern of limb-paw movement combination did exist. Four categories of limb-paw movements resembling behavioral repertoire were identified: reach-shaping, reach-grasp sequence, bring-to-body, and hold-like movement. Overall, the forelimb motor region included: (1) a large caudal forelimb area dominated by reach-shaping movement representation; (2) a small rostral area containing reach-grasp sequence and bring-to-body movement representation; and (3) a more lateral portion where hold-like movement was represented. These results support the view that, in rats, the motor cortex controls forelimb movements at a relatively complex level and suggest that the orderly representation of complex movements and their dynamics/kinematics emerge from the principles of forelimb motor cortex organization. PMID:23365246

  16. Recovery of directed intracortical connectivity from fMRI data

    NASA Astrophysics Data System (ADS)

    Gilson, Matthieu; Ritter, Petra; Deco, Gustavo

    2016-06-01

    The brain exhibits complex spatio-temporal patterns of activity. In particular, its baseline activity at rest has a specific structure: imaging techniques (e.g., fMRI, EEG and MEG) show that cortical areas experience correlated fluctuations, which is referred to as functional connectivity (FC). The present study relies on our recently developed model in which intracortical white-matter connections shape noise-driven fluctuations to reproduce FC observed in experimental data (here fMRI BOLD signal). Here noise has a functional role and represents the variability of neural activity. The model also incorporates anatomical information obtained using diffusion tensor imaging (DTI), which estimates the density of white-matter fibers (structural connectivity, SC). After optimization to match empirical FC, the model provides an estimation of the efficacies of these fibers, which we call effective connectivity (EC). EC differs from SC, as EC not only accounts for the density of neural fibers, but also the concentration of synapses formed at their end, the type of neurotransmitters associated and the excitability of target neural populations. In summary, the model combines anatomical SC and activity FC to evaluate what drives the neural dynamics, embodied in EC. EC can then be analyzed using graph theory to understand how it generates FC and to seek for functional communities among cortical areas (parcellation of 68 areas). We find that intracortical connections are not symmetric, which affects the dynamic range of cortical activity (i.e., variety of states it can exhibit).

  17. High-side Digitally Current Controlled Biphasic Bipolar Microstimulator

    PubMed Central

    Hanson, Timothy L.; Ómarsson, Björn; O'Doherty, Joseph E.; Peikon, Ian D.; Lebedev, Mikhail; Nicolelis, Miguel AL.

    2012-01-01

    Electrical stimulation of nervous tissue has been extensively used as both a tool in experimental neuroscience research and as a method for restoring of neural functions in patients suffering from sensory and motor disabilities. In the central nervous system, intracortical microstimulation (ICMS) has been shown to be an effective method for inducing or biasing perception, including visual and tactile sensation. ICMS also holds promise for enabling brain-machine-brain interfaces (BMBIs) by directly writing information into the brain. Here we detail the design of a high-side, digitally current-controlled biphasic, bipolar microstimulator, and describe the validation of the device in vivo. As many applications of this technique, including BMBIs, require recording as well as stimulation, we pay careful attention to isolation of the stimulus channels and parasitic current injection. With the realized device and standard recording hardware - without active artifact rejection - we are able to observe stimulus artifacts of less than 2 ms in duration. PMID:22328184

  18. Vision Loss Shifts the Balance of Feedforward and Intracortical Circuits in Opposite Directions in Mouse Primary Auditory and Visual Cortices

    PubMed Central

    Petrus, Emily; Rodriguez, Gabriela; Patterson, Ryan; Connor, Blaine; Kanold, Patrick O.

    2015-01-01

    Loss of a sensory modality leads to widespread changes in synaptic function across sensory cortices, which are thought to be the basis for cross-modal adaptation. Previous studies suggest that experience-dependent cross-modal regulation of the spared sensory cortices may be mediated by changes in cortical circuits. Here, we report that loss of vision, in the form of dark exposure (DE) for 1 week, produces laminar-specific changes in excitatory and inhibitory circuits in the primary auditory cortex (A1) of adult mice to promote feedforward (FF) processing and also strengthens intracortical inputs to primary visual cortex (V1). Specifically, DE potentiated FF excitatory synapses from layer 4 (L4) to L2/3 in A1 and recurrent excitatory inputs in A1–L4 in parallel with a reduction in the strength of lateral intracortical excitatory inputs to A1–L2/3. This suggests a shift in processing in favor of FF information at the expense of intracortical processing. Vision loss also strengthened inhibitory synaptic function in L4 and L2/3 of A1, but via laminar specific mechanisms. In A1–L4, DE specifically potentiated the evoked synaptic transmission from parvalbumin-positive inhibitory interneurons to principal neurons without changes in spontaneous miniature IPSCs (mIPSCs). In contrast, DE specifically increased the frequency of mIPSCs in A1–L2/3. In V1, FF excitatory inputs were unaltered by DE, whereas lateral intracortical connections in L2/3 were strengthened, suggesting a shift toward intracortical processing. Our results suggest that loss of vision produces distinct circuit changes in the spared and deprived sensory cortices to shift between FF and intracortical processing to allow adaptation. PMID:26063913

  19. Direct evidence for local oscillatory current sources and intracortical phase gradients in turtle visual cortex.

    PubMed

    Prechtl, J C; Bullock, T H; Kleinfeld, D

    2000-01-18

    Visual stimuli induce oscillations in the membrane potential of neurons in cortices of several species. In turtle, these oscillations take the form of linear and circular traveling waves. Such waves may be a consequence of a pacemaker that emits periodic pulses of excitation that propagate across a network of excitable neuronal tissue or may result from continuous and possibly reconfigurable phase shifts along a network with multiple weakly coupled neuronal oscillators. As a means to resolve the origin of wave propagation in turtle visual cortex, we performed simultaneous measurements of the local field potential at a series of depths throughout this cortex. Measurements along a single radial penetration revealed the presence of broadband current sources, with a center frequency near 20 Hz (gamma band), that were activated by visual stimulation. The spectral coherence between sources at two well-separated loci along a rostral-caudal axis revealed the presence of systematic timing differences between localized cortical oscillators. These multiple oscillating current sources and their timing differences in a tangential plane are interpreted as the neuronal activity that underlies the wave motion revealed in previous imaging studies. The present data provide direct evidence for the inference from imaging of bidirectional wave motion that the stimulus-induced electrical waves in turtle visual cortex correspond to phase shifts in a network of coupled neuronal oscillators.

  20. Wireless Microstimulators for Neural Prosthetics

    PubMed Central

    Sahin, Mesut; Pikov, Victor

    2016-01-01

    One of the roadblocks in the field of neural prosthetics is the lack of microelectronic devices for neural stimulation that can last a lifetime in the central nervous system. Wireless multi-electrode arrays are being developed to improve the longevity of implants by eliminating the wire interconnects as well as the chronic tissue reactions due to the tethering forces generated by these wires. An area of research that has not been sufficiently investigated is a simple single-channel passive microstimulator that can collect the stimulus energy that is transmitted wirelessly through the tissue and immediately convert it into the stimulus pulse. For example, many neural prosthetic approaches to intraspinal microstimulation require only a few channels of stimulation. Wired spinal cord implants are not practical for human subjects because of the extensive flexions and rotations that the spinal cord experiences. Thus, intraspinal microstimulation may be a pioneering application that can benefit from submillimetersize floating stimulators. Possible means of energizing such a floating microstimulator, such as optical, acoustic, and electromagnetic waves, are discussed. PMID:21488815

  1. Wireless microstimulators for neural prosthetics.

    PubMed

    Sahin, Mesut; Pikov, Victor

    2011-01-01

    One of the roadblocks in the field of neural prosthetics is the lack of microelectronic devices for neural stimulation that can last a lifetime in the central nervous system. Wireless multi-electrode arrays are being developed to improve the longevity of implants by eliminating the wire interconnects as well as the chronic tissue reactions due to the tethering forces generated by these wires. An area of research that has not been sufficiently investigated is a simple single-channel passive microstimulator that can collect the stimulus energy that is transmitted wirelessly through the tissue and immediately convert it into the stimulus pulse. For example, many neural prosthetic approaches to intraspinal microstimulation require only a few channels of stimulation. Wired spinal cord implants are not practical for human subjects because of the extensive flexions and rotations that the spinal cord experiences. Thus, intraspinal microstimulation may be a pioneering application that can benefit from submillimeter-size floating stimulators. Possible means of energizing such a floating microstimulator, such as optical, acoustic, and electromagnetic waves, are discussed. PMID:21488815

  2. Assessing direct paths of intracortical causal information flow of oscillatory activity with the isolated effective coherence (iCoh).

    PubMed

    Pascual-Marqui, Roberto D; Biscay, Rolando J; Bosch-Bayard, Jorge; Lehmann, Dietrich; Kochi, Kieko; Kinoshita, Toshihiko; Yamada, Naoto; Sadato, Norihiro

    2014-01-01

    Functional connectivity is of central importance in understanding brain function. For this purpose, multiple time series of electric cortical activity can be used for assessing the properties of a network: the strength, directionality, and spectral characteristics (i.e., which oscillations are preferentially transmitted) of the connections. The partial directed coherence (PDC) of Baccala and Sameshima (2001) is a widely used method for this problem. The three aims of this study are: (1) To show that the PDC can misrepresent the frequency response under plausible realistic conditions, thus defeating the main purpose for which the measure was developed; (2) To provide a solution to this problem, namely the "isolated effective coherence" (iCoh), which consists of estimating the partial coherence under a multivariate autoregressive model, followed by setting all irrelevant associations to zero, other than the particular directional association of interest; and (3) To show that adequate iCoh estimators can be obtained from non-invasively computed cortical signals based on exact low resolution electromagnetic tomography (eLORETA) applied to scalp EEG recordings. To illustrate the severity of the problem with the PDC, and the solution achieved by the iCoh, three examples are given, based on: (1) Simulated time series with known dynamics; (2) Simulated cortical sources with known dynamics, used for generating EEG recordings, which are then used for estimating (with eLORETA) the source signals for the final connectivity assessment; and (3) EEG recordings in rats. Lastly, real human recordings are analyzed, where the iCoh between six cortical regions of interest are calculated and compared under eyes open and closed conditions, using 61-channel EEG recordings from 109 subjects. During eyes closed, the posterior cingulate sends alpha activity to all other regions. During eyes open, the anterior cingulate sends theta-alpha activity to other frontal regions.

  3. Estimation of electrode location in a rat motor cortex by laminar analysis of electrophysiology and intracortical electrical stimulation

    NASA Astrophysics Data System (ADS)

    Yazdan-Shahmorad, A.; Lehmkuhle, M. J.; Gage, G. J.; Marzullo, T. C.; Parikh, H.; Miriani, R. M.; Kipke, D. R.

    2011-08-01

    While the development of microelectrode arrays has enabled access to disparate regions of a cortex for neurorehabilitation, neuroprosthetic and basic neuroscience research, accurate interpretation of the signals and manipulation of the cortical neurons depend upon the anatomical placement of the electrode arrays in a layered cortex. Toward this end, this report compares two in vivo methods for identifying the placement of electrodes in a linear array spaced 100 µm apart based on in situ laminar analysis of (1) ketamine-xylazine-induced field potential oscillations in a rat motor cortex and (2) an intracortical electrical stimulation-induced movement threshold. The first method is based on finding the polarity reversal in laminar oscillations which is reported to appear at the transition between layers IV and V in laminar 'high voltage spindles' of the rat cortical column. Analysis of histological images in our dataset indicates that polarity reversal is detected 150.1 ± 104.2 µm below the start of layer V. The second method compares the intracortical microstimulation currents that elicit a physical movement for anodic versus cathodic stimulation. It is based on the hypothesis that neural elements perpendicular to the electrode surface are preferentially excited by anodic stimulation while cathodic stimulation excites those with a direction component parallel to its surface. With this method, we expect to see a change in the stimulation currents that elicits a movement at the beginning of layer V when comparing anodic versus cathodic stimulation as the upper cortical layers contain neuronal structures that are primarily parallel to the cortical surface and lower layers contain structures that are primarily perpendicular. Using this method, there was a 78.7 ± 68 µm offset in the estimate of the depth of the start of layer V. The polarity reversal method estimates the beginning of layer V within ±90 µm with 95% confidence and the intracortical stimulation

  4. Modifying cognition and behavior with electrical microstimulation: implications for cognitive prostheses.

    PubMed

    Opris, Ioan; Ferrera, Vincent P

    2014-11-01

    A fundamental goal of cognitive neuroscience is to understand how brain activity generates complex mental states and behaviors. While neuronal activity may predict or correlate with behavioral responses in a cognitive task, the use of electrical microstimulation presents the possibility to augment such correlational findings with direct evidence for causal relationships. Although microstimulation has been used for many years as a tool for mapping sensory and motor function, its role in learning, memory and decision-making has emerged only recently. Focal microstimulation of higher cortical areas can produce complex mental states and sequences of action. However, the relationship between the locus of stimulation and the percepts or actions evoked is often stereotyped and inflexible. The challenge is to develop stimulation systems that do not have fixed output but can flexibly contribute to complex cognitive and behavioral tasks. We discuss how microstimulation has been instrumental in manipulating a wide spectrum of cognitive functions including working memory, perceptual decisions and executive control by enhancing attention, re-ordering temporal sequence of saccades, improving associative learning or cognitive performance. For example, stimulation in prefrontal, parietal and sensory cortices may establish causal effects on decision-making, while microstimulation of inferotemporal cortex or caudate nucleus enhances associative learning. Building cognitive prosthetics based on the insights gleaned from such studies may depend on the development of multiple-input, multiple-output (MIMO) devices that allow subjects to control stimulation with their own thoughts in a closed-loop system. PMID:25242103

  5. Development of closed-loop neural interface technology in a rat model: combining motor cortex operant conditioning with visual cortex microstimulation.

    PubMed

    Marzullo, Timothy Charles; Lehmkuhle, Mark J; Gage, Gregory J; Kipke, Daryl R

    2010-04-01

    Closed-loop neural interface technology that combines neural ensemble decoding with simultaneous electrical microstimulation feedback is hypothesized to improve deep brain stimulation techniques, neuromotor prosthetic applications, and epilepsy treatment. Here we describe our iterative results in a rat model of a sensory and motor neurophysiological feedback control system. Three rats were chronically implanted with microelectrode arrays in both the motor and visual cortices. The rats were subsequently trained over a period of weeks to modulate their motor cortex ensemble unit activity upon delivery of intra-cortical microstimulation (ICMS) of the visual cortex in order to receive a food reward. Rats were given continuous feedback via visual cortex ICMS during the response periods that was representative of the motor cortex ensemble dynamics. Analysis revealed that the feedback provided the animals with indicators of the behavioral trials. At the hardware level, this preparation provides a tractable test model for improving the technology of closed-loop neural devices.

  6. Sensitivity to microstimulation of somatosensory cortex distributed over multiple electrodes.

    PubMed

    Kim, Sungshin; Callier, Thierri; Tabot, Gregg A; Tenore, Francesco V; Bensmaia, Sliman J

    2015-01-01

    Meaningful and repeatable tactile sensations can be evoked by electrically stimulating primary somatosensory cortex. Intracortical microstimulation (ICMS) may thus be a viable approach to restore the sense of touch in individuals who have lost it, for example tetraplegic patients. One of the potential limitations of this approach, however, is that high levels of current can damage the neuronal tissue if the resulting current densities are too high. The limited range of safe ICMS amplitudes thus limits the dynamic range of ICMS-evoked sensations. One way to get around this limitation would be to distribute the ICMS over multiple electrodes in the hopes of intensifying the resulting percept without increasing the current density experienced by the neuronal tissue. Here, we test whether stimulating through multiple electrodes is a viable solution to increase the dynamic range of ICMS-elicited sensations without increasing the peak current density. To this end, we compare the ability of non-human primates to detect ICMS delivered through one vs. multiple electrodes. We also compare their ability to discriminate pulse trains differing in amplitude when these are delivered through one or more electrodes. We find that increasing the number of electrodes through which ICMS is delivered only has a marginal effect on detectability or discriminability despite the fact that 2-4 times more current is delivered overall. Furthermore, the impact of multielectrode stimulation (or lack thereof) is found whether pulses are delivered synchronously or asynchronously, whether the leading phase of the pulses is cathodic or anodic, and regardless of the spatial configuration of the electrode groups. PMID:25914630

  7. Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording.

    PubMed

    Lee, Joonhee; Ozden, Ilker; Song, Yoon-Kyu; Nurmikko, Arto V

    2015-12-01

    Optogenetics, the selective excitation or inhibition of neural circuits by light, has become a transformative approach for dissecting functional brain microcircuits, particularly in in vivo rodent models, owing to the expanding libraries of opsins and promoters. Yet there is a lack of versatile devices that can deliver spatiotemporally patterned light while performing simultaneous sensing to map the dynamics of perturbed neural populations at the network level. We have created optoelectronic actuator and sensor microarrays that can be used as monolithic intracortical implants, fabricated from an optically transparent, electrically highly conducting semiconductor ZnO crystal. The devices can perform simultaneous light delivery and electrical readout in precise spatial registry across the microprobe array. We applied the device technology in transgenic mice to study light-perturbed cortical microcircuit dynamics and their effects on behavior. The functionality of this device can be further expanded to optical imaging and patterned electrical microstimulation.

  8. Comparing temporal aspects of visual, tactile, and microstimulation feedback for motor control

    NASA Astrophysics Data System (ADS)

    Godlove, Jason M.; Whaite, Erin O.; Batista, Aaron P.

    2014-08-01

    Objectives. Current brain-computer interfaces (BCIs) rely on visual feedback, requiring sustained visual attention to use the device. Improvements to BCIs may stem from the development of an effective way to provide quick feedback independent of vision. Tactile stimuli, either delivered on the skin surface, or directly to the brain via microstimulation in somatosensory cortex, could serve that purpose. We examined the effectiveness of vibrotactile stimuli and microstimulation as a means of non-visual feedback by using a fundamental element of feedback: the ability to react to a stimulus while already in motion. Approach. Human and monkey subjects performed a center-out reach task which was, on occasion, interrupted with a stimulus cue that instructed a change in reach target. Main results. Subjects generally responded faster to tactile cues than to visual cues. However, when we delivered cues via microstimuation in a monkey, its response was slower on average than for both tactile and visual cues. Significance. Tactile and microstimulation feedback can be used to rapidly adjust movements mid-flight. The relatively slow speed of microstimulation is surprising and warrants further investigation. Overall, these results highlight the importance of considering temporal aspects of feedback when designing alternative forms of feedback for BCIs.

  9. Relationship between intracortical electrode design and chronic recording function.

    PubMed

    Karumbaiah, Lohitash; Saxena, Tarun; Carlson, David; Patil, Ketki; Patkar, Radhika; Gaupp, Eric A; Betancur, Martha; Stanley, Garrett B; Carin, Lawrence; Bellamkonda, Ravi V

    2013-11-01

    Intracortical electrodes record neural signals directly from local populations of neurons in the brain, and conduct them to external electronics that control prosthetics. However, the relationship between electrode design, defined by shape, size and tethering; and long-term (chronic) stability of the neuron-electrode interface is poorly understood. Here, we studied the effects of various commercially available intracortical electrode designs that vary in shape (cylindrical, planar), size (15 μm, 50 μm and 75 μm), and tethering [electrode connections to connector with (tethered) and without tethering cable (untethered)] using histological, transcriptomic, and electrophysiological analyses over acute (3 day) and chronic (12 week) timepoints. Quantitative analysis of histological sections indicated that Michigan 50 μm (M50) and Michigan tethered (MT) electrodes induced significantly (p < 0.01) higher glial scarring, and lesser survival of neurons in regions of blood-brain barrier (BBB) breach when compared to microwire (MW) and Michigan 15 μm (M15) electrodes acutely and chronically. Gene expression analysis of the neurotoxic cytokines interleukin (Il)1 (Il1α, Il1β), Il6, Il17 (Il17a, Il17b, Il17f), and tumor necrosis factor alpha (Tnf) indicated that MW electrodes induced significantly (p < 0.05) reduced expression of these transcripts when compared to M15, M50 and FMAA electrodes chronically. Finally, electrophysiological assessment of electrode function indicated that MW electrodes performed significantly (p < 0.05) better than all other electrodes over a period of 12 weeks. These studies reveal that intracortical electrodes with smaller size, cylindrical shape, and without tethering cables produce significantly diminished inflammatory responses when compared to large, planar and tethered electrodes. These studies provide a platform for the rational design and assessment of chronically functional intracortical electrode implants in the future. PMID:23891081

  10. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications

    NASA Astrophysics Data System (ADS)

    Jorfi, Mehdi; Skousen, John L.; Weder, Christoph; Capadona, Jeffrey R.

    2015-02-01

    To ensure long-term consistent neural recordings, next-generation intracortical microelectrodes are being developed with an increased emphasis on reducing the neuro-inflammatory response. The increased emphasis stems from the improved understanding of the multifaceted role that inflammation may play in disrupting both biologic and abiologic components of the overall neural interface circuit. To combat neuro-inflammation and improve recording quality, the field is actively progressing from traditional inorganic materials towards approaches that either minimizes the microelectrode footprint or that incorporate compliant materials, bioactive molecules, conducting polymers or nanomaterials. However, the immune-privileged cortical tissue introduces an added complexity compared to other biomedical applications that remains to be fully understood. This review provides a comprehensive reflection on the current understanding of the key failure modes that may impact intracortical microelectrode performance. In addition, a detailed overview of the current status of various materials-based approaches that have gained interest for neural interfacing applications is presented, and key challenges that remain to be overcome are discussed. Finally, we present our vision on the future directions of materials-based treatments to improve intracortical microelectrodes for neural interfacing.

  11. Progress Towards Biocompatible Intracortical Microelectrodes for Neural Interfacing Applications

    PubMed Central

    Jorfi, Mehdi; Skousen, John L.; Weder, Christoph; Capadona, Jeffrey R.

    2015-01-01

    To ensure long-term consistent neural recordings, next-generation intracortical microelectrodes are being developed with an increased emphasis on reducing the neuro-inflammatory response. The increased emphasis stems from the improved understanding of the multifaceted role that inflammation may play in disrupting both biologic and abiologic components of the overall neural interface circuit. To combat neuro-inflammation and improve recording quality, the field is actively progressing from traditional inorganic materials towards approaches that either minimizes the microelectrode footprint or that incorporate compliant materials, bioactive molecules, conducting polymers or nanomaterials. However, the immune-privileged cortical tissue introduces an added complexity compared to other biomedical applications that remains to be fully understood. This review provides a comprehensive reflection on the current understanding of the key failure modes that may impact intracortical microelectrode performance. In addition, a detailed overview of the current status of various materials-based approaches that have gained interest for neural interfacing applications is presented, and key challenges that remain to be overcome are discussed. Finally, we present our vision on the future directions of materials-based treatments to improve intracortical microelectrodes for neural interfacing. PMID:25460808

  12. Performance sustaining intracortical neural prostheses

    NASA Astrophysics Data System (ADS)

    Nuyujukian, Paul; Kao, Jonathan C.; Fan, Joline M.; Stavisky, Sergey D.; Ryu, Stephen I.; Shenoy, Krishna V.

    2014-12-01

    Objective. Neural prostheses, or brain-machine interfaces, aim to restore efficient communication and movement ability to those suffering from paralysis. A major challenge these systems face is robust performance, particularly with aging signal sources. The aim in this study was to develop a neural prosthesis that could sustain high performance in spite of signal instability while still minimizing retraining time. Approach. We trained two rhesus macaques implanted with intracortical microelectrode arrays 1-4 years prior to this study to acquire targets with a neurally-controlled cursor. We measured their performance via achieved bitrate (bits per second, bps). This task was repeated over contiguous days to evaluate the sustained performance across time. Main results. We found that in the monkey with a younger (i.e., two year old) implant and better signal quality, a fixed decoder could sustain performance for a month at a rate of 4 bps, the highest achieved communication rate reported to date. This fixed decoder was evaluated across 22 months and experienced a performance decline at a rate of 0.24 bps yr-1. In the monkey with the older (i.e., 3.5 year old) implant and poorer signal quality, a fixed decoder could not sustain performance for more than a few days. Nevertheless, performance in this monkey was maintained for two weeks without requiring additional online retraining time by utilizing prior days’ experimental data. Upon analysis of the changes in channel tuning, we found that this stability appeared partially attributable to the cancelling-out of neural tuning fluctuations when projected to two-dimensional cursor movements. Significance. The findings in this study (1) document the highest-performing communication neural prosthesis in monkeys, (2) confirm and extend prior reports of the stability of fixed decoders, and (3) demonstrate a protocol for system stability under conditions where fixed decoders would otherwise fail. These improvements to decoder

  13. Aerobic exercise modulates intracortical inhibition and facilitation in a nonexercised upper limb muscle

    PubMed Central

    2014-01-01

    Background Despite growing interest in the relationship between exercise and short-term neural plasticity, the effects of exercise on motor cortical (M1) excitability are not well studied. Acute, lower-limb aerobic exercise may potentially modulate M1 excitability in working muscles, but the effects on muscles not involved in the exercise are unknown. Here we examined the excitability changes in an upper limb muscle representation following a single session of lower body aerobic exercise. Investigating the response to exercise in a non-exercised muscle may help to determine the clinical usefulness of lower-body exercise interventions for upper limb neurorehabilitation. Methods In this study, transcranial magnetic stimulation was used to assess input–output curves, short-interval intracortical inhibition (SICI), long-interval intracortical inhibition (LICI) and intracortical facilitation (ICF) in the extensor carpi radialis muscle in twelve healthy individuals following a single session of moderate stationary biking. Additionally, we examined whether the presence of a common polymorphism of the brain-derived neurotrophic factor (BDNF) gene would affect the response of these measures to exercise. Results We observed significant increases in ICF and decreases in SICI following exercise. No changes in LICI were detected, and no differences were observed in input–output curves following exercise, or between BDNF groups. Conclusions The current results demonstrate that the modulation of intracortical excitability following aerobic exercise is not limited to those muscles involved in the exercise, and that while exercise does not directly modulate the excitability of motor neurons, it may facilitate the induction of experience-dependent plasticity via a decrease in intracortical inhibition and increase in intracortical facilitation. These findings indicate that exercise may create favourable conditions for adaptive plasticity in M1 and may be an effective adjunct to

  14. Effects of Microstimulation in the Anterior Intraparietal Area during Three-Dimensional Shape Categorization

    PubMed Central

    Verhoef, Bram-Ernst; Vogels, Rufin; Janssen, Peter

    2015-01-01

    The anterior intraparietal area (AIP) of rhesus monkeys is part of the dorsal visual stream and contains neurons whose visual response properties are commensurate with a role in three-dimensional (3D) shape perception. Neuronal responses in AIP signal the depth structure of disparity-defined 3D shapes, reflect the choices of monkeys while they categorize 3D shapes, and mirror the behavioral variability across different stimulus conditions during 3D-shape categorization. However, direct evidence for a role of AIP in 3D-shape perception has been lacking. We trained rhesus monkeys to categorize disparity-defined 3D shapes and examined AIP's contribution to 3D-shape categorization by microstimulating in clusters of 3D-shape selective AIP neurons during task performance. We find that microstimulation effects on choices (monkey M1) and reaction times (monkey M1 and M2) depend on the 3D-shape preference of the stimulated site. Moreover, electrical stimulation of the same cells, during either the 3D-shape-categorization task or a saccade task, could affect behavior differently. Interestingly, in one monkey we observed a strong correlation between the strength of choice-related AIP activity (choice probabilities) and the influence of microstimulation on 3D-shape-categorization behavior (choices and reaction time). These findings propose AIP as part of the network responsible for 3D-shape perception. The results also show that the anterior intraparietal cortex contains cells with different tuning properties, i.e. 3D-shape- or saccade-related, that can be dynamically read out depending on the requirements of the task at hand. PMID:26295941

  15. Orienting responses and vocalizations produced by microstimulation in the superior colliculus of the echolocating bat, Eptesicus fuscus.

    PubMed

    Valentine, Doreen E; Sinha, Shiva R; Moss, Cynthia F

    2002-03-01

    An echolocating bat actively controls the spatial acoustic information that drives its behavior by directing its head and ears and by modulating the spectro-temporal structure of its outgoing sonar emissions. The superior colliculus may function in the coordination of these orienting components of the bat's echolocation system. To test this hypothesis, chemical and electrical microstimulation experiments were carried out in the superior colliculus of the echolocating bat, Eptesicus fuscus, a species that uses frequency modulated sonar signals. Microstimulation elicited pinna and head movements, similar to those reported in other vertebrate species, and the direction of the evoked behaviors corresponded to the site of stimulation, yielding a map of orienting movements in the superior colliculus. Microstimulation of the bat superior colliculus also elicited sonar vocalizations, a motor behavior specific to the bat's acoustic orientation by echolocation. Electrical stimulation of the adjacent periaqueductal gray, shown to be involved in vocal production in other mammalian species, elicited vocal signals resembling acoustic communication calls of E. fuscus. The control of vocal signals in the bat is an integral part of its acoustic orienting system, and our findings suggest that the superior colliculus supports diverse and species-relevant sensorimotor behaviors, including those used for echolocation.

  16. Therapeutic intraspinal microstimulation improves forelimb function after cervical contusion injury

    NASA Astrophysics Data System (ADS)

    Kasten, M. R.; Sunshine, M. D.; Secrist, E. S.; Horner, P. J.; Moritz, C. T.

    2013-08-01

    Objective. Intraspinal microstimulation (ISMS) is a promising method for activating the spinal cord distal to an injury. The objectives of this study were to examine the ability of chronically implanted stimulating wires within the cervical spinal cord to (1) directly produce forelimb movements, and (2) assess whether ISMS stimulation could improve subsequent volitional control of paretic extremities following injury. Approach. We developed a technique for implanting intraspinal stimulating electrodes within the cervical spinal cord segments C6-T1 of Long-Evans rats. Beginning 4 weeks after a severe cervical contusion injury at C4-C5, animals in the treatment condition received therapeutic ISMS 7 hours/day, 5 days/week for the following 12 weeks. Main results. Over 12 weeks of therapeutic ISMS, stimulus-evoked forelimb movements were relatively stable. We also explored whether therapeutic ISMS promoted recovery of forelimb reaching movements. Animals receiving daily therapeutic ISMS performed significantly better than unstimulated animals during behavioural tests conducted without stimulation. Quantitative video analysis of forelimb movements showed that stimulated animals performed better in the movements reinforced by stimulation, including extending the elbow to advance the forelimb and opening the digits. While threshold current to elicit forelimb movement gradually increased over time, no differences were observed between chronically stimulated and unstimulated electrodes suggesting that no additional tissue damage was produced by the electrical stimulation. Significance. The results indicate that therapeutic intraspinal stimulation delivered via chronic microwire implants within the cervical spinal cord confers benefits extending beyond the period of stimulation, suggesting future strategies for neural devices to promote sustained recovery after injury.

  17. Connectivity of the Primate Superior Colliculus Mapped by Concurrent Microstimulation and Event-Related fMRI

    PubMed Central

    Field, Courtney B.; Johnston, Kevin; Gati, Joseph S.; Menon, Ravi S.; Everling, Stefan

    2008-01-01

    Background Neuroanatomical studies investigating the connectivity of brain areas have heretofore employed procedures in which chemical or viral tracers are injected into an area of interest, and connected areas are subsequently identified using histological techniques. Such experiments require the sacrifice of the animals and do not allow for subsequent electrophysiological studies in the same subjects, rendering a direct investigation of the functional properties of anatomically identified areas impossible. Methodology/Principal Findings Here, we used a combination of microstimulation and fMRI in an anesthetized monkey preparation to study the connectivity of the superior colliculus (SC). Microstimulation of the SC resulted in changes in the blood oxygenation level-dependent (BOLD) signals in the SC and in several cortical and subcortical areas consistent with the known connectivity of the SC in primates. Conclusions/Significance These findings demonstrates that the concurrent use of microstimulation and fMRI can be used to identify brain networks for further electrophysiological or fMRI investigation. PMID:19079541

  18. Implants and Decoding for Intracortical Brain Computer Interfaces

    PubMed Central

    Homer, Mark L.; Nurmikko, Arto V.; Donoghue, John P.; Hochberg, Leigh R.

    2014-01-01

    Intracortical brain computer interfaces (iBCIs) are being developed to enable a person to drive an output device, such as a computer cursor, directly from their neural activity. One goal of the technology is to help people with severe paralysis or limb loss. Key elements of an iBCI are the implanted sensor that records the neural signals and the software which decodes the user’s intended movement from those signals. Here, we focus on recent advances in these two areas, with special attention being placed on contributions that are or may soon be adopted by the iBCI research community. We discuss how these innovations increase the technology’s capability, accuracy, and longevity, all important steps that are expanding the range of possible future clinical applications. PMID:23862678

  19. Sensors and decoding for intracortical brain computer interfaces.

    PubMed

    Homer, Mark L; Nurmikko, Arto V; Donoghue, John P; Hochberg, Leigh R

    2013-01-01

    Intracortical brain computer interfaces (iBCIs) are being developed to enable people to drive an output device, such as a computer cursor, directly from their neural activity. One goal of the technology is to help people with severe paralysis or limb loss. Key elements of an iBCI are the implanted sensor that records the neural signals and the software that decodes the user's intended movement from those signals. Here, we focus on recent advances in these two areas, placing special attention on contributions that are or may soon be adopted by the iBCI research community. We discuss how these innovations increase the technology's capability, accuracy, and longevity, all important steps that are expanding the range of possible future clinical applications.

  20. Cortical control of intraspinal microstimulation: Toward a new approach for restoration of function after spinal cord injury.

    PubMed

    Shahdoost, Shahab; Frost, Shawn; Dunham, Caleb; DeJong, Stacey; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram

    2015-08-01

    Approximately 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress toward developing a miniaturized brain-machine-spinal cord interface (BMSI) that converts in real time the neural command signals recorded from the cortical motor regions to electrical stimuli delivered to the spinal cord below the injury level. Using a combination of custom integrated circuit (IC) technology for corticospinal interfacing and field-programmable gate array (FPGA)-based technology for embedded signal processing, we demonstrate proof-of-concept of distinct muscle pattern activation via intraspinal microstimulation (ISMS) controlled in real time by intracortical neural spikes in an anesthetized laboratory rat. PMID:26736717

  1. Licking and gaping elicited by microstimulation of the nucleus of the solitary tract

    PubMed Central

    Kinzeler, Nicole R.; Travers, Susan P.

    2008-01-01

    Intraoral infusions of bitter tastants activate expression of the immediate-early gene c-Fos in neurons located in the medial third of the rostral nucleus of the solitary tract (rNST). The distribution of these neurons is distinct from that activated by sour or sweet stimuli. Bitter stimuli are also distinctive because of their potency for eliciting gaping, an oral reflex that functions to actively reject potentially toxic substances. Glossopharyngeal nerve transection profoundly reduces, whereas decerebration spares, the bitter-evoked Fos-like immunoreactivity (FLI) pattern and gaping, implicating the medial rNST as a substrate for the sensory limb of oral rejection. The present experiment tested this hypothesis using microstimulation (100 Hz, 0.2 ms, 5–40 μA) to activate the rNST in awake rats. NST microstimulation elicited licking and gaping, and gaping was evoked from a restricted rNST region. The results indicated some topographic organization in sites effective for evoking gaping, but, in direct conflict with the hypothesis, lateral sites farther from bitter-evoked FLI were more effective than medial sites centered closer to FLI-expressing neurons. The gape-effective sites resemble locations of bitter-responsive neurons recently observed in neurophysiological recordings. These results indicate that bitter-responsive rNST neurons critical for triggering gaping may not express FLI and imply an alternate function for bitter-responsive neurons that do. PMID:18495833

  2. Microstimulation of the human substantia nigra alters reinforcement learning.

    PubMed

    Ramayya, Ashwin G; Misra, Amrit; Baltuch, Gordon H; Kahana, Michael J

    2014-05-14

    Animal studies have shown that substantia nigra (SN) dopaminergic (DA) neurons strengthen action-reward associations during reinforcement learning, but their role in human learning is not known. Here, we applied microstimulation in the SN of 11 patients undergoing deep brain stimulation surgery for the treatment of Parkinson's disease as they performed a two-alternative probability learning task in which rewards were contingent on stimuli, rather than actions. Subjects demonstrated decreased learning from reward trials that were accompanied by phasic SN microstimulation compared with reward trials without stimulation. Subjects who showed large decreases in learning also showed an increased bias toward repeating actions after stimulation trials; therefore, stimulation may have decreased learning by strengthening action-reward associations rather than stimulus-reward associations. Our findings build on previous studies implicating SN DA neurons in preferentially strengthening action-reward associations during reinforcement learning. PMID:24828643

  3. Rearrangement of receptive field topography after intracortical and peripheral stimulation: the role of plasticity in inhibitory pathways.

    PubMed

    Kalarickal, George J; Marshall, Jonathan A

    2002-02-01

    Intracortical microstimulation (ICMS) of a single site in the somatosensory cortex of rats and monkeys for 2-6 h increases the number of neurons responsive to the skin region corresponding to the ICMS-site receptive field (RF), with very little effect on the position and size of the ICMS-site RF, and the response evoked at the ICMS site by tactile stimulation. Large changes in RF topography are also observed following several weeks of repetitive stimulation of a restricted skin region during tactile frequency discrimination training in monkeys. It has been suggested that these changes in RF topography are caused by competitive learning in excitatory pathways. This paper analyses the possible role of lateral inhibitory synaptic plasticity in producing cortical plasticity after ICMS and peripheral conditioning in adult animals. The 'EXIN' (afferent excitatory and lateral inhibitory) synaptic plasticity rules are used to model RF changes after ICMS and peripheral stimulation. The EXIN model produces RF topographical changes similar to those observed experimentally. It is shown that lateral inhibitory pathway plasticity is sufficient to model RF changes and increase in position discrimination after peripheral stimulation. Several novel and testable predictions are made based on the EXIN model.

  4. Orienting head movements resulting from electrical microstimulation of the brainstem tegmentum in the barn owl.

    PubMed

    Masino, T; Knudsen, E I

    1993-01-01

    The size and direction of orienting movements are represented systematically as a motor map in the optic tectum of the barn owl (du Lac and Knudsen, 1990). The optic tectum projects to several distinct regions in the medial brainstem tegmentum, which in turn project to the spinal cord (Masino and Knudsen, 1992). This study explores the hypothesis that a fundamental transformation in the neural representation of orienting movements takes place in the brainstem tegmentum. Head movements evoked by electrical microstimulation in the brainstem tegmentum of the alert barn owl were cataloged and the sites of stimulation were reconstructed histologically. Movements elicited from the brainstem tegmentum were categorized into one of six different classes: saccadic head rotations, head translations, facial movements, vocalizations, limb movements, and twitches. Saccadic head rotations could be further subdivided into two general categories: fixed-direction saccades and goal-directed saccades. Fixed-direction saccades, those whose direction was independent of initial head position, were elicited from the midbrain tegmentum. Goal-directed saccades, those whose direction changed with initial head position, were elicited from the central rhombencephalic reticular formation and from the efferent pathway of the cerebellum. Particular attention was paid to sites from which fixed-direction saccadic movements were elicited, as these movements appeared to represent components of orienting movements. Microstimulation in the medial midbrain tegmentum elicited fixed-direction saccades in one of six directions: rightward, leftward, upward, downward, clockwise roll, and counterclockwise roll. Stimulation in and around the interstitial nucleus of Cajal (InC; a complete list of anatomical abbreviations is given in the Appendix) produced ipsiversive horizontal saccades. Stimulation in the ventral InC and near the dorsal and medial edges of the red nucleus produced upward saccades. Stimulation

  5. Approaches for drug delivery with intracortical probes.

    PubMed

    Spieth, Sven; Schumacher, Axel; Trenkle, Fabian; Brett, Olivia; Seidl, Karsten; Herwik, Stanislav; Kisban, Sebastian; Ruther, Patrick; Paul, Oliver; Aarts, Arno A A; Neves, Hercules P; Rich, P Dylan; Theobald, David E; Holtzman, Tahl; Dalley, Jeffrey W; Verhoef, Bram-Ernst; Janssen, Peter; Zengerle, Roland

    2014-08-01

    Intracortical microprobes allow the precise monitoring of electrical and chemical signaling and are widely used in neuroscience. Microelectromechanical system (MEMS) technologies have greatly enhanced the integration of multifunctional probes by facilitating the combination of multiple recording electrodes and drug delivery channels in a single probe. Depending on the neuroscientific application, various assembly strategies are required in addition to the microprobe fabrication itself. This paper summarizes recent advances in the fabrication and assembly of micromachined silicon probes for drug delivery achieved within the EU-funded research project NeuroProbes. The described fabrication process combines a two-wafer silicon bonding process with deep reactive ion etching, wafer grinding, and thin film patterning and offers a maximum in design flexibility. By applying this process, three general comb-like microprobe designs featuring up to four 8-mm-long shafts, cross sections from 150×200 to 250×250 µm², and different electrode and fluidic channel configurations are realized. Furthermore, we discuss the development and application of different probe assemblies for acute, semichronic, and chronic applications, including comb and array assemblies, floating microprobe arrays, as well as the complete drug delivery system NeuroMedicator for small animal research.

  6. Cortical Plasticity Induced by Spike-Triggered Microstimulation in Primate Somatosensory Cortex

    PubMed Central

    Song, Weiguo; Kerr, Cliff C.; Lytton, William W.; Francis, Joseph T.

    2013-01-01

    Electrical stimulation of the nervous system for therapeutic purposes, such as deep brain stimulation in the treatment of Parkinson’s disease, has been used for decades. Recently, increased attention has focused on using microstimulation to restore functions as diverse as somatosensation and memory. However, how microstimulation changes the neural substrate is still not fully understood. Microstimulation may cause cortical changes that could either compete with or complement natural neural processes, and could result in neuroplastic changes rendering the region dysfunctional or even epileptic. As part of our efforts to produce neuroprosthetic devices and to further study the effects of microstimulation on the cortex, we stimulated and recorded from microelectrode arrays in the hand area of the primary somatosensory cortex (area 1) in two awake macaque monkeys. We applied a simple neuroprosthetic microstimulation protocol to a pair of electrodes in the area 1 array, using either random pulses or pulses time-locked to the recorded spiking activity of a reference neuron. This setup was replicated using a computer model of the thalamocortical system, which consisted of 1980 spiking neurons distributed among six cortical layers and two thalamic nuclei. Experimentally, we found that spike-triggered microstimulation induced cortical plasticity, as shown by increased unit-pair mutual information, while random microstimulation did not. In addition, there was an increased response to touch following spike-triggered microstimulation, along with decreased neural variability. The computer model successfully reproduced both qualitative and quantitative aspects of the experimental findings. The physiological findings of this study suggest that even simple microstimulation protocols can be used to increase somatosensory information flow. PMID:23472086

  7. Self-recalibrating classifiers for intracortical brain-computer interfaces

    PubMed Central

    Bishop, William; Chestek, Cynthia C; Gilja, Vikash; Nuyujukian, Paul; Foster, Justin D; Ryu, Stephen I; Shenoy, Krishna V; Yu, Byron M

    2014-01-01

    Objective Intracortical brain-computer interface (BCI) decoders are typically retrained daily to maintain stable performance. Self-recalibrating decoders aim to remove the burden this may present in the clinic by training themselves autonomously during normal use but have only been developed for continuous control. Here we address the problem for discrete decoding (classifiers). Approach We recorded threshold crossings from 96-electrode arrays implanted in the motor cortex of two rhesus macaques performing center-out reaches in 7 directions over 41 and 36 separate days spanning 48 and 58 days in total for offline analysis. Main results We show that for the purposes of developing a self-recalibrating classifier, tuning parameters can be considered as fixed within days and that parameters on the same electrode move up and down together between days. Further, drift is constrained across time, which is reflected in the performance of a standard classifier which does not progressively worsen if it is not retrained daily, though overall performance is reduced by more than 10% compared to a daily retrained classifier. Two novel self-recalibrating classifiers produce a ~15% increase in classification accuracy over that achieved by the non-retrained classifier to nearly recover the performance of the daily retrained classifier. Significance We believe that the development of classifiers that require no daily retraining will accelerate the clinical translation of BCI systems. Future work should test these results in a closed loop setting. PMID:24503597

  8. Self-recalibrating classifiers for intracortical brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Bishop, William; Chestek, Cynthia C.; Gilja, Vikash; Nuyujukian, Paul; Foster, Justin D.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.

    2014-04-01

    Objective. Intracortical brain-computer interface (BCI) decoders are typically retrained daily to maintain stable performance. Self-recalibrating decoders aim to remove the burden this may present in the clinic by training themselves autonomously during normal use but have only been developed for continuous control. Here we address the problem for discrete decoding (classifiers). Approach. We recorded threshold crossings from 96-electrode arrays implanted in the motor cortex of two rhesus macaques performing center-out reaches in 7 directions over 41 and 36 separate days spanning 48 and 58 days in total for offline analysis. Main results. We show that for the purposes of developing a self-recalibrating classifier, tuning parameters can be considered as fixed within days and that parameters on the same electrode move up and down together between days. Further, drift is constrained across time, which is reflected in the performance of a standard classifier which does not progressively worsen if it is not retrained daily, though overall performance is reduced by more than 10% compared to a daily retrained classifier. Two novel self-recalibrating classifiers produce a \\mathord {\\sim }15% increase in classification accuracy over that achieved by the non-retrained classifier to nearly recover the performance of the daily retrained classifier. Significance. We believe that the development of classifiers that require no daily retraining will accelerate the clinical translation of BCI systems. Future work should test these results in a closed-loop setting.

  9. A single-channel implantable microstimulator for functional neuromuscular stimulation.

    PubMed

    Ziaie, B; Nardin, M D; Coghlan, A R; Najafi, K

    1997-10-01

    This paper describes a single-channel implantable microstimulator for functional neuromuscular stimulation. This device measures 2 x 2 x 10 mm3 and can be inserted into paralyzed muscle groups by expulsion from a hypodermic needle. Power and data to the device are supplied from outside by RF telemetry using an amplitude-modulated 2-MHz RF carrier generated using a high-efficiency class-E transmitter. The transmitted signal carries a 5-b address which selects one of the 32 possible microstimulators. The selected device then delivers up to 2 microC of charge store in a tantalum chip capacitor for up to 200 microseconds (10 mA) into loads of < 800 omega through a high-current thin-film iridium-oxide (IrOx) electrode (approximately 0.3 mm2 in area). A bi-CMOS receiver circuitry is used to: generate two regulated voltage supplies (4.5 and 9 V), recover a 2-MHz clock from the carrier, demodulate the address code, and activate the output current delivery circuitry upon the reception of an external command. The overall power dissipation of the receiver circuitry is 45-55 mW. The implant is hermetically packaged using a custom-made glass capsule.

  10. Microstimulation of primary afferent neurons in the L7 dorsal root ganglia using multielectrode arrays in anesthetized cats: thresholds and recruitment properties

    NASA Astrophysics Data System (ADS)

    Gaunt, R. A.; Hokanson, J. A.; Weber, D. J.

    2009-10-01

    Current research in motor neural prosthetics has focused primarily on issues related to the extraction of motor command signals from the brain (e.g. brain-machine interfaces) to direct the motion of prosthetic limbs. Patients using these types of systems could benefit from a somatosensory neural interface that conveys natural tactile and kinesthetic sensations for the prosthesis. Electrical microstimulation within the dorsal root ganglia (DRG) has been proposed as one method to accomplish this, yet little is known about the recruitment properties of electrical microstimulation in activating nerve fibers in this structure. Current-controlled microstimulation pulses in the range of 1-15 µA (200 µs, leading cathodic pulse) were delivered to the L7 DRG in four anesthetized cats using penetrating microelectrode arrays. Evoked responses and their corresponding conduction velocities (CVs) were measured in the sciatic nerve with a 5-pole nerve cuff electrode arranged as two adjacent tripoles. It was found that in 76% of the 69 electrodes tested, the stimulus threshold was less than or equal to 3 µA, with the lowest recorded threshold being 1.1 µA. The CVs of afferents recruited at threshold had a bimodal distribution with peaks at 70 m s-1 and 85 m s-1. In 53% of cases, the CV of the response at threshold was slower (i.e. smaller diameter fiber) than the CVs of responses observed at increasing stimulation amplitudes. In summary, we found that microstimulation applied through penetrating microelectrodes in the DRG provides selective recruitment of afferent fibers from a range of sensory modalities (as identified by CVs) at very low stimulation intensities. We conclude that the DRG may serve as an attractive location from which to introduce surrogate somatosensory feedback into the nervous system.

  11. Reward modulates the effect of visual cortical microstimulation on perceptual decisions.

    PubMed

    Cicmil, Nela; Cumming, Bruce G; Parker, Andrew J; Krug, Kristine

    2015-01-01

    Effective perceptual decisions rely upon combining sensory information with knowledge of the rewards available for different choices. However, it is not known where reward signals interact with the multiple stages of the perceptual decision-making pathway and by what mechanisms this may occur. We combined electrical microstimulation of functionally specific groups of neurons in visual area V5/MT with performance-contingent reward manipulation, while monkeys performed a visual discrimination task. Microstimulation was less effective in shifting perceptual choices towards the stimulus preferences of the stimulated neurons when available reward was larger. Psychophysical control experiments showed this result was not explained by a selective change in response strategy on microstimulated trials. A bounded accumulation decision model, applied to analyse behavioural performance, revealed that the interaction of expected reward with microstimulation can be explained if expected reward modulates a sensory representation stage of perceptual decision-making, in addition to the better-known effects at the integration stage. PMID:26402458

  12. Current approaches to model extracellular electrical neural microstimulation

    PubMed Central

    Joucla, Sébastien; Glière, Alain; Yvert, Blaise

    2014-01-01

    Nowadays, high-density microelectrode arrays provide unprecedented possibilities to precisely activate spatially well-controlled central nervous system (CNS) areas. However, this requires optimizing stimulating devices, which in turn requires a good understanding of the effects of microstimulation on cells and tissues. In this context, modeling approaches provide flexible ways to predict the outcome of electrical stimulation in terms of CNS activation. In this paper, we present state-of-the-art modeling methods with sufficient details to allow the reader to rapidly build numerical models of neuronal extracellular microstimulation. These include (1) the computation of the electrical potential field created by the stimulation in the tissue, and (2) the response of a target neuron to this field. Two main approaches are described: First we describe the classical hybrid approach that combines the finite element modeling of the potential field with the calculation of the neuron's response in a cable equation framework (compartmentalized neuron models). Then, we present a “whole finite element” approach allowing the simultaneous calculation of the extracellular and intracellular potentials, by representing the neuronal membrane with a thin-film approximation. This approach was previously introduced in the frame of neural recording, but has never been implemented to determine the effect of extracellular stimulation on the neural response at a sub-compartment level. Here, we show on an example that the latter modeling scheme can reveal important sub-compartment behavior of the neural membrane that cannot be resolved using the hybrid approach. The goal of this paper is also to describe in detail the practical implementation of these methods to allow the reader to easily build new models using standard software packages. These modeling paradigms, depending on the situation, should help build more efficient high-density neural prostheses for CNS rehabilitation. PMID

  13. Current approaches to model extracellular electrical neural microstimulation.

    PubMed

    Joucla, Sébastien; Glière, Alain; Yvert, Blaise

    2014-01-01

    Nowadays, high-density microelectrode arrays provide unprecedented possibilities to precisely activate spatially well-controlled central nervous system (CNS) areas. However, this requires optimizing stimulating devices, which in turn requires a good understanding of the effects of microstimulation on cells and tissues. In this context, modeling approaches provide flexible ways to predict the outcome of electrical stimulation in terms of CNS activation. In this paper, we present state-of-the-art modeling methods with sufficient details to allow the reader to rapidly build numerical models of neuronal extracellular microstimulation. These include (1) the computation of the electrical potential field created by the stimulation in the tissue, and (2) the response of a target neuron to this field. Two main approaches are described: First we describe the classical hybrid approach that combines the finite element modeling of the potential field with the calculation of the neuron's response in a cable equation framework (compartmentalized neuron models). Then, we present a "whole finite element" approach allowing the simultaneous calculation of the extracellular and intracellular potentials, by representing the neuronal membrane with a thin-film approximation. This approach was previously introduced in the frame of neural recording, but has never been implemented to determine the effect of extracellular stimulation on the neural response at a sub-compartment level. Here, we show on an example that the latter modeling scheme can reveal important sub-compartment behavior of the neural membrane that cannot be resolved using the hybrid approach. The goal of this paper is also to describe in detail the practical implementation of these methods to allow the reader to easily build new models using standard software packages. These modeling paradigms, depending on the situation, should help build more efficient high-density neural prostheses for CNS rehabilitation. PMID:24600381

  14. Deficient intracortical inhibition (SICI) during movement preparation after chronic stroke

    PubMed Central

    Hummel, F C.; Steven, B; Hoppe, J; Heise, K; Thomalla, G; Cohen, L G.; Gerloff, C

    2009-01-01

    Background: In healthy subjects, preparation to move is accompanied by motor cortical disinhibition. Poor control of intracortical inhibitory function in the primary motor cortex (M1) might contribute to persistent abnormal motor behavior in the paretic hand after chronic stroke. Methods: Here, we studied GABAergic short intracortical inhibition (SICI) in the ipsilesional M1 in well-recovered chronic stroke patients (n = 14; 63.8 ± 3.0 years) engaged in preparation to move the impaired hand in a reaction time paradigm. Results: The main finding was an abnormal persistence of SICI in the ipsilesional M1 during movement preparation that was absent in age-matched controls (n = 14). Additionally, resting SICI was reduced in the patient group relative to controls. Conclusions: Our findings document a deficit of dynamic premovement modulation of intracortical inhibition in the ipsilesional primary motor cortex of patients with chronic stroke. This abnormality might contribute to deficits in motor control of the paretic hand, presenting a possible target for correction in the framework of developing novel therapeutic interventions after chronic stroke. GLOSSARY CS = conditioning magnetic stimulus; FDI = first digital interosseus muscle; ISI = interstimulus interval; JTT = Jebsen-Taylor Hand Function Test; M1 = primary motor cortex; MEP = motor evoked potential; RC = recruitment curves; RM-ANOVA = repeated measures analyses of variance; rMT = resting motor threshold; RT = reaction time; SICI = short interval intracortical inhibition; TMS = transcranial magnetic stimulation; US = unconditioned stimulus. PMID:19451532

  15. Characterization of a forebrain gaze field in the archistriatum of the barn owl: microstimulation and anatomical connections.

    PubMed

    Knudsen, E I; Cohen, Y E; Masino, T

    1995-07-01

    We present evidence that the archistriatum in the forebrain of the barn owl participates in gaze control, that it can mediate gaze changes independently of the optic tectum (OT), and that it projects in parallel to both the OT and to saccade-generating circuitry in the brainstem tegmentum. These properties are similar to those of the frontal eye fields (FEF) in the prefrontal cortex of primates. The forebrain was surveyed for sites where electrical microstimulation would induce head saccades. Head (and eye) saccades were elicited from the anterior 70% of the archistriatum, a region that we refer to as the archistriatal gaze fields (AGF). At single stimulation sites in the AGF, saccade amplitude tended to vary as a function of stimulation parameters (current strength, pulse frequency, and train duration) and starting head position. In contrast, saccade direction was largely independent of these parameters. Saccade direction did vary over a wide range of primarily contraversive directions with the site of stimulation in the AGF. Using anatomical pathway tracing techniques, we found that the archistriatum projects strongly and in parallel to the deep layers of the OT and to nuclei in the midline brainstem tegmentum. Previous work has shown that electrical microstimulation of either of these brainstem regions evokes saccadic movements of the head and/or eyes (du Lac and Knudsen, 1990; Masino and Knudsen, 1992b). Inactivation of the OT with lidocaine reduced the size but did not eliminate (or change the direction of) the saccades evoked by AGF stimulation. The direct anatomical pathway from the archistriatum to the midline tegmental nuclei can account for saccades that persist following OT inactivation. The similarities between the AGF in barn owls and the FEF in primates suggest that the same general plan of anatomical and functional organization supports the contribution of the forebrain to gaze control in a wide variety of species. PMID:7623141

  16. Intracortical Brain-Machine Interfaces Advance Sensorimotor Neuroscience.

    PubMed

    Schroeder, Karen E; Chestek, Cynthia A

    2016-01-01

    Brain-machine interfaces (BMIs) decode brain activity to control external devices. Over the past two decades, the BMI community has grown tremendously and reached some impressive milestones, including the first human clinical trials using chronically implanted intracortical electrodes. It has also contributed experimental paradigms and important findings to basic neuroscience. In this review, we discuss neuroscience achievements stemming from BMI research, specifically that based upon upper limb prosthetic control with intracortical microelectrodes. We will focus on three main areas: first, we discuss progress in neural coding of reaches in motor cortex, describing recent results linking high dimensional representations of cortical activity to muscle activation. Next, we describe recent findings on learning and plasticity in motor cortex on various time scales. Finally, we discuss how bidirectional BMIs have led to better understanding of somatosensation in and related to motor cortex. PMID:27445663

  17. Intracortical Brain-Machine Interfaces Advance Sensorimotor Neuroscience

    PubMed Central

    Schroeder, Karen E.; Chestek, Cynthia A.

    2016-01-01

    Brain-machine interfaces (BMIs) decode brain activity to control external devices. Over the past two decades, the BMI community has grown tremendously and reached some impressive milestones, including the first human clinical trials using chronically implanted intracortical electrodes. It has also contributed experimental paradigms and important findings to basic neuroscience. In this review, we discuss neuroscience achievements stemming from BMI research, specifically that based upon upper limb prosthetic control with intracortical microelectrodes. We will focus on three main areas: first, we discuss progress in neural coding of reaches in motor cortex, describing recent results linking high dimensional representations of cortical activity to muscle activation. Next, we describe recent findings on learning and plasticity in motor cortex on various time scales. Finally, we discuss how bidirectional BMIs have led to better understanding of somatosensation in and related to motor cortex. PMID:27445663

  18. Bilateral force transients in the upper limbs evoked by single-pulse microstimulation in the pontomedullary reticular formation.

    PubMed

    Hirschauer, Thomas J; Buford, John A

    2015-04-01

    Neurons in the pontomedullary reticular formation (PMRF) give rise to the reticulospinal tract. The motor output of the PMRF was investigated using stimulus-triggered averaging of electromyography (EMG) and force recordings in two monkeys (M. fascicularis). EMG was recorded from 12 pairs of upper limb muscles, and forces were detected using two isometric force-sensitive handles. Of 150 stimulation sites, 105 (70.0%) produced significant force responses, and 139 (92.5%) produced significant EMG responses. Based on the average flexor EMG onset latency of 8.3 ms and average force onset latency of 15.9 ms poststimulation, an electromechanical delay of ∼7.6 ms was calculated. The magnitude of force responses (∼10 mN) was correlated with the average change in EMG activity (P < 0.001). A multivariate linear regression analysis was used to estimate the contribution of each muscle to force generation, with flexors and extensors exhibiting antagonistic effects. A predominant force output pattern of ipsilateral flexion and contralateral extension was observed in response to PMRF stimulation, with 65.3% of significant ipsilateral force responses directed medially and posteriorly (P < 0.001) and 78.6% of contralateral responses directed laterally and anteriorly (P < 0.001). This novel approach permits direct measurement of force outputs evoked by central nervous system microstimulation. Despite the small magnitude of poststimulus EMG effects, low-intensity single-pulse microstimulation of the PMRF evoked detectable forces. The forces, showing the combined effect of all muscle activity in the arms, are consistent with reciprocal pattern of force outputs from the PMRF detectable with stimulus-triggered averaging of EMG. PMID:25652926

  19. Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface

    PubMed Central

    Jarosiewicz, Beata; Sarma, Anish A.; Bacher, Daniel; Masse, Nicolas Y.; Simeral, John D.; Sorice, Brittany; Oakley, Erin M.; Blabe, Christine; Pandarinath, Chethan; Gilja, Vikash; Cash, Sydney S.; Eskandar, Emad N.; Friehs, Gerhard; Henderson, Jaimie M.; Shenoy, Krishna V.; Donoghue, John P.; Hochberg, Leigh R.

    2016-01-01

    Brain-computer interfaces (BCIs) promise to restore independence for people with severe motor disabilities by translating decoded neural activity directly into the control of a computer. However, recorded neural signals are not stationary (that is, can change over time), degrading the quality of decoding. Requiring users to pause what they are doing whenever signals change to perform decoder recalibration routines is time-consuming and impractical for everyday use of BCIs. We demonstrate that signal nonstationarity in an intracortical BCI can be mitigated automatically in software, enabling long periods (hours to days) of self-paced point-and-click typing by people with tetraplegia, without degradation in neural control. Three key innovations were included in our approach: tracking the statistics of the neural activity during self-timed pauses in neural control, velocity bias correction during neural control, and periodically recalibrating the decoder using data acquired during typing by mapping neural activity to movement intentions that are inferred retrospectively based on the user’s self-selected targets. These methods, which can be extended to a variety of neurally controlled applications, advance the potential for intracortical BCIs to help restore independent communication and assistive device control for people with paralysis. PMID:26560357

  20. Mechanically-compliant intracortical implants reduce the neuroinflammatory response

    NASA Astrophysics Data System (ADS)

    Nguyen, Jessica K.; Park, Daniel J.; Skousen, John L.; Hess-Dunning, Allison E.; Tyler, Dustin J.; Rowan, Stuart J.; Weder, Christoph; Capadona, Jeffrey R.

    2014-10-01

    Objective. The mechanisms underlying intracortical microelectrode encapsulation and failure are not well understood. A leading hypothesis implicates the role of the mechanical mismatch between rigid implant materials and the much softer brain tissue. Previous work has established the benefits of compliant materials on reducing early neuroinflammatory events. However, recent studies established late onset of a disease-like neurodegenerative state. Approach. In this study, we implanted mechanically-adaptive materials, which are initially rigid but become compliant after implantation, to investigate the long-term chronic neuroinflammatory response to compliant intracortical microelectrodes. Main results. Three days after implantation, during the acute healing phase of the response, the tissue response to the compliant implants was statistically similar to that of chemically matched stiff implants with much higher rigidity. However, at two, eight, and sixteen weeks post-implantation in the rat cortex, the compliant implants demonstrated a significantly reduced neuroinflammatory response when compared to stiff reference materials. Chronically implanted compliant materials also exhibited a more stable blood-brain barrier than the stiff reference materials. Significance. Overall, the data show strikingly that mechanically-compliant intracortical implants can reduce the neuroinflammatory response in comparison to stiffer systems.

  1. Reanimating the arm and hand with intraspinal microstimulation

    NASA Astrophysics Data System (ADS)

    Zimmermann, Jonas B.; Seki, Kazuhiko; Jackson, Andrew

    2011-10-01

    To date, there is no effective therapy for spinal cord injury, and many patients could benefit dramatically from at least partial restoration of arm and hand function. Despite a substantial body of research investigating intraspinal microstimulation (ISMS) in frogs, rodents and cats, little is known about upper-limb responses to cervical stimulation in the primate. Here, we show for the first time that long trains of ISMS delivered to the macaque spinal cord can evoke functional arm and hand movements. Complex movements involving coordinated activation of multiple muscles could be elicited from a single electrode, while just two electrodes were required for independent control of reaching and grasping. We found that the motor responses to ISMS were described by a dual exponential model that depended only on stimulation history. We demonstrate that this model can be inverted to generate stimulus trains capable of eliciting arbitrary, graded motor responses, and could be used to restore volitional movements in a closed-loop brain-machine interface.

  2. Microfabrication of new microelectrode arrays equipped with a ground surface configuration for focal neural microstimulation

    NASA Astrophysics Data System (ADS)

    Rousseau, L.; Joucla, S.; Lissorgues, G.; Yvert, B.

    2009-07-01

    Extracellular electrical stimulation of the central nervous system has been used empirically for decades, with both fundamental and clinical goals. Currently, microelectrode arrays (MEAs) offer new possibilities for CNS microstimulation, allowing in principle to activate only neurons located in the vicinity of the stimulation sites. To overcome the lack of focality of monopolar stimulations, multipolar approaches are commonly used, multiplying therefore the number of electrodes of the arrays and the complexity of the connection system behind. To overcome these limitations, we developed a ground surface configuration consisting in surrounding all the electrodes with a conductive surface laying over the MEA substrate, and using it for the stimulation current return. We first report the microfabrication of a prototype of MEA equipped with this configuration. We also perform experimental recordings of the potential field induced by microstimulations and confirm the expected increased focality with the ground surface configuration. This will open the way to focal 'pixel-like' microstimulation of neural networks using MEAs.

  3. Non-causal spike filtering improves decoding of movement intention for intracortical BCIs

    PubMed Central

    Masse, Nicolas Y.; Jarosiewicz, Beata; Simeral, John D.; Bacher, Daniel; Stavisky, Sergey D.; Cash, Sydney S.; Oakley, Erin M.; Berhanu, Etsub; Eskandar, Emad; Friehs, Gerhard; Hochberg, Leigh R.; Donoghue, John P.

    2014-01-01

    Background Multiple types of neural signals are available for controlling assistive devices through brain-computer interfaces (BCIs). Intracortically-recorded spiking neural signals are attractive for BCIs because they can in principle provide greater fidelity of encoded information compared to electrocorticographic (ECoG) signals and electroencephalograms (EEGs). Recent reports show that the information content of these spiking neural signals can be reliably extracted simply by causally band-pass filtering the recorded extracellular voltage signals and then applying a spike detection threshold, without relying on “sorting” action potentials. New method We show that replacing the causal filter with an equivalent non-causal filter increases the information content extracted from the extracellular spiking signal and improves decoding of intended movement direction. This method can be used for real-time BCI applications by using a 4 ms lag between recording and filtering neural signals. Results Across 18 sessions from two people with tetraplegia enrolled in the BrainGate2 pilot clinical trial, we found that threshold crossing events extracted using this non-causal filtering method were significantly more informative of each participant’s intended cursor kinematics compared to threshold crossing events derived from causally filtered signals. This new method decreased the mean angular error between the intended and decoded cursor direction by 9.7° for participant S3, who was implanted 5.4 years prior to this study, and by 3.5° for participant T2, who was implanted 3 months prior to this study. Conclusions Non-causally filtering neural signals prior to extracting threshold crossing events may be a simple yet effective way to condition intracortically recorded neural activity for direct control of external devices through BCIs. PMID:25128256

  4. Reward modulates the effect of visual cortical microstimulation on perceptual decisions

    PubMed Central

    Cicmil, Nela; Cumming, Bruce G; Parker, Andrew J; Krug, Kristine

    2015-01-01

    Effective perceptual decisions rely upon combining sensory information with knowledge of the rewards available for different choices. However, it is not known where reward signals interact with the multiple stages of the perceptual decision-making pathway and by what mechanisms this may occur. We combined electrical microstimulation of functionally specific groups of neurons in visual area V5/MT with performance-contingent reward manipulation, while monkeys performed a visual discrimination task. Microstimulation was less effective in shifting perceptual choices towards the stimulus preferences of the stimulated neurons when available reward was larger. Psychophysical control experiments showed this result was not explained by a selective change in response strategy on microstimulated trials. A bounded accumulation decision model, applied to analyse behavioural performance, revealed that the interaction of expected reward with microstimulation can be explained if expected reward modulates a sensory representation stage of perceptual decision-making, in addition to the better-known effects at the integration stage. DOI: http://dx.doi.org/10.7554/eLife.07832.001 PMID:26402458

  5. Microstimulation Reveals Opposing Influences of Prelimbic and Infralimbic Cortex on the Expression of Conditioned Fear

    ERIC Educational Resources Information Center

    Vidal-Gonzalez, Ivan; Rauch, Scott L.; Quirk, Gregory J.; Vidal-Gonzalez, Benjamin

    2006-01-01

    Recent studies using lesion, infusion, and unit-recording techniques suggest that the infralimbic (IL) subregion of medial prefrontal cortex (mPFC) is necessary for the inhibition of conditioned fear following extinction. Brief microstimulation of IL paired with conditioned tones, designed to mimic neuronal tone responses, reduces the expression…

  6. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses.

    PubMed

    Becerra-Fajardo, Laura; Ivorra, Antoni

    2015-01-01

    Electrical stimulation is used in order to restore nerve mediated functions in patients with neurological disorders, but its applicability is constrained by the invasiveness of the systems required to perform it. As an alternative to implantable systems consisting of central stimulation units wired to the stimulation electrodes, networks of wireless microstimulators have been devised for fine movement restoration. Miniaturization of these microstimulators is currently hampered by the available methods for powering them. Previously, we have proposed and demonstrated a heterodox electrical stimulation method based on electronic rectification of high frequency current bursts. These bursts can be delivered through textile electrodes on the skin. This approach has the potential to result in an unprecedented level of miniaturization as no bulky parts such as coils or batteries are included in the implant. We envision microstimulators designs based on application-specific integrated circuits (ASICs) that will be flexible, thread-like (diameters < 0.5 mm) and not only with controlled stimulation capabilities but also with sensing capabilities for artificial proprioception. We in vivo demonstrate that neuroprostheses composed of addressable microstimulators based on this electrical stimulation method are feasible and can perform controlled charge-balanced electrical stimulation of muscles. We developed miniature external circuit prototypes connected to two bipolar probes that were percutaneously implanted in agonist and antagonist muscles of the hindlimb of an anesthetized rabbit. The electronic implant architecture was able to decode commands that were amplitude modulated on the high frequency (1 MHz) auxiliary current bursts. The devices were capable of independently stimulating the target tissues, accomplishing controlled dorsiflexion and plantarflexion joint movements. In addition, we numerically show that the high frequency current bursts comply with safety standards

  7. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses

    PubMed Central

    2015-01-01

    Electrical stimulation is used in order to restore nerve mediated functions in patients with neurological disorders, but its applicability is constrained by the invasiveness of the systems required to perform it. As an alternative to implantable systems consisting of central stimulation units wired to the stimulation electrodes, networks of wireless microstimulators have been devised for fine movement restoration. Miniaturization of these microstimulators is currently hampered by the available methods for powering them. Previously, we have proposed and demonstrated a heterodox electrical stimulation method based on electronic rectification of high frequency current bursts. These bursts can be delivered through textile electrodes on the skin. This approach has the potential to result in an unprecedented level of miniaturization as no bulky parts such as coils or batteries are included in the implant. We envision microstimulators designs based on application-specific integrated circuits (ASICs) that will be flexible, thread-like (diameters < 0.5 mm) and not only with controlled stimulation capabilities but also with sensing capabilities for artificial proprioception. We in vivo demonstrate that neuroprostheses composed of addressable microstimulators based on this electrical stimulation method are feasible and can perform controlled charge-balanced electrical stimulation of muscles. We developed miniature external circuit prototypes connected to two bipolar probes that were percutaneously implanted in agonist and antagonist muscles of the hindlimb of an anesthetized rabbit. The electronic implant architecture was able to decode commands that were amplitude modulated on the high frequency (1 MHz) auxiliary current bursts. The devices were capable of independently stimulating the target tissues, accomplishing controlled dorsiflexion and plantarflexion joint movements. In addition, we numerically show that the high frequency current bursts comply with safety standards

  8. Population Response Propagation to Extrastriate Areas Evoked by Intracortical Electrical Stimulation in V1

    PubMed Central

    Fehérvári, Tamás D.; Yagi, Tetsuya

    2016-01-01

    The mouse visual system has multiple extrastriate areas surrounding V1 each with a distinct representation of the visual field and unique functional and connectivity profiles, which are believed to form two parallel processing streams, similar to the ventral and dorsal streams in primates. At the same time, mouse visual areas have a high degree of interconnectivity, in particular V1 sends input to all higher visual areas. The study of these direct connections can further our understanding of the cortical processing of visual signals in the early mammalian cortex. Several studies have been published about the anatomy of these connections, but an in vivo electrophysiological characterization and comparison of the transmission to multiple extrastriate areas has not yet been reported. We used intracortical electrical stimulation combined with RH1691 VSD imaging in adult C57BL/6 mice in urethane anesthesia to analyze interareal transmission from V1 to extrastriate areas in superficial cortical layers. We found seven extrastriate response sites (five lateral, two medial) in a spatial pattern similar to area maps of the mouse visual cortex and, by shifting the location of V1 stimulation, demonstrated that the evoked responses in LM and AL were in accordance with the visuotopic mappings of these areas known from anatomy and in vivo studies. These two sites, considered to be gateways to their processing streams, had shorter latencies and faster transmission speeds than other extrastriate response sites. Short latency differences between response sites, and that TTX injection into LM reduced but did not eliminate other extrastriate responses indicated that the evoked cortical activity was, at least partially, transmitted directly from V1 to extrastriate areas. This study reports on analysis of interareal transmission from V1 to multiple extrastriate areas in mouse using intracortical electrical stimulation in vivo. PMID:26903816

  9. Intraspinal microstimulation produces over-ground walking in anesthetized cats

    NASA Astrophysics Data System (ADS)

    Holinski, B. J.; Mazurek, K. A.; Everaert, D. G.; Toossi, A.; Lucas-Osma, A. M.; Troyk, P.; Etienne-Cummings, R.; Stein, R. B.; Mushahwar, V. K.

    2016-10-01

    Objective. Spinal cord injury causes a drastic loss of motor, sensory and autonomic function. The goal of this project was to investigate the use of intraspinal microstimulation (ISMS) for producing long distances of walking over ground. ISMS is an electrical stimulation method developed for restoring motor function by activating spinal networks below the level of an injury. It produces movements of the legs by stimulating the ventral horn of the lumbar enlargement using fine penetrating electrodes (≤50 μm diameter). Approach. In each of five adult cats (4.2-5.5 kg), ISMS was applied through 16 electrodes implanted with tips targeting lamina IX in the ventral horn bilaterally. A desktop system implemented a physiologically-based control strategy that delivered different stimulation patterns through groups of electrodes to evoke walking movements with appropriate limb kinematics and forces corresponding to swing and stance. Each cat walked over an instrumented 2.9 m walkway and limb kinematics and forces were recorded. Main results. Both propulsive and supportive forces were required for over-ground walking. Cumulative walking distances ranging from 609 to 835 m (longest tested) were achieved in three animals. In these three cats, the mean peak supportive force was 3.5 ± 0.6 N corresponding to full-weight-support of the hind legs, while the angular range of the hip, knee, and ankle joints were 23.1 ± 2.0°, 29.1 ± 0.2°, and 60.3 ± 5.2°, respectively. To further demonstrate the viability of ISMS for future clinical use, a prototype implantable module was successfully implemented in a subset of trials and produced comparable walking performance. Significance. By activating inherent locomotor networks within the lumbosacral spinal cord, ISMS was capable of producing bilaterally coordinated and functional over-ground walking with current amplitudes <100 μA. These exciting results suggest that ISMS may be an effective intervention for restoring functional

  10. Coupling and robustness of intra-cortical vascular territories.

    PubMed

    Guibert, Romain; Fonta, Caroline; Risser, Laurent; Plouraboué, Franck

    2012-08-01

    Vascular domains have been described as being coupled to neuronal functional units enabling dynamic blood supply to the cerebral cyto-architecture. Recent experiments have shown that penetrating arterioles of the grey matter are the building blocks for such units. Nevertheless, vascular territories are still poorly known, as the collection and analysis of large three-dimensional micro-vascular networks are difficult. By using an exhaustive reconstruction of the micro-vascular network in an 18 mm(3) volume of marmoset cerebral cortex, we numerically computed the blood flow in each blood vessel. We thus defined arterial and venular territories and examined their overlap. A large part of the intracortical vascular network was found to be supplied by several arteries and drained by several venules. We quantified this multiple potential to compensate for deficiencies by introducing a new robustness parameter. Robustness proved to be positively correlated with cortical depth and a systematic investigation of coupling maps indicated local patterns of overlap between neighbouring arteries and neighbouring venules. However, arterio-venular coupling did not have a spatial pattern of overlap but showed locally preferential functional coupling, especially of one artery with two venules, supporting the notion of vascular units. We concluded that intra-cortical perfusion in the primate was characterised by both very narrow functional beds and a large capacity for compensatory redistribution, far beyond the nearest neighbour collaterals. PMID:22548806

  11. In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes

    PubMed Central

    Harris, J P; Hess, A E; Rowan, S J; Weder, C; Zorman, C A; Tyler, D J; Capadona, J R

    2012-01-01

    We recently introduced a series of stimuli-responsive, mechanically-adaptive polymer nanocomposites. Here, we report the first application of these bio-inspired materials as substrates for intracortical microelectrodes. Our hypothesis is that the ideal electrode should be initially stiff to facilitate minimal trauma during insertion into the cortex, yet becomes mechanically compliant to match the stiffness of the brain tissue and minimize forces exerted on the tissue, attenuating inflammation. Microprobes created from mechanically reinforced nanocomposites demonstrated a significant advantage compared to model microprobes composed of neat polymer only. The nanocomposite microprobes exhibit a higher storage modulus (E’ = ~5 GPa) than the neat polymer microprobes (E’ = ~2 GPa) and could sustain higher loads (~17 mN), facilitating penetration through the pia mater and insertion into the cerebral cortex of a rat. In contrast, the neat polymer microprobes mechanically failed under lower loads (~7 mN) before they were capable of inserting into cortical tissue. Further, we demonstrated the material’s ability to morph while in the rat cortex to more closely match the mechanical properties of the cortical tissue. Nanocomposite microprobes that were implanted into the rat cortex for up to 8 weeks demonstrated increased cell density at the microelectrode-tissue interface and a lack of tissue necrosis or excessive gliosis. This body of work introduces our nanocomposite-based microprobes as adaptive substrates for intracortical microelectrodes and potentially other biomedical applications. PMID:21654037

  12. Intracortical microinjections may cause spreading depression and suppress absence seizures.

    PubMed

    Samotaeva, I S; Tillmanns, N; van Luijtelaar, G; Vinogradova, L V

    2013-01-29

    Intracerebral microinjection is a commonly used technique for local delivery of biologically active agents. However, it is known that mechanical injury of the cortex can induce spreading depression (SD), a wave of transient cellular depolarization. We examined the effects of intracortical microinjections of a new selective I(h) channel antagonist ORG 34167 and of different control treatments (saline and sham microinjections) on spontaneously occurring spike-wave discharges (SWDs) in WAG/Rij rats, a valid genetic model of absence epilepsy. Electroencephalographic (EEG) recording in awake rats has shown that both the drug and control microinjections are followed by long-term (for more than an hour) suppression of SWDs. dc-EEG recording in WAG/Rij rats has revealed that sham microinjections induce SD in 65% (31/48) cases. Number of SWDs decreased substantially for at least 90 min after the sham injections which induced cortical SD but remained unchanged if SD was not triggered by microinjection. These findings suggest that SD induced by intracortical microinjection may contribute to long-term suppression of non-convulsive epileptic activity after this experimental procedure. PMID:23200788

  13. In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes.

    PubMed

    Harris, J P; Hess, A E; Rowan, S J; Weder, C; Zorman, C A; Tyler, D J; Capadona, J R

    2011-08-01

    We recently introduced a series of stimuli-responsive, mechanically adaptive polymer nanocomposites. Here, we report the first application of these bio-inspired materials as substrates for intracortical microelectrodes. Our hypothesis is that the ideal electrode should be initially stiff to facilitate minimal trauma during insertion into the cortex, yet become mechanically compliant to match the stiffness of the brain tissue and minimize forces exerted on the tissue, attenuating inflammation. Microprobes created from mechanically reinforced nanocomposites demonstrated a significant advantage compared to model microprobes composed of neat polymer only. The nanocomposite microprobes exhibit a higher storage modulus (E' = ~5 GPa) than the neat polymer microprobes (E' = ~2 GPa) and can sustain higher loads (~12 mN), facilitating penetration through the pia mater and insertion into the cerebral cortex of a rat. In contrast, the neat polymer microprobes mechanically failed under lower loads (~7 mN) before they were capable of insertion into cortical tissue. Further, we demonstrated the material's ability to morph while in the rat cortex to more closely match the mechanical properties of the cortical tissue. Nanocomposite microprobes that were implanted into the rat cortex for up to eight weeks demonstrated increased cell density at the microelectrode-tissue interface and a lack of tissue necrosis or excessive gliosis. This body of work introduces our nanocomposite-based microprobes as adaptive substrates for intracortical microelectrodes and potentially for other biomedical applications.

  14. Advantages of closed-loop calibration in intracortical brain-computer interfaces for people with tetraplegia

    NASA Astrophysics Data System (ADS)

    Jarosiewicz, Beata; Masse, Nicolas Y.; Bacher, Daniel; Cash, Sydney S.; Eskandar, Emad; Friehs, Gerhard; Donoghue, John P.; Hochberg, Leigh R.

    2013-08-01

    Objective. Brain-computer interfaces (BCIs) aim to provide a means for people with severe motor disabilities to control their environment directly with neural activity. In intracortical BCIs for people with tetraplegia, the decoder that maps neural activity to desired movements has typically been calibrated using ‘open-loop’ (OL) imagination of control while a cursor automatically moves to targets on a computer screen. However, because neural activity can vary across contexts, a decoder calibrated using OL data may not be optimal for ‘closed-loop’ (CL) neural control. Here, we tested whether CL calibration creates a better decoder than OL calibration even when all other factors that might influence performance are held constant, including the amount of data used for calibration and the amount of elapsed time between calibration and testing. Approach. Two people with tetraplegia enrolled in the BrainGate2 pilot clinical trial performed a center-out-back task using an intracortical BCI, switching between decoders that had been calibrated on OL versus CL data. Main results. Even when all other variables were held constant, CL calibration improved neural control as well as the accuracy and strength of the tuning model. Updating the CL decoder using additional and more recent data resulted in further improvements. Significance. Differences in neural activity between OL and CL contexts contribute to the superiority of CL decoders, even prior to their additional ‘adaptive’ advantage. In the near future, CL decoder calibration may enable robust neural control without needing to pause ongoing, practical use of BCIs, an important step toward clinical utility.

  15. Advantages of closed-loop calibration in intracortical brain-computer interfaces for people with tetraplegia

    PubMed Central

    Jarosiewicz, Beata; Masse, Nicolas Y.; Bacher, Daniel; Cash, Sydney S.; Eskandar, Emad; Friehs, Gerhard; Donoghue, John P.; Hochberg, Leigh R.

    2013-01-01

    Objective Brain-computer interfaces (BCIs) aim to provide a means for people with severe motor disabilities to control their environment directly with neural activity. In intracortical BCIs for people with tetraplegia, the decoder that maps neural activity to desired movements has typically been calibrated using “open-loop” (OL) imagination of control while a cursor automatically moves to targets on a computer screen. However, because neural activity can vary across contexts, a decoder calibrated using OL data may not be optimal for “closed-loop” (CL) neural control. Here, we tested whether CL calibration creates a better decoder than OL calibration even when all other factors that might influence performance are held constant, including the amount of data used for calibration and the amount of elapsed time between calibration and testing. Approach Two people with tetraplegia enrolled in the BrainGate2 pilot clinical trial performed a center-out-back task using an intracortical BCI, switching between decoders that had been calibrated on OL vs. CL data. Main results Even when all other variables were held constant, CL calibration improved neural control as well as the accuracy and strength of the tuning model. Updating the CL decoder using additional and more recent data resulted in further improvements. Significance Differences in neural activity between OL and CL contexts contribute to the superiority of CL decoders, even prior to their additional “adaptive” advantage. In the near future, CL decoder calibration may enable robust neural control without needing to pause ongoing, practical use of BCIs, an important step toward clinical utility. PMID:23838067

  16. Responses of single corticospinal neurons to intracortical stimulation of primary motor and premotor cortex in the anesthetized macaque monkey.

    PubMed

    Maier, Marc A; Kirkwood, Peter A; Brochier, Thomas; Lemon, Roger N

    2013-06-01

    The responses of individual primate corticospinal neurons to localized electrical stimulation of primary motor (M1) and of ventral premotor cortex (area F5) are poorly documented. To rectify this and to study interactions between responses from these areas, we recorded corticospinal axons, identified by pyramidal tract stimulation, in the cervical spinal cord of three chloralose-anesthetized macaque monkeys. Single stimuli (≤400 μA) were delivered to the hand area of M1 or F5 through intracortical microwire arrays. Only 14/112 (13%) axons showed responses to M1 stimuli that indicated direct intracortical activation of corticospinal neurons (D-responses); no D-responses were seen from F5. In contrast, 62 axons (55%) exhibited consistent later responses to M1 stimulation, corresponding to indirect activation (I-responses), showing that single-pulse intracortical stimulation of motor areas can result in trans-synaptic activation of a high proportion of the corticospinal output. A combined latency histogram of all axon responses was nonperiodic, clearly different from the periodic surface-recorded corticospinal volleys. This was readily explained by correcting for conduction velocities of individual axons. D-responding axons, taken as originating in neurons close to the M1 stimulating electrodes, showed more I-responses from M1 than those without a D-response, and 8/10 of these axons also responded to F5 stimulation. Altogether, 33% of tested axons responded to F5 stimulation, most of which also showed I-responses from M1. These excitatory effects are in keeping with facilitation of hand muscles evoked from F5 being relayed via M1. This was further demonstrated by facilitation of test responses from M1 by conditioning F5 stimuli. PMID:23536718

  17. Modulation of the Intracortical LFP during Action Execution and Observation.

    PubMed

    Waldert, Stephan; Vigneswaran, Ganesh; Philipp, Roland; Lemon, Roger N; Kraskov, Alexander

    2015-06-01

    The activity of mirror neurons in macaque ventral premotor cortex (PMv) and primary motor cortex (M1) is modulated by the observation of another's movements. This modulation could underpin well documented changes in EEG/MEG activity indicating the existence of a mirror neuron system in humans. Because the local field potential (LFP) represents an important link between macaque single neuron and human noninvasive studies, we focused on mirror properties of intracortical LFPs recorded in the PMv and M1 hand regions in two macaques while they reached, grasped and held different objects, or observed the same actions performed by an experimenter. Upper limb EMGs were recorded to control for covert muscle activity during observation.The movement-related potential (MRP), investigated as intracortical low-frequency LFP activity (<9 Hz), was modulated in both M1 and PMv, not only during action execution but also during action observation. Moreover, the temporal LFP modulations during execution and observation were highly correlated in both cortical areas. Beta power in both PMv and M1 was clearly modulated in both conditions. Although the MRP was detected only during dynamic periods of the task (reach/grasp/release), beta decreased during dynamic and increased during static periods (hold).Comparison of LFPs for different grasps provided evidence for partially nonoverlapping networks being active during execution and observation, which might be related to different inputs to motor areas during these conditions. We found substantial information about grasp in the MRP corroborating its suitability for brain-machine interfaces, although information about grasp was generally low during action observation. PMID:26041914

  18. Transspinal direct current stimulation immediately modifies motor cortex sensorimotor maps

    PubMed Central

    Song, Weiguo; Truong, Dennis Q.; Bikson, Marom

    2015-01-01

    Motor cortex (MCX) motor representation reorganization occurs after injury, learning, and different long-term stimulation paradigms. The neuromodulatory approach of transspinal direct current stimulation (tsDCS) has been used to promote evoked cortical motor responses. In the present study, we used cathodal tsDCS (c-tsDCS) of the rat cervical cord to determine if spinal cord activation can modify the MCX forelimb motor map. We used a finite-element method model based on coregistered high-resolution rat MRI and microcomputed tomography imaging data to predict spinal current density to target stimulation to the caudal cervical enlargement. We examined the effects of cathodal and anodal tsDCS on the H-reflex and c-tsDCS on responses evoked by intracortical microstimulation (ICMS). To determine if cervical c-tsDCS also modified MCX somatic sensory processing, we examined sensory evoked potentials (SEPs) produced by wrist electrical stimulation and induced changes in ongoing activity. Cervical c-tsDCS enhanced the H-reflex, and anodal depressed the H-reflex. Using cathodal stimulation to examine cortical effects, we found that cervical c-tsDCS immediately modified the forelimb MCX motor map, with decreased thresholds and an expanded area. c-tsDCS also increased SEP amplitude in the MCX. The magnitude of changes produced by c-tsDCS were greater on the motor than sensory response. Cervical c-tsDCS more strongly enhanced forelimb than hindlimb motor representation and had no effect on vibrissal representation. The finite-element model indicated current density localized to caudal cervical segments, informing forelimb motor selectivity. Our results suggest that c-tsDCS augments spinal excitability in a spatially selective manner and may improve voluntary motor function through MCX representational plasticity. PMID:25673738

  19. Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation

    NASA Astrophysics Data System (ADS)

    Choi, John S.; Brockmeier, Austin J.; McNiel, David B.; von Kraus, Lee M.; Príncipe, José C.; Francis, Joseph T.

    2016-10-01

    Objective. Lost sensations, such as touch, could one day be restored by electrical stimulation along the sensory neural pathways. Such stimulation, when informed by electronic sensors, could provide naturalistic cutaneous and proprioceptive feedback to the user. Perceptually, microstimulation of somatosensory brain regions produces localized, modality-specific sensations, and several spatiotemporal parameters have been studied for their discernibility. However, systematic methods for encoding a wide array of naturally occurring stimuli into biomimetic percepts via multi-channel microstimulation are lacking. More specifically, generating spatiotemporal patterns for explicitly evoking naturalistic neural activation has not yet been explored. Approach. We address this problem by first modeling the dynamical input-output relationship between multichannel microstimulation and downstream neural responses, and then optimizing the input pattern to reproduce naturally occurring touch responses as closely as possible. Main results. Here we show that such optimization produces responses in the S1 cortex of the anesthetized rat that are highly similar to natural, tactile-stimulus-evoked counterparts. Furthermore, information on both pressure and location of the touch stimulus was found to be highly preserved. Significance. Our results suggest that the currently presented stimulus optimization approach holds great promise for restoring naturalistic levels of sensation.

  20. Ovariectomy Stimulates and Bisphosphonates Inhibit Intracortical Remodeling in the Mouse Mandible

    PubMed Central

    Kubek, Daniel J.; Burr, David B.; Allen, Matthew R.

    2010-01-01

    Objective The pathophysiology of osteonecrosis of the jaw (ONJ) is thought to be linked to suppression of intracortical remodeling. Aim of this study was to determine whether mice, which normally do not undergo appreciable amounts of intracortical remodeling, could be stimulated by ovariectomy to remodel within the cortex of the mandible and if bisphosphonates (BPs) would suppress this intracortical remodeling. Material and Methods Skeletally mature female C3H mice were either ovariectomized (OVX) or SHAM operated and treated with two intravenous doses of zoledronic acid (ZOL, 0.06 mg/kg body weight) or vehicle (VEH). This ZOL dose corresponds to the dose given to cancer patients on a mg/kg basis, adjusted for body weight. Calcein was administered prior to sacrifice to label active formation sites. Dynamic histomorphometry of the mandible and femur were performed. Results Vehicle-treated OVX animals had significantly higher (8-fold) intracortical remodeling of the alveolar portion of the mandible compared to sham – this was significantly suppressed by ZOL treatment. At all skeletal sites, overall bone formation rate (BFR) was lower with ZOL treatment compared to the corresponding VEH group. Conclusions Under normal conditions the level of intracortical remodeling in the mouse mandible is minimal but in C3H mice can be stimulated to appreciable levels with ovariectomy. Based on this, if the suppression of intracortical remodeling is found to be part of the pathophysiology of ONJ, the ovariectomized C3H mouse could serve as a useful tool for studying this condition. PMID:21040464

  1. Biological, mechanical, and technological considerations affecting the longevity of intracortical electrode recordings.

    PubMed

    Harris, James P; Tyler, Dustin J

    2013-01-01

    Intracortical electrodes are important tools, with applications ranging from fundamental laboratory studies to potential solutions to intractable clinical applications. However, the longevity and reliability of the interfaces remain their major limitation to the wider implementation and adoption of this technology, especially in broader translational work. Accordingly, this review summarizes the most significant biological and technical factors influencing the long-term performance of intracortical electrodes. In a laboratory setting, intracortical electrodes have been used to study the normal and abnormal function of the brain. This improved understanding has led to valuable insights regarding many neurological conditions. Likewise, clinical applications of intracortical brain-machine interfaces offer the ability to improve the quality of life of many patients afflicted with high-level paralysis from spinal cord injury, brain stem stroke, amyotrophic lateral sclerosis, or other conditions. It is widely hypothesized that the tissue response to the electrodes, including inflammation, limits their longevity. Many studies have examined and modified the tissue response to intracortical electrodes to improve future intracortical electrode technologies. Overall, the relationship between biological, mechanical, and technological considerations are crucial for the fidelity of chronic electrode recordings and represent a presently active area of investigation in the field of neural engineering.

  2. Voltage-sensitive dye imaging reveals improved topographic activation of cortex in response to manipulation of thalamic microstimulation parameters

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Millard, Daniel C.; Zheng, He J. V.; Stanley, Garrett B.

    2012-04-01

    Voltage-sensitive dye imaging was used to quantify in vivo, network level spatiotemporal cortical activation in response to electrical microstimulation of the thalamus in the rat vibrissa pathway. Thalamic microstimulation evoked a distinctly different cortical response than natural sensory stimulation, with response to microstimulation spreading over a larger area of cortex and being topographically misaligned with the cortical column to which the stimulated thalamic region projects. Electrical stimulation with cathode-leading asymmetric waveforms reduced this topographic misalignment while simultaneously increasing the spatial specificity of the cortical activation. Systematically increasing the asymmetry of the microstimulation pulses revealed a continuum between symmetric and asymmetric stimulation that gradually reduced the topographic bias. These data strongly support the hypothesis that manipulation of the electrical stimulation waveform can be used to selectively activate specific neural elements. Specifically, our results are consistent with the prediction that cathode-leading asymmetric waveforms preferentially stimulate cell bodies over axons, while symmetric waveforms preferentially activate axons over cell bodies. The findings here provide some initial steps toward the design and optimization of microstimulation of neural circuitry, and open the door to more sophisticated engineering tools, such as nonlinear system identification techniques, to develop technologies for more effective control of activity in the nervous system.

  3. Anatomy of the Intracortical Canal System: Scanning Electron Microscopy Study in Rabbit Femur

    PubMed Central

    Congiu, Terenzio; Raspanti, Mario; Ranchetti, Federico; Quacci, Daniela

    2009-01-01

    The current model of compact bone is that of a system of longitudinal (Haversian) canals connected by transverse (Volkmann’s) canals. Models based on histology or microcomputed tomography lack the morphologic detail and sense of temporal development provided by direct observation. Using direct scanning electron microscopy observation, we studied the bone surface and structure of the intracortical canal system in paired fractured surfaces in rabbit femurs, examining density of canal openings on periosteal and endosteal surfaces, internal network nodes and canal sizes, and collagen lining of the inner canal system. The blood supply of the diaphyseal compact bone entered the cortex through the canal openings on the endosteal and periosteal surfaces, with different morphologic features in the midshaft and distal shaft; their density was higher on endosteal than on periosteal surfaces in the midshaft but with no major differences among subregions. The circumference measurements along Haversian canals documented a steady reduction behind the head of the cutting cone but rather random variations as the distance from the head increased. These observations suggested discontinuous development and variable lamellar apposition rate of osteons in different segments of their trajectory. The frequent branching and types of network nodes suggested substantial osteonal plasticity and supported the model of a network organization. The collagen fibers of the canal wall were organized in intertwined, longitudinally oriented bundles with 0.1- to 0.5-μm holes connecting the canal lumen with the osteocyte canalicular system. PMID:19330389

  4. Intracortical recording interfaces: current challenges to chronic recording function.

    PubMed

    Gunasekera, Bhagya; Saxena, Tarun; Bellamkonda, Ravi; Karumbaiah, Lohitash

    2015-01-21

    Brain Computer Interfaces (BCIs) offer significant hope to tetraplegic and paraplegic individuals. This technology relies on extracting and translating motor intent to facilitate control of a computer cursor or to enable fine control of an external assistive device such as a prosthetic limb. Intracortical recording interfaces (IRIs) are critical components of BCIs and consist of arrays of penetrating electrodes that are implanted into the motor cortex of the brain. These multielectrode arrays (MEAs) are responsible for recording and conducting neural signals from local ensembles of neurons in the motor cortex with the high speed and spatiotemporal resolution that is required for exercising control of external assistive prostheses. Recent design and technological innovations in the field have led to significant improvements in BCI function. However, long-term (chronic) BCI function is severely compromised by short-term (acute) IRI recording failure. In this review, we will discuss the design and function of current IRIs. We will also review a host of recent advances that contribute significantly to our overall understanding of the cellular and molecular events that lead to acute recording failure of these invasive implants. We will also present recent improvements to IRI design and provide insights into the futuristic design of more chronically functional IRIs.

  5. Intracortical recording interfaces: current challenges to chronic recording function.

    PubMed

    Gunasekera, Bhagya; Saxena, Tarun; Bellamkonda, Ravi; Karumbaiah, Lohitash

    2015-01-21

    Brain Computer Interfaces (BCIs) offer significant hope to tetraplegic and paraplegic individuals. This technology relies on extracting and translating motor intent to facilitate control of a computer cursor or to enable fine control of an external assistive device such as a prosthetic limb. Intracortical recording interfaces (IRIs) are critical components of BCIs and consist of arrays of penetrating electrodes that are implanted into the motor cortex of the brain. These multielectrode arrays (MEAs) are responsible for recording and conducting neural signals from local ensembles of neurons in the motor cortex with the high speed and spatiotemporal resolution that is required for exercising control of external assistive prostheses. Recent design and technological innovations in the field have led to significant improvements in BCI function. However, long-term (chronic) BCI function is severely compromised by short-term (acute) IRI recording failure. In this review, we will discuss the design and function of current IRIs. We will also review a host of recent advances that contribute significantly to our overall understanding of the cellular and molecular events that lead to acute recording failure of these invasive implants. We will also present recent improvements to IRI design and provide insights into the futuristic design of more chronically functional IRIs. PMID:25587704

  6. Adaptive Offset Correction for Intracortical Brain Computer Interfaces

    PubMed Central

    Homer, Mark L.; Perge, János A.; Black, Michael J.; Harrison, Matthew T.; Cash, Sydney S.; Hochberg, Leigh R.

    2014-01-01

    Intracortical brain computer interfaces (iBCIs) decode intended movement from neural activity for the control of external devices such as a robotic arm. Standard approaches include a calibration phase to estimate decoding parameters. During iBCI operation, the statistical properties of the neural activity can depart from those observed during calibration, sometimes hindering a user’s ability to control the iBCI. To address this problem, we adaptively correct the offset terms within a Kalman filter decoder via penalized maximum likelihood estimation. The approach can handle rapid shifts in neural signal behavior (on the order of seconds) and requires no knowledge of the intended movement. The algorithm, called MOCA, was tested using simulated neural activity and evaluated retrospectively using data collected from two people with tetraplegia operating an iBCI. In 19 clinical research test cases, where a nonadaptive Kalman filter yielded relatively high decoding errors, MOCA significantly reduced these errors (10.6 ±10.1%; p<0.05, pairwise t-test). MOCA did not significantly change the error in the remaining 23 cases where a nonadaptive Kalman filter already performed well. These results suggest that MOCA provides more robust decoding than the standard Kalman filter for iBCIs. PMID:24196868

  7. Adaptive offset correction for intracortical brain-computer interfaces.

    PubMed

    Homer, Mark L; Perge, Janos A; Black, Michael J; Harrison, Matthew T; Cash, Sydney S; Hochberg, Leigh R

    2014-03-01

    Intracortical brain-computer interfaces (iBCIs) decode intended movement from neural activity for the control of external devices such as a robotic arm. Standard approaches include a calibration phase to estimate decoding parameters. During iBCI operation, the statistical properties of the neural activity can depart from those observed during calibration, sometimes hindering a user's ability to control the iBCI. To address this problem, we adaptively correct the offset terms within a Kalman filter decoder via penalized maximum likelihood estimation. The approach can handle rapid shifts in neural signal behavior (on the order of seconds) and requires no knowledge of the intended movement. The algorithm, called multiple offset correction algorithm (MOCA), was tested using simulated neural activity and evaluated retrospectively using data collected from two people with tetraplegia operating an iBCI. In 19 clinical research test cases, where a nonadaptive Kalman filter yielded relatively high decoding errors, MOCA significantly reduced these errors ( 10.6 ± 10.1% ; p < 0.05, pairwise t-test). MOCA did not significantly change the error in the remaining 23 cases where a nonadaptive Kalman filter already performed well. These results suggest that MOCA provides more robust decoding than the standard Kalman filter for iBCIs.

  8. Layer-Specific Intracortical Connectivity Revealed with Diffusion MRI

    PubMed Central

    Leuze, Christoph W.U.; Anwander, Alfred; Bazin, Pierre-Louis; Dhital, Bibek; Stüber, Carsten; Reimann, Katja; Geyer, Stefan; Turner, Robert

    2014-01-01

    In this work, we show for the first time that the tangential diffusion component is orientationally coherent at the human cortical surface. Using diffusion magnetic resonance imaging (dMRI), we have succeeded in tracking intracortical fiber pathways running tangentially within the cortex. In contrast with histological methods, which reveal little regarding 3-dimensional organization in the human brain, dMRI delivers additional understanding of the layer dependence of the fiber orientation. A postmortem brain block was measured at very high angular and spatial resolution. The dMRI data had adequate resolution to allow analysis of the fiber orientation within 4 notional cortical laminae. We distinguished a lamina at the cortical surface where diffusion was tangential along the surface, a lamina below the surface where diffusion was mainly radial, an internal lamina covering the Stria of Gennari, where both strong radial and tangential diffusion could be observed, and a deep lamina near the white matter, which also showed mainly radial diffusion with a few tangential compartments. The measurement of the organization of the tangential diffusion component revealed a strong orientational coherence at the cortical surface. PMID:23099298

  9. Thiol-ene/acrylate substrates for softening intracortical electrodes.

    PubMed

    Ware, Taylor; Simon, Dustin; Liu, Clive; Musa, Tabassum; Vasudevan, Srikanth; Sloan, Andrew; Keefer, Edward W; Rennaker, Robert L; Voit, Walter

    2014-01-01

    Neural interfaces have traditionally been fabricated on rigid and planar substrates, including silicon and engineering thermoplastics. However, the neural tissue with which these devices interact is both 3D and highly compliant. The mechanical mismatch at the biotic-abiotic interface is expected to contribute to the tissue response that limits chronic signal recording and stimulation. In this work, novel ternary thiol-ene/acrylate polymer networks are used to create softening substrates for neural recording electrodes. Thermomechanical properties of the substrates are studied through differential scanning calorimetry and dynamic mechanical analysis both before and after exposure physiological conditions. This substrate system softens from more than 1 GPa to 18 MPa on exposure to physiological conditions: reaching body temperature and taking up less than 3% fluid. The impedance of 177 µm(2) gold electrodes electroplated with platinum black fabricated on these substrates is measured to be 206 kΩ at 1 kHz. Specifically, intracortical electrodes are fabricated, implanted, and used to record driven neural activity. This work describes the first substrate system that can use the full capabilities of photolithography, respond to physiological conditions by softening markedly after insertion, and record driven neural activity for 4 weeks.

  10. Cell-Targeted Optogenetics and Electrical Microstimulation Reveal the Primate Koniocellular Projection to Supra-granular Visual Cortex.

    PubMed

    Klein, Carsten; Evrard, Henry C; Shapcott, Katharine A; Haverkamp, Silke; Logothetis, Nikos K; Schmid, Michael C

    2016-04-01

    Electrical microstimulation and more recently optogenetics are widely used to map large-scale brain circuits. However, the neuronal specificity achieved with both methods is not well understood. Here we compare cell-targeted optogenetics and electrical microstimulation in the macaque monkey brain to functionally map the koniocellular lateral geniculate nucleus (LGN) projection to primary visual cortex (V1). Selective activation of the LGN konio neurons with CamK-specific optogenetics caused selective electrical current inflow in the supra-granular layers of V1. Electrical microstimulation targeted at LGN konio layers revealed the same supra-granular V1 activation pattern as the one elicited by optogenetics. Taken together, these findings establish a selective koniocellular LGN influence on V1 supra-granular layers, and they indicate comparable capacities of both stimulation methods to isolate thalamo-cortical circuits in the primate brain.

  11. Intracortical inhibition is modulated by phase of prosthetic rehabilitation in transtibial amputees

    PubMed Central

    Hordacre, Brenton; Bradnam, Lynley V.; Barr, Christopher; Patritti, Benjamin L.; Crotty, Maria

    2015-01-01

    Reorganization of primary motor cortex (M1) is well-described in long-term lower limb amputees. In contrast cortical reorganization during the rehabilitation period after amputation is poorly understood. Thirteen transtibial amputees and 13 gender matched control participants of similar age were recruited. Transcranial magnetic stimulation was used to assess corticomotor and intracortical excitability of M1 bilaterally. Neurophysiological assessments were conducted at admission, prosthetic casting, first walk and discharge. Gait variability at discharge was assessed as a functional measure. Compared to controls, amputees had reduced short-latency intracortical inhibition (SICI) for the ipsilateral M1 at admission (p = 0.01). Analysis across rehabilitation revealed SICI was reduced for the contralateral M1 at first walk compared to discharge (p = 0.003). For the ipsilateral M1 both short and long-latency intracortical inhibition were reduced at admission (p < 0.05) and prosthetic casting (p < 0.02). Analysis of the neurophysiology and gait function revealed several interesting relationships. For the contralateral M1, reduced inhibition at admission (p = 0.04) and first walk (p = 0.05) was associated with better gait function. For the ipsilateral M1, reduced inhibition at discharge (p = 0.05) was associated with poor gait function. This study characterized intracortical excitability in rehabilitating amputees. A dichotomous relationship between reduced intracortical inhibition for each M1 and gait function was observed at different times. Intracortical inhibition may be an appropriate cortical biomarker of gait function in lower limb amputees during rehabilitation, but requires further investigation. Understanding M1 intracortical excitability of amputees undertaking prosthetic rehabilitation provides insight into brain reorganization in the sub-acute post-amputation period and may guide future studies seeking to improve rehabilitation outcomes. PMID:26042015

  12. The Corticofugal Effects of Auditory Cortex Microstimulation on Auditory Nerve and Superior Olivary Complex Responses Are Mediated via Alpha-9 Nicotinic Receptor Subunit

    PubMed Central

    Aedo, Cristian; Terreros, Gonzalo; León, Alex; Delano, Paul H.

    2016-01-01

    Background and Objective The auditory efferent system is a complex network of descending pathways, which mainly originate in the primary auditory cortex and are directed to several auditory subcortical nuclei. These descending pathways are connected to olivocochlear neurons, which in turn make synapses with auditory nerve neurons and outer hair cells (OHC) of the cochlea. The olivocochlear function can be studied using contralateral acoustic stimulation, which suppresses auditory nerve and cochlear responses. In the present work, we tested the proposal that the corticofugal effects that modulate the strength of the olivocochlear reflex on auditory nerve responses are produced through cholinergic synapses between medial olivocochlear (MOC) neurons and OHCs via alpha-9/10 nicotinic receptors. Methods We used wild type (WT) and alpha-9 nicotinic receptor knock-out (KO) mice, which lack cholinergic transmission between MOC neurons and OHC, to record auditory cortex evoked potentials and to evaluate the consequences of auditory cortex electrical microstimulation in the effects produced by contralateral acoustic stimulation on auditory brainstem responses (ABR). Results Auditory cortex evoked potentials at 15 kHz were similar in WT and KO mice. We found that auditory cortex microstimulation produces an enhancement of contralateral noise suppression of ABR waves I and III in WT mice but not in KO mice. On the other hand, corticofugal modulations of wave V amplitudes were significant in both genotypes. Conclusion These findings show that the corticofugal modulation of contralateral acoustic suppressions of auditory nerve (ABR wave I) and superior olivary complex (ABR wave III) responses are mediated through MOC synapses. PMID:27195498

  13. Selective Maturation of Temporal Dynamics of Intracortical Excitatory Transmission at the Critical Period Onset.

    PubMed

    Miao, Qinglong; Yao, Li; Rasch, Malte J; Ye, Qian; Li, Xiang; Zhang, Xiaohui

    2016-08-01

    Although the developmental maturation of cortical inhibitory synapses is known to be a critical factor in gating the onset of critical period (CP) for experience-dependent cortical plasticity, how synaptic transmission dynamics of other cortical synapses are regulated during the transition to CP remains unknown. Here, by systematically examining various intracortical synapses within layer 4 of the mouse visual cortex, we demonstrate that synaptic temporal dynamics of intracortical excitatory synapses on principal cells (PCs) and inhibitory parvalbumin- or somatostatin-expressing cells are selectively regulated before the CP onset, whereas those of intracortical inhibitory synapses and long-range thalamocortical excitatory synapses remain unchanged. This selective maturation of synaptic dynamics results from a ubiquitous reduction of presynaptic release and is dependent on visual experience. These findings provide an additional essential circuit mechanism for regulating CP timing in the developing visual cortex.

  14. Black bears with longer disuse (hibernation) periods have lower femoral osteon population density and greater mineralization and intracortical porosity.

    PubMed

    Wojda, Samantha J; Weyland, David R; Gray, Sarah K; McGee-Lawrence, Meghan E; Drummer, Thomas D; Donahue, Seth W

    2013-08-01

    Intracortical bone remodeling is persistent throughout life, leading to age related increases in osteon population density (OPD). Intracortical porosity also increases with age in many mammals including humans, contributing to bone fragility and fracture risk. Unbalanced bone resorption and formation during disuse (e.g., physical inactivity) also increases intracortical porosity. In contrast, hibernating bears are a naturally occurring model for the prevention of both age-related and disuse osteoporoses. Intracortical bone remodeling is decreased during hibernation, but resorption and formation remain balanced. Black bears spend 0.25-7 months in hibernation annually depending on climate and food availability. We found longer hibernating bears demonstrate lower OPD and higher cortical bone mineralization than bears with shorter hibernation durations, but we surprisingly found longer hibernating bears had higher intracortical porosity. However, bears from three different latitudes showed age-related decreases in intracortical porosity, indicating that regardless of hibernation duration, black bears do not show the disuse- or age-related increases in intracortical porosity which is typical of other animals. This ability to prevent increases in intracortical porosity likely contributes to their ability to maintain bone strength during prolonged periods of physical inactivity and throughout life. Improving our understanding of the unique bone metabolism in hibernating bears will potentially increase our ability to develop treatments for age- and disuse-related osteoporoses in humans.

  15. sLORETA intracortical lagged coherence during breath counting in meditation-naïve participants

    PubMed Central

    Milz, Patricia; Faber, Pascal L.; Lehmann, Dietrich; Kochi, Kieko; Pascual-Marqui, Roberto D.

    2013-01-01

    We investigated brain functional connectivity comparing no-task resting to breath counting (a meditation exercise but given as task without referring to meditation). Functional connectivity computed as EEG coherence between head-surface data suffers from localization ambiguity, reference dependence, and overestimation due to volume conduction. Lagged coherence between intracortical model sources addresses these criticisms. With this analysis approach, experienced meditators reportedly showed reduced coherence during meditation, meditation-naïve participants have not yet been investigated. 58-channel EEG from 23 healthy, right-handed, meditation-naïve males during resting [3 runs] and breath counting [2 runs] was computed into sLORETA time series of intracortical electrical activity in 19 regions of interest (ROI) corresponding to the cortex underlying 19 scalp electrode sites, for each of the eight independent EEG frequency bands covering 1.5–44 Hz. Intracortical lagged coherences and head-surface conventional coherences were computed between the 19 regions/sites. During breath counting compared to resting, paired t-tests corrected for multiple testing revealed four significantly lower intracortical lagged coherences, but four significantly higher head-surface conventional coherences. Lowered intracortical lagged coherences involved left BA 10 and right BAs 3, 10, 17, 40. In conclusion, intracortical lagged coherence can yield results that are inverted to those of head-surface conventional coherence. The lowered functional connectivity between cognitive control areas and sensory perception areas during meditation-type breath counting compared to resting conceivably reflects the attention to a bodily percept without cognitive reasoning. The reductions in functional connectivity were similar but not as widespread as the reductions reported during meditation in experienced meditators. PMID:24860483

  16. Localized microstimulation of primate pregenual cingulate cortex induces negative decision-making.

    PubMed

    Amemori, Ken-ichi; Graybiel, Ann M

    2012-05-01

    The pregenual anterior cingulate cortex (pACC) has been implicated in human anxiety disorders and depression, but the circuit-level mechanisms underlying these disorders are unclear. In healthy individuals, the pACC is involved in cost-benefit evaluation. We developed a macaque version of an approach-avoidance decision task used to evaluate anxiety and depression in humans and, with multi-electrode recording and cortical microstimulation, we probed pACC function as monkeys performed this task. We found that the macaque pACC has an opponent process-like organization of neurons representing motivationally positive and negative subjective value. Spatial distribution of these two neuronal populations overlapped in the pACC, except in one subzone, where neurons with negative coding were more numerous. Notably, microstimulation in this subzone, but not elsewhere in the pACC, increased negative decision-making, and this negative biasing was blocked by anti-anxiety drug treatment. This cortical zone could be critical for regulating negative emotional valence and anxiety in decision-making. PMID:22484571

  17. Use of bipolar parallel electrodes for well-controlled microstimulation in a mouse hippocampal brain slice.

    PubMed

    Neagu, Bogdan; Strominger, Norman L; Carpenter, David O

    2005-06-15

    In a hippocampal brain slice two types of stimulating electrodes [single (SE) or monopolar and parallel bipolar (PE)] were used to determine the optimal protocol for single pulse microstimulation. We show that even for a constant-current power source the amplitude of stimulating current (SC) is not constant, especially for short pulse widths (PW) (<200 micros). Recording the stimulating current and computing the amount of electric charge that is passed through the microelectrode gives the best estimate of the strength of electrical stimulation. For SE the evoked response is obstructed for a time interval larger than three times the PW. The stimulus artifact (SA) substantially decreases when a PE is used. The orientation of the stimulating current relative to the position of the targeted fibers (Schaffer collaterals) was controlled when using a PE. The use of PEs allowed the accurate recording of the physiological response that contains three clearly defined peaks. Stimulation can be elicited at PW as short as 30 micros when the main current is capacitive. The charge needed to elicit physiological responses was in the range of 1-40 nC (the lower values for the PE) suggesting that use of PEs is most advantageous for well-controlled microstimulation studies in brain slices.

  18. Point-and-Click Cursor Control With an Intracortical Neural Interface System by Humans With Tetraplegia

    PubMed Central

    Kim, Sung-Phil; Simeral, John D.; Hochberg, Leigh R.; Donoghue, John P.; Friehs, Gerhard M.; Black, Michael J.

    2012-01-01

    We present a point-and-click intracortical neural interface system (NIS) that enables humans with tetraplegia to volitionally move a 2-D computer cursor in any desired direction on a computer screen, hold it still, and click on the area of interest. This direct brain–computer interface extracts both discrete (click) and continuous (cursor velocity) signals from a single small population of neurons in human motor cortex. A key component of this system is a multi-state probabilistic decoding algorithm that simultaneously decodes neural spiking activity of a small population of neurons and outputs either a click signal or the velocity of the cursor. The algorithm combines a linear classifier, which determines whether the user is intending to click or move the cursor, with a Kalman filter that translates the neural population activity into cursor velocity. We present a paradigm for training the multi-state decoding algorithm using neural activity observed during imagined actions. Two human participants with tetraplegia (paralysis of the four limbs) performed a closed-loop radial target acquisition task using the point-and-click NIS over multiple sessions. We quantified point-and-click performance using various human-computer interaction measurements for pointing devices. We found that participants could control the cursor motion and click on specified targets with a small error rate (<3% in one participant). This study suggests that signals from a small ensemble of motor cortical neurons (~40) can be used for natural point-and-click 2-D cursor control of a personal computer. PMID:21278024

  19. Short-term dynamics of causal information transfer in thalamocortical networks during natural inputs and microstimulation for somatosensory neuroprosthesis.

    PubMed

    Semework, Mulugeta; DiStasio, Marcello

    2014-01-01

    Recording the activity of large populations of neurons requires new methods to analyze and use the large volumes of time series data thus created. Fast and clear methods for finding functional connectivity are an important step toward the goal of understanding neural processing. This problem presents itself readily in somatosensory neuroprosthesis (SSNP) research, which uses microstimulation (MiSt) to activate neural tissue to mimic natural stimuli, and has the capacity to potentiate, depotentiate, or even destroy functional connections. As the aim of SSNP engineering is artificially creating neural responses that resemble those observed during natural inputs, a central goal is describing the influence of MiSt on activity structure among groups of neurons, and how this structure may be altered to affect perception or behavior. In this paper, we demonstrate the concept of Granger causality, combined with maximum likelihood methods, applied to neural signals recorded before, during, and after natural and electrical stimulation. We show how these analyses can be used to evaluate the changing interactions in the thalamocortical somatosensory system in response to repeated perturbation. Using LFPs recorded from the ventral posterolateral thalamus (VPL) and somatosensory cortex (S1) in anesthetized rats, we estimated pair-wise functional interactions between functional microdomains. The preliminary results demonstrate input-dependent modulations in the direction and strength of information flow during and after application of MiSt. Cortico-cortical interactions during cortical MiSt and baseline conditions showed the largest causal influence differences, while there was no statistically significant difference between pre- and post-stimulation baseline causal activities. These functional connectivity changes agree with physiologically accepted communication patterns through the network, and their particular parameters have implications for both rehabilitation and brain

  20. Brief communication: Reevaluating osteoporosis in human ribs: the role of intracortical porosity.

    PubMed

    Agnew, Amanda M; Stout, Sam D

    2012-07-01

    Osteoporosis is a major health concern in modern society and is continually being evaluated in past populations by quantifying bone loss. Cortical area measures are commonly used in anthropological analyses to assess bone loss in the ribs, but these values are typically based on endosteal expansion and do not account for intracortical bone loss. The objective of this study is to evaluate the effectiveness of using absolute cortical area, compared to traditional cortical area measures to describe global bone loss in elderly ribs. Transverse sections were prepared from sixth ribs of ten elderly subjects, and bone area measurements were made from 100× magnification composites of each rib for calculation of cortical area (Ct.Ar) and percent cortical area (% C/T). In addition, all areas of intracortical porosity were measured and percent porosity area (% Po.Ar) calculated. Absolute cortical area (Ct.Ar(A)) was calculated by subtracting porosity area from cortical area, and a percent absolute cortical area (% C(A)/T) calculated. ANOVA results reveal significant interindividual variation in percent porosity area (% Po.Ar). Percent cortical area and percent absolute cortical area values were compared and results show a mean difference of 4.08% exists across all subjects, with a range of 1.19-11.73%. This suggests that intracortical porosity is variable and does play a role in age-associated bone loss in the rib. All future investigations of osteoporosis should account for intracortical porosity in bone loss.

  1. Comparison of spike sorting and thresholding of voltage waveforms for intracortical brain-machine interface performance

    PubMed Central

    Christie, Breanne P.; Tat, Derek M.; Irwin, Zachary T.; Gilja, Vikash; Nuyujukian, Paul; Foster, Justin D.; Ryu, Stephen I.; Shenoy, Krishna V.; Thompson, David E.; Chestek, Cynthia A.

    2015-01-01

    Objective For intracortical brain-machine interfaces (BMIs), action potential voltage waveforms are often sorted to separate out individual neurons. If these neurons contain independent tuning information, this process could increase BMI performance. However, the sorting of action potentials (“spikes”) requires high sampling rates and is computationally expensive. To explicitly define the difference between spike sorting and alternative methods, we quantified BMI decoder performance when using threshold-crossing events versus sorted action potentials. Approach We used data sets from 58 experimental sessions from two rhesus macaques implanted with Utah arrays. Data were recorded while the animals performed a center-out reaching task with seven different angles. For spike sorting, neural signals were sorted into individual units by using a mixture of gaussians to cluster the first four principal components of the waveforms. For thresholding events, spikes that simply crossed a set threshold were retained. We decoded the data offline using both a Naïve Bayes classifier for reaching direction and a linear regression to evaluate hand position. Results We found the highest performance for thresholding when placing a threshold between −3 to −4.5*VRMS. Spike sorted data outperformed thresholded data for one animal but not the other. The mean Naïve Bayes classification accuracy for sorted data was 88.5% and changed by 5% on average when data was thresholded. The mean correlation coefficient for sorted data was 0.92, and changed by 0.015 on average when thresholded. Significance For prosthetics applications, these results imply that when thresholding is used instead of spike sorting, only a small amount of performance may be lost. The utilization of threshold-crossing events may significantly extend the lifetime of a device because these events are often still detectable once single neurons are no longer isolated. PMID:25504690

  2. The Effect of Residual Endotoxin Contamination on the Neuroinflammatory Response to Sterilized Intracortical Microelectrodes.

    PubMed

    Ravikumar, Madhumitha; Hageman, Daniel J; Tomaszewski, William H; Chandra, Gabriella M; Skousen, John L; Capadona, Jeffrey R

    2014-05-01

    A major limitation to the use of microelectrode technologies in both research and clinical applications is our inability to consistently record high quality neural signals. There is increasing evidence that recording instability is linked, in part, to neuroinflammation. A number of factors including extravasated blood products and macrophage released soluble factors are believed to mediate neuroinflammation and the resulting recording instability. However, the roles of other inflammatory stimuli, such as residual endotoxin contamination, are poorly understood. Therefore, to determine the effect of endotoxin contamination we examined the brain tissue response of C57/BL6 mice to non-functional microelectrodes with a range of endotoxin levels. Endotoxin contamination on the sterilized microelectrodes was measured using a limulus amebocyte lysate test following FDA guidelines. Microelectrodes sterilized by autoclave, dry heat, or ethylene oxide gas, resulted in variable levels of residual endotoxins of 0.55 EU/mL, 0.22 EU/mL, and 0.11 EU/mL, respectively. Histological evaluation at two weeks showed a direct correlation between microglia/macrophage activation and endotoxin levels. Interestingly, astrogliosis, neuronal loss, and blood brain barrier dysfunction demonstrated a threshold-dependent response to bacterial endotoxins. However, at sixteen weeks, no histological differences were detected, regardless of initial endotoxin levels. Therefore, our results demonstrate that endotoxin contamination, within the range examined, contributes to initial but not chronic microelectrode associated neuroinflammation. Our results suggest that minimizing residual endotoxins may impact early recording quality. To this end, endotoxins should be considered as a potent stimulant to the neuroinflammatory response to implanted intracortical microelectrodes.

  3. Comparison of spike sorting and thresholding of voltage waveforms for intracortical brain-machine interface performance

    NASA Astrophysics Data System (ADS)

    Christie, Breanne P.; Tat, Derek M.; Irwin, Zachary T.; Gilja, Vikash; Nuyujukian, Paul; Foster, Justin D.; Ryu, Stephen I.; Shenoy, Krishna V.; Thompson, David E.; Chestek, Cynthia A.

    2015-02-01

    Objective. For intracortical brain-machine interfaces (BMIs), action potential voltage waveforms are often sorted to separate out individual neurons. If these neurons contain independent tuning information, this process could increase BMI performance. However, the sorting of action potentials (‘spikes’) requires high sampling rates and is computationally expensive. To explicitly define the difference between spike sorting and alternative methods, we quantified BMI decoder performance when using threshold-crossing events versus sorted action potentials. Approach. We used data sets from 58 experimental sessions from two rhesus macaques implanted with Utah arrays. Data were recorded while the animals performed a center-out reaching task with seven different angles. For spike sorting, neural signals were sorted into individual units by using a mixture of Gaussians to cluster the first four principal components of the waveforms. For thresholding events, spikes that simply crossed a set threshold were retained. We decoded the data offline using both a Naïve Bayes classifier for reaching direction and a linear regression to evaluate hand position. Main results. We found the highest performance for thresholding when placing a threshold between -3 and -4.5 × Vrms. Spike sorted data outperformed thresholded data for one animal but not the other. The mean Naïve Bayes classification accuracy for sorted data was 88.5% and changed by 5% on average when data were thresholded. The mean correlation coefficient for sorted data was 0.92, and changed by 0.015 on average when thresholded. Significance. For prosthetics applications, these results imply that when thresholding is used instead of spike sorting, only a small amount of performance may be lost. The utilization of threshold-crossing events may significantly extend the lifetime of a device because these events are often still detectable once single neurons are no longer isolated.

  4. The effect of resveratrol on neurodegeneration and blood brain barrier stability surrounding intracortical microelectrodes.

    PubMed

    Potter, Kelsey A; Buck, Amy C; Self, Wade K; Callanan, Megan E; Sunil, Smrithi; Capadona, Jeffrey R

    2013-09-01

    The current study seeks to elucidate a biological mechanism which may mediate neuroinflammation, and decreases in both blood-brain barrier stability and neuron viability at the intracortical microelectrode-tissue interface. Here, we have focused on the role of pro-inflammatory reactive oxygen species. Specifically, adult rats implanted within intracortical microelectrodes were systemically administered the anti-oxidant, resveratrol, both the day before and the day of surgery. Animals were sacrificed at two or four weeks post-implantation for histological analysis of the neuroinflammatory and neurodegenerative responses to the microelectrode. At two weeks post-implantation, we found animals treated with resveratrol demonstrated suppression of reactive oxygen species accumulation and blood-brain barrier instability, accompanied with increased density of neurons at the intracortical microelectrode-tissue interface. Four weeks post-implantation, animals treated with resveratrol exhibited indistinguishable levels of markers for reactive oxygen species and neuronal nuclei density in comparison to untreated control animals. However, of the neurons that remained, resveratrol treated animals were seen to display reductions in the density of degenerative neurons compared to control animals at both two and four weeks post-implantation. Initial mechanistic evaluation suggested the roles of both anti-oxidative enzymes and toll-like receptor 4 expression in facilitating microglia activation and the propagation of neurodegenerative inflammatory pathways. Collectively, our data suggests that short-term attenuation of reactive oxygen species accumulation and blood-brain barrier instability can result in prolonged improvements in neuronal viability around implanted intracortical microelectrodes, while also identifying potential therapeutic targets to reduce chronic intracortical microelectrode-mediated neurodegeneration.

  5. Mapping quantal touch using 7 Tesla functional magnetic resonance imaging and single-unit intraneural microstimulation.

    PubMed

    Sanchez Panchuelo, Rosa Maria; Ackerley, Rochelle; Glover, Paul M; Bowtell, Richard W; Wessberg, Johan; Francis, Susan T; McGlone, Francis

    2016-05-07

    Using ultra-high field 7 Tesla (7T) functional magnetic resonance imaging (fMRI), we map the cortical and perceptual responses elicited by intraneural microstimulation (INMS) of single mechanoreceptive afferent units in the median nerve, in humans. Activations are compared to those produced by applying vibrotactile stimulation to the unit's receptive field, and unit-type perceptual reports are analyzed. We show that INMS and vibrotactile stimulation engage overlapping areas within the topographically appropriate digit representation in the primary somatosensory cortex. Additional brain regions in bilateral secondary somatosensory cortex, premotor cortex, primary motor cortex, insula and posterior parietal cortex, as well as in contralateral prefrontal cortex are also shown to be activated in response to INMS. The combination of INMS and 7T fMRI opens up an unprecedented opportunity to bridge the gap between first-order mechanoreceptive afferent input codes and their spatial, dynamic and perceptual representations in human cortex.

  6. A Mixed-Signal VLSI System for Producing Temporally Adapting Intraspinal Microstimulation Patterns for Locomotion

    PubMed Central

    Mazurek, Kevin A.; Holinski, Bradley J.; Everaert, Dirk G.; Mushahwar, Vivian K.; Etienne-Cummings, Ralph

    2016-01-01

    Neural pathways can be artificially activated through the use of electrical stimulation. For individuals with a spinal cord injury, intraspinal microstimulation, using electrical currents on the order of 125 μA, can produce muscle contractions and joint torques in the lower extremities suitable for restoring walking. The work presented here demonstrates an integrated circuit implementing a state-based control strategy where sensory feedback and intrinsic feed forward control shape the stimulation waveforms produced on-chip. Fabricated in a 0.5 μm process, the device was successfully used in vivo to produce walking movements in a model of spinal cord injury. This work represents progress towards an implantable solution to be used for restoring walking in individuals with spinal cord injuries. PMID:26978832

  7. Wireless front-end with power management for an implantable cardiac microstimulator.

    PubMed

    Lee, Shuenn-Yuh; Hsieh, Cheng-Han; Yang, Chung-Min

    2012-02-01

    Inductive coupling is presented with the help of a high-efficiency Class-E power amplifier for an implantable cardiac microstimulator. The external coil inductively transmits power and data with a carrier frequency of 256 kHz into the internal coil of electronic devices inside the body. The detected cardiac signal is fed back to the external device with the same pair of coils to save on space in the telemetry device. To maintain the power reliability of the microstimulator for long-term use, two small rechargeable batteries are employed to supply voltage to the internal circuits. The power management unit, which includes radio frequency front-end circuits with battery charging and detection functions, is used for the supply control. For cardiac stimulation, a high-efficiency charge pump is also proposed in the present paper to generate a stimulated voltage of 3.2 V under a 1 V supply voltage. A phase-locked-loop (PLL)-based phase shift keying demodulator is implemented to efficiently extract the data and clock from an inductive AC signal. The circuits, with an area of 0.45 mm², are implemented in a TSMC 0.35 μm 2P4M standard CMOS process. Measurement results reveal that power can be extracted from the inductive coupling and stored in rechargeable batteries, which are controlled by the power management unit, when one of the batteries is drained. Moreover, the data and clock can be precisely recovered from the coil coupling, and a stimulated voltage of 3.2 V can be readily generated by the proposed charge-pump circuits to stimulate cardiac tissues.

  8. Microstimulators and Intramuscular Hook Electrodes for the Stimulation of Respiratory Muscles

    PubMed Central

    Walter, James S; Dunn, Robert B; Wurster, Robert D; Laghi, Franco

    2007-01-01

    Background/Objectives: We determined the feasibility of stimulating the major muscles of respiration with different types of electrodes. Intramuscular hook electrodes, model microstimulators (M-Micro) developed in our laboratory, and commercial radiofrequency microstimulators (RFM) (Alfred Mann Foundation, Valencia, CA), were employed in this investigation. Methods: In 8 anesthetized dogs, M-Micro were placed bilaterally on the diaphragm and in the abdominal muscles, and hook electrodes were placed in the 3rd and 5th intercostal regions adjacent to the intercostal nerves known to support inspiration. In 3 of the 8 animals, RFMs (Alfred Mann Foundation) in addition to the M-Micros were sutured to each hemidiaphragm at the same optimal site for phrenic nerve stimulation. During a hyperventilation-induced apnea, 2-second stimulations were applied to the diaphragm and with various combinations of diaphragm plus supporting muscles, both thoracic and abdominal. Results: Diaphragm stimulation alone provided tidal volumes adequate for basal alveolar ventilation. However, implantation of the RFM required greater contact with the muscle. Stimulating other respiratory muscles along with the diaphragm further increased tidal volumes. The hook electrodes, M-Micro, and RFM performed equally well. Conclusions: In the acute dog model, M-Micro and hook electrodes can provide an implant system for the maintenance of ventilation. Support of the intercostal and abdominal muscles has the potential to reduce the contraction requirements of the diaphragm with decreased likelihood of diaphragm fatigue and hypoventilation. Whether the electrodes under investigation could provide an implant system for long-term ventilation needs to be determined. PMID:17853655

  9. Wireless front-end with power management for an implantable cardiac microstimulator.

    PubMed

    Lee, Shuenn-Yuh; Hsieh, Cheng-Han; Yang, Chung-Min

    2012-02-01

    Inductive coupling is presented with the help of a high-efficiency Class-E power amplifier for an implantable cardiac microstimulator. The external coil inductively transmits power and data with a carrier frequency of 256 kHz into the internal coil of electronic devices inside the body. The detected cardiac signal is fed back to the external device with the same pair of coils to save on space in the telemetry device. To maintain the power reliability of the microstimulator for long-term use, two small rechargeable batteries are employed to supply voltage to the internal circuits. The power management unit, which includes radio frequency front-end circuits with battery charging and detection functions, is used for the supply control. For cardiac stimulation, a high-efficiency charge pump is also proposed in the present paper to generate a stimulated voltage of 3.2 V under a 1 V supply voltage. A phase-locked-loop (PLL)-based phase shift keying demodulator is implemented to efficiently extract the data and clock from an inductive AC signal. The circuits, with an area of 0.45 mm², are implemented in a TSMC 0.35 μm 2P4M standard CMOS process. Measurement results reveal that power can be extracted from the inductive coupling and stored in rechargeable batteries, which are controlled by the power management unit, when one of the batteries is drained. Moreover, the data and clock can be precisely recovered from the coil coupling, and a stimulated voltage of 3.2 V can be readily generated by the proposed charge-pump circuits to stimulate cardiac tissues. PMID:23852742

  10. Challenges and opportunities for next-generation intracortically based neural prostheses.

    PubMed

    Gilja, Vikash; Chestek, Cindy A; Diester, Ilka; Henderson, Jaimie M; Deisseroth, Karl; Shenoy, Krishna V

    2011-07-01

    Neural prosthetic systems aim to help disabled patients by translating neural signals from the brain into control signals for guiding computer cursors, prosthetic arms, and other assistive devices. Intracortical electrode arrays measure action potentials and local field potentials from individual neurons, or small populations of neurons, in the motor cortices and can provide considerable information for controlling prostheses. Despite several compelling proof-of-concept laboratory animal experiments and an initial human clinical trial, at least three key challenges remain which, if left unaddressed, may hamper the translation of these systems into widespread clinical use. We review these challenges: achieving able-bodied levels of performance across tasks and across environments, achieving robustness across multiple decades, and restoring able-bodied quality proprioception and somatosensation. We also describe some emerging opportunities for meeting these challenges. If these challenges can be largely or fully met, intracortically based neural prostheses may achieve true clinical viability and help increasing numbers of disabled patients.

  11. Short-interval intracortical inhibition is modulated by high-frequency peripheral mixed nerve stimulation.

    PubMed

    Murakami, Takenobu; Sakuma, Kenji; Nomura, Takashi; Nakashima, Kenji

    2007-06-01

    Cortical excitability can be modulated by manipulation of afferent input. We investigated the influence of peripheral mixed nerve stimulation on the excitability of the motor cortex. Motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in the right abductor pollicis brevis (APB), extensor carpi radialis (ECR) and first dorsal interosseous (FDI) muscles were evaluated using paired-pulse transcranial magnetic stimulation (TMS) before and after high-frequency peripheral mixed nerve stimulation (150 Hz, 30 min) over the right median nerve at the wrist. The MEP amplitude and SICI of the APB muscle decreased transiently 0-10 min after the intervention, whereas the ICF did not change. High-frequency peripheral mixed nerve stimulation reduced the excitability of the motor cortex. The decrement in the SICI, which reflects the function of GABA(A)ergic inhibitory interneurons, might compensate for the reduced motor cortical excitability after high-frequency peripheral mixed nerve stimulation.

  12. Challenges and Opportunities for Next-Generation Intracortically Based Neural Prostheses

    PubMed Central

    Gilja, Vikash; Chestek, Cindy A.; Diester, Ilka; Henderson, Jaimie M.; Deisseroth, Karl

    2011-01-01

    Neural prosthetic systems aim to help disabled patients by translating neural signals from the brain into control signals for guiding computer cursors, prosthetic arms, and other assistive devices. Intracortical electrode arrays measure action potentials and local field potentials from individual neurons, or small populations of neurons, in the motor cortices and can provide considerable information for controlling prostheses. Despite several compelling proof-of-concept laboratory animal experiments and an initial human clinical trial, at least three key challenges remain which, if left unaddressed, may hamper the translation of these systems into widespread clinical use. We review these challenges: achieving able-bodied levels of performance across tasks and across environments, achieving robustness across multiple decades, and restoring able-bodied quality proprioception and somatosensation. We also describe some emerging opportunities for meeting these challenges. If these challenges can be largely or fully met, intracortically based neural prostheses may achieve true clinical viability and help increasing numbers of disabled patients. PMID:21257365

  13. Intra-day signal instabilities affect decoding performance in an intracortical neural interface system

    NASA Astrophysics Data System (ADS)

    Perge, János A.; Homer, Mark L.; Malik, Wasim Q.; Cash, Sydney; Eskandar, Emad; Friehs, Gerhard; Donoghue, John P.; Hochberg, Leigh R.

    2013-06-01

    Objective. Motor neural interface systems (NIS) aim to convert neural signals into motor prosthetic or assistive device control, allowing people with paralysis to regain movement or control over their immediate environment. Effector or prosthetic control can degrade if the relationship between recorded neural signals and intended motor behavior changes. Therefore, characterizing both biological and technological sources of signal variability is important for a reliable NIS. Approach. To address the frequency and causes of neural signal variability in a spike-based NIS, we analyzed within-day fluctuations in spiking activity and action potential amplitude recorded with silicon microelectrode arrays implanted in the motor cortex of three people with tetraplegia (BrainGate pilot clinical trial, IDE). Main results. 84% of the recorded units showed a statistically significant change in apparent firing rate (3.8 ± 8.71 Hz or 49% of the mean rate) across several-minute epochs of tasks performed on a single session, and 74% of the units showed a significant change in spike amplitude (3.7 ± 6.5 µV or 5.5% of mean spike amplitude). 40% of the recording sessions showed a significant correlation in the occurrence of amplitude changes across electrodes, suggesting array micro-movement. Despite the relatively frequent amplitude changes, only 15% of the observed within-day rate changes originated from recording artifacts such as spike amplitude change or electrical noise, while 85% of the rate changes most likely emerged from physiological mechanisms. Computer simulations confirmed that systematic rate changes of individual neurons could produce a directional ‘bias’ in the decoded neural cursor movements. Instability in apparent neuronal spike rates indeed yielded a directional bias in 56% of all performance assessments in participant cursor control (n = 2 participants, 108 and 20 assessments over two years), resulting in suboptimal performance in these sessions

  14. Intra-day signal instabilities affect decoding performance in an intracortical neural interface system

    PubMed Central

    Perge, János A.; Homer, Mark L.; Malik, Wasim Q.; Cash, Sydney; Eskandar, Emad; Friehs, Gerhard; Donoghue, John P.; Hochberg, Leigh R.

    2013-01-01

    Objective Motor Neural Interface Systems (NIS) aim to convert neural signals into motor prosthetic or assistive device control, allowing people with paralysis to regain movement or control over their immediate environment. Effector or prosthetic control can degrade if the relationship between recorded neural signals and intended motor behavior changes. Therefore, characterizing both biological and technological sources of signal variability is important for a reliable NIS. Approach To address the frequency and causes of neural signal variability in a spike-based NIS, we analyzed within-day fluctuations in spiking activity and action potential amplitude recorded with silicon microelectrode arrays implanted in the motor cortex of three people with tetraplegia (BrainGate pilot clinical trial, IDE). Main results Eighty-four percent of the recorded units showed a statistically significant change in apparent firing rate (3.8±8.71Hz or 49% of the mean rate) across several-minute epochs of tasks performed on a single session, and seventy-four percent of the units showed a significant change in spike amplitude (3.7±6.5μV or 5.5% of mean spike amplitude). Forty percent of the recording sessions showed a significant correlation in the occurrence of amplitude changes across electrodes, suggesting array micro-movement. Despite the relatively frequent amplitude changes, only 15% of the observed within-day rate changes originated from recording artifacts such as spike amplitude change or electrical noise, while 85% of the rate changes most likely emerged from physiological mechanisms. Computer simulations confirmed that systematic rate changes of individual neurons could produce a directional “bias” in the decoded neural cursor movements. Instability in apparent neuronal spike rates indeed yielded a directional bias in fifty-six percent of all performance assessments in participant cursor control (n=2 participants, 108 and 20 assessments over two years), resulting in

  15. Chronic recruitment of primary afferent neurons by microstimulation in the feline dorsal root ganglia

    NASA Astrophysics Data System (ADS)

    Fisher, Lee E.; Ayers, Christopher A.; Ciollaro, Mattia; Ventura, Valérie; Weber, Douglas J.; Gaunt, Robert A.

    2014-06-01

    Objective. This study describes results of primary afferent neural microstimulation experiments using microelectrode arrays implanted chronically in the lumbar dorsal root ganglia (DRG) of four cats. The goal was to test the stability and selectivity of these microelectrode arrays as a potential interface for restoration of somatosensory feedback after damage to the nervous system such as amputation. Approach. A five-contact nerve-cuff electrode implanted on the sciatic nerve was used to record the antidromic compound action potential response to DRG microstimulation (2-15 µA biphasic pulses, 200 µs cathodal pulse width), and the threshold for eliciting a response was tracked over time. Recorded responses were segregated based on conduction velocity to determine thresholds for recruiting Group I and Group II/Aβ primary afferent fibers. Main results. Thresholds were initially low (5.1 ± 2.3 µA for Group I and 6.3 ± 2.0 µA for Group II/Aβ) and increased over time. Additionally the number of electrodes with thresholds less than or equal to 15 µA decreased over time. Approximately 12% of tested electrodes continued to elicit responses at 15 µA up to 26 weeks after implantation. Higher stimulation intensities (up to 30 µA) were tested in one cat at 23 weeks post-implantation yielding responses on over 20 additional electrodes. Within the first six weeks after implantation, approximately equal numbers of electrodes elicited only Group I or Group II/Aβ responses at threshold, but the relative proportion of Group II/Aβ responses decreased over time. Significance. These results suggest that it is possible to activate Group I or Group II/Aβ primary afferent fibers in isolation with penetrating microelectrode arrays implanted in the DRG, and that those responses can be elicited up to 26 weeks after implantation, although it may be difficult to achieve a consistent response day-to-day with currently available electrode technology. The DRG are compelling targets

  16. Twelve Months of Voluntary Heavy Alcohol Consumption in Male Rhesus Macaques Suppresses Intracortical Bone Remodeling

    PubMed Central

    Gaddini, Gino W.; Grant, Kathleen A.; Woodall, Andrew; Stull, Cara; Maddalozzo, Gianni F.; Zhang, Bo; Turner, Russell T.; Iwaniec, Urszula T.

    2015-01-01

    Chronic heavy alcohol consumption is a risk factor for cortical bone fractures in males. The increase in fracture risk may be due, in part, to reduced bone quality. Intracortical (osteonal) bone remodeling is the principle mechanism for maintaining cortical bone quality. However, it is not clear how alcohol abuse impacts intracortical bone remodeling. This study investigated the effects of long-duration heavy alcohol consumption on intracortical bone remodeling in a non-human primate model. Following a 4-month induction period, male rhesus macaques (Macaca mulatta, n = 21) were allowed to voluntarily self-administer water or alcohol (4% ethanol w/v) for 22 h/d, 7 d/wk for 12 months. Control monkeys (n = 13) received water and an isocaloric maltose-dextrin solution. Tetracycline hydrochloride was administered orally 17 and 3 days prior to sacrifice for determination of active mineralization sites. Animals in the alcohol group consumed 2.7 ± 0.2 g alcohol/kg/d (mean ± SE) during the 12 months of self-administration, resulting in a mean daily blood alcohol concentration of 77 ± 9 mg/dl from samples taken at 7 h after the start of a daily session. However, blood alcohol concentration varied widely from day to day, with peak levels exceeding 250 mg/dl, modeling a binge-drinking pattern of alcohol consumption. The skeletal response to alcohol was determined by densitometry, microcomputed tomography and histomorphometry. Significant differences in tibial bone mineral content, bone mineral density, and cortical bone architecture (cross-sectional volume, cortical volume, marrow volume, cortical thickness, and polar moment of inertia) in the tibial diaphysis were not detected with treatment. However, cortical porosity was lower (1.8 ± 0.5 % versus 0.6 ± 0.1 %, p = 0.021) and labeled osteon density was lower (0.41 ± 0.2/mm2 versus 0.04 ± 0.01/mm2, p < 0.003) in alcohol-consuming monkeys compared to controls, indicating a reduced rate of intracortical bone remodeling

  17. Mapping quantal touch using 7 Tesla functional magnetic resonance imaging and single-unit intraneural microstimulation

    PubMed Central

    Sanchez Panchuelo, Rosa Maria; Ackerley, Rochelle; Glover, Paul M; Bowtell, Richard W; Wessberg, Johan

    2016-01-01

    Using ultra-high field 7 Tesla (7T) functional magnetic resonance imaging (fMRI), we map the cortical and perceptual responses elicited by intraneural microstimulation (INMS) of single mechanoreceptive afferent units in the median nerve, in humans. Activations are compared to those produced by applying vibrotactile stimulation to the unit’s receptive field, and unit-type perceptual reports are analyzed. We show that INMS and vibrotactile stimulation engage overlapping areas within the topographically appropriate digit representation in the primary somatosensory cortex. Additional brain regions in bilateral secondary somatosensory cortex, premotor cortex, primary motor cortex, insula and posterior parietal cortex, as well as in contralateral prefrontal cortex are also shown to be activated in response to INMS. The combination of INMS and 7T fMRI opens up an unprecedented opportunity to bridge the gap between first-order mechanoreceptive afferent input codes and their spatial, dynamic and perceptual representations in human cortex. DOI: http://dx.doi.org/10.7554/eLife.12812.001 PMID:27154626

  18. Electrical Identification and Selective Microstimulation of Neuronal Compartments Based on Features of Extracellular Action Potentials

    PubMed Central

    Radivojevic, Milos; Jäckel, David; Altermatt, Michael; Müller, Jan; Viswam, Vijay; Hierlemann, Andreas; Bakkum, Douglas J.

    2016-01-01

    A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs. PMID:27510732

  19. Electrical Identification and Selective Microstimulation of Neuronal Compartments Based on Features of Extracellular Action Potentials.

    PubMed

    Radivojevic, Milos; Jäckel, David; Altermatt, Michael; Müller, Jan; Viswam, Vijay; Hierlemann, Andreas; Bakkum, Douglas J

    2016-01-01

    A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs. PMID:27510732

  20. Towards addressable wireless microstimulators based on electronic rectification of epidermically applied currents.

    PubMed

    Becerra-Fajardo, L; Ivorra, A

    2014-01-01

    Electrical stimulation has been explored to restore the capabilities of the nervous system in paralysis patients. This area of research and of clinical practice, known as Functional Electrical Stimulation, would greatly benefit from further miniaturization of implantable stimulators. To that end, we recently proposed and demonstrated an innovative electrical stimulation method in which implanted microstimulators operate as rectifiers of bursts of innocuous high frequency current supplied by skin electrodes, thus generating low frequency currents capable of stimulating excitable tissues. A diode could suffice in some applications but, in order to broaden the method's clinical applicability, we envision rectifiers with advanced capabilities such as current control and addressability. We plan flexible thread-like implants (diameters < 300 μm) containing ASICs. As an intermediate stage, we are developing macroscopic implants (diameters ~ 2 mm) made of off-the-shelf components. Here we present a circuit which responds to commands modulated within the high frequency bursts and which is able to deliver charge-balanced currents. We show that a number of these circuits can perform independent stimulation of segments of an anesthetized earthworm following commands from a computer. PMID:25570862

  1. Implications of chronic daily anti-oxidant administration on the inflammatory response to intracortical microelectrodes

    NASA Astrophysics Data System (ADS)

    Potter-Baker, Kelsey A.; Stewart, Wade G.; Tomaszewski, William H.; Wong, Chun T.; Meador, William D.; Ziats, Nicholas P.; Capadona, Jeffrey R.

    2015-08-01

    Objective. Oxidative stress events have been implicated to occur and facilitate multiple failure modes of intracortical microelectrodes. The goal of the present study was to evaluate the ability of a sustained concentration of an anti-oxidant and to reduce oxidative stress-mediated neurodegeneration for the application of intracortical microelectrodes. Approach. Non-functional microelectrodes were implanted into the cortex of male Sprague Dawley rats for up to sixteen weeks. Half of the animals received a daily intraperitoneal injection of the natural anti-oxidant resveratrol, at 30 mg kg-1. The study was designed to investigate the biodistribution of the resveratrol, and the effects on neuroinflammation/neuroprotection following device implantation. Main results. Daily maintenance of a sustained range of resveratrol throughout the implantation period resulted in fewer degenerating neurons in comparison to control animals at both two and sixteen weeks post implantation. Initial and chronic improvements in neuronal viability in resveratrol-dosed animals were correlated with significant reductions in local superoxide anion accumulation around the implanted device at two weeks after implantation. Controls, receiving only saline injections, were also found to have reduced amounts of accumulated superoxide anion locally and less neurodegeneration than controls at sixteen weeks post-implantation. Despite observed benefits, thread-like adhesions were found between the liver and diaphragm in resveratrol-dosed animals. Significance. Overall, our chronic daily anti-oxidant dosing scheme resulted in improvements in neuronal viability surrounding implanted microelectrodes, which could result in improved device performance. However, due to the discovery of thread-like adhesions, further work is still required to optimize a chronic anti-oxidant dosing regime for the application of intracortical microelectrodes.

  2. Implications of Chronic Daily Anti-Oxidant Administration on the Inflammatory Response to Intracortical Microelectrodes

    PubMed Central

    Potter-Baker, Kelsey A.; Stewart, Wade G.; Tomaszewski, William H.; Wong, Chun T.; Meador, William D.; Ziats, Nicholas P.; Capadona, Jeffrey R.

    2015-01-01

    Objective Oxidative stress events have been implicated to occur and facilitate multiple failure modes of intracortical microelectrodes. The goal of the present study was to evaluate the ability of a sustained concentration of an anti-oxidant and to reduce oxidative stress-mediated neurodegeneration for the application of intracortical microelectrodes. Approach Non-functional microelectrodes were implanted into the cortex of male Sprague Dawley rats for up to sixteen weeks. Half of the animals received a daily intraperitoneal injection of the natural anti-oxidant resveratrol, at 30 mg/kg. The study was designed to investigate the biodistribution of the resveratrol, and the effects on neuroinflammation/neuroprotection following device implantation. Main Results Daily maintenance of a sustained range of resveratrol throughout the implantation period resulted in fewer degenerating neurons in comparison to control animals at both two and sixteen weeks post implantation. Initial and chronic improvements in neuronal viability in resveratrol-dosed animals were correlated with significant reductions in local superoxide anion accumulation around the implanted device at two weeks after implantation. Controls, receiving only saline injections, were also found to have reduced amounts of accumulated superoxide anion locally and less neurodegeneration than controls at sixteen weeks post-implantation. Despite observed benefits, thread-like adhesions were found between the liver and diaphragm in resveratrol-dosed animals. Significance Overall, our chronic daily anti-oxidant dosing scheme resulted in improvements in neuronal viability surrounding implanted microelectrodes, which could result in improved device performance. However, due to the discovery of thread-like adhesions, further work is still required to optimize a chronic anti-oxidant dosing regime for the application of intracortical microelectrodes. PMID:26015427

  3. Early Detection of Human Epileptic Seizures Based on Intracortical Local Field Potentials.

    PubMed

    Park, Yun S; Hochberg, Leigh R; Eskandar, Emad N; Cash, Sydney S; Truccolo, Wilson

    2013-01-01

    The unpredictability of re-occurring seizures dramatically impacts the quality of life and autonomy of people with epilepsy. Reliable early seizure detection could open new therapeutic possibilities and thus substantially improve quality of life and autonomy. Though many seizure detection studies have shown the potential of scalp electroencephalogram (EEG) and intracranial EEG (iEEG) signals, reliable early detection of human seizures remains elusive in practice. Here, we examined the use of intracortical local field potentials (LFPs) recorded from 4×4-mm(2) 96-microelectrode arrays (MEA) for early detection of human epileptic seizures. We adopted a framework consisting of (1) sampling of intracortical LFPs; (2) denoising of LFPs with the Kalman filter; (3) spectral power estimation in specific frequency bands using 1-sec moving time windows; (4) extraction of statistical features, such as the mean, variance, and Fano factor (calculated across channels) of the power in each frequency band; and (5) cost-sensitive support vector machine (SVM) classification of ictal and interictal samples. We tested the framework in one-participant dataset, including 4 seizures and corresponding interictal recordings preceding each seizure. The participant was a 52-year-old woman suffering from complex partial seizures. LFPs were recorded from an MEA implanted in the participant's left middle temporal gyrus. In this participant, spectral power in 0.3-10 Hz, 20-55 Hz, and 125-250 Hz changed significantly between ictal and interictal epochs. The examined seizure detection framework provided an event-wise sensitivity of 100% (4/4) and only one 20-sec-long false positive event in interictal recordings (likely an undetected subclinical event under further visual inspection), and a detection latency of 4.35 ± 2.21 sec (mean ± std) with respect to iEEG-identified seizure onsets. These preliminary results indicate that intracortical MEA recordings may provide key signals to quickly and

  4. Cortical neural excitations in rats in vivo with using a prototype of a wireless multi-channel microstimulation system.

    PubMed

    Hayashida, Yuki; Umehira, Yuichi; Takatani, Kouki; Futami, Shigetoshi; Kameda, Seiji; Kamata, Takatsugu; Khan, Arif Ullah; Takeuchi, Yoshinori; Imai, Masaharu; Yagi, Tetsuya

    2015-08-01

    Understanding neural responses to multi-site electrical stimuli would be of essential importance for developing cortical neural prostheses. In order to provide a tool for such studies in experimental animals, we recently constructed a prototype of a wireless multi-channel microstimulation system, consisting of a stimulator chip, wireless data/power transmitters and receivers, and microcomputers. The proper operations of the system in cortical neural excitations were examined in anesthetized rats in vivo, with utilizing the voltage-sensitive dye imaging technique.

  5. A wireless implantable multichannel microstimulating system-on-a-chip with modular architecture.

    PubMed

    Ghovanloo, Maysam; Najafi, Khalil

    2007-09-01

    A 64-site wireless current microstimulator chip (Interestim-2B) and a prototype implant based on the same chip have been developed for neural prosthetic applications. Modular standalone architecture allows up to 32 chips to be individually addressed and operated in parallel to drive up to 2048 stimulating sites. The only off-chip components are a receiver inductive-capacitive (LC) tank, a capacitive low-pass filter for ripple rejection, and arrays of microelectrodes for interfacing with the neural tissue. The implant receives inductive power up to 50 mW and data at 2.5 Mb/s from a frequency shift keyed (FSK) 5/10 MHZ carrier to generate up to 65,800 stimulus pulses/s. Each Interestim-2B chip contains 16 current drivers with 270 microA full-scale current, 5-bit (32-steps) digital-to-analog converter (DAC) resolution, 100 M omega output impedance, and a voltage compliance that extends within 150 and 250 mV of the 5 V supply and ground rails, respectively. It can generate any arbitrary current waveform and supports a variety of monopolar and bipolar stimulation protocols. A common analog line provides access to each site potential, and exhausts residual stimulus charges for charge balancing. The chip has site potential measurement and in situ site impedance measurement capabilities, which help its users indicate defective sites or characteristic shifts in chronic stimulations. Interestim-2B chip is fabricated in the AMI 1.5 microm standard complementary metal-oxide-semiconductor (CMOS) process and measures 4.6 x 4.6 x 0.5 mm. The prototype implant size including test connectors is 19 x 14 x 6 mm, which can be shrunk down to < 0.5 CC. This paper also summarizes some of the in vitro and in vivo experiments performed using the Interestim-2B prototype implant. PMID:17894278

  6. A modular robust control framework for control of movement elicited by multi-electrode intraspinal microstimulation

    NASA Astrophysics Data System (ADS)

    Roshani, Amir; Erfanian, Abbas

    2016-08-01

    Objective. An important issue in restoring motor function through intraspinal microstimulation (ISMS) is the motor control. To provide a physiologically plausible motor control using ISMS, it should be able to control the individual motor unit which is the lowest functional unit of motor control. By focal stimulation only a small group of motor neurons (MNs) within a motor pool can be activated. Different groups of MNs within a motor pool can potentially be activated without involving adjacent motor pools by local stimulation of different parts of a motor pool via microelectrode array implanted into a motor pool. However, since the system has multiple inputs with single output during multi-electrode ISMS, it poses a challenge to movement control. In this paper, we proposed a modular robust control strategy for movement control, whereas multi-electrode array is implanted into each motor activation pool of a muscle. Approach. The controller was based on the combination of proportional-integral-derivative and adaptive fuzzy sliding mode control. The global stability of the controller was guaranteed. Main results. The results of the experiments on rat models showed that the multi-electrode control can provide a more robust control and accurate tracking performance than a single-electrode control. The control output can be pulse amplitude (pulse amplitude modulation, PAM) or pulse width (pulse width modulation, PWM) of the stimulation signal. The results demonstrated that the controller with PAM provided faster convergence rate and better tracking performance than the controller with PWM. Significance. This work represents a promising control approach to the restoring motor functions using ISMS. The proposed controller requires no prior knowledge about the dynamics of the system to be controlled and no offline learning phase. The proposed control design is modular in the sense that each motor pool has an independent controller and each controller is able to control ISMS

  7. Cervical intraspinal microstimulation evokes robust forelimb movements before and after injury

    NASA Astrophysics Data System (ADS)

    Sunshine, Michael D.; Cho, Frances S.; Lockwood, Danielle R.; Fechko, Amber S.; Kasten, Michael R.; Moritz, Chet T.

    2013-06-01

    Objective. Intraspinal microstimulation (ISMS) is a promising method for reanimating paralyzed limbs following neurological injury. ISMS within the cervical and lumbar spinal cord is capable of evoking a variety of highly-functional movements prior to injury, but the ability of ISMS to evoke forelimb movements after cervical spinal cord injury is unknown. Here we examine the forelimb movements and muscles activated by cervical ISMS both before and after contusion injury. Approach. We documented the forelimb muscles activated and movements evoked via systematic stimulation of the rodent cervical spinal cord both before injury and three, six and nine weeks following a moderate C4/C5 lateralized contusion injury. Animals were anesthetized with isoflurane to permit construction of somatotopic maps of evoked movements and quantify evoked muscle synergies between cervical segments C3 and T1. Main results. When ISMS was delivered to the cervical spinal cord, a variety of responses were observed at 68% of locations tested, with a spatial distribution that generally corresponded to the location of motor neuron pools. Stimulus currents required to achieve movement and the number of sites where movements could be evoked were unchanged by spinal cord injury. A transient shift toward extension-dominated movements and restricted muscle synergies were observed at three and six weeks following injury, respectively. By nine weeks after injury, however, ISMS-evoked patterns were similar to spinally-intact animals. Significance. The results demonstrate the potential for cervical ISMS to reanimate hand and arm function following spinal cord injury. Robust forelimb movements can be evoked both before and during the chronic stages of recovery from a clinically relevant and sustained cervical contusion injury.

  8. In vivo demonstration of injectable microstimulators based on charge-balanced rectification of epidermically applied currents

    NASA Astrophysics Data System (ADS)

    Ivorra, Antoni; Becerra-Fajardo, Laura; Castellví, Quim

    2015-12-01

    Objective. It is possible to develop implantable microstimulators whose actuation principle is based on rectification of high-frequency (HF) current bursts supplied through skin electrodes. This has been demonstrated previously by means of devices consisting of a single diode. However, previous single diode devices caused dc currents which made them impractical for clinical applications. Here flexible thread-like stimulation implants which perform charge balance are demonstrated in vivo. Approach. The implants weigh 40.5 mg and they consist of a 3 cm long tubular silicone body with a diameter of 1 mm, two electrodes at opposite ends, and, within the central section of the body, an electronic circuit made up of a diode, two capacitors, and a resistor. In the present study, each implant was percutaneously introduced through a 14 G catheter into either the gastrocnemius muscle or the cranial tibial muscle of a rabbit hindlimb. Then stimulation was performed by delivering HF bursts (amplitude <60 V, frequency 1 MHz, burst repetition frequency from 10 Hz to 200 Hz, duration = 200 μs) through a pair of textile electrodes strapped around the hindlimb and either isometric plantarflexion or dorsiflexion forces were recorded. Stimulation was also assayed 1, 2 and 4 weeks after implantation. Main results. The implants produced bursts of rectified current whose mean value was of a few mA and were capable of causing local neuromuscular stimulation. The implants were well-tolerated during the 4 weeks. Significance. Existing power supply methods, and, in particular inductive links, comprise stiff and bulky parts. This hinders the development of minimally invasive implantable devices for neuroprostheses based on electrical stimulation. The proposed methodology is intended to relieving such bottleneck. In terms of mass, thinness, and flexibility, the demonstrated implants appear to be unprecedented among the intramuscular stimulation implants ever assayed in vertebrates.

  9. Muscle Relaxation of the Foot Reduces Corticospinal Excitability of Hand Muscles and Enhances Intracortical Inhibition.

    PubMed

    Kato, Kouki; Muraoka, Tetsuro; Mizuguchi, Nobuaki; Nakagawa, Kento; Nakata, Hiroki; Kanosue, Kazuyuki

    2016-01-01

    The object of this study was to clarify the effects of foot muscle relaxation on activity in the primary motor cortex (M1) of the hand area. Subjects were asked to volitionally relax the right foot from sustained contraction of either the dorsiflexor (tibialis anterior; TA relaxation) or plantarflexor (soleus; SOL relaxation) in response to an auditory stimulus. Single- and paired-pulse transcranial magnetic stimulation (TMS) was delivered to the hand area of the left M1 at different time intervals before and after the onset of TA or SOL relaxation. Motor evoked potentials (MEPs) were recorded from the right extensor carpi radialis (ECR) and flexor carpi radialis (FCR). MEP amplitudes of ECR and FCR caused by single-pulse TMS temporarily decreased after TA and SOL relaxation onset, respectively, as compared with those of the resting control. Furthermore, short-interval intracortical inhibition (SICI) of ECR evaluated with paired-pulse TMS temporarily increased after TA relaxation onset. Our findings indicate that muscle relaxation of the dorsiflexor reduced corticospinal excitability of the ipsilateral hand muscles. This is most likely caused by an increase in intracortical inhibition. PMID:27242482

  10. Muscle Relaxation of the Foot Reduces Corticospinal Excitability of Hand Muscles and Enhances Intracortical Inhibition

    PubMed Central

    Kato, Kouki; Muraoka, Tetsuro; Mizuguchi, Nobuaki; Nakagawa, Kento; Nakata, Hiroki; Kanosue, Kazuyuki

    2016-01-01

    The object of this study was to clarify the effects of foot muscle relaxation on activity in the primary motor cortex (M1) of the hand area. Subjects were asked to volitionally relax the right foot from sustained contraction of either the dorsiflexor (tibialis anterior; TA relaxation) or plantarflexor (soleus; SOL relaxation) in response to an auditory stimulus. Single- and paired-pulse transcranial magnetic stimulation (TMS) was delivered to the hand area of the left M1 at different time intervals before and after the onset of TA or SOL relaxation. Motor evoked potentials (MEPs) were recorded from the right extensor carpi radialis (ECR) and flexor carpi radialis (FCR). MEP amplitudes of ECR and FCR caused by single-pulse TMS temporarily decreased after TA and SOL relaxation onset, respectively, as compared with those of the resting control. Furthermore, short-interval intracortical inhibition (SICI) of ECR evaluated with paired-pulse TMS temporarily increased after TA relaxation onset. Our findings indicate that muscle relaxation of the dorsiflexor reduced corticospinal excitability of the ipsilateral hand muscles. This is most likely caused by an increase in intracortical inhibition. PMID:27242482

  11. Effects of passive pedaling exercise on the intracortical inhibition in subjects with spinal cord injury.

    PubMed

    Nardone, Raffaele; Langthaler, Patrick B; Bathke, Arne C; Höller, Yvonne; Brigo, Francesco; Lochner, Piergiorgio; Christova, Monica; Trinka, Eugen

    2016-06-01

    Cortical reorganization can be induced by exercise below the level of the lesion after spinal cord injury (SCI). The aim of the present study was to investigate the effect of passive and active pedaling exercise on leg motor cortical area excitability of subjects with traumatic SCI. Ten subjects with chronic cervical or thoracic SCI were enrolled in the study. We found a significant effect of pedaling on short-interval intracortical inhibition (SICI), which did not interact with the experimental condition (active vs. passive). This corresponded to a significant reduction of SICI in the subjects with SCI, together with no evidence that this pattern differed for passive vs. active pedaling. We found no significant effect of pedaling on intracortical facilitation. Our results showed that also passive cycling may be beneficial in activating motor cortical regions and possibly also facilitating motor recovery after SCI. The present study confirms and extends the findings of previous studies that have observed task-specific cortical activation during passive pedaling. Therefore passive exercise therapies when applied below the level of the lesion in subjects with SCI could promote cortical neuroplastic reorganization.

  12. Intracortical myelination in musicians with absolute pitch: Quantitative morphometry using 7-T MRI.

    PubMed

    Kim, Seung-Goo; Knösche, Thomas R

    2016-10-01

    Absolute pitch (AP) is known as the ability to recognize and label the pitch chroma of a given tone without external reference. Known brain structures and functions related to AP are mainly of macroscopic aspects. To shed light on the underlying neural mechanism of AP, we investigated the intracortical myeloarchitecture in musicians with and without AP using the quantitative mapping of the longitudinal relaxation rates with ultra-high-field magnetic resonance imaging at 7 T. We found greater intracortical myelination for AP musicians in the anterior region of the supratemporal plane, particularly the medial region of the right planum polare (PP). In the same region of the right PP, we also found a positive correlation with a behavioral index of AP performance. In addition, we found a positive correlation with a frequency discrimination threshold in the anterolateral Heschl's gyrus in the right hemisphere, demonstrating distinctive neural processes of absolute recognition and relative discrimination of pitch. Regarding possible effects of local myelination in the cortex and the known importance of the anterior superior temporal gyrus/sulcus for the identification of auditory objects, we argue that pitch chroma may be processed as an identifiable object property in AP musicians. Hum Brain Mapp 37:3486-3501, 2016. © 2016 Wiley Periodicals, Inc. PMID:27160707

  13. The effect of intracortical competition on the formation of topographic maps in models of Hebbian learning.

    PubMed

    Piepenbrock, C; Obermayer, K

    2000-04-01

    Correlation-based learning (CBL) models and self-organizing maps (SOM) are two classes of Hebbian models that have both been proposed to explain the activity-driven formation of cortical maps. Both models differ significantly in the way lateral cortical interactions are treated, leading to different predictions for the formation of receptive fields. The linear CBL models predict that receptive field profiles are determined by the average values and the spatial correlations of the second order of the afferent activity patterns, whereas SOM models map stimulus features. Here, we investigate a class of models which are characterized by a variable degree of lateral competition and which have the CBL and SOM models as limit cases. We show that there exists a critical value for intracortical competition below which the model exhibits CBL properties and above which feature mapping sets in. The class of models is then analyzed with respect to the formation of topographic maps between two layers of neurons. For Gaussian input stimuli we find that localized receptive fields and topographic maps emerge above the critical value for intracortical competition, and we calculate this value as a function of the size of the input stimuli and the range of the lateral interaction function. Additionally, we show that the learning rule can be derived via the optimization of a global cost function in a framework of probabilistic output neurons which represent a set of input stimuli by a sparse code.

  14. Thalamocortical Connections Drive Intracortical Activation of Functional Columns in the Mislaminated Reeler Somatosensory Cortex

    PubMed Central

    Wagener, Robin J.; Witte, Mirko; Guy, Julien; Mingo-Moreno, Nieves; Kügler, Sebastian; Staiger, Jochen F.

    2016-01-01

    Neuronal wiring is key to proper neural information processing. Tactile information from the rodent's whiskers reaches the cortex via distinct anatomical pathways. The lemniscal pathway relays whisking and touch information from the ventral posteromedial thalamic nucleus to layer IV of the primary somatosensory “barrel” cortex. The disorganized neocortex of the reeler mouse is a model system that should severely compromise the ingrowth of thalamocortical axons (TCAs) into the cortex. Moreover, it could disrupt intracortical wiring. We found that neuronal intermingling within the reeler barrel cortex substantially exceeded previous descriptions, leading to the loss of layers. However, viral tracing revealed that TCAs still specifically targeted transgenically labeled spiny layer IV neurons. Slice electrophysiology and optogenetics proved that these connections represent functional synapses. In addition, we assessed intracortical activation via immediate-early-gene expression resulting from a behavioral exploration task. The cellular composition of activated neuronal ensembles suggests extensive similarities in intracolumnar information processing in the wild-type and reeler brains. We conclude that extensive ectopic positioning of neuronal partners can be compensated for by cell-autonomous mechanisms that allow for the establishment of proper connectivity. Thus, genetic neuronal fate seems to be of greater importance for correct cortical wiring than radial neuronal position. PMID:26564256

  15. Short-term dynamics of thalamocortical and intracortical synapses onto layer 6 neurons in neocortex.

    PubMed

    Beierlein, Michael; Connors, Barry W

    2002-10-01

    Layer 6 is the main source of neocortical connections back to specific thalamic nuclei. Corticothalamic (CT) systems play an important role in shaping sensory input, but little is known about the functional circuitry that generates CT activity. We recorded from the two main types of neurons in layer 6, regular-spiking (RS; pyramidal neurons) and fast-spiking (FS; inhibitory interneurons) cells and compared the physiological properties of different excitatory inputs. Thalamic stimulation evoked two monosynaptic inputs with distinct properties: suspected thalamocortical (TC) synaptic events had short latencies, short-term synaptic depression, and paired-pulse responses that suggested subnormal axonal conduction. A second group of synaptic responses likely originated from intracortical collaterals of CT cells that were antidromically activated from the thalamus. These intracortical responses had longer latencies, short-term synaptic facilitation, and were transmitted by axons with supernormal conduction. Suspected TC inputs to FS cells had significantly larger amplitudes than those onto RS cells. Dual recordings from neighboring neurons in layer 6 revealed both facilitating and depressing synaptic connections; the depressing synapses were probably formed by layer 6 cells that do not project to the thalamus, and thus were not sampled by thalamic stimulation. We conclude that layer 6 neurons integrate a variety of inputs with distinct temporal dynamics that are determined by the presynaptic cell type.

  16. A critical review of cell culture strategies for modelling intracortical brain implant material reactions.

    PubMed

    Gilmour, A D; Woolley, A J; Poole-Warren, L A; Thomson, C E; Green, R A

    2016-06-01

    The capacity to predict in vivo responses to medical devices in humans currently relies greatly on implantation in animal models. Researchers have been striving to develop in vitro techniques that can overcome the limitations associated with in vivo approaches. This review focuses on a critical analysis of the major in vitro strategies being utilized in laboratories around the world to improve understanding of the biological performance of intracortical, brain-implanted microdevices. Of particular interest to the current review are in vitro models for studying cell responses to penetrating intracortical devices and their materials, such as electrode arrays used for brain computer interface (BCI) and deep brain stimulation electrode probes implanted through the cortex. A background on the neural interface challenge is presented, followed by discussion of relevant in vitro culture strategies and their advantages and disadvantages. Future development of 2D culture models that exhibit developmental changes capable of mimicking normal, postnatal development will form the basis for more complex accurate predictive models in the future. Although not within the scope of this review, innovations in 3D scaffold technologies and microfluidic constructs will further improve the utility of in vitro approaches. PMID:26994876

  17. Intracortical myelination in musicians with absolute pitch: Quantitative morphometry using 7-T MRI.

    PubMed

    Kim, Seung-Goo; Knösche, Thomas R

    2016-10-01

    Absolute pitch (AP) is known as the ability to recognize and label the pitch chroma of a given tone without external reference. Known brain structures and functions related to AP are mainly of macroscopic aspects. To shed light on the underlying neural mechanism of AP, we investigated the intracortical myeloarchitecture in musicians with and without AP using the quantitative mapping of the longitudinal relaxation rates with ultra-high-field magnetic resonance imaging at 7 T. We found greater intracortical myelination for AP musicians in the anterior region of the supratemporal plane, particularly the medial region of the right planum polare (PP). In the same region of the right PP, we also found a positive correlation with a behavioral index of AP performance. In addition, we found a positive correlation with a frequency discrimination threshold in the anterolateral Heschl's gyrus in the right hemisphere, demonstrating distinctive neural processes of absolute recognition and relative discrimination of pitch. Regarding possible effects of local myelination in the cortex and the known importance of the anterior superior temporal gyrus/sulcus for the identification of auditory objects, we argue that pitch chroma may be processed as an identifiable object property in AP musicians. Hum Brain Mapp 37:3486-3501, 2016. © 2016 Wiley Periodicals, Inc.

  18. Effects of passive pedaling exercise on the intracortical inhibition in subjects with spinal cord injury.

    PubMed

    Nardone, Raffaele; Langthaler, Patrick B; Bathke, Arne C; Höller, Yvonne; Brigo, Francesco; Lochner, Piergiorgio; Christova, Monica; Trinka, Eugen

    2016-06-01

    Cortical reorganization can be induced by exercise below the level of the lesion after spinal cord injury (SCI). The aim of the present study was to investigate the effect of passive and active pedaling exercise on leg motor cortical area excitability of subjects with traumatic SCI. Ten subjects with chronic cervical or thoracic SCI were enrolled in the study. We found a significant effect of pedaling on short-interval intracortical inhibition (SICI), which did not interact with the experimental condition (active vs. passive). This corresponded to a significant reduction of SICI in the subjects with SCI, together with no evidence that this pattern differed for passive vs. active pedaling. We found no significant effect of pedaling on intracortical facilitation. Our results showed that also passive cycling may be beneficial in activating motor cortical regions and possibly also facilitating motor recovery after SCI. The present study confirms and extends the findings of previous studies that have observed task-specific cortical activation during passive pedaling. Therefore passive exercise therapies when applied below the level of the lesion in subjects with SCI could promote cortical neuroplastic reorganization. PMID:27108543

  19. System identification of the nonlinear dynamics in the thalamocortical circuit in response to patterned thalamic microstimulation in vivo

    NASA Astrophysics Data System (ADS)

    Millard, Daniel C.; Wang, Qi; Gollnick, Clare A.; Stanley, Garrett B.

    2013-12-01

    Objective. Nonlinear system identification approaches were used to develop a dynamical model of the network level response to patterns of microstimulation in vivo. Approach. The thalamocortical circuit of the rodent vibrissa pathway was the model system, with voltage sensitive dye imaging capturing the cortical response to patterns of stimulation delivered from a single electrode in the ventral posteromedial thalamus. The results of simple paired stimulus experiments formed the basis for the development of a phenomenological model explicitly containing nonlinear elements observed experimentally. The phenomenological model was fit using datasets obtained with impulse train inputs, Poisson-distributed in time and uniformly varying in amplitude. Main results. The phenomenological model explained 58% of the variance in the cortical response to out of sample patterns of thalamic microstimulation. Furthermore, while fit on trial-averaged data, the phenomenological model reproduced single trial response properties when simulated with noise added into the system during stimulus presentation. The simulations indicate that the single trial response properties were dependent on the relative sensitivity of the static nonlinearities in the two stages of the model, and ultimately suggest that electrical stimulation activates local circuitry through linear recruitment, but that this activity propagates in a highly nonlinear fashion to downstream targets. Significance. The development of nonlinear dynamical models of neural circuitry will guide information delivery for sensory prosthesis applications, and more generally reveal properties of population coding within neural circuits.

  20. Spatial and temporal characteristics of V1 microstimulation during chronic implantation of a microelectrode array in a behaving macaque

    NASA Astrophysics Data System (ADS)

    Davis, T. S.; Parker, R. A.; House, P. A.; Bagley, E.; Wendelken, S.; Normann, R. A.; Greger, B.

    2012-12-01

    Objective. It has been hypothesized that a vision prosthesis capable of evoking useful visual percepts can be based upon electrically stimulating the primary visual cortex (V1) of a blind human subject via penetrating microelectrode arrays. As a continuation of earlier work, we examined several spatial and temporal characteristics of V1 microstimulation. Approach. An array of 100 penetrating microelectrodes was chronically implanted in V1 of a behaving macaque monkey. Microstimulation thresholds were measured using a two-alternative forced choice detection task. Relative locations of electrically-evoked percepts were measured using a memory saccade-to-target task. Main results. The principal finding was that two years after implantation we were able to evoke behavioural responses to electric stimulation across the spatial extent of the array using groups of contiguous electrodes. Consistent responses to stimulation were evoked at an average threshold current per electrode of 204 ± 49 µA (mean ± std) for groups of four electrodes and 91 ± 25 µA for groups of nine electrodes. Saccades to electrically-evoked percepts using groups of nine electrodes showed that the animal could discriminate spatially distinct percepts with groups having an average separation of 1.6 ± 0.3 mm (mean ± std) in cortex and 1.0° ± 0.2° in visual space. Significance. These results demonstrate chronic perceptual functionality and provide evidence for the feasibility of a cortically-based vision prosthesis for the blind using penetrating microelectrodes.

  1. Perceptual “Read-Out” of Conjoined Direction and Disparity Maps in Extrastriate Area MT

    PubMed Central

    2004-01-01

    Cortical neurons are frequently tuned to several stimulus dimensions, and many cortical areas contain intercalated maps of multiple variables. Relatively little is known about how information is “read out” of these multidimensional maps. For example, how does an organism extract information relevant to the task at hand from neurons that are also tuned to other, irrelevant stimulus dimensions? We addressed this question by employing microstimulation techniques to examine the contribution of disparity-tuned neurons in the middle temporal (MT) visual area to performance on a direction discrimination task. Most MT neurons are tuned to both binocular disparity and the direction of stimulus motion, and MT contains topographic maps of both parameters. We assessed the effect of microstimulation on direction judgments after first characterizing the disparity tuning of each stimulation site. Although the disparity of the stimulus was irrelevant to the required task, we found that microstimulation effects were strongly modulated by the disparity tuning of the stimulated neurons. For two of three monkeys, microstimulation of nondisparity-selective sites produced large biases in direction judgments, whereas stimulation of disparity-selective sites had little or no effect. The binocular disparity was optimized for each stimulation site, and our result could not be explained by variations in direction tuning, response strength, or any other tuning property that we examined. When microstimulation of a disparity-tuned site did affect direction judgments, the effects tended to be stronger at the preferred disparity of a stimulation site than at the nonpreferred disparity, indicating that monkeys can selectively monitor direction columns that are best tuned to an appropriate conjunction of parameters. We conclude that the contribution of neurons to behavior can depend strongly upon tuning to stimulus dimensions that appear to be irrelevant to the current task, and we suggest that

  2. Reprint of “Non-causal spike filtering improves decoding of movement intention for intracortical BCIs”☆

    PubMed Central

    Masse, Nicolas Y.; Jarosiewicz, Beata; Simeral, John D.; Bacher, Daniel; Stavisky, Sergey D.; Cash, Sydney S.; Oakley, Erin M.; Berhanu, Etsub; Eskandar, Emad; Friehs, Gerhard; Hochberg, Leigh R.; Donoghue, John P.

    2015-01-01

    Background Multiple types of neural signals are available for controlling assistive devices through brain–computer interfaces (BCIs). Intracortically recorded spiking neural signals are attractive for BCIs because they can in principle provide greater fidelity of encoded information compared to electrocorticographic (ECoG) signals and electroencephalograms (EEGs). Recent reports show that the information content of these spiking neural signals can be reliably extracted simply by causally band-pass filtering the recorded extracellular voltage signals and then applying a spike detection threshold, without relying on “sorting” action potentials. New method We show that replacing the causal filter with an equivalent non-causal filter increases the information content extracted from the extracellular spiking signal and improves decoding of intended movement direction. This method can be used for real-time BCI applications by using a 4 ms lag between recording and filtering neural signals. Results Across 18 sessions from two people with tetraplegia enrolled in the BrainGate2 pilot clinical trial, we found that threshold crossing events extracted using this non-causal filtering method were significantly more informative of each participant’s intended cursor kinematics compared to threshold crossing events derived from causally filtered signals. This new method decreased the mean angular error between the intended and decoded cursor direction by 9.7° for participant S3, who was implanted 5.4 years prior to this study, and by 3.5° for participant T2, who was implanted 3 months prior to this study. PMID:25681017

  3. Generation of Locomotor-Like Activity in the Isolated Rat Spinal Cord Using Intraspinal Electrical Microstimulation Driven by a Digital Neuromorphic CPG.

    PubMed

    Joucla, Sébastien; Ambroise, Matthieu; Levi, Timothée; Lafon, Thierry; Chauvet, Philippe; Saïghi, Sylvain; Bornat, Yannick; Lewis, Noëlle; Renaud, Sylvie; Yvert, Blaise

    2016-01-01

    Neural prostheses based on electrical microstimulation offer promising perspectives to restore functions following lesions of the central nervous system (CNS). They require the identification of appropriate stimulation sites and the coordination of their activation to achieve the restoration of functional activity. On the long term, a challenging perspective is to control microstimulation by artificial neural networks hybridized to the living tissue. Regarding the use of this strategy to restore locomotor activity in the spinal cord, to date, there has been no proof of principle of such hybrid approach driving intraspinal microstimulation (ISMS). Here, we address a first step toward this goal in the neonatal rat spinal cord isolated ex vivo, which can display locomotor-like activity while offering an easy access to intraspinal circuitry. Microelectrode arrays were inserted in the lumbar region to determine appropriate stimulation sites to elicit elementary bursting patterns on bilateral L2/L5 ventral roots. Two intraspinal sites were identified at L1 level, one on each side of the spinal cord laterally from the midline and approximately at a median position dorso-ventrally. An artificial CPG implemented on digital integrated circuit (FPGA) was built to generate alternating activity and was hybridized to the living spinal cord to drive electrical microstimulation on these two identified sites. Using this strategy, sustained left-right and flexor-extensor alternating activity on bilateral L2/L5 ventral roots could be generated in either whole or thoracically transected spinal cords. These results are a first step toward hybrid artificial/biological solutions based on electrical microstimulation for the restoration of lost function in the injured CNS. PMID:27013936

  4. Wireless control of intraspinal microstimulation in a rodent model of paralysis

    PubMed Central

    Kasasbeh, Aimen; Mallory, Grant W.; Hachmann, Jan T.; Dube, John R.; Kimble, Christopher J.; Lobel, Darlene A.; Bieber, Allan; Jeong, Ju Ho; Bennet, Kevin E.; Lujan, J. Luis

    2015-01-01

    OBJECT Despite a promising outlook, existing intraspinal microstimulation (ISMS) techniques for restoring functional motor control after spinal cord injury are not yet suitable for use outside a controlled laboratory environment. Thus, successful application of ISMS therapy in humans will require the use of versatile chronic neurostimulation systems. The objective of this study was to establish proof of principle for wireless control of ISMS to evoke controlled motor function in a rodent model of complete spinal cord injury. METHODS The lumbar spinal cord in each of 17 fully anesthetized Sprague-Dawley rats was stimulated via ISMS electrodes to evoke hindlimb function. Nine subjects underwent complete surgical transection of the spinal cord at the T-4 level 7 days before stimulation. Targeting for both groups (spinalized and control) was performed under visual inspection via dorsal spinal cord landmarks such as the dorsal root entry zone and the dorsal median fissure. Teflon-insulated stimulating platinum-iridium microwire electrodes (50 μm in diameter, with a 30- to 60-μm exposed tip) were implanted within the ventral gray matter to an approximate depth of 1.8 mm. Electrode implantation was performed using a free-hand delivery technique (n = 12) or a Kopf spinal frame system (n = 5) to compare the efficacy of these 2 commonly used targeting techniques. Stimulation was controlled remotely using a wireless neurostimulation control system. Hindlimb movements evoked by stimulation were tracked via kinematic markers placed on the hips, knees, ankles, and paws. Postmortem fixation and staining of the spinal cord tissue were conducted to determine the final positions of the stimulating electrodes within the spinal cord tissue. RESULTS The results show that wireless ISMS was capable of evoking controlled and sustained activation of ankle, knee, and hip muscles in 90% of the spinalized rats (n = 9) and 100% of the healthy control rats (n = 8). No functional differences

  5. Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibres

    NASA Astrophysics Data System (ADS)

    Jain, Anjana; Betancur, Martha; Patel, Gaurangkumar D.; Valmikinathan, Chandra M.; Mukhatyar, Vivek J.; Vakharia, Ajit; Pai, S. Balakrishna; Brahma, Barunashish; MacDonald, Tobey J.; Bellamkonda, Ravi V.

    2014-03-01

    Glioblastoma multiforme is an aggressive, invasive brain tumour with a poor survival rate. Available treatments are ineffective and some tumours remain inoperable because of their size or location. The tumours are known to invade and migrate along white matter tracts and blood vessels. Here, we exploit this characteristic of glioblastoma multiforme by engineering aligned polycaprolactone (PCL)-based nanofibres for tumour cells to invade and, hence, guide cells away from the primary tumour site to an extracortical location. This extracortial sink is a cyclopamine drug-conjugated, collagen-based hydrogel. When aligned PCL-nanofibre films in a PCL/polyurethane carrier conduit were inserted in the vicinity of an intracortical human U87MG glioblastoma xenograft, a significant number of human glioblastoma cells migrated along the aligned nanofibre films and underwent apoptosis in the extracortical hydrogel. Tumour volume in the brain was significantly lower following insertion of aligned nanofibre implants compared with the application of smooth fibres or no implants.

  6. Event-related desynchronization reflects downregulation of intracortical inhibition in human primary motor cortex.

    PubMed

    Takemi, Mitsuaki; Masakado, Yoshihisa; Liu, Meigen; Ushiba, Junichi

    2013-09-01

    There is increasing interest in electroencephalogram (EEG)-based brain-computer interface (BCI) as a tool for rehabilitation of upper limb motor functions in hemiplegic stroke patients. This type of BCI often exploits mu and beta oscillations in EEG recorded over the sensorimotor areas, and their event-related desynchronization (ERD) following motor imagery is believed to represent increased sensorimotor cortex excitability. However, it remains unclear whether the sensorimotor cortex excitability is actually correlated with ERD. Thus we assessed the association of ERD with primary motor cortex (M1) excitability during motor imagery of right wrist movement. M1 excitability was tested by motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF) with transcranial magnetic stimulation (TMS). Twenty healthy participants were recruited. The participants performed 7 s of rest followed by 5 s of motor imagery and received online visual feedback of the ERD magnitude of the contralateral hand M1 while performing the motor imagery task. TMS was applied to the right hand M1 when ERD exceeded predetermined thresholds during motor imagery. MEP amplitudes, SICI, and ICF were recorded from the agonist muscle of the imagined hand movement. Results showed that the large ERD during wrist motor imagery was associated with significantly increased MEP amplitudes and reduced SICI but no significant changes in ICF. Thus ERD magnitude during wrist motor imagery represents M1 excitability. This study provides electrophysiological evidence that a motor imagery task involving ERD may induce changes in corticospinal excitability similar to changes accompanying actual movements.

  7. Restoring Motor Functions in Paralyzed Limbs through Intraspinal Multielectrode Microstimulation Using Fuzzy Logic Control and Lag Compensator.

    PubMed

    Roshani, Amir; Erfanian, Abbas

    2013-01-01

    In this paper, a control strategy is proposed for control of ankle movement on animals using intraspinal microstimulation (ISMS). The proposed method is based on fuzzy logic control. Fuzzy logic control is a methodology of intelligent control that mimics human decision making process. This type of control method can be very useful for the complex uncertain systems that their mathematical model is unknown. To increase the stability and speed of the system's response and reduce the steady-state error, we combine the FLC with a lead (lag) compensator. The experiments are conducted on five rats. Microelectrodes are implanted into the spinal cord to provide selective stimulation of plantarflexor and dorsiflexor. The results show that motor functions can be restored using ISMS. Despite the complexity of the spinal neuronal networks and simplicity of the proposed control strategy, our results show that the proposed strategy can provide acceptable tracking control with fast convergence. PMID:25337352

  8. Curcumin-releasing mechanically adaptive intracortical implants improve the proximal neuronal density and blood-brain barrier stability.

    PubMed

    Potter, Kelsey A; Jorfi, Mehdi; Householder, Kyle T; Foster, E Johan; Weder, Christoph; Capadona, Jeffrey R

    2014-05-01

    The cellular and molecular mechanisms by which neuroinflammatory pathways respond to and propagate the reactive tissue response to intracortical microelectrodes remain active areas of research. We previously demonstrated that both the mechanical mismatch between rigid implants and the much softer brain tissue, as well as oxidative stress, contribute to the neurodegenerative reactive tissue response to intracortical implants. In this study, we utilize physiologically responsive, mechanically adaptive polymer implants based on poly(vinyl alcohol) (PVA), with the capability to also locally administer the antioxidant curcumin. The goal of this study is to investigate if the combination of two independently effective mechanisms - softening of the implant and antioxidant release - leads to synergistic effects in vivo. Over the first 4weeks of the implantation, curcumin-releasing, mechanically adaptive implants were associated with higher neuron survival and a more stable blood-brain barrier at the implant-tissue interface than the neat PVA controls. 12weeks post-implantation, the benefits of the curcumin release were lost, and both sets of compliant materials (with and without curcumin) had no statistically significant differences in neuronal density distribution profiles. Overall, however, the curcumin-releasing softening polymer implants cause minimal implant-mediated neuroinflammation, and embody the new concept of localized drug delivery from mechanically adaptive intracortical implants.

  9. Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates

    NASA Astrophysics Data System (ADS)

    Barrese, James C.; Aceros, Juan; Donoghue, John P.

    2016-04-01

    Objective. Signal attenuation is a major problem facing intracortical sensors for chronic neuroprosthetic applications. Many studies suggest that failure is due to gliosis around the electrode tips, however, mechanical and material causes of failure are often overlooked. The purpose of this study was to investigate the factors contributing to progressive signal decline by using scanning electron microscopy (SEM) to visualize structural changes in chronically implanted arrays and histology to examine the tissue response at corresponding implant sites. Approach. We examined eight chronically implanted intracortical microelectrode arrays (MEAs) explanted from non-human primates at times ranging from 37 to 1051 days post-implant. We used SEM, in vivo neural recordings, and histology (GFAP, Iba-1, NeuN). Three MEAs that were never implanted were also imaged as controls. Main results. SEM revealed progressive corrosion of the platinum electrode tips and changes to the underlying silicon. The parylene insulation was prone to cracking and delamination, and in some instances the silicone elastomer also delaminated from the edges of the MEA. Substantial tissue encapsulation was observed and was often seen growing into defects in the platinum and parylene. These material defects became more common as the time in vivo increased. Histology at 37 and 1051 days post-implant showed gliosis, disruption of normal cortical architecture with minimal neuronal loss, and high Iba-1 reactivity, especially within the arachnoid and dura. Electrode tracts were either absent or barely visible in the cortex at 1051 days, but were seen in the fibrotic encapsulation material suggesting that the MEAs were lifted out of the brain. Neural recordings showed a progressive drop in impedance, signal amplitude, and viable channels over time. Significance. These results provide evidence that signal loss in MEAs is truly multifactorial. Gliosis occurs in the first few months after implantation but does

  10. Descending Control of Nociceptive Processing in Knee Osteoarthritis Is Associated With Intracortical Disinhibition

    PubMed Central

    Tarragó, Maria da Graca L.; Deitos, Alícia; Brietzke, Aline Patrícia; Vercelino, Rafael; Torres, Iraci L. S.; Fregni, Felipe; Caumo, Wolnei

    2016-01-01

    Abstract Based on the hypothesis that an imbalance in excitatory and inhibitory input is a central mechanism of knee osteoarthritis chronic pain (KOACP), this exploratory study had the following aims: to compare whether the function of the descending inhibitory pain pathway is associated with the state of inhibition in the corticospinal system indexed by the motor-evoked potential (MEP) and the cortical salient period (CSP) in patients with severe osteoarthritis (OA) and healthy controls; and to determine if there is correlation between the measures of intracortical inhibition (CSP, MEP) with changes on the numerical pain scale (NPS [0–10]) in KOACP during a conditioned pain modulation (CPM)-task considering the effect of self-reported function assessed by the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and analgesic use. In a cross-sectional study, we included females (n = 21), with disability by pain or stiffness due to KOACP and healthy controls (n = 10), aged 19 to 75 years. The motor cortex excitability parameters (MEP and CSP) were assessed using the transcranial magnetic stimulation. We assessed the pain and disability by the WOMAC, and change on NPS (0–10) during CPM-task. A Multivariate analysis of covariance revealed that the adjusted mean (SD) on the MEP amplitude was 13.53% higher in the OA than in healthy subjects (1.33 [0.49] vs 1.15 [0.13]), respectively (P = 0.16). The adjusted mean (SD) on the CSP observed in OA patients was 23.43% lower than in healthy subjects (54.54 [16.10] vs 70.94 [22.87]), respectively (P = 0.01). The function of the descending pain modulatory system assessed by change on NPS (0–10) during a CPM-task was negatively correlated with the cortical excitability parameter indexed by the CSP (P = 0.001). Also, the CSP was negatively correlated with the pain and disability assessed by the WOMAC index. These findings support the hypothesis that the change in cortical plasticity in

  11. Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates

    PubMed Central

    Barrese, James C; Aceros, Juan; Donoghue, John P

    2016-01-01

    Objective Signal attenuation is a major problem facing intracortical sensors for chronic neuroprosthetic applications. Many studies suggest that failure is due to gliosis around the electrode tips, however, mechanical and material causes of failure are often overlooked. The purpose of this study was to investigate the factors contributing to progressive signal decline by using scanning electron microscopy (SEM) to visualize structural changes in chronically implanted arrays and histology to examine the tissue response at corresponding implant sites. Approach We examined eight chronically implanted intracortical microelectrode arrays (MEAs) explanted from non-human primates at times ranging from 37 to 1051 days post-implant. We used SEM, in vivo neural recordings, and histology (GFAP, Iba-1, NeuN). Three MEAs that were never implanted were also imaged as controls. Main results SEM revealed progressive corrosion of the platinum electrode tips and changes to the underlying silicon. The parylene insulation was prone to cracking and delamination, and in some instances the silicone elastomer also delaminated from the edges of the MEA. Substantial tissue encapsulation was observed and was often seen growing into defects in the platinum and parylene. These material defects became more common as the time in vivo increased. Histology at 37 and 1051 days post-implant showed gliosis, disruption of normal cortical architecture with minimal neuronal loss, and high Iba-1 reactivity, especially within the arachnoid and dura. Electrode tracts were either absent or barely visible in the cortex at 1051 days, but were seen in the fibrotic encapsulation material suggesting that the MEAs were lifted out of the brain. Neural recordings showed a progressive drop in impedance, signal amplitude, and viable channels over time. Significance These results provide evidence that signal loss in MEAs is truly multifactorial. Gliosis occurs in the first few months after implantation but does not

  12. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates

    NASA Astrophysics Data System (ADS)

    Barrese, James C.; Rao, Naveen; Paroo, Kaivon; Triebwasser, Corey; Vargas-Irwin, Carlos; Franquemont, Lachlan; Donoghue, John P.

    2013-12-01

    Objective. Brain-computer interfaces (BCIs) using chronically implanted intracortical microelectrode arrays (MEAs) have the potential to restore lost function to people with disabilities if they work reliably for years. Current sensors fail to provide reliably useful signals over extended periods of time for reasons that are not clear. This study reports a comprehensive retrospective analysis from a large set of implants of a single type of intracortical MEA in a single species, with a common set of measures in order to evaluate failure modes. Approach. Since 1996, 78 silicon MEAs were implanted in 27 monkeys (Macaca mulatta). We used two approaches to find reasons for sensor failure. First, we classified the time course leading up to complete recording failure as acute (abrupt) or chronic (progressive). Second, we evaluated the quality of electrode recordings over time based on signal features and electrode impedance. Failure modes were divided into four categories: biological, material, mechanical, and unknown. Main results. Recording duration ranged from 0 to 2104 days (5.75 years), with a mean of 387 days and a median of 182 days (n = 78). Sixty-two arrays failed completely with a mean time to failure of 332 days (median = 133 days) while nine array experiments were electively terminated for experimental reasons (mean = 486 days). Seven remained active at the close of this study (mean = 753 days). Most failures (56%) occurred within a year of implantation, with acute mechanical failures the most common class (48%), largely because of connector issues (83%). Among grossly observable biological failures (24%), a progressive meningeal reaction that separated the array from the parenchyma was most prevalent (14.5%). In the absence of acute interruptions, electrode recordings showed a slow progressive decline in spike amplitude, noise amplitude, and number of viable channels that predicts complete signal loss by about eight years. Impedance measurements showed

  13. Descending Control of Nociceptive Processing in Knee Osteoarthritis Is Associated With Intracortical Disinhibition: An Exploratory Study.

    PubMed

    Tarragó, Maria da Graca L; Deitos, Alícia; Brietzke, Aline Patrícia; Vercelino, Rafael; Torres, Iraci L S; Fregni, Felipe; Caumo, Wolnei

    2016-04-01

    Based on the hypothesis that an imbalance in excitatory and inhibitory input is a central mechanism of knee osteoarthritis chronic pain (KOACP), this exploratory study had the following aims: to compare whether the function of the descending inhibitory pain pathway is associated with the state of inhibition in the corticospinal system indexed by the motor-evoked potential (MEP) and the cortical salient period (CSP) in patients with severe osteoarthritis (OA) and healthy controls; and to determine if there is correlation between the measures of intracortical inhibition (CSP, MEP) with changes on the numerical pain scale (NPS [0-10]) in KOACP during a conditioned pain modulation (CPM)-task considering the effect of self-reported function assessed by the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and analgesic use.In a cross-sectional study, we included females (n = 21), with disability by pain or stiffness due to KOACP and healthy controls (n = 10), aged 19 to 75 years. The motor cortex excitability parameters (MEP and CSP) were assessed using the transcranial magnetic stimulation. We assessed the pain and disability by the WOMAC, and change on NPS (0-10) during CPM-task.A Multivariate analysis of covariance revealed that the adjusted mean (SD) on the MEP amplitude was 13.53% higher in the OA than in healthy subjects (1.33 [0.49] vs 1.15 [0.13]), respectively (P = 0.16). The adjusted mean (SD) on the CSP observed in OA patients was 23.43% lower than in healthy subjects (54.54 [16.10] vs 70.94 [22.87]), respectively (P = 0.01). The function of the descending pain modulatory system assessed by change on NPS (0-10) during a CPM-task was negatively correlated with the cortical excitability parameter indexed by the CSP (P = 0.001). Also, the CSP was negatively correlated with the pain and disability assessed by the WOMAC index.These findings support the hypothesis that the change in cortical plasticity in KOACP is associated

  14. Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects.

    PubMed

    Fernández, Eduardo; Greger, Bradley; House, Paul A; Aranda, Ignacio; Botella, Carlos; Albisua, Julio; Soto-Sánchez, Cristina; Alfaro, Arantxa; Normann, Richard A

    2014-01-01

    The emerging field of neuroprosthetics is focused on the development of new therapeutic interventions that will be able to restore some lost neural function by selective electrical stimulation or by harnessing activity recorded from populations of neurons. As more and more patients benefit from these approaches, the interest in neural interfaces has grown significantly and a new generation of penetrating microelectrode arrays are providing unprecedented access to the neurons of the central nervous system (CNS). These microelectrodes have active tip dimensions that are similar in size to neurons and because they penetrate the nervous system, they provide selective access to these cells (within a few microns). However, the very long-term viability of chronically implanted microelectrodes and the capability of recording the same spiking activity over long time periods still remain to be established and confirmed in human studies. Here we review the main responses to acute implantation of microelectrode arrays, and emphasize that it will become essential to control the neural tissue damage induced by these intracortical microelectrodes in order to achieve the high clinical potentials accompanying this technology.

  15. Brain computer interface learning for systems based on electrocorticography and intracortical microelectrode arrays

    PubMed Central

    Hiremath, Shivayogi V.; Chen, Weidong; Wang, Wei; Foldes, Stephen; Yang, Ying; Tyler-Kabara, Elizabeth C.; Collinger, Jennifer L.; Boninger, Michael L.

    2015-01-01

    A brain-computer interface (BCI) system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning. PMID:26113812

  16. Cutaneous afferent input does not modulate motor intracortical inhibition in ageing men.

    PubMed

    Smith, Ashleigh E; Ridding, Michael C; Higgins, Ryan D; Wittert, Gary A; Pitcher, Julia B

    2011-11-01

    Afferent input has been shown to be a powerful modulator of cortical inhibition. Such modulation is likely to be important for the control of ongoing movement, but may also play a role in facilitating neuroplastic reorganisation. Human motor control and neuroplasticity both decline with ageing, whereas the efficacy of short-interval intracortical inhibition (SICI) appears not to. We examined if ageing alters the efficacy of afferent modulation of SICI. Previously, electrical cutaneous stimulation of a finger has been shown to reduce SICI in the motor cortices of young adults. Paired-pulse transcranial magnetic stimulation was used to assess SICI in the cortical representation of the first dorsal interosseous muscle. SICI was assessed separately under two conditions: with and without prior afferent input from electrical cutaneous stimulation of the index finger. Fifteen 'young' (20.1 ± 2.1 years) and 15 'old' male humans (65.5 ± 3.9 years) were studied. SICI did not differ when young and old males were compared. However, when preceded by electrical cutaneous finger stimulation, SICI was reduced in young men but not old men. Reflex testing indicated preservation of the afferent volley to the cortex. These findings suggest that a contributing factor in the decline of motor function, and possibly neuroplasticity, with ageing is loss of SICI modulation, probably due to altered cortical sensorimotor integration of afferent input.

  17. Time Course of Corticospinal Excitability and Intracortical Inhibition Just before Muscle Relaxation

    PubMed Central

    Suzuki, Tomotaka; Sugawara, Kenichi; Ogahara, Kakuya; Higashi, Toshio

    2016-01-01

    Using transcranial magnetic stimulation (TMS), we investigated how short-interval intracortical inhibition (SICI) was involved with transient motor cortex (M1) excitability changes observed just before the transition from muscle contraction to muscle relaxation. Ten healthy participants performed a simultaneous relaxation task of the ipsilateral finger and foot, relaxing from 10% of their maximal voluntary contraction (MVC) force after the go signal. In the simple reaction time (RT) paradigm, single or paired TMS pulses were randomly delivered after the go signal, and motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous (FDI) muscle. We analyzed the time course prior to the estimated relaxation reaction time (RRT), defined here as the onset of voluntary relaxation. SICI decreased in the 80–100 ms before RRT, and MEPs were significantly greater in amplitude in the 60–80 ms period before RRT than in the other intervals in single-pulse trials. TMS pulses did not effectively increase RRT. These results show that cortical excitability in the early stage, before muscle relaxation, plays an important role in muscle relaxation control. SICI circuits may vary between decreased and increased activation to continuously maintain muscle relaxation during or after a relaxation response. With regard to M1 excitability dynamics, we suggest that SICI also dynamically changes throughout the muscle relaxation process. PMID:26858619

  18. Brain computer interface learning for systems based on electrocorticography and intracortical microelectrode arrays.

    PubMed

    Hiremath, Shivayogi V; Chen, Weidong; Wang, Wei; Foldes, Stephen; Yang, Ying; Tyler-Kabara, Elizabeth C; Collinger, Jennifer L; Boninger, Michael L

    2015-01-01

    A brain-computer interface (BCI) system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.

  19. Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects

    PubMed Central

    Fernández, Eduardo; Greger, Bradley; House, Paul A.; Aranda, Ignacio; Botella, Carlos; Albisua, Julio; Soto-Sánchez, Cristina; Alfaro, Arantxa; Normann, Richard A.

    2014-01-01

    The emerging field of neuroprosthetics is focused on the development of new therapeutic interventions that will be able to restore some lost neural function by selective electrical stimulation or by harnessing activity recorded from populations of neurons. As more and more patients benefit from these approaches, the interest in neural interfaces has grown significantly and a new generation of penetrating microelectrode arrays are providing unprecedented access to the neurons of the central nervous system (CNS). These microelectrodes have active tip dimensions that are similar in size to neurons and because they penetrate the nervous system, they provide selective access to these cells (within a few microns). However, the very long-term viability of chronically implanted microelectrodes and the capability of recording the same spiking activity over long time periods still remain to be established and confirmed in human studies. Here we review the main responses to acute implantation of microelectrode arrays, and emphasize that it will become essential to control the neural tissue damage induced by these intracortical microelectrodes in order to achieve the high clinical potentials accompanying this technology. PMID:25100989

  20. A Programmable Implantable Microstimulator SoC With Wireless Telemetry: Application in Closed-Loop Endocardial Stimulation for Cardiac Pacemaker.

    PubMed

    Shuenn-Yuh Lee; Su, M Y; Ming-Chun Liang; You-Yin Chen; Cheng-Han Hsieh; Chung-Min Yang; Hsin-Yi Lai; Jou-Wei Lin; Qiang Fang

    2011-12-01

    A low-power, wireless, and implantable microstimulator system on chip with smart powering management, immediate neural signal acquisition, and wireless rechargeable system is proposed. A system controller with parity checking handles the adjustable stimulus parameters for the stimulated objective. In the current paper, the rat's intra-cardiac electrogram is employed as the stimulated model in the animal study, and it is sensed by a low-voltage and low-power monitoring analog front end. The power management unit, which includes a rectifier, battery charging and detection, and a regulator, is used for the power control of the internal circuits. The stimulation data and required clock are extracted by a phase-locked-loop-based phase shift keying demodulator from an inductive AC signal. The full chip, which consumes 48 μW only, is fabricated in a TSMC 0.35 μm 2P4M standard CMOS process to perform the monitoring and pacing functions with inductively powered communication in the in vivo study.

  1. High-resolution direct microstimulation mapping of spinal cord motor pathways during resection of an intramedullary tumor.

    PubMed

    Gandhi, Ravi; Curtis, Corinne M; Cohen-Gadol, Aaron A

    2015-02-01

    Despite the use of advanced microsurgical techniques, resection of intramedullary tumors may result in significant postoperative deficits because of the vicinity or invasion of important functional tracts. Intraoperative monitoring of somatosensory evoked potentials and transcranial electrical motor evoked potentials has been used previously to limit such complications. Electromyography offers an opportunity for the surgeon to map the eloquent tissue associated with the tumor using intraoperative motor fiber stimulation. Similar to the use of cortical simulation in the resection of supratentorial gliomas, this technique can potentially advance the safety of intramedullary spinal cord tumor resection. The authors describe the use of intraoperative motor fiber tract stimulation to map the corticospinal tracts associated with an intramedullary tumor. This technique led to protection of these tracts during resection of the tumor. PMID:25431960

  2. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates

    PubMed Central

    Barrese, James C; Rao, Naveen; Paroo, Kaivon; Triebwasser, Corey; Vargas-Irwin, Carlos; Franquemont, Lachlan; Donoghue, John P

    2016-01-01

    Objective Brain–computer interfaces (BCIs) using chronically implanted intracortical microelectrode arrays (MEAs) have the potential to restore lost function to people with disabilities if they work reliably for years. Current sensors fail to provide reliably useful signals over extended periods of time for reasons that are not clear. This study reports a comprehensive retrospective analysis from a large set of implants of a single type of intracortical MEA in a single species, with a common set of measures in order to evaluate failure modes. Approach Since 1996, 78 silicon MEAs were implanted in 27 monkeys (Macaca mulatta). We used two approaches to find reasons for sensor failure. First, we classified the time course leading up to complete recording failure as acute (abrupt) or chronic (progressive). Second, we evaluated the quality of electrode recordings over time based on signal features and electrode impedance. Failure modes were divided into four categories: biological, material, mechanical, and unknown. Main results Recording duration ranged from 0 to 2104 days (5.75 years), with a mean of 387 days and a median of 182 days (n = 78). Sixty-two arrays failed completely with a mean time to failure of 332 days (median = 133 days) while nine array experiments were electively terminated for experimental reasons (mean = 486 days). Seven remained active at the close of this study (mean = 753 days). Most failures (56%) occurred within a year of implantation, with acute mechanical failures the most common class (48%), largely because of connector issues (83%). Among grossly observable biological failures (24%), a progressive meningeal reaction that separated the array from the parenchyma was most prevalent (14.5%). In the absence of acute interruptions, electrode recordings showed a slow progressive decline in spike amplitude, noise amplitude, and number of viable channels that predicts complete signal loss by about eight years. Impedance measurements showed

  3. Association of anxiety with intracortical inhibition and descending pain modulation in chronic myofascial pain syndrome

    PubMed Central

    2014-01-01

    Background This study aimed to answer three questions related to chronic myofascial pain syndrome (MPS): 1) Is the motor cortex excitability, as assessed by transcranial magnetic stimulation parameters (TMS), related to state-trait anxiety? 2) Does anxiety modulate corticospinal excitability changes after evoked pain by Quantitative Sensory Testing (QST)? 3) Does the state-trait anxiety predict the response to pain evoked by QST if simultaneously receiving a heterotopic stimulus [Conditional Pain Modulation (CPM)]? We included females with chronic MPS (n = 47) and healthy controls (n = 11), aged 19 to 65 years. Motor cortex excitability was assessed by TMS, and anxiety was assessed based on the State-Trait Anxiety Inventory. The disability related to pain (DRP) was assessed by the Profile of Chronic Pain scale for the Brazilian population (B:PCP:S), and the psychophysical pain measurements were measured by the QST and CPM. Results In patients, trait-anxiety was positively correlated to intracortical facilitation (ICF) at baseline and after QST evoked pain (β = 0.05 and β = 0.04, respectively) and negatively correlated to the cortical silent period (CSP) (β = -1.17 and β = -1.23, respectively) (P <0.05 for all comparisons). After QST evoked pain, the DRP was positively correlated to ICF (β = 0.02) (P < 0.05). Pain scores during CPM were positively correlated with trait-anxiety when it was concurrently with high DRP (β = 0.39; P = 0.02). Controls’ cortical excitability remained unchanged after QST. Conclusions These findings suggest that, in chronic MPS, the imbalance between excitatory and inhibitory descending systems of the corticospinal tract is associated with higher trait-anxiety concurrent with higher DRP. PMID:24645677

  4. Intracortical distribution of number and volume of glomeruli during postnatal maturation in the dog

    PubMed Central

    Horster, Michael; Kemler, Barry J.; Valtin, Heinz

    1971-01-01

    Morphometric analysis was carried out on kidneys of neonatal dogs in which function of the entire kidney and of single nephrons had been evaluated. Measurements were begun after neogenesis of nephrons had been completed, i.e., at the end of the 3rd postnatal wk. They were continued to 74 days by which time glomerular function, expressed per unit of renal weight, had reached the mature level. For statistical analysis, the cortical histogram at each age was divided into eight zones of equal depth between the capsule and corticomedullary junction. The mean total number of glomeruli in this beagle strain was 589 × 103 per kidney. The fraction of the total number of glomeruli was lowest in the subcapsular layer (3.9%) and highest (24.5%) in the zone immediately beneath from where it decreased almost linearly to a value of 4.5% in the juxtamedullary region. This numerical distribution did not change with age, which suggests that growth of nonglomerular structures proceeded at the same rate in all cortical layers. Volume of the glomerular tuft rose slightly between the subcapsular and next layer and remained constant down to the juxtamedullary region where it increased sharply. The juxtamedullary glomerulus was about 45% larger in volume than the other glomeruli. This intracortical distribution of glomerular volume did not vary between 23 and 74 days, although the volume of an individual glomerulus at each level increased slightly with age. Total glomerular volume increased by 33% during the postnatal period studied, whereas simultaneously nonglomerular cortical volume rose by 235%. On the assumption that nonglomerular tissue consists mainly of tubules, the data suggest that the rate of tubular growth far exceeded that of glomerular growth. Despite this difference in glomerular and tubular growth rates, analysis of single nephrons in these dogs demonstrates constant and mature proximal fractional reabsorption of sodium and water. Images PMID:5547276

  5. Chronic intracortical microelectrode arrays induce non-uniform, depth-related tissue responses

    NASA Astrophysics Data System (ADS)

    Woolley, Andrew J.; Desai, Himanshi A.; Otto, Kevin J.

    2013-04-01

    Objective. Brain-implanted microelectrode arrays show promise as future clinical devices. However, biological responses to various designs, compositions and locations of these implants have not been fully characterized, and may impact the long-term functionality of these devices. In order to improve our understanding of the tissue conditions at the interface of chronic brain-implanted microdevices, we proposed utilizing advanced histology and microscopy techniques to image implanted devices and surrounding tissue intact within brain slices. We then proposed utilizing these methods to examine whether depth within the cerebral cortex affected tissue conditions around implants. Approach. Histological data was collected from rodent brain slices containing intact, intracortical microdevices four weeks after implantation surgery. Thick tissue sections containing the chronic implants were processed with fluorescent antibody labels, and imaged in an optical clearing solution using laser confocal microscopy. Main Results. Tissue surrounding microdevices exhibited two major depth-related phenomena: a non-uniform microglial coating along the device length and a dense mass of cells surrounding the implant in cerebral cortical layers I and II. Detailed views of the monocyte-derived immune cells improve our understanding of the close and complex association that immune cells have with chronic brain implants, and illuminated a possible relationship between cortical depth and the intensity of a chronic monocyte response around penetrating microdevices. The dense mass of cells contained vimentin, a protein not typically expressed highly in CNS cells, evidence that non-CNS cells likely descended down the face of the penetrating devices from the pial surface. Significance. Image data of highly non-uniform and depth-dependent biological responses along a device provides novel insight into the complexity of the tissue response to penetrating brain-implanted microdevices. The presented

  6. Reduced short-interval intracortical inhibition after eccentric muscle damage in human elbow flexor muscles.

    PubMed

    Pitman, Bradley M; Semmler, John G

    2012-09-01

    The purpose of this study was to use paired-pulse transcranial magnetic stimulation (TMS) to examine the effect of eccentric exercise on short-interval intracortical inhibition (SICI) after damage to elbow flexor muscles. Nine young (22.5 ± 0.6 yr; mean ± SD) male subjects performed maximal eccentric exercise of the elbow flexor muscles until maximal voluntary contraction (MVC) force was reduced by ∼40%. TMS was performed before, 2 h after, and 2 days after exercise under Rest and Active (5% MVC) conditions with motor-evoked potentials (MEPs) recorded from the biceps brachii (BB) muscle. Peripheral electrical stimulation of the brachial plexus was used to assess maximal M-waves, and paired-pulse TMS with a 3-ms interstimulus interval was used to assess changes in SICI at each time point. The eccentric exercise resulted in a 34% decline in strength (P < 0.001), a 41% decline in resting M-wave (P = 0.01), changes in resting elbow joint angle (10°, P < 0.001), and a shift in the optimal elbow joint angle for force production (18°, P < 0.05) 2 h after exercise. This was accompanied by impaired muscle strength (27%, P < 0.001) and increased muscle soreness (P < 0.001) 2 days after exercise, which is indicative of muscle damage. When the test MEP amplitudes were matched between sessions, we found that SICI was reduced by 27% in resting and 23% in active BB muscle 2 h after exercise. SICI recovered 2 days after exercise when muscle pain and soreness were present, suggesting that delayed onset muscle soreness from eccentric exercise does not influence SICI. The change in SICI observed 2 h after exercise suggests that eccentric muscle damage has widespread effects throughout the motor system that likely includes changes in motor cortex. PMID:22837166

  7. Changes in intracortical microporosities induced by pharmaceutical treatment of osteoporosis as detected by high resolution micro-CT

    SciTech Connect

    Tommasini S. M.; Miller L.; Trinward, A.; Acerbo, A.S.; De Carlo F. and Judex, S.

    2011-12-28

    Bone's microporosities play important biologic and mechanical roles. Here, we quantified 3D changes in cortical osteocyte-lacunae and other small porosities induced by estrogen withdrawal and two different osteoporosistreatments. Unlike 2D measurements, these data collected via synchrotron radiation-based {mu}CT describe the size and 3D spatial distribution of a large number of porous structures. Six-month old female Sprague-Dawley rats were separated into four groups of age-matched controls, untreated OVX, OVX treated with PTH, and OVX treated with Alendronate (ALN). Intracortical microporosity of the medial quadrant of the femoral diaphysis was quantified at endosteal, intracortical, and periosteal regions of the samples, allowing the quantification of osteocyte lacunae that were formed primarily before versus after the start of treatment. Across the overall thickness of the medial cortex, lacunar volume fraction (Lc.V/TV) was significantly lower in ALN treated rats compared to PTH. In the endosteal region, average osteocyte lacunar volume (< Lc.V >) of untreated OVX rats was significantly lower than in age-matched controls, indicating a decrease in osteocyte lacunar size in bone formed on the endosteal surface after estrogen withdrawal. The effect of treatment (OVX, ALN, PTH) on the number of lacunae per tissue volume (Lc.N/TV) was dependent on the specific location within the cortex (endosteal, intracortical, periosteal). In both the endosteal and intracortical regions, Lc.N/TV was significantly lower in ALN than in untreated OVX, suggesting a site-specific effect in osteocyte lacuna density with ALN treatment. There also were a significantly greater number of small pores (5-100 {micro}m{sup 3} in volume) in the endosteal region for PTH compared to ALN. The mechanical impact of this altered microporosity structure is unknown, but might serve to enhance, rather than deteriorate bone strength with PTH treatment, as smaller osteocyte lacunae may be better able to

  8. Characteristics of sympathetic nerve activity in the rat sciatic nerve in response to microstimulation in a sympathetic fascicle in the contralateral side.

    PubMed

    Sato, Daisuke; Shiwaku, Yutaka; Nakamura, Ryoichi; Koizumi, Shuntaro; Feng, Zhonggang; Kusunoki, Masataka; Nakamura, Takao

    2013-01-01

    Microneurography is used for the monitor of various peripheral nerve activities. We recently reported that the electrical stimulation of peripheral sympathetic nerve fascicle via the microelectrode, i.e., microstimulation, temporarily reduced the blood glucose level in rats in case that the stimulation intensity was set high enough to induce small muscle contraction. However, the nature of microstimulation has little been clarified yet. Therefore, in the present study, we first detected sympathetic nerve signal microneurographically in the bilateral sciatic nerves of rats, and one of the microelectrodes was used for the microstimulation (0.25 ms-width pulse train at a rate of 1 Hz) while sympathetic nerve activity (SNA) was recorded in the contralateral side as a parameter of systemic sympathetic effects. The SNA, expressed as action potential rate, was transiently increased 150 ms after each stimulation pulse in case that the stimulation intensity was set not less than -0.1 V from the contraction threshold (around 0.32 V). To confirm that the increase was not caused by the activation of low threshold, thick fibers such as motor nerves in the vicinity of the microelectrode tip, next, a bipolar hook electrode, instead of the microelectrode, was then used in the stimulation side. As a result, the above-mentioned, transient increase in SNA was not observed any more in the contralateral side. These results suggest that systemic SNA could be enhanced with lower stimulation intensity than that inducing muscle contraction, and that thicker fibers may little affect the increase in the contralateral SNA. PMID:24111188

  9. Conventional and high resolution scanning electron microscopy and cryofracture techniques as tools for tracing cerebellar short intracortical circuits.

    PubMed

    Castejón, O J; Apkarian, R P; Valero, C

    1994-01-01

    The present paper shows the potential contribution of conventional and high resolution scanning electron microscopy (SEM) to trace short intracortical circuits in cryofractured fish, primate and human cerebelli. Conventional SEM slicing technique allowed us to identify afferent mossy and climbing fibers and their synaptic relationship in the granular layer. SEM freeze-fracture method exposed the mossy glomerular synapses and the axo-dendritic connections of climbing fibers. At the Purkinje cell layer, the cryofracture process removed the satellite Bergmann glial cell layer, displaying a partial view of the supra- and infra-ganglionic plexuses of Purkinje cells and the ascending pathways of climbing fibers. High resolution SEM (HRSEM) showed the specimen specific secondary electron (SE-I) image of axosomatic synapses on Golgi cell surface. At the molecular layer, the outer surface of parallel fiber synaptic varicosities were distinguished, establishing the cruciform en passant synaptic contact with the Purkinje cell dendritic spines. HRSEM showed the fractured parallel fiber synaptic varicosities containing spheroidal synaptic vesicles embedded in a high dense extravesicular material. Conventional SEM and gold-palladium coating are useful to trace intracortical circuits. With HRSEM and chromium coating, it is possible to study the outer and inner surfaces of synaptic connections.

  10. The roles of blood-derived macrophages and resident microglia in the neuroinflammatory response to implanted Intracortical microelectrodes

    PubMed Central

    Ravikumar, Madhumitha; Sunil, Smrithi; Black, James; Barkauskas, Deborah S.; Haung, Alex Y.; Miller, Robert H.; Selkirk, Stephen M.; Capadona, Jeffrey R.

    2014-01-01

    Resident microglia and blood-borne macrophages have both been implicated to play a dominant role in mediating the neuroinflammatory response affecting implanted intracortical microelectrodes. However, the distinction between each cell type has not been demonstrated due to a lack of discriminating cellular markers. Understanding the subtle differences of each cell population in mediating neuroinflammation can aid in determining the appropriate therapeutic approaches to improve microelectrode performance. Therefore, the goal of this study is to characterize the role of infiltrating blood-derived cells, specifically macrophages, in mediating neuroinflammation following intracortical microelectrode implantation. Interestingly, we found no correlation between microglia and neuron populations at the microelectrode-tissue interface. On the other hand, blood-borne macrophages consistently dominated the infiltrating cell population following microelectrode implantation. Most importantly, we found a correlation between increased populations of blood-derived cells (including the total macrophage population) and neuron loss at the microelectrode-tissue interface. Specifically, the total macrophage population was greatest at two and sixteen weeks post implantation, at the same time points when we observed the lowest densities of neuronal survival in closest proximity to the implant. Together, our results suggest a dominant role of infiltrating macrophages, and not resident microglia, in mediating neurodegeneration following microelectrode implantation. PMID:24973296

  11. The roles of blood-derived macrophages and resident microglia in the neuroinflammatory response to implanted intracortical microelectrodes.

    PubMed

    Ravikumar, Madhumitha; Sunil, Smrithi; Black, James; Barkauskas, Deborah S; Haung, Alex Y; Miller, Robert H; Selkirk, Stephen M; Capadona, Jeffrey R

    2014-09-01

    Resident microglia and blood-borne macrophages have both been implicated to play a dominant role in mediating the neuroinflammatory response affecting implanted intracortical microelectrodes. However, the distinction between each cell type has not been demonstrated due to a lack of discriminating cellular markers. Understanding the subtle differences of each cell population in mediating neuroinflammation can aid in determining the appropriate therapeutic approaches to improve microelectrode performance. Therefore, the goal of this study is to characterize the role of infiltrating blood-derived cells, specifically macrophages, in mediating neuroinflammation following intracortical microelectrode implantation. Interestingly, we found no correlation between microglia and neuron populations at the microelectrode-tissue interface. On the other hand, blood-borne macrophages consistently dominated the infiltrating cell population following microelectrode implantation. Most importantly, we found a correlation between increased populations of blood-derived cells (including the total macrophage population) and neuron loss at the microelectrode-tissue interface. Specifically, the total macrophage population was greatest at two and sixteen weeks post implantation, at the same time points when we observed the lowest densities of neuronal survival in closest proximity to the implant. Together, our results suggest a dominant role of infiltrating macrophages, and not resident microglia, in mediating neurodegeneration following microelectrode implantation.

  12. A complementary role of intracortical inhibition in age-related tactile degradation and its remodelling in humans.

    PubMed

    Pleger, Burkhard; Wilimzig, Claudia; Nicolas, Volkmar; Kalisch, Tobias; Ragert, Patrick; Tegenthoff, Martin; Dinse, Hubert R

    2016-01-01

    Many attempts are currently underway to restore age-related degraded perception, however, the link between restored perception and remodeled brain function remains elusive. To understand remodeling of age-related cortical reorganization we combined functional magnetic resonance imaging (fMRI) with assessments of tactile acuity, perceptual learning, and computational modeling. We show that aging leads to tactile degradation parallel to enhanced activity in somatosensory cortex. Using a neural field model we reconciled the empirical age-effects by weakening of cortical lateral inhibition. Using perceptual learning, we were able to partially restore tactile acuity, which however was not accompanied by the expected attenuation of cortical activity, but by a further enhancement. The neural field model reproduced these learning effects solely through a weakening of the amplitude of inhibition. These findings suggest that the restoration of age-related degraded tactile acuity on the cortical level is not achieved by re-strengthening lateral inhibition but by further weakening intracortical inhibition.

  13. Reduced diaphyseal strength associated with high intracortical vascular porosity within long bones of children with Osteogenesis Imperfecta

    PubMed Central

    Jameson, John; Smith, Peter; Harris, Gerald

    2015-01-01

    Osteogenesis Imperfecta is a genetic disorder resulting in bone fragility. The mechanisms behind this fragility are not well understood. In addition to characteristic bone mass deficiencies, research suggests that bone material properties are compromised in individuals with this disorder. However, little data exists regarding bone properties beyond the microstructural scale in individuals with this disorder. Specimens were obtained from long bone diaphyses of nine children with osteogenesis imperfecta during routine osteotomy procedures. Small rectangular beams, oriented longitudinally and transversely to the diaphyseal axis, were machined from these specimens and elastic modulus, yield strength, and maximum strength were measured in three-point bending. Intracortical vascular porosity, bone volume fraction, osteocyte lacuna density, and volumetric tissue mineral density were determined by synchrotron micro-computed tomography, and relationships among these mechanical properties and structural parameters were explored. Modulus and strength were on average 64–68% lower in the transverse vs. longitudinal beams (P<0.001, linear mixed model). Vascular porosity ranged between 3–42% of total bone volume. Longitudinal properties were associated negatively with porosity (P≤0.006, linear regressions). Mechanical properties, however, were not associated with osteocyte lacuna density or volumetric tissue mineral density (P≥0.167). Bone properties and structural parameters were not associated significantly with donor age (p≥0.225, linear mixed models). This study presents novel data regarding bone material strength in children with osteogenesis imperfecta. Results confirm that these properties are anisotropic. Elevated vascular porosity was observed in most specimens, and this parameter was associated with reduced bone material strength. These results offer insight towards understanding bone fragility and the role of intracortical porosity on the strength of bone

  14. Modularity of endpoint force patterns evoked using intraspinal microstimulation in treadmill trained and/or neurotrophin-treated chronic spinal cats.

    PubMed

    Boyce, Vanessa S; Lemay, Michel A

    2009-03-01

    Chronic spinal cats with neurotrophin-secreting fibroblasts (NTF) transplants recover locomotor function. To ascertain possible mechanisms, intraspinal microstimulation was used to examine the lumbar spinal cord motor output of four groups of chronic spinal cats: untrained cats with unmodified-fibroblasts graft (Op-control) or NTF graft and locomotor-trained cats with unmodified-fibroblasts graft (Trained) or NTF graft (Combination). Forces generated via intraspinal microstimulation at different hindlimb positions were recorded and interpolated, generating representations of force patterns at the paw. Electromyographs (EMGs) of hindlimb muscles, medial gastrocnemius, tibialis anterior, vastus lateralis, and biceps femoris posterior, were also collected to examine relationships between activated muscles and force pattern types. The same four force pattern types obtained in spinal-intact cats were found in chronic spinal cats. Proportions of force patterns in spinal cats differed significantly from those in intact cats, but no significant differences in proportions were observed among individual spinal groups (Op-control, NTF, Trained, and Combination). However, the proportions of force patterns differed significantly between trained (Trained and Combination) and untrained groups (Op-control and NTF). Thus the frequency of expression of some response types was modified by injury and to a lesser extent by training. Force pattern laminar distribution differed in spinal cats compared with intact, with more responses obtained dorsally (0-1,000 microm) and fewer ventrally (3,200-5,200 microm). EMG analysis demonstrated that muscle activity highly predicted some force pattern types and was independent of hindlimb position. We conclude that spinal motor output modularity is preserved after injury.

  15. Paired-Pulse TMS and Fine-Wire Recordings Reveal Short-Interval Intracortical Inhibition and Facilitation of Deep Multifidus Muscle Fascicles

    PubMed Central

    Massé-Alarie, Hugo; Elgueta Cancino, Edith; Schneider, Cyril; Hodges, Paul

    2016-01-01

    Objective Paired-pulse transcranial magnetic stimulation (ppTMS) is used to probe inhibitory and excitatory networks within the primary motor cortex (M1). These mechanisms are identified for limb muscles but it is unclear whether they share properties with trunk muscles. The aim was to determine whether it was possible to test the intracortical inhibition and facilitation of the deep multifidus muscle fascicles (DM) and at which inter-stimulus intervals (ISI). Methods In ten pain-free individuals, TMS was applied over M1 and motor evoked potentials (MEP) were recorded using fine-wire electrodes in DM. MEPs were conditioned with subthreshold stimuli at ISIs of 1 to 12 ms to test short-interval intracortical inhibition (SICI) and at 15 ms for long-interval intracortical facilitation. Short-interval facilitation (SICF) was tested using 1-ms ISI. Results SICI of DM was consistently obtained with ISI of 1-, 3-, 4- and 12-ms. Facilitation of DM MEP was only identified using SICF paradigm. Conclusions A similar pattern of MEP modulation with ISI changes for deep trunk and limb muscles implies that M1 networks share some functional properties. Significance The ppTMS paradigm presents a potential to determine how M1 inhibitory and excitatory mechanisms participate in brain re-organization in back pain that affects control of trunk muscles. PMID:27509086

  16. A complementary role of intracortical inhibition in age-related tactile degradation and its remodelling in humans

    PubMed Central

    Pleger, Burkhard; Wilimzig, Claudia; Nicolas, Volkmar; Kalisch, Tobias; Ragert, Patrick; Tegenthoff, Martin; Dinse, Hubert R.

    2016-01-01

    Many attempts are currently underway to restore age-related degraded perception, however, the link between restored perception and remodeled brain function remains elusive. To understand remodeling of age-related cortical reorganization we combined functional magnetic resonance imaging (fMRI) with assessments of tactile acuity, perceptual learning, and computational modeling. We show that aging leads to tactile degradation parallel to enhanced activity in somatosensory cortex. Using a neural field model we reconciled the empirical age-effects by weakening of cortical lateral inhibition. Using perceptual learning, we were able to partially restore tactile acuity, which however was not accompanied by the expected attenuation of cortical activity, but by a further enhancement. The neural field model reproduced these learning effects solely through a weakening of the amplitude of inhibition. These findings suggest that the restoration of age-related degraded tactile acuity on the cortical level is not achieved by re-strengthening lateral inhibition but by further weakening intracortical inhibition. PMID:27302219

  17. A novel combinational approach of microstimulation and bioluminescence imaging to study the mechanisms of action of cerebral electrical stimulation in mice

    PubMed Central

    Arsenault, Dany; Drouin-Ouellet, Janelle; Saint-Pierre, Martine; Petrou, Petros; Dubois, Marilyn; Kriz, Jasna; Barker, Roger A; Cicchetti, Antonio; Cicchetti, Francesca

    2015-01-01

    Key points We have developed a unique prototype to perform brain stimulation in mice. This system presents a number of advantages and new developments: 1) all stimulation parameters can be adjusted, 2) both positive and negative current pulses can be generated, guaranteeing electrically balanced stimulation regimen, 3) which can be produced with both low and high impedance electrodes, 4) the developed electrodes ensure localized stimulation and 5) can be used to stimulate and/or record brain potential and 6) in vivo recording of electric pulses allows the detection of defective electrodes (wire breakage or short circuits). This new micro-stimulator device further allows simultaneous live bioluminescence imaging of the mouse brain, enabling real time assessment of the impact of stimulation on cerebral tissue. The use of this novel tool in various transgenic mouse models of disease opens up a whole new range of possibilities in better understanding brain stimulation. Abstract Deep brain stimulation (DBS) is used to treat a number of neurological conditions and is currently being tested to intervene in neuropsychiatric conditions. However, a better understanding of how it works would ensure that side effects could be minimized and benefits optimized. We have thus developed a unique device to perform brain stimulation (BS) in mice and to address fundamental issues related to this methodology in the pre-clinical setting. This new microstimulator prototype was specifically designed to allow simultaneous live bioluminescence imaging of the mouse brain, allowing real time assessment of the impact of stimulation on cerebral tissue. We validated the authenticity of this tool in vivo by analysing the expression of toll-like receptor 2 (TLR2), corresponding to the microglial response, in the stimulated brain regions of TLR2-fluc-GFP transgenic mice, which we further corroborated with post-mortem analyses in these animals as well as in human brains of patients who underwent DBS

  18. In vivo simultaneous cortical and intracortical monitoring of cerebral blood flow and mitochondrial redox state in experimental animals

    NASA Astrophysics Data System (ADS)

    Barbiro-Michaely, E.; Zuckerman, T.; Zarchin, N.; Rinkevich, S.; Knoller, N.; Hadani, M.; Mayevsky, A.

    2003-07-01

    Monitoring of intra-mitochondrial NADH redox state is a common in-vivo technique in experimental animals and is rare in clinical studies. The combination of NADH monitoring with the Laser Doppler flowmetry for cerebral blood flow monitoring was described in various publications. Until now, very small effort was made to monitor NADH and CBF inside the cortex of experimental animals. The significance of this monitoring is in its application to experimental models of Parkinson"s disease or to clinical monitoring situations in the intensive care unit, when ICP is monitored. Here we compared the responses of the gerbil or rat brain to oxygen deficiency, monitored on the brain surface and in different depths. After the animals were anesthetized, the two common carotid arteries (gerbil) were isolated and prepared for following occlusion. The brain was exposed and two optical probes were located on its surface. Ischemia was induced by occluding the two carotid arteries, and anoxia was preformed by inhalation of pure N2. After recovery, one of the probes was inserted into the cortex (0.5-3mm) and a second ischemia or anoxia was preformed. The results showed that: 1. It is possible to monitor both CBF and NADH on the brain surface simultaneously with intracortical location. 2. The responses of the brain to ischemia or anoxia was smaller inside the cortex comparing to brain surface. 3. Negative correlation was found between CBF and NADH in both locations and models. In conclusion, this new model of simultaneously monitoring of CBF and NADH in different cerebral locations can shed light on various pathophysiological situations.

  19. Estimation of Thalamocortical and Intracortical Network Models from Joint Thalamic Single-Electrode and Cortical Laminar-Electrode Recordings in the Rat Barrel System

    PubMed Central

    Blomquist, Patrick; Devor, Anna; Indahl, Ulf G.; Ulbert, Istvan; Einevoll, Gaute T.; Dale, Anders M.

    2009-01-01

    A new method is presented for extraction of population firing-rate models for both thalamocortical and intracortical signal transfer based on stimulus-evoked data from simultaneous thalamic single-electrode and cortical recordings using linear (laminar) multielectrodes in the rat barrel system. Time-dependent population firing rates for granular (layer 4), supragranular (layer 2/3), and infragranular (layer 5) populations in a barrel column and the thalamic population in the homologous barreloid are extracted from the high-frequency portion (multi-unit activity; MUA) of the recorded extracellular signals. These extracted firing rates are in turn used to identify population firing-rate models formulated as integral equations with exponentially decaying coupling kernels, allowing for straightforward transformation to the more common firing-rate formulation in terms of differential equations. Optimal model structures and model parameters are identified by minimizing the deviation between model firing rates and the experimentally extracted population firing rates. For the thalamocortical transfer, the experimental data favor a model with fast feedforward excitation from thalamus to the layer-4 laminar population combined with a slower inhibitory process due to feedforward and/or recurrent connections and mixed linear-parabolic activation functions. The extracted firing rates of the various cortical laminar populations are found to exhibit strong temporal correlations for the present experimental paradigm, and simple feedforward population firing-rate models combined with linear or mixed linear-parabolic activation function are found to provide excellent fits to the data. The identified thalamocortical and intracortical network models are thus found to be qualitatively very different. While the thalamocortical circuit is optimally stimulated by rapid changes in the thalamic firing rate, the intracortical circuits are low-pass and respond most strongly to slowly varying

  20. Long-Range Temporal Correlations in the amplitude of alpha oscillations predict and reflect strength of intracortical facilitation: Combined TMS and EEG study.

    PubMed

    Fedele, Tommaso; Blagovechtchenski, Evgeny; Nazarova, Maria; Iscan, Zafer; Moiseeva, Victoria; Nikulin, Vadim V

    2016-09-01

    While variability of the motor responses to transcranial magnetic stimulation (TMS) is widely acknowledged, little is known about its central origin. One plausible explanation for such variability may relate to different neuronal states defining the reactivity of the cortex to TMS. In this study intrinsic spatio-temporal neuronal dynamics were estimated with Long-Range Temporal Correlations (LRTC) in order to predict the inter-individual differences in the strength of intra-cortical facilitation (ICF) and short-interval intracortical inhibition (SICI) produced by paired-pulse TMS (ppTMS) of the left primary motor cortex. LRTC in the alpha frequency range were assessed from multichannel electroencephalography (EEG) obtained at rest before and after the application of and single-pulse TMS (spTMS) and ppTMS protocols. For the EEG session, preceding TMS application, we showed a positive correlation across subjects between the strength of ICF and LRTC in the fronto-central and parietal areas. This in turn attests to the existence of subject-specific neuronal phenotypes defining the reactivity of the brain to ppTMS. In addition, we also showed that ICF was associated with the changes in neuronal dynamics in the EEG session after the application of the stimulation. This result provides a complementary evidence for the recent findings demonstrating that the cortical stimulation with sparse non-regular stimuli might have considerable long-lasting effects on the cortical activity.

  1. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array

    NASA Astrophysics Data System (ADS)

    Simeral, J. D.; Kim, S.-P.; Black, M. J.; Donoghue, J. P.; Hochberg, L. R.

    2011-04-01

    The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point

  2. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array

    PubMed Central

    Simeral, J D; Kim, S-P; Black, M J; Donoghue, J P; Hochberg, L R

    2013-01-01

    The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point

  3. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array.

    PubMed

    Simeral, J D; Kim, S-P; Black, M J; Donoghue, J P; Hochberg, L R

    2011-04-01

    The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point

  4. Intracortical and Thalamocortical Connections of the Hand and Face Representations in Somatosensory Area 3b of Macaque Monkeys and Effects of Chronic Spinal Cord Injuries.

    PubMed

    Chand, Prem; Jain, Neeraj

    2015-09-30

    Brains of adult monkeys with chronic lesions of dorsal columns of spinal cord at cervical levels undergo large-scale reorganization. Reorganization results in expansion of intact chin inputs, which reactivate neurons in the deafferented hand representation in the primary somatosensory cortex (area 3b), ventroposterior nucleus of the thalamus and cuneate nucleus of the brainstem. A likely contributing mechanism for this large-scale plasticity is sprouting of axons across the hand-face border. Here we determined whether such sprouting takes place in area 3b. We first determined the extent of intrinsic corticocortical connectivity between the hand and the face representations in normal area 3b. Small amounts of neuroanatomical tracers were injected in these representations close to the electrophysiologically determined hand-face border. Locations of the labeled neurons were mapped with respect to the detailed electrophysiological somatotopic maps and histologically determined hand-face border revealed in sections of the flattened cortex stained for myelin. Results show that intracortical projections across the hand-face border are few. In monkeys with chronic unilateral lesions of the dorsal columns and expanded chin representation, connections across the hand-face border were not different compared with normal monkeys. Thalamocortical connections from the hand and face representations in the ventroposterior nucleus to area 3b also remained unaltered after injury. The results show that sprouting of intrinsic connections in area 3b or the thalamocortical inputs does not contribute to large-scale cortical plasticity. Significance statement: Long-term injuries to dorsal spinal cord in adult primates result in large-scale somatotopic reorganization due to which chin inputs expand into the deafferented hand region. Reorganization takes place in multiple cortical areas, and thalamic and medullary nuclei. To what extent this brain reorganization due to dorsal column injuries

  5. Intracortical and Thalamocortical Connections of the Hand and Face Representations in Somatosensory Area 3b of Macaque Monkeys and Effects of Chronic Spinal Cord Injuries.

    PubMed

    Chand, Prem; Jain, Neeraj

    2015-09-30

    Brains of adult monkeys with chronic lesions of dorsal columns of spinal cord at cervical levels undergo large-scale reorganization. Reorganization results in expansion of intact chin inputs, which reactivate neurons in the deafferented hand representation in the primary somatosensory cortex (area 3b), ventroposterior nucleus of the thalamus and cuneate nucleus of the brainstem. A likely contributing mechanism for this large-scale plasticity is sprouting of axons across the hand-face border. Here we determined whether such sprouting takes place in area 3b. We first determined the extent of intrinsic corticocortical connectivity between the hand and the face representations in normal area 3b. Small amounts of neuroanatomical tracers were injected in these representations close to the electrophysiologically determined hand-face border. Locations of the labeled neurons were mapped with respect to the detailed electrophysiological somatotopic maps and histologically determined hand-face border revealed in sections of the flattened cortex stained for myelin. Results show that intracortical projections across the hand-face border are few. In monkeys with chronic unilateral lesions of the dorsal columns and expanded chin representation, connections across the hand-face border were not different compared with normal monkeys. Thalamocortical connections from the hand and face representations in the ventroposterior nucleus to area 3b also remained unaltered after injury. The results show that sprouting of intrinsic connections in area 3b or the thalamocortical inputs does not contribute to large-scale cortical plasticity. Significance statement: Long-term injuries to dorsal spinal cord in adult primates result in large-scale somatotopic reorganization due to which chin inputs expand into the deafferented hand region. Reorganization takes place in multiple cortical areas, and thalamic and medullary nuclei. To what extent this brain reorganization due to dorsal column injuries

  6. Different Current Intensities of Anodal Transcranial Direct Current Stimulation Do Not Differentially Modulate Motor Cortex Plasticity

    PubMed Central

    Kidgell, Dawson J.; Daly, Robin M.; Young, Kayleigh; Lum, Jarrod; Tooley, Gregory; Jaberzadeh, Shapour; Zoghi, Maryam; Pearce, Alan J.

    2013-01-01

    Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates the excitability of neurons within the motor cortex (M1). Although the aftereffects of anodal tDCS on modulating cortical excitability have been described, there is limited data describing the outcomes of different tDCS intensities on intracortical circuits. To further elucidate the mechanisms underlying the aftereffects of M1 excitability following anodal tDCS, we used transcranial magnetic stimulation (TMS) to examine the effect of different intensities on cortical excitability and short-interval intracortical inhibition (SICI). Using a randomized, counterbalanced, crossover design, with a one-week wash-out period, 14 participants (6 females and 8 males, 22–45 years) were exposed to 10 minutes of anodal tDCS at 0.8, 1.0, and 1.2 mA. TMS was used to measure M1 excitability and SICI of the contralateral wrist extensor muscle at baseline, immediately after and 15 and 30 minutes following cessation of anodal tDCS. Cortical excitability increased, whilst SICI was reduced at all time points following anodal tDCS. Interestingly, there were no differences between the three intensities of anodal tDCS on modulating cortical excitability or SICI. These results suggest that the aftereffect of anodal tDCS on facilitating cortical excitability is due to the modulation of synaptic mechanisms associated with long-term potentiation and is not influenced by different tDCS intensities. PMID:23577272

  7. Restoration of motor function following spinal cord injury via optimal control of intraspinal microstimulation: toward a next generation closed-loop neural prosthesis

    PubMed Central

    Grahn, Peter J.; Mallory, Grant W.; Berry, B. Michael; Hachmann, Jan T.; Lobel, Darlene A.; Lujan, J. Luis

    2014-01-01

    Movement is planned and coordinated by the brain and carried out by contracting muscles acting on specific joints. Motor commands initiated in the brain travel through descending pathways in the spinal cord to effector motor neurons before reaching target muscles. Damage to these pathways by spinal cord injury (SCI) can result in paralysis below the injury level. However, the planning and coordination centers of the brain, as well as peripheral nerves and the muscles that they act upon, remain functional. Neuroprosthetic devices can restore motor function following SCI by direct electrical stimulation of the neuromuscular system. Unfortunately, conventional neuroprosthetic techniques are limited by a myriad of factors that include, but are not limited to, a lack of characterization of non-linear input/output system dynamics, mechanical coupling, limited number of degrees of freedom, high power consumption, large device size, and rapid onset of muscle fatigue. Wireless multi-channel closed-loop neuroprostheses that integrate command signals from the brain with sensor-based feedback from the environment and the system's state offer the possibility of increasing device performance, ultimately improving quality of life for people with SCI. In this manuscript, we review neuroprosthetic technology for improving functional restoration following SCI and describe brain-machine interfaces suitable for control of neuroprosthetic systems with multiple degrees of freedom. Additionally, we discuss novel stimulation paradigms that can improve synergy with higher planning centers and improve fatigue-resistant activation of paralyzed muscles. In the near future, integration of these technologies will provide SCI survivors with versatile closed-loop neuroprosthetic systems for restoring function to paralyzed muscles. PMID:25278830

  8. [The Ability to Successfully Perform Different Kinds of Cognitive Activity Is Reflected in the Topological Features of Intracortical Interactions (Sex Differences in Boys and Girls Aged 5-6 Years)].

    PubMed

    Panasevich, E A; Tsitseroshin, M N

    2015-01-01

    We studied the correlation of intellectual development according to The Wechsler Intelligence Scale for Children (WISC test) with the spatial organization of resting EEG in 52 children aged 5-6 years. It was found that the patterns of interregional interactions of different parts of the cortex which correspond with the best performance in the subtests in boys (n = 23) and girls (n = 29) have significant topological differences. In girls, successful subtest performance positively correlated to a greater extent with interhemispheric interactions; in boys--long longitudinal rostral-caudal interactions between various regions of the cortex. The results showed that there are important gender differences in the spatial organization of brain activity associated with the performance of different cognitive activities in preschool children. The successful performance of various subtests by boys required considerable variability in the organization of spatial patterns of interregional interactions; on the contrary, the spatial structure of these patterns in girls was relatively invariable. Obviously, for the successful performance of various cognitive activities at this age in boys, the cortex need to form highly specialized organization of intracortical interactions, while in girls the brain uses relatively similar reorganization of interactions. The data suggest that 5-6-year-old boys and girls use different cognitive strategies when performing the same subtests of the WISC test.

  9. An implantable neural stimulator for intraspinal microstimulation.

    PubMed

    Troyk, Philip R; Mushahwar, Vivian K; Stein, Richard B; Suh, Sungjae; Everaert, Dirk; Holinski, Brad; Hu, Zhe; DeMichele, Glenn; Kerns, Douglas; Kayvani, Kevin

    2012-01-01

    This paper reports on a wireless stimulator device for use in animal experiments as part of an ongoing investigation into intraspinal stimulation (ISMS) for restoration of walking in humans with spinal cord injury. The principle behind using ISMS is the activation of residual motor-control neural networks within the spinal cord ventral horn below the level of lesion following a spinal cord injury. The attractiveness to this technique is that a small number of electrodes can be used to induce bilateral walking patterns in the lower limbs. In combination with advanced feedback algorithms, ISMS has the potential to restore walking for distances that exceed that produced by other types of functional electrical stimulation. Recent acute animal experiments have demonstrated the feasibility of using ISMS to produce the coordinated walking patterns. Here we described a wireless implantable stimulation system to be used in chronic animal experiments and for providing the basis for a system suitable for use in humans. Electrical operation of the wireless system is described, including a demonstration of reverse telemetry for monitoring the stimulating electrode voltages. PMID:23366038

  10. Approaches to a cortical vision prosthesis: implications of electrode size and placement

    NASA Astrophysics Data System (ADS)

    Christie, Breanne P.; Ashmont, Kari R.; House, Paul A.; Greger, Bradley

    2016-04-01

    Objective. In order to move forward with the development of a cortical vision prosthesis, the critical issues in the field must be identified. Approach. To begin this process, we performed a brief review of several different cortical and retinal stimulation techniques that can be used to restore vision. Main results. Intracortical microelectrodes and epicortical macroelectrodes have been evaluated as the basis of a vision prosthesis. We concluded that an important knowledge gap necessitates an experimental in vivo performance evaluation of microelectrodes placed on the surface of the visual cortex. A comparison of the level of vision restored by intracortical versus epicortical microstimulation is necessary. Because foveal representation in the primary visual cortex involves more cortical columns per degree of visual field than does peripheral vision, restoration of foveal vision may require a large number of closely spaced microelectrodes. Based on previous studies of epicortical macrostimulation, it is possible that stimulation via surface microelectrodes could produce a lower spatial resolution, making them better suited for restoring peripheral vision. Significance. The validation of epicortical microstimulation in addition to the comparison of epicortical and intracortical approaches for vision restoration will fill an important knowledge gap and may have important implications for surgical strategies and device longevity. It is possible that the best approach to vision restoration will utilize both epicortical and intracortical microstimulation approaches, applying them appropriately to different visual representations in the primary visual cortex.

  11. The emission pattern of vocalizations and directionality of the sonar system in the echolocating bat, Pteronotus parnelli.

    PubMed

    Henze, D; O'Neill, W E

    1991-05-01

    The radiation patterns of the first three harmonics (approx. 30, 60, 90 kHz) of the mustached bat biosonar signal were measured from vocalizations elicited by cortical microstimulation. The primary foci of the acoustic beam patterns were in front of the mouth but somewhat below the horizontal plane. The prominent second and third harmonics showed sharp cutoffs between 20 degrees and 30 degrees lateral to the midline. Sidelobes were found, suggesting the influence of some vocal tract interference. When compared with previously measured estimates of the directionality of the auditory system, the vocal emission patterns are roughly complementary: Regions of maximum auditory sensitivity are found in areas of submaximal power for the sonar pulse beam pattern. The result is that, for the two most important harmonics, the "biosonar system" (i.e., vocal beam pattern plus receiver directionality) has a broader and more uniform directionality than either component alone. Therefore, within a limited region of space, echo amplitude will vary less as a function of angular displacement. This reduces the confounding influences of absolute sound pressure level on interaural intensity differences.

  12. Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex

    PubMed Central

    Perge, János A.; Zhang, Shaomin; Malik, Wasim Q.; Homer, Mark L.; Cash, Sydney; Friehs, Gerhard; Eskandar, Emad N.; Donoghue, John P.; Hochberg, Leigh R.

    2014-01-01

    Objective Action potentials and local field potentials (LFPs) recorded in primary motor cortex contain information about the direction of movement. LFPs are assumed to be more robust to signal instabilities than action potentials, which makes LFPs along with action potentials a promising signal source for brain-computer interface applications. Still, relatively little research has directly compared the utility of LFPs to action potentials in decoding movement direction in human motor cortex. Approach We conducted intracortical multielectrode recordings in motor cortex of two persons (T2 and [S3]) as they performed a motor imagery task. We then compared the offline decoding performance of LFPs and spiking extracted from the same data recorded across a one-year period in each participant. Main results We obtained offline prediction accuracy of movement direction and endpoint velocity in multiple LFP bands, with the best performance in the highest (200–400Hz) LFP frequency band, presumably also containing low-pass filtered action potentials. Cross-frequency correlations of preferred directions and directional modulation index showed high similarity of directional information between action potential firing rates (spiking) and high frequency LFPs (70–400Hz), and increasing disparity with lower frequency bands (0–7, 10–40 and 50–65Hz). Spikes predicted the direction of intended movement more accurately than any individual LFP band, however combined decoding of all LFPs was statistically indistinguishable from spike based performance. As the quality of spiking signals (i.e. signal amplitude) and the number of significantly modulated spiking units decreased, the offline decoding performance decreased 3.6[5.65]%/month (for T2 and [S3] respectively). The decrease in the number of significantly modulated LFP signals and their decoding accuracy followed a similar trend (2.4[2.85]%/month, ANCOVA, p=0.27[0.03]). Significance Field potentials provided comparable

  13. Directing 101.

    ERIC Educational Resources Information Center

    Pintoff, Ernest

    Providing an introduction to anyone considering directing as a field of study or career, this book takes a broad look at the process of directing and encourages students and professionals alike to look outside of the movie industry for inspiration. Chapters in the book discuss selecting and acquiring material; budgeting and financing; casting and…

  14. How to Direct Directed Reading.

    ERIC Educational Resources Information Center

    Gerlach, Gail J.

    1981-01-01

    Describes how an elementary teacher can plan and manage directed reading, including selecting appropriate children's books, preparing a reading guidesheet for each, and conducting conferences with each student to reinforce reading comprehension and vocabulary development. (SJL)

  15. TMS reveals a direct influence of spinal projections from human SMAp on precise force production.

    PubMed

    Entakli, Jonathan; Bonnard, Mireille; Chen, Sophie; Berton, Eric; De Graaf, Jozina B

    2014-01-01

    The corticospinal (CS) system plays an important role in fine motor control, especially in precision grip tasks. Although the primary motor cortex (M1) is the main source of the CS projections, other projections have been found, especially from the supplementary motor area proper (SMAp). To study the characteristics of these CS projections from SMAp, we compared muscle responses of an intrinsic hand muscle (FDI) evoked by stimulation of human M1 and SMAp during an isometric static low-force control task. Subjects were instructed to maintain a small cursor on a target force curve by applying a pressure with their right precision grip on a force sensor. Neuronavigated transcranial magnetic stimulation was used to stimulate either left M1 or left SMAp with equal induced electric field values at the defined cortical targets. The results show that the SMAp stimulation evokes reproducible muscle responses with similar latencies and amplitudes as M1 stimulation, and with a clear and significant shorter silent period. These results suggest that (i) CS projections from human SMAp are as rapid and efficient as those from M1, (ii) CS projections from SMAp are directly involved in control of the excitability of spinal motoneurons and (iii) SMAp has a different intracortical inhibitory circuitry. We conclude that human SMAp and M1 both have direct influence on force production during fine manual motor tasks. PMID:24164635

  16. Late emergence of the vibrissa direction selectivity map in the rat barrel cortex.

    PubMed

    Kremer, Yves; Léger, Jean-François; Goodman, Dan; Brette, Romain; Bourdieu, Laurent

    2011-07-20

    In the neocortex, neuronal selectivities for multiple sensorimotor modalities are often distributed in topographical maps thought to emerge during a restricted period in early postnatal development. Rodent barrel cortex contains a somatotopic map for vibrissa identity, but the existence of maps representing other tactile features has not been clearly demonstrated. We addressed the issue of the existence in the rat cortex of an intrabarrel map for vibrissa movement direction using in vivo two-photon imaging. We discovered that the emergence of a direction map in rat barrel cortex occurs long after all known critical periods in the somatosensory system. This map is remarkably specific, taking a pinwheel-like form centered near the barrel center and aligned to the barrel cortex somatotopy. We suggest that this map may arise from intracortical mechanisms and demonstrate by simulation that the combination of spike-timing-dependent plasticity at synapses between layer 4 and layer 2/3 and realistic pad stimulation is sufficient to produce such a map. Its late emergence long after other classical maps suggests that experience-dependent map formation and refinement continue throughout adult life.

  17. Direct ELISA.

    PubMed

    Lin, Alice V

    2015-01-01

    First described by Engvall and Perlmann, the enzyme-linked immunosorbent assay (ELISA) is a rapid and sensitive method for detection and quantitation of an antigen using an enzyme-labeled antibody. Besides routine laboratory usage, ELISA has been utilized in medical field and food industry as diagnostic and quality control tools. Traditionally performed in 96-well or 384-well polystyrene plates, the technology has expanded to other platforms with increase in automation. Depending on the antigen epitope and availability of specific antibody, there are variations in ELISA setup. The four basic formats are direct, indirect, sandwich, and competitive ELISAs. Direct ELISA is the simplest format requiring an antigen and an enzyme-conjugated antibody specific to the antigen. This chapter describes the individual steps for detection of a plate-bound antigen using a horseradish peroxidase (HRP)-conjugated antibody and luminol-based enhanced chemiluminescence (ECL) substrate. The methodological approach to optimize the assay by chessboard titration is also provided.

  18. DIRECTIONAL COUPLERS

    DOEpatents

    Nigg, D.J.

    1961-12-01

    A directional coupler of small size is designed. Stripline conductors of non-rectilinear configuration, and separated from each other by a thin dielectric spacer. cross each other at least at two locations at right angles, thus providing practically pure capacitive coupling which substantially eliminates undesirable inductive coupling. The conductors are sandwiched between a pair of ground planes. The coupling factor is dependent only on the thickness and dielectric constant of the dielectric spacer at the point of conductor crossover. (AEC)

  19. DIRECTIONAL ANTENNA

    DOEpatents

    Bittner, B.J.

    1958-05-20

    A high-frequency directional antenna of the 360 d scaring type is described. The antenna has for its desirable features the reduction in both size and complexity of the mechanism for rotating the antenna through its scanning movement. These advantages result from the rotation of only the driven element, the reflector remaining stationary. The particular antenna structure comprises a refiector formed by a plurality of metallic slats arranged in the configuration of an annular cage having the shape of a zone of revolution. The slats are parallel to each other and are disposed at an angle of 45 d to the axis of the cage. A directional radiator is disposed inside the cage at an angle of 45 d to the axis of the cage in the same direction as the reflecting slats which it faces. As the radiator is rotated, the electromagnetic wave is reflected from the slats facing the radiator and thereafter passes through the cage on the opposite side, since these slats are not parallel with the E vector of the wave.

  20. Direct ELISA.

    PubMed

    Lin, Alice V

    2015-01-01

    First described by Engvall and Perlmann, the enzyme-linked immunosorbent assay (ELISA) is a rapid and sensitive method for detection and quantitation of an antigen using an enzyme-labeled antibody. Besides routine laboratory usage, ELISA has been utilized in medical field and food industry as diagnostic and quality control tools. Traditionally performed in 96-well or 384-well polystyrene plates, the technology has expanded to other platforms with increase in automation. Depending on the antigen epitope and availability of specific antibody, there are variations in ELISA setup. The four basic formats are direct, indirect, sandwich, and competitive ELISAs. Direct ELISA is the simplest format requiring an antigen and an enzyme-conjugated antibody specific to the antigen. This chapter describes the individual steps for detection of a plate-bound antigen using a horseradish peroxidase (HRP)-conjugated antibody and luminol-based enhanced chemiluminescence (ECL) substrate. The methodological approach to optimize the assay by chessboard titration is also provided. PMID:26160564

  1. Modulation of Cortical Inhibitory Circuits after Cathodal Transcranial Direct Current Stimulation over the Primary Motor Cortex

    PubMed Central

    Sasaki, Ryoki; Miyaguchi, Shota; Kotan, Shinichi; Kojima, Sho; Kirimoto, Hikari; Onishi, Hideaki

    2016-01-01

    Here, we aimed to evaluate whether cathodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) and primary somatosensory cortex (S1) can modulate cortical inhibitory circuits. Sixteen healthy subjects participated in this study. Cathodal tDCS was positioned over the left M1 (M1 cathodal) or left S1 (S1 cathodal) with an intensity of 1 mA for 10 min. Sham tDCS was applied for 10 min over the left M1 (sham). Motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) were recorded from the right abductor pollicis brevis (APB) muscle before the intervention (pre) and 10 and 30 min after the intervention (post 1 and post 2, respectively). Cortical inhibitory circuits were evaluated using short-interval intracortical inhibition (SICI) and short-latency afferent inhibition (SAI). M1 cathodal decreased single-pulse MEP amplitudes at post 1 and decreased SAI at post 1 and post 2; however, SICI did not exhibit any change. S1 cathodal and sham did not show any changes in MEP amplitudes at any of the three time points. These results demonstrated that cathodal tDCS over the M1 not only decreases the M1 excitability but also affects the cortical inhibitory circuits related to SAI. PMID:26869909

  2. Advance care directives

    MedlinePlus

    ... advance directive; Do-not-resuscitate - advance directive; Durable power of attorney - advance care directive; POA - advance care directive; Health care agent - advance care directive; Health care proxy - ...

  3. Linear summation of cat motor cortex outputs.

    PubMed

    Ethier, Christian; Brizzi, Laurent; Darling, Warren G; Capaday, Charles

    2006-05-17

    Recruitment of movement-related muscle synergies involves the functional linking of motor cortical points. We asked how the outputs of two simultaneously stimulated motor cortical points would interact. To this end, experiments were done in ketamine-anesthetized cats. When prolonged (e.g., 500 ms) trains of intracortical microstimulation were applied in the primary motor cortex, stimulus currents as low as 10-20 microA evoked coordinated movements of the contralateral forelimb. Paw kinematics in three dimensions and the electromyographic (EMG) activity of eight muscles were simultaneously recorded. We show that the EMG outputs of two cortical points simultaneously stimulated are additive. The movements were represented as displacement vectors pointing from initial to final paw position. The displacement vectors resulting from simultaneous stimulation of two cortical points pointed in nearly the same direction as the algebraic resultant vector. Linear summation of outputs was also found when inhibition at one of the cortical points was reduced by GABAA receptor antagonists. A simple principle emerges from these results. Notwithstanding the underlying complex neuronal circuitry, motor cortex outputs combine nearly linearly in terms of movement direction and muscle activation patterns. Importantly, simultaneous activation does not change the nature of the output at each point. An additional implication is that not all possible movements need be explicitly represented in the motor cortex; a large number of different movements may be synthesized from a smaller repertoire.

  4. Getting signals into the brain: visual prosthetics through thalamic microstimulation.

    PubMed

    Pezaris, John S; Eskandar, Emad N

    2009-07-01

    Common causes of blindness are diseases that affect the ocular structures, such as glaucoma, retinitis pigmentosa, and macular degeneration, rendering the eyes no longer sensitive to light. The visual pathway, however, as a predominantly central structure, is largely spared in these cases. It is thus widely thought that a device-based prosthetic approach to restoration of visual function will be effective and will enjoy similar success as cochlear implants have for restoration of auditory function. In this article the authors review the potential locations for stimulation electrode placement for visual prostheses, assessing the anatomical and functional advantages and disadvantages of each. Of particular interest to the neurosurgical community is placement of deep brain stimulating electrodes in thalamic structures that has shown substantial promise in an animal model. The theory of operation of visual prostheses is discussed, along with a review of the current state of knowledge. Finally, the visual prosthesis is proposed as a model for a general high-fidelity machine-brain interface.

  5. The Homeostatic Interaction Between Anodal Transcranial Direct Current Stimulation and Motor Learning in Humans is Related to GABAA Activity

    PubMed Central

    Amadi, Ugwechi; Allman, Claire; Johansen-Berg, Heidi; Stagg, Charlotte J.

    2015-01-01

    Background The relative timing of plasticity-induction protocols is known to be crucial. For example, anodal transcranial direct current stimulation (tDCS), which increases cortical excitability and typically enhances plasticity, can impair performance if it is applied before a motor learning task. Such timing-dependent effects have been ascribed to homeostatic plasticity, but the specific synaptic site of this interaction remains unknown. Objective We wished to investigate the synaptic substrate, and in particular the role of inhibitory signaling, underpinning the behavioral effects of anodal tDCS in homeostatic interactions between anodal tDCS and motor learning. Methods We used transcranial magnetic stimulation (TMS) to investigate cortical excitability and inhibitory signaling following tDCS and motor learning. Each subject participated in four experimental sessions and data were analyzed using repeated measures ANOVAs and post-hoc t-tests as appropriate. Results As predicted, we found that anodal tDCS prior to the motor task decreased learning rates. This worsening of learning after tDCS was accompanied by a correlated increase in GABAA activity, as measured by TMS-assessed short interval intra-cortical inhibition (SICI). Conclusion This provides the first direct demonstration in humans that inhibitory synapses are the likely site for the interaction between anodal tDCS and motor learning, and further, that homeostatic plasticity at GABAA synapses has behavioral relevance in humans. PMID:26279408

  6. [Artificial Feedback for Invasive Brain-Computer Interfaces].

    PubMed

    Badakva, A M; Miller, N V; Zobova, L N

    2016-01-01

    During the last two decades, considerable progress has been made in the studies of brain-computer interfaces (BCIs)--devices in which motor signals from the brain are registered by multi-electrode arrays and transformed into commands for articial actuators such as cursors and robotic devices. This review is focused on one problem. Voluntary motor control is based on neurophysiological processes which depend heavily on the afferent innervation of skin, muscles and joints. Thus, invasive BCI has to be based on a bidirectional system in which motor control signals are registered by multi-channel micro-electrodes implanted in motor areas, while tactile, proprioceptive and other useful signals are transported back to the brain through spatial-temporal patterns of intracortical microstimulation (ICMS) delivered to sensory areas. In general, the studies of invasive BCIs have advanced in several directions. The progress of BCIs with articial sensory feedback will not only help patients, but will also expand knowledge base in the field of human cortical functions. PMID:27188155

  7. Building an organic computing device with multiple interconnected brains.

    PubMed

    Pais-Vieira, Miguel; Chiuffa, Gabriela; Lebedev, Mikhail; Yadav, Amol; Nicolelis, Miguel A L

    2015-01-01

    Recently, we proposed that Brainets, i.e. networks formed by multiple animal brains, cooperating and exchanging information in real time through direct brain-to-brain interfaces, could provide the core of a new type of computing device: an organic computer. Here, we describe the first experimental demonstration of such a Brainet, built by interconnecting four adult rat brains. Brainets worked by concurrently recording the extracellular electrical activity generated by populations of cortical neurons distributed across multiple rats chronically implanted with multi-electrode arrays. Cortical neuronal activity was recorded and analyzed in real time, and then delivered to the somatosensory cortices of other animals that participated in the Brainet using intracortical microstimulation (ICMS). Using this approach, different Brainet architectures solved a number of useful computational problems, such as discrete classification, image processing, storage and retrieval of tactile information, and even weather forecasting. Brainets consistently performed at the same or higher levels than single rats in these tasks. Based on these findings, we propose that Brainets could be used to investigate animal social behaviors as well as a test bed for exploring the properties and potential applications of organic computers. PMID:26158615

  8. [Artificial Feedback for Invasive Brain-Computer Interfaces].

    PubMed

    Badakva, A M; Miller, N V; Zobova, L N

    2016-01-01

    During the last two decades, considerable progress has been made in the studies of brain-computer interfaces (BCIs)--devices in which motor signals from the brain are registered by multi-electrode arrays and transformed into commands for articial actuators such as cursors and robotic devices. This review is focused on one problem. Voluntary motor control is based on neurophysiological processes which depend heavily on the afferent innervation of skin, muscles and joints. Thus, invasive BCI has to be based on a bidirectional system in which motor control signals are registered by multi-channel micro-electrodes implanted in motor areas, while tactile, proprioceptive and other useful signals are transported back to the brain through spatial-temporal patterns of intracortical microstimulation (ICMS) delivered to sensory areas. In general, the studies of invasive BCIs have advanced in several directions. The progress of BCIs with articial sensory feedback will not only help patients, but will also expand knowledge base in the field of human cortical functions.

  9. Building an organic computing device with multiple interconnected brains

    PubMed Central

    Pais-Vieira, Miguel; Chiuffa, Gabriela; Lebedev, Mikhail; Yadav, Amol; Nicolelis, Miguel A. L.

    2015-01-01

    Recently, we proposed that Brainets, i.e. networks formed by multiple animal brains, cooperating and exchanging information in real time through direct brain-to-brain interfaces, could provide the core of a new type of computing device: an organic computer. Here, we describe the first experimental demonstration of such a Brainet, built by interconnecting four adult rat brains. Brainets worked by concurrently recording the extracellular electrical activity generated by populations of cortical neurons distributed across multiple rats chronically implanted with multi-electrode arrays. Cortical neuronal activity was recorded and analyzed in real time, and then delivered to the somatosensory cortices of other animals that participated in the Brainet using intracortical microstimulation (ICMS). Using this approach, different Brainet architectures solved a number of useful computational problems, such as discrete classification, image processing, storage and retrieval of tactile information, and even weather forecasting. Brainets consistently performed at the same or higher levels than single rats in these tasks. Based on these findings, we propose that Brainets could be used to investigate animal social behaviors as well as a test bed for exploring the properties and potential applications of organic computers. PMID:26158615

  10. Behavioral demonstration of a somatosensory neuroprosthesis.

    PubMed

    Berg, J A; Dammann, J F; Tenore, F V; Tabot, G A; Boback, J L; Manfredi, L R; Peterson, M L; Katyal, K D; Johannes, M S; Makhlin, A; Wilcox, R; Franklin, R K; Vogelstein, R J; Hatsopoulos, N G; Bensmaia, S J

    2013-05-01

    Tactile sensation is critical for effective object manipulation, but current prosthetic upper limbs make no provision for delivering somesthetic feedback to the user. For individuals who require use of prosthetic limbs, this lack of feedback transforms a mundane task into one that requires extreme concentration and effort. Although vibrotactile motors and sensory substitution devices can be used to convey gross sensations, a direct neural interface is required to provide detailed and intuitive sensory feedback. In light of this, we describe the implementation of a somatosensory prosthesis with which we elicit, through intracortical microstimulation (ICMS), percepts whose magnitude is graded according to the force exerted on the prosthetic finger. Specifically, the prosthesis consists of a sensorized finger, the force output of which is converted into a regime of ICMS delivered to primary somatosensory cortex through chronically implanted multi-electrode arrays. We show that the performance of animals (Rhesus macaques) on a tactile task is equivalent whether stimuli are delivered to the native finger or to the prosthetic finger. PMID:23475375

  11. Review of Brain-Machine Interfaces Used in Neural Prosthetics with New Perspective on Somatosensory Feedback through Method of Signal Breakdown

    PubMed Central

    Vidal, Gabriel W. Vattendahl; Rynes, Mathew L.; Kelliher, Zachary; Goodwin, Shikha Jain

    2016-01-01

    The brain-machine interface (BMI) used in neural prosthetics involves recording signals from neuron populations, decoding those signals using mathematical modeling algorithms, and translating the intended action into physical limb movement. Recently, somatosensory feedback has become the focus of many research groups given its ability in increased neural control by the patient and to provide a more natural sensation for the prosthetics. This process involves recording data from force sensitive locations on the prosthetics and encoding these signals to be sent to the brain in the form of electrical stimulation. Tactile sensation has been achieved through peripheral nerve stimulation and direct stimulation of the somatosensory cortex using intracortical microstimulation (ICMS). The initial focus of this paper is to review these principles and link them to modern day applications such as restoring limb use to those who lack such control. With regard to how far the research has come, a new perspective for the signal breakdown concludes the paper, offering ideas for more real somatosensory feedback using ICMS to stimulate particular sensations by differentiating touch sensors and filtering data based on unique frequencies. PMID:27313959

  12. Voltage-sensitive dye imaging of primary motor cortex activity produced by ventral tegmental area stimulation.

    PubMed

    Kunori, Nobuo; Kajiwara, Riichi; Takashima, Ichiro

    2014-06-25

    The primary motor cortex (M1) receives dopaminergic projections from the ventral tegmental area (VTA) through the mesocortical dopamine pathway. However, few studies have focused on changes in M1 neuronal activity caused by VTA activation. To address this issue, we used voltage-sensitive dye imaging (VSD) to reveal the spatiotemporal dynamics of M1 activity induced by single-pulse stimulation of VTA in anesthetized rats. VSD imaging showed that brief electrical stimulation of unilateral VTA elicited a short-latency excitatory-inhibitory sequence of neuronal activity not only in the ipsilateral but also in the contralateral M1. The contralateral M1 response was not affected by pharmacological blockade of ipsilateral M1 activity, but it was completely abolished by corpus callosum transection. Although the VTA-evoked neuronal activity extended throughout the entire M1, we found the most prominent activity in the forelimb area of M1. The 6-OHDA-lesioned VTA failed to evoke M1 activity. Furthermore, both excitatory and inhibitory intact VTA-induced activity was entirely extinguished by blocking glutamate receptors in the target M1. When intracortical microstimulation of M1 was paired with VTA stimulation, the evoked forelimb muscle activity was facilitated or inhibited, depending on the interval between the two stimuli. These findings suggest that VTA neurons directly modulate the excitability of M1 neurons via fast glutamate signaling and, consequently, may control the last cortical stage of motor command processing. PMID:24966388

  13. Integrated circuit amplifiers for multi-electrode intracortical recording.

    PubMed

    Jochum, Thomas; Denison, Timothy; Wolf, Patrick

    2009-02-01

    Significant progress has been made in systems that interpret the electrical signals of the brain in order to control an actuator. One version of these systems senses neuronal extracellular action potentials with an array of up to 100 miniature probes inserted into the cortex. The impedance of each probe is high, so environmental electrical noise is readily coupled to the neuronal signal. To minimize this noise, an amplifier is placed close to each probe. Thus, the need has arisen for many amplifiers to be placed near the cortex. Commercially available integrated circuits do not satisfy the area, power and noise requirements of this application, so researchers have designed custom integrated-circuit amplifiers. This paper presents a comprehensive survey of the neural amplifiers described in publications prior to 2008. Methods to achieve high input impedance, low noise and a large time-constant high-pass filter are reviewed. A tutorial on the biological, electrochemical, mechanical and electromagnetic phenomena that influence amplifier design is provided. Areas for additional research, including sub-nanoampere electrolysis and chronic cortical heating, are discussed. Unresolved design concerns, including teraohm circuitry, electrical overstress and component failure, are identified.

  14. Biocompatibility of Intracortical Microelectrodes: Current Status and Future Prospects

    PubMed Central

    Marin, Cristina; Fernández, Eduardo

    2010-01-01

    Rehabilitation of sensory and/or motor functions in patients with neurological diseases is more and more dealing with artificial electrical stimulation and recording from populations of neurons using biocompatible chronic implants. As more and more patients have benefited from these approaches, the interest in neural interfaces has grown significantly. However an important problem reported with all available microelectrodes to date is long-term viability and biocompatibility. Therefore it is essential to understand the signals that lead to neuroglial activation and create a targeted intervention to control the response, reduce the adverse nature of the reactions and maintain an ideal environment for the brain-electrode interface. We discuss some of the exciting opportunities and challenges that lie in this intersection of neuroscience research, bioengineering, neurology and biomaterials. PMID:20577634

  15. Use of functional near-infrared spectroscopy to evaluate the effects of anodal transcranial direct current stimulation on brain connectivity in motor-related cortex

    NASA Astrophysics Data System (ADS)

    Yan, Jiaqing; Wei, Yun; Wang, Yinghua; Xu, Gang; Li, Zheng; Li, Xiaoli

    2015-04-01

    Transcranial direct current stimulation (tDCS) is a noninvasive, safe and convenient neuro-modulatory technique in neurological rehabilitation, treatment, and other aspects of brain disorders. However, evaluating the effects of tDCS is still difficult. We aimed to evaluate the effects of tDCS using hemodynamic changes using functional near-infrared spectroscopy (fNIRS). Five healthy participants were employed and anodal tDCS was applied to the left motor-related cortex, with cathodes positioned on the right dorsolateral supraorbital area. fNIRS data were collected from the right motor-related area at the same time. Functional connectivity (FC) between intracortical regions was calculated between fNIRS channels using a minimum variance distortion-less response magnitude squared coherence (MVDR-MSC) method. The levels of Oxy-HbO change and the FC between channels during the prestimulation, stimulation, and poststimulation stages were compared. Results showed no significant level difference, but the FC measured by MVDR-MSC significantly decreased during tDCS compared with pre-tDCS and post-tDCS, although the FC difference between pre-tDCS and post-tDCS was not significant. We conclude that coherence calculated from resting state fNIRS may be a useful tool for evaluating the effects of anodal tDCS and optimizing parameters for tDCS application.

  16. Descendants and advance directives.

    PubMed

    Buford, Christopher

    2014-01-01

    Some of the concerns that have been raised in connection to the use of advance directives are of the epistemic variety. Such concerns highlight the possibility that adhering to an advance directive may conflict with what the author of the directive actually wants (or would want) at the time of treatment. However, at least one objection to the employment of advance directives is metaphysical in nature. The objection to be discussed here, first formulated by Rebecca Dresser and labeled by Allen Buchanan as the slavery argument and David DeGrazia the someone else problem, aims to undermine the legitimacy of certain uses of advance directives by concluding that such uses rest upon an incorrect assumption about the identity over time of those ostensibly governed by the directives. There have been numerous attempts to respond to this objection. This paper aims to assess two strategies that have been pursued to cope with the problem.

  17. Descendants and advance directives.

    PubMed

    Buford, Christopher

    2014-01-01

    Some of the concerns that have been raised in connection to the use of advance directives are of the epistemic variety. Such concerns highlight the possibility that adhering to an advance directive may conflict with what the author of the directive actually wants (or would want) at the time of treatment. However, at least one objection to the employment of advance directives is metaphysical in nature. The objection to be discussed here, first formulated by Rebecca Dresser and labeled by Allen Buchanan as the slavery argument and David DeGrazia the someone else problem, aims to undermine the legitimacy of certain uses of advance directives by concluding that such uses rest upon an incorrect assumption about the identity over time of those ostensibly governed by the directives. There have been numerous attempts to respond to this objection. This paper aims to assess two strategies that have been pursued to cope with the problem. PMID:25743056

  18. Modelling Directional Solidification

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.; Zhou, Jian; Yuan, Weijun

    1992-01-01

    The long range goal of this program has been to develop an improved understanding of phenomena of importance to directional solidification, in order to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Current emphasis is on determining the influence of perturbations on directional solidification.

  19. Direct Conversion of Energy.

    ERIC Educational Resources Information Center

    Corliss, William R.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Direct energy conversion involves energy transformation without moving parts. The concepts of direct and dynamic energy conversion plus the laws governing energy conversion are investigated. Among the topics…

  20. Direct Support Workforce Development.

    ERIC Educational Resources Information Center

    Impact, 1998

    1998-01-01

    The fourteen brief articles in this theme issue all examine challenges in the development of direct support staff working with people who have developmental disabilities. The articles also include the views of direct support providers and people with developmental disabilities themselves, as well as examples of strategies used by provider agencies…

  1. Decisions Concerning Directional Dependence

    ERIC Educational Resources Information Center

    von Eye, Alexander; DeShon, Richard P.

    2012-01-01

    In this rejoinder, von Eye and DeShon discuss the decision strategies proposed in their original article ("Directional Dependence in Developmental Research," this issue), as well as the ones proposed by the authors of the commentary (Pornprasertmanit and Little, "Determining Directional Dependency in Causal Associations," this issue). In addition,…

  2. Direct Instruction News, 2001.

    ERIC Educational Resources Information Center

    Tarver, Sara, Ed.

    2001-01-01

    These three issues of a newsletter offer diverse kinds of information deemed to be of interest to Association for Direct Instruction (ADI) members--stories of successful implementations in different settings, write-ups of ADI awards, tips on "how to" deliver direct instruction (DI) more effectively, topical articles focused on particular types of…

  3. Modelling directional solidification

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.

    1991-01-01

    The long range goal of this program is to develop an improved understanding of phenomena of importance to directional solidification and to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Current emphasis is on determining the influence of perturbations on directional solidification.

  4. Direct Lending Loses Momentum.

    ERIC Educational Resources Information Center

    Burd, Stephen

    1997-01-01

    Colleges and universities are finding that improvements in the guaranteed student loan process are making it more attractive than direct lending. In its third year, the direct lending program's total loan volume remains at 33%, well below the 50% goal set in originating legislation. Even some of its strongest supporters fear the program will have…

  5. Direction and Description

    NASA Astrophysics Data System (ADS)

    Ben-Menahem, Yemima

    This paper deals with the dependence of directionality in the course of events-or our claims concerning such directionality-on the modes of description we use in speaking of the events in question. I argue that criteria of similarity and individuation play a crucial role in assessments of directionality. This is an extension of Davidson's claim regarding the difference between causal and explanatory contexts. The argument is based on a characterisation of notions of necessity and contingency that differ from their modal logic counterparts on the one hand, and from causality and chance on the other. I show that some types of directionality are perfectly compatible with both determinism and indeterminism at the microscopic level, and that there is no likelihood of, or advantage to, reducing such directionality to other laws or causal processes.

  6. Multimode Directional Coupler

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)

    2016-01-01

    A multimode directional coupler is provided. In some embodiments, the multimode directional coupler is configured to receive a primary signal and a secondary signal at a first port of a primary waveguide. The primary signal is configured to propagate through the primary waveguide and be outputted at a second port of the primary waveguide. The multimode directional coupler also includes a secondary waveguide configured to couple the secondary signal from the primary waveguide with no coupling of the primary signal into the secondary waveguide. The secondary signal is configured to propagate through the secondary waveguide and be outputted from a port of the secondary waveguide.

  7. AISI direct steelmaking program

    SciTech Connect

    Aukrust, E.

    1991-01-09

    AISI with co-funding from DOE has initiated a research and development program aimed at the development of a new process for direct steelmaking, and the program is discussed in this document. The project is expected to cost about $30 million over a three-year period, with the government providing approximately 77 percent of the funds and AISI the balance. In contrast to current steelmaking processes which are largely open and batch, the direct steelmaking process would be closed and continuous. Further, it would use coal directly, thereby avoiding the need for coke ovens. The second year of the Direct Steelmaking Program (November 29, 1989, through November 28, 1990) was a year of significant accomplishment. The various research programs proceeded essentially on schedule and the pilot plant, the centerpiece of the program, was completed about three months behind schedule but began operation in almost a picture-perfect manner. This report presents the last years accomplishments.

  8. Direct nuclear pumped laser

    DOEpatents

    Miley, George H.; Wells, William E.; DeYoung, Russell J.

    1978-01-01

    There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

  9. Refrigerant directly cooled capacitors

    DOEpatents

    Hsu, John S.; Seiber, Larry E.; Marlino, Laura D.; Ayers, Curtis W.

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  10. Directional gear ratio transmissions

    NASA Technical Reports Server (NTRS)

    Lafever, A. E. (Inventor)

    1984-01-01

    Epicyclic gear transmissions which transmit output at a gear ratio dependent only upon the input's direction are considered. A transmission housing envelops two epicyclic gear assemblies, and has shafts extending from it. One shaft is attached to a sun gear within the first epicyclic gear assembly. Planet gears are held symmetrically about the sun gear by a planet gear carrier and are in mesh with both the sun gear and a ring gear. Two unidirectional clutches restrict rotation of the first planet gear carrier and ring gear to one direction. A connecting shaft drives a second sun gear at the same speed and direction as the first planet gear carrier while a connecting portion drives a second planet gear carrier at the same speed and direction as the first ring gear. The transmission's output is then transmitted by the second ring gear to the second shaft. Input is transmitted at a higher gear ratio and lower speed for all inputs in the first direction than in the opposite direction.

  11. Measures to Predict The Individual Variability of Corticospinal Responses Following Transcranial Direct Current Stimulation

    PubMed Central

    Nuzum, Nathan D.; Hendy, Ashlee M.; Russell, Aaron P.; Teo, Wei-Peng

    2016-01-01

    Individual responses to transcranial direct current stimulation (tDCS) are varied and therefore potentially limit its application. There is evidence that this variability is related to the contributions of Indirect waves (I-waves) recruited in the cortex. The latency of motor-evoked potentials (MEPs) can be measured through transcranial magnetic stimulation (TMS), allowing an individual’s responsiveness to tDCS to be determined. However, this single-pulse method requires several different orientations of the TMS coil, potentially affecting its reliability. Instead, we propose a paired-pulse TMS paradigm targeting I-waves as an alternative method. This method uses one orientation that reduces inter- and intra-trial variability. It was hypothesized that the paired-pulse method would correlate more highly to tDCS responses than the single-pulse method. In a randomized, double blinded, cross-over design, 30 healthy participants completed two sessions, receiving 20 min of either anodal (2 mA) or sham tDCS. TMS was used to quantify Short interval intracortical facilitation (SICF) at Inter stimulus intervals (ISIs) of 1.5, 3.5 and 4.5 ms. Latency was determined in the posterior-anterior (PA), anterior-posterior (AP) and latero-medial (LM) coil orientations. The relationship between latency, SICF measures and the change in suprathreshold MEP amplitude size following tDCS were determined with Pearson’s correlations. TMS measures, SICI and SICF were also used to determine responses to Anodal-tDCS (a-tDCS). Neither of the latency differences nor the SICF measures correlated to the change in MEP amplitude from pre-post tDCS (all P > 0.05). Overall, there was no significant response to tDCS in this cohort. This study highlights the need for testing the effects of various tDCS protocols on the different I-waves. Further research into SICF and whether it is a viable measure of I-wave facilitation is warranted. PMID:27766075

  12. Development of motor maps in rats and their modulation by experience.

    PubMed

    Young, Nicole A; Vuong, Jennifer; Teskey, G Campbell

    2012-09-01

    While a substantial literature demonstrates the effect of differential experience on development of mammalian sensory cortices and plasticity of adult motor cortex, characterization of differential experience on the functional development of motor cortex is meager. We first determined when forelimb movement representations (motor maps) could be detected in rats during postnatal development and then whether their motor map expression could be altered with rearing in an enriched environment consisting of group housing and novel toys or skilled learning by training on the single pellet reaching task. All offspring had high-resolution intracortical microstimulation (ICMS)-derived motor maps using methodologies previously optimized for the adult rat. First, cortical GABA-mediated inhibition was depressed by bicuculline infusion directly into layer V of motor cortex and ICMS-responsive points were first reliably detected on postnatal day (PND) 13. Without relying on bicuculline disinhibition of cortex, motor maps emerged on PND 35 and then increased in size until PND 60 and had progressively lower movement thresholds. Second, environmental enrichment did not affect initial detection of responsive points and motor maps in non-bicuculline-treated pups on PND 35. However, motor maps were larger on PND 45 in enriched rat pups relative to pups in the standard housing condition. Rats in both conditions had similar map sizes on PNDs 60, 75, and 90. Third, reach training in rat pups resulted in an internal reorganization of the map in the hemisphere contralateral, but not ipsilateral, to the trained forelimb. The map reorganization was expressed as proportionately more distal (digit and wrist) representations on PND 45. Our data indicate that both environmental enrichment and skilled reach training experience can differentially modify expression of motor maps during development.

  13. Whisker motor cortex reorganization after superior colliculus output suppression in adult rats.

    PubMed

    Veronesi, Carlo; Maggiolini, Emma; Franchi, Gianfranco

    2013-10-01

    The effect of unilateral superior colliculus (SC) output suppression on the ipsilateral whisker motor cortex (WMC) was studied at different time points after tetrodotoxin and quinolinic acid injections, in adult rats. The WMC output was assessed by mapping the movement evoked by intracortical microstimulation (ICMS) and by recording the ICMS-evoked electromyographic (EMG) responses from contralateral whisker muscles. At 1 h after SC injections, the WMC showed: (i) a strong decrease in contralateral whisker sites, (ii) a strong increase in ipsilateral whisker sites and in ineffective sites, and (iii) a strong increase in threshold current values. At 6 h after injections, the WMC size had shrunk to 60% of the control value and forelimb representation had expanded into the lateral part of the normal WMC. Thereafter, the size of the WMC recovered, returning to nearly normal 12 h later (94% of control) and persisted unchanged over time (1-3 weeks). The ICMS-evoked EMG response area decreased at 1 h after SC lesion and had recovered its baseline value 12 h later. Conversely, the latency of ICMS-evoked EMG responses had increased by 1 h and continued to increase for as long as 3 weeks following the lesion. These findings provide physiological evidence that SC output suppression persistently withdrew the direct excitatory drive from whisker motoneurons and induced changes in the WMC. We suggest that the changes in the WMC are a form of reversible short-term reorganization that is induced by SC lesion. The persistent latency increase in the ICMS-evoked EMG response suggested that the recovery of basic WMC excitability did not take place with the recovery of normal explorative behaviour. PMID:23895333

  14. Investigating the Efficacy of Novel TrkB Agonists to Augment Stroke Recovery

    NASA Astrophysics Data System (ADS)

    Warraich, Zuha

    Stroke remains the leading cause of adult disability in developed countries. Most survivors live with residual motor impairments that severely diminish independence and quality of life. After stroke, the only accepted treatment for these patients is motor rehabilitation. However, the amount and kind of rehabilitation required to induce clinically significant improvements in motor function is rarely given due to the constraints of our current health care system. Research reported in this dissertation contributes towards developing adjuvant therapies that may augment the impact of motor rehabilitation and improve functional outcome. These studies have demonstrated reorganization of maps within motor cortex as a function of experience in both healthy and brain-injured animals by using intracortical microstimulation technique. Furthermore, synaptic plasticity has been identified as a key neural mechanism in directing motor map plasticity, evidenced by restoration of movement representations within the spared cortical tissue accompanied by increase in synapse number translating into motor improvement after stroke. There is increasing evidence that brain-derived neurotrophic factor (BDNF) modulates synaptic and morphological plasticity in the developing and mature nervous system. Unfortunately, BDNF itself is a poor candidate because of its short half-life, low penetration through the blood brain barrier, and activating multiple receptor units, p75 and TrkB on the neuronal membrane. In order to circumvent this problem efficacy of two recently developed novel TrkB agonists, LM22A-4 and 7,8-dihydroxyflavone, that actively penetrate the blood brain barrier and enhance functional recovery. Findings from these dissertation studies indicate that administration of these pharmacological compounds, accompanied by motor rehabilitation provide a powerful therapeutic tool for stroke recovery.

  15. A direct advance on advance directives.

    PubMed

    Shaw, David

    2012-06-01

    Advance directives (ADs), which are also sometimes referred to as 'living wills', are statements made by a person that indicate what treatment she should not be given in the event that she is not competent to consent or refuse at the future moment in question. As such, ADs provide a way for patients to make decisions in advance about what treatments they do not want to receive, without doctors having to find proxy decision-makers or having recourse to the doctrine of necessity. While patients can request particular treatments in an AD, only refusals are binding. This paper will examine whether ADs safeguard the autonomy and best interests of the incompetent patient, and whether legislating for the use of ADs is justified, using the specific context of the legal situation in the United Kingdom to illustrate the debate. The issue of whether the law should permit ADs is itself dependent on the issue of whether ADs are ethically justified; thus we must answer a normative question in order to answer the legislative one. It emerges that ADs suffer from two major problems, one related to autonomy and one to consent. First, ADs' emphasis on precedent autonomy effectively sentences some people who want to live to death. Second, many ADs might not meet the standard criteria for informed refusal of treatment, because they fail on the crucial criterion of sufficient information. Ultimately, it transpires that ADs are typically only appropriate for patients who temporarily lose physical or mental capacity.

  16. Electrohydrodynamic direct-writing

    NASA Astrophysics Data System (ADS)

    Huang, Yongan; Bu, Ningbin; Duan, Yongqing; Pan, Yanqiao; Liu, Huimin; Yin, Zhouping; Xiong, Youlun

    2013-11-01

    The electrohydrodynamic (EHD) direct-writing technique can be used to print solid/liquid straight/serpentine nanofibers onto a large-area substrate, in a direct, continuous, and controllable manner. It is a high-efficiency and cost-effective solution-processable technique to satisfy increasing demands of large-area micro/nano-manufacturing. It is ground-breaking to direct-write sub-100 nm fibers on a rigid/flexible substrate using organic materials. A comprehensive review is presented on the research and developments related to the EHD direct-writing technique and print heads. Many developments have been presented to improve the controllability of the electrospun fibers to form high-resolution patterns and devices. EHD direct-writing is characterized by its non-contact, additive and reproducible processing, high resolution, and compatibility with organic materials. It combines dip-pen, inkjet, and electrospinning by providing the feasibility of controllable electrospinning for sub-100 nm nanofabrication, and overcomes the drawbacks of conventional electron-beam lithography, which is relatively slow, complicated and expensive.

  17. Estimating directional epistasis.

    PubMed

    Le Rouzic, Arnaud

    2014-01-01

    Epistasis, i.e., the fact that gene effects depend on the genetic background, is a direct consequence of the complexity of genetic architectures. Despite this, most of the models used in evolutionary and quantitative genetics pay scant attention to genetic interactions. For instance, the traditional decomposition of genetic effects models epistasis as noise around the evolutionarily-relevant additive effects. Such an approach is only valid if it is assumed that there is no general pattern among interactions-a highly speculative scenario. Systematic interactions generate directional epistasis, which has major evolutionary consequences. In spite of its importance, directional epistasis is rarely measured or reported by quantitative geneticists, not only because its relevance is generally ignored, but also due to the lack of simple, operational, and accessible methods for its estimation. This paper describes conceptual and statistical tools that can be used to estimate directional epistasis from various kinds of data, including QTL mapping results, phenotype measurements in mutants, and artificial selection responses. As an illustration, I measured directional epistasis from a real-life example. I then discuss the interpretation of the estimates, showing how they can be used to draw meaningful biological inferences.

  18. Direct Photons at RHIC

    SciTech Connect

    Gabor,D.

    2008-07-29

    Direct photons are ideal tools to investigate kinematical and thermodynamical conditions of heavy ion collisions since they are emitted from all stages of the collision and once produced they leave the interaction region without further modification by the medium. The PHENIX experiment at RHIC has measured direct photon production in p+p and Au+Au collisions at 200 GeV over a wide transverse momentum (p{sub T}) range. The p+p measurements allow a fundamental test of QCD, and serve as a baseline when we try to disentangle more complex mechanisms producing high p{sub T} direct photons in Au+Au. As for thermal photons in Au+Au we overcome the difficulties due to the large background from hadronic decays by measuring 'almost real' virtual photons which appear as low invariant mass e{sup +}e{sup -} pairs: a significant excess of direct photons is measured above the above next-to-leading order perturbative quantum chromodynamics calculations. Additional insights on the origin of direct photons can be gained with the study of the azimuthal anisotropy which benefits from the increased statistics and reaction plane resolution achieved in RHIC Year-7 data.

  19. Directivity of singers

    NASA Astrophysics Data System (ADS)

    Jers, Harald

    2005-09-01

    Studies of acoustical balance between singers within a choir by means of room acoustical measurements have shown that the directional sound propagation of the source is important. For this reason the directivity of female and male singers for different vowels has been measured in this investigation. Measurements of a pilot study and some first measurements in 1998 have been supplemented with new measurements and an enhanced setup. A special measurement setup with reference and recording microphones was used to collect the directivity data. A resolution of 10 deg for azimuth and elevation angle was obtained. The results will be shown in 3D spherical plots with frequency adjustments in semitones from 80 to 8000 Hz. The measurements are compared to an artificial singer's directivity, and the influence of a sheet music binder in front of a singer will be shown. The results give information on the directivity of singers and are relevant for the prediction of self-to-other-ratios that result from placement and formation aspects within a choir.

  20. Direct conversion technology

    NASA Technical Reports Server (NTRS)

    Massier, Paul F.; Bankston, C. P.; Williams, R.; Underwood, M.; Jeffries-Nakamura, B.; Fabris, G.

    1989-01-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal Magnetohydrodynamic Electrical Generator (LMMHD) for the period January 1, 1989 through December 31, 1989. Research on these concepts was initiated during October 1987. Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (nitinol heat engines); and also, more complete discussions of AMTEC and LMMHD systems.

  1. Direct conversion technology

    SciTech Connect

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  2. Highly directional thermal emitter

    DOEpatents

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  3. Modelling directional solidification

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.

    1994-01-01

    This grant, NAG8-831, was a continuation of a previous grant, NAG8-541. The long range goal of this program has been to develop an improved understanding of phenomena of importance to directional solidification, in order to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Emphasis in the recently completed grant was on determining the influence of perturbations on directional solidification of InSb and InSb-GaSb alloys. In particular, the objective was to determine the influence of spin-up/spin-down (ACRT), electric current pulses and vibrations on compositional homogeneity and grain size.

  4. [The direct composite crown].

    PubMed

    Opdam, N J; Roeters, F J

    2003-06-01

    The direct composite crown is a restoration replacing the original toothcrown in form and function. It can be an alternative for indirect gold or porcelain restorations if the oral health condition is not stable, if indirect restorations require a high biological price or if financial resources are limited. The longterm durability of these restorations is still unknown. As a direct composite crown can be considered as minimally invasive and can be easily replaced by an indirect restoration if needed, there are hardly any contra-indications for its use.

  5. Microsegregation during directional solidification

    NASA Technical Reports Server (NTRS)

    Coriell, S. R.; Mcfadden, G. B.

    1984-01-01

    During the directional solidification of alloys, solute inhomogeneities transverse to the growth direction arise due to morphological instabilities (leading to cellular or dendritic growth) and/or due to convection in the melt. In the absence of convection, the conditions for the onset of morphological instability are given by the linear stability analysis of Mullins and Sekerka. For ordinary solidification rates, the predictions of linear stability analysis are similar to the constitutional supercooling criterion. However, at very rapid solidification rates, linear stability analysis predicts a vast increase in stabilization in comparison to constitutional supercooling.

  6. Directed flux motor

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  7. The direction of acceleration

    NASA Astrophysics Data System (ADS)

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  8. Fermilab Library directions

    SciTech Connect

    Garrett, P.; Ritchie, D.

    1990-05-04

    In this document, we indicate our current thinking about the directions of the Fermilab Library. The ideas relate to the preprint management issue in a number of ways. The ideas are subject to revision as we come to understand what is possible as well as what is needed by the Laboratory community. This document should therefore be regarded as our personal view--the availability of off-the-shelf technology, of funding as well as feedback from the laboratory community about their needs will all affect how far we actually proceed in any of these directions.

  9. Directional gamma detector

    DOEpatents

    LeVert, Francis E.; Cox, Samson A.

    1981-01-01

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  10. Conclusions and Future Directions

    ERIC Educational Resources Information Center

    Lillibridge, Fred

    2012-01-01

    Benchmarking, when done properly, offers a lot of promise for higher education units that want to improve how they do business. It is clear that much is known, but still more needs to be learned before it reaches its full potential as a useful tool. Readers of this issue of "New Directions for Institutional Research" have been treated to useful…

  11. Direct Multizone System.

    ERIC Educational Resources Information Center

    Lennox Industries, Inc., Marshalltown, IA.

    Describes Lennox indoor direct multizone equipment and controls. The following areas are covered--(1) unit features, (2) controls and operations, (3) approvals, (4) air patterns, (5) typical applications, (6) specifications and ratings, (7) dimensioned drawings of a typical unit, (8) mixing boxes, (9) blower data, (10) water valve selection and…

  12. Directions to Better Education.

    ERIC Educational Resources Information Center

    Dochterman, Clifford L.; Beshoar, Barron B.

    The educational system of the 60's and early 70's is not adequate to solve present problems, correct failures of traditional education, or meet new challenges. This monograph offers directions toward better education to meet future needs of the nation. Educational problems such as unequal opportunities, undefined goals, inadequately prepared…

  13. Direct fired heat exchanger

    DOEpatents

    Reimann, Robert C.; Root, Richard A.

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  14. The Directed Case Method.

    ERIC Educational Resources Information Center

    Cliff, William H.; Curtin, Leslie Nesbitt

    2000-01-01

    Provides an example of a directed case on human anatomy and physiology. Uses brief real life newspaper articles and clinical descriptions of medical reference texts to describe an actual, fictitious, or composite event. Includes interrelated human anatomy and physiology topics in the scenario. (YDS)

  15. Core Directions in HRD.

    ERIC Educational Resources Information Center

    1996

    This document consists of four papers presented at a symposium on core directions in human resource development (HRD) moderated by Verna Willis at the 1996 conference of the Academy of Human Resource Development. "Reengineering the Organizational HRD Function: Two Case Studies" (Neal Chalofsky) reports an action research study in which the…

  16. Audio direct broadcast satellites

    NASA Astrophysics Data System (ADS)

    Miller, J. E.

    1983-05-01

    Satellite sound broadcasting is, as the name implies, the use of satellite techniques and technology to broadcast directly from space to low-cost, consumer-quality receivers the types of sound programs commonly received in the AM and FM broadcast bands. It would be a ubiquitous service available to the general public in the home, in the car, and out in the open.

  17. Directionality in Contrastive Analysis.

    ERIC Educational Resources Information Center

    James, Carl

    A contrastive analysis (CA) does not require commitment to directionality. Even asymmetrical interlingual correspondence can be handled by adirectional statements. If well executed, a CA is capable of handling three pairs of L2 learning phenomena: (1) going from language A to language B and vice versa; (2) productive and receptive command; and (3)…

  18. Audio direct broadcast satellites

    NASA Technical Reports Server (NTRS)

    Miller, J. E.

    1983-01-01

    Satellite sound broadcasting is, as the name implies, the use of satellite techniques and technology to broadcast directly from space to low-cost, consumer-quality receivers the types of sound programs commonly received in the AM and FM broadcast bands. It would be a ubiquitous service available to the general public in the home, in the car, and out in the open.

  19. Polar Direct Drive

    NASA Astrophysics Data System (ADS)

    Skupsky, S.

    2003-10-01

    Direct drive offers the potential of higher target gain on the National Ignition Facility (NIF) than x-ray drive: The initial direct-drive target design had a 1-D gain of 45 and consisted primarily of a pure cryogenic DT shell. Using the expected levels of target and laser nonuniformities for the NIF, two-dimensional (2-D) hydrodynamic simulations predicted target gains around 30.(P.W. McKenty et al.), Phys. Plasmas 8, 2315 (2001). More-recent designs have shown that higher target gains could be obtained by replacing a portion of the DT shell with ``wetted'' CH foam and by using adiabat shaping: (1) Higher-Z material (C) in the foam increases laser absorption by about 40% (from 60% absorption to 85%).(S. Skupsky et al.), in Inertial Fusion Sciences and Applications 2001, edited by K. Tanaka et al. (Elsevier, Paris, 2002), p. 240. (2) Adiabat shaping allows the main portion of the fuel to be placed on a lower adiabat without compromising target stability.(V.N. Goncharov et al.), Phys. Plasmas 10, 1906 (2003). These direct-drive concepts can be tested on the NIF, long before that facility is converted to a direct-drive (spherically symmetric) irradiation configuration. Using the NIF x-ray-drive beam configuration, some of the near-polar beams could be pointed to better illuminate the target's equator. These more-oblique, equatorial beams will have lower absorption and reduced drive efficiency than the polar beams. One strategy to compensate for the difference in polar and equatorial drive is to reduce the irradiation at the poles and employ different pulse shapes to accommodate the time-dependent variations in drive and absorption. This concept of polar direct drive (PDD) has been studied using the 2-D hydrocode DRACO to determine the requirements for achieving ignition and moderate target gain for the NIF. Experiments on the OMEGA laser will examine the effects of oblique irradiation on target drive. Results of simulations for different direct-drive target designs

  20. Direct insolation models

    SciTech Connect

    Bird, R.; Hulstrom, R.L.

    1980-01-01

    Several recently published models of the direct component of the broadband insolation are compared for clear sky conditions. The comparison includes seven simple models and one rigorous model that is used as a basis for determining accuracy. Where possible, the comparison is made between the results of each model for each atmospheric constituent (H/sub 2/O, CO/sub 2/, O/sub 3/, O/sub 2/, aerosol and molecular scattering) separately as well as for the combined effect of all of the constituents. Two optimum simple models of varying degrees of complexity are developed as a result of this comparison. The study indicates: aerosols dominate the attenuation of the direct beam for reasonable atmospheric conditions; molecular scattering is next in importance; water vapor is an important absorber; and carbon dioxide and oxygen are relatively unimportant as attenuators of the broadband solar energy.

  1. Direct heating surface combustor

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Shire, L. I.; Mroz, T. S. (Inventor)

    1978-01-01

    The combustor utilizes a non-adiabatic flame to provide low-emission combustion for gas turbines. A fuel-air mixture is directed through a porous wall, the other side of which serves as a combustion surface. A radiant heat sink disposed adjacent to and spaced from the combustion surface controls the combustor flame temperature in order to prevent the formation of oxides of nitrogen. A secondary air flow cools the heat sink. Additionally, up to 100% of secondary air flow is mixed with the combustion products at the direct heating surface combustor to dilute such products thereby reducing exit temperature. However, if less than 100% secondary air is mixed to the combustor, the remainder may be added to the combustion products further downstream.

  2. Modelling directional solidification

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.

    1987-01-01

    An improved understanding of the phenomena of importance to directional solidification is attempted to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Emphasis is now on experimentally determining the influence of convection and freezing rate fluctuations on compositional homogeneity and crystalline perfection. A correlation is sought between heater temperature profiles, buoyancy-driven convection, and doping inhomogeneities using naphthalene doped with anthracene. The influence of spin-up/spin-down is determined on compositional homogeneity and microstructure of indium gallium antimonide. The effect is determined of imposed melting - freezing cycles on indium gallium antimonide. The mechanism behind the increase of grain size caused by using spin-up/spin-down in directional solidification of mercury cadimum telluride is sought.

  3. DSDEPROJ: Direct Spectral Deprojection

    NASA Astrophysics Data System (ADS)

    Sanders, Jeremy; Russell, Helen

    2016-10-01

    Deprojection of X-ray data by methods such as PROJCT, which are model dependent, can produce large and unphysical oscillating temperature profiles. Direct Spectral Deprojection (DSDEPROJ) solves some of the issues inherent to model-dependent deprojection routines. DSDEPROJ is a model-independent approach, assuming only spherical symmetry, which subtracts projected spectra from each successive annulus to produce a set of deprojected spectra.

  4. Directional Spherical Cherenkov Detector

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.

    2010-01-01

    A proposed radiation-detecting apparatus would provide information on the kinetic energies, directions, and electric charges of highly energetic incident subatomic particles. The apparatus was originally intended for use in measuring properties of cosmic rays in outer space, but could also be adapted to terrestrial uses -- for example, radiation dosimetry aboard high-altitude aircraft and in proton radiation therapy for treatment of tumors.

  5. Direct hydrocarbon fuel cells

    DOEpatents

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  6. Topologies on directed graphs

    NASA Technical Reports Server (NTRS)

    Lieberman, R. N.

    1972-01-01

    Given a directed graph, a natural topology is defined and relationships between standard topological properties and graph theoretical concepts are studied. In particular, the properties of connectivity and separatedness are investigated. A metric is introduced which is shown to be related to separatedness. The topological notions of continuity and homeomorphism. A class of maps is studied which preserve both graph and topological properties. Applications involving strong maps and contractions are also presented.

  7. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  8. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  9. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  10. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  11. Modelling direction solidification

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.

    1986-01-01

    The overall objective of this program is to develop an improved understanding of some phenomena of importance to directional solidification. The aim of this research is also to help predict differences in behavior between solidification on Earth and solidification in space. In this report, the validity of the Burton-Primslichter equation is explored. The influence of operating variables on grain and twin generation and propagation in single crystals of In sub (x) Ga sub (1-x) Sb is also investigated.

  12. Directional Hearing Aid

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Lin, H. C.

    1989-01-01

    Hearing-aid device indicates visually whether sound is coming from left, right, back, or front. Device intended to assist individuals who are deaf in at least one ear and unable to discern naturally directions to sources of sound. Device promotes safety in street traffic, on loading docks, and in presence of sirens, alarms, and other warning sounds. Quadraphonic version of device built into pair of eyeglasses and binaural version built into visor.

  13. Site-directed mutagenesis.

    PubMed

    Bachman, Julia

    2013-01-01

    Site-directed mutagenesis is a PCR-based method to mutate specified nucleotides of a sequence within a plasmid vector. This technique allows one to study the relative importance of a particular amino acid for protein structure and function. Typical mutations are designed to disrupt or map protein-protein interactions, mimic or block posttranslational modifications, or to silence enzymatic activity. Alternatively, noncoding changes are often used to generate rescue constructs that are resistant to knockdown via RNAi.

  14. Direct imaging of exoplanets.

    PubMed

    Lagrange, Anne-Marie

    2014-04-28

    Most of the exoplanets known today have been discovered by indirect techniques, based on the study of the host star radial velocity or photometric temporal variations. These detections allowed the study of the planet populations in the first 5-8 AU from the central stars and have provided precious information on the way planets form and evolve at such separations. Direct imaging on 8-10 m class telescopes allows the detection of giant planets at larger separations (currently typically more than 5-10 AU) complementing the indirect techniques. So far, only a few planets have been imaged around young stars, but each of them provides an opportunity for unique dedicated studies of their orbital, physical and atmospheric properties and sometimes also on the interaction with the 'second-generation', debris discs. These few detections already challenge formation theories. In this paper, I present the results of direct imaging surveys obtained so far, and what they already tell us about giant planet (GP) formation and evolution. Individual and emblematic cases are detailed; they illustrate what future instruments will routinely deliver for a much larger number of stars. I also point out the limitations of this approach, as well as the needs for further work in terms of planet formation modelling. I finally present the progress expected in direct imaging in the near future, thanks in particular to forthcoming planet imagers on 8-10 m class telescopes.

  15. Direct conversion technology

    NASA Technical Reports Server (NTRS)

    Massier, P. F.; Bankston, C. P.; Fabris, G.; Kirol, L. D.

    1988-01-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown.

  16. Direct imaging of exoplanets.

    PubMed

    Lagrange, Anne-Marie

    2014-04-28

    Most of the exoplanets known today have been discovered by indirect techniques, based on the study of the host star radial velocity or photometric temporal variations. These detections allowed the study of the planet populations in the first 5-8 AU from the central stars and have provided precious information on the way planets form and evolve at such separations. Direct imaging on 8-10 m class telescopes allows the detection of giant planets at larger separations (currently typically more than 5-10 AU) complementing the indirect techniques. So far, only a few planets have been imaged around young stars, but each of them provides an opportunity for unique dedicated studies of their orbital, physical and atmospheric properties and sometimes also on the interaction with the 'second-generation', debris discs. These few detections already challenge formation theories. In this paper, I present the results of direct imaging surveys obtained so far, and what they already tell us about giant planet (GP) formation and evolution. Individual and emblematic cases are detailed; they illustrate what future instruments will routinely deliver for a much larger number of stars. I also point out the limitations of this approach, as well as the needs for further work in terms of planet formation modelling. I finally present the progress expected in direct imaging in the near future, thanks in particular to forthcoming planet imagers on 8-10 m class telescopes. PMID:24664924

  17. Visual direction finding by fishes

    NASA Technical Reports Server (NTRS)

    Waterman, T. H.

    1972-01-01

    The use of visual orientation, in the absence of landmarks, for underwater direction finding exercises by fishes is reviewed. Celestial directional clues observed directly near the water surface or indirectly at an asymptatic depth are suggested as possible orientation aids.

  18. Directed energy planetary defense

    NASA Astrophysics Data System (ADS)

    Lubin, Philip; Hughes, Gary B.; Bible, Johanna; Bublitz, Jesse; Arriola, Josh; Motta, Caio; Suen, Jon; Johansson, Isabella; Riley, Jordan; Sarvian, Nilou; Clayton-Warwick, Deborah; Wu, Jane; Milich, Andrew; Oleson, Mitch; Pryor, Mark; Krogen, Peter; Kangas, Miikka

    2013-09-01

    Asteroids and comets that cross Earth's orbit pose a credible risk of impact, with potentially severe disturbances to Earth and society. Numerous risk mitigation strategies have been described, most involving dedicated missions to a threatening object. We propose an orbital planetary defense system capable of heating the surface of potentially hazardous objects to the vaporization point as a feasible approach to impact risk mitigation. We call the system DE-STAR for Directed Energy System for Targeting of Asteroids and exploRation. DE-STAR is a modular phased array of kilowatt class lasers powered by photovoltaic's. Modular design allows for incremental development, test, and initial deployment, lowering cost, minimizing risk, and allowing for technological co-development, leading eventually to an orbiting structure that would be developed in stages with both technological and target milestones. The main objective of DE-STAR is to use the focused directed energy to raise the surface spot temperature to ~3,000K, allowing direct vaporization of all known substances. In the process of heating the surface ejecting evaporated material a large reaction force would alter the asteroid's orbit. The baseline system is a DE-STAR 3 or 4 (1-10km array) depending on the degree of protection desired. A DE-STAR 4 allows for asteroid engagement starting beyond 1AU with a spot temperature sufficient to completely evaporate up to 500-m diameter asteroids in one year. Small asteroids and comets can be diverted/evaporated with a DESTAR 2 (100m) while space debris is vaporized with a DE-STAR 1 (10m).

  19. Direct reading inductance meter

    NASA Technical Reports Server (NTRS)

    Kolby, R. B. (Inventor)

    1977-01-01

    A direct reading inductance meter comprised of a crystal oscillator and an LC tuned oscillator is presented. The oscillators function respectively to generate a reference frequency, f(r), and to generate an initial frequency, f(0), which when mixed produce a difference equal to zero. Upon connecting an inductor of small unknown value in the LC circuit to change its resonant frequency to f(x), a difference frequency (f(r)-f(x)) is produced that is very nearly a linear function of the inductance of the inductor. The difference frequency is measured and displayed on a linear scale in units of inductance.

  20. Reciprocity in directed networks

    NASA Astrophysics Data System (ADS)

    Yin, Mei; Zhu, Lingjiong

    2016-04-01

    Reciprocity is an important characteristic of directed networks and has been widely used in the modeling of World Wide Web, email, social, and other complex networks. In this paper, we take a statistical physics point of view and study the limiting entropy and free energy densities from the microcanonical ensemble, the canonical ensemble, and the grand canonical ensemble whose sufficient statistics are given by edge and reciprocal densities. The sparse case is also studied for the grand canonical ensemble. Extensions to more general reciprocal models including reciprocal triangle and star densities will likewise be discussed.

  1. Omni-directional railguns

    DOEpatents

    Shahinpoor, M.

    1995-07-25

    A device is disclosed for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire. 4 figs.

  2. Omni-directional railguns

    DOEpatents

    Shahinpoor, Mohsen

    1995-01-01

    A device for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire.

  3. Direct to Digital Holography

    SciTech Connect

    Bingham, P.R.; Tobin, K.W.

    2007-09-30

    In this Cooperative Research and Development Agreement (CRADA), Oak Ridge National Laboratory (ORNL) assisted nLine Corporation of Austin, TX in the development of prototype semiconductor wafer inspection tools based on the direct-to-digital holographic (DDH) techniques invented at ORNL. Key components of this work included, testing of DDH for detection of defects in High Aspect Ratio (HAR) structures, development of image processing techniques to enhance detection capabilities through the use of both phase and intensity, and development of methods for autofocus on the DDH tools.

  4. Probiotics: future directions.

    PubMed

    Vanderhoof, J A

    2001-06-01

    Clinical studies have shown that certain probiotics may be useful in treating a variety of diarrheal disorders, including rotavirus diarrhea, antibiotic-associated diarrhea, Clostridium difficile diarrhea, and traveler's diarrhea. New data suggest that probiotics might be useful in controlling inflammatory diseases, treating and preventing allergic diseases, preventing cancer, and stimulating the immune system, which may reduce the incidence of respiratory disease. Different modes of administering probiotics are currently being investigated, which may ultimately lead to the widespread use of probiotics in functional foods. It is important that such practices be directed by carefully controlled clinical studies published in peer-reviewed journals.

  5. Direct microwave demodulation

    NASA Astrophysics Data System (ADS)

    Marsac, J. P.

    1985-03-01

    The technical characteristics, advantages and disadvantages of three types of coherent direct microwave demodulators are discussed. Bypassing the intermediate frequencies normally present in radio circuitry is a means to lowering equipment costs and enhancing reliability. The phase, frequency and spectral demodulators described all allow carrier recapture with a Costas loop. In all cases, the demodulation is performed at an intermediate frequency after transposition of the modulated carrier wave. MSK, 4 PSK and 16 QAM modulations are considered, together with circuitry for each and experimental results. Finally, the progress toward development of an integrated receiver is assessed.

  6. Direct Production of Copper

    NASA Astrophysics Data System (ADS)

    Victorovich, G. S.; Bell, M. C.; Diaz, C. M.; Bell, J. A. E.

    1987-09-01

    The use of commercially pure oxygen in flash smelting a typical chalcopyrite concentrate or a low grade comminuted matte directly to copper produces a large excess of heat. The heat balance is controlled by adjusting the calorific value of the solid feed. A portion of the sulfide material is roasted to produce a calcine which is blended with unroasted material, and the blend is then autogeneously smelted with oxygen and flux directly to copper. Either iron silicate or iron calcareous slags are produced, both being subject to a slag cleaning treatment. Practically all of the sulfur is contained in a continuous stream of SO2 gas, most of which is strong enough for liquefaction. A particularly attractive feature of these technologies is that no radically new metallurgical equipment needs to be developed. The oxygen smelting can be carried out not only in the Inco type flash furnace but in other suitable smelters such as cyclone furnaces. Another major advantage stems from abolishion of the ever-troublesome converter aisle, which is replaced with continuous roasting of a fraction of the copper sulfide feed.

  7. NON-DIRECTIVE PSYCHOTHERAPY

    PubMed Central

    Smith, Lloyd F.

    1950-01-01

    Psychotherapy is a word to describe an age-old process. It would be better not to speak of psychotherapy, but of psychotherapies. Specialists are not the only ones who act as psychotherapists, since every human being fills this role at one time or another. Besides this, no two persons follow an identical approach. Finally, all therapists change technique constantly. The kinds of psychotherapy must therefore approach infinity. Some physicians appear to assume that only one type of psychotherapy may claim a scientific basis. Although Freud first put psychotherapy on a scientific path, there is no reason to say that Freud must be the last in this field. Over the past few years a new trend has started in psychotherapy which deserves close study. This new trend challenges some old beliefs and gives a new tool to help patients of some types. It is called non-directive or client-centered psychotherapy. This therapy does not try to solve the patient's problems for him, but rather establishes the conditions under which a patient can work out his own salvation. Each year non-directive psychotherapy grows in importance. Much can be learned from the method. PMID:14778014

  8. Remote direct memory access

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.

    2012-12-11

    Methods, parallel computers, and computer program products are disclosed for remote direct memory access. Embodiments include transmitting, from an origin DMA engine on an origin compute node to a plurality target DMA engines on target compute nodes, a request to send message, the request to send message specifying a data to be transferred from the origin DMA engine to data storage on each target compute node; receiving, by each target DMA engine on each target compute node, the request to send message; preparing, by each target DMA engine, to store data according to the data storage reference and the data length, including assigning a base storage address for the data storage reference; sending, by one or more of the target DMA engines, an acknowledgment message acknowledging that all the target DMA engines are prepared to receive a data transmission from the origin DMA engine; receiving, by the origin DMA engine, the acknowledgement message from the one or more of the target DMA engines; and transferring, by the origin DMA engine, data to data storage on each of the target compute nodes according to the data storage reference using a single direct put operation.

  9. Direct and indirect inversions

    NASA Astrophysics Data System (ADS)

    Virieux, Jean; Brossier, Romain; Métivier, Ludovic; Operto, Stéphane; Ribodetti, Alessandra

    2016-06-01

    A bridge is highlighted between the direct inversion and the indirect inversion. They are based on fundamental different approaches: one is looking after a projection from the data space to the model space while the other one is reducing a misfit between observed data and synthetic data obtained from a given model. However, it is possible to obtain similar structures for model perturbation, and we shall focus on P-wave velocity reconstruction. This bridge is built up through the Born approximation linearizing the forward problem with respect to model perturbation and through asymptotic approximations of the Green functions of the wave propagation equation. We first describe the direct inversion and its ingredients and then we focus on a specific misfit function design leading to a indirect inversion. Finally, we shall compare this indirect inversion with more standard least-squares inversion as the FWI, enabling the focus on small weak velocity perturbations on one side and the speed-up of the velocity perturbation reconstruction on the other side. This bridge has been proposed by the group led by Raul Madariaga in the early nineties, emphasizing his leading role in efficient imaging workflows for seismic velocity reconstruction, a drastic requirement at that time.

  10. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  11. Fiber optic TV direct

    NASA Technical Reports Server (NTRS)

    Kassak, John E.

    1991-01-01

    The objective of the operational television (OTV) technology was to develop a multiple camera system (up to 256 cameras) for NASA Kennedy installations where camera video, synchronization, control, and status data are transmitted bidirectionally via a single fiber cable at distances in excess of five miles. It is shown that the benefits (such as improved video performance, immunity from electromagnetic interference and radio frequency interference, elimination of repeater stations, and more system configuration flexibility) can be realized if application of the proven fiber optic transmission concept is used. The control system will marry the lens, pan and tilt, and camera control functions into a modular based Local Area Network (LAN) control network. Such a system does not exist commercially at present since the Television Broadcast Industry's current practice is to divorce the positional controls from the camera control system. The application software developed for this system will have direct applicability to similar systems in industry using LAN based control systems.

  12. Directed light fabrication

    NASA Astrophysics Data System (ADS)

    Lewis, G. K.; Nemec, R.; Milewski, J.; Thoma, D. J.; Cremers, D.; Barbe, M.

    1994-09-01

    Directed Light Fabrication (DLF) is a rapid prototyping process being developed at Los Alamos National Laboratory to fabricate metal components. This is done by fusing gas delivered metal powder particles in the focal zone of a laser beam that is programmed to move along or across the part cross section. Fully dense metal is built up a layer at a time to form the desired part represented by a 3 dimensional solid model from CAD software. Machine 'tool paths' are created from the solid model that command the movement and processing parameters specific to the DLF process so that the part can be built one layer at a time. The result is a fully dense, near net shape metal part that solidifies under rapid solidification conditions.

  13. Direct Density Derivative Estimation.

    PubMed

    Sasaki, Hiroaki; Noh, Yung-Kyun; Niu, Gang; Sugiyama, Masashi

    2016-06-01

    Estimating the derivatives of probability density functions is an essential step in statistical data analysis. A naive approach to estimate the derivatives is to first perform density estimation and then compute its derivatives. However, this approach can be unreliable because a good density estimator does not necessarily mean a good density derivative estimator. To cope with this problem, in this letter, we propose a novel method that directly estimates density derivatives without going through density estimation. The proposed method provides computationally efficient estimation for the derivatives of any order on multidimensional data with a hyperparameter tuning method and achieves the optimal parametric convergence rate. We further discuss an extension of the proposed method by applying regularized multitask learning and a general framework for density derivative estimation based on Bregman divergences. Applications of the proposed method to nonparametric Kullback-Leibler divergence approximation and bandwidth matrix selection in kernel density estimation are also explored. PMID:27140943

  14. Comprehension of Navigation Directions

    NASA Technical Reports Server (NTRS)

    Healy, Alice F.; Schneider, Vivian I.

    2002-01-01

    Subjects were shown navigation instructions varying in length directing them to move in a space represented by grids on a computer screen. They followed the instructions by clicking on the grids in the locations specified. Some subjects repeated back the instructions before following them, some did not, and others repeated back the instructions in reduced form, including only the critical words. The commands in each message were presented simultaneously for half of the subjects and sequentially for the others. For the longest messages, performance was better on the initial commands and worse on the final commands with simultaneous than with sequential presentation. Instruction repetition depressed performance, but reduced repetition removed this disadvantage. Effects of presentation format were attributed to visual scanning strategies. The advantage for reduced repetition was attributable either to enhanced visual scanning or to reduced output interference. A follow-up study with auditory presentation supported the visual scanning explanation.

  15. Speech research directions

    SciTech Connect

    Atal, B.S.; Rabiner, L.R.

    1986-09-01

    This paper presents an overview of the current activities in speech research. The authors discuss the state of the art in speech coding, text-to-speech synthesis, speech recognition, and speaker recognition. In the speech coding area, current algorithms perform well at bit rates down to 9.6 kb/s, and the research is directed at bringing the rate for high-quality speech coding down to 2.4 kb/s. In text-to-speech synthesis, what we currently are able to produce is very intelligible but not yet completely natural. Current research aims at providing higher quality and intelligibility to the synthetic speech that these systems produce. Finally, today's systems for speech and speaker recognition provide excellent performance on limited tasks; i.e., limited vocabulary, modest syntax, small talker populations, constrained inputs, etc.

  16. Modelling directional solidification

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.

    1990-01-01

    The long range goal is to develop an improved understanding of phenomena of importance to directional solidification, to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Emphasis during the period of this grant was on experimentally determining the influence of convection and freezing rate fluctuations on compositional homogeneity and crystalline perfection in the vertical Bridgman-Stockbarger technique. Heater temperature profiles, buoyancy-driven convection, and doping inhomogeneties were correlated using naphthalene doped with azulene. In addition the influence of spin-up/spin-down on compositional homogeneity and microstructure of indium gallium antimonide and the effect of imposed melting-freezing cycles on indium gallium antimonide are discussed.

  17. Site directed recombination

    DOEpatents

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  18. DIRECT CURRENT ELECTROMAGNETIC PUMP

    DOEpatents

    Barnes, A.H.

    1957-11-01

    An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.

  19. Task directed sensing

    NASA Technical Reports Server (NTRS)

    Firby, R. James

    1990-01-01

    High-level robot control research must confront the limitations imposed by real sensors if robots are to be controlled effectively in the real world. In particular, sensor limitations make it impossible to maintain a complete, detailed world model of the situation surrounding the robot. To address the problems involved in planning with the resulting incomplete and uncertain world models, traditional robot control architectures must be altered significantly. Task-directed sensing and control is suggested as a way of coping with world model limitations by focusing sensing and analysis resources on only those parts of the world relevant to the robot's active goals. The RAP adaptive execution system is used as an example of a control architecture designed to deploy sensing resources in this way to accomplish both action and knowledge goals.

  20. Fiber optic TV direct

    NASA Astrophysics Data System (ADS)

    Kassak, John E.

    1991-12-01

    The objective of the operational television (OTV) technology was to develop a multiple camera system (up to 256 cameras) for NASA Kennedy installations where camera video, synchronization, control, and status data are transmitted bidirectionally via a single fiber cable at distances in excess of five miles. It is shown that the benefits (such as improved video performance, immunity from electromagnetic interference and radio frequency interference, elimination of repeater stations, and more system configuration flexibility) can be realized if application of the proven fiber optic transmission concept is used. The control system will marry the lens, pan and tilt, and camera control functions into a modular based Local Area Network (LAN) control network. Such a system does not exist commercially at present since the Television Broadcast Industry's current practice is to divorce the positional controls from the camera control system. The application software developed for this system will have direct applicability to similar systems in industry using LAN based control systems.

  1. New directions in mechanics

    SciTech Connect

    Kassner, Michael E.; Nemat-Nasser, Sia; Suo, Zhigang; Bao, Gang; Barbour, J. Charles; Brinson, L. Catherine; Espinosa, Horacio; Gao, Huajian; Granick, Steve; Gumbsch, Peter; Kim, Kyung -Suk; Knauss, Wolfgang; Kubin, Ladislas; Larson, Ben C.; Mahadevan, L.; Majumdar, Arun; Torquato, Salvatore; van Swol, Frank

    2004-09-15

    The Division of Materials Sciences and Engineering of the US Department of Energy (DOE) sponsored a workshop to identify cutting-edge research needs and opportunities, enabled by the application of theoretical and applied mechanics. The workshop also included input from biochemical, surface science, and computational disciplines, on approaching scientific issues at the nanoscale, and the linkage of atomistic-scale with nano-, meso-, and continuum-scale mechanics. This paper is a summary of the outcome of the workshop, consisting of three main sections, each put together by a team of workshop participants. Section 1 addresses research opportunities that can be realized by the application of mechanics fundamentals to the general area of self-assembly, directed self-assembly, and fluidics. Section 2 examines the role of mechanics in biological, bioinspired, and biohybrid material systems, closely relating to and complementing the material covered in Section 1. In this manner, it was made clear that mechanics plays a fundamental role in understanding the biological functions at all scales, in seeking to utilize biology and biological techniques to develop new materials and devices, and in the general area of bionanotechnology. While direct observational investigations are an essential ingredient of new discoveries and will continue to open new exciting research doors, it is the basic need for controlled experimentation and fundamentally- based modeling and computational simulations that will be truly empowered by a systematic use of the fundamentals of mechanics. Section 3 brings into focus new challenging issues in inelastic deformation and fracturing of materials that have emerged as a result of the development of nanodevices, biopolymers, and hybrid bio–abio systems. As a result, each section begins with some introductory overview comments, and then provides illustrative examples that were presented at the workshop and which are believed to highlight the enabling

  2. Conclusions and Policy Directions,

    SciTech Connect

    Wilbanks, Thomas J; Romero-Lankao, Paty; Gnatz, P

    2011-01-01

    This chapter briefly revisits the constraints and opportunities of mitigation and adaptation, and highlights and the multiple linkages, synergies and trade-offs between mitigation, adaptation and urban development. The chapter then presents future policy directions, focusing on local, national and international principles and policies for supporting and enhancing urban responses to climate change. In summary, policy directions for linking climate change responses with urban development offer abundant opportunities; but they call for new philosophies about how to think about the future and how to connect different roles of different levels of government and different parts of the urban community. In many cases, this implies changes in how urban areas operate - fostering closer coordination between local governments and local economic institutions, and building new connections between central power structures and parts of the population who have often been kept outside of the circle of consultation and discourse. The difficulties involved in changing deeply set patterns of interaction and decision-making in urban areas should not be underestimated. Because it is so difficult, successful experiences need to be identified, described and widely publicized as models for others. However, where this challenge is met, it is likely not only to increase opportunities and reduce threats to urban development in profoundly important ways, but to make the urban area a more effective socio-political entity, in general - a better city in how it works day to day and how it solves a myriad of problems as they emerge - far beyond climate change connections alone. It is in this sense that climate change responses can be catalysts for socially inclusive, economically productive and environmentally friendly urban development, helping to pioneer new patterns of stakeholder communication and participation.

  3. New directions in mechanics

    DOE PAGES

    Kassner, Michael E.; Nemat-Nasser, Sia; Suo, Zhigang; Bao, Gang; Barbour, J. Charles; Brinson, L. Catherine; Espinosa, Horacio; Gao, Huajian; Granick, Steve; Gumbsch, Peter; et al

    2004-09-15

    The Division of Materials Sciences and Engineering of the US Department of Energy (DOE) sponsored a workshop to identify cutting-edge research needs and opportunities, enabled by the application of theoretical and applied mechanics. The workshop also included input from biochemical, surface science, and computational disciplines, on approaching scientific issues at the nanoscale, and the linkage of atomistic-scale with nano-, meso-, and continuum-scale mechanics. This paper is a summary of the outcome of the workshop, consisting of three main sections, each put together by a team of workshop participants. Section 1 addresses research opportunities that can be realized by the applicationmore » of mechanics fundamentals to the general area of self-assembly, directed self-assembly, and fluidics. Section 2 examines the role of mechanics in biological, bioinspired, and biohybrid material systems, closely relating to and complementing the material covered in Section 1. In this manner, it was made clear that mechanics plays a fundamental role in understanding the biological functions at all scales, in seeking to utilize biology and biological techniques to develop new materials and devices, and in the general area of bionanotechnology. While direct observational investigations are an essential ingredient of new discoveries and will continue to open new exciting research doors, it is the basic need for controlled experimentation and fundamentally- based modeling and computational simulations that will be truly empowered by a systematic use of the fundamentals of mechanics. Section 3 brings into focus new challenging issues in inelastic deformation and fracturing of materials that have emerged as a result of the development of nanodevices, biopolymers, and hybrid bio–abio systems. As a result, each section begins with some introductory overview comments, and then provides illustrative examples that were presented at the workshop and which are believed to highlight the

  4. Direct spatial antenna modulation

    NASA Astrophysics Data System (ADS)

    Uhl, Brecken H.

    This body of work seeks to define Direct Spatial Antenna Modulation (DSAM) as a new and unique approach to data symbol modulation and phased array control by comparing and contrasting the technique to conventional approaches. A rigorous development of the theoretical and practical implications of the DSAM technique as a general approach are presented. The theoretical development of several DSAM examples are included. Implementation and measurement results for several prototypes based on DSAM principles are analyzed. The work concludes with a summary of the impact of the present DSAM developments and a proposal for additional investigation. Results are included that show equivalent measured bit error rate performance for DSAM as compared to conventional modulation for both two-state and four-state phase modulation. Measured beam control accuracy of a DSAM phased array is included, along with several other example DSAM phased array analyses. Supported by an analysis linking a DSAM technique with complete complex-plane modulation control, the DSAM concept is applied to a commercial antenna and an experiment demonstrates wideband phase control. Analytical and simulation results demonstrate joint beamforming and modulation in a DSAM array. Several implications of the results of the investigation are important to consider: 1. The DSAM approach represents a new way to treat the conventional relationship between modulation and antennas, and has been demonstrated through a significant number and variety of analyses, simulations, and experiments. 2. The DSAM approach takes direct advantage of inherent antenna radiating properties to perform conventionally non-antenna functions; the approach is in this way both enabled and limited. 3. The DSAM approach has been shown in several examples to offer beneficial engineering performance trade-offs with respect to architecture options, as well as important performance parameters such as power consumption, breadth of frequency

  5. The Shape of Direct Quotation

    ERIC Educational Resources Information Center

    Weber, Rose-Marie

    2008-01-01

    Direct quotation can be a source of meaning in storybook texts for beginning readers. The author of this article sketches the linguistic complexity of direct quotation and offers instructional strategies. Three aspects of direct quotation are examined: the cluster of print features and syntactic characteristics that direct quotation involves, the…

  6. Direct-contact heat exchanger

    NASA Astrophysics Data System (ADS)

    Bricard, A.

    The working principle of direct contact heat exchanger, where heat transfer takes place between two immiscible fluids coming into direct contact, is described. Typical direct contact devices are outlined. A better understanding of the principles involved and the development of computational models for multiphase subsytems are concluded as stimulus for direct contact heat and mass transfer applications.

  7. Growth directions of microstructures in directional solidification of crystalline materials.

    PubMed

    Deschamps, J; Georgelin, M; Pocheau, A

    2008-07-01

    In directional solidification, as the solidification velocity increases, the growth direction of cells or dendrites rotates from the direction of the thermal gradient to that of a preferred cristalline orientation. Meanwhile, their morphology varies with important implications for microsegregation. Here, we experimentally document the growth directions of these microstructures in a succinonitrile alloy in the whole accessible range of directions, velocities, and spacings. For this, we use a thin sample made of a single crystal on which the direction of the thermal gradient can be changed. This allows a fine monitoring of the misorientation angle between thermal gradient and preferred crystalline orientation. Data analysis shows evidence of an internal symmetry which traces back to a scale invariance of growth directions with respect to a Péclet number. This enables the identification of the relationship between growth directions and relevant variables, in fair agreement with experiment. Noticeable variations of growth directions with misorientation angles are evidenced and linked to a single parameter.

  8. Adaptive directional wavelet transform based on directional prefiltering.

    PubMed

    Tanaka, Yuichi; Hasegawa, Madoka; Kato, Shigeo; Ikehara, Masaaki; Nguyen, Truong Q

    2010-04-01

    This paper proposes an efficient approach for adaptive directional wavelet transform (WT) based on directional prefiltering. Although the adaptive directional WT is able to transform an image along diagonal orientations as well as traditional horizontal and vertical directions, it sacrifices computation speed for good image coding performance. We present two efficient methods to find the best transform directions by prefiltering using 2-D filter bank or 1-D directional WT along two fixed directions. The proposed direction calculation methods achieve comparable image coding performance comparing to the conventional one with less complexity. Furthermore, transform direction data of the proposed method can be used for content-based image retrieval to increase retrieval ratio. PMID:20028625

  9. Coatings for directional eutectics

    NASA Technical Reports Server (NTRS)

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Significant advances have been made in the development of an environmentally stable coating for a very high strength, directionally solidified eutectic alloy designated NiTaC-13. Three duplex (two-layer) coatings survived 3,000 hours on a cyclic oxidation test (1,100 C to 90 C). These coatings were fabricated by first depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam heated source, followed by depositing an aluminizing overlayer. The alloy after exposure with these coatings was denuded of carbide fibers at the substrate/coating interface. It was demonstrated that TaC fiber denudation can be greatly retarded by applying a carbon-bearing coating. The coating was applied by thermal spraying followed by aluminization. Specimens coated with NiCrAlCY+Al survived over 2,000 hours in the cyclic oxidation test with essentially no TaC denudation. Coating ductility was studied for coated and heat-treated bars, and stress rupture life at 871 C and 1,100 C was determined for coated and cycled bars.

  10. Coatings for directional eutectics

    NASA Technical Reports Server (NTRS)

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Coatings developed to provide oxidation protection for the directionally-solidified eutectic alloy NiTaC-B (4.4 weight percent Cr) were evaluated. Of seven Co-, Fe- and Ni-base coatings that were initially investigated, best resistance to cyclic oxidation was demonstrated by duplex coatings fabricated by depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam source followed by deposition of an Al overlayer using the pack cementation process. It was found that addition of carbon to the coating alloy substantially eliminated the problem of fiber denudation in TaC-type eutectic alloys. Burner rig cycled NiTaC-B samples coated with Ni-20Cr-5Al-0.1C-0.1Y+Al and rupture-tested at 1100 deg C performed as well as or better than uncoated, vacuum cycled and air-tested NiTaC-13; however, a slight degradation with respect to uncoated material was noted in air-stress rupture tests at 870 deg C for both cycled and uncycled samples.

  11. Multiple direction vibration fixture

    DOEpatents

    Cericola, Fred; Doggett, James W.; Ernest, Terry L.; Priddy, Tommy G.

    1991-01-01

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  12. Magnetostrictive direct drive motor

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1991-01-01

    Highly magnetostrictive materials such as Tb.3Dy.7Fe2, commercially known as TERFENOL-D, have been used to date in a variety of devices such as high power actuators and linear motors. The larger magnetostriction available in twinned single crystal TERFENOL-D, approx. 2000 ppm at moderate magnetic field strengths, makes possible a new generation of magnetomechanical devices. NASA researchers are studying the potential of this material as the basis for a direct microstepping rotary motor with torque densities on the order of industrial hydraulics and five times greater than that of the most efficient, high power electric motors. Such a motor would be a micro-radian stepper, capable of precision movements and self-braking in the power-off state. Innovative mechanical engineering techniques are juxtaposed on proper magnetic circuit design to reduce losses in structural flexures, inertias, thermal expansions, eddy currents, and magneto-mechanical coupling, thus optimizing motor performance and efficiency. Mathematical models are presented, including magnetic, structural, and both linear and nonlinear dynamic calculations and simulations. In addition, test results on prototypes are presented.

  13. Direct cupration of fluoroform.

    PubMed

    Zanardi, Alessandro; Novikov, Maxim A; Martin, Eddy; Benet-Buchholz, Jordi; Grushin, Vladimir V

    2011-12-28

    We have found the first reaction of direct cupration of fluoroform, the most attractive CF(3) source for the introduction of the trifluoromethyl group into organic molecules. Treatment of CuX (X = Cl, Br, I) with 2 equiv of MOR (M = K, Na) in DMF or NMP produces novel alkoxycuprates that readily react with CF(3)H at room temperature and atmospheric pressure to give CuCF(3) derivatives. The CuCl and t-BuOK (1:2) combination provides best results, furnishing the CuCF(3) product within seconds in nearly quantitative yield. As demonstrated, neither CF(3)(-) nor CF(2) mediate the Cu-CF(3) bond formation, which accounts for its remarkably high selectivity. The fluoroform-derived CuCF(3) solutions can be efficiently stabilized with TREAT HF to produce CuCF(3) reagents that readily trifluoromethylate organic and inorganic electrophiles in the absence of additional ligands such as phenanthroline. A series of novel Cu(I) complexes have been structurally characterized, including K(DMF)[Cu(OBu-t)(2)] (1), Na(DMF)(2)[Cu(OBu-t)(2)] (2), [K(8)Cu(6)(OBu-t)(12)(DMF)(8)(I)](+) I(-) (3), and [Cu(4)(CF(3))(2)(C(OBu-t)(2))(2)(μ(3)-OBu-t)(2)] (7). PMID:22136628

  14. Multiple direction vibration fixture

    SciTech Connect

    Cericola, F.; Doggett, J.W.; Ernest, T.L.

    1991-08-27

    An apparatus is discussed for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 {degrees} around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  15. Multiple direction vibration fixture

    SciTech Connect

    Cericola, F.; Doggett, J.W.; Ernest, T.L.; Priddy, T.G.

    1990-03-21

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis. 1 fig.

  16. New Directions in Biotechnology

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The macromolecule crystallization program within NASA is undergoing considerable pressure, particularly budgetary pressure. While it has shown some successes, they have not lived up to the expectations of others, and technological advances may rapidly overtake the natural advantages offered by crystallization in microgravity. Concomitant with the microgravity effort has been a research program to study the macromolecule crystallization process. It was believed that a better understanding of the process would lead to growth of improved crystals for X-ray diffraction studies. The results of the various research efforts have been impressive in improving our understanding of macromolecule crystallization, but have not led to any improved structures. Macromolecule crystallization for structure determination is "one of", the job being unique for every protein and finished once a structure is obtained. However, the knowledge gained is not lost, but instead lays the foundation for developments in new areas of biotechnology and nanotechnology. In this it is highly analogous to studies into small molecule crystallization, the results of which have led to our present day microelectronics-based society. We are conducting preliminary experiments into areas such as designed macromolecule crystals, macromolecule-inorganic hybrid structures, and macromolecule-based nanotechnology. In addition, our protein crystallization studies are now being directed more towards industrial and new approaches to membrane protein crystallization.

  17. Microfluidic Compartmentalized Directed Evolution

    PubMed Central

    Paegel, Brian M.; Joyce, Gerald F.

    2010-01-01

    Summary Directed evolution studies often make use of water-in-oil compartments, which conventionally are prepared by bulk emulsification, a crude process that generates non-uniform droplets and can damage biochemical reagents. A microfluidic emulsification circuit was devised that generates uniform water-in-oil droplets (21.9 ± 0.8 μm radius) with high throughput (107–108 droplets per hour). The circuit contains a radial array of aqueous flow nozzles that intersect a surrounding oil flow channel. This device was used to evolve RNA enzymes with RNA ligase activity, selecting enzymes that could resist inhibition by neomycin. Each molecule in the population had the opportunity to undergo 108-fold selective amplification within its respective compartment. Then the progeny RNAs were harvested and used to seed new compartments. During five rounds of this procedure, the enzymes acquired mutations that conferred resistance to neomycin and caused some enzymes to become dependent on neomycin for optimal activity. PMID:20659684

  18. Directed Incremental Symbolic Execution

    NASA Technical Reports Server (NTRS)

    Person, Suzette; Yang, Guowei; Rungta, Neha; Khurshid, Sarfraz

    2011-01-01

    The last few years have seen a resurgence of interest in the use of symbolic execution -- a program analysis technique developed more than three decades ago to analyze program execution paths. Scaling symbolic execution and other path-sensitive analysis techniques to large systems remains challenging despite recent algorithmic and technological advances. An alternative to solving the problem of scalability is to reduce the scope of the analysis. One approach that is widely studied in the context of regression analysis is to analyze the differences between two related program versions. While such an approach is intuitive in theory, finding efficient and precise ways to identify program differences, and characterize their effects on how the program executes has proved challenging in practice. In this paper, we present Directed Incremental Symbolic Execution (DiSE), a novel technique for detecting and characterizing the effects of program changes. The novelty of DiSE is to combine the efficiencies of static analysis techniques to compute program difference information with the precision of symbolic execution to explore program execution paths and generate path conditions affected by the differences. DiSE is a complementary technique to other reduction or bounding techniques developed to improve symbolic execution. Furthermore, DiSE does not require analysis results to be carried forward as the software evolves -- only the source code for two related program versions is required. A case-study of our implementation of DiSE illustrates its effectiveness at detecting and characterizing the effects of program changes.

  19. Parsec's astrometry direct approaches .

    NASA Astrophysics Data System (ADS)

    Andrei, A. H.

    Parallaxes - and hence the fundamental establishment of stellar distances - rank among the oldest, keyest, and hardest of astronomical determinations. Arguably amongst the most essential too. The direct approach to obtain trigonometric parallaxes, using a constrained set of equations to derive positions, proper motions, and parallaxes, has been labeled as risky. Properly so, because the axis of the parallactic apparent ellipse is smaller than one arcsec even for the nearest stars, and just a fraction of its perimeter can be followed. Thus the classical approach is of linearizing the description by locking the solution to a set of precise positions of the Earth at the instants of observation, rather than to the dynamics of its orbit, and of adopting a close examination of the never many points available. In the PARSEC program the parallaxes of 143 brown dwarfs were aimed at. Five years of observation of the fields were taken with the WIFI camera at the ESO 2.2m telescope, in Chile. The goal is to provide a statistically significant number of trigonometric parallaxes to BD sub-classes from L0 to T7. Taking advantage of the large, regularly spaced, quantity of observations, here we take the risky approach to fit an ellipse in ecliptical observed coordinates and derive the parallaxes. We also combine the solutions from different centroiding methods, widely proven in prior astrometric investigations. As each of those methods assess diverse properties of the PSFs, they are taken as independent measurements, and combined into a weighted least-square general solution.

  20. Directly Driven Ion Outflow

    NASA Technical Reports Server (NTRS)

    Elliott, H. A.; Comfort, R. H.; Craven, P. D.; Moore, T. E.; Russell, C. T.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We examine ionospheric outflows in the high altitude magnetospheric polar cap during the POLAR satellite's apogee on April 19, 1996 using the Thermal Ion Dynamics Experiment (TIDE) instrument. The elevated levels of O(+) observed in this pass may be due to the geophysical conditions during and prior to the apogee pass. In addition to the high abundance of O(+) relative to H(+), several other aspects of this data are noteworthy. We observe relationships between the density, velocity, and temperature which appear to be associated with perpendicular heating and the mirror force, rather than adiabatic expansion. The H(+) outflow is at a fairly constant flux which is consistent with being source limited by charge exchange at lower altitudes. Local centrifugal acceleration in the polar cap is found to be insufficient to account for the main variations we observe in the outflow velocity. The solar wind speed is high during this pass approximately 700 kilometers per second, and there are Alfve'n waves present in the solar wind such that the solar wind speed and IMF Bx are correlated. In this pass both the H(+) and O(+) outflow velocities correlate with both the solar wind speed and IMF fluctuations. Polar cap magnetometer and Hydra electron data show the same long period wave structure as found in the solar wind and polar cap ion outflow. In addition, the polar cap Poynting flux along the magnetic field direction correlates well with the H(+) temperature (R=0.84). We conclude that the solar wind can drive polar cap ion outflow particularly during polar squalls by setting up a parallel drop that is tens of eV which then causes the ion outflow velocity of O(+) and H(+), the electrons, and magnetic perturbations to vary in a similar fashion.

  1. Geothermal Technologies Program: Direct Use

    SciTech Connect

    Not Available

    2004-08-01

    This general publication describes geothermal direct use systems, and how they have been effectively used throughout the country. It also describes the DOE program R&D efforts in this area, and summarizes several projects using direct use technology.

  2. Representations of motion and direction.

    PubMed

    Price, C M; Gilden, D L

    2000-02-01

    In 6 experiments, incidental memory was tested for direction of motion in an old-new recognition paradigm. Ability to recognize previously shown directions depended greatly on motion type. Memory for translation and expansion-contraction direction was highly veridical, whereas memory for rotation direction was conspicuously absent. Similar results were obtained in conditions in which motions were illustrated with pictures. Results suggest that explicit representations of direction in long-term memory are not so much related to motion per se as to the consequences of motion, the displacements of objects. Memory for all motions following circular pathways was found to be corrupted by a generic bias to regard the clockwise direction as familiar. Assessment of memory in these cases required disentangling familiarity bias for the clockwise direction from explicit recognition of direction.

  3. New directions at NSF

    NASA Astrophysics Data System (ADS)

    Harvey, Albert B.

    1995-10-01

    The mission and scope of the National Science Foundation (NSF) and lightwave technology will be very briefly discussed. The focus of the presentation will be directed toward changes in research support that are taking place and the opportunities we have for aiming our research to meet the challenges and needs that face the nation. In the USA it is very clear that defense oriented research is downsizing and is being redirected into economy driven aresas, such as manufacturing, business, and industry. For those researchers who are willing to move into these areas and find a niche, the rewards may be very great. Industrial research partners should also seize these opportunities to enhance their resources in an otherwise bleak future for industrial support of basic research in lightwave technology and many other reserach disciplines. These activities of bringing together industry and academia will have the value added benefit of providing increased job opportunities for students. An outline of some of these opportunities and incentives will be presented. On the international front, there has never been a better time for the encouragement of joint research and collaboration across borders. The economic potential for involvement in Eastern Europe and Asia are enormous. Agencies like ourselves are open to help support of visiting scientist/engineer exchange, international conferences and forums and support of innovative ideas to help further enhance economic developemnt of the world and hence the quality of life. The presence of the Russian delegation here at these SPIE meetings in in part the result of NSF support. Concomitant with these changes is a growing interest in education. Academia is gradually realizing that education includes training for students to acquire jobs and hence we complete the cycle of the importance of interacting with industry. At the NSF a major new initiative is being introduced in Optical Science and Engineering (OSE). This effort has been

  4. Directional detector of gamma rays

    DOEpatents

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  5. Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing

    NASA Astrophysics Data System (ADS)

    Lu, Yichen; Lyu, Hongming; Richardson, Andrew G.; Lucas, Timothy H.; Kuzum, Duygu

    2016-09-01

    Neural sensing and stimulation have been the backbone of neuroscience research, brain-machine interfaces and clinical neuromodulation therapies for decades. To-date, most of the neural stimulation systems have relied on sharp metal microelectrodes with poor electrochemical properties that induce extensive damage to the tissue and significantly degrade the long-term stability of implantable systems. Here, we demonstrate a flexible cortical microelectrode array based on porous graphene, which is capable of efficient electrophysiological sensing and stimulation from the brain surface, without penetrating into the tissue. Porous graphene electrodes show superior impedance and charge injection characteristics making them ideal for high efficiency cortical sensing and stimulation. They exhibit no physical delamination or degradation even after 1 million biphasic stimulation cycles, confirming high endurance. In in vivo experiments with rodents, same array is used to sense brain activity patterns with high spatio-temporal resolution and to control leg muscles with high-precision electrical stimulation from the cortical surface. Flexible porous graphene array offers a minimally invasive but high efficiency neuromodulation scheme with potential applications in cortical mapping, brain-computer interfaces, treatment of neurological disorders, where high resolution and simultaneous recording and stimulation of neural activity are crucial.

  6. Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing

    PubMed Central

    Lu, Yichen; Lyu, Hongming; Richardson, Andrew G.; Lucas, Timothy H.; Kuzum, Duygu

    2016-01-01

    Neural sensing and stimulation have been the backbone of neuroscience research, brain-machine interfaces and clinical neuromodulation therapies for decades. To-date, most of the neural stimulation systems have relied on sharp metal microelectrodes with poor electrochemical properties that induce extensive damage to the tissue and significantly degrade the long-term stability of implantable systems. Here, we demonstrate a flexible cortical microelectrode array based on porous graphene, which is capable of efficient electrophysiological sensing and stimulation from the brain surface, without penetrating into the tissue. Porous graphene electrodes show superior impedance and charge injection characteristics making them ideal for high efficiency cortical sensing and stimulation. They exhibit no physical delamination or degradation even after 1 million biphasic stimulation cycles, confirming high endurance. In in vivo experiments with rodents, same array is used to sense brain activity patterns with high spatio-temporal resolution and to control leg muscles with high-precision electrical stimulation from the cortical surface. Flexible porous graphene array offers a minimally invasive but high efficiency neuromodulation scheme with potential applications in cortical mapping, brain-computer interfaces, treatment of neurological disorders, where high resolution and simultaneous recording and stimulation of neural activity are crucial. PMID:27642117

  7. Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing.

    PubMed

    Lu, Yichen; Lyu, Hongming; Richardson, Andrew G; Lucas, Timothy H; Kuzum, Duygu

    2016-09-19

    Neural sensing and stimulation have been the backbone of neuroscience research, brain-machine interfaces and clinical neuromodulation therapies for decades. To-date, most of the neural stimulation systems have relied on sharp metal microelectrodes with poor electrochemical properties that induce extensive damage to the tissue and significantly degrade the long-term stability of implantable systems. Here, we demonstrate a flexible cortical microelectrode array based on porous graphene, which is capable of efficient electrophysiological sensing and stimulation from the brain surface, without penetrating into the tissue. Porous graphene electrodes show superior impedance and charge injection characteristics making them ideal for high efficiency cortical sensing and stimulation. They exhibit no physical delamination or degradation even after 1 million biphasic stimulation cycles, confirming high endurance. In in vivo experiments with rodents, same array is used to sense brain activity patterns with high spatio-temporal resolution and to control leg muscles with high-precision electrical stimulation from the cortical surface. Flexible porous graphene array offers a minimally invasive but high efficiency neuromodulation scheme with potential applications in cortical mapping, brain-computer interfaces, treatment of neurological disorders, where high resolution and simultaneous recording and stimulation of neural activity are crucial.

  8. Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing.

    PubMed

    Lu, Yichen; Lyu, Hongming; Richardson, Andrew G; Lucas, Timothy H; Kuzum, Duygu

    2016-01-01

    Neural sensing and stimulation have been the backbone of neuroscience research, brain-machine interfaces and clinical neuromodulation therapies for decades. To-date, most of the neural stimulation systems have relied on sharp metal microelectrodes with poor electrochemical properties that induce extensive damage to the tissue and significantly degrade the long-term stability of implantable systems. Here, we demonstrate a flexible cortical microelectrode array based on porous graphene, which is capable of efficient electrophysiological sensing and stimulation from the brain surface, without penetrating into the tissue. Porous graphene electrodes show superior impedance and charge injection characteristics making them ideal for high efficiency cortical sensing and stimulation. They exhibit no physical delamination or degradation even after 1 million biphasic stimulation cycles, confirming high endurance. In in vivo experiments with rodents, same array is used to sense brain activity patterns with high spatio-temporal resolution and to control leg muscles with high-precision electrical stimulation from the cortical surface. Flexible porous graphene array offers a minimally invasive but high efficiency neuromodulation scheme with potential applications in cortical mapping, brain-computer interfaces, treatment of neurological disorders, where high resolution and simultaneous recording and stimulation of neural activity are crucial. PMID:27642117

  9. Self-Directed Workplace Learning.

    ERIC Educational Resources Information Center

    1998

    This document contains four papers from a symposium on self-directed workplace learning. "Self-Directed Work Teams: Implementation and Performance" (Marcel van der Klink, Hilde ter Horst) discusses the results of a study examining the implementation and effects of self-directed work teams in a land register office and the role of the department's…

  10. Motor directional tuning across brain areas: directional resonance and the role of inhibition for directional accuracy.

    PubMed

    Mahan, Margaret Y; Georgopoulos, Apostolos P

    2013-01-01

    Motor directional tuning (Georgopoulos et al., 1982) has been found in every brain area in which it has been sought for during the past 30-odd years. It is typically broad, with widely distributed preferred directions and a population signal that predicts accurately the direction of an upcoming reaching movement or isometric force pulse (Georgopoulos et al., 1992). What is the basis for such ubiquitous directional tuning? How does the tuning come about? What are the implications of directional tuning for understanding the brain mechanisms of movement in space? This review addresses these questions in the light of accumulated knowledge in various sub-fields of neuroscience and motor behavior. It is argued (a) that direction in space encompasses many aspects, from vision to muscles, (b) that there is a directional congruence among the central representations of these distributed "directions" arising from rough but orderly topographic connectivities among brain areas, (c) that broad directional tuning is the result of broad excitation limited by recurrent and non-recurrent (i.e., direct) inhibition within the preferred direction loci in brain areas, and (d) that the width of the directional tuning curve, modulated by local inhibitory mechanisms, is a parameter that determines the accuracy of the directional command. PMID:23720612

  11. Describing Directional Cell Migration with a Characteristic Directionality Time

    PubMed Central

    Loosley, Alex J.; O’Brien, Xian M.; Reichner, Jonathan S.; Tang, Jay X.

    2015-01-01

    Many cell types can bias their direction of locomotion by coupling to external cues. Characteristics such as how fast a cell migrates and the directedness of its migration path can be quantified to provide metrics that determine which biochemical and biomechanical factors affect directional cell migration, and by how much. To be useful, these metrics must be reproducible from one experimental setting to another. However, most are not reproducible because their numerical values depend on technical parameters like sampling interval and measurement error. To address the need for a reproducible metric, we analytically derive a metric called directionality time, the minimum observation time required to identify motion as directionally biased. We show that the corresponding fit function is applicable to a variety of ergodic, directionally biased motions. A motion is ergodic when the underlying dynamical properties such as speed or directional bias do not change over time. Measuring the directionality of nonergodic motion is less straightforward but we also show how this class of motion can be analyzed. Simulations are used to show the robustness of directionality time measurements and its decoupling from measurement errors. As a practical example, we demonstrate the measurement of directionality time, step-by-step, on noisy, nonergodic trajectories of chemotactic neutrophils. Because of its inherent generality, directionality time ought to be useful for characterizing a broad range of motions including intracellular transport, cell motility, and animal migration. PMID:25992908

  12. Applications of Payload Directed Flight

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Fladeland, Matthew M.; Yeh, Yoo Hsiu

    2009-01-01

    Next generation aviation flight control concepts require autonomous and intelligent control system architectures that close control loops directly around payload sensors in manner more integrated and cohesive that in traditional autopilot designs. Research into payload directed flight control at NASA Ames Research Center is investigating new and novel architectures that can satisfy the requirements for next generation control and automation concepts for aviation. Tighter integration between sensor and machine requires definition of specific sensor-directed control modes to tie the sensor data directly into a vehicle control structures throughout the entire control architecture, from low-level stability- and control loops, to higher level mission planning and scheduling reasoning systems. Payload directed flight systems can thus provide guidance, navigation, and control for vehicle platforms hosting a suite of onboard payload sensors. This paper outlines related research into the field of payload directed flight; and outlines requirements and operating concepts for payload directed flight systems based on identified needs from the scientific literature.'

  13. Donor Conception Disclosure: Directive or Non-Directive Counselling?

    PubMed

    Raes, Inez; Ravelingien, An; Pennings, Guido

    2016-09-01

    It is widely agreed among health professionals that couples using donor insemination should be offered counselling on the topic of donor conception disclosure. However, it is clear from the literature that there has long been a lack of agreement about which counselling approach should be used in this case: a directive or a non-directive approach. In this paper we investigate which approach is ethically justifiable by balancing the two underlying principles of autonomy (non-directive approach) and beneficence (directive approach). To overrule one principle in favour of another, six conditions should be fulfilled. We analyse the arguments in favour of the beneficence principle, and consequently, a directive approach. This analysis shows that two conditions are not met; the principle of autonomy should not be overridden. Therefore, at this moment, a directive counselling approach on donor conception disclosure cannot be ethically justified.

  14. Donor Conception Disclosure: Directive or Non-Directive Counselling?

    PubMed

    Raes, Inez; Ravelingien, An; Pennings, Guido

    2016-09-01

    It is widely agreed among health professionals that couples using donor insemination should be offered counselling on the topic of donor conception disclosure. However, it is clear from the literature that there has long been a lack of agreement about which counselling approach should be used in this case: a directive or a non-directive approach. In this paper we investigate which approach is ethically justifiable by balancing the two underlying principles of autonomy (non-directive approach) and beneficence (directive approach). To overrule one principle in favour of another, six conditions should be fulfilled. We analyse the arguments in favour of the beneficence principle, and consequently, a directive approach. This analysis shows that two conditions are not met; the principle of autonomy should not be overridden. Therefore, at this moment, a directive counselling approach on donor conception disclosure cannot be ethically justified. PMID:27116204

  15. Direct Cardiomyocyte Reprogramming: A New Direction for Cardiovascular Regenerative Medicine

    PubMed Central

    Yi, B. Alexander; Mummery, Christine L.; Chien, Kenneth R.

    2013-01-01

    The past few years have seen unexpected new developments in direct cardiomyocyte reprogramming. Direct cardiomyocyte reprogramming potentially offers an entirely novel approach to cardiovascular regenerative medicine by converting cardiac fibroblasts into functional cardiomyocytes in situ. There is much to be learned, however, about the mechanisms of direct reprogramming in order that the process can be made more efficient. Early efforts have suggested that this new technology can be technically challenging. Moreover, new methods of inducing heart reprogramming will need to be developed before this approach can be translated to the bedside. Despite this, direct cardiomyocyte reprogramming may lead to new therapeutic options for sufferers of heart disease. PMID:24003244

  16. Dynamic behaviors in directed networks

    SciTech Connect

    Park, Sung Min; Kim, Beom Jun

    2006-08-15

    Motivated by the abundance of directed synaptic couplings in a real biological neuronal network, we investigate the synchronization behavior of the Hodgkin-Huxley model in a directed network. We start from the standard model of the Watts-Strogatz undirected network and then change undirected edges to directed arcs with a given probability, still preserving the connectivity of the network. A generalized clustering coefficient for directed networks is defined and used to investigate the interplay between the synchronization behavior and underlying structural properties of directed networks. We observe that the directedness of complex networks plays an important role in emerging dynamical behaviors, which is also confirmed by a numerical study of the sociological game theoretic voter model on directed networks.

  17. 78 FR 32533 - Proposed Collection of Information: Direct Deposit, Go Direct, and Direct Express Sign-Up Forms

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... Bureau of the Fiscal Service Proposed Collection of Information: Direct Deposit, Go Direct, and Direct...'', Form 1200 ``Go Direct Sign-Up Form for Direct Deposit of Federal Benefit Payments'', Form 1200VADE... below: Title: Direct Deposit Sign-Up Form, and Go Direct Sign-Up Form, and Direct Express Form...

  18. Direct measurements on imaging riometer antenna array beam directivities

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Nel, J. J.; Mathews, M. J.; Stoker, P. H.

    2001-01-01

    Spatial structures in enhanced ionization of the ionosphere are observed by absorption of cosmic radio waves. These structures are resolved by using theoretically derived imaging riometer antenna array directivities. These directivities are calculated from beam phasing of 64 crossed dipole elements of the 38.2-MHz antenna array at SANAE IV, Antarctica. In order to ensure that these derived directivities are representative of the actual viewing directions of the 64-beams, a radio transmitter was flown by helicopter across the antenna array. In this paper variations in the receiver signal strengths, recorded when flying across beam-viewing directions, are compared with the spatial and angular-dependent profiles of expected receiver output responses, derived theoretically from the directivities of the antenna array. A Global Positioning System (GPS) device on board the helicopter was used for positional recording. The derived and recorded profiles did coincide occasionally, but at other instances relative displacements and differences in magnitude of responses were observed. These displacements and differences could be attributed to degradation in position fixes imposed deliberately by selective availability on the GPS system. Excellent coincidence for a number of beam crossings proved that the viewing directions are accurate in all the beam directions, since the multi-dimensional Butler matrix produces 64 simultaneous beams.

  19. Median recoil direction as a WIMP directional detection signal

    SciTech Connect

    Green, Anne M.; Morgan, Ben

    2010-03-15

    Direct detection experiments have reached the sensitivity to detect dark matter weakly interacting massive particles (WIMPs). Demonstrating that a putative signal is due to WIMPs, and not backgrounds, is a major challenge, however. The direction dependence of the WIMP scattering rate provides a potential WIMP 'smoking gun'. If the WIMP distribution is predominantly smooth, the Galactic recoil distribution is peaked in the direction opposite to the direction of Solar motion. Previous studies have found that, for an ideal detector, of order 10 WIMP events would be sufficient to reject isotropy, and rule out an isotropic background. We examine how the median recoil direction could be used to confirm the WIMP origin of an anisotropic recoil signal. Specifically, we determine the number of events required to confirm the direction of solar motion as the median inverse recoil direction at 95% confidence. We find that for zero background 31 events are required, a factor of {approx}2 more than are required to simply reject isotropy. We also investigate the effect of a nonzero isotropic background. As the background rate is increased the number of events required increases, initially fairly gradually and then more rapidly, once the signal becomes subdominant. We also discuss the effect of features in the speed distribution at large speeds, as found in recent high resolution simulations, on the median recoil direction.

  20. Directionality Time - New Analytical Treatment of Directionally Biased, Crawling Motility

    NASA Astrophysics Data System (ADS)

    Tang, Jay; Loosley, Alexander

    Insights on crucial biological functions often emerge from measuring how animal cells crawl on surfaces, particularly in response to gradients of external cues that cause directionally biased motion. Most existing metrics commonly used to characterize directional migration, such as straightness index (or chemotactic index), persistence time, and turning angle distribution, tend to be sensitive to relatively large errors at short sampling times. In contrast, we recently introduced a new metric, called directionality time, to define the onset time by which a seemingly random motion becomes directionally biased (O'Brien et al., J Leukocyte Biol, 2014, 95:993-1004 Loosley et al., PLOS ONE, 2015, 10.1371). Directionality time is obtained by fitting the mean squared displacement as a function of time interval, in log-log coordinates, to a fit function based on biased and persistent random walk processes. We show that the fit function is approximately model invariant and is applicable to a variety of directionally biased motions. Simulations are performed to show the robustness of the directionality time model and its decoupling from measurement errors. Finally, we demonstrate as an example how to usefully apply the directionality time fit to trajectories of chemotactic neutrophils.

  1. The Influence of Directional Associations on Directed Forgetting and Interference

    ERIC Educational Resources Information Center

    Sahakyan, Lili; Goodmon, Leilani B.

    2007-01-01

    Two experiments examined how cross-list directional associations influenced list-method directed forgetting and the degree of interference observed on each list. Each List 1 item had a (a) bidirectionally related item on List 2 (chip ?? potato), (b) forward association with an item on List 2 (chip ? wood), (c) backward association from an item on…

  2. Advance directives: prerequisites and usefulness.

    PubMed

    van Asselt, D

    2006-10-01

    Advance directives allow competent persons to extend their right of self-determination into the future, by recording choices that are intended to influence their future care should they become unable to make choices. They are considered tools to facilitate end-of-life decision making. Advance directives are a form of anticipatory decision-making. This article will focus on instruction directives against a certain treatment, so-called advance refusals. The most important legal requirement is the acknowledgement of patient autonomy. This condition is met in all European countries. The legal uncertainties surrounding advance refusals are focused on practical modalities rather than on the validity of the general principle. According to leading ethics the underlying moral rule of advanced directives is that all truly autonomous refusals of treatment must be respected, no matter what the consequences. Physicians find it hard to adhere to the wishes and choices of patients as expressed in directives. They find the text ambiguous. Another weakness is that directives give little information about what in the patient's view constitutes a good quality of life. Some health professionals lack the willingness to step outside their own value systems and fully embrace that of the patient. Empathic skills are required. Very few persons create an advance directive. Furthermore, of the created directives only some are accessible when patients are admitted to hospital. However, when directives are available they usually influence medical treatment decisions.

  3. Direct cooled power electronics substrate

    DOEpatents

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  4. Directional excitation without breaking reciprocity

    NASA Astrophysics Data System (ADS)

    Ramezani, Hamidreza; Dubois, Marc; Wang, Yuan; Shen, Y. Ron; Zhang, Xiang

    2016-09-01

    We propose a mechanism for directional excitation without breaking reciprocity. This is achieved by embedding an impedance matched parity-time symmetric potential in a three-port system. The amplitude distribution within the gain and loss regions is strongly influenced by the direction of the incoming field. Consequently, the excitation of the third port is contingent on the direction of incidence while transmission in the main channel is immune. Our design improves the four-port directional coupler scheme, as there is no need to implement an anechoic termination to one of the ports.

  5. Epidemic threshold in directed networks.

    PubMed

    Li, Cong; Wang, Huijuan; Van Mieghem, Piet

    2013-12-01

    Epidemics have so far been mostly studied in undirected networks. However, many real-world networks, such as the online social network Twitter and the world wide web, on which information, emotion, or malware spreads, are directed networks, composed of both unidirectional links and bidirectional links. We define the directionality ξ as the percentage of unidirectional links. The epidemic threshold τ(c) for the susceptible-infected-susceptible (SIS) epidemic is lower bounded by 1/λ(1) in directed networks, where λ(1), also called the spectral radius, is the largest eigenvalue of the adjacency matrix. In this work, we propose two algorithms to generate directed networks with a given directionality ξ. The effect of ξ on the spectral radius λ(1), principal eigenvector x(1), spectral gap (λ(1)-|λ(2)|), and algebraic connectivity μ(N-1) is studied. Important findings are that the spectral radius λ(1) decreases with the directionality ξ, whereas the spectral gap and the algebraic connectivity increase with the directionality ξ. The extent of the decrease of the spectral radius depends on both the degree distribution and the degree-degree correlation ρ(D). Hence, in directed networks, the epidemic threshold is larger and a random walk converges to its steady state faster than that in undirected networks with the same degree distribution. PMID:24483506

  6. Directions in Center Director Training

    ERIC Educational Resources Information Center

    Bloom, Paula Jorde; Vinci, Yasmina; Rafanello, Donna; Donohue, Chip

    2011-01-01

    Exchange invited some of the leading trend watchers in the arena of director training to share their insights on the current state and future directions in this country. This article presents the authors' insights on the directions in center director training. They also share their views on whether the amount of and quality of training out there…

  7. Direct Marketing Goes to College.

    ERIC Educational Resources Information Center

    Merante, Joseph A.

    1980-01-01

    The only form of marketing important to an admissions department, direct marketing, whose principal vehicle is direct mail, is identified as an organized method for sharing and distributing information to prospective students. Target audiences, marketing administration, and effective mailings are discussed. (MLW)

  8. Epidemic threshold in directed networks.

    PubMed

    Li, Cong; Wang, Huijuan; Van Mieghem, Piet

    2013-12-01

    Epidemics have so far been mostly studied in undirected networks. However, many real-world networks, such as the online social network Twitter and the world wide web, on which information, emotion, or malware spreads, are directed networks, composed of both unidirectional links and bidirectional links. We define the directionality ξ as the percentage of unidirectional links. The epidemic threshold τ(c) for the susceptible-infected-susceptible (SIS) epidemic is lower bounded by 1/λ(1) in directed networks, where λ(1), also called the spectral radius, is the largest eigenvalue of the adjacency matrix. In this work, we propose two algorithms to generate directed networks with a given directionality ξ. The effect of ξ on the spectral radius λ(1), principal eigenvector x(1), spectral gap (λ(1)-|λ(2)|), and algebraic connectivity μ(N-1) is studied. Important findings are that the spectral radius λ(1) decreases with the directionality ξ, whereas the spectral gap and the algebraic connectivity increase with the directionality ξ. The extent of the decrease of the spectral radius depends on both the degree distribution and the degree-degree correlation ρ(D). Hence, in directed networks, the epidemic threshold is larger and a random walk converges to its steady state faster than that in undirected networks with the same degree distribution.

  9. Epidemic threshold in directed networks

    NASA Astrophysics Data System (ADS)

    Li, Cong; Wang, Huijuan; Van Mieghem, Piet

    2013-12-01

    Epidemics have so far been mostly studied in undirected networks. However, many real-world networks, such as the online social network Twitter and the world wide web, on which information, emotion, or malware spreads, are directed networks, composed of both unidirectional links and bidirectional links. We define the directionality ξ as the percentage of unidirectional links. The epidemic threshold τc for the susceptible-infected-susceptible (SIS) epidemic is lower bounded by 1/λ1 in directed networks, where λ1, also called the spectral radius, is the largest eigenvalue of the adjacency matrix. In this work, we propose two algorithms to generate directed networks with a given directionality ξ. The effect of ξ on the spectral radius λ1, principal eigenvector x1, spectral gap (λ1-λ2), and algebraic connectivity μN-1 is studied. Important findings are that the spectral radius λ1 decreases with the directionality ξ, whereas the spectral gap and the algebraic connectivity increase with the directionality ξ. The extent of the decrease of the spectral radius depends on both the degree distribution and the degree-degree correlation ρD. Hence, in directed networks, the epidemic threshold is larger and a random walk converges to its steady state faster than that in undirected networks with the same degree distribution.

  10. Efficient Placement of Directional Antennas

    SciTech Connect

    Pan, Feng; Kasiviswanathan, Shiva

    2010-09-20

    Directional antenna is an technology for the proliferation of wireless networks. In centralized wireless network, wireless devices communicate through base stations. Directed antennas are placed on base stations and form a backbone of communication. The communication between base stations and wireless devices can be interfered due to a large number of wireless device. Methodically positioning and orienting directed antennas can help to reduce the interference while saving energy. An integer linear programming is developed for siting and directing antennas on multiple base stations, and this formulation can be extended to model non-overlapping channels. Through the integer programming formulation, optimal antenna positions can be used to analyze the performance of directed antennas with different parameters like the number base stations and the number of non-overlapping channels.

  11. Perceiving Invisible Light through a Somatosensory Cortical Prosthesis

    PubMed Central

    Thomson, Eric E.; Carra, Rafael; Nicolelis, Miguel A.L.

    2013-01-01

    Sensory neuroprostheses show great potential for alleviating major sensory deficits. It is not known, however, whether such devices can augment the subject’s normal perceptual range. Here we show that adult rats can learn to perceive otherwise invisible infrared (IR) light through a neuroprosthesis that couples the output of a head-mounted IR sensor to their somatosensory cortex (S1) via intracortical microstimulation (ICMS). Rats readily learn to use this new information source, and generate active exploratory strategies to discriminate among IR sources in their environment. S1 neurons in these IR-perceiving rats respond to both whisker deflection and ICMS, suggesting that the IR representation does not displace the original tactile representation. Hence, sensory cortical prostheses, in addition to restoring normal neurological functions, may serve to expand natural perceptual capabilities in mammals. PMID:23403583

  12. Direct and semi-direct posterior composite restorations.

    PubMed

    Spreafico, R

    1996-09-01

    Since the introduction of composite resins in dentistry, the adhesive properties of the material to enamel and dentin surfaces have been improved considerably, resulting in more conservative cavity preparation and the preservation of natural tooth structure. Patient demand for aesthetic metal-free restorations in the posterior region has resulted in the utilization of tooth-colored composite restorations. The primary disadvantage of composite resins-material shrinkage-can be minimized, but not eliminated. Various techniques have been developed and proposed in order to overcome this important limitation. The learning objective of this article is to provide indications for the direct and semi-direct techniques and to illustrate effective clinical procedures for placement of posterior composite resin restorations. The article outlines the treatment concepts, principles of cavity preparation, direct and semi-direct restorative methods, and the technique-sensitive luting procedures. Several cases are used to illustrate the clinical aspects.

  13. Single Image Superresolution via Directional Group Sparsity and Directional Features.

    PubMed

    Li, Xiaoyan; He, Hongjie; Wang, Ruxin; Tao, Dacheng

    2015-09-01

    Single image superresolution (SR) aims to construct a high-resolution version from a single low-resolution (LR) image. The SR reconstruction is challenging because of the missing details in the given LR image. Thus, it is critical to explore and exploit effective prior knowledge for boosting the reconstruction performance. In this paper, we propose a novel SR method by exploiting both the directional group sparsity of the image gradients and the directional features in similarity weight estimation. The proposed SR approach is based on two observations: 1) most of the sharp edges are oriented in a limited number of directions and 2) an image pixel can be estimated by the weighted averaging of its neighbors. In consideration of these observations, we apply the curvelet transform to extract directional features which are then used for region selection and weight estimation. A combined total variation regularizer is presented which assumes that the gradients in natural images have a straightforward group sparsity structure. In addition, a directional nonlocal means regularization term takes pixel values and directional information into account to suppress unwanted artifacts. By assembling the designed regularization terms, we solve the SR problem of an energy function with minimal reconstruction error by applying a framework of templates for first-order conic solvers. The thorough quantitative and qualitative results in terms of peak signal-to-noise ratio, structural similarity, information fidelity criterion, and preference matrix demonstrate that the proposed approach achieves higher quality SR reconstruction than the state-of-the-art algorithms.

  14. Direct Manipulation in Virtual Reality

    NASA Technical Reports Server (NTRS)

    Bryson, Steve

    2003-01-01

    Virtual Reality interfaces offer several advantages for scientific visualization such as the ability to perceive three-dimensional data structures in a natural way. The focus of this chapter is direct manipulation, the ability for a user in virtual reality to control objects in the virtual environment in a direct and natural way, much as objects are manipulated in the real world. Direct manipulation provides many advantages for the exploration of complex, multi-dimensional data sets, by allowing the investigator the ability to intuitively explore the data environment. Because direct manipulation is essentially a control interface, it is better suited for the exploration and analysis of a data set than for the publishing or communication of features found in that data set. Thus direct manipulation is most relevant to the analysis of complex data that fills a volume of three-dimensional space, such as a fluid flow data set. Direct manipulation allows the intuitive exploration of that data, which facilitates the discovery of data features that would be difficult to find using more conventional visualization methods. Using a direct manipulation interface in virtual reality, an investigator can, for example, move a data probe about in space, watching the results and getting a sense of how the data varies within its spatial volume.

  15. Potential Theory for Directed Networks

    PubMed Central

    Zhang, Qian-Ming; Lü, Linyuan; Wang, Wen-Qiang; Zhou, Tao

    2013-01-01

    Uncovering factors underlying the network formation is a long-standing challenge for data mining and network analysis. In particular, the microscopic organizing principles of directed networks are less understood than those of undirected networks. This article proposes a hypothesis named potential theory, which assumes that every directed link corresponds to a decrease of a unit potential and subgraphs with definable potential values for all nodes are preferred. Combining the potential theory with the clustering and homophily mechanisms, it is deduced that the Bi-fan structure consisting of 4 nodes and 4 directed links is the most favored local structure in directed networks. Our hypothesis receives strongly positive supports from extensive experiments on 15 directed networks drawn from disparate fields, as indicated by the most accurate and robust performance of Bi-fan predictor within the link prediction framework. In summary, our main contribution is twofold: (i) We propose a new mechanism for the local organization of directed networks; (ii) We design the corresponding link prediction algorithm, which can not only testify our hypothesis, but also find out direct applications in missing link prediction and friendship recommendation. PMID:23408979

  16. 2008 world direct reduction statistics

    SciTech Connect

    2009-07-01

    This supplement discusses total direct reduced iron (DRI) production for 2007 and 2008 by process. Total 2008 production by MIDREX(reg sign) direct reduction process plants was over 39.8 million tons. The total of all coal-based processes was 17.6 million tons. Statistics for world DRI production are also given by region for 2007 and 2008 and by year (1970-2009). Capacity utilization for 2008 by process is given. World DRI production by region and by process is given for 1998-2008 and world DRI shipments are given from the 1970s to 2008. A list of world direct reduction plants is included.

  17. Module bay with directed flow

    DOEpatents

    Torczynski, John R.

    2001-02-27

    A module bay requires less cleanroom airflow. A shaped gas inlet passage can allow cleanroom air into the module bay with flow velocity preferentially directed toward contaminant rich portions of a processing module in the module bay. Preferential gas flow direction can more efficiently purge contaminants from appropriate portions of the module bay, allowing a reduced cleanroom air flow rate for contaminant removal. A shelf extending from an air inlet slit in one wall of a module bay can direct air flowing therethrough toward contaminant-rich portions of the module bay, such as a junction between a lid and base of a processing module.

  18. Directional fast-neutron detector

    DOEpatents

    Byrd, Roger C.

    1994-01-01

    A plurality of omnidirectional radiation detectors are arranged in a close packed symmetrical pattern to form a segmented detector. The output radiation counts from these detectors are arithmetically combined to provide the direction of a source of incident radiation. Directionality is achieved without the use of shielding to provide collimation and background reduction effects. Indeed, output counts from paired detectors are simply subtracted to yield a vector direction toward the radiation source. The counts from all of the detectors can be combined to yield an output signal functionally related to the radiation source strength.

  19. Photon upconversion with directed emission.

    PubMed

    Börjesson, K; Rudquist, P; Gray, V; Moth-Poulsen, K

    2016-01-01

    Photon upconversion has the potential to increase the efficiency of single bandgap solar cells beyond the Shockley Queisser limit. Efficient light management is an important point in this context. Here we demonstrate that the direction of upconverted emission can be controlled in a reversible way, by embedding anthracene derivatives together with palladium porphyrin in a liquid crystalline matrix. The system is employed in a triplet-triplet annihilation photon upconversion scheme demonstrating controlled switching of directional anti Stokes emission. Using this approach an emission ratio of 0.37 between the axial and longitudinal emission directions and a directivity of 1.52 is achieved, reasonably close to the theoretical maximal value of 2 obtained from a perfectly oriented sample. The system can be switched for multiple cycles without any visible degradation and the speed of switching is only limited by the intrinsic rate of alignment of the liquid crystalline matrix. PMID:27573539

  20. DRIFT COMPENSATED DIRECT COUPLED AMPLIFIER

    DOEpatents

    Windsor, A.A.

    1959-05-01

    An improved direct-coupled amplifier having zerolevel drift correction is described. The need for an auxiliary corrective-potential amplifier is eliminated thereby giving protection against overload saturation of the zero- level drift correcting circuit. (T.R.H.)

  1. Major Directions in Creativity Research.

    ERIC Educational Resources Information Center

    Khatena, Joe

    Reviewed are major directions in creativity research in the following areas: theories of creativity; definitions; instruments to measure creativity; nurturing creativity; the disabled, disturbed, and disadvantaged; cross cultural patterns; creative imagination imagery; and measuring creative imagination imagery. (LS)

  2. Photon upconversion with directed emission

    PubMed Central

    Börjesson, K.; Rudquist, P.; Gray, V.; Moth-Poulsen, K.

    2016-01-01

    Photon upconversion has the potential to increase the efficiency of single bandgap solar cells beyond the Shockley Queisser limit. Efficient light management is an important point in this context. Here we demonstrate that the direction of upconverted emission can be controlled in a reversible way, by embedding anthracene derivatives together with palladium porphyrin in a liquid crystalline matrix. The system is employed in a triplet-triplet annihilation photon upconversion scheme demonstrating controlled switching of directional anti Stokes emission. Using this approach an emission ratio of 0.37 between the axial and longitudinal emission directions and a directivity of 1.52 is achieved, reasonably close to the theoretical maximal value of 2 obtained from a perfectly oriented sample. The system can be switched for multiple cycles without any visible degradation and the speed of switching is only limited by the intrinsic rate of alignment of the liquid crystalline matrix. PMID:27573539

  3. Direct Detectors for Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Clough, R. N.; Moldovan, G.; Kirkland, A. I.

    2014-06-01

    There is interest in improving the detectors used to capture images in transmission electron microscopy. Detectors with an improved modulation transfer function at high spatial frequencies allow for higher resolution in images at lower magnification, which leads to an increased effective field of view. Detectors with improved detective quantum efficiency are important for low dose applications. One way in which these performance enhancements can be achieved is through direct detection, where primary electrons are converted directly into suitable electrical signals by the detector rather than relying on an indirect electron to photon conversion before detection. In this paper we present the characterisation of detector performance for a number of different direct detection technologies, and compare these technologies to traditional indirect detectors. Overall our results show that direct detection enables a significant improvement in all aspects of detector performance.

  4. Nonimaging radiant energy direction device

    DOEpatents

    Winston, Roland

    1980-01-01

    A raidant energy nonimaging light direction device is provided. The device includes an energy transducer and a reflective wall whose contour is particularly determined with respect to the geometrical vector flux of a field associated with the transducer.

  5. Photon upconversion with directed emission

    NASA Astrophysics Data System (ADS)

    Börjesson, K.; Rudquist, P.; Gray, V.; Moth-Poulsen, K.

    2016-08-01

    Photon upconversion has the potential to increase the efficiency of single bandgap solar cells beyond the Shockley Queisser limit. Efficient light management is an important point in this context. Here we demonstrate that the direction of upconverted emission can be controlled in a reversible way, by embedding anthracene derivatives together with palladium porphyrin in a liquid crystalline matrix. The system is employed in a triplet-triplet annihilation photon upconversion scheme demonstrating controlled switching of directional anti Stokes emission. Using this approach an emission ratio of 0.37 between the axial and longitudinal emission directions and a directivity of 1.52 is achieved, reasonably close to the theoretical maximal value of 2 obtained from a perfectly oriented sample. The system can be switched for multiple cycles without any visible degradation and the speed of switching is only limited by the intrinsic rate of alignment of the liquid crystalline matrix.

  6. Direct Broadcast Satellite: Radio Program

    NASA Technical Reports Server (NTRS)

    Hollansworth, James E.

    1992-01-01

    NASA is committed to providing technology development that leads to the introduction of new commercial applications for communications satellites. The Direct Broadcast Satellite-Radio (DBS-R) Program is a joint effort between The National Aeronautics and Space Administration (NASA) and The United States Information Agency/Voice of America (USIA/VOA) directed at this objective. The purpose of this program is to define the service and develop the technology for a direct-to-listener satellite sound broadcasting system. The DBS-R Program, as structured by NASA and VOA, is now a three-phase program designed to help the U.S. commercial communications satellite and receiver industry bring about this new communications service. Major efforts are being directed towards frequency planning hardware and service development, service demonstration, and experimentation with new satellite and receiver technology.

  7. Directional microwave applicator and methods

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Lin, Greg Y. (Inventor); Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor)

    2008-01-01

    A miniature microwave antenna is disclosed which may be utilized for biomedical applications such as, for example, radiation induced hyperthermia through catheter systems. One feature of the antenna is that it possesses azimuthal directionality despite its small size. This directionality permits targeting of certain tissues while limiting thermal exposure of adjacent tissue. One embodiment has an outer diameter of about 0.095'' (2.4 mm) but the design permits for smaller diameters.

  8. Direct nuclear-powered lasers

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1983-01-01

    The development of direct nuclear pumped lasers is reviewed. Theoretical and experimental investigations of various methods of converting the energy of nuclear fission fragments to laser power are summarized. The development of direct nuclear pumped lasers was achieved. The basic processes involved in the production of a plasma by nuclear radiation were studied. Significant progress was accomplished in this area and a large amount of basic data on plasma formation and atomic and molecular processes leading to population inversions is available.

  9. Direct Measurement of Intracellular Pressure

    PubMed Central

    Petrie, Ryan J.; Koo, Hyun

    2014-01-01

    A method to directly measure the intracellular pressure of adherent, migrating cells is described in the Basic Protocol. This approach is based on the servo-null method where a microelectrode is introduced into the cell to directly measure the physical pressure of the cytoplasm. We also describe the initial calibration of the microelectrode as well as the application of the method to cells migrating inside three-dimensional (3D) extracellular matrix (ECM). PMID:24894836

  10. Gliding Direction of Mycoplasma mobile

    PubMed Central

    Morio, Hanako; Kasai, Taishi

    2015-01-01

    ABSTRACT Mycoplasma mobile glides in the direction of its cell pole by a unique mechanism in which hundreds of legs, each protruding from its own gliding unit, catch, pull, and release sialylated oligosaccharides fixed on a solid surface. In this study, we found that 77% of cells glided to the left with a change in direction of 8.4° ± 17.6° μm−1 displacement. The cell body did not roll around the cell axis, and elongated, thinner cells also glided while tracing a curved trajectory to the left. Under viscous conditions, the range of deviation of the gliding direction decreased. In the presence of 250 μM free sialyllactose, in which the binding of the legs (i.e., the catching of sialylated oligosaccharides) was reduced, 70% and 30% of cells glided to the left and the right, respectively, with changes in direction of ∼30° μm−1. The gliding ghosts, in which a cell was permeabilized by Triton X-100 and reactivated by ATP, glided more straightly. These results can be explained by the following assumptions based on the suggested gliding machinery and mechanism: (i) the units of gliding machinery may be aligned helically around the cell, (ii) the legs extend via the process of thermal fluctuation and catch the sialylated oligosaccharides, and (iii) the legs generate a propulsion force that is tilted from the cell axis to the left in 70% and to the right in 30% of cells. IMPORTANCE Mycoplasmas are bacteria that are generally parasitic to animals and plants. Some Mycoplasma species form a protrusion at a pole, bind to solid surfaces, and glide. Although these species appear to consistently glide in the direction of the protrusion, their exact gliding direction has not been examined. This study analyzed the gliding direction in detail under various conditions and, based on the results, suggested features of the machinery and the mechanism of gliding. PMID:26503848

  11. Rat whisker motor cortex is subdivided into sensory-input and motor-output areas

    PubMed Central

    Smith, Jared B.; Alloway, Kevin D.

    2013-01-01

    Rodent whisking is an exploratory behavior that can be modified by sensory feedback. Consistent with this, many whisker-sensitive cortical regions project to agranular motor [motor cortex (MI)] cortex, but the relative topography of these afferent projections has not been established. Intracortical microstimulation (ICMS) evokes whisker movements that are used to map the functional organization of MI, but no study has compared the whisker-related inputs to MI with the ICMS sites that evoke whisker movements. To elucidate this relationship, anterograde tracers were placed in posterior parietal cortex (PPC) and in the primary somatosensory (SI) and secondary somatosensory (SII) cortical areas so that their labeled projections to MI could be analyzed with respect to ICMS sites that evoke whisker movements. Projections from SI and SII terminate in a narrow zone that marks the transition between the medial agranular (AGm) and lateral agranular (AGl) cortical areas, but PPC projects more medially and terminates in AGm proper. Paired recordings of MI neurons indicate that the region between AGm and AGl is highly responsive to whisker deflections, but neurons in AGm display negligible responses to whisker stimulation. By contrast, AGm microstimulation is more effective in evoking whisker movements than microstimulation of the transitional region between AGm and AGl. The AGm region was also found to contain a larger concentration of corticotectal neurons, which could convey whisker-related information to the facial nucleus. These results indicate that rat whisker MI is comprised of at least two functionally distinct subregions: a sensory processing zone in the transitional region between AGm and AGl, and a motor-output region located more medially in AGm proper. PMID:23372545

  12. Directive and Non-Directive Movement in Child Therapy.

    ERIC Educational Resources Information Center

    Krason, Katarzyna; Szafraniec, Grazyna

    1999-01-01

    Presents a new authorship method of child therapy based on visualization through motion. Maintains that this method stimulates motor development and musical receptiveness, and promotes personality development. Suggests that improvised movement to music facilitates the projection mechanism and that directed movement starts the channeling phase.…

  13. Direct Instruction? Don't I Instruct Directly?

    ERIC Educational Resources Information Center

    Peryon, Charleen D.

    A teaching method particularly effective with children who are hard to teach arithmetic and reading is described. Known as a direct instructional system for teaching arithmetic and reading, it is a set of materials in which everything the teacher says and does is specified. This technique is effective in small group instruction. Specific…

  14. Multi-Directional Environmental Sensors

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Del Castillo, Linda Y. (Inventor); Mojarradi, Mohammed M. (Inventor)

    2016-01-01

    Systems and methods in accordance with embodiments of the invention implement multi-directional environmental sensors. In one embodiment, a multi-directional environmental sensor includes: an inner conductive element that is substantially symmetrical about three orthogonal planes; an outer conductive element that is substantially symmetrical about three orthogonal planes; and a device that measures the electrical characteristics of the multi-directional environmental sensor, the device having a first terminal and a second terminal; where the inner conductive element is substantially enclosed within the outer conductive element; where the inner conductive element is electrically coupled to the first terminal of the device; and where the outer conductive element is electrically coupled to the second terminal of the device.

  15. Direct vs. Indirect Moral Enhancement.

    PubMed

    Schaefer, G Owen

    2015-09-01

    Moral enhancement is an ostensibly laudable project. Who wouldn't want people to become more moral? Still, the project's approach is crucial. We can distinguish between two approaches for moral enhancement: direct and indirect. Direct moral enhancements aim at bringing about particular ideas, motives or behaviors. Indirect moral enhancements, by contrast, aim at making people more reliably produce the morally correct ideas, motives or behaviors without committing to the content of those ideas, motives and/or actions. I will argue, on Millian grounds, that the value of disagreement puts serious pressure on proposals for relatively widespread direct moral enhancement. A more acceptable path would be to focus instead on indirect moral enhancements while staying neutral, for the most part, on a wide range of substantive moral claims. I will outline what such indirect moral enhancement might look like, and why we should expect it to lead to general moral improvement.

  16. Photoelectrochemical based direct conversion systems

    SciTech Connect

    Kocha, S.; Arent, D.; Peterson, M.

    1995-09-01

    The goal of this research is to develop a stable, cost effective, photoelectrochemical based system that will split water upon illumination, producing hydrogen and oxygen directly, using sunlight as the only energy input. This type of direct conversion system combines a photovoltaic material and an electrolyzer into a single monolithic device. We report on our studies of two multifunction multiphoton photoelectrochemical devices, one based on the ternary semiconductor gallium indium phosphide, (GaInP{sub 2}), and the other one based on amorphous silicon carbide. We also report on our studies of the solid state surface treatment of GaInP{sub 2} as well as our continuing effort to develop synthetic techniques for the attachment of transition metal complexes to the surface of semiconductor electrodes. All our surface studies are directed at controlling the interface energetics and forming stable catalytic surfaces.

  17. Directional drilling and earth curvature

    SciTech Connect

    Williamson, H.S.; Wilson, H.F.

    2000-03-01

    This paper provides a review of current practices for calculating directional drilling placement in the light of modern extended-reach applications. The review highlights the potential for gross errors in the application of geodetic reference information and errors inherent in the calculation method. Both types of error are quantified theoretically and illustrated with a real example. The authors borrow established land surveying calculation methods to develop a revised best practice for directional drilling. For the elimination of gross errors they prescribe increased awareness and a more disciplined approach to the handling of positional data.

  18. Biocatalyst development by directed evolution.

    PubMed

    Wang, Meng; Si, Tong; Zhao, Huimin

    2012-07-01

    Biocatalysis has emerged as a great addition to traditional chemical processes for production of bulk chemicals and pharmaceuticals. To overcome the limitations of naturally occurring enzymes, directed evolution has become the most important tool for improving critical traits of biocatalysts such as thermostability, activity, selectivity, and tolerance towards organic solvents for industrial applications. Recent advances in mutant library creation and high-throughput screening have greatly facilitated the engineering of novel and improved biocatalysts. This review provides an update of the recent developments in the use of directed evolution to engineer biocatalysts for practical applications. PMID:22310212

  19. The AISI direct steelmaking program

    SciTech Connect

    Aukrust, E. ); Downing, K.B. )

    1991-01-01

    After six months of operation of the pilot plant, the viability of in-bath smelting combined with a high level of post combustion has been demonstrated, and the opportunity exists for an early commercialization of the direct ironmaking part of the process while we continue to research direct steelmaking. The program should be of equal interest to integrated and electric furnace producers. Smelting of ore provides virgin iron units. Additionally, the process has the flexibility of melting scrap and varying the ore-to-scrap ratio over wide ranges. This process does not require coke, thus eliminating the cokemaking operation, a major source of environmental concern.

  20. Biocatalyst Development by Directed Evolution

    PubMed Central

    Wang, Meng; Si, Tong; Zhao, Huimin

    2012-01-01

    Biocatalysis has emerged as a great addition to traditional chemical processes for production of bulk chemicals and pharmaceuticals. To overcome the limitations of naturally occurring enzymes, directed evolution has become the most important tool for improving critical traits of biocatalysts such as thermostability, activity, selectivity, and tolerance towards organic solvents for industrial applications. Recent advances in mutant library creation and high-throughput screening have greatly facilitated the engineering of novel and improved biocatalysts. This review provides an update of the recent developments in the use of directed evolution to engineer biocatalysts for practical applications. PMID:22310212

  1. More than Meets the Eye: the Relationship between Pupil Size and Locus Coeruleus Activity.

    PubMed

    Costa, Vincent D; Rudebeck, Peter H

    2016-01-01

    Using both direct neural recordings and electrical microstimulation, Joshi et al. (2016) show that locus coeruleus (LC) activity closely matches moment-to-moment changes in pupil size. But what causes these two measures to be related is not straightforward. PMID:26748086

  2. Directional Solidification of Monotectic Alloys

    NASA Technical Reports Server (NTRS)

    Hellawell, A.

    1983-01-01

    Cooling at certain rates produced fibrous composite structures. Alloy samples melted in alumina or graphite crucibles under argon and then chillcast into 33-mm-diameter rods or sucked directly into 3-mm-bore alumina or silica tubes. Alloying not automatic with immiscible components of different densities and widely different melting points.

  3. Directional Solidification Of Monotectic Alloys

    NASA Technical Reports Server (NTRS)

    Dhindaw, B. K.; Stefanescu, D. M.; Singh, A. K.; Curreri, P. A.

    1990-01-01

    Conditions promoting formation of aligned fibers sought. Report describes experiments in directional solidification of Cu/Pb and Bi/Ga monotectic alloys. Study motivated by need to understand physical mechanism governing formation of rodlike or fiberlike aligned structures in solidifying alloy and to determine process conditions favoring such structures.

  4. The Internet: Trends and Directions.

    ERIC Educational Resources Information Center

    Anderson, Byron

    1996-01-01

    Examines current trends and directions in information technology and telecommunications. Discusses legislation; mergers and acquisitions; Internet service providers; fiscal control in libraries and the pooling of electronic information access through consortiums; demand for more bandwidth; technology selection; Internet usage patterns; the…

  5. Electromagnetic direct implicit PIC simulation

    SciTech Connect

    Langdon, A.B.

    1983-03-29

    Interesting modelling of intense electron flow has been done with implicit particle-in-cell simulation codes. In this report, the direct implicit PIC simulation approach is applied to simulations that include full electromagnetic fields. The resulting algorithm offers advantages relative to moment implicit electromagnetic algorithms and may help in our quest for robust and simpler implicit codes.

  6. Directions for Defense Digital Libraries.

    ERIC Educational Resources Information Center

    Larsen, Ronald L.

    1998-01-01

    Describes directions, challenges, and objectives of the information management program of the United States Defense Advanced Research Projects Agency (DARPA). The program envisions the rigor and organization normally associated with a research library to be virtually rendered and extended in the networked world of distributed information. (AEF)

  7. Oriented Matrix Promotes Directional Tubulogenesis

    PubMed Central

    Soucy, Patricia A.; Hoh, Maria; Heinz, Will; Hoh, Jan; Romer, Lewis

    2014-01-01

    Detailed control over the structural organization of scaffolds and engineered tissue constructs is a critical need in the quest to engineer functional tissues using biomaterials. This work presents a new approach to the spatial direction of endothelial tubulogenesis. Micropatterned fibronectin substrates were used to control lung fibroblast adhesion and growth and the subsequent deposition of fibroblast-derived matrix during culture. The fibroblast-derived matrix produced on the micropatterned substrates was tightly oriented by these patterns, with an average variation of only 8.5°. Further, regions of this oriented extracellular matrix provided directional control of developing endothelial tubes to within 10° of the original micropatterned substrate design. Endothelial cells seeded directly onto the micropatterned substrate did not form tubes. A metric for matrix anisotropy showed a relationship between the fibroblast-derived matrix and the endothelial tubes that were subsequently developed on the same micropatterns with a resulting aspect ratio over 1.5 for endothelial tubulogenesis. Micropatterns in “L” and “Y” shapes were used to direct endothelial tubes to turn and branch with the same level of precision. These data demonstrate that anisotropic fibroblast-derived matrices instruct the alignment and shape of endothelial tube networks, thereby introducing an approach that could be adapted for future design of microvascular implants featuring organ-specific natural matrix that patterns microvascular growth. PMID:25219769

  8. New Directions in Teacher Education.

    ERIC Educational Resources Information Center

    Anderson, John

    1982-01-01

    Approximately one-third of Microelectronics Education Programme (MEP) funding is directed toward in-service teacher education. Three levels of competence (familiarization, understanding, applications) are fostered in each of four domains: electronics/control technology; computer as instrument; computer as learning; and electronic communications.…

  9. Directions to Excellence in Education.

    ERIC Educational Resources Information Center

    Dochterman, Clifford L.; Beshoar, Barron B.

    This monograph is directed toward policy makers, parents, students, educational leaders, teachers, taxpayers and society as a whole, aiming at their involvement and the attainment of excellence in education. People living in a rapidly changing society have many expectations for education, among which are the teaching of moral and ethical values,…

  10. Sensing roughness and polish direction

    NASA Astrophysics Data System (ADS)

    Jakobsen, M. L.; Olesen, A. S.; Larsen, H. E.; Stubager, J.; Hanson, S. G.; Pedersen, T. F.; Pedersen, H. C.

    2016-04-01

    As a part of the work carried out on a project supported by the Danish council for technology and innovation, we have investigated the option of smoothing standard CNC machined surfaces. In the process of constructing optical prototypes, involving custom-designed optics, the development cost and time consumption can become relatively large numbers in a research budget. Machining the optical surfaces directly is expensive and time consuming. Alternatively, a more standardized and cheaper machining method can be used, but then the object needs to be manually polished. During the polishing process the operator needs information about the RMS-value of the surface roughness and the current direction of the scratches introduces by the polishing process. The RMS-value indicates to the operator how far he is from the final finish, and the scratch orientation is often specified by the customer in order to avoid complications during the casting process. In this work we present a method for measuring the RMS-values of the surface roughness while simultaneously determining the polishing direction. We are mainly interested in the RMS-values in the range from 0 - 100 nm, which corresponds to the finish categories of A1, A2 and A3. Based on simple intensity measurements we estimates the RMS-value of the surface roughness, and by using a sectioned annual photo-detector to collect the scattered light we can determine the direction of polishing and distinguish light scattered from random structures and light scattered from scratches.

  11. Direct spinning of fiber supercapacitor.

    PubMed

    Xu, Tong; Ding, Xiaoteng; Liang, Yuan; Zhao, Yang; Chen, Nan; Qu, Liangti

    2016-06-16

    A direct wet spinning approach is demonstrated for facile and continuous fabrication of a whole fiber supercapacitor using a microfluidic spinneret. The resulting fiber supercapacitor shows good electrochemical properties and possesses high flexibility and mechanical stability. This strategy paves the way for large-scale continuous production of fiber supercapacitors for weavable electronics.

  12. Teaching Ethics: A Direct Approach.

    ERIC Educational Resources Information Center

    Penn, William Y., Jr.

    1990-01-01

    Compares five designs of an undergraduate ethics course at Saint Edward's University (Texas) in a 5-year study involving 318 students. Reveals the effectiveness of directly targeting and teaching in tandem the elements of moral reasoning. Bases study on Lawrence Kohlberg's moral development theory. Argues that this approach best develops moral…

  13. Training of Direct Service Staff.

    ERIC Educational Resources Information Center

    Wallace, Teri, Ed.; And Others

    1992-01-01

    This newsletter theme issue features articles on training of direct service staff working with persons with developmental disabilities in employment, education, and residential settings. The articles examine job training, delivery systems, training models, and implications of current approaches. The newsletter includes three articles presenting…

  14. Computing spike directivity with tetrodes.

    PubMed

    Aur, Dorian; Connolly, Christoper I; Jog, Mandar S

    2005-11-30

    The ability of neurons to generate electrical signals is strongly dependent on the evolution of ion-specific pumps and channels that allow the transfer of charges under the influence of electric fields and concentration gradients. This paper presents a novel method by which flow of these charge fluxes may be computed to provide directivity of charge movement. Simulations of charge flow as well as actual electrophysiological data recorded by tetrodes are used to demonstrate the method. The propagation of charge fluxes in space in data from simulation and actual recordings during action potential can be analyzed using signals recorded by tetrodes. Variation in spike directivity can be estimated by computing singular value decomposition of the estimated 3D trajectory data. The analysis of the spike model can be accomplished by performing simulations of presumed equivalent moving charges recorded by the tetrode tips. For in vivo spike recordings, the variation of spike directivity could be obtained using several spikes of selected neurons considering the charge movement model (CMM). The relationship between computer simulation results and tetrode data recordings is examined. The paper concludes by showing that the method for calculating directivity in actual spike recordings is robust. The method allows for improved filtering of data and more importantly may shed light on furthering the study of spatio-temporal encoding in neurons. PMID:15978667

  15. Direct Sum Decomposition of Groups

    ERIC Educational Resources Information Center

    Thaheem, A. B.

    2005-01-01

    Direct sum decomposition of Abelian groups appears in almost all textbooks on algebra for undergraduate students. This concept plays an important role in group theory. One simple example of this decomposition is obtained by using the kernel and range of a projection map on an Abelian group. The aim in this pedagogical note is to establish a direct…

  16. Direct flow crystal growth system

    DOEpatents

    Montgomery, Kenneth E.; Milanovich, Fred P.

    1992-01-01

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperature, filtered, cooled back to its saturation temperature, and returned to the tank.

  17. Direct photon experiment at POLEX

    SciTech Connect

    Ohashi, Y.

    1989-01-01

    Significant contribution of the gluons to the proton spin has been suggested by several authors to explain the recent EMC results on the spin dependent structure function of proton. Direct photon measurements at large transverse momentum in pp reactions with pure initial helicity states is proposed in this paper in order to study spin dependent gluon structure function. 8 refs., 3 figs., 1 tab.

  18. Direct coronal body computed tomography.

    PubMed

    van Waes, P F; Zonneveld, F W

    1982-02-01

    Three patient positioning technique have been developed for direct coronal computed tomography (CT) of the body, covering the complete torso: position A, to study pelvis, including retroperitoneal space and lower abdomen; position B, to study upper abdomen and lower chest; and position C, to study upper chest, including neck and posterior fossa. In comparison with multiplanar reformatting (MPR), direct coronal CT has three basic advantages: (a) image quality is improved as a result of a lack of partial volume averaging and patient motion disturbance; (b) the direct coronal planes can be truly parallel to the spinal axis, due to stretching of the lordotic segments of the spine; and (c) examination time is reduced, since a large number of overlapping slices and time consuming MPR effort are not required. Direct coronal CT of the body has been carried out in more than 600 cases and was often uniquely informative. In our institution, use of MPR CT is now restricted to small volumes and/or disabled patients.

  19. Direction discriminating hearing aid system

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Lin, H. C.; Ward, G.

    1991-01-01

    A visual display was developed for people with substantial hearing loss in either one or both ears. The system consists of three discreet units; an eyeglass assembly for the visual display of the origin or direction of sounds; a stationary general purpose noise alarm; and a noise seeker wand.

  20. Duplex Direct Data Distribution System

    NASA Technical Reports Server (NTRS)

    Greenfield, Israel (Technical Monitor)

    2001-01-01

    The NASA Glenn Research Center (GRC) is developing and demonstrating communications and network technologies that are helping to enable the near-Earth space Internet. GRC envisions several service categories. The first of these categories is direct data distribution or D3 (pronounced "D-cubed"). Commercially provided D3 will make it possible to download a data set from a spacecraft, like the International Space Station. as easily as one can extract a file from a remote server today, using a file transfer protocol. In a second category, NASA spacecraft will make use of commercial satellite communication (SATCOM) systems. Some of those services will come from purchasing time on unused transponders that cover landmasses. While it is likely there will be gaps in service coverage, Internet services should be available using these systems. This report addresses alternative methods of implementing a full duplex enhancement of the GRC developed experimental Ka-Band Direct Data Distribution (D3) space-to-ground communication link. The resulting duplex version is called the Duplex Direct Data Distribution (D4) system. The D4 system is intended to provide high-data-rate commercial direct or internet-based communications service between the NASA spacecraft in low earth orbit (LEO) and the respective principal investigators associated with these spacecraft. Candidate commercial services were assessed regarding their near-term potential to meet NASA requirements. Candidates included Ka-band and V-band geostationary orbit and non-geostationary orbit satellite relay services and direct downlink ("LEO teleport") services. End-to-end systems concepts were examined and characterized in terms of alternative link layer architectures. Alternatives included a Direct Link, a Relay Link, a Hybrid Link, and a Dual Mode Link. The direct link assessment examined sample ground terminal placements and antenna angle issues. The SATCOM-based alternatives examined existing or proposed commercial

  1. Sampling properties of directed networks

    NASA Astrophysics Data System (ADS)

    Son, S.-W.; Christensen, C.; Bizhani, G.; Foster, D. V.; Grassberger, P.; Paczuski, M.

    2012-10-01

    For many real-world networks only a small “sampled” version of the original network may be investigated; those results are then used to draw conclusions about the actual system. Variants of breadth-first search (BFS) sampling, which are based on epidemic processes, are widely used. Although it is well established that BFS sampling fails, in most cases, to capture the IN component(s) of directed networks, a description of the effects of BFS sampling on other topological properties is all but absent from the literature. To systematically study the effects of sampling biases on directed networks, we compare BFS sampling to random sampling on complete large-scale directed networks. We present new results and a thorough analysis of the topological properties of seven complete directed networks (prior to sampling), including three versions of Wikipedia, three different sources of sampled World Wide Web data, and an Internet-based social network. We detail the differences that sampling method and coverage can make to the structural properties of sampled versions of these seven networks. Most notably, we find that sampling method and coverage affect both the bow-tie structure and the number and structure of strongly connected components in sampled networks. In addition, at a low sampling coverage (i.e., less than 40%), the values of average degree, variance of out-degree, degree autocorrelation, and link reciprocity are overestimated by 30% or more in BFS-sampled networks and only attain values within 10% of the corresponding values in the complete networks when sampling coverage is in excess of 65%. These results may cause us to rethink what we know about the structure, function, and evolution of real-world directed networks.

  2. Direct Imaging of Giant Exoplanets

    NASA Astrophysics Data System (ADS)

    Tamura, Motohide

    Since the first detection of exoplanets around a Sun-like star 51 Peg in 1995, their detection and characterization are mainly led by indirect methods such as radial velocity and transit methods. However, recent progresses of observational techniques have finally enabled the direct imaging observations of giant planets of solar-system-scale orbit (with their semi-major axes less than about 50 AU) around A-type stars (e.g., Marois et al. 2008, 2010) and G-type stars (e.g., Kuzuhara et al. 2013). Direct imaging is useful to obtain the physical and atmospheric parameters of exoplanets. In fact not only colors but also a medium-resolution spectroscopy of such planets has been successfully obtained for their atmospheric characterization (Barman et al. 2013). Their masses are typically a few to ~10 Jupiter masses and they orbit at a Saturn- to-Pluto distance. Therefore, like hot-Jupiters and super-Earths they are unlike any solar-system planets, and called wide-orbit giant planets. A recent large search for planets and disk on the Subaru 8.2-m telescope (SEEDS project) has detected a 3-5 Jupiter-masses planet around a Sun-like star GJ 504 (Kuzuhara et al. 2013). It is the coolest planetary companion so far directly imaged and its near-infrared color is “bluer” than that of other directly imaged planets. In this contribution, I will review the recent progresses on direct imaging of exoplanets, highlight the results of the SEEDS project, and discuss the future developments.

  3. Breakdown of interdependent directed networks.

    PubMed

    Liu, Xueming; Stanley, H Eugene; Gao, Jianxi

    2016-02-01

    Increasing evidence shows that real-world systems interact with one another via dependency connectivities. Failing connectivities are the mechanism behind the breakdown of interacting complex systems, e.g., blackouts caused by the interdependence of power grids and communication networks. Previous research analyzing the robustness of interdependent networks has been limited to undirected networks. However, most real-world networks are directed, their in-degrees and out-degrees may be correlated, and they are often coupled to one another as interdependent directed networks. To understand the breakdown and robustness of interdependent directed networks, we develop a theoretical framework based on generating functions and percolation theory. We find that for interdependent Erdős-Rényi networks the directionality within each network increases their vulnerability and exhibits hybrid phase transitions. We also find that the percolation behavior of interdependent directed scale-free networks with and without degree correlations is so complex that two criteria are needed to quantify and compare their robustness: the percolation threshold and the integrated size of the giant component during an entire attack process. Interestingly, we find that the in-degree and out-degree correlations in each network layer increase the robustness of interdependent degree heterogeneous networks that most real networks are, but decrease the robustness of interdependent networks with homogeneous degree distribution and with strong coupling strengths. Moreover, by applying our theoretical analysis to real interdependent international trade networks, we find that the robustness of these real-world systems increases with the in-degree and out-degree correlations, confirming our theoretical analysis. PMID:26787907

  4. Breakdown of interdependent directed networks.

    PubMed

    Liu, Xueming; Stanley, H Eugene; Gao, Jianxi

    2016-02-01

    Increasing evidence shows that real-world systems interact with one another via dependency connectivities. Failing connectivities are the mechanism behind the breakdown of interacting complex systems, e.g., blackouts caused by the interdependence of power grids and communication networks. Previous research analyzing the robustness of interdependent networks has been limited to undirected networks. However, most real-world networks are directed, their in-degrees and out-degrees may be correlated, and they are often coupled to one another as interdependent directed networks. To understand the breakdown and robustness of interdependent directed networks, we develop a theoretical framework based on generating functions and percolation theory. We find that for interdependent Erdős-Rényi networks the directionality within each network increases their vulnerability and exhibits hybrid phase transitions. We also find that the percolation behavior of interdependent directed scale-free networks with and without degree correlations is so complex that two criteria are needed to quantify and compare their robustness: the percolation threshold and the integrated size of the giant component during an entire attack process. Interestingly, we find that the in-degree and out-degree correlations in each network layer increase the robustness of interdependent degree heterogeneous networks that most real networks are, but decrease the robustness of interdependent networks with homogeneous degree distribution and with strong coupling strengths. Moreover, by applying our theoretical analysis to real interdependent international trade networks, we find that the robustness of these real-world systems increases with the in-degree and out-degree correlations, confirming our theoretical analysis.

  5. Sampling properties of directed networks.

    PubMed

    Son, S-W; Christensen, C; Bizhani, G; Foster, D V; Grassberger, P; Paczuski, M

    2012-10-01

    For many real-world networks only a small "sampled" version of the original network may be investigated; those results are then used to draw conclusions about the actual system. Variants of breadth-first search (BFS) sampling, which are based on epidemic processes, are widely used. Although it is well established that BFS sampling fails, in most cases, to capture the IN component(s) of directed networks, a description of the effects of BFS sampling on other topological properties is all but absent from the literature. To systematically study the effects of sampling biases on directed networks, we compare BFS sampling to random sampling on complete large-scale directed networks. We present new results and a thorough analysis of the topological properties of seven complete directed networks (prior to sampling), including three versions of Wikipedia, three different sources of sampled World Wide Web data, and an Internet-based social network. We detail the differences that sampling method and coverage can make to the structural properties of sampled versions of these seven networks. Most notably, we find that sampling method and coverage affect both the bow-tie structure and the number and structure of strongly connected components in sampled networks. In addition, at a low sampling coverage (i.e., less than 40%), the values of average degree, variance of out-degree, degree autocorrelation, and link reciprocity are overestimated by 30% or more in BFS-sampled networks and only attain values within 10% of the corresponding values in the complete networks when sampling coverage is in excess of 65%. These results may cause us to rethink what we know about the structure, function, and evolution of real-world directed networks.

  6. Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning

    NASA Technical Reports Server (NTRS)

    Krukowski, A. E.; Miller, K. D.

    2001-01-01

    Cells in cerebral cortex fail to respond to fast-moving stimuli that evoke strong responses in the thalamic nuclei innervating the cortex. The reason for this behavior has remained a mystery. We study an experimentally motivated model of the thalamic input-recipient layer of cat primary visual cortex that accounts for many aspects of cortical orientation tuning. In this circuit, inhibition dominates over excitation, but temporal modulations of excitation and inhibition occur out of phase with one another, allowing excitation to transiently drive cells. We show that this circuit provides a natural explanation of cortical low-pass temporal frequency tuning, provided N-methyl-D-aspartate (NMDA) receptors are present in thalamocortical synapses in proportions measured experimentally. This suggests a new and unanticipated role for NMDA conductances in shaping the temporal response properties of cortical cells, and suggests that common cortical circuit mechanisms underlie both spatial and temporal response tuning.

  7. Compliant Intracortical Implants Reduce Strains and Strain Rates in Brain Tissue In Vivo

    PubMed Central

    Sridharan, Arati; Nguyen, Jessica K.; Capadona, Jeffrey R.; Muthuswamy, Jit

    2015-01-01

    Objective The objective of this research is to characterize the mechanical interactions of (1) soft, compliant and (2) non-compliant implants with the surrounding brain tissue in a rodent brain. Understanding such interactions will enable the engineering of novel materials that will improve stability and reliability of brain implants. Approach Acute force measurements were made using a load cell in n=3 live rats, each with 4 craniotomies. Using an indentation method, brain tissue was tested for changes in force using established protocols. A total of 4 non-compliant, bare silicon microshanks, 3 non-compliant polyvinyl acetate (PVAc)-coated silicon microshanks, and 6 compliant, nanocomposite microshanks were tested. Stress values were calculated by dividing the force by surface area and strain was estimated using a linear stress-strain relationship. Micromotion effects from breathing and vascular pulsatility on tissue stress were estimated from a 5 sec interval of steady-state measurements. Viscoelastic properties were estimated using a second-order Prony series expansion of stress-displacement curves for each shank. Main results The distribution of strain values imposed on brain tissue for both compliant nanocomposite microshanks and PVAc-coated, non-compliant silicon microshanks were significantly lower compared to non-compliant bare silicon shanks. Interestingly, step-indentation experiments also showed that compliant, nanocomposite materials significantly decreased stress relaxation rates in the brain tissue at the interface (p<0.05) compared to non-compliant silicon and PVAc-coated silicon materials. Further, both PVAc-coated non-compliant silicon and compliant nanocomposite shanks showed significantly reduced (by 4–5 fold) stresses due to tissue micromotion at the interface. Significance The results of this study showed that soft, adaptive materials reduce strains and strain rates and micromotion induced stresses in the surrounding brain tissue. Understanding the material behavior at the site of tissue contact will help to improve neural implant design. PMID:25834105

  8. Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition.

    PubMed

    Sale, Alessandro; Maya Vetencourt, José Fernando; Medini, Paolo; Cenni, Maria Cristina; Baroncelli, Laura; De Pasquale, Roberto; Maffei, Lamberto

    2007-06-01

    Loss of visual acuity caused by abnormal visual experience during development (amblyopia) is an untreatable pathology in adults. We report that environmental enrichment in adult amblyopic rats restored normal visual acuity and ocular dominance. These effects were due to reduced GABAergic inhibition in the visual cortex, accompanied by increased expression of BDNF and reduced density of extracellular-matrix perineuronal nets, and were prevented by enhancement of inhibition through benzodiazepine cortical infusion.

  9. A recurrent neural network for closed-loop intracortical brain-machine interface decoders

    NASA Astrophysics Data System (ADS)

    Sussillo, David; Nuyujukian, Paul; Fan, Joline M.; Kao, Jonathan C.; Stavisky, Sergey D.; Ryu, Stephen; Shenoy, Krishna

    2012-04-01

    Recurrent neural networks (RNNs) are useful tools for learning nonlinear relationships in time series data with complex temporal dependences. In this paper, we explore the ability of a simplified type of RNN, one with limited modifications to the internal weights called an echostate network (ESN), to effectively and continuously decode monkey reaches during a standard center-out reach task using a cortical brain-machine interface (BMI) in a closed loop. We demonstrate that the RNN, an ESN implementation termed a FORCE decoder (from first order reduced and controlled error learning), learns the task quickly and significantly outperforms the current state-of-the-art method, the velocity Kalman filter (VKF), using the measure of target acquire time. We also demonstrate that the FORCE decoder generalizes to a more difficult task by successfully operating the BMI in a randomized point-to-point task. The FORCE decoder is also robust as measured by the success rate over extended sessions. Finally, we show that decoded cursor dynamics are more like naturalistic hand movements than those of the VKF. Taken together, these results suggest that RNNs in general, and the FORCE decoder in particular, are powerful tools for BMI decoder applications.

  10. A recurrent neural network for closed-loop intracortical brain–machine interface decoders

    PubMed Central

    Sussillo, David; Nuyujukian, Paul; Fan, Joline M; Kao, Jonathan C; Stavisky, Sergey D; Ryu, Stephen; Shenoy, Krishna

    2013-01-01

    Recurrent neural networks (RNNs) are useful tools for learning nonlinear relationships in time series data with complex temporal dependences. In this paper, we explore the ability of a simplified type of RNN, one with limited modifications to the internal weights called an echostate network (ESN), to effectively and continuously decode monkey reaches during a standard center-out reach task using a cortical brain–machine interface (BMI) in a closed loop. We demonstrate that the RNN, an ESN implementation termed a FORCE decoder (from first order reduced and controlled error learning), learns the task quickly and significantly outperforms the current state-of-the-art method, the velocity Kalman filter (VKF), using the measure of target acquire time. We also demonstrate that the FORCE decoder generalizes to a more difficult task by successfully operating the BMI in a randomized point-to-point task. The FORCE decoder is also robust as measured by the success rate over extended sessions. Finally, we show that decoded cursor dynamics are more like naturalistic hand movements than those of the VKF. Taken together, these results suggest that RNNs in general, and the FORCE decoder in particular, are powerful tools for BMI decoder applications. PMID:22427488

  11. Intracortical recordings and fMRI: an attempt to study operational modules and networks simultaneously.

    PubMed

    Logothetis, Nikos K

    2012-08-15

    The brain can be envisaged as a complex adaptive system. It is characterized by a very high structural complexity and by massive connectivity, both of which change and evolve in response to experience. Information related to sensors and effectors is processed in both a parallel and a hierarchical fashion; the connectivity between different hierarchical levels is bidirectional, and its effectiveness is continuously controlled by specific associational and neuromodulatory centers. When questions are addressed at the level of a distributed, large-scale whole system such as that underlying perception and cognition, it is not clear what should be considered as an elementary operational unit because the behavior of integral, aggregate systems is always emergent and most often remains unpredicted by the behaviors of single cells. To localize and comprehend the neural mechanisms underlying our perceptual or cognitive capacities, concurrent studies of microcircuits, of local and long-range interconnectivity between small assemblies, and of the synergistic activity of larger neuronal populations are called for. In other words, multimodal methodologies that include invasive neuroscientific methods as well as global neuroimaging techniques are required, such as the various functional aspects of magnetic resonance imaging. These facts were the driving force behind the decision to begin animal-MRI in my lab. The wonderful idea of the editors of NeuroImage to publish a Special Issue commemorating 20years of functional fMRI provides me with the opportunity of sharing not only our first moments of frustration with the readers, but also our successful results. PMID:22248575

  12. Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies

    NASA Astrophysics Data System (ADS)

    Harris, J. P.; Capadona, J. R.; Miller, R. H.; Healy, B. C.; Shanmuganathan, K.; Rowan, S. J.; Weder, C.; Tyler, D. J.

    2011-10-01

    The hypothesis is that the mechanical mismatch between brain tissue and microelectrodes influences the inflammatory response. Our unique, mechanically adaptive polymer nanocomposite enabled this study within the cerebral cortex of rats. The initial tensile storage modulus of 5 GPa decreases to 12 MPa within 15 min under physiological conditions. The response to the nanocomposite was compared to surface-matched, stiffer implants of traditional wires (411 GPa) coated with the identical polymer substrate and implanted on the contralateral side. Both implants were tethered. Fluorescent immunohistochemistry labeling examined neurons, intermediate filaments, macrophages, microglia and proteoglycans. We demonstrate, for the first time, a system that decouples the mechanical and surface chemistry components of the neural response. The neuronal nuclei density within 100 µm of the device at four weeks post-implantation was greater for the compliant nanocomposite compared to the stiff wire. At eight weeks post-implantation, the neuronal nuclei density around the nanocomposite was maintained, but the density around the wire recovered to match that of the nanocomposite. The glial scar response to the compliant nanocomposite was less vigorous than it was to the stiffer wire. The results suggest that mechanically associated factors such as proteoglycans and intermediate filaments are important modulators of the response of the compliant nanocomposite.

  13. Zazen meditation and no-task resting EEG compared with LORETA intracortical source localization.

    PubMed

    Faber, Pascal L; Lehmann, Dietrich; Gianotti, Lorena R R; Milz, Patricia; Pascual-Marqui, Roberto D; Held, Marlene; Kochi, Kieko

    2015-02-01

    Meditation is a self-induced and willfully initiated practice that alters the state of consciousness. The meditation practice of Zazen, like many other meditation practices, aims at disregarding intrusive thoughts while controlling body posture. It is an open monitoring meditation characterized by detached moment-to-moment awareness and reduced conceptual thinking and self-reference. Which brain areas differ in electric activity during Zazen compared to task-free resting? Since scalp electroencephalography (EEG) waveforms are reference-dependent, conclusions about the localization of active brain areas are ambiguous. Computing intracerebral source models from the scalp EEG data solves this problem. In the present study, we applied source modeling using low resolution brain electromagnetic tomography (LORETA) to 58-channel scalp EEG data recorded from 15 experienced Zen meditators during Zazen and no-task resting. Zazen compared to no-task resting showed increased alpha-1 and alpha-2 frequency activity in an exclusively right-lateralized cluster extending from prefrontal areas including the insula to parts of the somatosensory and motor cortices and temporal areas. Zazen also showed decreased alpha and beta-2 activity in the left angular gyrus and decreased beta-1 and beta-2 activity in a large bilateral posterior cluster comprising the visual cortex, the posterior cingulate cortex and the parietal cortex. The results include parts of the default mode network and suggest enhanced automatic memory and emotion processing, reduced conceptual thinking and self-reference on a less judgmental, i.e., more detached moment-to-moment basis during Zazen compared to no-task resting.

  14. Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies.

    PubMed

    Harris, J P; Capadona, J R; Miller, R H; Healy, B C; Shanmuganathan, K; Rowan, S J; Weder, C; Tyler, D J

    2011-12-01

    The hypothesis is that the mechanical mismatch between brain tissue and microelectrodes influences the inflammatory response. Our unique, mechanically adaptive polymer nanocomposite enabled this study within the cerebral cortex of rats. The initial tensile storage modulus of 5 GPa decreases to 12 MPa within 15 min under physiological conditions. The response to the nanocomposite was compared to surface-matched, stiffer implants of traditional wires (411 GPa) coated with the identical polymer substrate and implanted on the contralateral side. Both implants were tethered. Fluorescent immunohistochemistry labeling examined neurons, intermediate filaments, macrophages, microglia and proteoglycans. We demonstrate, for the first time, a system that decouples the mechanical and surface chemistry components of the neural response. The neuronal nuclei density within 100 µm of the device at four weeks post-implantation was greater for the compliant nanocomposite compared to the stiff wire. At eight weeks post-implantation, the neuronal nuclei density around the nanocomposite was maintained, but the density around the wire recovered to match that of the nanocomposite. The glial scar response to the compliant nanocomposite was less vigorous than it was to the stiffer wire. The results suggest that mechanically associated factors such as proteoglycans and intermediate filaments are important modulators of the response of the compliant nanocomposite. PMID:22049097

  15. Compliant intracortical implants reduce strains and strain rates in brain tissue in vivo

    NASA Astrophysics Data System (ADS)

    Sridharan, Arati; Nguyen, Jessica K.; Capadona, Jeffrey R.; Muthuswamy, Jit

    2015-06-01

    Objective. The objective of this research is to characterize the mechanical interactions of (1) soft, compliant and (2) non-compliant implants with the surrounding brain tissue in a rodent brain. Understanding such interactions will enable the engineering of novel materials that will improve stability and reliability of brain implants. Approach. Acute force measurements were made using a load cell in n = 3 live rats, each with 4 craniotomies. Using an indentation method, brain tissue was tested for changes in force using established protocols. A total of 4 non-compliant, bare silicon microshanks, 3 non-compliant polyvinyl acetate (PVAc)-coated silicon microshanks, and 6 compliant, nanocomposite microshanks were tested. Stress values were calculated by dividing the force by surface area and strain was estimated using a linear stress-strain relationship. Micromotion effects from breathing and vascular pulsatility on tissue stress were estimated from a 5 s interval of steady-state measurements. Viscoelastic properties were estimated using a second-order Prony series expansion of stress-displacement curves for each shank. Main results. The distribution of strain values imposed on brain tissue for both compliant nanocomposite microshanks and PVAc-coated, non-compliant silicon microshanks were significantly lower compared to non-compliant bare silicon shanks. Interestingly, step-indentation experiments also showed that compliant, nanocomposite materials significantly decreased stress relaxation rates in the brain tissue at the interface (p < 0.05) compared to non-compliant silicon and PVAc-coated silicon materials. Furthermore, both PVAc-coated non-compliant silicon and compliant nanocomposite shanks showed significantly reduced (by 4-5 fold) stresses due to tissue micromotion at the interface. Significance. The results of this study showed that soft, adaptive materials reduce strains and strain rates and micromotion induced stresses in the surrounding brain tissue. Understanding the material behavior at the site of tissue contact will help to improve neural implant design.

  16. Direction Counts: A Comparative Study of Spatially Directional Counting Biases in Cultures with Different Reading Directions

    ERIC Educational Resources Information Center

    Shaki, Samuel; Fischer, Martin H.; Gobel, Silke M.

    2012-01-01

    Western adults associate small numbers with left space and large numbers with right space. Where does this pervasive spatial-numerical association come from? In this study, we first recorded directional counting preferences in adults with different reading experiences (left to right, right to left, mixed, and illiterate) and observed a clear…

  17. Making direct mail direct. Indian River Memorial Hospital reaches newcomers with an improved direct mail campaign.

    PubMed

    1995-01-01

    New residents moving into a community are prime targets for new physicians and new hospitals. It's the hospital's chance to make a great first impression and establish a long-term relationship. Indian River Memorial Hospital in Vero Beach, Fla., has some experience in that area. They share their direct-mail ideas with you.

  18. The direct methanol fuel cell

    SciTech Connect

    Halpert, G.; Narayanan, S.R.; Frank, H.

    1995-08-01

    This presentation describes the approach and progress in the ARPA-sponsored effort to develop a Direct Methanol, Liquid-Feed Fuel Cell (DMLFFC) with a solid Polymer Electrolyte Membrane (PEM) for battery replacement in small portable applications. Using Membrane Electrode Assemblies (MEAs) developed by JPL and Giner, significant voltage was demonstrated at relatively high current densities. The DMLFFC utilizes a 3 percent aqueous solution of methanol that is oxidized directly in the anode (fuel) chamber and oxygen (air) in the cathode chamber to produce water and significant power. The only products are water and CO{sub 2}. The ARPA effort is aimed at replacing the battery in the BA 5590 military radio.

  19. Direct spinning of fiber supercapacitor

    NASA Astrophysics Data System (ADS)

    Xu, Tong; Ding, Xiaoteng; Liang, Yuan; Zhao, Yang; Chen, Nan; Qu, Liangti

    2016-06-01

    A direct wet spinning approach is demonstrated for facile and continuous fabrication of a whole fiber supercapacitor using a microfluidic spinneret. The resulting fiber supercapacitor shows good electrochemical properties and possesses high flexibility and mechanical stability. This strategy paves the way for large-scale continuous production of fiber supercapacitors for weavable electronics.A direct wet spinning approach is demonstrated for facile and continuous fabrication of a whole fiber supercapacitor using a microfluidic spinneret. The resulting fiber supercapacitor shows good electrochemical properties and possesses high flexibility and mechanical stability. This strategy paves the way for large-scale continuous production of fiber supercapacitors for weavable electronics. Electronic supplementary information (ESI) available: Design of the microfluidic spinneret and operation of the spinneret (movie). See DOI: 10.1039/c6nr03116a

  20. OM300 Direction Drilling Module

    DOE Data Explorer

    MacGugan, Doug

    2013-08-22

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  1. IR detectors - Heterodyne and direct

    NASA Technical Reports Server (NTRS)

    Spears, D. L.

    1983-01-01

    Recent developments in the area of wide-bandwidth infrared detectors, both for direct and heterodyne detection, are reviewed with emphasis on the differences and tradeoffs between photodiodes and photoconductors. In the direct-detection mode, where amplifier noise is an important consideration, the state-of-the-art detection noise equivalent power is approximated by 500 (B/10 MHz) pW. At short wavelengths (less than 1.7 micron), avalanche photodiodes offer superior performance, with a detection noise equivalent power of about 50 (B/10 MHz) pW. In heterodyne operation, near-ideal sensitivities of about 0.3 (B/10 MHz) pW have been achieved with 77K photodiodes. At 10 microns, HgCdTe photoconductors offer very good heterodyne performance at elevated temperatures: 2 (B/10 MHz) pW at 195 K and potentially 3 (B/10 MHz) pW at 250 K.

  2. Ultra-wideband directional sampler

    DOEpatents

    McEwan, T.E.

    1996-05-14

    The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in ``real time``, and the other two ports operate at a slow millisecond-speed, in ``equivalent time``. A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus. 3 figs.

  3. Ultra-wideband directional sampler

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in "real time", and the other two ports operate at a slow millisecond-speed, in "equivalent time". A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus.

  4. Directed Evolution of Fungal Laccases

    PubMed Central

    Maté, Diana; García-Ruiz, Eva; Camarero, Susana; Alcalde, Miguel

    2011-01-01

    Fungal laccases are generalists biocatalysts with potential applications that range from bioremediation to novel green processes. Fuelled by molecular oxygen, these enzymes can act on dozens of molecules of different chemical nature, and with the help of redox mediators, their spectrum of oxidizable substrates is further pushed towards xenobiotic compounds (pesticides, industrial dyes, PAHs), biopolymers (lignin, starch, cellulose) and other complex molecules. In recent years, extraordinary efforts have been made to engineer fungal laccases by directed evolution and semi-rational approaches to improve their functional expression or stability. All these studies have taken advantage of Saccharomyces cerevisiae as a heterologous host, not only to secrete the enzyme but also, to emulate the introduction of genetic diversity through in vivo DNA recombination. Here, we discuss all these endeavours to convert fungal laccases into valuable biomolecular platforms on which new functions can be tailored by directed evolution. PMID:21966249

  5. Multimode waveguide based directional coupler

    NASA Astrophysics Data System (ADS)

    Ahmed, Rajib; Rifat, Ahmmed A.; Sabouri, Aydin; Al-Qattan, Bader; Essa, Khamis; Butt, Haider

    2016-07-01

    The Silicon-on-Insulator (SOI) based platform overcomes limitations of the previous copper and fiber based technologies. Due to its high index difference, SOI waveguide (WG) and directional couplers (DC) are widely used for high speed optical networks and hybrid Electro-Optical inter-connections; TE00-TE01, TE00-TE00 and TM00-TM00 SOI direction couplers are designed with symmetrical and asymmetrical configurations to couple with TE00, TE01 and TM00 in a multi-mode semi-triangular ring-resonator configuration which will be applicable for multi-analyte sensing. Couplers are designed with effective index method and their structural parameters are optimized with consideration to coupler length, wavelength and polarization dependence. Lastly, performance of the couplers are analyzed in terms of cross-talk, mode overlap factor, coupling length and coupling efficiency.

  6. Directives préalables

    PubMed Central

    O’Sullivan, Rory; Mailo, Kevin; Angeles, Ricardo; Agarwal, Gina

    2015-01-01

    Résumé Objectif Établir la prévalence de patients dotés de directives préalables dans une pratique familiale et décrire les points de vue des patients quant au rôle du médecin de famille dans l’amorce de discussions à propos des directives préalables. Conception Un questionnaire auquel les patients ont répondu eux-mêmes. Contexte Une clinique d’enseignement en médecine familiale achalandée en milieu urbain, à Hamilton, en Ontario. Participants Un échantillon de commodité formé de patients adultes qui se sont présentés à la clinique durant une semaine de travail typique. Principaux paramètres à l’étude La prévalence des directives préalables dans une population de patients a été déterminée et les attentes à l’endroit du rôle de leur médecin de famille ont été sollicitées. Résultats Les répondants au sondage étaient au nombre de 800 (un taux de réponse de 72,5 %) et leurs groupes d’âges étaient bien répartis; 19,7 % d’entre eux avaient rédigé des directives préalables et 43,8 % avaient déjà discuté du sujet des directives préalables, mais seulement 4,3 % de ces discussions avaient eu lieu avec un médecin de famille. Dans 5,7 % des cas, un médecin de famille avait soulevé la question; 72,3 % des répondants croyaient que les patients devraient amorcer la discussion. Les patients qui considéraient les directives préalables d’une importance extrême étaient considérablement plus enclins à vouloir que leur médecin de famille commence la conversation (rapport de cotes de 3,98; p < ,05). Conclusion Les directives préalables n’étaient pas systématiquement abordées dans la pratique familiale. La plupart des patients préféraient amorcer la discussion des directives préalables. Toutefois, les patients qui considéraient le sujet d’une extrême importance voulaient que leur médecin de famille commence la discussion.

  7. Relativistic propulsion using directed energy

    NASA Astrophysics Data System (ADS)

    Bible, Johanna; Johansson, Isabella; Hughes, Gary B.; Lubin, Philip M.

    2013-09-01

    We propose a directed energy orbital planetary defense system capable of heating the surface of potentially hazardous objects to the evaporation point as a futuristic but feasible approach to impact risk mitigation. The system is based on recent advances in high efficiency photonic systems. The system could also be used for propulsion of kinetic or nuclear tipped asteroid interceptors or other interplanetary spacecraft. A photon drive is possible using direct photon pressure on a spacecraft similar to a solar sail. Given a laser power of 70GW, a 100 kg craft can be propelled to 1AU in approximately 3 days achieving a speed of 0.4% the speed of light, and a 10,000 kg craft in approximately 30 days. We call the system DE-STAR for Directed Energy System for Targeting of Asteroids and exploRation. DE-STAR is a modular phased array of solid-state lasers, powered by photovoltaic conversion of sunlight. The system is scalable and completely modular so that sub elements can be built and tested as the technology matures. The sub elements can be immediately utilized for testing as well as other applications including space debris mitigation. The ultimate objective of DE-STAR would be to begin direct asteroid vaporization and orbital modification starting at distances beyond 1 AU. Using phased array technology to focus the beam, the surface spot temperature on the asteroid can be raised to more than 3000K, allowing evaporation of all known substances. Additional scientific uses of DE-STAR are also possible.

  8. AUTOMATIC AIR BURST DIRECTION FINDER

    DOEpatents

    Allard, G.A.

    1952-01-31

    This patent application describes an atomic explosion direction indicator comprising a geometric heat-scorchable indicating surface symmetrical about an axis, elevation and azimuth markings on the heat scorchable surface, and an indicating rod at the axis of said surface arranged to cast a shadow hereon, whereby heat from an atomic explosion will scorch a pattern on said surface indicative of the azimuth and elevation of said explosion.

  9. Death, taxes and advance directives.

    PubMed

    Wood, N M; D'Amore, J D; Jones, S L; Sittig, D F; Ness, R B

    2014-01-01

    Suboptimal care at the end-of-life can be due to lack of access or knowledge of patient wishes. Ambiguity is often the result of non-standardized formats. Borrowing digital technology from other industries and using existing health information infrastructure can greatly improve the completion, storage, and distribution of advance directives. We believe several simple, low-cost adaptations to regional and federal programs can raise the standard of end-of-life care.

  10. Direct search for dark matter

    SciTech Connect

    Yoo, Jonghee; /Fermilab

    2009-12-01

    Dark matter is hypothetical matter which does not interact with electromagnetic radiation. The existence of dark matter is only inferred from gravitational effects of astrophysical observations to explain the missing mass component of the Universe. Weakly Interacting Massive Particles are currently the most popular candidate to explain the missing mass component. I review the current status of experimental searches of dark matter through direct detection using terrestrial detectors.

  11. Simplifying Direct Composite Veneer Placement.

    PubMed

    Lowe, Robert A

    2015-05-01

    Several clinical uses for the Uveneer system have been described in the case examples presented herein, demonstrating how this technique can help the dentist more easily create aesthetic facial surfaces of maxillary anterior teeth. This template system can be used to create direct composite veneers as definitive restorations, and in a variety of diagnostic situations that help the dentist and patient get on the "same page" when designing an aesthetic restorative case to meet a patient's individual goals. PMID:26470579

  12. Do ants make direct comparisons?

    PubMed

    Robinson, Elva J H; Smith, Faith D; Sullivan, Kathryn M E; Franks, Nigel R

    2009-07-22

    Many individual decisions are informed by direct comparison of the alternatives. In collective decisions, however, only certain group members may have the opportunity to compare options. Emigrating ant colonies (Temnothorax albipennis) show sophisticated nest-site choice, selecting superior sites even when they are nine times further away than the alternative. How do they do this? We used radio-frequency identification-tagged ants to monitor individual behaviour. Here we show for the first time that switching between nests during the decision process can influence nest choice without requiring direct comparison of nests. Ants finding the poor nest were likely to switch and find the good nest, whereas ants finding the good nest were more likely to stay committed to that nest. When ants switched quickly between the two nests, colonies chose the good nest. Switching by ants that had the opportunity to compare nests had little effect on nest choice. We suggest a new mechanism of collective nest choice: individuals respond to nest quality by the decision either to commit or to seek alternatives. Previously proposed mechanisms, recruitment latency and nest comparison, can be explained as side effects of this simple rule. Colony-level comparison and choice can emerge, without direct comparison by individuals.

  13. Direct reciprocity in structured populations.

    PubMed

    van Veelen, Matthijs; García, Julián; Rand, David G; Nowak, Martin A

    2012-06-19

    Reciprocity and repeated games have been at the center of attention when studying the evolution of human cooperation. Direct reciprocity is considered to be a powerful mechanism for the evolution of cooperation, and it is generally assumed that it can lead to high levels of cooperation. Here we explore an open-ended, infinite strategy space, where every strategy that can be encoded by a finite state automaton is a possible mutant. Surprisingly, we find that direct reciprocity alone does not lead to high levels of cooperation. Instead we observe perpetual oscillations between cooperation and defection, with defection being substantially more frequent than cooperation. The reason for this is that "indirect invasions" remove equilibrium strategies: every strategy has neutral mutants, which in turn can be invaded by other strategies. However, reciprocity is not the only way to promote cooperation. Another mechanism for the evolution of cooperation, which has received as much attention, is assortment because of population structure. Here we develop a theory that allows us to study the synergistic interaction between direct reciprocity and assortment. This framework is particularly well suited for understanding human interactions, which are typically repeated and occur in relatively fluid but not unstructured populations. We show that if repeated games are combined with only a small amount of assortment, then natural selection favors the behavior typically observed among humans: high levels of cooperation implemented using conditional strategies.

  14. Do ants make direct comparisons?

    PubMed Central

    Robinson, Elva J.H.; Smith, Faith D.; Sullivan, Kathryn M.E.; Franks, Nigel R.

    2009-01-01

    Many individual decisions are informed by direct comparison of the alternatives. In collective decisions, however, only certain group members may have the opportunity to compare options. Emigrating ant colonies (Temnothorax albipennis) show sophisticated nest-site choice, selecting superior sites even when they are nine times further away than the alternative. How do they do this? We used radio-frequency identification-tagged ants to monitor individual behaviour. Here we show for the first time that switching between nests during the decision process can influence nest choice without requiring direct comparison of nests. Ants finding the poor nest were likely to switch and find the good nest, whereas ants finding the good nest were more likely to stay committed to that nest. When ants switched quickly between the two nests, colonies chose the good nest. Switching by ants that had the opportunity to compare nests had little effect on nest choice. We suggest a new mechanism of collective nest choice: individuals respond to nest quality by the decision either to commit or to seek alternatives. Previously proposed mechanisms, recruitment latency and nest comparison, can be explained as side effects of this simple rule. Colony-level comparison and choice can emerge, without direct comparison by individuals. PMID:19386652

  15. Direct Thrombus Imaging in Stroke

    PubMed Central

    Kim, Jongseong; Park, Jung E.; Nahrendorf, Matthias; Kim, Dong-Eog

    2016-01-01

    There is an emergent need for imaging methods to better triage patients with acute stroke for tissue-plasminogen activator (tPA)-mediated thrombolysis or endovascular clot retrieval by directly visualizing the size and distribution of cerebral thromboemboli. Currently, magnetic resonance (MR) or computed tomography (CT) angiography visualizes the obstruction of blood flow within the vessel lumen rather than the thrombus itself. The present visualization method, which relies on observation of the dense artery sign (the appearance of cerebral thrombi on a non-enhanced CT), suffers from low sensitivity. When translated into the clinical setting, direct thrombus imaging is likely to enable individualized acute stroke therapy by allowing clinicians to detect the thrombus with high sensitivity, assess the size and nature of the thrombus more precisely, serially monitor the therapeutic effects of thrombolysis, and detect post-treatment recurrence. This review is intended to provide recent updates on stroke-related direct thrombus imaging using MR imaging, positron emission tomography, or CT. PMID:27733029

  16. BNL Direct Wind Superconducting Magnets

    SciTech Connect

    Parker, B.; Anerella, M.; Escallier, J.; Ghosh, A.; Jain, A.; Marone, A.; Muratore, A.; Wanderer, P.

    2011-09-12

    BNL developed Direct Wind magnet technology is used to create a variety of complex multi-functional multi-layer superconducting coil structures without the need for creating custom production tooling and fixturing for each new project. Our Direct Wind process naturally integrates prestress into the coil structure so external coil collars and yokes are not needed; the final coil package transverse size can then be very compact. Direct Wind magnets are produced with very good field quality via corrections applied during the course of coil winding. The HERA-II and BEPC-II Interaction Region (IR) magnet, J-PARC corrector and Alpha antihydrogen magnetic trap magnets and our BTeV corrector magnet design are discussed here along with a full length ILC IR prototype magnet presently in production and the coils that were wound for an ATF2 upgrade at KEK. A new IR septum magnet design concept for a 6.2 T combined-function IR magnet for eRHIC, a future RHIC upgrade, is introduced here.

  17. Protrusion Fluctuations Direct Cell Motion

    PubMed Central

    Caballero, David; Voituriez, Raphaël; Riveline, Daniel

    2014-01-01

    Many physiological phenomena involve directional cell migration. It is usually attributed to chemical gradients in vivo. Recently, other cues have been shown to guide cells in vitro, including stiffness/adhesion gradients or micropatterned adhesive motifs. However, the cellular mechanism leading to these biased migrations remains unknown, and, often, even the direction of motion is unpredictable. In this study, we show the key role of fluctuating protrusions on ratchet-like structures in driving NIH3T3 cell migration. We identified the concept of efficient protrusion and an associated direction index. Our analysis of the protrusion statistics facilitated the quantitative prediction of cell trajectories in all investigated conditions. We varied the external cues by changing the adhesive patterns. We also modified the internal cues using drug treatments, which modified the protrusion activity. Stochasticity affects the short- and long-term steps. We developed a theoretical model showing that an asymmetry in the protrusion fluctuations is sufficient for predicting all measures associated with the long-term motion, which can be described as a biased persistent random walk. PMID:24988339

  18. Wellbore inertial directional surveying system

    DOEpatents

    Andreas, Ronald D.; Heck, G. Michael; Kohler, Stewart M.; Watts, Alfred C.

    1991-01-01

    A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single off-shore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on the electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block aboutthe gimbal axis. Angular rates of the sensor block about axes which are perpendicular to the gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and anular rate information. Kalman estimation techniques are used to compensate for system errors.

  19. Wellbore inertial directional surveying system

    DOEpatents

    Andreas, R.D.; Heck, G.M.; Kohler, S.M.; Watts, A.C.

    1982-09-08

    A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single offshore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on an electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block about the gimbal axis. Angular rates of the sensor block about axes which are perpendicular to te gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and angular rate information. Kalman estimation techniques are used to compensate for system errors. 25 figures.

  20. WHEN TOBACCO TARGETS DIRECT DEMOCRACY

    PubMed Central

    Laposata, Elizabeth; Kennedy, Allison P.

    2013-01-01

    Tobacco control advocates began to use ballot initiatives to enact tobacco control policies in the late 1970s. In response, the tobacco industry worked for over two decades to change laws governing initiative and referendum processes to prevent passage of tobacco control measures. In 1981, the tobacco industry’s political lobbying arm, the Tobacco Institute, created a front group that presented itself as a neutral initiative research clearinghouse to affect changes in state initiative and referenda laws. In 1990, the Tobacco Institute began creating an in-house team, and worked with third party groups to try to change state initiative laws. While the industry ultimately abandoned both efforts when neither achieved immediate success, over time, the industry’s goals have penetrated legitimate discourse on the I&R process in the United States and many specific ideas it advocated have garnered mainstream support. Direct democracy advocates, as well as public health advocates and policymakers, need to understand the tobacco industry’s goals (which other industries adopted) of limiting the direct democracy process in order to ensure that any changes do not inadvertently increase the power of the special interests that direct democracy was developed to counterbalance. PMID:24603083

  1. Entrance Counseling Guide for Direct Loan Borrowers

    ERIC Educational Resources Information Center

    Federal Student Aid, US Department of Education, 2010

    2010-01-01

    This guide describes the four types of loans offered by the Direct Loan Program[SM]: (1) Direct Subsidized Loans; (2) Direct Unsubsidized Loans; (3) Direct PLUS Loans; and (4) Direct Consolidation Loans. Among the topics covered in the guide are: Use of Your Loan Money, The Master Promissory Note, How Your Loans Will Be Disbursed (Paid Out),…

  2. Direct execution of LISP on a list-directed architecture

    SciTech Connect

    Sansonnet, J.P.; Castan, M.; Percebois, C.; Botella, D.; Perez, J.

    1982-03-01

    A direct-execution model dedicated to nonnumerical processing and based upon an internal representation of source programs derived from LISP has been defined. This model provides good support for sophisticated editing (syntactical parsing, tree manipulation, pretty-printing, ...) of conventional languages and artificial intelligence languages. A high level microprogramming language (LEM) was designed to write the interpreters and the editors. The influence of LISP on LEM and the architecture is discussed. The structure of the LISP is presented and evaluation measures dealing with size, development effort and speed are given. 30 references.

  3. Effects of reversible inactivation by cooling of the primate face motor cortex on the performance of a trained tongue-protrusion task and a trained biting task.

    PubMed

    Murray, G M; Lin, L D; Moustafa, E M; Sessle, B J

    1991-03-01

    1. Intracortical microstimulation (ICMS) and surface stimulation studies of primate face motor cortex have shown an extensive representation within face motor cortex devoted to movements of the tongue and face; only a very small representation for jaw-closing movements has ever been demonstrated. These data suggest that face motor cortex plays a critical role in the generation of tongue and facial movements but is less important in the generation of jaw-closing movements. Our aim was to determine whether disruption of primate face motor cortical function would indeed interfere with the generation of tongue movements but would not interfere with the generation of jaw-closing movements. 2. The face motor cortex was reversibly inactivated with the use of cooling in two monkeys that were trained to perform both a tongue-protrusion task and a biting task. Recording of single neuronal activity in the cortex beneath the thermode confirmed the reversible inactivation of the cortex. Each task involved a series of trials in which the monkey was required to produce a preset force level for a 0.5-s force holding period; the monkey received a fruit-juice reward if it successfully completed a task trial. Cooling of the ICMS-defined face motor cortex was achieved bilaterally or, in one experiment, unilaterally by circulating coolant through thermodes placed either on intact dura overlying face motor cortex in both monkeys or directly on the exposed pia in one of the monkeys;thermode temperature was lowered to 3-5 degrees C during cooling. Electromyographic (EMG) recordings were also made from masseter, genioglossus, and digastric muscles. 3. During bilateral cooling of the thermodes on the dura overlying the face motor cortex, there was a significant reduction in the success rates for the performance of the tongue-protrusion task in comparison with control series of trials (i.e., precool and postcool) in which the thermodes were kept at 37 degrees C. Quantitative analyses of

  4. Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity application to brain-machine interfaces and neurorehabilitation.

    PubMed

    Rebesco, James M; Miller, Lee E

    2011-01-01

    the ability of a trained rat to detect intracortical microstimulation behavioral cues. These results provide an important proof of concept, demonstrating the feasibility of Hebbian conditioning protocols to alter information flow in the brain. In addition to their possible application to BMI research, techniques like this may improve the efficacy of traditional rehabilitation for patients with neurologic injury. PMID:21763520

  5. Direct detection of dark matter axions with directional sensitivity

    SciTech Connect

    Irastorza, Igor G.; García, Juan A. E-mail: jagarpas@unizar.es

    2012-10-01

    We study the directional effect of the expected axion dark matter signal in a resonant cavity of an axion haloscope detector, for cavity geometries not satisfying the condition that the axion de Broglie wavelength λ{sub a} is sufficiently larger than the cavity dimensions L for a fully coherent conversion, i.e. λ{sub a}∼>2πL. We focus on long thin cavities immersed in dipole magnets and find, for appropriately chosen cavity lengths, an O(1) modulation of the signal with the cavity orientation with respect the momentum distribution of the relic axion background predicted by the isothermal sphere model for the galactic dark matter halo. This effect can be exploited to design directional axion dark matter detectors, providing an unmistakable signature of the extraterrestrial origin of a possible positive detection. Moreover, the precise shape of the modulation may give information of the galactic halo distribution and, for specific halo models, give extra sensitivity for higher axion masses.

  6. Combined Shuttle-Box Training with Electrophysiological Cortex Recording and Stimulation as a Tool to Study Perception and Learning.

    PubMed

    Happel, Max F K; Deliano, Matthias; Ohl, Frank W

    2015-10-22

    Shuttle-box avoidance learning is a well-established method in behavioral neuroscience and experimental setups were traditionally custom-made; the necessary equipment is now available by several commercial companies. This protocol provides a detailed description of a two-way shuttle-box avoidance learning paradigm in rodents (here Mongolian gerbils; Meriones unguiculatus) in combination with site-specific electrical intracortical microstimulation (ICMS) and simultaneous chronical electrophysiological in vivo recordings. The detailed protocol is applicable to study multiple aspects of learning behavior and perception in different rodent species. Site-specific ICMS of auditory cortical circuits as conditioned stimuli here is used as a tool to test the perceptual relevance of specific afferent, efferent and intracortical connections. Distinct activation patterns can be evoked by using different stimulation electrode arrays for local, layer-dependent ICMS or distant ICMS sites. Utilizing behavioral signal detection analysis it can be determined which stimulation strategy is most effective for eliciting a behaviorally detectable and salient signal. Further, parallel multichannel-recordings using different electrode designs (surface electrodes, depth electrodes, etc.) allow for investigating neuronal observables over the time course of such learning processes. It will be discussed how changes of the behavioral design can increase the cognitive complexity (e.g. detection, discrimination, reversal learning).

  7. Multidirectional direct simple shear apparatus

    SciTech Connect

    DeGroot, D.J.; Germaine, J.T.; Ladd, C.C.

    1993-09-01

    The paper describes a new simple shear testing device, the multidirectional direct simple shear (MDSS) apparatus, for testing soil specimens under conditions that simulate, at the element level, the state of stress acting within the foundation soil of an offshore Arctic gravity structure. The MDSS uses a circular specimen that is consolidated under both a vertical effective stress ({sigma}{sub vc}{prime}) and a horizontal shear stress ({tau}{sub 1}). The specimen is subsequently sheared undrained by applying a second independent horizontal shear stress ({tau}{sub 2}) at an angle {theta} relative to the horizontal consolidation shear stress {tau}{sub 1}. Evaluation of the MDSS first compares conventional K{sub D}-consolidated undrained direct simple shear (CK{sub 0}UDSS) test data ({tau}{sub 1} = 0) on normally consolidated Boston blue clay (BBC) with results obtained in the Geonor DSS device. The MDSS gives lower secant Young`s modulus values and on average 8% lower strengths, but produces remarkably less scatter in the test results than the Geonor DSS. Kinematic proof tests with an elastic material (rubber) confirm that the setup procedure, application of forces, and strain measurement systems in the MDSS work properly and produce repeatable results. Results from a MDSS test program on BBC wherein specimens were first normally consolidated with {sigma}{sub vc}{prime} and {tau}{sub 1} = 0.2{sigma}{sub vc}{prime} and then sheared undrained at {theta} varing in 30{degree} increments from zero (shear in same direction) to 150{degree} show dramatic differences in the response of the soil as a function of {theta}. The peak undrained strength varies almost twofold from 0 = 0 to 120{degree}, while the deformation behavior varies from very brittle at low {theta} angles to becoming ductile at higher angles. 11 refs., 15 figs.

  8. Directional Solidification of Eutectic Ceramics

    NASA Technical Reports Server (NTRS)

    Sayir, Ali

    2001-01-01

    Two major problems associated with structural ceramics are lack of damage tolerance and insufficient strength and creep resistance at very high temperatures of interest for aerospace application. This work demonstrated that the directionally solidified eutectics can have unique poly-phase microstructures and mechanical properties superior to either constituent alone. The constraining effect of unique eutectic microstructures result in higher resistance to slow crack growth and creep. Prospect of achieving superior properties through controlled solidification are presented and this technology can also be beneficial to produce new class of materials.

  9. Directed energy deflection laboratory measurements

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Phillip; Hughes, Gary B.; Meinhold, Peter; Suen, Jonathan; Batliner, Payton; Motta, Caio; Griswold, Janelle; Kangas, Miikka; Johansson, Isbella; Alnawakhtha, Yusuf; Prater, Kenyon; Lang, Alex; Madajian, Jonathan

    2015-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DESTAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  10. Vitreous substitutes: challenges and directions

    PubMed Central

    Gao, Qian-Ying; Fu, Yue; Hui, Yan-Nian

    2015-01-01

    The natural vitreous body has a fine structure and complex functions. The imitation of the natural vitreous body by vitreous substitutes is a challenging work for both researchers and ophthalmologists. Gases, silicone oil, heavy silicone oil and hydrogels, particularly the former two vitreous substitutes are clinically widely used with certain complications. Those, however, are not real artificial vitreous due to lack of structure and function like the natural vitreous body. This article reviews the situations, challenges, and future directions in the development of vitreous substitutes, particularly the experimental and clinical use of a new artificial foldable capsular vitreous body. PMID:26085987

  11. Direct application of geothermal energy

    SciTech Connect

    Reistad, G.M.

    1980-01-01

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  12. Nerve lesioning with direct current

    NASA Astrophysics Data System (ADS)

    Ravid, E. Natalie; Shi Gan, Liu; Todd, Kathryn; Prochazka, Arthur

    2011-02-01

    Spastic hypertonus (muscle over-activity due to exaggerated stretch reflexes) often develops in people with stroke, cerebral palsy, multiple sclerosis and spinal cord injury. Lesioning of nerves, e.g. with phenol or botulinum toxin is widely performed to reduce spastic hypertonus. We have explored the use of direct electrical current (DC) to lesion peripheral nerves. In a series of animal experiments, DC reduced muscle force by controlled amounts and the reduction could last several months. We conclude that in some cases controlled DC lesioning may provide an effective alternative to the less controllable molecular treatments available today.

  13. Future direction in airline marketing

    NASA Technical Reports Server (NTRS)

    Colussy, D. A.

    1972-01-01

    The rapid growth and broadening of the air travel market, coupled with a more sophisticated consumer, will dramatically change airline marketing over the next decade. Discussed is the direction this change is likely to take and its implications for companies within the industry. New conceptualization approaches are required if the full potential of this expanding market is to be fully realized. Marketing strategies are developed that will enable various elements of the travel industry to compete not only against each other but also with other products that are competing for the consumer's discretionary income.

  14. Direct measurement of light waves.

    PubMed

    Goulielmakis, E; Uiberacker, M; Kienberger, R; Baltuska, A; Yakovlev, V; Scrinzi, A; Westerwalbesloh, Th; Kleineberg, U; Heinzmann, U; Drescher, M; Krausz, F

    2004-08-27

    The electromagnetic field of visible light performs approximately 10(15) oscillations per second. Although many instruments are sensitive to the amplitude and frequency (or wavelength) of these oscillations, they cannot access the light field itself. We directly observed how the field built up and disappeared in a short, few-cycle pulse of visible laser light by probing the variation of the field strength with a 250-attosecond electron burst. Our apparatus allows complete characterization of few-cycle waves of visible, ultraviolet, and/or infrared light, thereby providing the possibility for controlled and reproducible synthesis of ultrabroadband light waveforms.

  15. Direct dating of human fossils.

    PubMed

    Grün, Rainer

    2006-01-01

    The methods that can be used for the direct dating of human remains comprise of radiocarbon, U-series, electron spin resonance (ESR), and amino acid racemization (AAR). This review gives an introduction to these methods in the context of dating human bones and teeth. Recent advances in ultrafiltration techniques have expanded the dating range of radiocarbon. It now seems feasible to reliably date bones up to 55,000 years. New developments in laser ablation mass spectrometry permit the in situ analysis of U-series isotopes, thus providing a rapid and virtually non-destructive dating method back to about 300,000 years. This is of particular importance when used in conjunction with non-destructive ESR analysis. New approaches in AAR analysis may lead to a renaissance of this method. The potential and present limitations of these direct dating techniques are discussed for sites relevant to the reconstruction of modern human evolution, including Florisbad, Border Cave, Tabun, Skhul, Qafzeh, Vindija, Banyoles, and Lake Mungo.

  16. Radial lean direct injection burner

    DOEpatents

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  17. Staged direct injection diesel engine

    DOEpatents

    Baker, Quentin A.

    1985-01-01

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  18. Plasma dark matter direct detection

    SciTech Connect

    Clarke, J.D.; Foot, R. E-mail: rfoot@unimelb.edu.au

    2016-01-01

    Dark matter in spiral galaxies like the Milky Way may take the form of a dark plasma. Hidden sector dark matter charged under an unbroken U(1)' gauge interaction provides a simple and well defined particle physics model realising this possibility. The assumed U(1)' neutrality of the Universe then implies (at least) two oppositely charged dark matter components with self-interactions mediated via a massless 'dark photon' (the U(1)' gauge boson). In addition to nuclear recoils such dark matter can give rise to keV electron recoils in direct detection experiments. In this context, the detailed physical properties of the dark matter plasma interacting with the Earth is required. This is a complex system, which is here modelled as a fluid governed by the magnetohydrodynamic equations. These equations are numerically solved for some illustrative examples, and implications for direct detection experiments discussed. In particular, the analysis presented here leaves open the intriguing possibility that the DAMA annual modulation signal is due primarily to electron recoils (or even a combination of electron recoils and nuclear recoils). The importance of diurnal modulation (in addition to annual modulation) as a means of probing this kind of dark matter is also emphasised.

  19. Direct Vasodilators and Sympatholytic Agents.

    PubMed

    McComb, Meghan N; Chao, James Y; Ng, Tien M H

    2016-01-01

    Direct vasodilators and sympatholytic agents were some of the first antihypertensive medications discovered and utilized in the past century. However, side effect profiles and the advent of newer antihypertensive drug classes have reduced the use of these agents in recent decades. Outcome data and large randomized trials supporting the efficacy of these medications are limited; however, in general the blood pressure-lowering effect of these agents has repeatedly been shown to be comparable to other more contemporary drug classes. Nevertheless, a landmark hypertension trial found a negative outcome with a doxazosin-based regimen compared to a chlorthalidone-based regimen, leading to the removal of α-1 adrenergic receptor blockers as first-line monotherapy from the hypertension guidelines. In contemporary practice, direct vasodilators and sympatholytic agents, particularly hydralazine and clonidine, are often utilized in refractory hypertension. Hydralazine and minoxidil may also be useful alternatives for patients with renal dysfunction, and both hydralazine and methyldopa are considered first line for the treatment of hypertension in pregnancy. Hydralazine has also found widespread use for the treatment of systolic heart failure in combination with isosorbide dinitrate (ISDN). The data to support use of this combination in African Americans with heart failure are particularly robust. Hydralazine with ISDN may also serve as an alternative for patients with an intolerance to angiotensin antagonists. Given these niche indications, vasodilators and sympatholytics are still useful in clinical practice; therefore, it is prudent to understand the existing data regarding efficacy and the safe use of these medications. PMID:26033778

  20. Toward directed energy planetary defense

    NASA Astrophysics Data System (ADS)

    Lubin, Philip; Hughes, Gary B.; Bible, Johanna; Bublitz, Jesse; Arriola, Josh; Motta, Caio; Suen, Jon; Johansson, Isabella; Riley, Jordan; Sarvian, Nilou; Clayton-Warwick, Deborah; Wu, Jane; Milich, Andrew; Oleson, Mitch; Pryor, Mark; Krogen, Peter; Kangas, Miikka; O'Neill, Hugh

    2014-02-01

    Asteroids and comets that cross Earth's orbit pose a credible risk of impact, with potentially severe disturbances to Earth and society. We propose an orbital planetary defense system capable of heating the surface of potentially hazardous objects to the vaporization point as a feasible approach to impact risk mitigation. We call the system DE-STAR, for Directed Energy System for Targeting of Asteroids and exploRation. The DE-STAR is a modular-phased array of kilowatt class lasers powered by photovoltaic's. Modular design allows for incremental development, minimizing risk, and allowing for technological codevelopment. An orbiting structure would be developed in stages. The main objective of the DE-STAR is to use focused directed energy to raise the surface spot temperature to ˜3000 K, sufficient to vaporize all known substances. Ejection of evaporated material creates a large reaction force that would alter an asteroid's orbit. The baseline system is a DE-STAR 3 or 4 (1- to 10-km array) depending on the degree of protection desired. A DE-STAR 4 allows initial engagement beyond 1 AU with a spot temperature sufficient to completely evaporate up to 500-m diameter asteroids in 1 year. Small objects can be diverted with a DE-STAR 2 (100 m) while space debris is vaporized with a DE-STAR 1 (10 m).

  1. Boltzmann, Darwin and Directionality theory

    NASA Astrophysics Data System (ADS)

    Demetrius, Lloyd A.

    2013-09-01

    Boltzmann’s statistical thermodynamics is a mathematical theory which relates the macroscopic properties of aggregates of interacting molecules with the laws of their interaction. The theory is based on the concept thermodynamic entropy, a statistical measure of the extent to which energy is spread throughout macroscopic matter. Macroscopic evolution of material aggregates is quantitatively explained in terms of the principle: Thermodynamic entropy increases as the composition of the aggregate changes under molecular collision. Darwin’s theory of evolution is a qualitative theory of the origin of species and the adaptation of populations to their environment. A central concept in the theory is fitness, a qualitative measure of the capacity of an organism to contribute to the ancestry of future generations. Macroscopic evolution of populations of living organisms can be qualitatively explained in terms of a neo-Darwinian principle: Fitness increases as the composition of the population changes under variation and natural selection. Directionality theory is a quantitative model of the Darwinian argument of evolution by variation and selection. This mathematical theory is based on the concept evolutionary entropy, a statistical measure which describes the rate at which an organism appropriates energy from the environment and reinvests this energy into survivorship and reproduction. According to directionality theory, microevolutionary dynamics, that is evolution by mutation and natural selection, can be quantitatively explained in terms of a directionality principle: Evolutionary entropy increases when the resources are diverse and of constant abundance; but decreases when the resource is singular and of variable abundance. This report reviews the analytical and empirical support for directionality theory, and invokes the microevolutionary dynamics of variation and selection to delineate the principles which govern macroevolutionary dynamics of speciation and

  2. Note: Direct piezoelectric effect microscopy.

    PubMed

    Mori, T J A; Stamenov, P; Dorneles, L S

    2015-07-01

    An alternative method for investigating piezoelectric surfaces is suggested, exploiting the direct piezoeffect. The technique relies on acoustic (ultrasonic) excitation of the imaged surface and mapping of the resulting oscillatory electric potential. The main advantages arise from the spatial resolution of the conductive scanning probe microscopy in combination with the relatively large magnitude of the forward piezo signal Upf, which can be of the order of tens of mV even for non-ferroelectric piezoelectric materials. The potency of this experimental strategy is illustrated with measurements on well-crystallized quartz surfaces, where Upf ∼ 50 mV, for a piezoelectric coefficient of d33 = - 2.27  ×  10(-12) m/V, and applied stress of about T3 ∼ 5.7 kPa.

  3. Direct reconstruction of dark energy.

    PubMed

    Clarkson, Chris; Zunckel, Caroline

    2010-05-28

    An important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With so few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space. We present a new nonparametric method which can accurately reconstruct a wide variety of dark energy behavior with no prior assumptions about it. It is simple, quick and relatively accurate, and involves no expensive explorations of parameter space. The technique uses principal component analysis and a combination of information criteria to identify real features in the data, and tailors the fitting functions to pick up trends and smooth over noise. We find that we can constrain a large variety of w(z) models to within 10%-20% at redshifts z≲1 using just SNAP-quality data. PMID:20867085

  4. Enteric Neurobiology: Discoveries and Directions.

    PubMed

    Wood, Jackie D

    2016-01-01

    Discovery and documentation of noncholinergic-nonadrenergic neurotransmission in the enteric nervous system started a revolution in mechanisms of neural control of the digestive tract that continues into a twenty-first century era of translational gastroenterology, which is now firmly embedded in the term, neurogastroenterology. This chapter, on Enteric Neurobiology: Discoveries and Directions, tracks the step-by-step advances in enteric neuronal electrophysiology and synaptic behavior and progresses to the higher order functions of central pattern generators, hard wired synaptic circuits and libraries of neural programs in the brain-in-the-gut that underlie the several different patterns of motility and secretory behaviors that occur in the specialized, serially-connected compartments extending from the esophagus to the anus.

  5. Future directions in cancer prevention.

    PubMed

    Umar, Asad; Dunn, Barbara K; Greenwald, Peter

    2012-12-01

    Prevention of cancer remains the most promising strategy for reducing both its incidence and the mortality due to this disease. For more than four decades, findings from epidemiology, basic research and clinical trials have informed the development of lifestyle and medical approaches to cancer prevention. These include selective oestrogen receptor modulators and aromatase inhibitors for breast cancer, the 5-α-reductase inhibitors finasteride and dutasteride for prostate cancer, and the development of vaccines for viruses that are associated with specific cancers. Future directions include genetic, proteomic and other molecular approaches for identifying pathways that are associated with cancer initiation and development, as well as refining the search for immunologically modifiable causes of cancer. PMID:23151603

  6. Direct writing of conducting polymers.

    PubMed

    Aydemir, Nihan; Parcell, James; Laslau, Cosmin; Nieuwoudt, Michel; Williams, David E; Travas-Sejdic, Jadranka

    2013-08-01

    Described herein is a new printing method-direct writing of conducting polymers (CPs)-based on pipette-tip localized continuous electrochemical growth. A single barrel micropipette containing a metal wire (Pt) is filled with a mixture of monomer, supporting electrolyte, and an appropriate solvent. A droplet at the tip of the pipette contacts the substrate, which becomes the working electrode of a micro-electrochemical cell confined to the tip droplet and the pipette. The metallic wire in the pipette acts as both counter and reference electrode. Electropolymerization forms the CP on the working electrode in a pattern controlled by the movement of the pipette. In this study, various width poly(pyrrole) 2D and 3D structures are extruded and characterized in terms of microcyclic voltammetry, Raman spectroscopy, and scanning electron microscopy. PMID:23857715

  7. The SPES direct UCx target

    NASA Astrophysics Data System (ADS)

    Andrighetto, A.; Antonucci, C.; Barbui, M.; Carturan, S.; Cervellera, F.; Cevolani, S.; Cinausero, M.; Colombo, P.; Dainelli, A.; di Bernardo, P.; Gramegna, F.; Maggioni, G.; Meneghetti, G.; Petrovich, C.; Piga, L.; Prete, G.; Rizzi, V.; Tonezzer, M.; Zafiropoulos, D.; Zanonato, P.

    2007-11-01

    A possible solution for a target system aimed at the production of exotic nuclei as a result of high energy fissions in 238U compounds has been analyzed. The proposed configuration is constituted by a primary proton beam (40 MeV, 0.2 mA) directly impinging on uranium carbide disks inserted within a cylindrical carbon box. This system has been conceived to obtain both a high number of neutron rich atoms (originated from about 1013 fissions/s) and a low power deposition in the target. In order to extract the fission fragments, the box has to be hold at 2000○C. The thermal analysis shows the capability of the thermal radiation to cool the disks with a reasonable margin below the material melting point. Moreover, the analyses of the thermo-mechanical behaviour and of the effusion times confirm the promising features of this target configuration.

  8. High gradient directional solidification furnace

    NASA Technical Reports Server (NTRS)

    Aldrich, B. R.; Whitt, W. D. (Inventor)

    1985-01-01

    A high gradient directional solidification furnace is disclosed which includes eight thermal zones throughout the length of the furnace. In the hot end of the furnace, furnace elements provide desired temperatures. These elements include Nichrome wire received in a grooved tube which is encapsulated y an outer alumina core. A booster heater is provided in the hot end of the furnace which includes toroidal tungsten/rhenium wire which has a capacity to put heat quickly into the furnace. An adiabatic zone is provided by an insulation barrier to separate the hot end of the furnace from the cold end. The old end of the furnace is defined by additional heating elements. A heat transfer plate provides a means by which heat may be extracted from the furnace and conducted away through liquid cooled jackets. By varying the input of heat via the booster heater and output of heat via the heat transfer plate, a desired thermal gradient profile may be provided.

  9. Direct synthesis of magnesium borohydride

    DOEpatents

    Ronnebro, Ewa Carin Ellinor; Severa, Godwin; Jensen, Craig M.

    2012-04-03

    A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Mg(BH.sub.4).sub.2, from the alkaline earth metal boride MgB.sub.2 by hydrogenating the MgB.sub.2 at an elevated temperature and pressure. The boride may also be doped with small amounts of a metal chloride catalyst such as TiCl.sub.3 and/or NiCl.sub.2. The process provides for charging MgB.sub.2 with high pressure hydrogen above at least 70 MPa while simultaneously heating the material to about 350.degree. C. to about 400.degree. C. The method is relatively simple and inexpensive and provides a reversible hydride compound having a hydrogen capacity of at least 11 wt %.

  10. Method for directional hydraulic fracturing

    DOEpatents

    Swanson, David E.; Daly, Daniel W.

    1994-01-01

    A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

  11. Direct synthesis of calcium borohydride

    DOEpatents

    Ronnebro, Ewa Carin Ellinor; Majzoub, Eric H.

    2009-10-27

    A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Ca(BH.sub.4).sub.2, from the alkaline earth metal hydride and the alkaline earth metal boride. The borohydride thus prepared is doped with a small portion of a metal chloride catalyst compound, such as RuCl.sub.3, TiCl.sub.3, or a mixture of TiCl.sub.3 and palladium metal. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen at about 70 MPa while heating the mixture to about 400.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.

  12. Direct reconstruction of dark energy.

    PubMed

    Clarkson, Chris; Zunckel, Caroline

    2010-05-28

    An important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With so few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space. We present a new nonparametric method which can accurately reconstruct a wide variety of dark energy behavior with no prior assumptions about it. It is simple, quick and relatively accurate, and involves no expensive explorations of parameter space. The technique uses principal component analysis and a combination of information criteria to identify real features in the data, and tailors the fitting functions to pick up trends and smooth over noise. We find that we can constrain a large variety of w(z) models to within 10%-20% at redshifts z≲1 using just SNAP-quality data.

  13. Direct band gap silicon allotropes.

    PubMed

    Wang, Qianqian; Xu, Bo; Sun, Jian; Liu, Hanyu; Zhao, Zhisheng; Yu, Dongli; Fan, Changzeng; He, Julong

    2014-07-16

    Elemental silicon has a large impact on the economy of the modern world and is of fundamental importance in the technological field, particularly in solar cell industry. The great demand of society for new clean energy and the shortcomings of the current silicon solar cells are calling for new materials that can make full use of the solar power. In this paper, six metastable allotropes of silicon with direct or quasidirect band gaps of 0.39-1.25 eV are predicted by ab initio calculations at ambient pressure. Five of them possess band gaps within the optimal range for high converting efficiency from solar energy to electric power and also have better optical properties than the Si-I phase. These Si structures with different band gaps could be applied to multiple p-n junction photovoltaic modules.

  14. [Direct oral anticoagulants in cardiology].

    PubMed

    Kiss, Róbert Gábor

    2016-09-01

    Antithrombotic drug therapy is a main cornerstone - sometimes a fairly uneven cornerstone - of today's clinical practice. Patients treated with antithrombotic drugs appear sometimes unawaited at those of our colleagues, who are not necessarily experts of this narrow field. Furthermore, new and newer molecules of antiplatelet and anticoagulant medicines have come into practice, frequently in combination. This dramatic development has been important to patients; pharmacological - and recently nonpharmacological - antithrombotic treatment has paved the way to improve current modalities in cardiology. Combining elements of the "old four" (heparin, coumadin, aspirin, clopidogrel) have been the basis of any improvement for a long time. Nowadays, there has been an involvement of new drugs, direct oral anticoagulants into practice. It is time now to catch up in using new anticoagulants, regardless of our current speciality in medicine. Orv. Hetil., 2016, 157(38), 1507-1510. PMID:27640616

  15. Laboratory directed research and development

    SciTech Connect

    Not Available

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  16. Directional solidification with heat losses

    NASA Technical Reports Server (NTRS)

    Brattkus, K.; Davis, S. H.

    1988-01-01

    The upward directional solidification of a dilute binary alloy in a tall, thin, two-dimensional slot is considered. Heat losses from the sidewalls produce curved isotherms, interface deformations, and melt convection. An asymptotic approach is used which relates the small heat loss to the thinness of the solidification cell, and solutions are obtained for the resulting melt convection, interface deflection, and the distribution of heat and solute. The model is compared to the numerical results of Chang and Brown (1983) which exclude the effects of solute buoyancy and thermodynamic equilibrium at the interface. The radial segregation at the interface (consistent with both interface shapes and temperature fields) is computed, and it is found that the radial segregation is independent of interfacial shapes; the radial segregation cannot be calculated from only a knowledge of the interface shape.

  17. Direct writing of conducting polymers.

    PubMed

    Aydemir, Nihan; Parcell, James; Laslau, Cosmin; Nieuwoudt, Michel; Williams, David E; Travas-Sejdic, Jadranka

    2013-08-01

    Described herein is a new printing method-direct writing of conducting polymers (CPs)-based on pipette-tip localized continuous electrochemical growth. A single barrel micropipette containing a metal wire (Pt) is filled with a mixture of monomer, supporting electrolyte, and an appropriate solvent. A droplet at the tip of the pipette contacts the substrate, which becomes the working electrode of a micro-electrochemical cell confined to the tip droplet and the pipette. The metallic wire in the pipette acts as both counter and reference electrode. Electropolymerization forms the CP on the working electrode in a pattern controlled by the movement of the pipette. In this study, various width poly(pyrrole) 2D and 3D structures are extruded and characterized in terms of microcyclic voltammetry, Raman spectroscopy, and scanning electron microscopy.

  18. New directions in hospital governance.

    PubMed

    Shortell, S M

    1989-01-01

    This article suggests new directions for hospital governance to meet the demands of a rapidly changing health care environment. Board members must increasingly play roles as risk takers, strategic directors, experts, mentors, and evaluators. Lessons from other industries regarding risk taking, use of expertise, and streamlining decision making must be adapted to meet hospital needs. Recent data suggest that these needs may still differ by hospital ownership despite a convergence in investor-owned and not-for-profit corporate structures. The effectiveness of hospital boards in the future will depend on their ability to: (1) manage a diverse group of stakeholders; (2) involve physicians in the management and governance process; (3) meet the governance needs of multi-institutional systems and hospital restructuring; (4) meet the challenges of diversification and vertical integration; and (5) understand strategy formulation and implementation as interdependent and interrelated processes.

  19. Direct generation of Bessel beams.

    PubMed

    Muys, Peter; Vandamme, Eefje

    2002-10-20

    Two implementations are identified to create a Bessel beam directly, i.e. without the spatial filtering of an initially Gaussian beam. The first implementation is based on a resonator configuration whose lowest-loss transverse mode is a Bessel beam. Numerical simulation to corroborate the geometrical optical arguments is presented. The second implementation is based on the theorem that the angular-plane wave spectrum of a Bessel beam is composed of a cone of wave vectors. This cone is also generated through a phase-matching condition in a four-wave mixing process. This leads to the conclusion that anti-Stokes radiation generated in a nonlinear material will leave the substrate under the form of a Bessel beam.

  20. Direct generation of Bessel beams

    NASA Astrophysics Data System (ADS)

    Muys, Peter; Vandamme, Eefje

    2002-10-01

    Two implementations are identified to create a Bessel beam directly, i.e. without the spatial filtering of an initially Gaussian beam. The first implementation is based on a resonator configuration whose lowest-loss transverse mode is a Bessel beam. Numerical simulation to corroborate the geometrical optical arguments is presented. The second implementation is based on the theorem that the angular-plane wave spectrum of a Bessel beam is composed of a cone of wave vectors. This cone is also generated through a phase-matching condition in a four-wave mixing process. This leads to the conclusion that anti-Stokes radiation generated in a nonlinear material will leave the substrate under the form of a Bessel beam.

  1. [Direct oral anticoagulant associated bleeding].

    PubMed

    Godier, A; Martin, A-C; Rosencher, N; Susen, S

    2016-07-01

    Direct oral anticoagulants (DOAC) are recommended for stroke prevention in atrial fibrillation and for the treatment of venous thromboembolism. However, they are associated with hemorrhagic complications. Management of DOAC-induced bleeding remains challenging. Activated or non-activated prothrombin concentrates are proposed, although their efficacy to reverse DOAC is uncertain. Therapeutic options also include antidotes: idarucizumab, antidote for dabigatran, has been approved for use whereas andexanet alpha, antidote for anti-Xa agents, and aripazine, antidote for all DOAC, are under development. Other options include hemodialysis for the treatment of dabigatran-associated bleeding and administration of oral charcoal if recent DOAC ingestion. DOAC plasma concentration measurement is necessary to guide DOAC reversal. We propose an update on DOAC-associated bleeding, integrating the availability of dabigatran antidote and the critical place of DOAC concentration measurements. PMID:27297642

  2. Goal directed behavior and dyslexia.

    PubMed

    Chiarenza, Giuseppe Augusto

    2016-01-01

    Goal directed behavior is explained by two approaches: the first, which can be named as cybertetic (behavior is wieved as homeostatic and reflexive), and second, as cognitive approach, a learned response, (skills developed by whaching the behavior of another individual). The aim of the paper is to present a noninvasive method described as an interaction of human beings with environment, recording the electrical activity of the brain from the human scalp. Obtained results are in agreement of psychological theories that place at determined levels of age the acquisition of the capacities of abstract thinking and with the functional neuroanatomic studies according to which biological maturation is necessary for learning processes to develop. An acquired level of learning is in close relationship with the maturation level of the cerebral structures. PMID:27442417

  3. Direct laser initiation of PETN

    SciTech Connect

    Early, J. W.; Kennedy, J. E.

    2001-01-01

    In the early 1970s Yang and Menichelli demonstrated that direct laser illumination of low-density secondary explosive prr:ssings through a transparent window could produce detonation. 'The energy requirement for threshold initiation of detonation was reduced when a thin metal coating of metal covered the side of the window against which the low-density explosive was pressed. We have obtained experimental results that are in general agreement with the results of Renllund, Stanton and Trott (1 989) and recent: work by Nagayama, hou and Nakahara (2001). We report exploration of the effects of laser beam diameter, PEiTN density and specific surface area, and thickness of a titanium coating on the window.

  4. Direct pulverized fuel fired system

    SciTech Connect

    Musto, R.L.; Kai, N.

    1985-01-15

    A direct fired system includes pulverizer means, classifier means, burner means, as well as a defined fluid flow path that serves to interconnect the pulverizer means, and the classifier means, in fluid flow relation with the burner means. In accord with the mode of operation thereof, at the classifier means, a separation is had of the stream of the gaseous medium such that a portion of the gaseous medium is recirculated along with the oversize solid fuel particles back to the pulverizer means, while the remainder of the gaseous medium is operative to convey the solid fuel particles that are of the desired size from the classifier means, to the burner means, for burning, i.e., firing, in the latter.

  5. [Direct oral anticoagulant associated bleeding].

    PubMed

    Godier, A; Martin, A-C; Rosencher, N; Susen, S

    2016-07-01

    Direct oral anticoagulants (DOAC) are recommended for stroke prevention in atrial fibrillation and for the treatment of venous thromboembolism. However, they are associated with hemorrhagic complications. Management of DOAC-induced bleeding remains challenging. Activated or non-activated prothrombin concentrates are proposed, although their efficacy to reverse DOAC is uncertain. Therapeutic options also include antidotes: idarucizumab, antidote for dabigatran, has been approved for use whereas andexanet alpha, antidote for anti-Xa agents, and aripazine, antidote for all DOAC, are under development. Other options include hemodialysis for the treatment of dabigatran-associated bleeding and administration of oral charcoal if recent DOAC ingestion. DOAC plasma concentration measurement is necessary to guide DOAC reversal. We propose an update on DOAC-associated bleeding, integrating the availability of dabigatran antidote and the critical place of DOAC concentration measurements.

  6. Direct lateral maneuvers in hawkmoths.

    PubMed

    Greeter, Jeremy S M; Hedrick, Tyson L

    2016-01-01

    We used videography to investigate direct lateral maneuvers, i.e. 'sideslips', of the hawkmoth Manduca sexta. M. sexta sideslip by rolling their entire body and wings to reorient their net force vector. During sideslip they increase net aerodynamic force by flapping with greater amplitude, (in both wing elevation and sweep), allowing them to continue to support body weight while rolled. To execute the roll maneuver we observed in sideslips, they use an asymmetric wing stroke; increasing the pitch of the roll-contralateral wing pair, while decreasing that of the roll-ipsilateral pair. They also increase the wing sweep amplitude of, and decrease the elevation amplitude of, the contralateral wing pair relative to the ipsilateral pair. The roll maneuver unfolds in a stairstep manner, with orientation changing more during downstroke than upstroke. This is due to smaller upstroke wing pitch angle asymmetries as well as increased upstroke flapping counter-torque from left-right differences in global reference frame wing velocity about the moth's roll axis. Rolls are also opposed by stabilizing aerodynamic moments from lateral motion, such that rightward roll velocity will be opposed by rightward motion. Computational modeling using blade-element approaches confirm the plausibility of a causal linkage between the previously mentioned wing kinematics and roll/sideslip. Model results also predict high degrees of axial and lateral damping. On the time scale of whole and half wing strokes, left-right wing pair asymmetries directly relate to the first, but not second, derivative of roll. Collectively, these results strongly support a roll-based sideslip with a high degree of roll damping in M. sexta. PMID:26740573

  7. Direct lateral maneuvers in hawkmoths

    PubMed Central

    Greeter, Jeremy S. M.; Hedrick, Tyson L.

    2016-01-01

    ABSTRACT We used videography to investigate direct lateral maneuvers, i.e. ‘sideslips’, of the hawkmoth Manduca sexta. M. sexta sideslip by rolling their entire body and wings to reorient their net force vector. During sideslip they increase net aerodynamic force by flapping with greater amplitude, (in both wing elevation and sweep), allowing them to continue to support body weight while rolled. To execute the roll maneuver we observed in sideslips, they use an asymmetric wing stroke; increasing the pitch of the roll-contralateral wing pair, while decreasing that of the roll-ipsilateral pair. They also increase the wing sweep amplitude of, and decrease the elevation amplitude of, the contralateral wing pair relative to the ipsilateral pair. The roll maneuver unfolds in a stairstep manner, with orientation changing more during downstroke than upstroke. This is due to smaller upstroke wing pitch angle asymmetries as well as increased upstroke flapping counter-torque from left-right differences in global reference frame wing velocity about the moth's roll axis. Rolls are also opposed by stabilizing aerodynamic moments from lateral motion, such that rightward roll velocity will be opposed by rightward motion. Computational modeling using blade-element approaches confirm the plausibility of a causal linkage between the previously mentioned wing kinematics and roll/sideslip. Model results also predict high degrees of axial and lateral damping. On the time scale of whole and half wing strokes, left-right wing pair asymmetries directly relate to the first, but not second, derivative of roll. Collectively, these results strongly support a roll-based sideslip with a high degree of roll damping in M. sexta. PMID:26740573

  8. Direct lateral maneuvers in hawkmoths.

    PubMed

    Greeter, Jeremy S M; Hedrick, Tyson L

    2016-01-01

    We used videography to investigate direct lateral maneuvers, i.e. 'sideslips', of the hawkmoth Manduca sexta. M. sexta sideslip by rolling their entire body and wings to reorient their net force vector. During sideslip they increase net aerodynamic force by flapping with greater amplitude, (in both wing elevation and sweep), allowing them to continue to support body weight while rolled. To execute the roll maneuver we observed in sideslips, they use an asymmetric wing stroke; increasing the pitch of the roll-contralateral wing pair, while decreasing that of the roll-ipsilateral pair. They also increase the wing sweep amplitude of, and decrease the elevation amplitude of, the contralateral wing pair relative to the ipsilateral pair. The roll maneuver unfolds in a stairstep manner, with orientation changing more during downstroke than upstroke. This is due to smaller upstroke wing pitch angle asymmetries as well as increased upstroke flapping counter-torque from left-right differences in global reference frame wing velocity about the moth's roll axis. Rolls are also opposed by stabilizing aerodynamic moments from lateral motion, such that rightward roll velocity will be opposed by rightward motion. Computational modeling using blade-element approaches confirm the plausibility of a causal linkage between the previously mentioned wing kinematics and roll/sideslip. Model results also predict high degrees of axial and lateral damping. On the time scale of whole and half wing strokes, left-right wing pair asymmetries directly relate to the first, but not second, derivative of roll. Collectively, these results strongly support a roll-based sideslip with a high degree of roll damping in M. sexta.

  9. Current Developments in Self-Directed Learning.

    ERIC Educational Resources Information Center

    Long, Huey B.; And Others

    This document contains the following papers examining current developments in self-directed learning: "Self-Directed Learning: Challenges and Opportunities" (Huey B. Long); "Examination of Self-Directed Learning Readiness and Selected Demographic Variables of Top Female Executives" (Lucy M. Guglielmino); "Enhancing Self-Directed Learning in the…

  10. 50 CFR 228.17 - Direct testimony.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... at the hearing by a witness shall be considered part of the record. Such direct testimony shall not... immaterial parts thereof; (b) The witness introducing direct testimony shall: (1) State his or her name... direct testimony if such party fails to present a witness to introduce the direct testimony. (d)...

  11. 40 CFR 73.72 - Direct sales.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Direct sales. 73.72 Section 73.72... ALLOWANCE SYSTEM Auctions, Direct Sales, and Independent Power Producers Written Guarantee § 73.72 Direct sales. Allowances that were formerly part of the direct sale program, which has been terminated...

  12. 40 CFR 73.72 - Direct sales.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Direct sales. 73.72 Section 73.72... ALLOWANCE SYSTEM Auctions, Direct Sales, and Independent Power Producers Written Guarantee § 73.72 Direct sales. Allowances that were formerly part of the direct sale program, which has been terminated...

  13. 40 CFR 73.72 - Direct sales.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Direct sales. 73.72 Section 73.72... ALLOWANCE SYSTEM Auctions, Direct Sales, and Independent Power Producers Written Guarantee § 73.72 Direct sales. Allowances that were formerly part of the direct sale program, which has been terminated...

  14. 40 CFR 73.72 - Direct sales.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Direct sales. 73.72 Section 73.72... ALLOWANCE SYSTEM Auctions, Direct Sales, and Independent Power Producers Written Guarantee § 73.72 Direct sales. Allowances that were formerly part of the direct sale program, which has been terminated...

  15. 40 CFR 73.72 - Direct sales.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Direct sales. 73.72 Section 73.72... ALLOWANCE SYSTEM Auctions, Direct Sales, and Independent Power Producers Written Guarantee § 73.72 Direct sales. Allowances that were formerly part of the direct sale program, which has been terminated...

  16. 30 CFR 256.71 - Directional drilling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... production plan, a lease may be maintained in force by directional wells drilled under the leased area from... adjoining land for the purpose of directional drilling under the leased area through any directional well surfaced on adjacent or adjoining land. Production, drilling or reworking of any such directional...

  17. Laterality and Directional Preferences in Preschool Children.

    ERIC Educational Resources Information Center

    Tan, Lesley E.

    1982-01-01

    Directional preference for horizontal hand movements was investigated in 49 right- and 49 left-handed four-year-olds using three drawing tests. Directionality for more complex perceptual-motor tasks has a different basis than directionality for simple tasks; such directionality is established at a later age but only for the right hand. (Author/CM)

  18. Expanding Horizons in Self-Directed Learning.

    ERIC Educational Resources Information Center

    Long, Huey B.; And Others

    The following papers are included: "Preface" (Huey B. Long); "Self-Directed Learning: Smoke and Mirrors?" (Huey B. Long); "From Self-Culture to Self-Direction: An Historical Analysis of Self-Directed Learning" (Amy D. Rose); "The Link between Self-Directed and Transformative Learning" (Jane Pilling-Cormick); "Learner Orientations among Baby…

  19. Directed forgetting and directed remembering in visual working memory.

    PubMed

    Williams, Melonie; Woodman, Geoffrey F

    2012-09-01

    A defining characteristic of visual working memory is its limited capacity. This means that it is crucial to maintain only the most relevant information in visual working memory. However, empirical research is mixed as to whether it is possible to selectively maintain a subset of the information previously encoded into visual working memory. Here we examined the ability of participants to use cues to either forget or remember a subset of the information already stored in visual working memory. In Experiment 1, participants were cued to either forget or remember 1 of 2 groups of colored squares during a change-detection task. We found that both types of cues aided performance in the visual working memory task but that observers benefited more from a cue to remember than a cue to forget a subset of the objects. In Experiment 2, we show that the previous findings, which indicated that directed-forgetting cues are ineffective, were likely due to the presence of invalid cues that appeared to cause observers to disregard such cues as unreliable. In Experiment 3, we recorded event-related potentials and show that an electrophysiological index of focused maintenance is elicited by cues that indicate which subset of information in visual working memory needs to be remembered, ruling out alternative explanations of the behavioral effects of retention-interval cues. The present findings demonstrate that observers can focus maintenance mechanisms on specific objects in visual working memory based on cues indicating future task relevance. PMID:22409182

  20. Direct Plasmon-Driven Photoelectrocatalysis.

    PubMed

    Robatjazi, Hossein; Bahauddin, Shah Mohammad; Doiron, Chloe; Thomann, Isabell

    2015-09-01

    Harnessing the energy from hot charge carriers is an emerging research area with the potential to improve energy conversion technologies.1-3 Here we present a novel plasmonic photoelectrode architecture carefully designed to drive photocatalytic reactions by efficient, nonradiative plasmon decay into hot carriers. In contrast to past work, our architecture does not utilize a Schottky junction, the commonly used building block to collect hot carriers. Instead, we observed large photocurrents from a Schottky-free junction due to direct hot electron injection from plasmonic gold nanoparticles into the reactant species upon plasmon decay. The key ingredients of our approach are (i) an architecture for increased light absorption inspired by optical impedance matching concepts,4 (ii) carrier separation by a selective transport layer, and (iii) efficient hot-carrier generation and injection from small plasmonic Au nanoparticles to adsorbed water molecules. We also investigated the quantum efficiency of hot electron injection for different particle diameters to elucidate potential quantum effects while keeping the plasmon resonance frequency unchanged. Interestingly, our studies did not reveal differences in the hot-electron generation and injection efficiencies for the investigated particle dimensions and plasmon resonances. PMID:26243130