Hu, Jiangfeng; Wang, Zhao; Lian, Yuehan; Huang, Qinghua
2018-01-29
This study examines the spillover effects of foreign direct investment (FDI) on green technology progress rate (as measured by the green total factor productivity). The analysis utilizes two measures of FDI, labor-based FDI and capital-based FDI, and separately investigates four sets of industry classifications-high/low discharge regulation and high/low emission standard regulation. The results indicate that in the low discharge regulation and low emission standard regulation industry, labor-based FDI has a significant negative spillover effect, and capital-based FDI has a significant positive spillover effect. However, in the high-intensity environmental regulation industry, the negative influence of labor-based FDI is completely restrained, and capital-based FDI continues to play a significant positive green technological spillover effects. These findings have clear policy implications: the government should be gradually reducing the labor-based FDI inflow or increasing stringency of environmental regulation in order to reduce or eliminate the negative spillover effect of the labor-based FDI.
Hu, Jiangfeng; Wang, Zhao; Lian, Yuehan; Huang, Qinghua
2018-01-01
This study examines the spillover effects of foreign direct investment (FDI) on green technology progress rate (as measured by the green total factor productivity). The analysis utilizes two measures of FDI, labor-based FDI and capital-based FDI, and separately investigates four sets of industry classifications—high/low discharge regulation and high/low emission standard regulation. The results indicate that in the low discharge regulation and low emission standard regulation industry, labor-based FDI has a significant negative spillover effect, and capital-based FDI has a significant positive spillover effect. However, in the high-intensity environmental regulation industry, the negative influence of labor-based FDI is completely restrained, and capital-based FDI continues to play a significant positive green technological spillover effects. These findings have clear policy implications: the government should be gradually reducing the labor-based FDI inflow or increasing stringency of environmental regulation in order to reduce or eliminate the negative spillover effect of the labor-based FDI. PMID:29382112
Kim, Bo-Ram; Stifter, Cynthia A.; Philbrook, Lauren E.; Teti, Douglas M.
2014-01-01
The present study examines the influences of mothers’ emotional availability towards their infants during bedtime, infant attachment security, and interactions between bedtime parenting and attachment with infant temperamental negative affectivity, on infants’ emotion regulation strategy use at 12 and 18 months. Infants’ emotion regulation strategies were assessed during a frustration task that required infants to regulate their emotions in the absence of parental support. Whereas emotional availability was not directly related to infants’ emotion regulation strategies, infant attachment security had direct relations with infants’ orienting towards the environment and tension reduction behaviors. Both maternal emotional availability and security of the mother-infant attachment relationship interacted with infant temperamental negative affectivity to predict two strategies that were less adaptive in regulating frustration. PMID:24995668
Kim, Bo-Ram; Stifter, Cynthia A; Philbrook, Lauren E; Teti, Douglas M
2014-11-01
The present study examines the influences of mothers' emotional availability toward their infants during bedtime, infant attachment security, and interactions between bedtime parenting and attachment with infant temperamental negative affectivity, on infants' emotion regulation strategy use at 12 and 18 months. Infants' emotion regulation strategies were assessed during a frustration task that required infants to regulate their emotions in the absence of parental support. Whereas emotional availability was not directly related to infants' emotion regulation strategies, infant attachment security had direct relations with infants' orienting toward the environment and tension reduction behaviors. Both maternal emotional availability and security of the mother-infant attachment relationship interacted with infant temperamental negative affectivity to predict two strategies that were less adaptive in regulating frustration. Copyright © 2014 Elsevier Inc. All rights reserved.
MicroRNA, miR-374b, directly targets Myf6 and negatively regulates C2C12 myoblasts differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhiyuan; Sun, Xiaorui; Xu, Dequan
Myogenesis is a complex process including myoblast proliferation, differentiation and myotube formation and is controlled by myogenic regulatory factors (MRFs), MyoD, MyoG, Myf5 and Myf6 (also known as MRF4). MicroRNA is a kind of ∼22 nt-long non-coding small RNAs, and act as key transcriptional or post-transcriptional regulators of gene expression. Identification of miRNAs involved in the regulation of muscle genes could improve our understanding of myogenesis process. In this study, we investigated the regulation of Myf6 gene by miRNAs. We showed that miR-374b specifically bound to the 3'untranslated region (UTR) of Myf6 and down-regulated the expression of Myf6 gene at bothmore » mRNA and protein level. Furthermore, miR-374b is ubiquitously expressed in the tissues of adult C57BL6 mouse, and the mRNA abundance increases first and then decreases during C2C12 myoblasts differentiation. Over-expression of miR-374b impaired C2C12 cell differentiation, while inhibiting miR-374b expression by 2′-O-methyl antisense oligonucleotides promoted C2C12 cell differentiation. Taken together, our findings identified miR-374b directly targets Myf6 and negatively regulates myogenesis. - Highlights: • MiR-374b directly targets 3′UTR of Myf6. • MiR-374b negatively regulates Myf6 in C2C12 cells. • MiR-374b abundance significiently changes during C2C12 cells differentiation. • MiR-374b negatively regulates C2C12 cells differentiation.« less
Emotion regulation promotes persistence in a residential substance abuse treatment.
Hopwood, Christopher J; Schade, Nick; Matusiewicz, Alexis; Daughters, Stacey B; Lejuez, Carl W
2015-01-01
Emotion regulation at treatment entry was evaluated among 115 patients in an inner-city substance use residential facility who either persisted (N = 94) or discontinued treatment (N = 21). Emotion regulation capacity including emotional clarity and the ability to engage in goal-directed behavior despite emotional distress, as well as lower scores on a measure of trait-negative emotionality, were associated with treatment persistence, whereas motivational variables were not. Findings indicate the importance of regulating negative emotions for treatment engagement among substance abusers.
Prefrontal mediation of emotion regulation in social anxiety disorder during laughter perception.
Kreifelts, Benjamin; Brück, Carolin; Ethofer, Thomas; Ritter, Jan; Weigel, Lena; Erb, Michael; Wildgruber, Dirk
2017-02-01
Social anxiety disorder (SAD) is characterized by negatively biased perception of social cues and deficits in emotion regulation. While negatively biased perception is thought to maintain social anxiety, emotion regulation represents an ability necessary to overcome both biased perception and social anxiety. Here, we used laughter as a social threat in a functional magnetic resonance imaging (fMRI) study to identify cerebral mediators linking SAD with attention and interpretation biases and their modification through cognitive emotion regulation in the form of reappraisal. We found that reappraisal abolished the negative laughter interpretation bias in SAD and that this process was directly mediated through activation patterns of the left dorsolateral prefrontal cortex (DLPFC) serving as a cerebral pivot between biased social perception and its normalization through reappraisal. Connectivity analyses revealed reduced prefrontal control over threat-processing sensory cortices (here: the temporal voice area) during cognitive emotion regulation in SAD. Our results indicate a central role for the left DLPFC in SAD which might represent a valuable target for future research on interventions either aiming to directly modulate cognitive emotion regulation in SAD or to evaluate its potential as physiological marker for psychotherapeutic interventions relying on emotion regulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yap, Chui Sun; Sinha, Rohit Anthony; Ota, Sho
2013-11-01
Highlights: •Thyroid hormone induces miR-181d expression in human hepatic cells and mouse livers. •Thyroid hormone downregulates CDX2 and SOAT2 (or ACAT2) via miR-181d. •miR-181d reduces cholesterol output from human hepatic cells. -- Abstract: Thyroid hormones (THs) regulate transcription of many metabolic genes in the liver through its nuclear receptors (TRs). Although the molecular mechanisms for positive regulation of hepatic genes by TH are well understood, much less is known about TH-mediated negative regulation. Recently, several nuclear hormone receptors were shown to downregulate gene expression via miRNAs. To further examine the potential role of miRNAs in TH-mediated negative regulation, we usedmore » a miRNA microarray to identify miRNAs that were directly regulated by TH in a human hepatic cell line. In our screen, we discovered that miRNA-181d is a novel hepatic miRNA that was regulated by TH in hepatic cell culture and in vivo. Furthermore, we identified and characterized two novel TH-regulated target genes that were downstream of miR-181d signaling: caudal type homeobox 2 (CDX2) and sterol O-acyltransferase 2 (SOAT2 or ACAT2). CDX2, a known positive regulator of hepatocyte differentiation, was regulated by miR-181d and directly activated SOAT2 gene expression. Since SOAT2 is an enzyme that generates cholesteryl esters that are packaged into lipoproteins, our results suggest miR-181d plays a significant role in the negative regulation of key metabolic genes by TH in the liver.« less
Schmidt, Romy; Schippers, Jos H M; Mieulet, Delphine; Watanabe, Mutsumi; Hoefgen, Rainer; Guiderdoni, Emmanuel; Mueller-Roeber, Bernd
2014-02-01
Grain quality is an important agricultural trait that is mainly determined by grain size and composition. Here, we characterize the role of the rice transcription factor (TF) SALT-RESPONSIVE ERF1 (SERF1) during grain development. Through genome-wide expression profiling and chromatin immunoprecipitation, we found that SERF1 directly regulates RICE PROLAMIN-BOX BINDING FACTOR (RPBF), a TF that functions as a positive regulator of grain filling. Loss of SERF1 enhances RPBF expression resulting in larger grains with increased starch content, while SERF1 overexpression represses RPBF resulting in smaller grains. Consistently, during grain filling, starch biosynthesis genes such as GRANULE-BOUND STARCH SYNTHASEI (GBSSI), STARCH SYNTHASEI (SSI), SSIIIa, and ADP-GLUCOSE PYROPHOSPHORYLASE LARGE SUBUNIT2 (AGPL2) are up-regulated in SERF1 knockout grains. Moreover, SERF1 is a direct upstream regulator of GBSSI. In addition, SERF1 negatively regulates germination by controlling RPBF expression, which mediates the gibberellic acid (GA)-induced expression of RICE AMYLASE1A (RAmy1A). Loss of SERF1 results in more rapid seedling establishment, while SERF1 overexpression has the opposite effect. Our study reveals that SERF1 represents a negative regulator of grain filling and seedling establishment by timing the expression of RPBF.
Inhibition of PDE4B suppresses inflammation by increasing expression of the deubiquitinase CYLD
Komatsu, Kensei; Lee, Ji-Yun; Miyata, Masanori; Hyang Lim, Jae; Jono, Hirofumi; Koga, Tomoaki; Xu, Haidong; Yan, Chen; Kai, Hirofumi; Li, Jian-Dong
2013-01-01
The deubiquitinase CYLD acts as a key negative regulator to tightly control overactive inflammation. Most anti-inflammatory strategies have focused on directly targeting the positive regulator, which often results in significant side effects such as suppression of the host defence response. Here, we show that inhibition of phosphodiesterase 4B (PDE4B) markedly enhances upregulation of CYLD expression in response to bacteria, thereby suggesting that PDE4B acts as a negative regulator for CYLD. Interestingly, in Cyld-deficient mice, inhibition of PDE4B no longer suppresses inflammation. Moreover, PDE4B negatively regulates CYLD via specific activation of JNK2 but not JNK1. Importantly, ototopical post-inoculation administration of a PDE4 inhibitor suppresses inflammation in this animal model, thus demonstrating the therapeutic potential of targeting PDE4. These studies provide insights into how inflammation is tightly regulated via the inhibition of its negative regulator and may also lead to the development of new anti-inflammatory therapeutics that upregulate CYLD expression. PMID:23575688
Ghorbani, Fatemeh; Khosravani, Vahid; Sharifi Bastan, Farangis; Jamaati Ardakani, Razieh
2017-06-01
The aim of this study was to evaluate the potential contributing factors such as alexithymia, emotion regulation and difficulties in emotion regulation, positive/negative affects and clinical factors including severity of alcohol dependence and depression connected to high suicidality in alcohol-dependent outpatients. 205 alcohol-dependent outpatients and 100 normal controls completed the demographic questionnaire, the Persian version of the Toronto Alexithymia Scale (FTAS-20), the Difficulties in Emotion Regulation Scale (DERS), the Emotion Regulation Questionnaire (ERQ), the Positive/Negative Affect Scales, the Alcohol Use Disorders Identification Test (AUDIT), and the Beck Depression Inventory-II (BDI-II). The suicidal risk was assessed using the Scale for Suicide Ideation (SSI) and history taking. Alcohol-dependent outpatients showed higher means in alexithymia, difficulties in emotion regulation, suppression subscale, negative affect, and suicide ideation than normal controls. Logistic regression analysis revealed that negative affect, duration of alcohol use, externally-oriented thinking, and severity of alcohol dependence explained lifetime suicide attempts. Depression, impulsivity, severity of alcohol dependence, reappraisal (reversely), externally-oriented thinking, difficulties engaging in goal-directed behaviors, and negative affect significantly predicted the suicidal risk. The findings may constitute useful evidence of the relevancies of alexithymia, emotion regulation, emotion regulation difficulties, and affects to suicidality in alcoholic patients. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
The Scaffold Protein TANK/I-TRAF Inhibits NF-κB Activation by Recruiting Polo-like Kinase 1
Zhang, Wanqiao; Zhang, Ying; Yuan, Yanzhi; Guan, Wei; Jin, Chaozhi; Chen, Hui; Wang, Xiaohui
2010-01-01
TANK/I-TRAF is a TRAF-binding protein that negatively regulates NF-κB activation. The underlying mechanism of this activity remains unclear. Here we show that TANK directly interacts with PLK1, a conserved cell cycle–regulated kinase. PLK1 inhibits NF-κB transcriptional activation induced by TNF-α, IL-1β, or several activators, but not by nuclear transcription factor p65. PLK1 expression reduces the DNA-binding activity of NF-κB induced by TNF-α. Moreover, endogenous activation of PLK1 reduces the TNF-induced phosphorylation of endogenous IκBα. PLK1 is bound to NEMO (IKKγ) through TANK to form a ternary complex in vivo. We describe a new regulatory mechanism for PLK1: PLK1 negatively regulates TNF-induced IKK activation by inhibiting the ubiquitination of NEMO. These findings reveal that the scaffold protein TANK recruits PLK1 to negatively regulate NF-κB activation and provide direct evidence that PLK1 is required for the repression function of TANK. PMID:20484576
Kojima, Y
2000-01-01
Characteristics of three maternal regulating behaviors--(1) reference to one sibling's actions or emotional states toward the other sibling, (2) encouragement of sibling interactions, (3) distraction of one sibling's attention away from the other sibling-and their associations with children's positive and negative behaviors toward their siblings were investigated through semistructured home observations for 40 sibling pairs (1-4 years, 2-8 years) and their mothers in Japanese families. Maternal regulating behaviors were observed more frequently when the younger sibling was still in an early developmental stage in the preschool years, although the findings were modest. The older sibling's negative behaviors toward the younger sibling positively correlated with maternal distraction toward the younger; alternatively, the younger sibling's negative behaviors do not correlate with maternal distraction but do correlate with maternal encouragement directed toward the older sibling. Reliable associations were found between maternal regulating behaviors and prosocial exchanges between siblings; maternal reference to the younger sibling's actions or emotional states directed toward the older sibling was associated with the older sibling's positive behavior toward the younger sibling. Maternal regulating behaviors during mother-sibling triadic interactions were associated with the quality of sibling relationships.
Peña-Gómez, Cleofé; Vidal-Piñeiro, Dídac; Clemente, Immaculada C.; Pascual-Leone, Álvaro; Bartrés-Faz, David
2011-01-01
Evidence from neuroimaging and electrophysiological studies indicates that the left dorsolateral prefrontal cortex (DLPFC) is a core region in emotional processing, particularly during down-regulation of negative emotional conditions. However, emotional regulation is a process subject to major inter-individual differences, some of which may be explained by personality traits. In the present study we used transcranial direct current stimulation (tDCS) over the left DLPFC to investigate whether transiently increasing the activity of this region resulted in changes in the ratings of positive, neutral and negative emotional pictures. Results revealed that anodal, but not cathodal, tDCS reduced the perceived degree of emotional valence for negative stimuli, possibly due to an enhancement of cognitive control of emotional expression. We also aimed to determine whether personality traits (extraversion and neuroticism) might condition the impact of tDCS. We found that individuals with higher scores on the introversion personality dimension were more permeable than extraverts to the modulatory effects of the stimulation. The present study underlines the role of the left DLPFC in emotional regulation, and stresses the importance of considering individual personality characteristics as a relevant variable, although replication is needed given the limited sample size of our study. PMID:21829522
Discrepancy-based and anticipated emotions in behavioral self-regulation.
Brown, Christina M; McConnell, Allen R
2011-10-01
Discrepancies between one's current and desired states evoke negative emotions, which presumably guide self-regulation. In the current work we evaluated the function of discrepancy-based emotions in behavioral self-regulation. Contrary to classic theories of self-regulation, discrepancy-based emotions did not predict the degree to which people engaged in self-regulatory behavior. Instead, expectations about how future self-discrepancies would make one feel (i.e., anticipated emotions) predicted self-regulation. However, anticipated emotions were influenced by previous discrepancy-based emotional experiences, suggesting that the latter do not directly motivate self-regulation but rather guide expectations. These findings are consistent with the perspective that emotions do not necessarily direct immediate behavior, but rather have an indirect effect by guiding expectations, which in turn predict goal-directed action.
Phan, Vernon T.; Ding, Vivianne W.; Li, Fenglei; Chalkley, Robert J.; Burlingame, Alma; McCormick, Frank
2010-01-01
The neurofibromatosis type 1 (NF1) gene encodes the GTPase-activating protein (GAP) neurofibromin, which negatively regulates Ras activity. The yeast Saccharomyces cerevisiae has two neurofibromin homologs, Ira1 and Ira2. To understand how these proteins are regulated, we utilized an unbiased proteomics approach to identify Ira2 and neurofibromin binding partners. We demonstrate that the Gpb1/Krh2 protein binds and negatively regulates Ira2 by promoting its ubiquitin-dependent proteolysis. We extended our findings to show that in mammalian cells, the ETEA/UBXD8 protein directly interacts with and negatively regulates neurofibromin. ETEA contains both UBA and UBX domains. Overexpression of ETEA downregulates neurofibromin in human cells. Purified ETEA, but not a mutant of ETEA that lacks the UBX domain, ubiquitinates the neurofibromin GAP-related domain in vitro. Silencing of ETEA expression increases neurofibromin levels and downregulates Ras activity. These findings provide evidence for conserved ubiquitination pathways regulating the RasGAP proteins Ira2 (in yeast) and neurofibromin (in humans). PMID:20160012
Tsouko, Efrosini; Wang, Jun; Frigo, Daniel E; Aydoğdu, Eylem; Williams, Cecilia
2015-09-01
Triple-negative breast cancer (TNBC) is characterized by aggressiveness and affects 10-20% of breast cancer patients. Since TNBC lacks expression of ERα, PR and HER2, existing targeted treatments are not effective and the survival is poor. In this study, we demonstrate that the tumor suppressor microRNA miR-200a directly regulates the oncogene EPH receptor A2 (EPHA2) and modulates TNBC migration. We show that EPHA2 expression is correlated with poor survival specifically in basal-like breast cancer and that its expression is repressed by miR-200a through direct interaction with the 3'UTR of EPHA2. This regulation subsequently affects the downstream activation of AMP-activated protein kinase (AMPK) and results in decreased cell migration of TNBC. We establish that miR-200a directs cell migration in a dual manner; in addition to regulating the well-characterized E-cadherin pathway it also regulates a EPHA2 pathway. The miR-200a-EPHA2 axis is a novel mechanism highlighting the possibility of utilizing miR-200a delivery to target TNBC metastases. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kim, Won Sam; Kim, Mi Jeong; Kim, Dong Oh; Byun, Jae-Eun; Huy, Hangsak; Song, Hae Young; Park, Young-Jun; Kim, Tae-Don; Yoon, Suk Ran; Choi, Eun-Ji; Jung, Haiyoung; Choi, Inpyo
2017-01-01
Suppressor of cytokine signaling (SOCS) proteins are negative regulators of cytokine responses. Although recent reports have shown regulatory roles for SOCS proteins in innate and adaptive immunity, their roles in natural killer (NK) cell development are largely unknown. Here, we show that SOCS2 is involved in NK cell development. SOCS2−/− mice showed a high frequency of NK cells in the bone marrow and spleen. Knockdown of SOCS2 was associated with enhanced differentiation of NK cells in vitro, and the transplantation of hematopoietic stem cells (HSCs) into congenic mice resulted in enhanced differentiation in SOCS2−/− HSCs. We found that SOCS2 could inhibit Janus kinase 2 (JAK2) activity and JAK2-STAT5 signaling pathways via direct interaction with JAK2. Furthermore, SOCS2−/− mice showed a reduction in lung metastases and an increase in survival following melanoma challenge. Overall, our findings suggest that SOCS2 negatively regulates the development of NK cells by inhibiting JAK2 activity via direct interaction. PMID:28383049
Self-regulation: from goal orientation to job performance.
Porath, Christine L; Bateman, Thomas S
2006-01-01
The authors investigated the effects on job performance of 3 forms of goal orientation and 4 self-regulation (SR) tactics. In a longitudinal field study with salespeople, learning and performance-prove goal orientation predicted subsequent sales performance, whereas performance-avoid goal orientation negatively predicted sales performance. The SR tactics functioned as mediating variables between learning and performance-prove goal orientations and performance. Social competence and proactive behavior directly and positively predicted sales performance, and emotional control negatively predicted performance. (c) 2006 APA, all rights reserved.
When death is not a problem: Regulating implicit negative affect under mortality salience.
Lüdecke, Christina; Baumann, Nicola
2015-12-01
Terror management theory assumes that death arouses existential anxiety in humans which is suppressed in focal attention. Whereas most studies provide indirect evidence for negative affect under mortality salience by showing cultural worldview defenses and self-esteem strivings, there is only little direct evidence for implicit negative affect under mortality salience. In the present study, we assume that this implicit affective reaction towards death depends on people's ability to self-regulate negative affect as assessed by the personality dimension of action versus state orientation. Consistent with our expectations, action-oriented participants judged artificial words to express less negative affect under mortality salience compared to control conditions whereas state-oriented participants showed the reversed pattern. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Yuk, Jae-Min; Kim, Tae Sung; Kim, Soo Yeon; Lee, Hye-Mi; Han, Jeongsu; Dufour, Catherine Rosa; Kim, Jin Kyung; Jin, Hyo Sun; Yang, Chul-Su; Park, Ki-Sun; Lee, Chul-Ho; Kim, Jin-Man; Kweon, Gi Ryang; Choi, Hueng-Sik; Vanacker, Jean-Marc; Moore, David D; Giguère, Vincent; Jo, Eun-Kyeong
2015-07-21
The orphan nuclear receptor estrogen-related receptor α (ERRα; NR3B1) is a key metabolic regulator, but its function in regulating inflammation remains largely unknown. Here, we demonstrate that ERRα negatively regulates Toll-like receptor (TLR)-induced inflammation by promoting Tnfaip3 transcription and fine-tuning of metabolic reprogramming in macrophages. ERRα-deficient (Esrra(-/-)) mice showed increased susceptibility to endotoxin-induced septic shock, leading to more severe pro-inflammatory responses than control mice. ERRα regulated macrophage inflammatory responses by directly binding the promoter region of Tnfaip3, a deubiquitinating enzyme in TLR signaling. In addition, Esrra(-/-) macrophages showed an increased glycolysis, but impaired mitochondrial respiratory function and biogenesis. Further, ERRα was required for the regulation of NF-κB signaling by controlling p65 acetylation via maintenance of NAD(+) levels and sirtuin 1 activation. These findings unravel a previously unappreciated role for ERRα as a negative regulator of TLR-induced inflammatory responses through inducing Tnfaip3 transcription and controlling the metabolic reprogramming. Copyright © 2015 Elsevier Inc. All rights reserved.
PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis
Jiang, Bochen; Shi, Yiting; Zhang, Xiaoyan; Xin, Xiaoyun; Qi, Lijuan; Guo, Hongwei; Li, Jigang; Yang, Shuhua
2017-01-01
Light and temperature are major environmental factors that coordinately control plant growth and survival. However, how plants integrate light and temperature signals to better adapt to environmental stresses is poorly understood. PHYTOCHROME-INTERACTING FACTOR 3 (PIF3), a key transcription factor repressing photomorphogenesis, has been shown to play a pivotal role in mediating plants’ responses to various environmental signals. In this study, we found that PIF3 functions as a negative regulator of Arabidopsis freezing tolerance by directly binding to the promoters of C-REPEAT BINDING FACTOR (CBF) genes to down-regulate their expression. In addition, two F-box proteins, EIN3-BINDING F-BOX 1 (EBF1) and EBF2, directly target PIF3 for 26S proteasome-mediated degradation. Consistently, ebf1 and ebf2 mutants were more sensitive to freezing than were the wild type, and the pif3 mutation suppressed the freezing-sensitive phenotype of ebf1. Furthermore, cold treatment promoted the degradation of EBF1 and EBF2, leading to increased stability of the PIF3 protein and reduced expression of the CBF genes. Together, our study uncovers an important role of PIF3 in Arabidopsis freezing tolerance by negatively regulating the expression of genes in the CBF pathway. PMID:28739888
Wang, Jian; Li, Zhi-Hua; Feng, Ban; Zhang, Ting; Zhang, Han; Li, Hui; Chen, Tao; Cui, Jing; Zang, Wei-Dong; Li, Yun-Qing
2015-01-01
Cortical neuroplasticity alterations are implicated in the pathophysiology of chronic orofacial pain. However, the relationship between critical cortex excitability and orofacial pain maintenance has not been fully elucidated. We recently demonstrated a top-down corticospinal descending pain modulation pathway from the anterior cingulate cortex (ACC) to the spinal dorsal horn that could directly regulate nociceptive transmission. Thus, we aimed to investigate possible corticotrigeminal connections that directly influence orofacial nociception in rats. Infraorbital nerve chronic constriction injury (IoN-CCI) induced significant orofacial nociceptive behaviors as well as pain-related negative emotions such as anxiety/depression in rats. By combining retrograde and anterograde tract tracing, we found powerful evidence that the trigeminal caudal subnucleus (Vc), especially the superficial laminae (I/II), received direct descending projections from granular and dysgranular parts of the insular cortex (IC). Extracellular signal-regulated kinase (ERK), an important signaling molecule involved in neuroplasticity, was significantly activated in the IC following IoN-CCI. Moreover, in IC slices from IoN-CCI rats, U0126, an inhibitor of ERK activation, decreased both the amplitude and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and reduced the paired-pulse ratio (PPR) of Vc-projecting neurons. Additionally, U0126 also reduced the number of action potentials in the Vc-projecting neurons. Finally, intra-IC infusion of U0126 obviously decreased Fos expression in the Vc, accompanied by the alleviation of both nociceptive behavior and negative emotions. Thus, the corticotrigeminal descending pathway from the IC to the Vc could directly regulate orofacial pain, and ERK deactivation in the IC could effectively alleviate neuropathic pain as well as pain-related negative emotions in IoN-CCI rats, probably through this top-down pathway. These findings may help researchers and clinicians to better understand the underlying modulation mechanisms of orofacial neuropathic pain and indicate a novel mechanism of ERK inhibitor-induced analgesia.
Riva, Paolo; Romero Lauro, Leonor J; Vergallito, Alessandra; DeWall, C Nathan; Bushman, Brad J
2015-01-01
Social exclusion, ostracism, and rejection can be emotionally painful because they thwart the need to belong. Building on studies suggesting that the right ventrolateral prefrontal cortex (rVLPFC) is associated with regulation of negative emotions, the present experiment tests the hypothesis that decreasing the cortical excitability of the rVLPFC may increase negative emotional reactions to social exclusion. Specifically, we applied cathodal transcranial direct current stimulation (tDCS) over the rVLPFC and predicted an increment of negative emotional reactions to social exclusion. In Study 1, participants were either socially excluded or included, while cathodal tDCS or sham stimulation was applied over the rVLPFC. Cathodal stimulation of rVLPFC boosted the typical negative emotional reaction caused by social exclusion. No effects emerged from participants in the inclusion condition. To test the specificity of tDCS effects over rVLPFC, in Study 2, participants were socially excluded and received cathodal tDCS or sham stimulation over a control region (i.e., the right posterior parietal cortex). No effects of tDCS stimulation were found. Our results showed that the rVLPFC is specifically involved in emotion regulation and suggest that cathodal stimulation can increase negative emotional responses to social exclusion.
Body-related self-conscious emotions relate to physical activity motivation and behavior in men.
Castonguay, Andree L; Pila, Eva; Wrosch, Carsten; Sabiston, Catherine M
2015-05-01
The aim of this study was to examine the associations between the body-related self-conscious emotions of shame, guilt, and pride and physical activity motivation and behavior among adult males. Specifically, motivation regulations (external, introjected, indentified, intrinsic) were examined as possible mediators between each of the body-related self-conscious emotions and physical activity behavior. A cross-sectional study was conducted with adult men (N = 152; Mage = 23.72, SD = 10.92 years). Participants completed a questionnaire assessing body-related shame, guilt, authentic pride, hubristic pride, motivational regulations, and leisure-time physical activity. In separate multiple mediation models, body-related shame was positively associated with external and introjected regulations and negatively correlated with intrinsic regulation. Guilt was positively linked to external, introjected, and identified regulations. Authentic pride was negatively related to external regulation and positively correlated with both identified and intrinsic regulations and directly associated with physical activity behavior. Hubristic pride was positively associated with intrinsic regulation. Overall, there were both direct and indirect effects via motivation regulations between body-related self-conscious emotions and physical activity (R(2) shame = .15, guilt = .16, authentic pride = .18, hubristic pride = .16). These findings highlight the importance of targeting and understanding self-conscious emotions contextualized to the body and links to motivation and positive health behavior among men. © The Author(s) 2014.
Carlson, Emily; Saarikallio, Suvi; Toiviainen, Petri; Bogert, Brigitte; Kliuchko, Marina; Brattico, Elvira
2015-01-01
Music therapists use guided affect regulation in the treatment of mood disorders. However, self-directed uses of music in affect regulation are not fully understood. Some uses of music may have negative effects on mental health, as can non-music regulation strategies, such as rumination. Psychological testing and functional magnetic resonance imaging (fMRI) were used explore music listening strategies in relation to mental health. Participants (n = 123) were assessed for depression, anxiety and Neuroticism, and uses of Music in Mood Regulation (MMR). Neural responses to music were measured in the medial prefrontal cortex (mPFC) in a subset of participants (n = 56). Discharge, using music to express negative emotions, related to increased anxiety and Neuroticism in all participants and particularly in males. Males high in Discharge showed decreased activity of mPFC during music listening compared with those using less Discharge. Females high in Diversion, using music to distract from negative emotions, showed more mPFC activity than females using less Diversion. These results suggest that the use of Discharge strategy can be associated with maladaptive patterns of emotional regulation, and may even have long-term negative effects on mental health. This finding has real-world applications in psychotherapy and particularly in clinical music therapy. PMID:26379529
Maternal Cocaine Use and Mother-Toddler Aggression
Eiden, Rina D.; Schuetze, Pamela; Colder, Craig; Veira, Yvette
2011-01-01
This study examined the direct and indirect associations between maternal cocaine use during pregnancy and mother-toddler aggression in an interactive context at 2 years of child age. We hypothesized that in addition to direct effects of cocaine exposure on maternal and child aggression, the association between maternal cocaine use and mother-toddler aggression may be indirect via higher maternal psychiatric symptoms, negative affect, or poor infant autonomic regulation at 13 months. Participants consisted of 220 (119 cocaine exposed, 101 non-cocaine exposed) mother-toddler dyads participating in an ongoing longitudinal study of prenatal cocaine exposure. Results indicated that mothers who used cocaine during pregnancy displayed higher levels of aggression toward their toddlers compared to mothers in the control group. Results from model testing indicated significant indirect associations between maternal cocaine use and maternal aggression via higher maternal negative affect as well as lower infant autonomic regulation at 13 months. Although there were no direct associations between cocaine exposure and toddler aggression, there was a significant indirect effect via lower infant autonomic regulation at 13 months. Results highlight the importance of including maternal aggression in predictive models of prenatal cocaine exposure examining child aggression. Results also emphasize the important role of infant regulation as a mechanism partially explaining associations between cocaine exposure and mother-toddler aggression. PMID:21396441
ERIC Educational Resources Information Center
Luong, Gloria; Charles, Susan T.
2014-01-01
Older adults often report less affective reactivity to interpersonal tensions than younger individuals, but few studies have directly investigated mechanisms explaining this effect. The current study examined whether older adults' differential endorsement of goals, appraisals, and emotion regulation strategies (i.e., conflict…
NASA Astrophysics Data System (ADS)
Tang, Shui-Yan; Li, Pansy Honying; Fryxell, Gerald E.; Lo, Carlos Wing-Hung
2015-09-01
This study examines the effects of internal motivations and external pressures on the integration of environmental management (EM) practices within manufacturing operations in China. The moderating role of perceptions toward the regulatory process is also considered along with comparisons between wholly Chinese-owned and foreign-owned enterprises. From a sample of 131 manufacturing companies in the Guangzhou area, it was found that the salience of fees and fines has a strong positive influence on perceptions toward the regulator (the local Environmental Protection Bureau, EPB). This also has a positive effect on perceptions toward regulations themselves for foreign-owned enterprises. Business-case motivations for EM positively shape enterprise perceptions toward regulations, whereas risk-reduction motivations have a negative effect on perceptions toward regulations in foreign-owned enterprises. Enterprise perceptions toward the regulatory process have direct effects on the integration of EM practices in wholly Chinese-owned enterprises, but in opposite directions. While positive perceptions toward regulations have positive influence, positive perceptions toward regulators (i.e., the EPB) negatively affect it. Overall, these results indicated that promoting the adoption of EM practices depends on convincing business leaders that EM practices contribute to profit making. The regulatory process can potentially promote these practices, but measures need to be taken to ensure that the regulator is not co-opted by the regulated, especially in wholly Chinese-owned enterprises.
Tang, Shui-Yan; Li, Pansy Honying; Fryxell, Gerald E; Lo, Carlos Wing-Hung
2015-09-01
This study examines the effects of internal motivations and external pressures on the integration of environmental management (EM) practices within manufacturing operations in China. The moderating role of perceptions toward the regulatory process is also considered along with comparisons between wholly Chinese-owned and foreign-owned enterprises. From a sample of 131 manufacturing companies in the Guangzhou area, it was found that the salience of fees and fines has a strong positive influence on perceptions toward the regulator (the local Environmental Protection Bureau, EPB). This also has a positive effect on perceptions toward regulations themselves for foreign-owned enterprises. Business-case motivations for EM positively shape enterprise perceptions toward regulations, whereas risk-reduction motivations have a negative effect on perceptions toward regulations in foreign-owned enterprises. Enterprise perceptions toward the regulatory process have direct effects on the integration of EM practices in wholly Chinese-owned enterprises, but in opposite directions. While positive perceptions toward regulations have positive influence, positive perceptions toward regulators (i.e., the EPB) negatively affect it. Overall, these results indicated that promoting the adoption of EM practices depends on convincing business leaders that EM practices contribute to profit making. The regulatory process can potentially promote these practices, but measures need to be taken to ensure that the regulator is not co-opted by the regulated, especially in wholly Chinese-owned enterprises.
Pripfl, Jürgen; Lamm, Claus
2015-02-01
Recent neuroscience theories suggest that different kinds of self-regulation may share a common psychobiological mechanism. However, empirical evidence for a domain general self-regulation mechanism is scarce. The aim of this study was to investigate whether focused anodal transcranial direct current stimulation (tDCS), facilitating the activity of the dorsolateral prefrontal cortex (dlPFC), acts on a domain general self-regulation mechanism and thus modulates both affective and appetitive self-regulation. Twenty smokers participated in this within-subject sham controlled study. Effects of anodal left, anodal right and sham tDCS over the dlPFC on affective picture appraisal and nicotine craving-cue appraisal were assessed. Anodal right tDCS over the dlPFC reduced negative affect in emotion appraisal, but neither modulated regulation of positive emotion appraisal nor of craving appraisal. Anodal left stimulation did not induce any significant effects. The results of our study show that domain specific self-regulation networks are at work in the prefrontal cortex. Focused tDCS modulation of this specific self-regulation network could probably be used during the first phase of nicotine abstinence, during which negative affect might easily result in relapse. These findings have implications for neuroscience models of self-regulation and are of relevance for the development of brain stimulation based treatment methods for neuropsychiatric disorders associated with self-regulation deficits. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
The effect of arousal on regulation of negative emotions using cognitive reappraisal: An ERP study.
Langeslag, Sandra J E; Surti, Kruti
2017-08-01
Because the effectiveness of the emotion regulation strategy cognitive reappraisal may vary with emotion intensity, we investigated how stimulus arousal affects reappraisal success. Participants up- and down-regulated emotional responses using cognitive reappraisal to low and high arousing unpleasant pictures while the electroencephalogram (EEG) was recorded. Up-regulation resulted in more negative self-reported valence, while down-regulation resulted in less negative self-reported valence regardless of stimulus arousal, suggesting that subjective reappraisal success does not vary with emotional intensity. Participants felt that down-regulation of emotional responses to low arousing unpleasant pictures was easiest, which is in line with previous findings that participants showed a greater preference for reappraisal in low than high arousing situations. The late positive potential (LPP) amplitude was enhanced by down-regulation of high arousing unpleasant pictures. Even though this effect was unexpected and is opposite to the typical effect of down-regulation on the LPP, it is in line with several previous studies. Potential explanations for LPP regulation effects in the unexpected direction, such as strategy selection and task design, are evaluated. Suggestions and recommendations for future research are discussed, including using trial-by-trial manipulation of regulation instructions and studying the effect of stimulus arousal on up- and down-regulation of positive emotions. Copyright © 2017 Elsevier B.V. All rights reserved.
Shi, Yiting; Tian, Shouwei; Hou, Lingyan; Huang, Xiaozhen; Zhang, Xiaoyan; Guo, Hongwei; Yang, Shuhua
2012-01-01
The phytohormone ethylene regulates multiple aspects of plant growth and development and responses to environmental stress. However, the exact role of ethylene in freezing stress remains unclear. Here, we report that ethylene negatively regulates plant responses to freezing stress in Arabidopsis thaliana. Freezing tolerance was decreased in ethylene overproducer1 and by the application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid but increased by the addition of the ethylene biosynthesis inhibitor aminoethoxyvinyl glycine or the perception antagonist Ag+. Furthermore, ethylene-insensitive mutants, including etr1-1, ein4-1, ein2-5, ein3-1, and ein3 eil1, displayed enhanced freezing tolerance. By contrast, the constitutive ethylene response mutant ctr1-1 and EIN3-overexpressing plants exhibited reduced freezing tolerance. Genetic and biochemical analyses revealed that EIN3 negatively regulates the expression of CBFs and type-A Arabidopsis response regulator5 (ARR5), ARR7, and ARR15 by binding to specific elements in their promoters. Overexpression of these ARR genes enhanced the freezing tolerance of plants. Thus, our study demonstrates that ethylene negatively regulates cold signaling at least partially through the direct transcriptional control of cold-regulated CBFs and type-A ARR genes by EIN3. Our study also provides evidence that type-A ARRs function as key nodes to integrate ethylene and cytokinin signaling in regulation of plant responses to environmental stress. PMID:22706288
Talaei-Khoei, Mojtaba; Nemati-Rezvani, Hora; Fischerauer, Stefan F; Ring, David; Chen, Neal; Vranceanu, Ana-Maria
2017-05-01
The Gross process model of emotion regulation holds that emotion-eliciting situations (e.g. musculoskeletal illness) can be strategically regulated to determine the final emotional and behavioral response. Also, there is some evidence that innate emotional traits may predispose an individual to a particular regulating coping style. We enrolled 107 patients with upper extremity musculoskeletal illness in this cross-sectional study. They completed self-report measures of positive and negative affect, emotion regulation strategies (cognitive reappraisal and expressive suppression), upper extremity physical function, pain intensity, and demographics. We used Preacher and Hayes' bootstrapping approach to process analysis to infer the direct effect of positive and negative affect on physical function as well as their indirect effects through activation of emotion regulation strategies. Negative affect was associated with decreased physical function. The association was partly mediated by expressive suppression (b (SE)=-.10 (.05), 95% BCa CI [-.21, -.02]). Positive affect was associated with increased physical function. Cognitive reappraisal partially mediated this association (b (SE)=.11 (.05), 95% BCa CI [.03, .24]). After controlling for pain intensity, the ratio of the mediated effect to total effect grew even larger in controlled model comparing to uncontrolled model (33% vs. 26% for expressive suppression and 32% vs. 30% for cognitive reappraisal). The relationships between affect, emotion regulation strategies and physical function appear to be more dependent on the emotional response to an orthopedic condition rather than the intensity of the nociceptive stimulation of the pain. Findings support integration of emotion regulation training in skill-based psychotherapy in this population to mitigate the effect of negative affect and enhance the influence of positive affect on physical function. Copyright © 2017 Elsevier Inc. All rights reserved.
Obasi, Ezemenari M; Brooks, Jessica J; Cavanagh, Lucia
2016-01-01
Few studies have sought to understand the concurrent relationship between cognitive and affective processes on alcohol use and negative alcohol-related consequences, despite both being identified as predictive risk factors in the college population. More research is needed to understand the relationships between identified factors of problem drinking among this at-risk population. The purpose of this study was to test if the relationship between psychological distress and problem drinking among university students (N = 284; M-age = 19.77) was mediated by negative affect regulation strategies and positive alcohol-related expectancies. Two latent mediation models of problem drinking were tested using structural equation modeling (SEM). The parsimonious three-path mediated latent model was supported by the data, as evidenced by several model fit indices. Furthermore, the alternate saturated model provided similar fit to the data, but contained several direct relationships that were not statistically significant. The relationship between psychological distress and problem drinking was mediated by an extended contributory chain, including negative affect regulation and positive alcohol-related expectancies. Implications for prevention and treatment, as well as future directions, are discussed. © The Author(s) 2015.
Lott, Mark A; Jensen, Chad D
2017-03-01
This study evaluated direct and indirect associations between aerobic fitness, executive control, and emotion regulation among a community sample of preadolescent children. Two-hundred and seventy-eight children aged 8-12 years completed measures of aerobic fitness (Progressive Aerobic Cardiovascular Endurance Run) and executive control (Stroop Test). Parents completed questionnaires assessing child emotion regulation and executive control (Emotion Regulation Checklist; Early Adolescent Temperament Questionnaire). We evaluated associations between these constructs using structural equation modeling. Study findings supported a moderate direct association between childhood aerobic fitness and executive control, a strong direct negative association between executive control and emotion regulation, and a moderate indirect association between aerobic fitness and emotion regulation through executive control. These findings provide preliminary evidence that executive control functions as a mediator between aerobic fitness and emotion regulation and may help explain the mechanism by which aerobic exercise influences emotional well-being among preadolescent children. © The Author 2016. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
NF-κB RelB Negatively Regulates Osteoblast Differentiation and Bone Formation
Yao, Zhenqiang; Li, Yanyun; Yin, Xiaoxiang; Dong, Yufeng; Xing, Lianping; Boyce, Brendan F.
2013-01-01
RelA-mediated NF-κB canonical signaling promotes mesenchymal progenitor cell (MPC) proliferation, but inhibits differentiation of mature osteoblasts (OBs) and thus negatively regulates bone formation. Previous studies suggest that NF-κB RelB may also negatively regulate bone formation through non-canonical signaling, but they involved a complex knockout mouse model and the molecular mechanisms involved were not investigated. Here, we report that RelB−/− mice develop age-related increased trabecular bone mass associated with increased bone formation. RelB−/− bone marrow stromal cells expanded faster in vitro and have enhanced OB differentiation associated with increased expression of the osteoblastogenic transcription factor, Runx2. In addition, RelB directly targeted the Runx2 promoter to inhibit its activation. Importantly, RelB−/− bone-derived MPCs formed bone more rapidly than wild-type cells after they were injected into a murine tibial bone defect model. Our findings indicate that RelB negatively regulates bone mass as mice age and limits bone formation in healing bone defects, suggesting that inhibition of RelB could reduce age-related bone loss and enhance bone repair. PMID:24115294
Mechanisms of ErbB receptor negative regulation and relevance in cancer
Fry, William H.D.; Kotelawala, Lakmal; Sweeney, Colleen; Carraway, Kermit L.
2009-01-01
The ErbB family of receptor tyrosine kinases engages a wide variety of signaling pathways that collectively direct transcriptional programs controlling organogenesis during development and tissue maintenance in the adult. These receptors are also frequently found overexpressed or aberrantly activated in various cancers, suggesting that ErbB receptor signaling activity must be very tightly regulated. Sufficient levels of ErbB signaling are necessary to mediate tissue homeostasis, for example, but over-signaling can trigger cellular processes that contribute to cancer initiation or progression. Efforts over the last quarter century have led to a thorough understanding of the signaling pathways that are activated by these receptors and the mechanisms by which ErbB receptors engage these pathways. However, the compensatory negative regulatory mechanisms responsible for attenuating receptor activation have only more recently begun to be explored. Here we review the different known mechanisms of ErbB negative regulation, with particular emphasis on those proteins that exhibit some specificity for the ErbB family. We also describe how loss or suppression of ErbB negative regulators may contribute to tumor development, and discuss how restoration or augmentation of these pathways may represent a novel avenue for the development of ErbB-targeted therapies. PMID:18706412
van Rooyen, Beverley A; Schäfer, Georgia; Leaner, Virna D; Parker, M Iqbal
2013-10-03
Recent studies have revealed that interactions between tumour cells and the surrounding stroma play an important role in facilitating tumour growth and invasion. Stromal fibroblasts produce most of the extracellular matrix components found in the stroma. The aim of this study was to investigate mechanisms involved in tumour cell-mediated regulation of extracellular matrix and adhesion molecules in co-cultured fibroblasts. To this end, microarray analysis was performed on CCD-1068SK human fibroblast cells after direct co-culture with MDA-MB-231 human breast tumour cells. We found that the expression of both connective tissue growth factor (CTGF/CCN2) and type I collagen was negatively regulated in CCD-1068SK fibroblast cells under direct co-culture conditions. Further analysis revealed that Smad7, a known negative regulator of the Smad signalling pathway involved in CCN2 promoter regulation, was increased in directly co-cultured fibroblasts. Inhibition of Smad7 expression in CCD-1068SK fibroblasts resulted in increased CCN2 expression, while Smad7 overexpression had the opposite effect. Silencing CCN2 gene expression in fibroblasts led, in turn, to a decrease in type I collagen mRNA and protein levels. ERK signalling was also shown to be impaired in CCD-1068SK fibroblasts after direct co-culture with MDA-MB-231 tumour cells, with Smad7 overexpression in fibroblasts leading to a similar decrease in ERK activity. These effects were not, however, seen in fibroblasts that were indirectly co-cultured with tumour cells. We therefore conclude that breast cancer cells require close contact with fibroblasts in order to upregulate Smad7 which, in turn, leads to decreased ERK signalling resulting in diminished expression of the stromal proteins CCN2 and type I collagen.
Granato, Daniela C; E Costa, Rute A P; Kawahara, Rebeca; Yokoo, Sami; Aragão, Annelize Z; Domingues, Romênia R; Pauletti, Bianca A; Honorato, Rodrigo V; Fattori, Juliana; Figueira, Ana Carolina M; Oliveira, Paulo S L; Consonni, Silvio R; Fernandes, Denise; Laurindo, Francisco; Hansen, Hinrich P; Paes Leme, Adriana F
2018-02-27
A disintegrin and metalloprotease 17 (ADAM17) modulates signaling events by releasing surface protein ectodomains such as TNFa and the EGFR-ligands. We have previously characterized cytoplasmic thioredoxin-1 (Trx-1) as a partner of ADAM17 cytoplasmic domain. Still, the mechanism of ADAM17 regulation by Trx-1 is unknown, and it has become of paramount importance to assess the degree of influence that Trx-1 has on metalloproteinase ADAM17. Combining discovery and targeted proteomic approaches, we uncovered that Trx-1 negatively regulates ADAM17 by direct and indirect effect. We performed cell-based assays with synthetic peptides and site-directed mutagenesis, and we demonstrated that the interaction interface of Trx-1 and ADAM17 is important for the negative regulation of ADAM17 activity. However, both Trx-1 K72A and catalytic site mutant Trx-1 C32/35S rescued ADAM17 activity, although the interaction with Trx-1 C32/35S was unaffected, suggesting an indirect effect of Trx-1. We confirmed that the Trx-1 C32/35S mutant showed diminished reductive capacity, explaining this indirect effect on increasing ADAM17 activity through oxidant levels. Interestingly, Trx-1 K72A mutant showed similar oxidant levels to Trx-1 C32/35S , even though its catalytic site was preserved. We further demonstrated that the general reactive oxygen species inhibitor, Nacetylcysteine (NAC), maintained the regulation of ADAM17 dependent of Trx-1 reductase activity levels; whereas the electron transport chain modulator, rotenone, abolished Trx-1 effect on ADAM17 activity. We show for the first time that the mechanism of ADAM17 regulation, Trx-1 dependent, can be by direct interaction and indirect effect, bringing new insights into the cross-talk between isomerases and mammalian metalloproteinases. This unexpected Trx-1 K72A behavior was due to more dimer formation and, consequently, the reduction of its Trx-1 reductase activity, evaluated through dimer verification, by gel filtration and mass spectrometry analysis. Antioxid. Redox Signal. 00, 000-000.
Negative regulators of the RIG-I-like receptor signaling pathway
Quicke, Kendra M.; Diamond, Michael S.; Suthar, Mehul S.
2017-01-01
SUMMARY Upon recognition of specific molecular patterns on viruses, bacteria and fungi, host cells trigger an innate immune response, which culminates in the production of type I interferons (IFN), pro-inflammatory cytokines and chemokines, and restricts pathogen replication and spread within the host. At each stage of the immune response, there are stimulatory and inhibitory signals that regulate the magnitude, quality, and character of the response. Positive regulation promotes an antiviral state to control and eventually clear infection whereas negative regulation dampens inflammation and prevents immune-mediated tissue damage. An over-exuberant innate immune response can lead to the destruction of cells and tissues, and the development of spontaneous autoimmunity. The RIG-I-like receptors (RLRs) retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) belong to a family of cytosolic host RNA helicases that recognize distinct non-self RNA signatures and trigger innate immune responses against several RNA virus infections. The RLR signaling pathway is tightly regulated to achieve a well-orchestrated response aimed at maximizing antiviral immunity and minimizing immune-mediated pathology. This review highlights contemporary findings on negative regulators of the RLR signaling pathway, with specific focus on the proteins and biological processes that directly regulate RIG-I, MDA5 and MAVS function. PMID:28295214
Bebko, Genna M; Franconeri, Steven L; Ochsner, Kevin N; Chiao, Joan Y
2014-06-01
According to appraisal theories of emotion, cognitive reappraisal is a successful emotion regulation strategy because it involves cognitively changing our thoughts, which, in turn, change our emotions. However, recent evidence has challenged the importance of cognitive change and, instead, has suggested that attentional deployment may at least partly explain the emotion regulation success of cognitive reappraisal. The purpose of the current study was to examine the causal relationship between attentional deployment and emotion regulation success. We examined 2 commonly used emotion regulation strategies--cognitive reappraisal and expressive suppression-because both depend on attention but have divergent behavioral, experiential, and physiological outcomes. Participants were either instructed to regulate emotions during free-viewing (unrestricted image viewing) or gaze-controlled (restricted image viewing) conditions and to self-report negative emotional experience. For both emotion regulation strategies, emotion regulation success was not altered by changes in participant control over the (a) direction of attention (free-viewing vs. gaze-controlled) during image viewing and (b) valence (negative vs. neutral) of visual stimuli viewed when gaze was controlled. Taken together, these findings provide convergent evidence that attentional deployment does not alter subjective negative emotional experience during either cognitive reappraisal or expressive suppression, suggesting that strategy-specific processes, such as cognitive appraisal and response modulation, respectively, may have a greater impact on emotional regulation success than processes common to both strategies, such as attention.
Liu, Shouan; Kracher, Barbara; Ziegler, Jörg; Birkenbihl, Rainer P; Somssich, Imre E
2015-01-01
The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 hr post inoculation. Comparative analyses revealed that WRKY33 possesses dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity. DOI: http://dx.doi.org/10.7554/eLife.07295.001 PMID:26076231
An Integrated Process Model of Stereotype Threat Effects on Performance
Johns, Michael; Forbes, Chad
2008-01-01
Research showing that activation of negative stereotypes can impair the performance of stigmatized individuals on a wide variety of tasks has proliferated. However, a complete understanding of the processes underlying these stereotype threat effects on behavior is still lacking. The authors examine stereotype threat in the context of research on stress arousal, vigilance, working memory, and self-regulation to develop a process model of how negative stereotypes impair performance on cognitive and social tasks that require controlled processing, as well as sensorimotor tasks that require automatic processing. The authors argue that stereotype threat disrupts performance via 3 distinct, yet interrelated, mechanisms: (a) a physiological stress response that directly impairs prefrontal processing, (b) a tendency to actively monitor performance, and (c) efforts to suppress negative thoughts and emotions in the service of self-regulation. These mechanisms combine to consume executive resources needed to perform well on cognitive and social tasks. The active monitoring mechanism disrupts performance on sensorimotor tasks directly. Empirical evidence for these assertions is reviewed, and implications for interventions designed to alleviate stereotype threat are discussed. PMID:18426293
Garzón-Umerenkova, Angélica; de la Fuente, Jesús; Amate, Jorge; Paoloni, Paola V.; Fadda, Salvatore; Pérez, Javier Fiz
2018-01-01
This research aimed to analyze the linear bivariate correlation and structural relations between self-regulation -as a central construct-, with flow, health, procrastination and academic performance, in an academic context. A total of 363 college students took part, 101 men (27.8%) and 262 women (72.2%). Participants had an average age of 22 years and were between the first and fifth year of studies. They were from five different programs and two universities in Bogotá city (Colombia). A validated ad hoc questionnaire of physical and psychological health was applied along with a battery of tests to measure self-regulation, procrastination, and flourishing. To establish an association relationship, Pearson bivariate correlations were performed using SPSS software (v. 22.0), and structural relationship predictive analysis was performed using an SEM on AMOS software (v. 22.0). Regarding this linear association, it was established that (1) self-regulation has a significant positive association on flourishing and overall health, and a negative effect on procrastination. Regarding the structural relation, it confirmed that (2) self-regulation is a direct and positive predictor of flourishing and health; (3) self-regulation predicts procrastination directly and negatively, and academic performance indirectly and positively; and (4) age and gender have a prediction effect on the analyzed variables. Implications, limitations and future research scope are discussed. PMID:29706922
Garzón-Umerenkova, Angélica; de la Fuente, Jesús; Amate, Jorge; Paoloni, Paola V; Fadda, Salvatore; Pérez, Javier Fiz
2018-01-01
This research aimed to analyze the linear bivariate correlation and structural relations between self-regulation -as a central construct-, with flow, health, procrastination and academic performance, in an academic context. A total of 363 college students took part, 101 men (27.8%) and 262 women (72.2%). Participants had an average age of 22 years and were between the first and fifth year of studies. They were from five different programs and two universities in Bogotá city (Colombia). A validated ad hoc questionnaire of physical and psychological health was applied along with a battery of tests to measure self-regulation, procrastination, and flourishing. To establish an association relationship, Pearson bivariate correlations were performed using SPSS software (v. 22.0), and structural relationship predictive analysis was performed using an SEM on AMOS software (v. 22.0). Regarding this linear association, it was established that (1) self-regulation has a significant positive association on flourishing and overall health, and a negative effect on procrastination. Regarding the structural relation, it confirmed that (2) self-regulation is a direct and positive predictor of flourishing and health; (3) self-regulation predicts procrastination directly and negatively, and academic performance indirectly and positively; and (4) age and gender have a prediction effect on the analyzed variables. Implications, limitations and future research scope are discussed.
Prasad, Kasavajhala V. S. K.; Abdel-Hameed, Amira A. E.; Xing, Denghui; Reddy, Anireddy S. N.
2016-01-01
Abiotic and biotic stresses cause significant yield losses in all crops. Acquisition of stress tolerance in plants requires rapid reprogramming of gene expression. SR1/CAMTA3, a member of signal responsive transcription factors (TFs), functions both as a positive and a negative regulator of biotic stress responses and as a positive regulator of cold stress-induced gene expression. Using high throughput RNA-seq, we identified ~3000 SR1-regulated genes. Promoters of about 60% of the differentially expressed genes have a known DNA binding site for SR1, suggesting that they are likely direct targets. Gene ontology analysis of SR1-regulated genes confirmed previously known functions of SR1 and uncovered a potential role for this TF in salt stress. Our results showed that SR1 mutant is more tolerant to salt stress than the wild type and complemented line. Improved tolerance of sr1 seedlings to salt is accompanied with the induction of salt-responsive genes. Furthermore, ChIP-PCR results showed that SR1 binds to promoters of several salt-responsive genes. These results suggest that SR1 acts as a negative regulator of salt tolerance by directly repressing the expression of salt-responsive genes. Overall, this study identified SR1-regulated genes globally and uncovered a previously uncharacterized role for SR1 in salt stress response. PMID:27251464
Vandenbussche, Filip; Callebert, Pieter; Zadnikova, Petra; Benkova, Eva; Van Der Straeten, Dominique
2013-01-01
To reach favorable conditions for photosynthesis, seedlings grow upward when deprived of light upon underground germination. To direct their growth, they use their negative gravitropic capacity. Negative gravitropism is under tight control of multiple hormones. By counting the number of standing plants in a population or by real time monitoring of the reorientation of gravistimulated seedlings of Arabidopsis thaliana, we evaluated the negative gravitropism of ethylene or brassinosteroid (BR) treated plants. Meta-analysis of transcriptomic data on AUX/IAA genes was gathered, and subsequent mutant analysis was performed. Ethylene and BR have opposite effects in regulating shoot gravitropism. Lack of BR enhances gravitropic reorientation in 2-d-old seedlings, whereas ethylene does not. Lack of ethylene signaling results in enhanced BR sensitivity. Ethylene and BRs regulate overlapping sets of AUX/IAA genes. BRs regulate a wider range of auxin signaling components than ethylene. Upward growth in seedlings depends strongly on the internal hormonal balance. Endogenous ethylene stimulates, whereas BRs reduce negative gravitropism in a manner that depends on the function of different, yet overlapping sets of auxin signaling components.
TNF-α Gene Knockout in Triple Negative Breast Cancer Cell Line Induces Apoptosis
Pileczki, Valentina; Braicu, Cornelia; Gherman, Claudia D.; Berindan-Neagoe, Ioana
2013-01-01
Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine involved in the promotion and progression of cancer, including triple negative breast cancer cells. Thus, there is significant interest in understanding the molecular signaling pathways that connect TNF-α with the survival of tumor cells. In our experiments, we used as an in vitro model for triple negative breast cancer the cell line Hs578T. The purpose of this study is to determine the gene expression profiling of apoptotic signaling networks after blocking TNF-α formation by using specially designed siRNA molecules to target TNF-α messenger RNA. Knockdown of TNF-α gene was associated with cell proliferation inhibition and apoptosis, as observed by monitoring the cell index using the xCELLigence RTCA System and flow cytometry. PCR array technology was used to examine the transcript levels of 84 genes involved in apoptosis. 15 genes were found to be relevant after comparing the treated group with the untreated one of which 3 were down-regulated and 12 up-regulated. The down-regulated genes are all involved in cell survival, whereas the up-regulated ones are involved in and interact with pro-apoptotic pathways. The results described here indicate that the direct target of TNF-α in the Hs578T breast cancer cell line increases the level of certain pro-apoptotic factors that modulate different cellular networks that direct the cells towards death. PMID:23263670
Abnormal brain activation during directed forgetting of negative memory in depressed patients.
Yang, Wenjing; Chen, Qunlin; Liu, Peiduo; Cheng, Hongsheng; Cui, Qian; Wei, Dongtao; Zhang, Qinglin; Qiu, Jiang
2016-01-15
The frequent occurrence of uncontrollable negative thoughts and memories is a troubling aspect of depression. Thus, knowledge on the mechanism underlying intentional forgetting of these thoughts and memories is crucial to develop an effective emotion regulation strategy for depressed individuals. Behavioral studies have demonstrated that depressed participants cannot intentionally forget negative memories. However, the neural mechanism underlying this process remains unclear. In this study, participants completed the directed forgetting task in which they were instructed to remember or forget neutral or negative words. Standard univariate analysis based on the General Linear Model showed that the depressed participants have higher activation in the inferior frontal gyrus (IFG), superior frontal gyrus (SFG), superior parietal gyrus (SPG), and inferior temporal gyrus (ITG) than the healthy individuals. The results indicated that depressed participants recruited more frontal and parietal inhibitory control resources to inhibit the TBF items, but the attempt still failed because of negative bias. We also used the Support Vector Machine to perform multivariate pattern classification based on the brain activation during directed forgetting. The pattern of brain activity in directed forgetting of negative words allowed correct group classification with an overall accuracy of 75% (P=0.012). The brain regions which are critical for this discrimination showed abnormal activation when depressed participants were attempting to forget negative words. These results indicated that the abnormal neural circuitry when depressed individuals tried to forget the negative words might provide neurobiological markers for depression. Copyright © 2015 Elsevier B.V. All rights reserved.
Molecular mechanism for the operation of nitrogen control in cyanobacteria.
Luque, I; Flores, E; Herrero, A
1994-01-01
In cyanobacteria, ammonium exerts a negative regulation of the expression of proteins involved in the assimilation of nitrogen sources alternative to ammonium. In Synechococcus, mRNA levels of genes encoding proteins for nitrate and ammonium assimilation were observed to be negatively regulated by ammonium, and ammonium-regulated transcription start points were identified for those genes. The NtcA protein is a positive regulator of genes subjected to nitrogen control by ammonium. Mutants lacking NtcA exhibited only basal mRNA levels of the regulated genes, even in the absence of ammonium, indicating that NtcA exerts its regulatory action by positively influencing mRNA levels of the nitrogen-regulated genes. NtcA was observed to bind directly to the promoters of nitrogen-regulated genes, and the palindromic DNA sequence GTAN8TAC was identified as a sequence signature for NtcA-target sites. The structure of the nitrogen-, NtcA-regulated promoters of Synechococcus was determined to be constituted by a -10, Pribnow-like box in the form TAN3T, and an NtcA-binding site that substituted for the canonical -35 box. Images PMID:8026471
Neuronal regulation of homeostasis by nutrient sensing.
Lam, Tony K T
2010-04-01
In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.
Kim, Hyo Jung; Park, Ji-Hwan; Kim, Jingil; Kim, Jung Ju; Hong, Sunghyun; Kim, Jeongsik; Kim, Jin Hee; Woo, Hye Ryun; Hyeon, Changbong; Lim, Pyung Ok; Nam, Hong Gil; Hwang, Daehee
2018-05-22
Senescence is controlled by time-evolving networks that describe the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks for NAM/ATAF/CUC (NAC) transcription factors in Arabidopsis during leaf aging. The most evident characteristic of these time-dependent networks was a shift from positive to negative regulation among NACs at a presenescent stage. ANAC017, ANAC082, and ANAC090, referred to as a "NAC troika," govern the positive-to-negative regulatory shift. Knockout of the NAC troika accelerated senescence and the induction of other NAC s, whereas overexpression of the NAC troika had the opposite effects. Transcriptome and molecular analyses revealed shared suppression of senescence-promoting processes by the NAC troika, including salicylic acid (SA) and reactive oxygen species (ROS) responses, but with predominant regulation of SA and ROS responses by ANAC090 and ANAC017, respectively. Our time-evolving networks provide a unique regulatory module of presenescent repressors that direct the timely induction of senescence-promoting processes at the presenescent stage of leaf aging. Copyright © 2018 the Author(s). Published by PNAS.
Kim, Hyo Jung; Park, Ji-Hwan; Kim, Jingil; Kim, Jung Ju; Hong, Sunghyun; Kim, Jin Hee; Woo, Hye Ryun; Lim, Pyung Ok; Nam, Hong Gil; Hwang, Daehee
2018-01-01
Senescence is controlled by time-evolving networks that describe the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks for NAM/ATAF/CUC (NAC) transcription factors in Arabidopsis during leaf aging. The most evident characteristic of these time-dependent networks was a shift from positive to negative regulation among NACs at a presenescent stage. ANAC017, ANAC082, and ANAC090, referred to as a “NAC troika,” govern the positive-to-negative regulatory shift. Knockout of the NAC troika accelerated senescence and the induction of other NACs, whereas overexpression of the NAC troika had the opposite effects. Transcriptome and molecular analyses revealed shared suppression of senescence-promoting processes by the NAC troika, including salicylic acid (SA) and reactive oxygen species (ROS) responses, but with predominant regulation of SA and ROS responses by ANAC090 and ANAC017, respectively. Our time-evolving networks provide a unique regulatory module of presenescent repressors that direct the timely induction of senescence-promoting processes at the presenescent stage of leaf aging. PMID:29735710
Tissue-Specific Regulation of Chromatin Insulator Function
Matzat, Leah H.; Dale, Ryan K.; Moshkovich, Nellie; Lei, Elissa P.
2012-01-01
Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type–specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP–seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator. PMID:23209434
Beyond Symmetry Breaking: Competition and Negative Feedback in GTPase regulation
Wu, Chi-Fang; Lew, Daniel J.
2013-01-01
Summary Cortical domains are often specified by the local accumulation of active GTPases. Such domains can arise through spontaneous symmetry breaking, suggesting that GTPase accumulation occurs via positive feedback. Here, we focus on recent advances in fungal and plant cell models, where new work suggests that polarity-controlling GTPases develop only one “front” because GTPase clusters engage in a winner-takes-all competition. However, in some circumstances two or more GTPase domains can co-exist, and the basis for the switch from competition to coexistence remains an open question. Polarity GTPases can undergo oscillatory clustering and dispersal, suggesting that these systems contain negative feedback. Negative feedback may prevent polarity clusters from spreading too far, regulate the balance between competition and co-existence, and provide directional flexibility for cells tracking gradients. PMID:23731999
Impact of physical maltreatment on the regulation of negative affect and aggression.
Shackman, Jessica E; Pollak, Seth D
2014-11-01
Physically maltreated children are at risk for developing externalizing behavioral problems characterized by reactive aggression. The current experiment tested the relationships between individual differences in a neural index of social information processing, histories of child maltreatment, child negative affect, and aggressive behavior. Fifty boys (17 maltreated) performed an emotion recognition task while the P3b component of the event-related potential was recorded to index attention allocation to angry faces. Children then participated in a peer-directed aggression task. Negative affect was measured by recording facial electromyography, and aggression was indexed by the feedback that children provided to a putative peer. Physically maltreated children exhibited greater negative affect and more aggressive behavior, compared to nonmaltreated children, and this relationship was mediated by children's allocation of attention to angry faces. These data suggest that physical maltreatment leads to inappropriate regulation of both negative affect and aggression, which likely place maltreated children at increased risk for the development and maintenance of externalizing behavior disorders.
Impact of physical maltreatment on the regulation of negative affect and aggression
SHACKMAN, JESSICA E.; POLLAK, SETH D.
2015-01-01
Physically maltreated children are at risk for developing externalizing behavioral problems characterized by reactive aggression. The current experiment tested the relationships between individual differences in a neural index of social information processing, histories of child maltreatment, child negative affect, and aggressive behavior. Fifty boys (17 maltreated) performed an emotion recognition task while the P3b component of the event-related potential was recorded to index attention allocation to angry faces. Children then participated in a peer-directed aggression task. Negative affect was measured by recording facial electromyography, and aggression was indexed by the feedback that children provided to a putative peer. Physically maltreated children exhibited greater negative affect and more aggressive behavior, compared to nonmaltreated children, and this relationship was mediated by children’s allocation of attention to angry faces. These data suggest that physical maltreatment leads to inappropriate regulation of both negative affect and aggression, which likely place maltreated children at increased risk for the development and maintenance of externalizing behavior disorders. PMID:24914736
Jones, Jason D.; Brett, Bonnie E.; Ehrlich, Katherine B.; Lejuez, Carl W.; Cassidy, Jude
2014-01-01
SYNOPSIS Objective Previous research has examined the developmental consequences, particularly in early childhood, of parents’ supportive and unsupportive responses to children’s negative emotions. Much less is known about factors that explain why parents respond in ways that may support or undermine their children’s emotions, and even less is known about how these parenting processes unfold with adolescents. We examined the associations between mothers’ attachment styles and their distress, harsh, and supportive responses to their adolescents’ negative emotions two years later and whether these links were mediated by maternal emotion regulation difficulties. Design Mothers in a longitudinal study (n = 230) reported on their attachment style, difficulties regulating their emotions, and their hypothetical responses to their adolescents’ negative emotions, respectively, at consecutive laboratory visits one year apart. Results Mothers who reported greater attachment-related avoidance and anxiety reported having greater difficulties with emotion regulation one year later. Emotion dysregulation, in turn, predicted more distressed, harsher, and less supportive maternal responses to adolescents’ negative emotions the following year. In addition, greater avoidance directly predicted harsher maternal responses two years later. Conclusions These findings extend previous research by identifying maternal attachment style as a predictor of responses to adolescent distress and by documenting the underlying role of emotion dysregulation in the link between adult attachment style and parenting. PMID:25568638
Serivichyaswat, Phanu T.; Susila, Hendry; Ahn, Ji Hoon
2017-01-01
Arabidopsis microRNA169 (miR169) is an ambient temperature-responsive microRNA that plays an important role in stress responses and the floral transition. However, the transcription factors that regulate the expression of MIR169 have remained unknown. In this study, we show that Elongated Hypocotyl 5-Homolog (HYH) directly binds to the promoter of MIR169a and negatively regulates its expression. Absolute quantification identified MIR169a as the major locus producing miR169. GUS reporter assays revealed that the deletion of a 498-bp fragment (–1,505 to –1,007, relative to the major transcriptional start site) of MIR169a abolished its ambient temperature-responsive expression. DNA-affinity chromatography followed by liquid chromatography-mass spectrometry analysis identified transcription factor HYH as a trans-acting factor that binds to the 498-bp promoter fragment of pri-miR169a. Electrophoretic mobility shift assays and chromatin immunoprecipitation–quantitative PCR demonstrated that the HYH.2 protein, a predominant isoform of HYH, directly associated with a G-box-like motif in the 498-bp fragment of pri-miR169a. Higher enrichment of HYH.2 protein on the promoter region of MIR169a was seen at 23°C, consistent with the presence of more HYH.2 protein in the cell at the temperature. Transcript levels of pri-miR169a increased in hyh mutants and decreased in transgenic plants overexpressing HYH. Consistent with the negative regulation of MIR169a by HYH, the diurnal levels of HYH mRNA and pri-miR169a showed opposite patterns. Taken together, our results suggest that HYH is a transcription factor that binds to a G-box-like motif in the MIR169a promoter and negatively regulates ambient temperature-responsive expression of MIR169a at higher temperatures in Arabidopsis. PMID:29270188
Sugimoto, Yuki; Nakamura, Hiroshi; Ren, Shukun; Hori, Koichi; Masuda, Shinji
2017-03-01
The Synechocystis sp. PCC6803 can move on a solid surface in response to light, a phenomenon called phototaxis. Although many of the photoreceptors involved in phototaxis have been identified, the mechanisms that regulate directional motility of Synechocystis are not well understood. Previous studies showed that a mutant lacking the blue light-using flavin (BLUF) photoreceptor PixD exhibits negative phototaxis under conditions where the wild type responds positively. PixD interacts with the pseudo-response regulator-like protein PixE in a light-dependent manner, suggesting that this intermolecular interaction is important for phototaxis regulation, although genetic evidence has been lacking. To gain further insight into phototaxis regulation by PixD-PixE signaling, we constructed the deletion mutants ΔPixE and ΔPixD-ΔPixE, and characterized their phenotypes, which matched those of the wild type (positive phototaxis). Because ΔPixD exhibited negative phototaxis, PixE must function downstream of PixD. Under intense blue light (>100 μmol m-2 s-1; 470 nm) the wild type exhibited negative phototaxis, but ΔPixD-PixE exhibited positive phototaxis toward low-intensity blue light (∼0.8 μmol m-2 s-1; 470 nm). These results suggest that an unknown light-sensing system(s), that is necessary for directional cell movement, can be activated by low-intensity blue light; on the other hand, PixD needs high-intensity blue light to be activated. We also isolated spontaneous mutants that compensated for the pixE deletion. Genome-wide sequencing of the mutants revealed that the uncharacterized gene sll2003 regulates positive and negative phototaxis in response to light intensity. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Branched-Chain Amino Acid Negatively Regulates KLF15 Expression via PI3K-AKT Pathway
Liu, Yunxia; Dong, Weibing; Shao, Jing; Wang, Yibin; Zhou, Meiyi; Sun, Haipeng
2017-01-01
Recent studies have linked branched-chain amino acid (BCAA) with numerous metabolic diseases. However, the molecular basis of BCAA's roles in metabolic regulation remains to be established. KLF15 (Krüppel-like factor 15) is a transcription factor and master regulator of glycemic, lipid, and amino acids metabolism. In the present study, we found high concentrations of BCAA suppressed KLF15 expression while BCAA starvation induced KLF15 expression, suggesting KLF15 expression is negatively controlled by BCAA.Interestingly, BCAA starvation induced PI3K-AKT signaling. KLF15 induction by BCAA starvation was blocked by PI3K and AKT inhibitors, indicating the activation of PI3K-AKT signaling pathway mediated the KLF15 induction. BCAA regulated KLF15 expression at transcriptional level but not post-transcriptional level. However, BCAA starvation failed to increase the KLF15-promoter-driven luciferase expression, suggesting KLF15 promoter activity was not directly controlled by BCAA. Finally, fasting reduced BCAA abundance in mice and KLF15 expression was dramatically induced in muscle and white adipose tissue, but not in liver. Together, these data demonstrated BCAA negatively regulated KLF15 expression, suggesting a novel molecular mechanism underlying BCAA's multiple functions in metabolic regulation. PMID:29118722
Branched-Chain Amino Acid Negatively Regulates KLF15 Expression via PI3K-AKT Pathway.
Liu, Yunxia; Dong, Weibing; Shao, Jing; Wang, Yibin; Zhou, Meiyi; Sun, Haipeng
2017-01-01
Recent studies have linked branched-chain amino acid (BCAA) with numerous metabolic diseases. However, the molecular basis of BCAA's roles in metabolic regulation remains to be established. KLF15 (Krüppel-like factor 15) is a transcription factor and master regulator of glycemic, lipid, and amino acids metabolism. In the present study, we found high concentrations of BCAA suppressed KLF15 expression while BCAA starvation induced KLF15 expression, suggesting KLF15 expression is negatively controlled by BCAA.Interestingly, BCAA starvation induced PI3K-AKT signaling. KLF15 induction by BCAA starvation was blocked by PI3K and AKT inhibitors, indicating the activation of PI3K-AKT signaling pathway mediated the KLF15 induction. BCAA regulated KLF15 expression at transcriptional level but not post-transcriptional level. However, BCAA starvation failed to increase the KLF15-promoter-driven luciferase expression, suggesting KLF15 promoter activity was not directly controlled by BCAA. Finally, fasting reduced BCAA abundance in mice and KLF15 expression was dramatically induced in muscle and white adipose tissue, but not in liver. Together, these data demonstrated BCAA negatively regulated KLF15 expression, suggesting a novel molecular mechanism underlying BCAA's multiple functions in metabolic regulation.
77 FR 2935 - Revision to Chemical Testing Regulations for Mariners and Marine Employers
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-20
... balloon shape in the ``Actions'' column. If you submit your comments by mail or hand delivery, submit them.... Medical Review Officers (MROs) Reporting Non-Negative Test Results Directly to the Coast Guard A non...
Sun, Jiaqiang; Qi, Linlin; Li, Yanan; Zhai, Qingzhe; Li, Chuanyou
2013-06-01
Both blue light (BL) and auxin are essential for phototropism in Arabidopsis thaliana. However, the mechanisms by which light is molecularly linked to auxin during phototropism remain elusive. Here, we report that phytochrome interacting factoR4 (PIF4) and PIF5 act downstream of the BL sensor phototropin1 (PHOT1) to negatively modulate phototropism in Arabidopsis. We also reveal that PIF4 and PIF5 negatively regulate auxin signaling. Furthermore, we demonstrate that PIF4 directly activates the expression of the auxin/indole-3-acetic acid (IAA) genes IAA19 and IAA29 by binding to the G-box (CACGTG) motifs in their promoters. Our genetic assays demonstrate that IAA19 and IAA29, which physically interact with auxin response factor7 (ARF7), are sufficient for PIF4 to negatively regulate auxin signaling and phototropism. This study identifies a key step of phototropic signaling in Arabidopsis by showing that PIF4 and PIF5 link light and auxin.
miR-451 regulates dendritic cell cytokine responses to influenza infection1
Rosenberger, Carrie M.; Podyminogin, Rebecca L.; Navarro, Garnet; Zhao, Guo-Wei; Askovich, Peter S.; Weiss, Mitchell J.; Aderem, Alan
2012-01-01
MicroRNAs are important post-transcriptional regulators in immune cells, but how viral infection regulates microRNA expression to shape dendritic cell responses has not been well characterized. We identified 20 miRNAs that were differentially expressed in primary murine dendritic cells in response to the double-stranded RNA agonist poly(I:C), a subset of which were modestly regulated by influenza infection. miR-451 was unique because it was induced more strongly in primary splenic and lung dendritic cells by live viral infection than by purified agonists of pattern recognition receptors. We determined that miR-451 regulates a subset of pro-inflammatory cytokine responses. Three types of primary dendritic cells treated with anti-sense RNA antagomirs directed against miR-451 secreted elevated levels of IL-6, TNF, CCL5/RANTES, and CCL3/MIP1α, and these results were confirmed using miR-451null cells. miR-451 negatively regulates YWHAZ/14-3-3ζ protein levels in various cell types, and we measured a similar inhibition of YWHAZ levels in dendritic cells. It is known that YWHAZ can control the activity of two negative regulators of cytokine production: FOXO3, which is an inhibitory transcription factor, and ZFP36/Tristetraprolin, which binds to AU-rich elements within 3′-UTRs to destabilize cytokine mRNAs. Inhibition of miR-451 expression correlated with increased YWHAZ protein expression and decreased ZFP36 expression, providing a possible mechanism for the elevated secretion of IL-6, TNF, CCL5/RANTES, and CCL3/MIP1α. miR-451 levels are themselves increased by IL-6 and type I interferon, potentially forming a regulatory loop. These data suggest that viral infection specifically induces a miRNA that directs a negative regulatory cascade to tune dendritic cell cytokine production. PMID:23169590
Liu, Xiao Hong; Xu, Shuang Bing; Yuan, Jia; Li, Ben Hui; Zhang, Yan; Yuan, Qin; Li, Pin Dong; Li, Feng; Zhang, Wen Jie
2009-12-01
Interleukin-4 (IL-4)-induced Stat6 activities (phenotypes) vary among human cancer cells, of which the HT-29 cell line carries an active Stat6(high) phenotype, while Caco-2 carries a defective Stat6(null) phenotype, respectively. Cancer cells with Stat6(high) show resistance to apoptosis and exaggerated metastasis, suggesting the clinical significance of Stat6 phenotypes. We previously showed that Stat6(high) HT-29 cells exhibited low constitutive expression of Stat6-negative regulators SOCS-1 and SHP-1 because of gene hypermethylation. This study further examined the constitutive expression of other closely related SOCS family numbers including SOCS-3, SOCS-5, SOCS-7, and CISH using RT-PCR. Similar to SOCS-1 and SHP-1, Stat6(high) HT-29 cells expressed low constitutive mRNA of SOCS-3, SOCS-7, and CISH than Stat6(null) Caco-2 cells. Interestingly, DNA demethylation using 5-aza-2'-deoxycytidine in HT-29 cells up-regulated mRNA expression of the above genes, indicating a hypermethylation status, which was confirmed by methylation-specific sequencing in selected SOCS-3 gene. Furthermore, defective Stat6(null) Caco-2 exhibited impaired phosphorylation of Stat6 after IL-4 stimulation by flow cytometry, in keeping with the notion of an over-performed negative regulation. The findings that IL-4/Stat6 phenotypes show differential expression of multiple negative regulators suggest a model that a collective force of powerful negative regulators, directly and indirectly, acts on Stat6 activation, which may result in differential Stat6 phenotypes.
β-TrCP1 Is a Vacillatory Regulator of Wnt Signaling.
Long, Marcus John; Lin, Hong-Yu; Parvez, Saba; Zhao, Yi; Poganik, Jesse Richard; Huang, Paul; Aye, Yimon
2017-08-17
Simultaneous hyperactivation of Wnt and antioxidant response (AR) are often observed during oncogenesis. However, it remains unclear how the β-catenin-driven Wnt and the Nrf2-driven AR mutually regulate each other. The situation is compounded because many players in these two pathways are redox sensors, rendering bolus redox signal-dosing methods uninformative. Herein we examine the ramifications of single-protein target-specific AR upregulation in various knockdown lines. Our data document that Nrf2/AR strongly inhibits β-catenin/Wnt. The magnitude and mechanism of this negative regulation are dependent on the direct interaction between β-catenin N terminus and β-TrCP1 (an antagonist of both Nrf2 and β-catenin), and independent of binding between Nrf2 and β-TrCP1. Intriguingly, β-catenin positively regulates AR. Because AR is a negative regulator of Wnt regardless of β-catenin N terminus, this switch of function is likely sufficient to establish a new Wnt/AR equilibrium during tumorigenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Steenkamp, Maria M; Suvak, Michael K; Dickstein, Benjamin D; Shea, M Tracie; Litz, Brett T
2015-12-01
Few studies have investigated emotional functioning in obsessive-compulsive personality disorder (OCPD). To explore the nature and extent of emotion difficulties in OCPD, the authors examined four domains of self-reported emotional functioning--negative affectivity, anger, emotion regulation, and emotion expressivity--in women with OCPD and compared them to a borderline personality disorder (BPD) group and a healthy control group. Data were collected as part of a larger psychophysiological experimental study on emotion regulation and personality. Compared to healthy controls, participants with OCPD reported significantly higher levels of negative affectivity, trait anger, emotional intensity, and emotion regulation difficulties. Emotion regulation difficulties included lack of emotional clarity, nonacceptance of emotional responses, and limited access to effective emotion regulation strategies. Participants with OCPD scored similarly to participants with BPD on only one variable, namely, problems engaging in goal-directed behavior when upset. Results suggest that OCPD may be characterized by notable difficulties in several emotional domains.
An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway.
An, Jian-Ping; Li, Rui; Qu, Feng-Jia; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin
2018-02-01
Cold stress is an adverse stimulus that affects plant growth and development, and the C-repeat binding factor (CBF) cold-regulatory cascade has been regarded as a master regulator in the plant response to cold stress. Here, we showed that a NAC transcription factor modulated low-temperature tolerance. MdNAC029/MdNAP, an apple NAC gene was isolated and its role in regulating cold tolerance was investigated. MdNAC029 was responsive to low-temperature treatment, and over-expression of MdNAC029 reduced cold tolerance in apple calli and Arabidopsis. Furthermore, EMSA assays and transient expression assays demonstrated that MdNAC029 directly repressed the expression of MdCBF1 and MdCBF4 by binding to their promoters. Taken together, our data suggest that MdNAC029 functions as a negative regulator in regulating plant cold tolerance in a CBF-dependent manner, providing a deeper understanding of NAC transcription-factor-mediated cold tolerance. Copyright © 2017 Elsevier GmbH. All rights reserved.
Positive and negative eating expectancies in disordered eating among women and men.
Hayaki, Jumi; Free, Sarah
2016-08-01
Deficits in emotion regulation are known to characterize disordered eating patterns including binge eating, purging, and dietary restraint, though much of this work has been conducted exclusively on women. Eating expectancies, or expectations regarding reinforcement from food and eating, constitute one cognitive mechanism that is thought to serve as a proximal influence on eating behavior. Previous research shows that eating to manage negative affect (a negative eating expectancy) is associated with eating pathology in women, but less is known about eating as a reward or for pleasure (a positive eating expectancy). In addition, no prior work has examined eating expectancies among men. This study examines the role of emotion regulation and eating expectancies on disordered eating in women and men. Participants were 121 female and 80 male undergraduates who completed self-report measures of emotion regulation, eating expectancies, and disordered eating. In women, body mass index (BMI), emotion regulation, and eating to manage negative affect directly predicted disordered eating in the final multivariate model, whereas eating for pleasure or reward was inversely associated with disordered eating. However, in men, emotion regulation predicted disordered eating, but not when eating expectancies were added to the model. In the final model, only BMI and eating to manage negative affect contributed significantly to the variance in disordered eating. These findings suggest that some correlates of eating pathology, particularly eating expectancies, may vary by gender. Future research should continue to examine gender differences in the explanatory mechanisms underlying disordered eating. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju
2016-08-01
Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone-related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.-Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone-related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. © FASEB.
Moon, Kyung; Six, David A.; Lee, Hyun-Jung; Raetz, Christian R.H.; Gottesman, Susan
2013-01-01
Summary The PhoQ/PhoP two-component system activates many genes for lipopolysaccharide (LPS) modification when cells are grown at low Mg2+ concentrations. An additional target of PhoQ and PhoP is MgrR, an Hfq-dependent small RNA that negatively regulates expression of eptB, also encoding a protein that carries out LPS modification. Examination of LPS confirmed that MgrR effectively silences EptB; the phosphoethanolamine modification associated with EptB is found in ΔmgrR::kan but not mgrR+ cells. Sigma E has been reported to positively regulate eptB, although the eptB promoter does not have the expected Sigma E recognition motifs. The effects of Sigma E and deletion of mgrR on levels of eptB mRNA were independent, and the same 5′ end was found in both cases. In vitro transcription and the behavior of transcriptional and translational fusions demonstrate that Sigma E acts directly at the level of transcription initiation for eptB, from the same start point as Sigma 70. The results suggest that when Sigma E is active, synthesis of eptB transcript outstrips MgrR-dependent degradation; presumably the modification of LPS is important under these conditions. Adding to the complexity of eptB regulation is a second sRNA, ArcZ, which also directly and negatively regulates eptB. PMID:23659637
Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju
2016-01-01
Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone–related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo. In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.—Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. PMID:27075243
Ji, Young Rae; Warrier, Sunita; Jiang, Tao
2018-01-01
The orientation of hair bundles on top of sensory hair cells (HCs) in neuromasts of the lateral line system allows fish to detect direction of water flow. Each neuromast shows hair bundles arranged in two opposing directions and each afferent neuron innervates only HCs of the same orientation. Previously, we showed that this opposition is established by expression of Emx2 in half of the HCs, where it mediates hair bundle reversal (Jiang et al., 2017). Here, we show that Emx2 also regulates neuronal selection: afferent neurons innervate either Emx2-positive or negative HCs. In emx2 knockout and gain-of-function neuromasts, all HCs are unidirectional and the innervation patterns and physiological responses of the afferent neurons are dependent on the presence or absence of Emx2. Our results indicate that Emx2 mediates the directional selectivity of neuromasts by two distinct processes: regulating hair bundle orientation in HCs and selecting afferent neuronal targets. PMID:29671737
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gou, J.Y.; Liu, C.; Felippes, F. F.
2011-04-01
Flavonoids are synthesized through an important metabolic pathway that leads to the production of diverse secondary metabolites, including anthocyanins, flavonols, flavones, and proanthocyanidins. Anthocyanins and flavonols are derived from Phe and share common precursors, dihydroflavonols, which are substrates for both flavonol synthase and dihydroflavonol 4-reductase. In the stems of Arabidopsis thaliana, anthocyanins accumulate in an acropetal manner, with the highest level at the junction between rosette and stem. We show here that this accumulation pattern is under the regulation of miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, which are deeply conserved and known to have important roles in regulating phasemore » change and flowering. Increased miR156 activity promotes accumulation of anthocyanins, whereas reduced miR156 activity results in high levels of flavonols. We further provide evidence that at least one of the miR156 targets, SPL9, negatively regulates anthocyanin accumulation by directly preventing expression of anthocyanin biosynthetic genes through destabilization of a MYB-bHLH-WD40 transcriptional activation complex. Our results reveal a direct link between the transition to flowering and secondary metabolism and provide a potential target for manipulation of anthocyanin and flavonol content in plants.« less
O'Connell, Kerry Joan; Motherway, Mary O'Connell; Liedtke, Andrea; Fitzgerald, Gerald F; Paul Ross, R; Stanton, Catherine; Zomer, Aldert; van Sinderen, Douwe
2014-06-01
Members of the genus Bifidobacterium are commonly found in the gastrointestinal tracts of mammals, including humans, where their growth is presumed to be dependent on various diet- and/or host-derived carbohydrates. To understand transcriptional control of bifidobacterial carbohydrate metabolism, we investigated two genetic carbohydrate utilization clusters dedicated to the metabolism of raffinose-type sugars and melezitose. Transcriptomic and gene inactivation approaches revealed that the raffinose utilization system is positively regulated by an activator protein, designated RafR. The gene cluster associated with melezitose metabolism was shown to be subject to direct negative control by a LacI-type transcriptional regulator, designated MelR1, in addition to apparent indirect negative control by means of a second LacI-type regulator, MelR2. In silico analysis, DNA-protein interaction, and primer extension studies revealed the MelR1 and MelR2 operator sequences, each of which is positioned just upstream of or overlapping the correspondingly regulated promoter sequences. Similar analyses identified the RafR binding operator sequence located upstream of the rafB promoter. This study indicates that transcriptional control of gene clusters involved in carbohydrate metabolism in bifidobacteria is subject to conserved regulatory systems, representing either positive or negative control.
Band, Arja M.; Björklund, Mia; Laiho, Marikki
2009-01-01
Ski is an oncoprotein that negatively regulates transforming growth factor (TGF)-β signaling. It acts as a transcriptional co-repressor by binding to TGF-β signaling molecules, Smads. Efficient TGF-β signaling is facilitated by rapid proteasome-mediated degradation of Ski by TGF-β. Here we report that Ski is phosphorylated by Akt/PKB kinase. Akt phosphorylates Ski on a highly conserved Akt motif at threonine 458 both in vitro and in vivo. The phosphorylation of Ski at threonine 458 is induced by Akt pathway activators including insulin, insulin-like growth factor-1, and hepatocyte growth factor. The phosphorylation of Ski causes its destabilization and reduces Ski-mediated inhibition of expression of another negative regulator of TGF-β, Smad7. Induction of Smad7 levels leads to inactivation of TGF-β receptors and TGF-β signaling cascade, as indicated by reduced induction of TGF-β target p15. Therefore, Akt modulates TGF-β signaling by temporarily adjusting the levels of two TGF-β pathway negative regulators, Ski and Smad7. These novel findings demonstrate that Akt pathway activation directly impacts TGF-β pathway. PMID:19875456
Kisspeptin and energy balance in reproduction.
De Bond, Julie-Ann P; Smith, Jeremy T
2014-03-01
Kisspeptin is vital for the neuroendocrine regulation of GNRH secretion. Kisspeptin neurons are now recognized as a central pathway responsible for conveying key homeostatic information to GNRH neurons. This pathway is likely to mediate the well-established link between energy balance and reproductive function. Thus, in states of severely altered energy balance (either negative or positive), fertility is compromised, as is Kiss1 expression in the arcuate nucleus. A number of metabolic modulators have been proposed as regulators of kisspeptin neurons including leptin, ghrelin, pro-opiomelanocortin (POMC), and neuropeptide Y (NPY). Whether these regulate kisspeptin neurons directly or indirectly will be discussed. Moreover, whether the stimulatory role of leptin on reproduction is mediated by kisspeptin directly will be questioned. Furthermore, in addition to being expressed in GNRH neurons, the kisspeptin receptor (Kiss1r) is also expressed in other areas of the brain, as well as in the periphery, suggesting alternative roles for kisspeptin signaling outside of reproduction. Interestingly, kisspeptin neurons are anatomically linked to, and can directly excite, anorexigenic POMC neurons and indirectly inhibit orexigenic NPY neurons. Thus, kisspeptin may have a direct role in regulating energy balance. Although data from Kiss1r knockout and WT mice found no differences in body weight, recent data indicate that kisspeptin may still play a role in food intake and glucose homeostasis. Thus, in addition to regulating reproduction, and mediating the effect of energy balance on reproductive function, kisspeptin signaling may also be a direct regulator of metabolism.
Individual differences in self-reported self-control predict successful emotion regulation
Dörfel, Denise; Steimke, Rosa; Trempler, Ima; Magrabi, Amadeus; Ludwig, Vera U.; Schubert, Torsten; Stelzel, Christine; Walter, Henrik
2016-01-01
Both self-control and emotion regulation enable individuals to adapt to external circumstances and social contexts, and both are assumed to rely on the overlapping neural resources. Here, we tested whether high self-reported self-control is related to successful emotion regulation on the behavioral and neural level. One hundred eight participants completed three self-control questionnaires and regulated their negative emotions during functional magnetic resonance imaging using reappraisal (distancing). Trait self-control correlated positively with successful emotion regulation both subjectively and neurally, as indicated by online ratings of negative emotions and functional connectivity strength between the amygdala and prefrontal areas, respectively. This stronger overall connectivity of the left amygdala was related to more successful subjective emotion regulation. Comparing amygdala activity over time showed that high self-controllers successfully maintained down-regulation of the left amygdala over time, while low self-controllers failed to down-regulate towards the end of the experiment. This indicates that high self-controllers are better at maintaining a motivated state supporting emotion regulation over time. Our results support assumptions concerning a close relation of self-control and emotion regulation as two domains of behavioral control. They further indicate that individual differences in functional connectivity between task-related brain areas directly relate to differences in trait self-control. PMID:27013102
NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations.
Mortimer, Leanne; Moreau, France; MacDonald, Justin A; Chadee, Kris
2016-10-01
Inflammasomes are positioned to rapidly escalate the intensity of inflammation by activating interleukin (IL)-1β, IL-18 and cell death by pyroptosis. However, negative regulation of inflammasomes remains poorly understood, as is the signaling cascade that dampens inflammasome activity. We found that rapid NLRP3 inflammasome activation was directly inhibited by protein kinase A (PKA), which was induced by prostaglandin E2 (PGE2) signaling via the PGE2 receptor E-prostanoid 4 (EP4). PKA directly phosphorylated the cytoplasmic receptor NLRP3 and attenuated its ATPase function. We found that Ser295 in human NLRP3 was critical for rapid inhibition and PKA phosphorylation. Mutations in NLRP3-encoding residues adjacent to Ser295 have been linked to the inflammatory disease CAPS (cryopyrin-associated periodic syndromes). NLRP3-S295A phenocopied the human CAPS mutants. These data suggest that negative regulation at Ser295 is critical for restraining the NLRP3 inflammasome and identify a molecular basis for CAPS-associated NLRP3 mutations.
Kim, Yoon; Song, Ji-Hye; Park, Seon-U; Jeong, You-Seung; Kim, Soo-Hwan
2017-02-01
Brassinosteroids (BRs) are plant polyhydroxy-steroids that play important roles in plant growth and development via extensive signal integration through direct interactions between regulatory components of different signaling pathways. Recent studies have shown that diverse helix-loop-helix/basic helix-loop-helix (HLH/bHLH) family proteins are actively involved in control of BR signaling pathways and interact with other signaling pathways. In this study, we show that ATBS1-INTERACTING FACTOR 2 (AIF2), a nuclear-localized atypical bHLH transcription factor, specifically interacts with BRASSINOSTEROID-INSENSITIVE 2 (BIN2) among other BR signaling molecules. Overexpression of AIF2 down-regulated transcript expression of growth-promoting genes, thus resulting in retardation of growth. AIF2 renders plants hyposensitive to BR-induced root growth inhibition, but shows little effects on BR-promoted hypocotyl elongation. Notably, AIF2 was dephosphorylated by BR, and the dephosphorylated AIF2 was subject to proteasome-mediated degradation. AIF2 degradation was greatly induced by BR and ABA, but relatively slightly by other hormones such as auxin, gibberellin, cytokinin and ethylene. Moreover, AIF2 transcription was significantly suppressed by a BRI1/BZR1-mediated BR signaling pathway through a direct binding of BRASSINAZOLE RESISTANT 1 (BZR1) to the BR response element (BRRE) region of the AIF2 promoter. In conclusion, our study suggests that BIN2-driven AIF2 phosphorylation could augment the BIN2/AIF2-mediated negative circuit of BR signaling pathways, and the BR-induced transcriptional repression and protein degradation negatively regulate AIF2 transcription factor, reinforcing the BZR1/BES1-mediated positive BR signaling pathway. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Crockenberg, Susan C; Leerkes, Esther M; Lekka, Shamila K
2007-02-01
Associations between marital conflict and infant emotion regulation exist, but explanatory pathways have not been explored. For older children, parental behavior partially mediates this association through a "spillover" process. We test: associations between mothers' and fathers' verbally aggressive marital conflict, infant temperament, and infant withdrawal; mediating effects of negative maternal behavior, and moderating effects of infant temperament, exposure to marital arguments, and contact with father. Eighty mothers, 73 fathers, and their 6-month-old infants participated; parents reported marital aggression prenatally, mothers reported infant exposure to arguments, direct caregiving by father, and infant temperament at 5 months. Negative maternal behavior, infant withdrawal, distress to novelty, activity, and look away were observed at 6 months. Mothers' and fathers' aggressive marital conflict predicted infant withdrawal, interactively with exposure to marital arguments and extent of father caregiving, as did infant temperament and negative maternal behavior. Maternal behavior did not mediate between marital conflict and withdrawal.
Testa, Francesco; Iraldo, Fabio; Frey, Marco
2011-09-01
There is a considerable debate on the effects of environmental regulation on competitive performance. Based on survey data, this paper analyzes the two main research questions, derived from literature, on the links between environmental regulation and competitiveness, by focusing on firms operating in the building and construction sector, i.e.: 1) whether environmental policy stringency affects the competitive performance of firms in the building and construction sector 2) and how a specific form of environmental regulation (direct regulation, economic instruments and soft instruments) affects this performance? By applying a regression analysis, we find that a more stringent environmental regulation, measured by inspection frequency, provides a positive impulse for increasing investments in advanced technological equipment and innovative products and on business performance. Moreover, a well-designed "direct regulation" appears to be the most effective policy instrument for prompting the positive impact of environmental policies on innovation and intangible performance while economic instruments do negatively affect business performance. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sun, Jiaqiang; Qi, Linlin; Li, Yanan; Zhai, Qingzhe; Li, Chuanyou
2013-01-01
Both blue light (BL) and auxin are essential for phototropism in Arabidopsis thaliana. However, the mechanisms by which light is molecularly linked to auxin during phototropism remain elusive. Here, we report that PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 act downstream of the BL sensor PHOTOTROPIN1 (PHOT1) to negatively modulate phototropism in Arabidopsis. We also reveal that PIF4 and PIF5 negatively regulate auxin signaling. Furthermore, we demonstrate that PIF4 directly activates the expression of the AUXIN/INDOLE-3-ACETIC ACID (IAA) genes IAA19 and IAA29 by binding to the G-box (CACGTG) motifs in their promoters. Our genetic assays demonstrate that IAA19 and IAA29, which physically interact with AUXIN RESPONSE FACTOR7 (ARF7), are sufficient for PIF4 to negatively regulate auxin signaling and phototropism. This study identifies a key step of phototropic signaling in Arabidopsis by showing that PIF4 and PIF5 link light and auxin. PMID:23757399
miR-613 inhibits proliferation and invasion of breast cancer cell via VEGFA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Junzhao; Yuan, Peng; Mao, Qixin
MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in breast cancer, has remained elusive. Here, we identified that miR-613 inhibits breast cancer cell proliferation by negatively regulates its target gene VEGFA. In breast cancer cell lines, CCK-8 proliferation assay indicated that the cell proliferation was inhibited by miR-613, while miR-613 inhibitor significantly promoted the cell proliferation. Transwell assay showed that miR-613 mimics significantly inhibited the migration and invasion of breast cancer cells, whereas miR-613 inhibitors significantly increased cell migration and invasion. Luciferasemore » assays confirmed that miR-613 directly bound to the 3′ untranslated region of VEGFA, and western blotting showed that miR-613 suppressed the expression of VEGFA at the protein levels. This study indicated that miR-613 negatively regulates VEGFA and inhibits proliferation and invasion of breast cancer cell lines. Thus, miR-613 may represent a potential therapeutic molecule for breast cancer intervention.« less
Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding.
Vecerek, Branislav; Moll, Isabella; Bläsi, Udo
2007-02-21
The Fe2+-dependent Fur protein serves as a negative regulator of iron uptake in bacteria. As only metallo-Fur acts as an autogeneous repressor, Fe2+scarcity would direct fur expression when continued supply is not obviously required. We show that in Escherichia coli post-transcriptional regulatory mechanisms ensure that Fur synthesis remains steady in iron limitation. Our studies revealed that fur translation is coupled to that of an upstream open reading frame (uof), translation of which is downregulated by the non-coding RNA (ncRNA) RyhB. As RyhB transcription is negatively controlled by metallo-Fur, iron depletion creates a negative feedback loop. RyhB-mediated regulation of uof-fur provides the first example for indirect translational regulation by a trans-encoded ncRNA. In addition, we present evidence for an iron-responsive decoding mechanism of the uof-fur entity. It could serve as a backup mechanism of the RyhB circuitry, and represents the first link between iron availability and synthesis of an iron-containing protein.
KPNB1 mediates PER/CRY nuclear translocation and circadian clock function.
Lee, Yool; Jang, A Reum; Francey, Lauren J; Sehgal, Amita; Hogenesch, John B
2015-08-29
Regulated nuclear translocation of the PER/CRY repressor complex is critical for negative feedback regulation of the circadian clock of mammals. However, the precise molecular mechanism is not fully understood. Here, we report that KPNB1, an importin β component of the ncRNA repressor of nuclear factor of activated T cells (NRON) ribonucleoprotein complex, mediates nuclear translocation and repressor function of the PER/CRY complex. RNAi depletion of KPNB1 traps the PER/CRY complex in the cytoplasm by blocking nuclear entry of PER proteins in human cells. KPNB1 interacts mainly with PER proteins and directs PER/CRY nuclear transport in a circadian fashion. Interestingly, KPNB1 regulates the PER/CRY nuclear entry and repressor function, independently of importin α, its classical partner. Moreover, inducible inhibition of the conserved Drosophila importin β in lateral neurons abolishes behavioral rhythms in flies. Collectively, these data show that KPNB1 is required for timely nuclear import of PER/CRY in the negative feedback regulation of the circadian clock.
Machiels, Bénédicte; Lété, Céline; de Fays, Katalin; Mast, Jan; Dewals, Benjamin; Stevenson, Philip G.; Vanderplasschen, Alain; Gillet, Laurent
2011-01-01
All gammaherpesviruses encode a glycoprotein positionally homologous to the Epstein-Barr virus gp350 and the Kaposi's sarcoma-associated herpesvirus (KSHV) K8.1. In this study, we characterized the positional homologous glycoprotein of bovine herpesvirus 4 (BoHV-4), encoded by the Bo10 gene. We identified a 180-kDa gene product, gp180, that was incorporated into the virion envelope. A Bo10 deletion virus was viable but showed a growth deficit associated with reduced binding to epithelial cells. This seemed to reflect an interaction of gp180 with glycosaminoglycans (GAGs), since compared to the wild-type virus, the Bo10 mutant virus was both less infectious for GAG-positive (GAG+) cells and more infectious for GAG-negative (GAG−) cells. However, we could not identify a direct interaction between gp180 and GAGs, implying that any direct interaction must be of low affinity. This function of gp180 was very similar to that previously identified for the murid herpesvirus 4 gp150 and also to that of the Epstein-Barr virus gp350 that promotes CD21+ cell infection and inhibits CD21− cell infection. We propose that such proteins generally regulate virion attachment both by binding to cells and by covering another receptor-binding protein until they are displaced. Thus, they regulate viral tropism both positively and negatively depending upon the presence or absence of their receptor. PMID:21068242
Emotion dysregulation and peer drinking norms uniquely predict alcohol-related problems via motives.
Simons, Raluca M; Hahn, Austin M; Simons, Jeffrey S; Murase, Hanako
2017-08-01
This study examined the relationships between emotion dysregulation, peer drinking norms, drinking motives, and alcohol-related outcomes among 435 college students. We examined the mediating roles of drinking motives when predicting alcohol consumption and related problems from the subscales of the Difficulties in Emotion Regulation Scale (DERS; Gratz and Roemer, 2004) via negative and positive reinforcement models. First, we hypothesized that individuals who lack in emotion regulation strategies or have difficulties in accepting negative emotions are more likely to drink to cope. Additionally, we hypothesized that individuals who act impulsively or become distracted when upset as well as those with higher peer drinking norms are more likely to drink for social and enhancement motives. The results of the path model indicated that limited access to emotion regulation strategies significantly predicted alcohol-related problems via both depression and anxiety coping motives, but did not predict alcohol consumption. Nonacceptance of emotional responses was not significantly associated with coping motives. Impulsivity had a significant direct relationship with alcohol problems. Difficulty in engaging in goal-directed behaviors predicted both enhancement and social motives, but only enhancement motives in turn predicted consumption. Norms indirectly predicted problems via enhancement motives and consumption. The results indicated that using alcohol to reduce negative or to increase positive emotions increases alcohol consumption and alcohol-related problems. Overall, results advance our understanding of the mechanisms of increased alcohol use and problems among college students. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Chien-kuo; Raz, Regina; Gimeno, Ramon; Gertner, Rachel; Wistinghausen, Birte; Takeshita, Kenichi; DePinho, Ronald A; Levy, David E
2002-07-01
STAT3 has been described as an essential component of G-CSF-driven cell proliferation and granulopoiesis. This notion was tested by conditional gene ablation in transgenic mice. Contrary to expectation, granulocytes developed from STAT3 null bone marrow progenitors, and STAT3 null neutrophils displayed mature effector functions. Rather than a deficit in granulopoiesis, mice lacking STAT3 in their hematopoietic progenitors developed neutrophilia, and bone marrow cells were hyperresponsive to G-CSF stimulation. These studies provide direct evidence for STAT3-independent granulopoiesis and suggest that STAT3 directs a negative feedback loop necessary for controlling neutrophil numbers, possibly through induced expression of the signaling inhibitor, SOCS3.
MicroRNA-510 promotes cell and tumor growth by targeting peroxiredoxin1 in breast cancer
2013-01-01
Introduction MicroRNAs are small non-coding RNAs that are involved in the post-transcriptional negative regulation of mRNAs. MicroRNA 510 (miR-510) was initially shown to have a potential oncogenic role in breast cancer by the observation of its elevated levels in human breast tumor samples when compared to matched non-tumor samples. Few targets have been identified for miR-510. However, as microRNAs function through the negative regulation of their direct targets, the identification of those targets is critical for the understanding of their functional role in breast cancer. Methods Breast cancer cell lines were transfected with pre-miR-510 or antisense miR-510 and western blotting and quantitative real time PCR were performed. Functional assays performed included cell growth, migration, invasion, colony formation, cytotoxicity and in vivo tumor growth. We performed a PCR assay to identify novel direct targets of miR-510. The study focused on peroxiredoxin 1 (PRDX1) as it was identified through our screen and was bioinformatically predicted to contain a miR-510 seed site in its 3' untranslated region (3'UTR). Luciferase reporter assays and site-directed mutagenesis were performed to confirm PRDX1 as a direct target. The Student's two-sided, paired t-test was used and a P-value less than 0.05 was considered significant. Results We show that miR-510 overexpression in non-transformed and breast cancer cells can increase their cell growth, migration, invasion and colony formation in vitro. We also observed increased tumor growth when miR-510 was overexpressed in vivo. We identified PRDX1 through a novel PCR screen and confirmed it as a direct target using luciferase reporter assays. The reintroduction of PRDX1 into breast cancer cell lines without its regulatory 3'UTR confirmed that miR-510 was mediating its migratory phenotype at least in part through the negative regulation of PRDX1. Furthermore, the PI3K/Akt pathway was identified as a positive regulator of miR-510 both in vitro and in vivo. Conclusions In this study, we provide evidence to support a role for miR-510 as a novel oncomir. We show that miR-510 directly binds to the 3'UTR of PRDX1 and blocks its protein expression, thereby suppressing migration of human breast cancer cells. Taken together, these data support a pivotal role for miR-510 in breast cancer progression and suggest it as a potential therapeutic target in breast cancer patients. PMID:23971998
MicroRNA-510 promotes cell and tumor growth by targeting peroxiredoxin1 in breast cancer.
Guo, Qi J; Mills, Jamie N; Bandurraga, Savannah G; Nogueira, Lourdes M; Mason, Natalie J; Camp, E Ramsay; Larue, Amanda C; Turner, David P; Findlay, Victoria J
2013-01-01
MicroRNAs are small non-coding RNAs that are involved in the post-transcriptional negative regulation of mRNAs. MicroRNA 510 (miR-510) was initially shown to have a potential oncogenic role in breast cancer by the observation of its elevated levels in human breast tumor samples when compared to matched non-tumor samples. Few targets have been identified for miR-510. However, as microRNAs function through the negative regulation of their direct targets, the identification of those targets is critical for the understanding of their functional role in breast cancer. Breast cancer cell lines were transfected with pre-miR-510 or antisense miR-510 and western blotting and quantitative real time PCR were performed. Functional assays performed included cell growth, migration, invasion, colony formation, cytotoxicity and in vivo tumor growth. We performed a PCR assay to identify novel direct targets of miR-510. The study focused on peroxiredoxin 1 (PRDX1) as it was identified through our screen and was bioinformatically predicted to contain a miR-510 seed site in its 3' untranslated region (3'UTR). Luciferase reporter assays and site-directed mutagenesis were performed to confirm PRDX1 as a direct target. The Student's two-sided, paired t-test was used and a P-value less than 0.05 was considered significant. We show that miR-510 overexpression in non-transformed and breast cancer cells can increase their cell growth, migration, invasion and colony formation in vitro. We also observed increased tumor growth when miR-510 was overexpressed in vivo. We identified PRDX1 through a novel PCR screen and confirmed it as a direct target using luciferase reporter assays. The reintroduction of PRDX1 into breast cancer cell lines without its regulatory 3'UTR confirmed that miR-510 was mediating its migratory phenotype at least in part through the negative regulation of PRDX1. Furthermore, the PI3K/Akt pathway was identified as a positive regulator of miR-510 both in vitro and in vivo. In this study, we provide evidence to support a role for miR-510 as a novel oncomir. We show that miR-510 directly binds to the 3'UTR of PRDX1 and blocks its protein expression, thereby suppressing migration of human breast cancer cells. Taken together, these data support a pivotal role for miR-510 in breast cancer progression and suggest it as a potential therapeutic target in breast cancer patients.
Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew
2015-07-29
The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.
Ramesh, Sunita A.; Tyerman, Stephen D.; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A.; Ryan, Peter R.; Gillham, Matthew
2015-01-01
The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms. PMID:26219411
Maternal Emotion Regulation Strategies, Internalizing Problems and Infant Negative Affect
Edwards, Erin S.; Holzman, Jacob B.; Burt, Nicole M.; Rutherford, Helena J. V.; Mayes, Linda C.; Bridgett, David J.
2016-01-01
Recent work has identified links between mothers’ self-regulation and emotion regulation (ER) and children’s social-emotional outcomes. However, associations between maternal ER strategies (e.g., reappraisal, suppression), known to influence internalizing problems in adults, and children’s negative affect (NA) have not been considered. In the current study, the direct and indirect relationships, through maternal internalizing problems, between maternal use of ER strategies and infant NA are examined. The potential effects of infant NA on maternal internalizing difficulties are also considered. Ninety-nine mothers and their infants participated across three time points during the first year postpartum. Higher maternal suppression was indirectly related to higher infant NA, through maternal internalizing problems; lower maternal reappraisal also was indirectly related to higher infant NA through maternal internalizing problems. Infant NA at four months postpartum was related to mothers’ internalizing problems 6 months postpartum. The implications of these findings for future research and intervention are discussed. PMID:28785122
Choi, Yunjung; Lee, Yuree; Kim, Soo Young; Lee, Youngsook; Hwang, Jae-Ung
2013-05-01
Auxin and abscisic acid (ABA) modulate numerous aspects of plant development together, mostly in opposite directions, suggesting that extensive crosstalk occurs between the signalling pathways of the two hormones. However, little is known about the nature of this crosstalk. We demonstrate that ROP-interactive CRIB motif-containing protein 1 (RIC1) is involved in the interaction between auxin- and ABA-regulated root growth and lateral root formation. RIC1 expression is highly induced by both hormones, and expressed in the roots of young seedlings. Whereas auxin-responsive gene induction and the effect of auxin on root growth and lateral root formation were suppressed in the ric1 knockout, ABA-responsive gene induction and the effect of ABA on seed germination, root growth and lateral root formation were potentiated. Thus, RIC1 positively regulates auxin responses, but negatively regulates ABA responses. Together, our results suggest that RIC1 is a component of the intricate signalling network that underlies auxin and ABA crosstalk. © 2012 Blackwell Publishing Ltd.
Face it or hide it: parental socialization of reappraisal and response suppression
Gunzenhauser, Catherine; Fäsche, Anika; Friedlmeier, Wolfgang; von Suchodoletz, Antje
2013-01-01
Mastery of cognitive emotion regulation strategies is an important developmental task. This paper focuses on two strategies that occur from preschool age onwards (Stegge and Meerum Terwogt, 2007): reappraisal and response suppression. Parental socialization of these strategies was investigated in a sample of N = 219 parents and their children. Informed by the tripartite model of family impact on children's emotion regulation, direct relations of emotion socialization components (modeling and reactions to the child's negative emotions) and indirect relations of parental emotion-related beliefs (such as parental emotion regulation self-efficacy) were examined. Data on emotion socialization components and parental beliefs on emotion regulation were collected via self-report. Data on children's emotion regulation strategies were collected via parent report. Findings showed direct effects of parental modeling and parenting practices on children's emotion regulation strategies, with distinct socialization paths for reappraisal and response suppression. An indirect effect of parental emotion regulation self-efficacy on children's reappraisal was found. These associations were not moderated by parent sex. Findings highlight the importance of both socialization components and parental emotion-related beliefs for the socialization of cognitive emotion regulation strategies and suggest a domain-specific approach to the socialization of emotion regulation strategies. PMID:24427150
Emotionality and self-regulation, threat appraisal, and coping in children of divorce.
Lengua, L J; Sandler, I N; West, S G; Wolchik, S A; Curran, P J
1999-01-01
A model of the effects of children's temperament (negative and positive emotionality, impulsivity and attention focusing) on post-divorce threat appraisals, coping (active and avoidant), and psychological symptoms (depression and conduct problems) was investigated. The study utilized a sample of 223 mothers and children (ages 9 to 12 years) who had experienced divorce within the last two years. Evidence was found of direct effects of child-report negative emotionality on children's threat perceptions and of child-report positive emotionality and impulsivity on children's coping. Indirect effects of negative emotionality on active and avoidant coping through threat appraisal were found. Direct effects of the temperament variables on symptoms were also found. Cross group analyses indicated that the models were robust to age differences, but gender differences were found in the relation between negative emotionality and depression. The results of this study indicate that temperament and threat appraisals are important predictors of children's post-divorce symptoms, and that temperament is a predictor of children's appraisal and coping process.
Xu, Dongmei; Liu, Guang; Cheng, Lin; Lu, Xinhua; Chen, Wenqing; Deng, Zixin
2013-01-01
Background Muraymycin, a potent translocase I (MraY) inhibitor, is produced by Streptomyces sp. NRRL30471. The muraymycin gene cluster (mur) was recently cloned, and bioinformatic analysis of mur34 revealed its encoding product exhibits high homology to a large family of proteins, including KanI and RacI in individual biosynthetic pathway of kanamycin and ribostamycin. However, the precise role of these proteins remains unknown. Principal Findings Here we report the identification of Mur34 as the novel negative regulator involved in muraymycin biosynthesis. Independent disruption of mur34 on chromosome and cosmid directly resulted in significant improvement of muraymycin production by at least 10 folds, thereof confirming the negative function of Mur34 during muraymycin biosynthesis and realizing the engineered production of muraymycin in heterologous host. Gene expression analysis indicated that the transcription level of the mur genes in mur34 mutant (DM-5) was dramatically enhanced by ca. 30 folds. Electrophoretic mobility shift assay (EMSA) showed that Mur34 specifically bound to the promoter region of mur33. Further experiments showed that a 28-bp region downstream of the transcription start point (TSP) was protected by His6Mur34, and the −10 region is essential for the activity of mur33 promoter. Conclusions Mur34 plays an unambiguously negative role in muraymycin biosynthesis via binding to the upstream of mur33. More importantly, Mur34 represents a novel family of regulators acting in negative manner to regulate the secondary metabolites biosynthesis in bacteria. PMID:24143177
Wen, Bi-Qing; Xing, Mei-Qing; Zhang, Hua; Dai, Cheng; Xue, Hong-Wei
2011-11-01
Homeobox transcription factors are involved in various aspects of plant development, including maintenance of the biosynthesis and signaling pathways of different hormones. However, few direct targets of homeobox proteins have been identified. We here show that overexpression of rice homeobox gene HOX1a resulted in enhanced gibberellin (GA) response, indicating a positive effect of HOX1a in GA signaling. HOX1a is induced by GA and encodes a homeobox transcription factor with transcription repression activity. In addition, HOX1a suppresses the transcription of early flowering1 (EL1), a negative regulator of GA signaling, and further electrophoretic mobility shift assay and chromatin immunoprecipitation analysis revealed that HOX1a directly bound to the promoter region of EL1 to suppress its expression and stimulate GA signaling. These results demonstrate that HOX1a functions as a positive regulator of GA signaling by suppressing EL1, providing informative hints on the study of GA signaling. © 2011 Institute of Botany, Chinese Academy of Sciences.
Fowler, Sandy; Maguin, Pascal; Kalan, Sampada; Loayza, Diego
2018-06-22
DNA damage response pathways are essential for genome stability and cell survival. Specifically, the ATR kinase is activated by DNA replication stress. An early event in this activation is the recruitment and phosphorylation of RPA, a single stranded DNA binding complex composed of three subunits, RPA70, RPA32 and RPA14. We have previously shown that the LIM protein Ajuba associates with RPA, and that depletion of Ajuba leads to potent activation of ATR. In this study, we provide evidence that the Ajuba-RPA interaction occurs through direct protein contact with RPA70, and that their association is cell cycle-regulated and is reduced upon DNA replication stress. We propose a model in which Ajuba negatively regulates the ATR pathway by directly interacting with RPA70, thereby preventing inappropriate ATR activation. Our results provide a framework to further our understanding of the mechanism of ATR regulation in human cells in the context of cellular transformation.
O'Connell, Kerry Joan; O'Connell Motherway, Mary; Liedtke, Andrea; Fitzgerald, Gerald F.; Ross, R. Paul; Stanton, Catherine; Zomer, Aldert
2014-01-01
Members of the genus Bifidobacterium are commonly found in the gastrointestinal tracts of mammals, including humans, where their growth is presumed to be dependent on various diet- and/or host-derived carbohydrates. To understand transcriptional control of bifidobacterial carbohydrate metabolism, we investigated two genetic carbohydrate utilization clusters dedicated to the metabolism of raffinose-type sugars and melezitose. Transcriptomic and gene inactivation approaches revealed that the raffinose utilization system is positively regulated by an activator protein, designated RafR. The gene cluster associated with melezitose metabolism was shown to be subject to direct negative control by a LacI-type transcriptional regulator, designated MelR1, in addition to apparent indirect negative control by means of a second LacI-type regulator, MelR2. In silico analysis, DNA-protein interaction, and primer extension studies revealed the MelR1 and MelR2 operator sequences, each of which is positioned just upstream of or overlapping the correspondingly regulated promoter sequences. Similar analyses identified the RafR binding operator sequence located upstream of the rafB promoter. This study indicates that transcriptional control of gene clusters involved in carbohydrate metabolism in bifidobacteria is subject to conserved regulatory systems, representing either positive or negative control. PMID:24705323
Independent and Collaborative Contributions of the Cerebral Hemispheres to Emotional Processing
Shobe, Elizabeth R.
2014-01-01
Presented is a model suggesting that the right hemisphere (RH) directly mediates the identification and comprehension of positive and negative emotional stimuli, whereas the left hemisphere (LH) contributes to higher level processing of emotional information that has been shared via the corpus callosum. RH subcortical connections provide initial processing of emotional stimuli, and their innervation to cortical structures provides a secondary pathway by which the hemispheres process emotional information more fully. It is suggested that the LH contribution to emotion processing is in emotional regulation, social well-being, and adaptation, and transforming the RH emotional experience into propositional and verbal codes. Lastly, it is proposed that the LH has little ability at the level of emotion identification, having a default positive bias and no ability to identify a stimulus as negative. Instead, the LH must rely on the transfer of emotional information from the RH to engage higher-order emotional processing. As such, either hemisphere can identify positive emotions, but they must collaborate for complete processing of negative emotions. Evidence presented draws from behavioral, neurological, and clinical research, including discussions of subcortical and cortical pathways, callosal agenesis, commissurotomy, emotion regulation, mood disorders, interpersonal interaction, language, and handedness. Directions for future research are offered. PMID:24795597
Hamilton, J Paul; Glover, Gary H; Bagarinao, Epifanio; Chang, Catie; Mackey, Sean; Sacchet, Matthew D; Gotlib, Ian H
2016-03-30
Neural models of major depressive disorder (MDD) posit that over-response of components of the brain's salience network (SN) to negative stimuli plays a crucial role in the pathophysiology of MDD. In the present proof-of-concept study, we tested this formulation directly by examining the affective consequences of training depressed persons to down-regulate response of SN nodes to negative material. Ten participants in the real neurofeedback group saw, and attempted to learn to down-regulate, activity from an empirically identified node of the SN. Ten other participants engaged in an equivalent procedure with the exception that they saw SN-node neurofeedback indices from participants in the real neurofeedback group. Before and after scanning, all participants completed tasks assessing emotional responses to negative scenes and to negative and positive self-descriptive adjectives. Compared to participants in the sham-neurofeedback group, from pre- to post-training, participants in the real-neurofeedback group showed a greater decrease in SN-node response to negative stimuli, a greater decrease in self-reported emotional response to negative scenes, and a greater decrease in self-reported emotional response to negative self-descriptive adjectives. Our findings provide support for a neural formulation in which the SN plays a primary role in contributing to negative cognitive biases in MDD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Individual differences in self-reported self-control predict successful emotion regulation.
Paschke, Lena M; Dörfel, Denise; Steimke, Rosa; Trempler, Ima; Magrabi, Amadeus; Ludwig, Vera U; Schubert, Torsten; Stelzel, Christine; Walter, Henrik
2016-08-01
Both self-control and emotion regulation enable individuals to adapt to external circumstances and social contexts, and both are assumed to rely on the overlapping neural resources. Here, we tested whether high self-reported self-control is related to successful emotion regulation on the behavioral and neural level. One hundred eight participants completed three self-control questionnaires and regulated their negative emotions during functional magnetic resonance imaging using reappraisal (distancing). Trait self-control correlated positively with successful emotion regulation both subjectively and neurally, as indicated by online ratings of negative emotions and functional connectivity strength between the amygdala and prefrontal areas, respectively. This stronger overall connectivity of the left amygdala was related to more successful subjective emotion regulation. Comparing amygdala activity over time showed that high self-controllers successfully maintained down-regulation of the left amygdala over time, while low self-controllers failed to down-regulate towards the end of the experiment. This indicates that high self-controllers are better at maintaining a motivated state supporting emotion regulation over time. Our results support assumptions concerning a close relation of self-control and emotion regulation as two domains of behavioral control. They further indicate that individual differences in functional connectivity between task-related brain areas directly relate to differences in trait self-control. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
miR-4295 promotes cell proliferation and invasion in anaplastic thyroid carcinoma via CDKN1A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Mingchen; Geng, Yiwei; Laboratory of Tumor Biology, Zhengzhou University, Zhengzhou
2015-09-04
MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in anaplastic thyroid carcinoma (ATC), has remained elusive. Here, we identified that miR-4295 promotes ATC cell proliferation by negatively regulates its target gene CDKN1A. In ATC cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-4295, while miR-4295 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-4295 mimics significantly promoted the migration and invasion of ATC cells, whereas miR-4295 inhibitors significantly reduced cell migration and invasion. luciferase assaysmore » confirmed that miR-4295 directly bound to the 3'untranslated region of CDKN1A, and western blotting showed that miR-4295 suppressed the expression of CDKN1A at the protein levels. This study indicated that miR-4295 negatively regulates CDKN1A and promotes proliferation and invasion of ATC cell lines. Thus, miR-4295 may represent a potential therapeutic target for ATC intervention. - Highlights: • miR-4295 mimics promote the proliferation and invasion of ATC cells. • miR-4295 inhibitors inhibit the proliferation and invasion of ATC cells. • miR-4295 targets 3′UTR of CDKN1A in ATC cells. • miR-4295 negatively regulates CDKN1A in ATC cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Xiangrui, E-mail: mengxiangruibb2008@163.com; Lu, Peng; Fan, Qingxia
2016-01-29
MicroRNAs play important roles in the carcinogenesis of many types of cancers by inhibiting gene expression at posttranscriptional level. However, the roles of microRNAs in hepatocellular carcinoma, are still unclear. Here, we identified that miR-367 promotes hepatocellular carcinoma (HCC) cell proliferation by negatively regulates its target gene PTEN. The expression of miR-367 and PTEN are significantly inverse correlated in 35 HCC patients. In HCC cell line, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-367, while miR-367 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-367 mimics significantly promoted the migration and invasion of HCCmore » cells, whereas miR-367 inhibitors significantly reduced cell migration and invasion. Luciferase assays confirmed that miR-367 directly bound to the 3'untranslated region of PTEN, and western blotting showed that miR-367 suppressed the expression of PTEN at the protein levels. This study indicated that miR-367 negatively regulates PTEN and promotes proliferation and invasion of HCC cells. Thus, miR-367 may represent a potential therapeutic target for HCC intervention. - Highlights: • miR-367 mimics promote the proliferation and invasion of HCC cells. • miR-367 inhibitors inhibit the proliferation and invasion of HCC cells. • miR-367 targets 3′UTR of PTEN in HCC cells. • miR-367 negatively regulates PTEN in HCC cells.« less
Haskett, Mary E.; Stelter, Rebecca; Proffit, Katie; Nice, Rachel
2012-01-01
Objective Identifying factors associated with school functioning of abused children is important in prevention of long-term negative outcomes associated with school failure. The purpose of this study was to examine the degree to which parent emotional expressiveness and children's self-regulation predicted early school behavior of abused children. Methods The sample included 92 physically abused children ages 4-7 and one of their parents (95.7% mothers). Parents completed a measure of their own emotional expressiveness, and parents and teachers provided reports of children's self-regulatory skills. Children's school functioning was measured by observations of playground aggression and teacher reports of aggression and classroom behavior. Results Parents’ expression of positive and negative emotions was associated with various aspects of children's self-regulation and functioning in the school setting. Links between self-regulation and children's school adjustment were robust; poor self-regulation was associated with higher aggression and lower cooperation and self-directed behavior in the classroom. There was minimal support for a mediating role of children's self-regulation in links between parent expressiveness and children's behavior. Practice implications Findings point to the relevance of parent emotional expressivity and children's self-regulatory processes in understanding physically abused children's functioning at the transition to school. Although further research is needed, findings indicate that increasing parental expression of positive emotion should be a focus in treatment along with reduction in negativity of abusive parents. Further, addressing children's self-regulation could be important in efforts to reduce aggression and enhance children's classroom competence. PMID:22565040
Haskett, Mary E; Stelter, Rebecca; Proffit, Katie; Nice, Rachel
2012-04-01
Identifying factors associated with school functioning of abused children is important in prevention of long-term negative outcomes associated with school failure. The purpose of this study was to examine the degree to which parent emotional expressiveness and children's self-regulation predicted early school behavior of abused children. The sample included 92 physically abused children ages 4-7 and one of their parents (95.7% mothers). Parents completed a measure of their own emotional expressiveness, and parents and teachers provided reports of children's self-regulatory skills. Children's school functioning was measured by observations of playground aggression and teacher reports of aggression and classroom behavior. Parents' expression of positive and negative emotions was associated with various aspects of children's self-regulation and functioning in the school setting. Links between self-regulation and children's school adjustment were robust; poor self-regulation was associated with higher aggression and lower cooperation and self-directed behavior in the classroom. There was minimal support for a mediating role of children's self-regulation in links between parent expressiveness and children's behavior. Findings point to the relevance of parent emotional expressivity and children's self-regulatory processes in understanding physically abused children's functioning at the transition to school. Although further research is needed, findings indicate that increasing parental expression of positive emotion should be a focus in treatment along with reduction in negativity of abusive parents. Further, addressing children's self-regulation could be important in efforts to reduce aggression and enhance children's classroom competence. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, A.C.; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065; Kocovski, P.
Low and high serum retinol levels are associated with increased fracture risk and poor bone health. We recently showed retinoic acid receptors (RARs) are negative regulators of osteoclastogenesis. Here we show RARs are also negative regulators of osteoblast and adipocyte differentiation. The pan-RAR agonist, all-trans retinoic acid (ATRA), directly inhibited differentiation and mineralisation of early osteoprogenitors and impaired the differentiation of more mature osteoblast populations. In contrast, the pan-RAR antagonist, IRX4310, accelerated differentiation of early osteoprogenitors. These effects predominantly occurred via RARγ and were further enhanced by an RARα agonist or antagonist, respectively. RAR agonists similarly impaired adipogenesis in osteogenicmore » cultures. RAR agonist treatment resulted in significant upregulation of the Wnt antagonist, Sfrp4. This accompanied reduced nuclear and cytosolic β-catenin protein and reduced expression of the Wnt target gene Axin2, suggesting impaired Wnt/β-catenin signalling. To determine the effect of RAR inhibition in post-natal mice, IRX4310 was administered to male mice for 10 days and bones were assessed by µCT. No change to trabecular bone volume was observed, however, radial bone growth was impaired. These studies show RARs directly influence osteoblast and adipocyte formation from mesenchymal cells, and inhibition of RAR signalling in vivo impairs radial bone growth in post-natal mice. - Graphical abstract: Schematic shows RAR ligand regulation of osteoblast differentiation in vitro. RARγ antagonists±RARα antagonists promote osteoblast differentiation. RARγ and RARα agonists alone or in combination block osteoblast differentiation, which correlates with upregulation of Sfrp4, and downregulation of nuclear and cytosolic β-catenin and reduced expression of the Wnt target gene Axin2. Red arrows indicate effects of RAR agonists on mediators of Wnt signalling.« less
Cheng, Hongtao; Liu, Hongbo; Deng, Yong; Xiao, Jinghua; Li, Xianghua; Wang, Shiping
2015-01-01
Blast caused by fungal Magnaporthe oryzae is a devastating disease of rice (Oryza sativa) worldwide, and this fungus also infects barley (Hordeum vulgare). At least 11 rice WRKY transcription factors have been reported to regulate rice response to M. oryzae either positively or negatively. However, the relationships of these WRKYs in the rice defense signaling pathway against M. oryzae are unknown. Previous studies have revealed that rice WRKY13 (as a transcriptional repressor) and WRKY45-2 enhance resistance to M. oryzae. Here, we show that rice WRKY42, functioning as a transcriptional repressor, suppresses resistance to M. oryzae. WRKY42-RNA interference (RNAi) and WRKY42-overexpressing (oe) plants showed increased resistance and susceptibility to M. oryzae, accompanied by increased or reduced jasmonic acid (JA) content, respectively, compared with wild-type plants. JA pretreatment enhanced the resistance of WRKY42-oe plants to M. oryzae. WRKY13 directly suppressed WRKY42. WRKY45-2, functioning as a transcriptional activator, directly activated WRKY13. In addition, WRKY13 directly suppressed WRKY45-2 by feedback regulation. The WRKY13-RNAi WRKY45-2-oe and WRKY13-oe WRKY42-oe double transgenic lines showed increased susceptibility to M. oryzae compared with WRKY45-2-oe and WRKY13-oe plants, respectively. These results suggest that the three WRKYs form a sequential transcriptional regulatory cascade. WRKY42 may negatively regulate rice response to M. oryzae by suppressing JA signaling-related genes, and WRKY45-2 transcriptionally activates WRKY13, whose encoding protein in turn transcriptionally suppresses WRKY42 to regulate rice resistance to M. oryzae. PMID:25624395
Acute aerobic exercise helps overcome emotion regulation deficits.
Bernstein, Emily E; McNally, Richard J
2017-06-01
Although colloquial wisdom and some studies suggest an association between regular aerobic exercise and emotional well-being, the nature of this link remains poorly understood. We hypothesised that aerobic exercise may change the way people respond to their emotions. Specifically, we tested whether individuals experiencing difficulties with emotion regulation would benefit from a previous session of exercise and show swifter recovery than their counterparts who did not exercise. Participants (N = 80) completed measures of emotion response tendencies, mood, and anxiety, and were randomly assigned to either stretch or jog for 30 minutes. All participants then underwent the same negative and positive mood inductions, and reported their emotional responses. Analyses showed that more perceived difficulty generating regulatory strategies and engaging in goal-directed behaviours after the negative mood induction predicted more intense and persistent negative affect in response to the stressor, as would be expected. Interactions revealed that aerobic exercise attenuated these effects. Moderate aerobic exercise may help attenuate negative emotions for participants initially experiencing regulatory difficulties. This study contributes to the literature on aerobic exercise's therapeutic effects with experimental data, specifically in the realm of emotional processing.
Fostering parents' emotion regulation through a sibling-focused experimental intervention.
Ravindran, Niyantri; Engle, Jennifer M; McElwain, Nancy L; Kramer, Laurie
2015-06-01
In this study, we assessed whether an intervention designed to improve children's sibling relationships, the More Fun with Sisters and Brothers program (MFWSB), may also help parents manage their emotions more effectively. Families with at least 2 children between the ages of 4 and 8 years were randomly assigned to an intervention (n = 50) or wait-list control (n = 34) group. Parents completed pre- and posttest questionnaires on sibling warmth and agonism, their emotion regulation during sibling conflict, and their global emotion regulation styles. Program participation had a direct effect on 3 of the 4 emotion regulation outcomes for mothers. Mothers in the intervention versus control group reported lower levels of dysregulation and suppression and higher levels of reappraisal at posttest, controlling for pretest regulation scores. Additionally, path models examining posttest responses showed that participation in MFWSB led to lower levels of maternal and paternal negative reactivity in the sibling context via lower levels of sibling agonism, controlling for pretest levels of negative reactivity. Alternate path models, with parents' emotion regulation as mechanisms linking MFWSB and sibling relationship quality, were tested but not supported. Results highlight the value of a sibling-focused intervention for promoting parents' abilities to regulate their emotions. (c) 2015 APA, all rights reserved).
Li, Tong; Jiang, Zhongyu; Zhang, Lichao; Tan, Dongmei; Wei, Yun; Yuan, Hui; Li, Tianlai; Wang, Aide
2016-12-01
Ripening in climacteric fruit requires the gaseous phytohormone ethylene. Although ethylene signaling has been well studied, knowledge of the transcriptional regulation of ethylene biosynthesis is still limited. Here we show that an apple (Malus domestica) ethylene response factor, MdERF2, negatively affects ethylene biosynthesis and fruit ripening by suppressing the transcription of MdACS1, a gene that is critical for biosynthesis of ripening-related ethylene. Expression of MdERF2 was suppressed by ethylene during ripening of apple fruit, and we observed that MdERF2 bound to the promoter of MdACS1 and directly suppressed its transcription. Moreover, MdERF2 suppressed the activity of the promoter of MdERF3, a transcription factor that we found to bind to the MdACS1 promoter, thereby increasing MdACS1 transcription. We determined that the MdERF2 and MdERF3 proteins directly interact, and this interaction suppresses the binding of MdERF3 to the MdACS1 promoter. Moreover, apple fruit with transiently downregulated MdERF2 expression showed higher ethylene production and faster ripening. Our results indicate that MdERF2 negatively affects ethylene biosynthesis and fruit ripening in apple by suppressing the transcription of MdACS1 via multiple mechanisms, thereby acting as an antagonist of positive ripening regulators. Our findings offer a deep understanding of the transcriptional regulation of ethylene biosynthesis during climacteric fruit ripening. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Bridgett, David J.; Burt, Nicole M.; Laake, Lauren M.; Oddi, Kate B.
2013-01-01
There has been increasing interest in the direct and indirect effects of parental self-regulation on children’s outcomes. In the present investigation, the effects of maternal self-regulation, home chaos, and inter-parental relationship adjustment on broad and specific indicators of infant negative emotionality (NE) were examined. A sample of maternal caregivers and their 4-month-old infants (N = 85) from a rural community participated. Results demonstrated that better maternal self-regulation was associated with lower infant NE broadly, as well as with lower infant sadness and distress to limitations/frustration and better falling reactivity (i.e. emotion regulation), specifically. Maternal self-regulation also predicted less chaotic home environments and better maternal inter-parental relationship adjustment. Findings also supported the indirect effects of maternal self-regulation on broad and specific indicators of infant NE through home chaos and maternal relationship adjustment. Some differential effects were also identified. Elevated home chaos appeared to specifically affect infant frustration/distress to limitations whereas maternal relationship adjustment affected broad infant NE, as well as several specific indicators of infant NE: frustration/distress to limitations, sadness, and falling reactivity. In conjunction with other recent investigations that have reported the effects of maternal self-regulation on parenting, the findings in the present investigation suggest that parental self-regulation may influence children’s outcomes through several proximal environmental pathways. PMID:23748168
Bridgett, David J; Burt, Nicole M; Laake, Lauren M; Oddi, Kate B
2013-12-01
There has been increasing interest in the direct and indirect effects of parental self-regulation on children's outcomes. In the present investigation, the effects of maternal self-regulation, home chaos, and inter-parental relationship adjustment on broad and specific indicators of infant negative emotionality (NE) were examined. A sample of maternal caregivers and their 4-month-old infants (N = 85) from a rural community participated. Results demonstrated that better maternal self-regulation was associated with lower infant NE broadly, as well as with lower infant sadness and distress to limitations/frustration and better falling reactivity (i.e., emotion regulation), specifically. Maternal self-regulation also predicted less chaotic home environments and better maternal inter-parental relationship adjustment. Findings also supported the indirect effects of maternal self-regulation on broad and specific indicators of infant NE through home chaos and maternal relationship adjustment. Some differential effects were also identified. Elevated home chaos appeared to specifically affect infant frustration/distress to limitations whereas maternal relationship adjustment affected broad infant NE, as well as several specific indicators of infant NE: frustration/distress to limitations, sadness, and falling reactivity. In conjunction with other recent investigations that have reported the effects of maternal self-regulation on parenting, the findings in the present investigation suggest that parental self-regulation may influence children's outcomes through several proximal environmental pathways. Copyright © 2013 Elsevier Inc. All rights reserved.
Abscisic acid is a negative regulator of root gravitropism in Arabidopsis thaliana.
Han, Woong; Rong, Honglin; Zhang, Hanma; Wang, Myeong-Hyeon
2009-01-23
The plant hormone abscisic acid (ABA) plays a role in root gravitropism and has led to an intense debate over whether ABA acts similar to auxin by translating the gravitational signal into directional root growth. While tremendous advances have been made in the past two decades in establishing the role of auxin in root gravitropism, little progress has been made in characterizing the role of ABA in this response. In fact, roots of plants that have undetectable levels of ABA and that display a normal gravitropic response have raised some serious doubts about whether ABA plays any role in root gravitropism. Here, we show strong evidence that ABA plays a role opposite to that of auxin and that it is a negative regulator of the gravitropic response of Arabidopsis roots.
A Tale of Two Sugars: Trehalose 6-Phosphate and Sucrose1[OPEN
2016-01-01
Trehalose 6-phosphate (Tre6P), the intermediate of trehalose biosynthesis, is an essential signal metabolite in plants, linking growth and development to carbon status. The Suc-Tre6P nexus model postulates that Tre6P is both a signal and negative feedback regulator of Suc levels, forming part of a mechanism to maintain Suc levels within an optimal range and functionally comparable to the insulin-glucagon system for regulating blood Glc levels in animals. The target range and sensitivity of the Tre6P-Suc feedback control circuit can be adjusted according to the cell type, developmental stage, and environmental conditions. In source leaves, Tre6P modulates Suc levels by affecting Suc synthesis, whereas in sink organs it regulates Suc consumption. In illuminated leaves, Tre6P influences the partitioning of photoassimilates between Suc, organic acids, and amino acids via posttranslational regulation of phosphoenolpyruvate carboxylase and nitrate reductase. At night, Tre6P regulates the remobilization of leaf starch reserves to Suc, potentially linking starch turnover in source leaves to carbon demand from developing sink organs. Use of Suc for growth in developing tissues is strongly influenced by the antagonistic activities of two protein kinases: SUC-NON-FERMENTING-1-RELATED KINASE1 (SnRK1) and TARGET OF RAPAMYCIN (TOR). The relationship between Tre6P and SnRK1 in developing tissues is complex and not yet fully resolved, involving both direct and indirect mechanisms, and positive and negative effects. No direct connection between Tre6P and TOR has yet been described. The roles of Tre6P in abiotic stress tolerance and stomatal regulation are also discussed. PMID:27482078
Jin, Duo; Liu, Yuanyuan; Sun, Fang; Wang, Xuhua; Liu, Xuefeng; He, Zhigang
2015-01-01
The limited rewiring of the corticospinal tract (CST) only partially compensates the lost functions after stroke, brain trauma and spinal cord injury. Therefore it is important to develop new therapies to enhance the compensatory circuitry mediated by spared CST axons. Here by using a unilateral pyramidotomy model, we find that deletion of cortical suppressor of cytokine signaling 3 (SOCS3), a negative regulator of cytokine-activated pathway, promotes sprouting of uninjured CST axons to the denervated spinal cord. A likely trigger of such sprouting is ciliary neurotrophic factor (CNTF) expressed in local spinal neurons. Such sprouting can be further enhanced by deletion of phosphatase and tensin homolog (PTEN), a mechanistic target of rapamycin (mTOR) negative regulator, resulting in significant recovery of skilled locomotion. Ablation of the corticospinal neurons with sprouting axons abolishes the improved behavioural performance. Furthermore, by optogenetics-based specific CST stimulation, we show a direct limb motor control by sprouting CST axons, providing direct evidence for the reformation of a functional circuit. PMID:26598325
Wang, Li; Shen, Minjie; Jiang, Changyou
2016-01-01
Background: The central nucleus of the amygdala (CeA) is a crucial component of the neuronal circuitry mediating aversive emotion. Its role in the negative affective states during drug withdrawal includes changes in opioidergic, GABAergic, and corticotropin-releasing factor neurotransmission. However, the modulation of the neurobiological interconnectivity in the CeA and its effects in the negative reinforcement of drug dependents are poorly understood. Method: We performed electrophysiological recordings to assess the membrane excitability of parvalbumin (PV)+ interneurons in the CeA during chronic morphine withdrawal. We tested the morphine withdrawal–induced negative affective states, such as the aversive (assessed by conditioned place aversion), anxiety (assessed by elevated plus maze), and anhedonic-like (assessed by saccharin preference test) behaviors, as well as the mRNA level of corticotropin-releasing hormone (CRH) via optogenetic inhibition or activation of PV+ interneurons in the CeA. Result: Chronic morphine withdrawal increased the firing rate of CeA PV+ interneurons. Optogenetic inhibition of the activity of CeA PV+ interneurons attenuated the morphine withdrawal–induced negative affective states, such as the aversive, anxiety, and anhedonic-like behaviors, while direct activation of CeA PV+ interneurons could trigger those negative affective-like behaviors. Optogenetic inhibition of the CeA PV+ interneurons during the morphine withdrawal significantly attenuated the elevated CRH mRNA level in the CeA. Conclusion: The activity of PV+ interneurons in the CeA was up-regulated during chronic morphine withdrawal. The activation of PV+ interneurons during morphine withdrawal was crucial for the induction of the negative emotion and the up-regulation of CRH mRNA levels in the CeA. PMID:27385383
Bates, C; McNeill, A; Jarvis, M; Gray, N
1999-01-01
The European Commission has announced that it is considering legislation concerning further restrictions on cigarette tar and nicotine yields, as well as new provisions to regulate additives and the labelling of tobacco products. This report considers these issues and their relation to public health. In particular, we argue that further reductions in tar and nicotine yields as measured by the International Standards Organisation/Federal Trade Commission (ISO/FTC) method will be largely cosmetic and certainly misleading to consumers. If a new directive uses the ISO/FTC methodology as a basis for regulation, it risks lending further official support to the concept of "low tar" cigarettes, which may be used by smokers as an alternative to smoking cessation. Although new regulations based on the ISO/FTC methodology may appear to offer health gains, these will be illusory and there may even be negative health consequences, as has been the case with these tests up to the present. We therefore make the following recommendations for the way forward.
Gene expression of human lung cancer cell line CL1-5 in response to a direct current electric field.
Huang, Ching-Wen; Chen, Huai-Yi; Yen, Meng-Hua; Chen, Jeremy J W; Young, Tai-Horng; Cheng, Ji-Yen
2011-01-01
Electrotaxis is the movement of adherent living cells in response to a direct current (dc) electric field (EF) of physiological strength. Highly metastatic human lung cancer cells, CL1-5, exhibit directional migration and orientation under dcEFs. To understand the transcriptional response of CL1-5 cells to a dcEF, microarray analysis was performed in this study. A large electric-field chip (LEFC) was designed, fabricated, and used in this study. CL1-5 cells were treated with the EF strength of 0 mV/mm (the control group) and 300 mV/mm (the EF-treated group) for two hours. Signaling pathways involving the genes that expressed differently between the two groups were revealed. It was shown that the EF-regulated genes highly correlated to adherens junction, telomerase RNA component gene regulation, and tight junction. Some up-regulated genes such as ACVR1B and CTTN, and some down-regulated genes such as PTEN, are known to be positively and negatively correlated to cell migration, respectively. The protein-protein interactions of adherens junction-associated EF-regulated genes suggested that platelet-derived growth factor (PDGF) receptors and ephrin receptors may participate in sensing extracellular electrical stimuli. We further observed a high percentage of significantly regulated genes which encode cell membrane proteins, suggesting that dcEF may directly influence the activity of cell membrane proteins in signal transduction. In this study, some of the EF-regulated genes have been reported to be essential whereas others are novel for electrotaxis. Our result confirms that the regulation of gene expression is involved in the mechanism of electrotactic response.
Zhang, Xuebin; Abrahan, Carolina; Colquhoun, Thomas A.; ...
2017-04-26
Flavonoids represent a large family of specialized metabolites involved in plant growth, development, and adaptation. Chalcone synthase (CHS) catalyzes the first step of flavonoid biosynthesis by directing carbon flux from general phenylpropanoid metabolism to flavonoid pathway. Despite extensive characterization of its function and transcriptional regulation, the molecular basis governing its posttranslational modification is enigmatic. Here, we report the discovery of a proteolytic regulator of CHS, namely, KFB CHS, a Kelch domain-containing F-box protein in Arabidopsis thaliana. KFB CHS physically interacts with CHS and specifically mediates its ubiquitination and degradation. KFB CHS exhibits developmental expression patterns in Arabidopsis leaves, stems, andmore » siliques and strongly responds to the dark-to-light (or the light-to-dark) switch, the blue, red, and far-red light signals, and UV-B irradiation. Alteration of KFB CHS expression negatively correlates to the cellular concentration of CHS and the production of flavonoids. Our study suggests that KFB CHS serves as a crucial negative regulator, via mediating CHS degradation, coordinately controlling flavonoid biosynthesis in response to the developmental cues and environmental stimuli.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuebin; Abrahan, Carolina; Colquhoun, Thomas A.
Flavonoids represent a large family of specialized metabolites involved in plant growth, development, and adaptation. Chalcone synthase (CHS) catalyzes the first step of flavonoid biosynthesis by directing carbon flux from general phenylpropanoid metabolism to flavonoid pathway. Despite extensive characterization of its function and transcriptional regulation, the molecular basis governing its posttranslational modification is enigmatic. Here, we report the discovery of a proteolytic regulator of CHS, namely, KFB CHS, a Kelch domain-containing F-box protein in Arabidopsis thaliana. KFB CHS physically interacts with CHS and specifically mediates its ubiquitination and degradation. KFB CHS exhibits developmental expression patterns in Arabidopsis leaves, stems, andmore » siliques and strongly responds to the dark-to-light (or the light-to-dark) switch, the blue, red, and far-red light signals, and UV-B irradiation. Alteration of KFB CHS expression negatively correlates to the cellular concentration of CHS and the production of flavonoids. Our study suggests that KFB CHS serves as a crucial negative regulator, via mediating CHS degradation, coordinately controlling flavonoid biosynthesis in response to the developmental cues and environmental stimuli.« less
Buckner, Julia D; Walukevich, Katherine A; Zvolensky, Michael J; Gallagher, Matthew W
2017-11-01
Little empirical work has evaluated why anxious cannabis users are especially vulnerable to poorer cannabis cessation outcomes. Presumably, these individuals rely on cannabis because they have difficulties with emotion regulation and they therefore use cannabis to manage their negative emotions. The current study examined the direct and indirect effects of anxiety severity on a range of cannabis cessation variables among 79 (63.3% non-Hispanic White; 43.0% female) adults with anxiety disorders seeking outpatient treatment for cannabis use disorder. The independent and serial indirect effects of difficulties with emotion regulation and coping motives were examined in relation to the anxiety-cannabis variables. Anxiety severity was directly and robustly related to greater cannabis withdrawal symptom severity, less self-efficacy to refrain from using cannabis in emotionally distressing situations, and more reasons for quitting. Anxiety was indirectly related to cannabis outcomes via the serial effects of emotion regulation and coping motives. These findings document the important role of emotion regulation and coping motives in the relations of anxiety with cannabis cessation variables among dually diagnosed outpatients. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Zheng, Wang; Cai, Ruiqi; Hofmann, Laura; Nesin, Vasyl; Hu, Qiaolin; Long, Wentong; Fatehi, Mohammad; Liu, Xiong; Hussein, Shaimaa; Kong, Tim; Li, Jingru; Light, Peter E; Tang, Jingfeng; Flockerzi, Veit; Tsiokas, Leonidas; Chen, Xing-Zhen
2018-02-06
Transient receptor potential (TRP) channels are regulated by diverse stimuli comprising thermal, chemical, and mechanical modalities. They are also commonly regulated by phosphatidylinositol-4,5-bisphosphate (PIP2), with underlying mechanisms largely unknown. We here revealed an intramolecular interaction of the TRPP3 N and C termini (N-C) that is functionally essential. The interaction was mediated by aromatic Trp81 in pre-S1 domain and cationic Lys568 in TRP-like domain. Structure-function analyses revealed similar N-C interaction in TRPP2 as well as TRPM8/-V1/-C4 via highly conserved tryptophan and lysine/arginine residues. PIP2 bound to cationic residues in TRPP3, including K568, thereby disrupting the N-C interaction and negatively regulating TRPP3. PIP2 had similar negative effects on TRPP2. Interestingly, we found that PIP2 facilitates the N-C interaction in TRPM8/-V1, resulting in channel potentiation. The intramolecular N-C interaction might represent a shared mechanism underlying the gating and PIP2 regulation of TRP channels. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Targeting emotion dysregulation in the treatment of self-injury.
Gratz, Kim L
2007-11-01
Clinically useful definitions of emotion regulation with respect to deliberate self-harm (referred to here as self-injury) focus on adaptive ways of responding to emotional distress rather than on the control of emotions or dampening of emotional arousal. According to one such definition, emotion regulation is a multifaceted construct involving a) the awareness, understanding, and acceptance of emotions; b) ability to engage in goal-directed behaviors, and inhibit impulsive behaviors, when experiencing negative emotions; c) the flexible use of situationally appropriate strategies to modulate the intensity and/or duration of emotional responses rather than to eliminate emotions entirely; and d) willingness to experience negative emotions as part of pursuing meaningful activities in life (Gratz & Roemer, 2004). This article addresses the role of emotion dysregulation in self-injury and discusses two treatments for self-injury that explicitly focus on increasing emotion regulation. These treatments are based on the premise that the reduction of emotion dysregulation will decrease the need for maladaptive behaviors that function to regulate emotions, such as self-injury. A case illustration describing how one of these treatments (an acceptance-based, emotion regulation group therapy) is used to treat self-injury is provided.
Cultural differences in hedonic emotion regulation after a negative event.
Miyamoto, Yuri; Ma, Xiaoming; Petermann, Amelia G
2014-08-01
Beliefs about emotions can influence how people regulate their emotions. The present research examined whether Eastern dialectical beliefs about negative emotions lead to cultural differences in how people regulate their emotions after experiencing a negative event. We hypothesized that, because of dialectical beliefs about negative emotions prevalent in Eastern culture, Easterners are less motivated than Westerners to engage in hedonic emotion regulation-up-regulation of positive emotions and down-regulation of negative emotions. By assessing online reactions to a recent negative event, Study 1 found that European Americans are more motivated to engage in hedonic emotion regulation. Furthermore, consistent with the reported motivation to regulate emotion hedonically, European Americans show a steeper decline in negative emotions 1 day later than do Asians. By examining retrospective memory of reactions to a past negative event, Study 2 further showed that cultural differences in hedonic emotion regulation are mediated by cultural differences in dialectical beliefs about motivational and cognitive utility of negative emotions, but not by personal deservingness or self-efficacy beliefs. These findings demonstrate the role of cultural beliefs in shaping emotion regulation and emotional experiences.
Seniors' uncertainty management of direct-to-consumer prescription drug advertising usefulness.
DeLorme, Denise E; Huh, Jisu
2009-09-01
This study provides insight into seniors' perceptions of and responses to direct-to-consumer prescription drug advertising (DTCA) usefulness, examines support for DTCA regulation as a type of uncertainty management, and extends and gives empirical voice to previous survey results through methodological triangulation. In-depth interview findings revealed that, for most informants, DTCA usefulness was uncertain and this uncertainty stemmed from 4 sources. The majority had negative responses to DTCA uncertainty and relied on 2 uncertainty-management strategies: information seeking from physicians, and inferences of and support for some government regulation of DTCA. Overall, the findings demonstrate the viability of uncertainty management theory (Brashers, 2001, 2007) for mass-mediated health communication, specifically DTCA. The article concludes with practical implications and research recommendations.
Tripp, Jessica C; McDevitt-Murphy, Meghan E; Avery, Megan L; Bracken, Katherine L
2015-01-01
Posttraumatic stress disorder (PTSD), alcohol use, and alcohol-related consequences have been linked to emotion dysregulation. Sex differences exist in both emotion regulation dimensions and alcohol use patterns. This investigation examined facets of emotion dysregulation as potential mediators of the relationship between PTSD symptoms and alcohol-related consequences and whether differences may exist across sexes. Participants were 240 college students with a trauma history who reported using alcohol within the past three months and completed measures of PTSD symptoms, emotion dysregulation, alcohol consumption, alcohol-related consequences, and negative affect. The six facets of emotion dysregulation were examined as mediators of the relationship between PTSD symptoms and alcohol-related consequences in the full sample and by sex. There were differences in sexes on several variables, with women reporting higher PTSD scores and lack of emotional awareness. Men reported significantly more drinks per week in a typical week and a heavy week. There were significant associations between the variables for the full sample, with PTSD showing associations with five facets of emotion dysregulation subscales: impulse control difficulties when upset, difficulties engaging in goal-directed behavior, nonacceptance of emotional responses, lack of emotional clarity, and limited access to emotion regulation strategies. Alcohol-related consequences were associated with four aspects of emotion dysregulation: impulse control difficulties when upset, difficulties engaging in goal-directed behavior, nonacceptance of emotional responses, and limited access to emotion regulation strategies. Two aspects of emotion regulation, impulse control difficulties and difficulties engaging in goal directed behavior, mediated the relationship between PTSD symptoms and alcohol-related consequences in the full sample, even after adjusting for the effects of negative affect. When examined separately by gender, impulse control difficulties remained a mediator for men and difficulties engaging in goal directed behavior for women. These analyses shed light on processes that may underlie "self-medication" of PTSD symptoms. Gender-specific interventions targeting emotion dysregulation may be effective in reducing alcohol-related consequences in individuals with PTSD. Women may possibly benefit from interventions that focus on difficulties engaging in goal-directed behavior, while men may benefit from interventions that target impulse control difficulties when upset.
BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation
Dressaire, Clémentine; Barahona, Susana; Galego, Lisete; Kaever, Volkhard; Jenal, Urs
2017-01-01
ABSTRACT The bacterial second messenger cyclic dimeric GMP (c-di-GMP) is a nearly ubiquitous intracellular signaling molecule involved in the transition from the motile to the sessile/biofilm state in bacteria. C-di-GMP regulates various cellular processes, including biofilm formation, motility, and virulence. BolA is a transcription factor that promotes survival in different stresses and is also involved in biofilm formation. Both BolA and c-di-GMP participate in the regulation of motility mechanisms leading to similar phenotypes. Here, we establish the importance of the balance between these two factors for accurate regulation of the transition between the planktonic and sessile lifestyles. This balance is achieved by negative-feedback regulation of BolA and c-di-GMP. BolA not only contributes directly to the motility of bacteria but also regulates the expression of diguanylate cyclases and phosphodiesterases. This expression modulation influences the synthesis and degradation of c-di-GMP, while this signaling metabolite has a negative influence in bolA mRNA transcription. Finally, we present evidence of the dominant role of BolA in biofilm, showing that, even in the presence of elevated c-di-GMP levels, biofilm formation is reduced in the absence of BolA. C-di-GMP is one of the most important bacterial second messengers involved in several cellular processes, including virulence, cell cycle regulation, biofilm formation, and flagellar synthesis. In this study, we unravelled a direct connection between the bolA morphogene and the c-di-GMP signaling molecule. We show the important cross-talk that occurs between these two molecular regulators during the transition between the motile/planktonic and adhesive/sessile lifestyles in Escherichia coli. This work provides important clues that can be helpful in the development of new strategies, and the results can be applied to other organisms with relevance for human health. PMID:28928205
NASA Technical Reports Server (NTRS)
Carra, Claudio; Wang, Minli; Huff, Janice L.; Hada, Megumi; ONeill, Peter; Cucinotta, Francis A.
2010-01-01
Signal transduction controls cellular and tissue responses to radiation. Transforming growth factor beta (TGFbeta) is an important regulator of cell growth and differentiation and tissue homeostasis, and is often dis-regulated in tumor formation. Mathematical models of signal transduction pathways can be used to elucidate how signal transduction varies with radiation quality, and dose and dose-rate. Furthermore, modeling of tissue specific responses can be considered through mechanistic based modeling. We developed a mathematical model of the negative feedback regulation by Smad7 in TGFbeta-Smad signaling and are exploring possible connections to the WNT/beta -catenin, and ATM/ATF2 signaling pathways. A pathway model of TGFbeta-Smad signaling that includes Smad7 kinetics based on data in the scientific literature is described. Kinetic terms included are TGFbeta/Smad transcriptional regulation of Smad7 through the Smad3-Smad4 complex, Smad7-Smurf1 translocation from nucleus to cytoplasm, and Smad7 negative feedback regulation of the TGFO receptor through direct binding to the TGFO receptor complex. The negative feedback controls operating in this pathway suggests non-linear responses in signal transduction, which are described mathematically. We then explored possibilities for cross-talk mediated by Smad7 between DNA damage responses mediated by ATM, and with the WNT pathway and consider the design of experiments to test model driven hypothesis. Numerical comparisons of the mathematical model to experiments and representative predictions are described.
Kudinova, Anastacia Y; Owens, Max; Burkhouse, Katie L; Barretto, Kenneth M; Bonanno, George A; Gibb, Brandon E
2016-08-01
Difficulties in emotion regulation have been associated with increased suicidal thoughts and behaviours. The majority of studies have examined self-reported use of emotion regulation strategies. In contrast, the current study focused on a direct measure of individuals' ability to use a specific emotion regulation strategy, cognitive reappraisal, using the late positive potential (LPP), an event-related potential component that reflects attention to emotional stimuli. Specifically, the cognitive reappraisal ability of 33 undergraduate students was assessed via an image-viewing task during which the participants had to passively view, increase or reduce their emotions in response to looking at neutral, positive or dysphoric images. We found that participants with a history of suicidal ideation (SI) had significantly higher LPP when asked to reduce negative emotion in response to dysphoric images, compared to individuals with no history of SI. These findings suggest that difficulties with using cognitive reappraisal, specifically to decrease negative affect, might be linked to suicide risk.
Regulation of error-prone translesion synthesis by Spartan/C1orf124
Kim, Myoung Shin; Machida, Yuka; Vashisht, Ajay A.; Wohlschlegel, James A.; Pang, Yuan-Ping; Machida, Yuichi J.
2013-01-01
Translesion synthesis (TLS) employs low fidelity polymerases to replicate past damaged DNA in a potentially error-prone process. Regulatory mechanisms that prevent TLS-associated mutagenesis are unknown; however, our recent studies suggest that the PCNA-binding protein Spartan plays a role in suppression of damage-induced mutagenesis. Here, we show that Spartan negatively regulates error-prone TLS that is dependent on POLD3, the accessory subunit of the replicative DNA polymerase Pol δ. We demonstrate that the putative zinc metalloprotease domain SprT in Spartan directly interacts with POLD3 and contributes to suppression of damage-induced mutagenesis. Depletion of Spartan induces complex formation of POLD3 with Rev1 and the error-prone TLS polymerase Pol ζ, and elevates mutagenesis that relies on POLD3, Rev1 and Pol ζ. These results suggest that Spartan negatively regulates POLD3 function in Rev1/Pol ζ-dependent TLS, revealing a previously unrecognized regulatory step in error-prone TLS. PMID:23254330
Analysis of spacecraft battery charger systems
NASA Astrophysics Data System (ADS)
Kim, Seong J.; Cho, Bo H.
In spacecraft battery charger systems, switching regulators are widely used for bus voltage regulation, charge current regulation, and peak power tracking. Small-signal dynamic characteristics of the battery charging subsystem of direct energy transfer (DET) and peak power tracking (PPT) systems are analyzed to facilitate design of the control loop for optimum performance and stability. Control loop designs of the charger in various modes of operation are discussed. Analyses are verified through simulations. It is shown that when the charger operates in the bus voltage regulation mode, the control-to-voltage transfer function has a negative DC gain and two LHP zeros in both the DET and PPT systems. The control-to-inductor current transfer function also has a negative DC gain and a RHP zero. Thus, in the current-mode control, the current loop can no longer be used to stabilize the system. When the system operates in the charge current regulation mode, the charger operates with a fixed duty cycle which is determined by the regulated bus voltage and the battery voltage. Without an input filter, the converter becomes a first-order system. When the peak power tracker is inactive, the operating point of the solar array output moves to the voltage source region. Thus, the solar array behaves as a stiff voltage source to a constant power load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Hong; Miao, Mei-hua; Ji, Xue-qiang
2015-04-03
MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in leukaemia, particularly T-cell acute lymphoblastic leukaemia (T-ALL), has remained elusive. Here, we identified miR-664 and its predicted target gene PLP2 were differentially expressed in T-ALL using bioinformatics methods. In T-ALL cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-664, while miR-664 inhibitor could significantly inhibited the proliferation. Moreover, migration and invasion assay showed that overexpression of miR-664 could significantly promoted the migration and invasion of T-ALL cells, whereasmore » miR-664 inhibitor could reduce cell migration and invasion. luciferase assays confirmed that miR-664 directly bound to the 3'untranslated region of PLP2, and western blotting showed that miR-664 suppressed the expression of PLP2 at the protein levels. This study indicated that miR-664 negatively regulates PLP2 and promotes proliferation and invasion of T-ALL cell lines. Thus, miR-664 may represent a potential therapeutic target for T-ALL intervention. - Highlights: • miR-664 mimics promote the proliferation and invasion of T-ALL cells. • miR-664 inhibitors inhibit the proliferation and invasion of T-ALL cells. • miR-664 targets 3′ UTR of PLP2 in T-ALL cells. • miR-664 negatively regulates PLP2 in T-ALL cells.« less
Dang, Ruihong; Li, Jinxi; Jiang, Jinzhu; Zhang, Ning; Jia, Meiru; Wei, Lingzhi; Li, Ziqiang; Li, Bingbing; Jia, Wensuo
2015-01-01
Whereas the regulatory mechanisms that direct fruit ripening have been studied extensively, little is known about the signaling mechanisms underlying this process, especially for nonclimacteric fruits. In this study, we demonstrated that a SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2, designated as FaSnRK2.6, is a negative regulator of fruit development and ripening in the nonclimacteric fruit strawberry (Fragaria × ananassa) and can also mediate temperature-modulated strawberry fruit ripening. FaSnRK2.6 was identified as an ortholog of OPEN STOMATA1. Levels of FaSnRK2.6 transcript rapidly decreased during strawberry fruit development and ripening. FaSnRK2.6 was found to be capable of physically interacting with strawberry ABSCISIC ACID INSENSITIVE1, a negative regulator in strawberry fruit ripening. RNA interference-induced silencing of FaSnRK2.6 significantly promoted fruit ripening. By contrast, overexpression of FaSnRK2.6 arrested fruit ripening. Strawberry fruit ripening is highly sensitive to temperature, with high temperatures promoting ripening and low temperatures delaying it. As the temperature increased, the level of FaSnRK2.6 expression declined. Furthermore, manipulating the level of FaSnRK2.6 expression altered the expression of a variety of temperature-responsive genes. Taken together, this study demonstrates that FaSnRK2.6 is a negative regulator of strawberry fruit development and ripening and, furthermore, that FaSnRK2.6 mediates temperature-modulated strawberry fruit ripening. PMID:25609556
Tan, Wenrong; Zhang, Dawei; Zhou, Huapeng; Zheng, Ting; Yin, Yanhai; Lin, Honghui
2018-04-01
Drought is a major threat to plant growth and crop productivity. The phytohormone abscisic acid (ABA) plays a critical role in plant response to drought stress. Although ABA signaling-mediated drought tolerance has been widely investigated in Arabidopsis thaliana, the feedback mechanism and components negatively regulating this pathway are less well understood. Here we identified a member of Arabidopsis HD-ZIP transcription factors HAT1 which can interacts with and be phosphorylated by SnRK2s. hat1hat3, loss-of-function mutant of HAT1 and its homolog HAT3, was hypersensitive to ABA in primary root inhibition, ABA-responsive genes expression, and displayed enhanced drought tolerance, whereas HAT1 overexpressing lines were hyposensitive to ABA and less tolerant to drought stress, suggesting that HAT1 functions as a negative regulator in ABA signaling-mediated drought response. Furthermore, expression levels of ABA biosynthesis genes ABA3 and NCED3 were repressed by HAT1 directly binding to their promoters, resulting in the ABA level was increased in hat1hat3 and reduced in HAT1OX lines. Further evidence showed that both protein stability and binding activity of HAT1 was repressed by SnRK2.3 phosphorylation. Overexpressing SnRK2.3 in HAT1OX transgenic plant made a reduced HAT1 protein level and suppressed the HAT1OX phenotypes in ABA and drought response. Our results thus establish a new negative regulation mechanism of HAT1 which helps plants fine-tune their drought responses.
Early Childhood Media Exposure and Self-Regulation: Bi-Directional Longitudinal Associations.
Cliff, Dylan P; Howard, Steven J; Radesky, Jenny S; McNeill, Jade; Vella, Stewart A
2018-04-26
To investigate: i) prospective associations between media exposure (television viewing, computers, and electronic games) at 2 years and self-regulation at 4 and 6 years, and ii) bi-directional associations between media exposure and self-regulation at 4 and 6 years. We hypothesized that media exposure and self-regulation would display a negative prospective association and subsequent bi-directional inverse associations. Data from the nationally-representative Longitudinal Study of Australian Children (LSAC) when children were aged 2 (n=2786) and 4/6 years (n=3527) were used. Primary caregivers reported children's weekly electronic media exposure. A composite measure of self-regulation was computed from caregivers-, teacher-, and observer-report data. Associations were examined using linear regression and cross-lagged panel models, accounting for covariates. Lower television viewing and total media exposure at 2 years were associated with higher self-regulation at 4 years (both β -0.02; 95% confidence interval [CI] -0.03, -0.01). Lower self-regulation at 4 years was also significantly associated with higher television viewing (β -0.15; 95% CI -0.21, -0.08), electronic game use (β -0.05; 95% CI -0.09, -0.01), and total media exposure (β -0.19; 95% CI -0.29, -0.09) at 6 years. However, media exposure at 4 years was not associated with self-regulation at 6 years. Although media exposure duration at 2 years was associated with later self-regulation, and self-regulation at 4 years was associated with later media exposure, associations were of small magnitude. More research is needed examining content quality, social context, and mobile media use and child self-regulation. Copyright © 2018. Published by Elsevier Inc.
Wei, Wei; Li, Xiaoming; Harrison, Sayward; Zhao, Junfeng; Zhao, Guoxiang
2016-03-01
Children affected by HIV/AIDS have unique psychosocial needs that often go unaddressed in traditional treatment approaches. They are more likely than unaffected peers to encounter stigma, including overt discriminatory behaviors, as well as stereotyped attitudes. In addition, HIV-affected children are at risk for experiencing negative affect, including sadness and depression. Previous studies have identified a link between HIV stigma and the subsequent emotional status of children affected by HIV/AIDS. However, limited data are available regarding protective psychological factors that can mitigate the effects of HIV stigma and thus promote resiliency for this vulnerable population. Utilizing data from 790 children aged 6-17 years affected by parental HIV in rural central China this study aims to examine the association between HIV stigma, including both enacted and perceived stigma, and emotional status among HIV-affected children, as well as to evaluate the mediating effects of emotional regulation on the relationship between HIV stigma and emotional status. In addition, the moderating role of age is tested. Multiple regression was conducted to test the mediation model. We found that the experience of HIV stigma had a direct positive effect on negative emotions among children affected by HIV. Emotional regulation offers a level of protection, as it mediated the impact of HIV stigma on negative emotions. Moreover, age was found to moderate the relationship between perceived stigma and negative emotions. A significant interaction between perceived stigma and age suggested that negative emotions increase with age among those who perceived a higher level of stigmatization. Results suggest that children affected by HIV may benefit from interventions designed to enhance their capacity to regulate emotions and that health professionals should be aware of the link between stigma and negative emotion in childhood and adolescence and use the knowledge to inform their treatments with this population.
Wei, Wei; Li, Xiaoming; Harrison, Sayward; Zhao, Junfeng; Zhao, Guoxiang
2016-01-01
ABSTRACT Children affected by HIV/AIDS have unique psychosocial needs that often go unaddressed in traditional treatment approaches. They are more likely than unaffected peers to encounter stigma, including overt discriminatory behaviors, as well as stereotyped attitudes. In addition, HIV-affected children are at risk for experiencing negative affect, including sadness and depression. Previous studies have identified a link between HIV stigma and the subsequent emotional status of children affected by HIV/AIDS. However, limited data are available regarding protective psychological factors that can mitigate the effects of HIV stigma and thus promote resiliency for this vulnerable population. Utilizing data from 790 children aged 6–17 years affected by parental HIV in rural central China this study aims to examine the association between HIV stigma, including both enacted and perceived stigma, and emotional status among HIV-affected children, as well as to evaluate the mediating effects of emotional regulation on the relationship between HIV stigma and emotional status. In addition, the moderating role of age is tested. Multiple regression was conducted to test the mediation model. We found that the experience of HIV stigma had a direct positive effect on negative emotions among children affected by HIV. Emotional regulation offers a level of protection, as it mediated the impact of HIV stigma on negative emotions. Moreover, age was found to moderate the relationship between perceived stigma and negative emotions. A significant interaction between perceived stigma and age suggested that negative emotions increase with age among those who perceived a higher level of stigmatization. Results suggest that children affected by HIV may benefit from interventions designed to enhance their capacity to regulate emotions and that health professionals should be aware of the link between stigma and negative emotion in childhood and adolescence and use the knowledge to inform their treatments with this population. PMID:27392011
Tull, Matthew T; Barrett, Heidi M; McMillan, Elaine S; Roemer, Lizabeth
2007-09-01
This study examined the relationship between posttraumatic stress (PTS) symptoms and particular aspects of emotion regulation difficulties among trauma-exposed individuals. Participants were an ethnically diverse sample of 108 undergraduates from an urban university. PTS symptom severity was found to be associated with lack of emotional acceptance, difficulty engaging in goal-directed behavior when upset, impulse-control difficulties, limited access to effective emotion regulation strategies, and lack of emotional clarity. Further, overall difficulties in emotion regulation were associated with PTS symptom severity, controlling for negative affect. Finally, individuals exhibiting PTS symptoms indicative of a PTSD diagnosis reported greater difficulties with emotion regulation than those reporting PTS symptoms at a subthreshold level. The implications of these findings for research and treatment are discussed.
The role of emotion dysregulation in Conversion Disorder.
Del Río-Casanova, Lucía; González-Vázquez, Ana Isabel; Justo, Ania; Andrade, Vanessa; Páramo, Mario; Brenlla, Julio; Blanco-Hortas, Andrés
2018-05-01
The role that emotion regulation plays in Conversion Disorders (CD) is not well known. This research deepens in this subject and describes the main differences between a group of conversion patients and a control group on different measures of emotion regulation and other clinical variables. A case-control study was conducted including 43 patients suffering from CD and 42 healthy controls. Both groups went thought two psychiatric interviews and fulfilled 6 questionnaires assessing depression, anxiety, alexithymia, emotion dysregulation, affect intensity, psychoform and somatoform dissociation. Patients suffering from CD scored significantly higher on all the six questionnaires (p<0.001). Negative reactivity and negative intensity were also higher in patients (p<0.01), while cases and controls did not show any significant differences on positive affectivity and serenity. Anxiety, alexithymia and emotional dysregulation were the most relevant factors (OR=5.85/3.50/3.23 respectively). Anxiety and difficulties in emotion regulation were the most explicative variables for conversion in the regression analysis performed. Within the five factors assessing difficulties in emotion regulation, lack of emotional control and interference in goal directed behaviors were the most relevant. Positive and negative conversion where correlated to different emotional impairments. People suffering from CD show several emotional impairments when compared to healthy controls. Emotion dysregulation can be considered a relevant aspect in CD. The existence of specific emotional patterns for different conversion manifestations is suspected.
Regulation of gonadotropin-releasing hormone neurons by glucose
Roland, Alison V.; Moenter, Suzanne M.
2011-01-01
Reproduction is influenced by energy balance, but the physiological pathways mediating their relationship have not been fully elucidated. As the central regulators of fertility, gonadotropin-releasing hormone (GnRH) neurons integrate numerous physiological signals, including metabolic cues. Circulating glucose levels regulate GnRH release and may in part mediate the effects of negative energy balance on fertility. Existing evidence suggests that neural pathways originating in the hindbrain, as well as in the hypothalamic feeding nuclei, transmit information concerning glucose availability to GnRH neurons. Here we review recent evidence suggesting that GnRH neurons may directly sense changes in glucose availability by a mechanism involving adenosine monophosphate-activated protein kinase (AMPK). These findings expand our understanding of how metabolic signaling in the brain regulates reproduction. PMID:21855365
Chondroitin-4-sulfation negatively regulates axonal guidance and growth
Wang, Hang; Katagiri, Yasuhiro; McCann, Thomas E.; Unsworth, Edward; Goldsmith, Paul; Yu, Zu-Xi; Tan, Fei; Santiago, Lizzie; Mills, Edward M.; Wang, Yu; Symes, Aviva J.; Geller, Herbert M.
2008-01-01
Summary Glycosaminoglycan (GAG) side chains endow extracellular matrix proteoglycans with diversity and complexity based upon the length, composition, and charge distribution of the polysaccharide chain. Using cultured primary neurons, we show that specific sulfation in the GAG chains of chondroitin sulfate (CS) mediates neuronal guidance cues and axonal growth inhibition. Chondroitin-4-sulfate (CS-A), but not chondroitin-6-sulfate (CS-C), exhibits a strong negative guidance cue to mouse cerebellar granule neurons. Enzymatic and gene-based manipulations of 4-sulfation in the GAG side chains alter their ability to direct growing axons. Furthermore, 4-sulfated CS GAG chains are rapidly and significantly increased in regions that do not support axonal regeneration proximal to spinal cord lesions in mice. Thus, our findings provide the evidence showing that specific sulfation along the carbohydrate backbone carries instructions to regulate neuronal function. PMID:18768934
Kim, Keunhwa; Shin, Jieun; Lee, Sang-Hee; Kweon, Hee-Seok; Maloof, Julin N.; Choi, Giltsu
2011-01-01
Phytochromes are red and far-red light photoreceptors that regulate various aspects of plant development. One of the less-understood roles of phytochromes is the inhibition of hypocotyl negative gravitropism, which refers to the loss of hypocotyl gravitropism and resulting random growth direction in red or far-red light. This light response allows seedlings to curve toward blue light after emergence from the soil and enhances seedling establishment in the presence of mulch. Phytochromes inhibit hypocotyl negative gravitropism by inhibiting four phytochrome-interacting factors (PIF1, PIF3, PIF4, PIF5), as shown by hypocotyl agravitropism of dark-grown pif1 pif3 pif4 pif5 quadruple mutants. We show that phytochromes inhibit negative gravitropism by converting starch-filled gravity-sensing endodermal amyloplasts to other plastids with chloroplastic or etioplastic features in red or far-red light, whereas PIFs promote negative gravitropism by inhibiting the conversion of endodermal amyloplasts to etioplasts in the dark. By analyzing transgenic plants expressing PIF1 with an endodermis-specific SCARECROW promoter, we further show that endodermal PIF1 is sufficient to inhibit the conversion of endodermal amyloplasts to etioplasts and hypocotyl negative gravitropism of the pif quadruple mutant in the dark. Although the functions of phytochromes in gravitropism and chloroplast development are normally considered distinct, our results indicate that these two functions are closely related. PMID:21220341
Kim, Keunhwa; Shin, Jieun; Lee, Sang-Hee; Kweon, Hee-Seok; Maloof, Julin N; Choi, Giltsu
2011-01-25
Phytochromes are red and far-red light photoreceptors that regulate various aspects of plant development. One of the less-understood roles of phytochromes is the inhibition of hypocotyl negative gravitropism, which refers to the loss of hypocotyl gravitropism and resulting random growth direction in red or far-red light. This light response allows seedlings to curve toward blue light after emergence from the soil and enhances seedling establishment in the presence of mulch. Phytochromes inhibit hypocotyl negative gravitropism by inhibiting four phytochrome-interacting factors (PIF1, PIF3, PIF4, PIF5), as shown by hypocotyl agravitropism of dark-grown pif1 pif3 pif4 pif5 quadruple mutants. We show that phytochromes inhibit negative gravitropism by converting starch-filled gravity-sensing endodermal amyloplasts to other plastids with chloroplastic or etioplastic features in red or far-red light, whereas PIFs promote negative gravitropism by inhibiting the conversion of endodermal amyloplasts to etioplasts in the dark. By analyzing transgenic plants expressing PIF1 with an endodermis-specific SCARECROW promoter, we further show that endodermal PIF1 is sufficient to inhibit the conversion of endodermal amyloplasts to etioplasts and hypocotyl negative gravitropism of the pif quadruple mutant in the dark. Although the functions of phytochromes in gravitropism and chloroplast development are normally considered distinct, our results indicate that these two functions are closely related.
Siegle, Greg J; D'Andrea, Wendy; Jones, Neil; Hallquist, Michael N; Stepp, Stephanie D; Fortunato, Andrea; Morse, Jennifer Q; Pilkonis, Paul A
2015-11-01
Prolonged psychophysiological reactions to negative information have long been associated with negative thinking and feeling. This association is operationalized in the RDoC negative affect construct of loss, which is nominally indexed by prolonged physiological reactivity, cognitive loss-related constructs such as rumination and guilt, and more feeling-related constructs such as sadness, crying, and anhedonia. These associations have not been tested explicitly. If thinking and feeling aspects of loss reflect different physiological mechanisms, as might be suggested by their putative neurobiology, different intervention pathways might be suggested. Here we examined the extent to which self-reported negative thinking and feeling constructs were associated with prolonged pupillary reactivity following negative words and a subsequent cognitive distractor in a diverse heterogeneously diagnosed sample of N=84 participants. We also considered indices of abuse and variables associated with borderline personality disorder as possible moderators. Consistently, feeling-related negative affect constructs were related to prolonged pupillary reactivity during the distractor after a negative stimulus whereas thinking-related constructs were not. These data suggest that people who have sustained physiological reactions to emotional stimuli may be more strongly characterized by non-linguistic negative feelings than explicit cognitions related to loss. Sustained physiological reactions could reflect efforts to regulate feeling states. In contrast to cognitive and affective variables, abuse was associated with decreased physiological reactivity, consistent with decreased neural engagement. Interventions that target mechanisms underlying feelings and their regulation may be more mechanistically specific to sustained reactivity than those which directly address cognitions. Copyright © 2015. Published by Elsevier B.V.
Tsai, F Y; Coruzzi, G
1991-01-01
Asparagine synthetase (AS) mRNA in Pisum sativum accumulates preferentially in plants grown in the dark. Nuclear run-on experiments demonstrate that expression of both the AS1 and AS2 genes is negatively regulated by light at the level of transcription. A decrease in the transcriptional rate of the AS1 gene can be detected as early as 20 min after exposure to light. Time course experiments reveal that the levels of AS mRNA fluctuate dramatically during a "normal" light/dark cycle. This is due to a direct effect of light and not to changes associated with circadian rhythm. A novel finding is that the light-repressed expression of the AS1 gene is as dramatic in nonphotosynthetic organs such as roots as it is in leaves. Experiments demonstrate that the small amount of light which passes through the soil is sufficient to repress AS1 expression in roots, indicating that light has a direct effect on AS1 gene expression in roots. The negative regulation of AS gene expression by light was shown to be a general phenomenon in plants which also occurs in nonlegumes such as Nicotiana plumbaginifolia and Nicotiana tabacum. Thus, the AS genes can serve as a model with which to dissect the molecular basis for light-regulated transcriptional repression in plants. Images PMID:1681424
Reddy, Radhika; Palmer, Cara A; Jackson, Christine; Farris, Samantha G; Alfano, Candice A
2017-08-01
Sleep loss is associated with affective disturbances and disorders; however, there is limited understanding of specific mechanisms underlying these links, especially in adolescence. The current study tested the effects of sleep restriction versus idealized sleep on adolescents' emotional experience, reactivity and regulation (specifically cognitive reappraisal). Following 1 week of sleep monitoring, healthy adolescents (n = 42; ages 13-17 years) were randomized to 1 night of sleep restriction (4 h) or idealized sleep (9.5 h). The following day, adolescents provided self-reports of affect and anxiety and completed a laboratory-based task to assess: (1) emotional reactivity in response to positive, negative, and neutral images from the International Affective Picture System (IAPS); and (2) ability to use cognitive reappraisal to decrease negative emotional responses. Large effects were observed for the adverse impact of sleep restriction on positive affect and anxiety as well as a medium-sized effect for negative affect, compared to the idealized sleep condition. Subjective reactivity to positive and neutral images did not differ between the groups, but a moderate effect was detected for reactivity to negative images whereby sleep-restricted teens reported greater reactivity. Across both sleep conditions, use of cognitive reappraisal down-regulated negative emotion effectively; however, sleep restriction did not impact upon adolescents' ability to use this strategy. These findings add to a growing body of literature demonstrating the deleterious effects of sleep restriction on aspects of emotion and highlight directions for future research in adolescents. © 2016 European Sleep Research Society.
Metabolic and hormone influences on emotion processing during menopause.
Berent-Spillson, Alison; Marsh, Courtney; Persad, Carol; Randolph, John; Zubieta, Jon-Kar; Smith, Yolanda
2017-02-01
Disturbances of emotion regulation and depressive symptoms are common during the menopause transition. Reproductive hormone levels are not directly correlated with depressive symptoms, and other factors may influence mood symptoms during menopause. In this study, we sought to determine the role of metabolic function in mood symptoms during menopause, hypothesizing an association with menopause status and long-term glucose load. We studied 54 women across three menopause transition stages (15 premenopause, 11 perimenopause, and 28 postmenopause), examining effects of age, hormones, and metabolism on mood and neural activation during emotional discrimination. We assessed participants using behavioral and functional MRI measures of negative emotion and emotion discrimination, and glycated hemoglobin A1c, to assess long-term glucose load. We found that emotionally unpleasant images activated emotion regulation (amygdala) and cognitive association brain regions (prefrontal cortex, posterior cingulate, temporal-parietal-occipital (TPO) junction, hippocampus). Cognitive association region activity increased with menopause stage. Perimenopausal women had left TPO junction activation, and postmenopausal women had prefrontal cortex, posterior cingulate, and TPO junction activation. Negative affect was associated with decreased amygdala activation, while depression symptoms and negative mood were associated with increased TPO junction activation. Hemoglobin A1c was associated with negative interpretation bias of neutral images and cognitive region recruitment during emotion discrimination. FSH levels, indicating menopause stage, were associated with negative mood. Age was not associated with any behavioral measures or activation patterns during the emotion task. Our results suggest that an interaction between metabolic and hormonal factors may influence emotion regulation, leading to increased risk for depression during menopause. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Guohao; Li, Sainan; Huang, Jiaofang; Wei, Xue; Li, Yaqian
2012-01-01
The rhizosphere microbe Pseudomonas aeruginosa M18 shows strong antifungal activities, mainly due to the biosynthesis of antibiotics like pyoluteorin (Plt) and phenazine-1-carboxylic acid (PCA). The ubiquitous RNA chaperone Hfq regulates bacterial virulence and stress tolerance through global posttranscriptional regulation. Here, we explored the molecular mechanism by which Hfq controls antibiotic biosynthesis in P. aeruginosa M18. The robust downregulation of Plt biosynthesis by Hfq was mediated exclusively by the posttranscriptional downregulation of the plt transcriptional activator PltR. Hfq posttranscriptionally repressed phzM expression and consequently reduced the conversion of PCA to pyocyanin. However, Hfq positively controlled the phz2 operon and PCA biosynthesis through both QscR-mediated transcriptional regulation at the promoter and an unknown regulation at the operator. Also, Hfq was shown to directly bind at the mRNA 5′ untranslated leaders of pltR, qscR, and phzM. These three negatively regulated target genes of Hfq shared a similar secondary structure with a short single-stranded AU-rich spacer (a potential Hfq-binding motif) linking two stem-loops. Taken together, these results indicate that Hfq, potentially in collaboration with unknown small noncoding RNAs (sRNAs), tightly controls antibiotic biosynthesis through both direct posttranscriptional inhibition and indirect transcriptional regulation. PMID:22427627
Lu, Zefu; Yu, Hong; Xiong, Guosheng; Wang, Jing; Jiao, Yongqing; Liu, Guifu; Jing, Yanhui; Meng, Xiangbing; Hu, Xingming; Qian, Qian; Fu, Xiangdong; Wang, Yonghong; Li, Jiayang
2013-01-01
IDEAL PLANT ARCHITECTURE1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The SQUAMOSA PROMOTER BINDING PROTEIN-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen PROMOTER BINDING FACTOR1 or PROMOTER BINDING FACTOR2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice TEOSINTE BRANCHED1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate DENSE AND ERECT PANICLE1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture. PMID:24170127
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhipeng, E-mail: dr_zpwang@163.com; Yang, Huan; Ren, Lei
2015-09-04
MicroRNA-21 (miR-21) has been well-established and found to be over-expressed in various human cancers and has been associated with hepatocellular carcinoma (HCC) progression. However, the underlying mechanism of miR-21 involvement in the development and progression of HCC remains to be understood. In the present study, we firstly identified that the Navigator-3 (NAV-3) gene as a novel direct target of miR-21. Knock-down of NAV-3 using shRNA can rescue the effects of anti-miR-21 inhibitor in HCC cell lines, whereas re-expression of miR-21 using transfection with miR-21 mimics phenocopied the NAV-3 knock-down model. Additionally, miR-21 levels inversely correlated with NAV-3 both in HCCmore » cells and tissues. Knock-down of NAV-3 promoted both the proliferation and migration in HCC cells. Together, our findings suggest an important role for miR-21 in the progression of HCC, which negatively regulated Navigator-3 in the migration of HCC. - Highlights: • Navigator-3 (NAV-3) suppresses proliferation, migration and tumorigenesis of HCC cells. • NAV-3 was a novel target of miR-21. • MiR-21 negatively regulates NAV-3 in HCC.« less
Lopez-Gomollon, Sara; Mohorianu, Irina; Szittya, Gyorgy; Moulton, Vincent; Dalmay, Tamas
2012-12-01
MicroRNAs negatively regulate the accumulation of mRNAs therefore when they are expressed in the same cells their expression profiles show an inverse correlation. We previously described one positively correlated miRNA/target pair, but it is not known how widespread this phenomenon is. Here, we investigated the correlation between the expression profiles of differentially expressed miRNAs and their targets during tomato fruit development using deep sequencing, Northern blot and RT-qPCR. We found an equal number of positively and negatively correlated miRNA/target pairs indicating that positive correlation is more frequent than previously thought. We also found that the correlation between microRNA and target expression profiles can vary between mRNAs belonging to the same gene family and even for the same target mRNA at different developmental stages. Since microRNAs always negatively regulate their targets, the high number of positively correlated microRNA/target pairs suggests that mutual exclusion could be as widespread as temporal regulation. The change of correlation during development suggests that the type of regulatory circuit directed by a microRNA can change over time and can be different for individual gene family members. Our results also highlight potential problems for expression profiling-based microRNA target identification/validation.
MAP Kinase-Mediated Negative Regulation of Symbiotic Nodule Formation in Medicago truncatula.
Ryu, Hojin; Laffont, Carole; Frugier, Florian; Hwang, Ildoo
2017-01-01
Mitogen-activated protein kinase (MAPK) signaling cascades play critical roles in various cellular events in plants, including stress responses, innate immunity, hormone signaling, and cell specificity. MAPK-mediated stress signaling is also known to negatively regulate nitrogen-fixing symbiotic interactions, but the molecular mechanism of the MAPK signaling cascades underlying the symbiotic nodule development remains largely unknown. We show that the MtMKK5-MtMPK3/6 signaling module negatively regulates the early symbiotic nodule formation, probably upstream of ERN1 (ERF Required for Nodulation 1) and NSP1 (Nod factor Signaling Pathway 1) in Medicago truncatula . The overexpression of MtMKK5 stimulated stress and defense signaling pathways but also reduced nodule formation in M. truncatula roots. Conversely, a MAPK specific inhibitor, U0126, enhanced nodule formation and the expression of an early nodulation marker gene, MtNIN . We found that MtMKK5 directly activates MtMPK3/6 by phosphorylating the TEY motif within the activation loop and that the MtMPK3/6 proteins physically interact with the early nodulation-related transcription factors ERN1 and NSP1. These data suggest that the stress signaling-mediated MtMKK5/MtMPK3/6 module suppresses symbiotic nodule development via the action of early nodulation transcription factors.
MAP Kinase-Mediated Negative Regulation of Symbiotic Nodule Formation in Medicago truncatula
Ryu, Hojin; Laffont, Carole; Frugier, Florian; Hwang, Ildoo
2017-01-01
Mitogen-activated protein kinase (MAPK) signaling cascades play critical roles in various cellular events in plants, including stress responses, innate immunity, hormone signaling, and cell specificity. MAPK-mediated stress signaling is also known to negatively regulate nitrogen-fixing symbiotic interactions, but the molecular mechanism of the MAPK signaling cascades underlying the symbiotic nodule development remains largely unknown. We show that the MtMKK5-MtMPK3/6 signaling module negatively regulates the early symbiotic nodule formation, probably upstream of ERN1 (ERF Required for Nodulation 1) and NSP1 (Nod factor Signaling Pathway 1) in Medicago truncatula. The overexpression of MtMKK5 stimulated stress and defense signaling pathways but also reduced nodule formation in M. truncatula roots. Conversely, a MAPK specific inhibitor, U0126, enhanced nodule formation and the expression of an early nodulation marker gene, MtNIN. We found that MtMKK5 directly activates MtMPK3/6 by phosphorylating the TEY motif within the activation loop and that the MtMPK3/6 proteins physically interact with the early nodulation-related transcription factors ERN1 and NSP1. These data suggest that the stress signaling-mediated MtMKK5/MtMPK3/6 module suppresses symbiotic nodule development via the action of early nodulation transcription factors. PMID:28152300
Tsai, Ching-Yi; Wu, Jacqueline C C; Fang, Chi; Chang, Alice Y W
2017-09-01
Activation of PI3K/Akt signaling, leading to upregulation of nitric oxide synthase II (NOS II)/peroxynitrite cascade in the rostral ventrolateral medulla (RVLM), the brain stem site that maintains blood pressure and sympathetic vasomotor tone, underpins cardiovascular depression induced by the organophosphate pesticide mevinphos. By exhibiting dual-specificity protein- and lipid-phosphatase activity, phosphatase and tensin homolog (PTEN) directly antagonizes the PI3K/Akt signaling by dephosphorylation of phosphatidylinositol-3,4,5-trisphosphate, the lipid product of PI3K. Based on the guiding hypothesis that PTEN may sustain brain stem cardiovascular regulation during mevinphos intoxication as a negative regulator of PI3K/Akt signaling in the RVLM, we aimed in this study to clarify the mechanistic role of PTEN in mevinphos-induced circulatory depression. Microinjection bilaterally of mevinphos (10 nmol) into the RVLM of anesthetized Sprague-Dawley rats induced a progressive hypotension and a decrease in baroreflex-mediated sympathetic vasomotor tone. There was progressive augmentation in PTEN activity as reflected by a decrease in the oxidized form of PTEN in the RVLM during mevinhpos intoxication, without significant changes in the mRNA or protein level of PTEN. Loss-of-function manipulations of PTEN in the RVLM by immunoneutralization, pharmacological blockade or siRNA pretreatment significantly potentiated the increase in Akt activity or NOS II/peroxynitrite cascade in the RVLM, enhanced the elicited hypotension and exacerbated the already reduced baroreflex-mediated sympathetic vasomotor tone. We conclude that augmented PTEN activity via a decrease of its oxidized form in the RVLM sustains brain stem cardiovascular regulation during mevinphos intoxication via downregulation of the NOS II/peroxynitrite cascade as a negative regulator of PI3K/Akt signaling. Copyright © 2017 Elsevier Ltd. All rights reserved.
Akter, Jesmin; Takatori, Atsushi; Hossain, Md Shamim; Ozaki, Toshinori; Nakazawa, Atsuko; Ohira, Miki; Suenaga, Yusuke; Nakagawara, Akira
2011-11-01
Our previous study showed that expression of NLRR3 is significantly high in favorable neuroblastomas (NBL), whereas that of NLRR1 is significantly high in unfavorable NBLs. However, the molecular mechanism of transcriptional regulation of NLRR3 remains elusive. This study was undertaken to clarify the transcriptional regulation of NLRR3 and its association with the prognosis of NBL. NLRR3 and MYCN expressions in NBL cell lines were analyzed after induction of cell differentiation, MYCN knockdown, and overexpression. The transcriptional regulation of NLRR3 was analyzed by luciferase reporter and chromatin immunoprecipitation assays. Quantitative PCR was used for examining the expression of NLRR3, Miz-1, or MYCN in 87 primary NBLs. The expression of NLRR3 mRNA was upregulated during differentiation of NBL cells induced by retinoic acid, accompanied with reduced expression of MYCN, suggesting that NLRR3 expression was inversely correlated with MYCN in differentiation. Indeed, knockdown of MYCN induced NLRR3 expression, whereas exogenously expressed MYCN reduced cellular NLRR3 expression. We found that Miz-1 was highly expressed in favorable NBLs and NLRR3 was induced by Miz-1 expression in NBL cells. MYCN and Miz-1 complexes bound to NLRR3 promoter and showed a negative regulation of NLRR3 expression. In addition, a combination of low expression of NLRR3 and high expression of MYCN was highly associated with poor prognosis. NLRR3 is a direct target of MYCN, which associates with Miz-1 and negatively regulates NLRR3 expression. NLRR3 may play a role in NBL differentiation and the survival of NBL patients by inversely correlating with MYCN amplification. ©2011 AACR
Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ
Mank, Nils N.; Berghoff, Bork A.; Hermanns, Yannick N.; Klug, Gabriele
2012-01-01
The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA. PMID:22988125
Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ.
Mank, Nils N; Berghoff, Bork A; Hermanns, Yannick N; Klug, Gabriele
2012-10-02
The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA.
The PBX1 lupus susceptibility gene regulates CD44 expression
Niu, Yuxin; Sengupta, Mayami; Titov, Anton A.; Choi, Seung-Chul; Morel, Laurence
2017-01-01
PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4+ T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and show that the lupus-associated isoform PBX1-d has unique molecular functions. PMID:28257976
USDA-ARS?s Scientific Manuscript database
Estradiol (E2) is a steroid hormone that negatively affects muscle growth in rainbow trout, but the mechanisms directing with this response are not fully understood. To better characterize the effects of E2 in muscle, we identified differentially regulated mRNAs and lncRNAs in juvenile rainbow trout...
2011-05-01
task 1 b) GATA3 was shown to directly modulate expression of genes regulating the cell cycle (Pei et al., 2009; Molenaar et al., 2010) and GATA3...downstream target of GATA3 and restrains mammary luminal progenitor cell proliferation and tumorigenesis. Cancer Ce/l15:389-401. Molenaar JJ, Ebus
Shao, Robin; Keuper, Kati; Geng, Xiujuan; Lee, Tatia M C
2016-08-01
Evidence indicates meditation facilitates affective regulation and reduces negative affect. It also influences resting-state functional connectivity between affective networks and the posterior cingulate (PCC)/precuneus, regions critically implicated in self-referential processing. However, no longitudinal study employing active control group has examined the effect of meditation training on affective processing, PCC/precuneus connectivity, and their association. Here, we report that eight-week meditation, but not relaxation, training 'neutralized' affective processing of positive and negative stimuli in healthy elderly participants. Additionally, meditation versus relaxation training increased the positive connectivity between the PCC/precuneus and the pons, the direction of which was largely directed from the pons to the PCC/precuneus, as revealed by dynamic causal modeling. Further, changes in connectivity between the PCC/precuneus and pons predicted changes in affective processing after meditation training. These findings indicate meditation promotes self-referential affective regulation based on increased regulatory influence of the pons on PCC/precuneus, which new affective-processing strategy is employed across both resting state and when evaluating affective stimuli. Such insights have clinical implications on interventions on elderly individuals with affective disorders. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
miR-30 Family Members Negatively Regulate Osteoblast Differentiation*
Wu, Tingting; Zhou, Haibo; Hong, Yongfeng; Li, Jing; Jiang, Xinquan; Huang, Hui
2012-01-01
miRNAs are endogenously expressed 18- to 25-nucleotide RNAs that regulate gene expression through translational repression by binding to a target mRNA. Recently, it has been indicated that miRNAs are closely related to osteogenesis. Our previous data suggested that miR-30 family members might be important regulators during the biomineralization process. However, whether and how they modulate osteogenic differentiation have not been explored. In this study, we demonstrated that miR-30 family members negatively regulate BMP-2-induced osteoblast differentiation by targeting Smad1 and Runx2. Evidentially, overexpression of miR-30 family members led to a decrease of alkaline phosphatase activity, whereas knockdown of them increased the activity. Then bioinformatic analysis identified potential target sites of the miR-30 family located in the 3′ untranslated regions of Smad1 and Runx2. Western blot analysis and quantitative RT-PCR assays demonstrated that miR-30 family members inhibit Smad1 gene expression on the basis of repressing its translation. Furthermore, dual-luciferase reporter assays confirmed that Smad1 is a direct target of miR-30 family members. Rescue experiments that overexpress Smad1 and Runx2 significantly eliminated the inhibitory effect of miR-30 on osteogenic differentiation and provided strong evidence that miR-30 mediates the inhibition of osteogenesis by targeting Smad1 and Runx2. Also, the inhibitory effects of the miR-30 family were validated in mouse bone marrow mesenchymal stem cells. Therefore, our study uncovered that miR-30 family members are key negative regulators of BMP-2-mediated osteogenic differentiation. PMID:22253433
Chen, Jiani; Nolan, Trevor M.; Zhang, Mingcai; Tong, Hongning; Xin, Peiyong; Chu, Jinfang; Li, Zhaohu
2017-01-01
Plant steroid hormones, brassinosteroids (BRs), play important roles in growth and development. BR signaling controls the activities of BRASSINOSTERIOD INSENSITIVE1-EMS-SUPPRESSOR1/BRASSINAZOLE-RESISTANT1 (BES1/BZR1) family transcription factors. Besides the role in promoting growth, BRs are also implicated in plant responses to drought stress. However, the molecular mechanisms by which BRs regulate drought response have just begun to be revealed. The functions of WRKY transcription factors in BR-regulated plant growth have not been established, although their roles in stress responses are well documented. Here, we found that three Arabidopsis thaliana group III WRKY transcription factors, WRKY46, WRKY54, and WRKY70, are involved in both BR-regulated plant growth and drought response as the wrky46 wrky54 wrky70 triple mutant has defects in BR-regulated growth and is more tolerant to drought stress. RNA-sequencing analysis revealed global roles of WRKY46, WRKY54, and WRKY70 in promoting BR-mediated gene expression and inhibiting drought responsive genes. WRKY54 directly interacts with BES1 to cooperatively regulate the expression of target genes. In addition, WRKY54 is phosphorylated and destabilized by GSK3-like kinase BR-INSENSITIVE2, a negative regulator in the BR pathway. Our results therefore establish WRKY46/54/70 as important signaling components that are positively involved in BR-regulated growth and negatively involved in drought responses. PMID:28576847
Dynein-mediated trafficking negatively regulates LET-23 EGFR signaling
Skorobogata, Olga; Meng, Jassy; Gauthier, Kimberley; Rocheleau, Christian E.
2016-01-01
Epidermal growth factor receptor (EGFR) signaling is essential for animal development, and increased signaling underlies many human cancers. Identifying the genes and cellular processes that regulate EGFR signaling in vivo will help to elucidate how this pathway can become inappropriately activated. Caenorhabditis elegans vulva development provides an in vivo model to genetically dissect EGFR signaling. Here we identified a mutation in dhc-1, the heavy chain of the cytoplasmic dynein minus end–directed microtubule motor, in a genetic screen for regulators of EGFR signaling. Despite the many cellular functions of dynein, DHC-1 is a strong negative regulator of EGFR signaling during vulva induction. DHC-1 is required in the signal-receiving cell and genetically functions upstream or in parallel to LET-23 EGFR. LET-23 EGFR accumulates in cytoplasmic foci in dhc-1 mutants, consistent with mammalian cell studies in which dynein is shown to regulate late endosome trafficking of EGFR with the Rab7 GTPase. However, we found different distributions of LET-23 EGFR foci in rab-7 versus dhc-1 mutants, suggesting that dynein functions at an earlier step of LET-23 EGFR trafficking to the lysosome than RAB-7. Our results demonstrate an in vivo role for dynein in limiting LET-23 EGFR signaling via endosomal trafficking. PMID:27654944
Transcription through enhancers suppresses their activity in Drosophila
2013-01-01
Background Enhancer elements determine the level of target gene transcription in a tissue-specific manner, providing for individual patterns of gene expression in different cells. Knowledge of the mechanisms controlling enhancer action is crucial for understanding global regulation of transcription. In particular, enhancers are often localized within transcribed regions of the genome. A number of experiments suggest that transcription can have both positive and negative effects on regulatory elements. In this study, we performed direct tests for the effect of transcription on enhancer activity. Results Using a transgenic reporter system, we investigated the relationship between the presence of pass-through transcription and the activity of Drosophila enhancers controlling the expression of the white and yellow genes. The results show that transcription from different promoters affects the activity of enhancers, counteracting their ability to activate the target genes. As expected, the presence of a transcriptional terminator between the inhibiting promoter and the affected enhancer strongly reduces the suppression. Moreover, transcription leads to dislodging of the Zeste protein that is responsible for the enhancer-dependent regulation of the white gene, suggesting a 'transcription interference’ mechanism for this regulation. Conclusions Our findings suggest a role for pass-through transcription in negative regulation of enhancer activity. PMID:24279291
The nonconscious cessation of goal pursuit: when goals and negative affect are coactivated.
Aarts, Henk; Custers, Ruud; Holland, Rob W
2007-02-01
Extending on the recent investigation into the implicit affective processes underlying motivation and decision making, 5 studies examined the role of negative affect in moderating goal priming effects. Specifically, experimental effects on measures that typify motivational qualities of goal systems, such as keeping a goal at a heightened level of mental accessibility and exerting effort to work for a goal and experiencing desire to attain the goal, showed that the motivation and resultant operation of social goals cease when these goals are primed in temporal proximity of negatively valenced information. These goal cessation effects resulting from the mere coactivation of a goal and negative affect are discussed against the background of present research on nonconscious goal pursuit and the role of accessibility and desirability in the regulation of automatic goal-directed behavior. ((c) 2007 APA, all rights reserved).
Empirical validation of a model of reminiscence and health in later life.
Cappeliez, Philippe; O'Rourke, Norm
2006-07-01
This study addresses the adaptive value of functions of reminiscence with respect to physical and mental health in later life. A model examining the relationships between the functions of reminiscence and life satisfaction, psychiatric distress, and health is presented and tested. Self-positive (reminiscence for Identity, Death Preparation, and Problem Solving) and self-negative (reminiscence for Boredom Reduction, Bitterness Revival, and Intimacy Maintenance) functions have statistically significant and direct associations with the well-being of this sample of older adults, the first positively and the second negatively. Prosocial functions (reminiscence for Conversation, and to Teach-Inform Others) appear to have no direct link with health. Self-functions appear to have an important and lasting influence on physical and mental health, whereas prosocial functions may affect health by means of their role in emotional regulation.
Hinske, Ludwig Christian; Galante, Pedro A. F.; Limbeck, Elisabeth; Möhnle, Patrick; Parmigiani, Raphael B.; Ohno-Machado, Lucila; Camargo, Anamaria A.; Kreth, Simone
2015-01-01
About half of the known miRNA genes are located within protein-coding host genes, and are thus subject to co-transcription. Accumulating data indicate that this coupling may be an intrinsic mechanism to directly regulate the host gene’s expression, constituting a negative feedback loop. Inevitably, the cell requires a yet largely unknown repertoire of methods to regulate this control mechanism. We propose APA as one possible mechanism by which negative feedback of intronic miRNA on their host genes might be regulated. Using in-silico analyses, we found that host genes that contain seed matching sites for their intronic miRNAs yield longer 32UTRs with more polyadenylation sites. Additionally, the distribution of polyadenylation signals differed significantly between these host genes and host genes of miRNAs that do not contain potential miRNA binding sites. We then transferred these in-silico results to a biological example and investigated the relationship between ZFR and its intronic miRNA miR-579 in a U87 cell line model. We found that ZFR is targeted by its intronic miRNA miR-579 and that alternative polyadenylation allows differential targeting. We additionally used bioinformatics analyses and RNA-Seq to evaluate a potential cross-talk between intronic miRNAs and alternative polyadenylation. CPSF2, a gene previously associated with alternative polyadenylation signal recognition, might be linked to intronic miRNA negative feedback by altering polyadenylation signal utilization. PMID:25799583
The Circadian Clock Coordinates Ribosome Biogenesis
Symul, Laura; Martin, Eva; Atger, Florian; Naef, Felix; Gachon, Frédéric
2013-01-01
Biological rhythms play a fundamental role in the physiology and behavior of most living organisms. Rhythmic circadian expression of clock-controlled genes is orchestrated by a molecular clock that relies on interconnected negative feedback loops of transcription regulators. Here we show that the circadian clock exerts its function also through the regulation of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator directly regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis. PMID:23300384
Emotion regulation in the brain: conceptual issues and directions for developmental research.
Lewis, Marc D; Stieben, Jim
2004-01-01
Emotion regulation cannot be temporally distinguished from emotion in the brain, but activation patterns in prefrontal cortex appear to mediate cognitive control during emotion episodes. Frontal event-related potentials (ERPs) can tap cognitive control hypothetically mediated by the anterior cingulate cortex, and developmentalists have used these to differentiate age, individual, and emotion-valence factors. Extending this approach, the present article outlines a research strategy for studying emotion regulation in children by combining emotion induction with a go/no-go task known to produce frontal ERPs. Preliminary results indicate that medial-frontal ERP amplitudes diminish with age but become more sensitive to anxiety, and internalizing children show higher amplitudes than noninternalizing children, especially when anxious. These results may reflect age and individual differences in the effortful regulation of negative emotion.
Ni, Xiangyang; Westpheling, Janet
1997-01-01
The chi63 promoter directs glucose-sensitive, chitin-dependent transcription of a gene involved in the utilization of chitin as carbon source. Analysis of 5′ and 3′ deletions of the promoter region revealed that a 350-bp segment is sufficient for wild-type levels of expression and regulation. The analysis of single base changes throughout the promoter region, introduced by random and site-directed mutagenesis, identified several sequences to be important for activity and regulation. Single base changes at −10, −12, −32, −33, −35, and −37 upstream of the transcription start site resulted in loss of activity from the promoter, suggesting that bases in these positions are important for RNA polymerase interaction. The sequences centered around −10 (TATTCT) and −35 (TTGACC) in this promoter are, in fact, prototypical of eubacterial promoters. Overlapping the RNA polymerase binding site is a perfect 12-bp direct repeat sequence. Some base changes within this direct repeat resulted in constitutive expression, suggesting that this sequence is an operator for negative regulation. Other base changes resulted in loss of glucose repression while retaining the requirement for chitin induction, suggesting that this sequence is also involved in glucose repression. The fact that cis-acting mutations resulted in glucose resistance but not inducer independence rules out the possibility that glucose repression acts exclusively by inducer exclusion. The fact that mutations that affect glucose repression and chitin induction fall within the same direct repeat sequence module suggests that the direct repeat sequence facilitates both chitin induction and glucose repression. PMID:9371809
Effects of empathic paraphrasing - extrinsic emotion regulation in social conflict.
Seehausen, Maria; Kazzer, Philipp; Bajbouj, Malek; Prehn, Kristin
2012-01-01
In the present study, we investigated the effects of empathic paraphrasing as an extrinsic emotion regulation technique in social conflict. We hypothesized that negative emotions elicited by social conflict can be regulated extrinsically in a conversation by a listener following the narrator's perspective and verbally expressing cognitive empathy. Twenty participants were interviewed on an ongoing or recently self-experienced social conflict. The interviewer utilized 10 standardized open questions inviting participants to describe their perception of the conflict. After each of the 10 descriptions, the interviewer responded by either paraphrasing or taking notes (control condition). Valence ratings pertaining to the current emotional state were assessed during the interview along with psychophysiological and voice recordings. Participants reported feeling less negative after hearing the interviewer paraphrase what they had said. In addition, we found a lower sound intensity of participants' voices when answering to questions following a paraphrase. At the physiological level, skin conductance response, as well as heart rate, were higher during paraphrasing than during taking notes, while blood volume pulse amplitude was lower during paraphrasing, indicating higher autonomic arousal. The results show that demonstrating cognitive empathy through paraphrasing can extrinsically regulate negative emotion on a short-term basis. Paraphrasing led to enhanced autonomic activation in recipients, while at the same time influencing emotional valence in the direction of feeling better. A possible explanation for these results is that being treated in an empathic manner may stimulate a more intense emotion processing helping to transform and resolve the conflict.
Effects of Empathic Paraphrasing – Extrinsic Emotion Regulation in Social Conflict
Seehausen, Maria; Kazzer, Philipp; Bajbouj, Malek; Prehn, Kristin
2012-01-01
In the present study, we investigated the effects of empathic paraphrasing as an extrinsic emotion regulation technique in social conflict. We hypothesized that negative emotions elicited by social conflict can be regulated extrinsically in a conversation by a listener following the narrator’s perspective and verbally expressing cognitive empathy. Twenty participants were interviewed on an ongoing or recently self-experienced social conflict. The interviewer utilized 10 standardized open questions inviting participants to describe their perception of the conflict. After each of the 10 descriptions, the interviewer responded by either paraphrasing or taking notes (control condition). Valence ratings pertaining to the current emotional state were assessed during the interview along with psychophysiological and voice recordings. Participants reported feeling less negative after hearing the interviewer paraphrase what they had said. In addition, we found a lower sound intensity of participants’ voices when answering to questions following a paraphrase. At the physiological level, skin conductance response, as well as heart rate, were higher during paraphrasing than during taking notes, while blood volume pulse amplitude was lower during paraphrasing, indicating higher autonomic arousal. The results show that demonstrating cognitive empathy through paraphrasing can extrinsically regulate negative emotion on a short-term basis. Paraphrasing led to enhanced autonomic activation in recipients, while at the same time influencing emotional valence in the direction of feeling better. A possible explanation for these results is that being treated in an empathic manner may stimulate a more intense emotion processing helping to transform and resolve the conflict. PMID:23162516
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arumugam, Aadithya; Weng, Zhiping; Chaudhary, Sandeep C.
Highlights: • Targeting ODC to hair follicle augments skin carcinogenesis and invasive SCCs. • Hair follicle ODC expands stem cell compartment carrying CD34{sup +}/K15{sup +}/p63{sup +} keratinocytes. • Negatively regulated Notch1 is associated with expansion of stem cell compartment. - Abstract: Over-expression of ornithine decarboxylase (ODC) is known to be involved in the epidermal carcinogenesis. However, the mechanism by which it enhances skin carcinogenesis remains undefined. Recently, role of stem cells localized in various epidermal compartments has been shown in the pathogenesis of skin cancer. To direct ODC expression in distinct epidermal compartments, we have developed keratin 6 (K6)-ODC/SKH-1 andmore » keratin 14 (K14)-ODC/SKH-1 mice and employed them to investigate the role of ODC directed to these epidermal compartments on UVB-induced carcinogenesis. K6-driven ODC over-expression directed to outer root sheath (ORS) of hair follicle was more effective in augmenting tumorigenesis as compared to mice where K14-driven ODC expression was directed to inter-follicular epidermal keratinocytes. Chronically UVB-irradiated K6-ODC/SKH-1 developed 15 ± 2.5 tumors/mouse whereas K14-ODC/SKH-1 developed only 6.8 ± 1.5 tumors/mouse. K6-ODC/SKH-1 showed augmented UVB-induced proliferation and much higher pro-inflammatory responses than K14-ODC/SKH-1 mice. Tumors induced in K6-ODC/SKH-1 were rapidly growing, invasive and ulcerative squamous cell carcinoma (SCC) showing decreased expression of epidermal polarity marker E-cadherin and enhanced mesenchymal marker, fibronectin. Interestingly, the number of CD34/CK15/p63 positive stem-like cells was significantly higher in chronically UVB-irradiated K6-ODC/SKH-1 as compared to K14-ODC/SKH-1 mice. Reduced Notch1 expression was correlated with the expansion of stem cell compartment in these animals. However, other signaling pathways such as DNA damage response or mTOR signaling pathways were not significantly different in tumors induced in these two murine models suggesting the specificity of Notch pathway in this regard. These data provide a novel role of ODC in augmenting tumorigenesis via negatively regulated Notch-mediated expansion of stem cell compartment.« less
Zhang, Lingyun; Ke, Fang; Liu, Zhaoyuan; Bai, Jing; Liu, Jinlin; Yan, Sha; Xu, Zhenyao; Lou, Fangzhou; Wang, Hong; Zhu, Huiyuan; Sun, Yang; Cai, Wei; Gao, Yuanyuan; Li, Qun; Yu, Xue-Zhong; Qian, Youcun; Hua, Zichun; Deng, Jiong; Li, Qi-Jing; Wang, Honglin
2015-01-01
Peripherally derived regulatory T (pTreg) cell generation requires T-cell receptor (TCR) signalling and the cytokines TGF-β1 and IL-2. Here we show that TCR signalling induces the microRNA miR-31, which negatively regulates pTreg-cell generation. miR-31 conditional deletion results in enhanced induction of pTreg cells, and decreased severity of experimental autoimmune encephalomyelitis (EAE). Unexpectedly, we identify Gprc5a as a direct target of miR-31. Gprc5a is known as retinoic acid-inducible protein 3, and its deficiency leads to impaired pTreg-cell induction and increased EAE severity. By generating miR-31 and Gprc5a double knockout mice, we show that miR-31 promotes the development of EAE through inhibiting Gprc5a. Thus, our data identify miR-31 and its target Gprc5a as critical regulators for pTreg-cell generation, suggesting a previously unrecognized epigenetic mechanism for dysfunctional Treg cells in autoimmune diseases. PMID:26165721
Andresen, Vibeke; Pise-Masison, Cynthia A.; Sinha-Datta, Uma; Bellon, Marcia; Valeri, Valerio; Washington Parks, Robyn; Cecchinato, Valentina; Fukumoto, Risaku; Nicot, Christophe
2011-01-01
Disease development in human T-cell leukemia virus type 1 (HTLV-1)–infected individuals is positively correlated with the level of integrated viral DNA in T cells. HTLV-1 replication is positively regulated by Tax and Rex and negatively regulated by the p30 and HBZ proteins. In the present study, we demonstrate that HTLV-1 encodes another negative regulator of virus expression, the p13 protein. Expressed separately, p13 localizes to the mitochondria, whereas in the presence of Tax, part of it is ubiquitinated, stabilized, and rerouted to the nuclear speckles. The p13 protein directly binds Tax, decreases Tax binding to the CBP/p300 transcriptional coactivator, and, by reducing Tax transcriptional activity, suppresses viral expression. Because Tax stabilizes its own repressor, these findings suggest that HTLV-1 has evolved a complex mechanism to control its own replication. Further, these results highlight the importance of studying the function of the HTLV-1 viral proteins, not only in isolation, but also in the context of full viral replication. PMID:21677314
LOSS OF JAK2 REGULATION VIA VHL-SOCS1 E3 UBIQUITIN HETEROCOMPLEX UNDERLIES CHUVASH POLYCYTHEMIA
Russell, Ryan C.; Sufan, Roxana I.; Zhou, Bing; Heir, Pardeep; Bunda, Severa; Sybingco, Stephanie S.; Greer, Samantha N.; Roche, Olga; Heathcote, Samuel A.; Chow, Vinca W.K.; Boba, Lukasz M.; Richmond, Terri D.; Hickey, Michele M.; Barber, Dwayne L.; Cheresh, David A.; Simon, M. Celeste; Irwin, Meredith S.; Kim, William Y.; Ohh, Michael
2011-01-01
SUMMARY Chuvash polycythemia (CP) is a rare congenital form of polycythemia caused by homozygous R200W and H191D mutations in the von Hippel-Lindau (VHL) gene whose gene product is the principal negative regulator of hypoxia-inducible factor. However, the molecular mechanisms underlying some of the hallmark features of CP such as hypersensitivity to erythropoietin are unclear. Here, we show that VHL directly binds suppressor of cytokine signalling 1 (SOCS1) to form a heterodimeric E3 ligase that targets phosphorylated (p)JAK2 for ubiquitin-mediated destruction. In contrast, CP-associated VHL mutants have altered affinity for SOCS1 and fail to engage and degrade pJAK2. Systemic administration of a highly selective JAK2 inhibitor, TG101209, reverses the disease phenotype in vhlR200W/R200W knock-in mice, a model that faithfully recapitulates human CP. These results reveal VHL as a SOCS1-cooperative negative regulator of JAK2 and provide compelling biochemical and preclinical evidence for JAK2- targeted therapy in CP patients. PMID:21685897
Troxel, Wendy M; Trentacosta, Christopher J; Forbes, Erika E; Campbell, Susan B
2013-02-01
Secure parent-child relationships are implicated in children's self-regulation, including the ability to self-soothe at bedtime. Sleep, in turn, may serve as a pathway linking attachment security with subsequent emotional and behavioral problems in children. We used path analysis to examine the direct relationship between attachment security and maternal reports of sleep problems during toddlerhood and the degree to which sleep serves as a pathway linking attachment with subsequent teacher-reported emotional and behavioral problems. We also examined infant negative emotionality as a vulnerability factor that may potentiate attachment-sleep-adjustment outcomes. Data were drawn from 776 mother-infant dyads participating in the National Institute of Child and Human Development Study of Early Child Care. After statistically adjusting for mother and child characteristics, including child sleep and emotional and behavioral problems at 24 months, we found no evidence for a statistically significant direct path between attachment security and sleep problems at 36 months; however, there was a direct relationship between sleep problems at 36 months and internalizing problems at 54 months. Path models that examined the moderating influence of infant negative emotionality demonstrated significant direct relationships between attachment security and toddler sleep problems and between sleep problems and subsequent emotional and behavioral problems, but only among children characterized by high negative emotionality at 6 months. In addition, among this subset, there was a significant indirect path between attachment and internalizing problems through sleep problems. These longitudinal findings implicate sleep as one critical pathway linking attachment security with adjustment difficulties, particularly among temperamentally vulnerable children. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Troxel, Wendy M.; Trentacosta, Christopher J.; Forbes, Erika E.; Campbell, Susan B.
2013-01-01
Secure parent-child relationships are implicated in children’s self-regulation, including the ability to self-soothe at bedtime. Sleep, in turn, may serve as a pathway linking attachment security with subsequent emotional and behavioral problems in children. We used path analysis to examine the direct relationship between attachment security and maternal-reports of sleep problems during toddlerhood, and the degree to which sleep serves as a pathway linking attachment with subsequent teacher-reported emotional and behavioral problems. We also examined infant negative emotionality as a vulnerability factor that may potentiate attachment-sleep-adjustment outcomes. Data were drawn from 776 mother-infant dyads participating in the NICHD Study of Early Child Care (SECC). In the full sample, after statistically adjusting for mother and child characteristics, including child sleep and emotional and behavioral problems at 24 months, we did not find evidence for a statistically significant direct path between attachment security and sleep problems at 36 months; however, there was a direct relationship between sleep problems at 36 months and internalizing problems at 54 months. Path models that examined the moderating influence of infant negative emotionality demonstrated significant direct relationships between attachment security and toddler sleep problems, and sleep problems and subsequent emotional and behavioral problems, but only among children characterized by high negative emotionality at 6 months of age. In addition, among this subset, there was a significant indirect path between attachment and internalizing problems through sleep problems. These longitudinal findings implicate sleep as one critical pathway linking attachment security with adjustment difficulties, particularly among temperamentally vulnerable children. PMID:23421840
Reddi, Honey V; Madde, Pranathi; Milosevic, Dragana; Hackbarth, Jennifer S; Algeciras-Schimnich, Alicia; McIver, Bryan; Grebe, Stefan K G; Eberhardt, Norman L
2011-01-01
In vitro studies have demonstrated that the PAX8/PPARγ fusion protein (PPFP), which occurs frequently in follicular thyroid carcinomas (FTC), exhibits oncogenic activity. However, paradoxically, a meta-analysis of extant tumor outcome studies indicates that 68% of FTC-expressing PPFP are minimally invasive compared to only 32% of those lacking PPFP (χ(2) = 6.86, P = 0.008), suggesting that PPFP favorably impacts FTC outcomes. In studies designed to distinguish benign thyroid neoplasms from thyroid carcinomas, the previously identified tumor suppressor miR-122, a major liver micro-RNA (miR) that is decreased in hepatocellular carcinoma, was increased 8.9-fold (P < 0.05) in all FTC versus normal, 9.2-fold in FTC versus FA (P < 0.05), and 16.8-fold (P < 0.001) in FTC + PPFP versus FTC - PPFP. Constitutive expression of PPFP in the FTC-derived cell line WRO (WRO-PPFP) caused a 5-fold increase of miR-122 expression (P < 0.05) and a striking 5.1-fold reduction (P < 0.0001) in tumor progression compared to WRO-vector cells in a mouse xenograft model. Constitutive expression of either miR-122 or a dominant-negative PPARγ mutant in WRO cells was less effective than PPFP at inhibiting xenograft tumor progression (1.8-fold [P < 0.001] and 1.7-fold [P < 0.03], respectively). PPFP-induced up-regulation of miR-122 expression was independent of its known dominant-negative PPARγ activity. Up-regulation of miR-122 negatively regulates ADAM-17, a known downstream target, in thyroid cells, suggesting an antiangiogenic mechanism in thyroid carcinoma. This latter inference is directly supported by reduced CD-31 expression in WRO xenografts expressing PPFP, miR-122, and DN-PPARγ. We conclude that, in addition to its apparent oncogenic potential in vitro, PPFP exhibits paradoxical tumor suppressor activity in vivo, mediated by multiple mechanisms including up-regulation of miR-122 and dominant-negative inhibition of PPARγ activity.
MiR-9 is involved in TGF-β1-induced lung cancer cell invasion and adhesion by targeting SOX7.
Han, Lichun; Wang, Wei; Ding, Wei; Zhang, Lijian
2017-09-01
MicroRNA (miR)-9 plays different roles in different cancer types. Here, we investigated the role of miR-9 in non-small-cell lung cancer (NSCLC) cell invasion and adhesion in vitro and explored whether miR-9 was involved in transforming growth factor-beta 1 (TGF-β1)-induced NSCLC cell invasion and adhesion by targeting SOX7. The expression of miR-9 and SOX7 in human NSCLC tissues and cell lines was examined by reverse transcription-quantitative polymerase chain reaction. Gain-of-function and loss-of-function experiments were performed on A549 and HCC827 cells to investigate the effect of miR-9 and SOX7 on NSCLC cell invasion and adhesion in the presence or absence of TGF-β1. Transwell-Matrigel assay and cell adhesion assay were used to examine cell invasion and adhesion abilities. Luciferase reporter assay was performed to determine whether SOX7 was a direct target of miR-9. We found miR-9 was up-regulated and SOX7 was down-regulated in human NSCLC tissues and cell lines. Moreover, SOX7 expression was negatively correlated with miR-9 expression. miR-9 knockdown or SOX7 overexpression could suppress TGF-β1-induced NSCLC cell invasion and adhesion. miR-9 directly targets the 3' untranslated region of SOX7, and SOX7 protein expression was down-regulated by miR-9. TGF-β1 induced miR-9 expression in NSCLC cells. miR-9 up-regulation led to enhanced NSCLC cell invasion and adhesion; however, these effects could be attenuated by SOX7 overexpression. We concluded that miR-9 expression was negatively correlated with SOX7 expression in human NSCLC. miR-9 was up-regulated by TGF-β1 and contributed to TGF-β1-induced NSCLC cell invasion and adhesion by directly targeting SOX7. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Mi, Da; Carr, Catherine B.; Georgala, Petrina A.; Huang, Yu-Ting; Manuel, Martine N.; Jeanes, Emily; Niisato, Emi; Sansom, Stephen N.; Livesey, Frederick J.; Theil, Thomas; Hasenpusch-Theil, Kerstin; Simpson, T. Ian; Mason, John O.; Price, David J.
2013-01-01
Summary The mechanisms by which early spatiotemporal expression patterns of transcription factors such as Pax6 regulate cortical progenitors in a region-specific manner are poorly understood. Pax6 is expressed in a gradient across the developing cortex and is essential for normal corticogenesis. We found that constitutive or conditional loss of Pax6 increases cortical progenitor proliferation by amounts that vary regionally with normal Pax6 levels. We compared the gene expression profiles of equivalent Pax6-expressing progenitors isolated from Pax6+/+ and Pax6−/− cortices and identified many negatively regulated cell-cycle genes, including Cyclins and Cdks. Biochemical assays indicated that Pax6 directly represses Cdk6 expression. Cyclin/Cdk repression inhibits retinoblastoma protein (pRb) phosphorylation, thereby limiting the transcription of genes that directly promote the mechanics of the cell cycle, and we found that Pax6 inhibits pRb phosphorylation and represses genes involved in DNA replication. Our results indicate that Pax6’s modulation of cortical progenitor cell cycles is regional and direct. PMID:23622063
Kim, Sanghag; Kochanska, Grazyna
2012-01-01
This study examined infants’ negative emotionality as moderating the effect of parent-child Mutually Responsive Orientation (MRO) on children’s self-regulation (N=102). Negative emotionality was observed in anger-eliciting episodes and in interactions with parents at 7 months. MRO was coded in naturalistic interactions at 15 months. Self-regulation was measured at 25 months in effortful control battery and as self-regulated compliance to parental requests and prohibitions. Negative emotionality moderated the effects of mother-child MRO. Highly negative infants were less self-regulated when they were in unresponsive relationships (low MRO), but more self-regulated when in responsive relationships (high MRO). For infants not prone to negative emotionality, there was no link between MRO and self-regulation. The “regions-of-significance” analysis supported the differential susceptibility model not the diathesis-stress model. PMID:22670684
Elise Pendall; Scott Bridgham; Paul J. Hanson; Bruce Hungate; David W. Kicklighter; Dale W. Johnson; Beverly E. Law; Yiqi Luo; J. Patrick Megonigal; Maria Olsrud; Michael G. Ryan; Shiqiang Wan
2004-01-01
Rising atmospheric CO2 and temperatures are probably altering ecosystem carbon cycling, causing both positive and negative feedbacks to climate. Below-ground processes play a key role in the global carbon (C) cycle because they regulate storage of large quantities of C, and are potentially very sensitive to direct and indirect effects of elevated...
DHU1 negatively regulates UV-B signaling via its direct interaction with COP1 and RUP1.
Kim, Sang-Hoon; Kim, Hani; Chung, Sunglan; Lee, Jae-Hoon
2017-09-16
Although DWD HYPERSENSITIVE TO UV-B 1 (DHU1) is reported to be a negative regulator in UV-B mediated cellular responses, its detailed role in UV-B signaling is still elusive. To further understand the action mechanism of DHU1 in UV-B response, physical and genetic interactions of DHU1 with various UV-B signaling components were investigated. Yeast two hybrid assay results suggested that DHU1 directly interacts with COP1 and RUP1, implying a functional connection with both COP1 and RUP1. In spite of the physical association between DHU1 and COP1, loss of DHU1 did not affect protein stability of COP1. Epistatic analysis showed that the functional loss of both DHU1 and UVR8 leads to alleviation of UV-B hypersensitivity displayed in dhu1-1. Moreover, phenotypic studies with dhu1-1 cop1-6 and dhu1-1 hy5-215 revealed that COP1 and HY5 are epistatic to DHU1, indicating that UV-B hypersensitivity of dhu1-1 requires both COP1 and HY5. In the case of dhu1-1 rup1-1, UV-B responsiveness was similar to that of both dhu1-1 and rup1-1, implying that DHU1 and RUP1 are required for each other's function. Collectively, these results show that the role of DHU1 as a negative regulator in UV-B response may be derived from its direct interaction with COP1 by sequestering COP1 from the active UVR8-COP1 complex, resulting in a decrease in the COP1 population that positively participates in UV-B signaling together with UVR8. Furthermore, this inhibitory role of DHU1 in UV-B signaling is likely to be functionally connected to RUP1. This study will serve as a platform to further understand more detailed action mechanism of DHU1 in UV-B response and DHU1-mediated core UV-B signaling in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.
Rowse, Georgina; Webb, Thomas L.
2017-01-01
Background A growing body of evidence points to relationships between insomnia, negative affect, and paranoid thinking. However, studies are needed to examine (i) whether negative affect mediates the relation between insomnia and paranoid thinking, (ii) whether different types of insomnia exert different effects on paranoia, and (iii) to compare the impact of objective and self-reported sleeping difficulties. Method Structural equation modelling was therefore used to test competing models of the relationships between self-reported insomnia, negative affect, and paranoia. n = 348 participants completed measures of insomnia, negative affect and paranoia. A subset of these participants (n = 91) went on to monitor their sleep objectively (using a portable sleep monitor made by Zeo) for seven consecutive nights. Associations between objectively recorded sleep, negative affect, and paranoia were explored using linear regression. Results The findings supported a fully mediated model where self-reported delayed sleep onset, but not self-reported problems with sleep maintenance or objective measures of sleep, was directly associated with negative affect that, in turn, was associated with paranoia. There was no evidence of a direct association between delayed sleep onset or sleep maintenance problems and paranoia. Conclusions Taken together, the findings point to an association between perceived (but not objective) difficulties initially falling asleep (but not maintaining sleep) and paranoid thinking; a relationship that is fully mediated by negative affect. Future research should seek to disentangle the causal relationships between sleep, negative affect, and paranoia (e.g., by examining the effect of an intervention using prospective designs that incorporate experience sampling). Indeed, interventions might profitably target (i) perceived sleep quality, (ii) sleep onset, and / or (iii) emotion regulation as a route to reducing negative affect and, thus, paranoid thinking. PMID:29049381
Zeng, Lin; Chakraborty, Brinta; Farivar, Tanaz
2017-01-01
ABSTRACT The glucose/mannose-phosphotransferase system (PTS) permease EIIMan encoded by manLMN in the dental caries pathogen Streptococcus mutans has a dominant influence on sugar-specific, CcpA-independent catabolite repression (CR). Mutations in manL affect energy metabolism and virulence-associated traits, including biofilm formation, acid tolerance, and competence. Using promoter::reporter fusions, expression of the manLMN and the fruRKI operons, encoding a transcriptional regulator, a fructose-1-phosphate kinase and a fructose-PTS permease EIIFru, respectively, was monitored in response to carbohydrate source and in mutants lacking CcpA, FruR, and components of EIIMan. Expression of genes for EIIMan and EIIFru was directly regulated by CcpA and CR, as evinced by in vivo and in vitro methods. Unexpectedly, not only was the fruRKI operon negatively regulated by FruR, but also so was manLMN. Carbohydrate transport by EIIMan had a negative influence on expression of manLMN but not fruRKI. In agreement with the proposed role of FruR in regulating these PTS operons, loss of fruR or fruK substantially altered growth on a number of carbohydrates, including fructose. RNA deep sequencing revealed profound changes in gene regulation caused by deletion of fruK or fruR. Collectively, these findings demonstrate intimate interconnection of the regulation of two major PTS permeases in S. mutans and reveal novel and important contributions of fructose metabolism to global regulation of gene expression. IMPORTANCE The ability of Streptococcus mutans and other streptococcal pathogens to survive and cause human diseases is directly dependent upon their capacity to metabolize a variety of carbohydrates, including glucose and fructose. Our research reveals that metabolism of fructose has broad influences on the regulation of utilization of glucose and other sugars, and mutants with changes in certain genes involved in fructose metabolism display profoundly different abilities to grow and express virulence-related traits. Mutants lacking the FruR regulator or a particular phosphofructokinase, FruK, display changes in expression of a large number of genes encoding transcriptional regulators, enzymes required for energy metabolism, biofilm development, biosynthetic and degradative processes, and tolerance of a spectrum of environmental stressors. Since fructose is a major component of the modern human diet, the results have substantial significance in the context of oral health and the development of dental caries. PMID:28821551
Measuring Generalized Expectancies for Negative Mood Regulation.
ERIC Educational Resources Information Center
Catanzaro, Salvatore J.; Mearns, Jack
Research has suggested the utility of studying individual differences in the regulation of negative mood states. Generalized response expectancies for negative mood regulation were defined as expectancies that some overt behavior or cognition would alleviate negative mood states as they occur across situations. The Generalized Expectancy for…
Luong, Gloria; Charles, Susan T.
2014-01-01
Older adults often report less affective reactivity to interpersonal tensions than younger individuals, but few studies have directly investigated mechanisms explaining this effect. The current study examined whether older adults’ differential endorsement of goals, appraisals, and emotion regulation strategies (i.e., conflict avoidance/de-escalation, self-distraction) during a controlled negative social interaction may explain age differences in affective and cardiovascular responses to the conflict discussion. Participants (N=159; 80 younger adults, 79 older adults) discussed hypothetical dilemmas with disagreeable confederates. Throughout the laboratory session, participants’ subjective emotional experience, blood pressure, and pulse rate were assessed. Older adults generally exhibited less reactivity (negative affect reactivity, diastolic blood pressure reactivity, and pulse rate reactivity) to the task, and more pronounced positive and negative affect recovery following the task, than did younger adults. Older adults appraised the task as more enjoyable and the confederate as more likeable, and more strongly endorsed goals to perform well on the task, which mediated age differences in negative affect reactivity, pulse rate reactivity, and positive affect recovery (i.e., increases in post-task positive affect), respectively. In addition, younger adults showed increased negative affect reactivity with greater use of self-distraction, whereas older adults did not. Together, findings suggest that older adults respond less negatively to unpleasant social interactions than younger adults, and these responses are explained in part by older adults’ pursuit of different motivational goals, less threatening appraisals of the social interaction, and more effective use of self-distraction, compared to younger adults. PMID:24773101
Englert, Chris; Zwemmer, Kris; Bertrams, Alex; Oudejans, Raôul R
2015-04-01
In the current study we investigated whether ego depletion negatively affects attention regulation under pressure in sports by assessing participants' dart throwing performance and accompanying gaze behavior. According to the strength model of self-control, the most important aspect of self-control is attention regulation. Because higher levels of state anxiety are associated with impaired attention regulation, we chose a mixed design with ego depletion (yes vs. no) as between-subjects and anxiety level (high vs. low) as within-subjects factor. Participants performed a perceptual-motor task requiring selective attention, namely, dart throwing. In line with our expectations, depleted participants in the high-anxiety condition performed worse and displayed a shorter final fixation on bull's eye, demonstrating that when one's self-control strength is depleted, attention regulation under pressure cannot be maintained. This is the first study that directly supports the general assumption that ego depletion is a major factor in influencing attention regulation under pressure.
Josefsson, Torbjörn; Ivarsson, Andreas; Lindwall, Magnus; Gustafsson, Henrik; Stenling, Andreas; Böröy, Jan; Mattsson, Emil; Carnebratt, Jakob; Sevholt, Simon; Falkevik, Emil
2017-01-01
The main objective of the project was to examine a proposed theoretical model of mindfulness mechanisms in sports. We conducted two studies (the first study using a cross-sectional design and the second a longitudinal design) to investigate if rumination and emotion regulation mediate the relation between dispositional mindfulness and sport-specific coping. Two hundred and forty-two young elite athletes, drawn from various sports, were recruited for the cross-sectional study. For the longitudinal study, 65 elite athletes were recruited. All analyses were performed using Bayesian statistics. The path analyses showed credible indirect effects of dispositional mindfulness on coping via rumination and emotion regulation in both the cross-sectional study and the longitudinal study. Additionally, the results in both studies showed credible direct effects of dispositional mindfulness on rumination and emotion regulation. Further, credible direct effects of emotion regulation as well as rumination on coping were also found in both studies. Our findings support the theoretical model, indicating that rumination and emotion regulation function as essential mechanisms in the relation between dispositional mindfulness and sport-specific coping skills. Increased dispositional mindfulness in competitive athletes (i.e. by practicing mindfulness) may lead to reductions in rumination, as well as an improved capacity to regulate negative emotions. By doing so, athletes may improve their sport-related coping skills, and thereby enhance athletic performance.
Emotion dysregulation and negative affect: Laboratory and EMA investigations in smokers.
MacIntyre, Jessica M; Ruscio, Aimee C; Brede, Emily; Waters, Andrew J
2018-06-01
Difficulties in emotion regulation are associated with addictive behaviors, including smoking. Difficulties in emotion regulation may underlie large, rapid changes in negative affect that can increase likelihood of relapse. We investigated the association between emotion regulation ability and negative affect in smokers assessed both in the laboratory and in the field using Ecological Momentary Assessment. Adult community smokers ( N = 44) carried a personal digital assistant (PDA) for two weeks and were instructed to complete assessments of negative affect multiple times per day. Participants were instructed that they could smoke as much or as little as they liked. The Difficulties in Emotion Regulation Scale (DERS) and the Positive and Negative Affect Schedule (PANAS) were completed at three lab visits. Participants with higher average DERS scores reported greater negative affect at lab visits. When a participant reported a DERS score at a lab visit higher than their individual average, they also reported higher negative affect at that lab visit. Participants with higher baseline DERS scores reported more labile negative affect during EMA than those with lower baseline DERS scores, and they also reported a higher maximum level of negative affect during EMA. Overall, the findings suggest that changes in emotion regulation are associated with negative affect and that emotion regulation ability is related to both the intensity and lability of negative affect. A better understanding of momentary changes in emotion regulation and negative affect may lead to improved interventions for preventing substance use relapse.
Papp, Lauren M.; Witt, Nicole L.
2011-01-01
Individual coping strategies and dyadic coping independently predict partner well-being and relationship functioning; however, it is unclear whether the coping processes are inter-related and whether they uniquely contribute to romantic relationship functioning. One hundred heterosexual dating couples rated the individual coping strategy of negative mood regulation as well as positive and negative dyadic coping. Relationship functioning was assessed via partners’ reports of relationship satisfaction and observers’ ratings of negative interaction in conflict. Actor-Partner Interdependence Models (APIMs; Cook & Kenny, 2005; Kashy & Kenny, 2000) revealed associations between individual coping and dyadic coping in the predicted directions. APIMs also indicated the unique contributions of positive and negative dyadic coping to relationship functioning, above and beyond contributions of individual coping strategies. Implications of dyadic coping as a target of efforts to prevent or treat partner and/or relational distress are discussed. PMID:20954765
Negative Regulation of Violacein Biosynthesis in Chromobacterium violaceum.
Devescovi, Giulia; Kojic, Milan; Covaceuszach, Sonia; Cámara, Miguel; Williams, Paul; Bertani, Iris; Subramoni, Sujatha; Venturi, Vittorio
2017-01-01
In Chromobacteium violaceum , the purple pigment violacein is under positive regulation by the N -acylhomoserine lactone CviI/R quorum sensing system and negative regulation by an uncharacterized putative repressor. In this study we report that the biosynthesis of violacein is negatively controlled by a novel repressor protein, VioS. The violacein operon is regulated negatively by VioS and positively by the CviI/R system in both C. violaceum and in a heterologous Escherichia coli genetic background. VioS does not regulate the CviI/R system and apart from violacein, VioS, and quorum sensing regulate other phenotypes antagonistically. Quorum sensing regulated phenotypes in C. violaceum are therefore further regulated providing an additional level of control.
Medical regulation of cognitive enhancement devices: some concerns
King, Mike; Gavaghan, Colin; McMillan, John
2014-01-01
The authors present a cogent and detailed case for altering the Medical Devices Directive to allow regulation of cognitive enhancement devices (CEDs). Protection against significant risk of harm, especially for the vulnerable, and promotion of benefit through informed use of CEDs are all good features of the proposal. However, the pre-market approval process has limitations, which we explore. We raise the possibility of ‘risk compensation’ in response to the introduction of safety measures, which could alter its effectiveness. The proposal alludes to use of ‘formally trained practitioners,’ which provide a further tier of regulation for CEDs within the proposal. We consider some positive and negative implications of this aspect of the proposal that might warrant further consideration. PMID:27774173
Kim-Spoon, Jungmeen; Cicchetti, Dante; Rogosch, Fred A.
2013-01-01
The longitudinal contributions of emotion regulation and emotion lability/negativity to internalizing symptomatology were examined in a low-income sample (171 maltreated and 151 nonmaltreated children, from age 7 to 10 years). Latent difference score models indicated that, for both maltreated and nonmaltreated children, emotion regulation was a mediator between emotion lability/negativity and internalizing symptomatology, whereas emotion lability/negativity was not a mediator between emotion regulation and internalizing symptomatology. Early maltreatment was associated with high emotion lability/negativity (age 7) that contributed to poor emotion regulation (age 8), which in turn was predictive of increases in internalizing symptomatology (from age 8 to 9). The results imply important roles of emotion regulation in the development of internalizing symptomatology, especially for children with high emotion lability/negativity. PMID:23034132
Nature and Nurturing: Parenting in the Context of Child Temperament
Kiff, Cara J.; Lengua, Liliana J.; Zalewski, Maureen
2011-01-01
Accounting for both bidirectional and interactive effects between parenting and child temperament can fine-tune theoretical models of the role of parenting and temperament in children's development of adjustment problems. Evidence for bidirectional and interactive effects between parenting and children's characteristics of frustration, fear, self-regulation, and impulsivity was reviewed, and an overall model of children's individual differences in response to parenting is proposed. In general, children high in frustration, impulsivity and low in effortful control are more vulnerable to the adverse effects of negative parenting, while in turn, many negative parenting behaviors predict increases in these characteristics. Frustration, fearfulness, and effortful control also appear to elicit parenting behaviors that can predict increases in these characteristics. Irritability renders children more susceptible to negative parenting behaviors. Fearfulness operates in a very complex manner, sometimes increasing children's responses to parenting behaviors and sometimes mitigating them and apparently operating differently across gender. Important directions for future research include the use of study designs and analytic approaches that account for the direction of effects and for developmental changes in parenting and temperament over time. PMID:21461681
Pharmacy students' knowledge, attitudes, and evaluation of direct-to-consumer advertising.
Naik, Rupali K; Borrego, Matthew E; Gupchup, Gireesh V; Dodd, Melanie; Sather, Mike R
2007-10-15
To assess pharmacy students' knowledge, attitudes, and evaluation of direct-to-consumer advertising (DTCA). A cross sectional, self-administered, 106-item survey instrument was used to assess first, second, and third professional year pharmacy students' knowledge about DTCA regulations, attitudes toward DTCA, and evaluation of DTC advertisements with different brief summary formats (professional labeling and patient labeling) and in different media sources (print and television). One hundred twenty (51.3%) of the 234 students enrolled participated in the study. The mean percentage knowledge score was 48.7% +/- 12.5%. Based on the mean scores per item, pharmacy students had an overall negative attitude toward DTC advertisements. Students had an overall negative attitude toward television and print advertisements using the professional labeling format but an overall positive attitude toward the print advertisement using the patient labeling format. Lectures discussing DTC advertising should be included in the pharmacy curriculum.
Streit, Cara; Carlo, Gustavo; Ispa, Jean M; Palermo, Francisco
2017-06-01
The present study examined the early parenting and temperament determinants of children's antisocial and positive behaviors in a low-income, diverse ethno-racial sample. Participants were from the Early Head Start Research and Evaluation Project, which included 960 European American (initial M age = 15.00 months; 51.2% female) and 880 African American mothers and their children (initial M age = 15.10 months; 49.2% female) followed from 15 months of age to 5th grade. For European American children, findings showed direct and indirect effects (via self-regulation) of early negative emotionality on later behaviors. For African American children, discipline practices in infancy had direct long-term implications for behaviors in 5th grade. Discussion highlights the interplay of parenting, temperament, and culture from infancy to late childhood. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Pharmacy Students' Knowledge, Attitudes, and Evaluation of Direct-to-Consumer Advertising
Borrego, Matthew E.; Gupchup, Gireesh V.; Dodd, Melanie; Sather, Mike R.
2007-01-01
Objectives To assess pharmacy students' knowledge, attitudes, and evaluation of direct-to-consumer advertising (DTCA). Methods A cross sectional, self-administered, 106-item survey instrument was used to assess first, second, and third professional year pharmacy students' knowledge about DTCA regulations, attitudes toward DTCA, and evaluation of DTC advertisements with different brief summary formats (professional labeling and patient labeling) and in different media sources (print and television). Results One hundred twenty (51.3%) of the 234 students enrolled participated in the study. The mean percentage knowledge score was 48.7% ± 12.5%. Based on the mean scores per item, pharmacy students had an overall negative attitude toward DTC advertisements. Students had an overall negative attitude toward television and print advertisements using the professional labeling format but an overall positive attitude toward the print advertisement using the patient labeling format. Conclusions Lectures discussing DTC advertising should be included in the pharmacy curriculum. PMID:17998983
Abend, Rany; Sar-El, Roy; Gonen, Tal; Jalon, Itamar; Vaisvaser, Sharon; Bar-Haim, Yair; Hendler, Talma
2018-05-09
Implicit regulation of emotions involves medial-prefrontal cortex (mPFC) regions exerting regulatory control over limbic structures. Diminished regulation relates to aberrant mPFC functionality and psychopathology. Establishing means of modulating mPFC functionality could benefit research on emotion and its dysregulation. Here, we tested the capacity of transcranial direct current stimulation (tDCS) targeting mPFC to modulate subjective emotional states by facilitating implicit emotion regulation. Stimulation was applied concurrently with functional magnetic resonance imaging to validate its neurobehavioral effect. Sixteen participants were each scanned twice, counterbalancing active and sham tDCS application, while undergoing negative mood induction (clips featuring negative vs. neutral contents). Effects of stimulation on emotional experience were assessed using subjective and neural measures. Subjectively, active stimulation led to significant reduction in reported intensity of experienced emotions to negatively valenced (p = 0.005) clips but not to neutral clips (p > 0.99). Active stimulation further mitigated a rise in stress levels from pre- to post-induction (sham: p = 0.004; active: p = 0.15). Neurally, stimulation increased activation in mPFC regions associated with implicit emotion regulation (ventromedial-prefrontal cortex; subgenual anterior-cingulate cortex, sgACC), and in ventral striatum, a core limbic structure (all ps < 0.05). Stimulation also altered functional connectivity (assessed using whole-brain psycho-physiological interaction) between these regions, and with additional limbic regions. Stimulation-induced sgACC activation correlated with reported emotion intensity and depressive symptoms (rs > 0.64, ps < 0.018), suggesting individual differences in stimulation responsivity. Results of this study indicate the potential capacity of tDCS to facilitate brain activation in mPFC regions underlying implicit regulation of emotion and accordingly modulate subjective emotional experiences. © 2018 International Neuromodulation Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shikai; Song, Lili, E-mail: commasll@163.com; Zhang, Liang
Although multiple miRNAs are found involved in radioresistance development in HR-HPV positive (+) cervical cancer, only limited studies explored the regulative mechanism of the miRNAs. miR-21 is one of the miRNAs significantly upregulated in HR-HPV (+) cervical cancer is also significantly associated with radioresistance. However, the detailed regulative network of miR-21 in radioresistance is still not clear. In this study, we confirmed that miR-21 overexpression was associated with higher level of radioresistance in HR-HPV (+) cervical cancer patients and thus decided to further explore its role. Findings of this study found miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervicalmore » cancer cells and decrease radiation induced G2/M block and increase S phase accumulation. By using dual luciferase assay, we verified a binding site between miR-21 and 3′-UTR of large tumor suppressor kinase 1 (LATS1). Through direct binding, miR-21 can regulate LATS1 expression in cervical cancer cells. LATS1 overexpression can reverse miR-21 induced higher colony formation rate and also reduced miR-21 induced S phase accumulation and G2/M phase block reduction under radiation treatment. These results suggested that miR-21-LATS1 axis plays an important role in regulating radiosensitivity. - Highlights: • miR-21 is highly expressed in HR-HPV (+) radioresistant cervical cancer patients. • miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervical cancer cells. • miR-21 can decrease radiation induced G2/M block and increase S phase accumulation. • miR-21 modulates radiosensitivity cervical cancer cell by directly targeting LATS1.« less
De Simone, Silvia; Planta, Anna; Cicotto, Gianfranco
2018-02-01
Nurses' voluntary turnover is a worrying global phenomenon which affects service quality. Retaining nursing staff within a hospital is important to eliminate the negative influence of voluntary turnover on the quality of care and organisation costs. This research helps explain nurses' voluntary turnover by analysing the role of self-efficacy, agentic capacities, job satisfaction, and work engagement on hospital turnover intention, and to study the relationships between these variables and patient satisfaction. This study gathered data from 194 nurses and 181 patients from 22 inpatient wards at two hospitals in southern Italy. Correlation analysis revealed that job satisfaction, work engagement, self-efficacy and agentic capacities were positively interrelated and negatively correlated with turnover intention. Path analysis showed that self-efficacy, some agentic capacities (anticipation and self-regulation), job satisfaction, and work engagement had direct or indirect effects on nurses' turnover intention, and that job satisfaction exerted a stronger effect on turnover intention. Also, patient satisfaction was positively correlated with nurses' job satisfaction, work engagement, self-efficacy, self-regulation and anticipation and negatively correlated with nurses' turnover intention. Results highlighted the importance of implementing actions (for example through feedforward methodology and the goal setting technique) to improve self-efficacy, self-regulation skill, work engagement and job satisfaction in order to reduce nurses' turnover intention and increase patient satisfaction with nursing care. Copyright © 2017 Elsevier Inc. All rights reserved.
Vujanovic, Anka A; Bonn-Miller, Marcel O; Bernstein, Amit; McKee, Laura G; Zvolensky, Michael J
2010-01-01
The present investigation examined the incremental predictive validity of mindfulness skills, as measured by the Kentucky Inventory of Mindfulness Skills (KIMS), in relation to multiple facets of emotional dysregulation, as indexed by the Difficulties in Emotion Regulation Scale (DERS), above and beyond variance explained by negative affectivity, anxiety sensitivity, and distress tolerance. Participants were a nonclinical community sample of 193 young adults (106 women, 87 men; M(age) = 23.91 years). The KIMS Accepting without Judgment subscale was incrementally negatively predictive of all facets of emotional dysregulation, as measured by the DERS. Furthermore, KIMS Acting with Awareness was incrementally negatively related to difficulties engaging in goal-directed behavior. Additionally, both observing and describing mindfulness skills were incrementally negatively related to lack of emotional awareness, and describing skills also were incrementally negatively related to lack of emotional clarity. Findings are discussed in relation to advancing scientific understanding of emotional dysregulation from a mindfulness skills-based framework.
Sun, Di; Zhu, Jianya; Chen, Zhi; Li, Jilun; Wen, Ying
2016-11-14
Avermectins are useful anthelmintic antibiotics produced by Streptomyces avermitilis. We demonstrated that a novel AraC-family transcriptional regulator in this species, SAV742, is a global regulator that negatively controls avermectin biosynthesis and cell growth, but positively controls morphological differentiation. Deletion of its gene, sav_742, increased avermectin production and dry cell weight, but caused delayed formation of aerial hyphae and spores. SAV742 directly inhibited avermectin production by repressing transcription of ave structural genes, and also directly regulated its own gene (sav_742) and adjacent gene sig8 (sav_741). The precise SAV742-binding site on its own promoter region was determined by DNase I footprinting assay coupled with site-directed DNA mutagenesis, and 5-nt inverted repeats (GCCGA-n 10 /n 12 -TCGGC) were found to be essential for SAV742 binding. Similar 5-nt inverted repeats separated by 3, 10 or 15 nt were found in the promoter regions of target ave genes and sig8. The SAV742 regulon was predicted based on bioinformatic analysis. Twenty-six new SAV742 targets were identified and experimentally confirmed, including genes involved in primary metabolism, secondary metabolism and development. Our findings indicate that SAV742 plays crucial roles in not only avermectin biosynthesis but also coordination of complex physiological processes in S. avermitilis.
Ortner, Catherine Nicole Marie; Briner, Esther Lydia; Marjanovic, Zdravko
2017-01-01
Research in emotion regulation has begun to examine various predictors of emotion regulation choices, including individual differences and contextual variables. However, scant attention has been paid to the extent to which people’s beliefs about the specific consequences of emotion regulation strategies for the components of an emotional response and long-term well-being predict their behavioral regulatory choices and, in turn, their subjective well-being. Participants completed measures to assess their beliefs about the consequences of functional and dysfunctional strategies, behavioral choices of emotion regulation strategies in negative scenarios, and subjective well-being. The model that fit the data indicated partial mediation whereby beliefs were associated with approximately 9% of the variance in choices. Emotion regulation choices were related to subjective well-being, with an additional direct effect between beliefs and well-being. This suggests beliefs play a role in people’s regulatory choices. Future research should explore how beliefs interact with individual differences and contextual variables to better understand why people regulate their emotions in different ways and, ultimately, to help individuals make healthy emotion regulation choices. PMID:28344675
Ortner, Catherine Nicole Marie; Briner, Esther Lydia; Marjanovic, Zdravko
2017-03-01
Research in emotion regulation has begun to examine various predictors of emotion regulation choices, including individual differences and contextual variables. However, scant attention has been paid to the extent to which people's beliefs about the specific consequences of emotion regulation strategies for the components of an emotional response and long-term well-being predict their behavioral regulatory choices and, in turn, their subjective well-being. Participants completed measures to assess their beliefs about the consequences of functional and dysfunctional strategies, behavioral choices of emotion regulation strategies in negative scenarios, and subjective well-being. The model that fit the data indicated partial mediation whereby beliefs were associated with approximately 9% of the variance in choices. Emotion regulation choices were related to subjective well-being, with an additional direct effect between beliefs and well-being. This suggests beliefs play a role in people's regulatory choices. Future research should explore how beliefs interact with individual differences and contextual variables to better understand why people regulate their emotions in different ways and, ultimately, to help individuals make healthy emotion regulation choices.
Nuclear matrix protein SMAR1 control regulatory T-cell fate during inflammatory bowel disease (IBD)
Mirlekar, B; Ghorai, S; Khetmalas, M; Bopanna, R; Chattopadhyay, S
2015-01-01
Regulatory T (Treg) cells are essential for self-tolerance and immune homeostasis. Transcription factor Foxp3, a positive regulator of Treg cell differentiation, has been studied to some extent. Signal transducer and activator of transcription factor 3 (STAT3) is known to negatively regulate Foxp3. It is not clear how STAT3 is regulated during Treg differentiation. We show that SMAR1, a known transcription factor and tumor suppressor, is directly involved in maintaining Treg cell fate decision. T-cell-specific conditional knockdown of SMAR1 exhibits increased susceptibility towards inflammatory disorders, such as colitis. The suppressive function of Treg cells is compromised in the absence of SMAR1 leading to increased T helper type 17 (Th17) differentiation and inflammation. Compared with wild-type, the SMAR1−/− Treg cells showed increased susceptibility of inflammatory bowel disease in Rag1−/− mice, indicating the role of SMAR1 in compromising Treg cell differentiation resulting in severe colitis. We show that SMAR1 negatively regulate STAT3 expression favoring Foxp3 expression and Treg cell differentiation. SMAR1 binds to the MAR element of STAT3 promoter, present adjacent to interleukin-6 response elements. Thus Foxp3, a major driver of Treg cell differentiation, is regulated by SMAR1 via STAT3 and a fine-tune balance between Treg and Th17 phenotype is maintained. PMID:25993445
Functional Divergence of Platelet Protein Kinase C (PKC) Isoforms in Thrombus Formation on Collagen*
Gilio, Karen; Harper, Matthew T.; Cosemans, Judith M. E. M.; Konopatskaya, Olga; Munnix, Imke C. A.; Prinzen, Lenneke; Leitges, Michael; Liu, Qinghang; Molkentin, Jeffery D.; Heemskerk, Johan W. M.; Poole, Alastair W.
2010-01-01
Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent α-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCα and PKCβ, whereas the novel isoform, PKCθ, negatively regulates these events. PKCδ also negatively regulates thrombus formation but not α-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCα or PKCβ showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKCθ. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen. PMID:20479008
Functional divergence of platelet protein kinase C (PKC) isoforms in thrombus formation on collagen.
Gilio, Karen; Harper, Matthew T; Cosemans, Judith M E M; Konopatskaya, Olga; Munnix, Imke C A; Prinzen, Lenneke; Leitges, Michael; Liu, Qinghang; Molkentin, Jeffery D; Heemskerk, Johan W M; Poole, Alastair W
2010-07-23
Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent alpha-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCalpha and PKCbeta, whereas the novel isoform, PKC, negatively regulates these events. PKCdelta also negatively regulates thrombus formation but not alpha-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCalpha or PKCbeta showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKC. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen.
Mutant DnaAs of Escherichia coli that are refractory to negative control
Chodavarapu, Sundari; Felczak, Magdalena M.; Simmons, Lyle A.; Murillo, Alec; Kaguni, Jon M.
2013-01-01
DnaA is the initiator of DNA replication in bacteria. A mutant DnaA named DnaAcos is unusual because it is refractory to negative regulation. We developed a genetic method to isolate other mutant DnaAs that circumvent regulation to extend our understanding of mechanisms that control replication initiation. Like DnaAcos, one mutant bearing a tyrosine substitution for histidine 202 (H202Y) withstands the regulation exerted by datA, hda and dnaN (β clamp), and both DnaAcos and H202Y resist inhibition by the Hda-β clamp complex in vitro. Other mutant DnaAs carrying G79D, E244K, V303M or E445K substitutions are either only partially sensitive or refractory to inhibition by the Hda-β clamp complex in vitro but are responsive to hda expression in vivo. All mutant DnaAs remain able to interact directly with Hda. Of interest, both DnaAcos and DnaAE244K bind more avidly to Hda. These mutants, by sequestrating Hda, may limit its availability to regulate other DnaA molecules, which remain active to induce extra rounds of DNA replication. Other evidence suggests that a mutant bearing a V292M substitution hyperinitiates by escaping the effect of an unknown regulatory factor. Together, our results provide new insight into the mechanisms that regulate replication initiation in Escherichia coli. PMID:23990329
Mutant DnaAs of Escherichia coli that are refractory to negative control.
Chodavarapu, Sundari; Felczak, Magdalena M; Simmons, Lyle A; Murillo, Alec; Kaguni, Jon M
2013-12-01
DnaA is the initiator of DNA replication in bacteria. A mutant DnaA named DnaAcos is unusual because it is refractory to negative regulation. We developed a genetic method to isolate other mutant DnaAs that circumvent regulation to extend our understanding of mechanisms that control replication initiation. Like DnaAcos, one mutant bearing a tyrosine substitution for histidine 202 (H202Y) withstands the regulation exerted by datA, hda and dnaN (β clamp), and both DnaAcos and H202Y resist inhibition by the Hda-β clamp complex in vitro. Other mutant DnaAs carrying G79D, E244K, V303M or E445K substitutions are either only partially sensitive or refractory to inhibition by the Hda-β clamp complex in vitro but are responsive to hda expression in vivo. All mutant DnaAs remain able to interact directly with Hda. Of interest, both DnaAcos and DnaAE244K bind more avidly to Hda. These mutants, by sequestrating Hda, may limit its availability to regulate other DnaA molecules, which remain active to induce extra rounds of DNA replication. Other evidence suggests that a mutant bearing a V292M substitution hyperinitiates by escaping the effect of an unknown regulatory factor. Together, our results provide new insight into the mechanisms that regulate replication initiation in Escherichia coli.
Zhang, Yi; Wei, Yangchao; Li, Xuan; Liang, Xingsi; Wang, Liming; Song, Jun; Zhang, Xiuzhong; Zhang, Chong; Niu, Jian; Zhang, Pengbo; Ren, Zeqiang; Tang, Bo
2018-01-26
The δ opioid receptor (DOR) is involved in the regulation of malignant transformation and tumor progression of hepatocellular carcinoma (HCC). However, regulation of the DOR in HCC remains poorly defined. We found that miR-874 was identified as a negative regulator of the DOR, which is a direct and functional target of miR-874 via its 3' untranslated region (UTR). Moreover, miR-874 was downregulated in HCC and its expression was inversely correlated with DOR expression. Downregulation of miR-874 was also associated with larger tumor size, more vascular invasion, a poor TNM stage, poor tumor differentiation, and inferior patient outcomes. Functionally, overexpression of miR-874 in the HCC cell line SK-hep-1 inhibited cell growth, migration, in vitro invasion, and in vivo tumorigenicity. Furthermore, miR-874 overexpression suppressed the DOR, resulting in a downregulated epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK) phosphorylation. The EGFR activator-epidermal growth factor (EGF)-can rescue the proliferation and migration suppression induced by miR-874 overexpression, and the rescue effects of the EGF were blocked by an ERK inhibitor. Our study results suggest that miRNA-874 is a negative regulator of the DOR that can suppress tumor proliferation and metastasis in HCC by targeting the DOR/EGFR/ERK pathway, which may be a potential target for HCC treatment.
Negative Regulation of Violacein Biosynthesis in Chromobacterium violaceum
Devescovi, Giulia; Kojic, Milan; Covaceuszach, Sonia; Cámara, Miguel; Williams, Paul; Bertani, Iris; Subramoni, Sujatha; Venturi, Vittorio
2017-01-01
In Chromobacteium violaceum, the purple pigment violacein is under positive regulation by the N-acylhomoserine lactone CviI/R quorum sensing system and negative regulation by an uncharacterized putative repressor. In this study we report that the biosynthesis of violacein is negatively controlled by a novel repressor protein, VioS. The violacein operon is regulated negatively by VioS and positively by the CviI/R system in both C. violaceum and in a heterologous Escherichia coli genetic background. VioS does not regulate the CviI/R system and apart from violacein, VioS, and quorum sensing regulate other phenotypes antagonistically. Quorum sensing regulated phenotypes in C. violaceum are therefore further regulated providing an additional level of control. PMID:28326068
Mazza, Monica; Tempesta, Daniela; Pino, Maria Chiara; Catalucci, Alessia; Gallucci, Massimo; Ferrara, Michele
2013-10-01
Patients with post-traumatic stress disorder (PTSD) exhibit exaggerated brain responses to emotionally negative stimuli. Identifying the neural correlates of emotion regulation in these subjects is important for elucidating the neural circuitry involved in emotional dysfunction. The aim of this study was to investigate the functional connectivity between the areas activated during emotional processing of negative stimuli in a sample of individuals affected by PTSD compared to a group of healthy subjects. Ten subjects with PTSD (who survived the L'Aquila 2009 earthquake) and ten healthy controls underwent fMRI during which the participants observed 80 images: 40 pictures with negative emotional valence and 40 neutral (scrambled) stimuli. A higher activation was found in the left posterior (LP) insula for PTSD group and in the ventromedial prefrontal cortex (vmPFC) for the healthy group. Two sets of Granger causality modeling analyses were performed to examine the directed influence from LP-insula and vmPFC to other brain regions. Activity in the vmPFC in the healthy group while observing negative stimuli predicted activity in several subcortical regions and insula, while in the PTSD group the LP-insula exerted a positive directed influence on several cortical regions. The hyperactivation in PTSD subjects of subcortical areas such as the insula would underlie the emotional, social, and relational difficulties of PTSD patients.
Constant voltage electro-slag remelting control
Schlienger, Max E.
1996-01-01
A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an eletrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable.
Tachykinin-1 in the central nervous system regulates adiposity in rodents.
Trivedi, Chitrang; Shan, Xiaoye; Tung, Yi-Chun Loraine; Kabra, Dhiraj; Holland, Jenna; Amburgy, Sarah; Heppner, Kristy; Kirchner, Henriette; Yeo, Giles S H; Perez-Tilve, Diego
2015-05-01
Ghrelin is a circulating hormone that targets the central nervous system to regulate feeding and adiposity. The best-characterized neural system that mediates the effects of ghrelin on energy balance involves the activation of neuropeptide Y/agouti-related peptide neurons, expressed exclusively in the arcuate nucleus of the hypothalamus. However, ghrelin receptors are expressed in other neuronal populations involved in the control of energy balance. We combined laser capture microdissection of several nuclei of the central nervous system expressing the ghrelin receptor (GH secretagoge receptor) with microarray gene expression analysis to identify additional neuronal systems involved in the control of central nervous system-ghrelin action. We identified tachykinin-1 (Tac1) as a gene negatively regulated by ghrelin in the hypothalamus. Furthermore, we identified neuropeptide k as the TAC1-derived peptide with more prominent activity, inducing negative energy balance when delivered directly into the brain. Conversely, loss of Tac1 expression enhances the effectiveness of ghrelin promoting fat mass gain both in male and in female mice and increases the susceptibility to diet-induced obesity in ovariectomized mice. Taken together, our data demonstrate a role TAC1 in the control energy balance by regulating the levels of adiposity in response to ghrelin administration and to changes in the status of the gonadal function.
Liu, Cong; Li, Bailong; Cheng, Ying; Lin, Jing; Hao, Jun; Zhang, Shuyu; Mitchel, R.E.J.; Sun, Ding; Ni, Jin; Zhao, Luqian; Gao, Fu; Cai, Jianming
2011-01-01
Dysregulation of certain microRNAs (miRNAs) in cancer can promote tumorigenesis, metastasis and invasion. However, the functions and targets of only a few mammalian miRNAs are known. In particular, the miRNAs that participates in radiation induced carcinogenesis and the miRNAs that target the tumor suppressor gene Big-h3 remain undefined. Here in this study, using a radiation induced thymic lymphoma model in BALB/c mice, we found that the tumor suppressor gene Big-h3 is down-regulated and miR-21 is up-regulated in radiation induced thymic lymphoma tissue samples. We also found inverse correlations between Big-h3 protein and miR-21 expression level among different tissue samples. Furthermore, our data indicated that miR-21 could directly target Big-h3 in a 3′UTR dependent manner. Finally, we found that miR-21 could be induced by TGFβ, and miR-21 has both positive and negative effects in regulating TGFβ signaling. We conclude that miR-21 participates in radiation induced carcinogenesis and it regulates TGFβ signaling. PMID:21494432
Gong, Chenguang; Li, Zhizhong; Ramanujan, Krishnan; Clay, Ieuan; Zhang, Yunyu; Lemire-Brachat, Sophie; Glass, David J
2015-07-27
Increasing evidence suggests that long non-coding RNAs (LncRNAs) represent a new class of regulators of stem cells. However, the roles of LncRNAs in stem cell maintenance and myogenesis remain largely unexamined. For this study, hundreds of intergenic LncRNAs were identified that are expressed in myoblasts and regulated during differentiation. One of these LncRNAs, termed LncMyoD, is encoded next to the Myod gene and is directly activated by MyoD during myoblast differentiation. Knockdown of LncMyoD strongly inhibits terminal muscle differentiation, largely due to a failure to exit the cell cycle. LncMyoD directly binds to IGF2-mRNA-binding protein 2 (IMP2) and negatively regulates IMP2-mediated translation of proliferation genes such as N-Ras and c-Myc. While the RNA sequence of LncMyoD is not well conserved between human and mouse, its locus, gene structure, and function are preserved. The MyoD-LncMyoD-IMP2 pathway elucidates a mechanism as to how MyoD blocks proliferation to create a permissive state for differentiation. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Sheng; Nheu, Thao; Luwor, Rodney; Nicholson, Sandra E; Zhu, Hong-Jian
2015-07-17
Appropriate cellular signaling is essential to control cell proliferation, differentiation, and cell death. Aberrant signaling can have devastating consequences and lead to disease states, including cancer. The transforming growth factor-β (TGF-β) signaling pathway is a prominent signaling pathway that has been tightly regulated in normal cells, whereas its deregulation strongly correlates with the progression of human cancers. The regulation of the TGF-β signaling pathway involves a variety of physiological regulators. Many of these molecules act to alter the activity of Smad proteins. In contrast, the number of molecules known to affect the TGF-β signaling pathway at the receptor level is relatively low, and there are no known direct modulators for the TGF-β type II receptor (TβRII). Here we identify SPSB1 (a Spry domain-containing Socs box protein) as a novel regulator of the TGF-β signaling pathway. SPSB1 negatively regulates the TGF-β signaling pathway through its interaction with both endogenous and overexpressed TβRII (and not TβRI) via its Spry domain. As such, TβRII and SPSB1 co-localize on the cell membrane. SPSB1 maintains TβRII at a low level by enhancing the ubiquitination levels and degradation rates of TβRII through its Socs box. More importantly, silencing SPSB1 by siRNA results in enhanced TGF-β signaling and migration and invasion of tumor cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9*
Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis
2014-01-01
The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al3+ to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. PMID:25028514
Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9.
Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis
2014-09-12
The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Wu, Jing; Tao, Wei-Wei; Chong, Dan-Yang; Lai, Shan-Shan; Wang, Chuang; Liu, Qi; Zhang, Tong-Yu; Xue, Bin; Li, Chao-Jun
2018-03-15
Postprandial insulin desensitization plays a critical role in maintaining whole-body glucose homeostasis by avoiding the excessive absorption of blood glucose; however, the detailed mechanisms that underlie how the major player, skeletal muscle, desensitizes insulin action remain to be elucidated. Herein, we report that early growth response gene-1 ( Egr-1) is activated by insulin in skeletal muscle and provides feedback inhibition that regulates insulin sensitivity after a meal. The inhibition of the transcriptional activity of Egr-1 enhanced the phosphorylation of the insulin receptor (InsR) and Akt, thus increasing glucose uptake in L6 myotubes after insulin stimulation, whereas overexpression of Egr-1 decreased insulin sensitivity. Furthermore, deletion of Egr-1 in the skeletal muscle improved systemic insulin sensitivity and glucose tolerance, which resulted in lower blood glucose levels after refeeding. Mechanistic analysis demonstrated that EGR-1 inhibited InsR phosphorylation and glucose uptake in skeletal muscle by binding to the proximal promoter region of protein tyrosine phosphatase-1B (PTP1B) and directly activating transcription. PTP1B knockdown largely restored insulin sensitivity and enhanced glucose uptake, even under conditions of EGR-1 overexpression. Our results indicate that EGR-1/PTP1B signaling negatively regulates postprandial insulin sensitivity and suggest a potential therapeutic target for the prevention and treatment of excessive glucose absorption.-Wu, J., Tao, W.-W., Chong, D.-Y., Lai, S.-S., Wang, C., Liu, Q., Zhang, T.-Y., Xue, B., Li, C.-J. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.
Eisenberg, N; Fabes, R A; Karbon, M; Murphy, B C; Wosinski, M; Polazzi, L; Carlo, G; Juhnke, C
1996-06-01
The purpose of this study was to examine the relations of a measure of children's dispositional prosocial behavior (i.e., peer nominations) to individual differences in children's negative emotionality, regulation, and social functioning. Children with prosocial reputations tended to be high in constructive social skills (i.e., socially appropriate behavior and constructive coping) and attentional regulation, and low in negative emotionality. The relations of children's negative emotionality to prosocial reputation were moderated by level of dispositional attentional regulation. In addition, the relations of prosocial reputation to constructive social skills and parent-reported negative emotionality (for girls) increased with age. Vagal tone, a marker of physiological regulation, was negatively related to girls' prosocial reputation.
Solana, Jordi; Irimia, Manuel; Ayoub, Salah; Orejuela, Marta Rodriguez; Zywitza, Vera; Jens, Marvin; Tapial, Javier; Ray, Debashish; Morris, Quaid; Hughes, Timothy R; Blencowe, Benjamin J; Rajewsky, Nikolaus
2016-01-01
In contrast to transcriptional regulation, the function of alternative splicing (AS) in stem cells is poorly understood. In mammals, MBNL proteins negatively regulate an exon program specific of embryonic stem cells; however, little is known about the in vivo significance of this regulation. We studied AS in a powerful in vivo model for stem cell biology, the planarian Schmidtea mediterranea. We discover a conserved AS program comprising hundreds of alternative exons, microexons and introns that is differentially regulated in planarian stem cells, and comprehensively identify its regulators. We show that functional antagonism between CELF and MBNL factors directly controls stem cell-specific AS in planarians, placing the origin of this regulatory mechanism at the base of Bilaterians. Knockdown of CELF or MBNL factors lead to abnormal regenerative capacities by affecting self-renewal and differentiation sets of genes, respectively. These results highlight the importance of AS interactions in stem cell regulation across metazoans. DOI: http://dx.doi.org/10.7554/eLife.16797.001 PMID:27502555
Kwon, Hayeong; Jang, Donghwan; Choi, Moonjeong; Lee, Jaewoong; Jeong, Kyuho; Pak, Yunbae
2018-06-01
Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI. Copyright © 2018 Elsevier B.V. All rights reserved.
Sex differences in physiological reactivity to acute psychosocial stress in adolescence.
Ordaz, Sarah; Luna, Beatriz
2012-08-01
Females begin to demonstrate greater negative affective responses to stress than males in adolescence. This may reflect the concurrent emergence of underlying differences in physiological response systems, including corticolimbic circuitries, the hypothalamic-pituitary-adrenal axis (HPAA), and the autonomic nervous system (ANS). This review examines when sex differences in physiological reactivity to acute psychosocial stress emerge and the directionality of these differences over development. Indeed, the literature indicates that sex differences emerge during adolescence and persist into adulthood for all three physiological response systems. However, the directionality of the differences varies by system. The emerging corticolimbic reactivity literature suggests greater female reactivity, particularly in limbic regions densely innervated by gonadal hormone receptors. In contrast, males generally show higher levels of HPAA and ANS reactivity. We argue that the contrasting directionality of corticolimbic and peripheral physiological responses may reflect specific effects of gonadal hormones on distinct systems and also sex differences in evolved behavioral responses that demand different levels of peripheral physiological activation. Studies that examine both subjective reports of negative affect and physiological responses indicate that beginning in adolescence, females respond to acute stressors with more intense negative affect than males despite their comparatively lower peripheral physiological responses. This dissociation is not clearly explained by sex differences in the strength of the relationship between physiological and subjective responses. We suggest that females' greater subjective responsivity may instead arise from a greater activity in brain regions that translate stress responses to subjective awareness in adolescence. Future research directions include investigations of the role of pubertal hormones in physiological reactivity across all systems, examining the relationship of corticolimbic reactivity and negative affect, and sex differences in emotion regulation processes. Copyright © 2012 Elsevier Ltd. All rights reserved.
The direct and indirect effects of corruption on motor vehicle crash deaths.
Hua, Law Teik; Noland, Robert B; Evans, Andrew W
2010-11-01
Recent empirical research has found that there is an inverted U-shaped or Kuznets relationship between income and motor vehicle crash (MVC) deaths, such that MVC deaths increase as national income increases and decrease after reaching a critical level. Corruption has been identified as one of the underlying factors that could affect this relationship, primarily by undermining institutional development and effective enforcement schemes. The total effect of corruption can be decomposed into two components, a direct and an indirect effect. The direct effect measures the immediate impact of corruption on MVC deaths by undermining effective enforcement and regulations, while the indirect effect captures the impact of corruption on hindering increases in per capita income and the consequent impact of reduced income on MVC deaths. By influencing economic growth, corruption can lead to an increase or decrease in MVC deaths depending on the income level. Using data from 60 countries between 1982 and 2003, these effects are estimated using linear panel and fixed effects negative binomial models. The estimation results suggest that corruption has different direct effects for less developed and highly developed countries. It has a negative (decreasing) effect on MVC deaths for less developed countries and a positive (increasing) effect on MVC deaths for highly developed countries. For highly developed countries, the total effect is positive at lower per capita income levels, but decreases with per capita income and becomes negative at per capita income levels of about US$ 38,248. For less developed countries, the total effect is negative within the sample range and decreases with increased per capita income. In summary, the results of this study suggest that reduction of corruption is likely a necessary condition to effectively tackle road safety problems. 2010 Elsevier Ltd. All rights reserved.
Sex differences in physiological reactivity to acute psychosocial stress in adolescence
Ordaz, Sarah; Luna, Beatriz
2012-01-01
Summary Females begin to demonstrate greater negative affective responses to stress than males in adolescence. This may reflect the concurrent emergence of underlying differences in physiological response systems, including corticolimbic circuitries, the hypothalamic—pituitary— adrenal axis (HPAA), and the autonomic nervous system (ANS). This review examines when sex differences in physiological reactivity to acute psychosocial stress emerge and the directionality of these differences over development. Indeed, the literature indicates that sex differences emerge during adolescence and persist into adulthood for all three physiological response systems. However, the directionality of the differences varies by system. The emerging corti-colimbic reactivity literature suggests greater female reactivity, particularly in limbic regions densely innervated by gonadal hormone receptors. In contrast, males generally show higher levels of HPAA and ANS reactivity. We argue that the contrasting directionality of corticolimbic and peripheral physiological responses may reflect specific effects of gonadal hormones on distinct systems and also sex differences in evolved behavioral responses that demand different levels of peripheral physiological activation. Studies that examine both subjective reports of negative affect and physiological responses indicate that beginning in adolescence, females respond to acute stressors with more intense negative affect than males despite their comparatively lower peripheral physiological responses. This dissociation is not clearly explained by sex differences in the strength of the relationship between physiological and subjective responses. We suggest that females' greater subjective responsivity may instead arise from a greater activity in brain regions that translate stress responses to subjective awareness in adolescence. Future research directions include investigations of the role of pubertal hormones in physiological reactivity across all systems, examining the relationship of corticolimbic reactivity and negative affect, and sex differences in emotion regulation processes. PMID:22281210
Nishiyama, Rie; Watanabe, Yasuko; Fujita, Yasunari; Le, Dung Tien; Kojima, Mikiko; Werner, Tomás; Vankova, Radomira; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Kakimoto, Tatsuo; Sakakibara, Hitoshi; Schmülling, Thomas; Tran, Lam-Son Phan
2011-01-01
Cytokinins (CKs) regulate plant growth and development via a complex network of CK signaling. Here, we perform functional analyses with CK-deficient plants to provide direct evidence that CKs negatively regulate salt and drought stress signaling. All CK-deficient plants with reduced levels of various CKs exhibited a strong stress-tolerant phenotype that was associated with increased cell membrane integrity and abscisic acid (ABA) hypersensitivity rather than stomatal density and ABA-mediated stomatal closure. Expression of the Arabidopsis thaliana ISOPENTENYL-TRANSFERASE genes involved in the biosynthesis of bioactive CKs and the majority of the Arabidopsis CYTOKININ OXIDASES/DEHYDROGENASES genes was repressed by stress and ABA treatments, leading to a decrease in biologically active CK contents. These results demonstrate a novel mechanism for survival under abiotic stress conditions via the homeostatic regulation of steady state CK levels. Additionally, under normal conditions, although CK deficiency increased the sensitivity of plants to exogenous ABA, it caused a downregulation of key ABA biosynthetic genes, leading to a significant reduction in endogenous ABA levels in CK-deficient plants relative to the wild type. Taken together, this study provides direct evidence that mutual regulation mechanisms exist between the CK and ABA metabolism and signals underlying different processes regulating plant adaptation to stressors as well as plant growth and development. PMID:21719693
Discretization provides a conceptually simple tool to build expression networks.
Vass, J Keith; Higham, Desmond J; Mudaliar, Manikhandan A V; Mao, Xuerong; Crowther, Daniel J
2011-04-18
Biomarker identification, using network methods, depends on finding regular co-expression patterns; the overall connectivity is of greater importance than any single relationship. A second requirement is a simple algorithm for ranking patients on how relevant a gene-set is. For both of these requirements discretized data helps to first identify gene cliques, and then to stratify patients.We explore a biologically intuitive discretization technique which codes genes as up- or down-regulated, with values close to the mean set as unchanged; this allows a richer description of relationships between genes than can be achieved by positive and negative correlation. We find a close agreement between our results and the template gene-interactions used to build synthetic microarray-like data by SynTReN, which synthesizes "microarray" data using known relationships which are successfully identified by our method.We are able to split positive co-regulation into up-together and down-together and negative co-regulation is considered as directed up-down relationships. In some cases these exist in only one direction, with real data, but not with the synthetic data. We illustrate our approach using two studies on white blood cells and derived immortalized cell lines and compare the approach with standard correlation-based computations. No attempt is made to distinguish possible causal links as the search for biomarkers would be crippled by losing highly significant co-expression relationships. This contrasts with approaches like ARACNE and IRIS.The method is illustrated with an analysis of gene-expression for energy metabolism pathways. For each discovered relationship we are able to identify the samples on which this is based in the discretized sample-gene matrix, along with a simplified view of the patterns of gene expression; this helps to dissect the gene-sample relevant to a research topic--identifying sets of co-regulated and anti-regulated genes and the samples or patients in which this relationship occurs.
Lee, Hyoung S.; Catley, Delwyn; Harris, Kari Jo
2011-01-01
This study compared autonomous self-regulation and negative self-evaluative emotions as predictors of smoking behavior change in college student smokers (N=303) in a smoking cessation intervention study. Although the two constructs were moderately correlated, latent growth curve modeling revealed that only autonomous regulation, but not negative self-evaluative emotions, was negatively related to the number of days smoked. Results suggest that the two variables tap different aspects of motivation to change smoking behaviors, and that autonomous regulation predicts smoking behavior change better than negative self-evaluative emotions. PMID:21911436
Lee, Hyoung S; Catley, Delwyn; Harris, Kari Jo
2012-05-01
This study compared autonomous self-regulation and negative self-evaluative emotions as predictors of smoking behavior change in college student smokers (N = 303) in a smoking cessation intervention study. Although the two constructs were moderately correlated, latent growth curve modeling revealed that only autonomous regulation, but not negative self-evaluative emotions, was negatively related to the number of days smoked. Results suggest that the two variables tap different aspects of motivation to change smoking behaviors, and that autonomous regulation predicts smoking behavior change better than negative self-evaluative emotions.
The neglected role of positive emotion in adolescent psychopathology.
Gilbert, Kirsten E
2012-08-01
Adolescence is a developmental period characterized by elevated stress, heightened risky behaviors, and increases in psychopathology. Emotion dysregulation is a hypothesized contributor to negative outcomes and to the onset of psychopathology during adolescence. However, the dysregulation of negative emotion has been the focus of research while the literature on positive emotion in adolescent psychopathology is limited. This review highlights both the development of normative and dysregulated positive emotion during adolescence. First, the literature on normative adolescent emotional development and on negative emotional regulation is briefly reviewed, followed by a discussion of current theories of positive emotion, which are grounded in the adult literature. From a developmental perspective, the dimension of approach motivation within positive emotion is emphasized throughout and frames the review. This conceptualization guides organization of literatures on normative experiences of positive emotion in adolescence and the role of dysregulated positive emotion in adolescent psychopathology, specifically adolescent depression, anxiety, bipolar disorder, externalizing disorders and eating disorders. Last, future directions in the study of adolescent positive emotion and its regulation and the implications of highlighting approach motivation in normative and dysregulated positive emotion in adolescence are detailed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Vitamin A Is a Negative Regulator of Osteoblast Mineralization
Hu, Lijuan; Pejler, Gunnar; Andersson, Göran; Jacobson, Annica; Melhus, Håkan
2013-01-01
An excessive intake of vitamin A has been associated with an increased risk of fractures in humans. In animals, a high vitamin A intake leads to a reduction of long bone diameter and spontaneous fractures. Studies in rodents indicate that the bone thinning is due to increased periosteal bone resorption and reduced radial growth. Whether the latter is a consequence of direct effects on bone or indirect effects on appetite and general growth is unknown. In this study we therefore used pair-feeding and dynamic histomorphometry to investigate the direct effect of a high intake of vitamin A on bone formation in rats. Although there were no differences in body weight or femur length compared to controls, there was an approximately halved bone formation and mineral apposition rate at the femur diaphysis of rats fed vitamin A. To try to clarify the mechanism(s) behind this reduction, we treated primary human osteoblasts and a murine preosteoblastic cell line (MC3T3-E1) with the active metabolite of vitamin A; retinoic acid (RA), a retinoic acid receptor (RAR) antagonist (AGN194310), and a Cyp26 inhibitor (R115866) which blocks endogenous RA catabolism. We found that RA, via RARs, suppressed in vitro mineralization. This was independent of a negative effect on osteoblast proliferation. Alkaline phosphatase and bone gamma carboxyglutamate protein (Bglap, Osteocalcin) were drastically reduced in RA treated cells and RA also reduced the protein levels of Runx2 and Osterix, key transcription factors for progression to a mature osteoblast. Normal osteoblast differentiation involved up regulation of Cyp26b1, the major enzyme responsible for RA degradation, suggesting that a drop in RA signaling is required for osteogenesis analogous to what has been found for chondrogenesis. In addition, RA decreased Phex, an osteoblast/osteocyte protein necessary for mineralization. Taken together, our data indicate that vitamin A is a negative regulator of osteoblast mineralization. PMID:24340023
Hsieh, I-Ju; Chen, Yung Y
2017-01-01
Aggressive behavior can be defined as any behavior intended to hurt another person, and it is associated with many individual and social factors. This study examined the relationship between emotional regulation and inhibitory control in predicting aggressive behavior. Seventy-eight participants (40 males) completed self-report measures (Negative Mood Regulation Scale and Buss-Perry Aggression Questionnaire), a stop signal task, and engaged in a modified version of Taylor Aggression Paradigm (TAP) exercise, in which the outcome was used as a measure of direct physical aggression. We used a hierarchical, mixed-model multiple regression analysis test to examine the effects of emotion regulation and inhibitory control on physical reactive aggression. Results indicated an interaction between emotion regulation and inhibitory control on aggression. For participants with low inhibitory control only, there was a significant difference between high and low emotion regulation on aggression, such that low emotion regulation participants registered higher aggression than high emotion regulation participants. This difference was not found among participants with high inhibitory control. These results have implications for refining and targeting training and rehabilitation programs aimed at reducing aggressive behavior.
Rodriguez, Kenny R; Horvath, Curt M
2014-07-01
The interferon antiviral system is a primary barrier to virus replication triggered upon recognition of nonself RNAs by the cytoplasmic sensors encoded by retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology gene 2 (LGP2). Paramyxovirus V proteins are interferon antagonists that can selectively interact with MDA5 and LGP2 through contact with a discrete helicase domain region. Interaction with MDA5, an activator of antiviral signaling, disrupts interferon gene expression and antiviral responses. LGP2 has more diverse reported roles as both a coactivator of MDA5 and a negative regulator of both RIG-I and MDA5. This functional dichotomy, along with the concurrent interference with both cellular targets, has made it difficult to assess the unique consequences of V protein interaction with LGP2. To directly evaluate the impact of LGP2 interference, MDA5 and LGP2 variants unable to be recognized by measles virus and parainfluenza virus 5 (PIV5) V proteins were tested in signaling assays. Results indicate that interaction with LGP2 specifically prevents coactivation of MDA5 signaling and that LGP2's negative regulatory capacity was not affected. V proteins only partially antagonize RIG-I at high concentrations, and their expression had no additive effects on LGP2-mediated negative regulation. However, conversion of RIG-I to a direct V protein target was accomplished by only two amino acid substitutions that allowed both V protein interaction and efficient interference. These results clarify the unique consequences of MDA5 and LGP2 interference by paramyxovirus V proteins and help resolve the distinct roles of LGP2 in both activation and inhibition of antiviral signal transduction. Importance: Paramyxovirus V proteins interact with two innate immune receptors, MDA5 and LGP2, but not RIG-I. V proteins prevent MDA5 from signaling to the beta interferon promoter, but the consequences of LGP2 targeting are poorly understood. As the V protein targets MDA5 and LGP2 simultaneously, and LGP2 is both a positive and negative regulator of both MDA5 and RIG-I, it has been difficult to evaluate the specific advantages conferred by LGP2 targeting. Experiments with V-insensitive proteins revealed that the primary outcome of LGP2 interference is suppression of its ability to synergize with MDA5. LGP2's negative regulation of MDA5 and RIG-I remains intact irrespective of V protein interaction. Complementary experiments demonstrate that RIG-I can be converted to V protein sensitivity by two amino acid substitutions. These findings clarify the functions of LGP2 as a positive regulator of MDA5 signaling, demonstrate the basis for V-mediated LGP2 targeting, and broaden our understanding of paramyxovirus-host interactions. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Rodriguez, Kenny R.
2014-01-01
ABSTRACT The interferon antiviral system is a primary barrier to virus replication triggered upon recognition of nonself RNAs by the cytoplasmic sensors encoded by retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology gene 2 (LGP2). Paramyxovirus V proteins are interferon antagonists that can selectively interact with MDA5 and LGP2 through contact with a discrete helicase domain region. Interaction with MDA5, an activator of antiviral signaling, disrupts interferon gene expression and antiviral responses. LGP2 has more diverse reported roles as both a coactivator of MDA5 and a negative regulator of both RIG-I and MDA5. This functional dichotomy, along with the concurrent interference with both cellular targets, has made it difficult to assess the unique consequences of V protein interaction with LGP2. To directly evaluate the impact of LGP2 interference, MDA5 and LGP2 variants unable to be recognized by measles virus and parainfluenza virus 5 (PIV5) V proteins were tested in signaling assays. Results indicate that interaction with LGP2 specifically prevents coactivation of MDA5 signaling and that LGP2's negative regulatory capacity was not affected. V proteins only partially antagonize RIG-I at high concentrations, and their expression had no additive effects on LGP2-mediated negative regulation. However, conversion of RIG-I to a direct V protein target was accomplished by only two amino acid substitutions that allowed both V protein interaction and efficient interference. These results clarify the unique consequences of MDA5 and LGP2 interference by paramyxovirus V proteins and help resolve the distinct roles of LGP2 in both activation and inhibition of antiviral signal transduction. IMPORTANCE Paramyxovirus V proteins interact with two innate immune receptors, MDA5 and LGP2, but not RIG-I. V proteins prevent MDA5 from signaling to the beta interferon promoter, but the consequences of LGP2 targeting are poorly understood. As the V protein targets MDA5 and LGP2 simultaneously, and LGP2 is both a positive and negative regulator of both MDA5 and RIG-I, it has been difficult to evaluate the specific advantages conferred by LGP2 targeting. Experiments with V-insensitive proteins revealed that the primary outcome of LGP2 interference is suppression of its ability to synergize with MDA5. LGP2's negative regulation of MDA5 and RIG-I remains intact irrespective of V protein interaction. Complementary experiments demonstrate that RIG-I can be converted to V protein sensitivity by two amino acid substitutions. These findings clarify the functions of LGP2 as a positive regulator of MDA5 signaling, demonstrate the basis for V-mediated LGP2 targeting, and broaden our understanding of paramyxovirus-host interactions. PMID:24829334
The PBX1 lupus susceptibility gene regulates CD44 expression.
Niu, Yuxin; Sengupta, Mayami; Titov, Anton A; Choi, Seung-Chul; Morel, Laurence
2017-05-01
PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4 + T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and shows that the lupus-associated isoform PBX1-d has unique molecular functions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kometer, Michael; Schmidt, André; Bachmann, Rosilla; Studerus, Erich; Seifritz, Erich; Vollenweider, Franz X
2012-12-01
Serotonin (5-HT) 1A and 2A receptors have been associated with dysfunctional emotional processing biases in mood disorders. These receptors further predominantly mediate the subjective and behavioral effects of psilocybin and might be important for its recently suggested antidepressive effects. However, the effect of psilocybin on emotional processing biases and the specific contribution of 5-HT2A receptors across different emotional domains is unknown. In a randomized, double-blind study, 17 healthy human subjects received on 4 separate days placebo, psilocybin (215 μg/kg), the preferential 5-HT2A antagonist ketanserin (50 mg), or psilocybin plus ketanserin. Mood states were assessed by self-report ratings, and behavioral and event-related potential measurements were used to quantify facial emotional recognition and goal-directed behavior toward emotional cues. Psilocybin enhanced positive mood and attenuated recognition of negative facial expression. Furthermore, psilocybin increased goal-directed behavior toward positive compared with negative cues, facilitated positive but inhibited negative sequential emotional effects, and valence-dependently attenuated the P300 component. Ketanserin alone had no effects but blocked the psilocybin-induced mood enhancement and decreased recognition of negative facial expression. This study shows that psilocybin shifts the emotional bias across various psychological domains and that activation of 5-HT2A receptors is central in mood regulation and emotional face recognition in healthy subjects. These findings may not only have implications for the pathophysiology of dysfunctional emotional biases but may also provide a framework to delineate the mechanisms underlying psylocybin's putative antidepressant effects. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Khosravani, Vahid; Sharifi Bastan, Farangis; Ghorbani, Fatemeh; Kamali, Zoleikha
2017-08-01
The aim of this study was to assess the mediating effects of difficulties in emotion regulation (DER) on the relations of negative and positive affects to craving in alcoholic patients. 205 treatment-seeking alcoholic outpatients were included. DER, positive and negative affects as well as craving were evaluated by the Difficulties in Emotion Regulation Scale (DERS), the Positive/Negative Affect Scales, and the Obsessive Compulsive Drinking Scale (OCDS) respectively. Clinical factors including depression and severity of alcohol dependence were investigated by the Alcohol Use Disorders Identification Test (AUDIT) and the Beck Depression Inventory-II (BDI-II) respectively. Results revealed that both increased negative affect and decreased positive affect indirectly influenced craving through limited access to emotion regulation strategies. It was concluded that limited access to emotion regulation strategies may be important in predicting craving for alcoholics who experience both increased negative affect and decreased positive affect. This suggests that treatment and prevention efforts focused on increasing positive affect, decreasing negative affect and teaching effective regulation strategies may be critical in reducing craving in alcoholic patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Chao; Ma, Biao; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Yin, Cui-Cui; Chen, Hui; Lu, Xiang; Chen, Shou-Yi; Zhang, Jin-Song
2015-01-01
Ethylene plays important roles in plant growth, development, and stress responses. The ethylene signaling pathway has been studied extensively, mainly in Arabidopsis (Arabidopsis thaliana). However, the molecular mechanism of ethylene signaling is largely unknown in rice (Oryza sativa). Previously, we have isolated a set of rice ethylene-response mutants. Here, we characterized the mutant maohuzi6 (mhz6). Through map-based cloning, we found that MHZ6 encodes ETHYLENE INSENSITIVE3-LIKE1 (OsEIL1), a rice homolog of ETHYLENE INSENSITIVE3 (EIN3), which is the master transcriptional regulator of ethylene signaling in Arabidopsis. Disruption of MHZ6/OsEIL1 caused ethylene insensitivity mainly in roots, whereas silencing of the closely related OsEIL2 led to ethylene insensitivity mainly in coleoptiles of etiolated seedlings. This organ-specific functional divergence is different from the functional features of EIN3 and EIL1, both of which mediate the incomplete ethylene responses of Arabidopsis etiolated seedlings. In Arabidopsis, EIN3 and EIL1 play positive roles in plant salt tolerance. In rice, however, lack of MHZ6/OsEIL1 or OsEIL2 functions improves salt tolerance, whereas the overexpressing lines exhibit salt hypersensitivity at the seedling stage, indicating that MHZ6/OsEIL1 and OsEIL2 negatively regulate salt tolerance in rice. Furthermore, this negative regulation by MHZ6/OsEIL1 and OsEIL2 in salt tolerance is likely attributable in part to the direct regulation of HIGH-AFFINITY K+ TRANSPORTER2;1 expression and Na+ uptake in roots. Additionally, MHZ6/OsEIL1 overexpression promotes grain size and thousand-grain weight. Together, our study provides insights for the functional diversification of MHZ6/OsEIL1 and OsEIL2 in ethylene response and finds a novel mode of ethylene-regulated salt stress response that could be helpful for engineering salt-tolerant crops. PMID:25995326
SH3BP4, a novel pigmentation gene, is inversely regulated by miR-125b and MITF
Kim, Kyu-Han; Lee, Tae Ryong; Cho, Eun-Gyung
2017-01-01
Our previous work has identified miR-125b as a negative regulator of melanogenesis. However, the specific melanogenesis-related genes targeted by this miRNA had not been identified. In this study, we established a screening strategy involving three consecutive analytical approaches—analysis of target genes of miR-125b, expression correlation analysis between each target gene and representative pigmentary genes, and functional analysis of candidate genes related to melanogenesis—to discover melanogenesis-related genes targeted by miR-125b. Through these analyses, we identified SRC homology 3 domain-binding protein 4 (SH3BP4) as a novel pigmentation gene. In addition, by combining bioinformatics analysis and experimental validation, we demonstrated that SH3BP4 is a direct target of miR-125b. Finally, we found that SH3BP4 is transcriptionally regulated by microphthalmia-associated transcription factor as its direct target. These findings provide important insights into the roles of miRNAs and their targets in melanogenesis. PMID:28819321
Lengua, L J; Sandler, I N
1996-12-01
Investigated the effects of self-regulation as a moderator of the relations between coping efforts and psychological symptoms of children of divorce. The interactions of two dimensions of self-regulation (task orientation and approach-flexibility) and two dimensions of coping (active and avoidant) predicting children's postdivorce symptoms were tested using a sample of 199 divorced mothers and their children, ages 8 to 12. The approach-flexibility dimension moderated the relations of both active and avoidant coping with children's self-report of anxiety. At higher levels of approach-flexibility, active coping was negatively related to anxiety, while at lower levels of approach-flexibility, active coping was unrelated to anxiety. Avoidant coping was unrelated to anxiety at higher levels of approach-flexibility, whereas at lower levels of approach-flexibility, avoidant coping was positively related to anxiety. The task orientation dimension did not interact with coping, but had direct, independent effects on children's self-report of conduct problems, depression, and parent-report of internalizing and externalizing behavior problems. The implications for understanding children's coping with divorce and future directions for research are discussed.
Fu, Yuan; Lin, Hongyu; Wisitpitthaya, Somsinee; Blessing, William A; Aye, Yimon
2014-11-24
Human ribonucleotide reductase (hRNR) is a target of nucleotide chemotherapeutics in clinical use. The nucleotide-induced oligomeric regulation of hRNR subunit α is increasingly being recognized as an innate and drug-relevant mechanism for enzyme activity modulation. In the presence of negative feedback inhibitor dATP and leukemia drug clofarabine nucleotides, hRNR-α assembles into catalytically inert hexameric complexes, whereas nucleotide effectors that govern substrate specificity typically trigger α-dimerization. Currently, both knowledge of and tools to interrogate the oligomeric assembly pathway of RNR in any species in real time are lacking. We therefore developed a fluorimetric assay that reliably reports on oligomeric state changes of α with high sensitivity. The oligomerization-directed fluorescence quenching of hRNR-α, covalently labeled with two fluorophores, allows for direct readout of hRNR dimeric and hexameric states. We applied the newly developed platform to reveal the timescales of α self-assembly, driven by the feedback regulator dATP. This information is currently unavailable, despite the pharmaceutical relevance of hRNR oligomeric regulation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
miR-11 regulates pupal size of Drosophila melanogaster via directly targeting Ras85D.
Li, Yao; Li, Shengjie; Jin, Ping; Chen, Liming; Ma, Fei
2017-01-01
MicroRNAs play diverse roles in various physiological processes during Drosophila development. In the present study, we reported that miR-11 regulates pupal size during Drosophila metamorphosis via targeting Ras85D with the following evidences: pupal size was increased in the miR-11 deletion mutant; restoration of miR-11 in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant; ectopic expression of miR-11 in brain insulin-producing cells (IPCs) and whole body shows consistent alteration of pupal size; Dilps and Ras85D expressions were negatively regulated by miR-11 in vivo; miR-11 targets Ras85D through directly binding to Ras85D 3'-untranslated region in vitro; removal of one copy of Ras85D in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant. Thus, our current work provides a novel mechanism of pupal size determination by microRNAs during Drosophila melanogaster metamorphosis. Copyright © 2017 the American Physiological Society.
Shlomai, Joseph
2010-11-01
Protein-DNA interactions play a key role in the regulation of major cellular metabolic pathways, including gene expression, genome replication, and genomic stability. They are mediated through the interactions of regulatory proteins with their specific DNA-binding sites at promoters, enhancers, and replication origins in the genome. Redox signaling regulates these protein-DNA interactions using reactive oxygen species and reactive nitrogen species that interact with cysteine residues at target proteins and their regulators. This review describes the redox-mediated regulation of several master regulators of gene expression that control the induction and suppression of hundreds of genes in the genome, regulating multiple metabolic pathways, which are involved in cell growth, development, differentiation, and survival, as well as in the function of the immune system and cellular response to intracellular and extracellular stimuli. It also discusses the role of redox signaling in protein-DNA interactions that regulate DNA replication. Specificity of redox regulation is discussed, as well as the mechanisms providing several levels of redox-mediated regulation, from direct control of DNA-binding domains through the indirect control, mediated by release of negative regulators, regulation of redox-sensitive protein kinases, intracellular trafficking, and chromatin remodeling.
Harsh Parenting in Relation to Child Emotion Regulation and Aggression
Chang, Lei; Schwartz, David; Dodge, Kenneth A.; McBride-Chang, Catherine
2009-01-01
This study presents a model of harsh parenting that has an indirect effect, as well as a direct effect, on child aggression in the school environment through the mediating process of child emotion regulation. Tested on a sample of 325 Chinese children and their parents, the model showed adequate goodness of fit. Also investigated were interaction effects between parents’ and children’s gender. Mothers’ harsh parenting affected child emotion regulation more strongly than fathers’, whereas harsh parenting emanating from fathers had a stronger effect on child aggression. Fathers’ harsh parenting also affected sons more than daughters, whereas there was no gender differential effect with mothers’ harsh parenting. These results are discussed with an emphasis on negative emotionality as a potentially common cause of family perturbations, including parenting and child adjustment problems. PMID:14640808
When self-efficacy negatively relates to motivation and performance in a learning context.
Vancouver, Jeffrey B; Kendall, Laura N
2006-09-01
Recent reviews of the training literature have advocated directly manipulating self-efficacy in an attempt to improve the motivation of trainees. However, self-regulation theories conceive of motivation as a function of various goal processes, and assert that the effect of self-efficacy should depend on the process involved. Training contexts may evoke planning processes in which self-efficacy might negatively relate to motivation. Yet the typical between-persons studies in the current literature may obscure the effect. To examine this issue, 63 undergraduate students completed a series of questionnaires measuring self-efficacy and motivation before 5 class exams. Self-efficacy was negatively related to motivation and exam performance at the within-person level of analysis, despite a significant positive relation with performance at the between-persons level. (c) 2006 APA, all rights reserved
A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals.
Davière, Jean-Michel; Achard, Patrick
2016-01-04
Plant phenotypic plasticity is controlled by diverse hormone pathways, which integrate and convey information from multiple developmental and environmental signals. Moreover, in plants many processes such as growth, development, and defense are regulated in similar ways by multiple hormones. Among them, gibberellins (GAs) are phytohormones with pleiotropic actions, regulating various growth processes throughout the plant life cycle. Previous work has revealed extensive interplay between GAs and other hormones, but the molecular mechanism became apparent only recently. Molecular and physiological studies have demonstrated that DELLA proteins, considered as master negative regulators of GA signaling, integrate multiple hormone signaling pathways through physical interactions with transcription factors or regulatory proteins from different families. In this review, we summarize the latest progress in GA signaling and its direct crosstalk with the main phytohormone signaling, emphasizing the multifaceted role of DELLA proteins with key components of major hormone signaling pathways. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
Jonas, Kristina; Edwards, Adrianne N; Ahmad, Irfan; Romeo, Tony; Römling, Ute; Melefors, Ojar
2010-02-01
Bacterial survival depends on the ability to switch between sessile and motile lifestyles in response to changing environmental conditions. In many species, this switch is governed by (3'-5')-cyclic-diguanosine monophosphate (c-di-GMP), a signalling molecule, which is metabolized by proteins containing GGDEF and/or EAL domains. Salmonella Typhimurium contains 20 such proteins. Here, we show that the RNA-binding protein CsrA regulates the expression of eight genes encoding GGDEF, GGDEF-EAL and EAL domain proteins. CsrA bound directly to the mRNA leaders of five of these genes, suggesting that it may regulate these genes post-transcriptionally. The c-di-GMP-specific phosphodiesterase STM3611, which reciprocally controls flagella function and production of biofilm matrix components, was regulated by CsrA binding to the mRNA, but was also indirectly regulated by CsrA through the FlhDC/FliA flagella cascade and STM1344. STM1344 is an unconventional (c-di-GMP-inactive) EAL domain protein, recently identified as a negative regulator of flagella gene expression. Here, we demonstrate that CsrA directly downregulates expression of STM1344, which in turn regulates STM3611 through fliA and thus reciprocally controls motility and biofilm factors. Altogether, our data reveal that the concerted and complex regulation of several genes encoding GGDEF/EAL domain proteins allows CsrA to control the motility-sessility switch in S. Typhimurium at multiple levels.
Thangasamy, Amalraj; Rogge, Jessica; Krishnegowda, Naveen K; Freeman, James W; Ammanamanchi, Sudhakar
2011-09-16
Recepteur d' origine nantais (RON), a tyrosine kinase receptor, is aberrantly expressed in human tumors and promotes cancer cell invasion. RON receptor activation is also associated with resistance to tamoxifen treatment in breast cancer cells. Nrf2 is a positive regulator of cytoprotective genes. Using chromatin immunoprecipitation (ChIP) and site-directed mutagenesis studies of the RON promoter, we identified Nrf2 as a negative regulator of RON gene expression. High Nrf2 and low RON expression was observed in normal mammary tissue whereas high RON and low or undetectable expression of Nrf2 was observed in breast tumors. The Nrf2 inducer sulforaphane (SFN) as well as ectopic Nrf2 expression or knock-down of the Nrf2 negative regulator keap1, which stabilizes Nrf2, inhibited RON expression and invasion of carcinoma cells. Consequently, our studies identified a novel functional role for Nrf2 as a "repressor" and RON kinase as a molecular target of SFN, which mediates the anti-tumor effects of SFN. These results are not limited to breast cancer cells since the Nrf2 inducer SFN stabilized Nrf2 and inhibited RON expression in carcinoma cells from various tumor types.
Household instability and self-regulation among poor children.
McCoy, Dana Charles; Raver, C Cybele
Past research suggests that poverty may negatively influence children's psychological and behavioral health by increasing their exposure to chaotic living conditions in the household. The present study provides a descriptive 'snapshot' of instability in low-income households, and examines the associations between exposure to major destabilizing events over the course of a year and three domains of poor urban children's self-regulation. Descriptive analyses suggest that although caregivers from unstable households report higher average levels of health problems and depression, they also have greater assets/savings, are more educated, and are less likely to be immigrants than caregivers from stable households. Results of propensity score-matched regression analyses reveal that high levels of household instability are significantly and negatively associated with preschoolers' effortful control and global attention/impulsivity control, but not with their executive function. Children from mildly unstable homes (i.e., those who had experienced a single destabilizing event in the past year) showed no significant differences in any domain of self-regulation relative to their peers from stable households, suggesting a dose-response relationship between the number of destabilizing events experienced by children and their outcomes. Implications for theories of poverty-related adversity, stress, and parenting are discussed in addition to future directions for research.
Ou, Xiang; Liu, Meilian; Luo, Hairong; Dong, Lily Q.; Liu, Feng
2014-01-01
Ursolic acid (UA), a pentacyclic triterpenoid widely found in medicinal herbs and fruits, has been reported to possess a wide range of beneficial properties including anti-hyperglycemia, anti-obesity, and anti-cancer. However, the molecular mechanisms underlying the action of UA remain largely unknown. Here we show that UA inhibits leucine-induced activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway in C2C12 myotubes. The UA-mediated inhibition of mTORC1 is independent of Akt, tuberous sclerosis complex 1/2 (TSC1/2), and Ras homolog enriched in brain (Rheb), suggesting that UA negatively regulates mTORC1 signaling by targeting at a site downstream of these mTOR regulators. UA treatment had no effect on the interaction between mTOR and its activator Raptor or inhibitor Deptor, but suppressed the binding of RagB to Raptor and inhibited leucine-induced mTOR lysosomal localization. Taken together, our study identifies UA as a direct negative regulator of the mTORC1 signaling pathway and suggests a novel mechanism by which UA exerts its beneficial function. PMID:24740400
Liu, Xuncheng; Chen, Chia-Yang; Wang, Ko-Ching; Luo, Ming; Tai, Ready; Yuan, Lianyu; Zhao, Minglei; Yang, Songguang; Tian, Gang; Cui, Yuhai; Hsieh, Hsu-Liang; Wu, Keqiang
2013-01-01
PHYTOCHROME INTERACTING FACTOR3 (PIF3) is a key basic helix-loop-helix transcription factor of Arabidopsis thaliana that negatively regulates light responses, repressing chlorophyll biosynthesis, photosynthesis, and photomorphogenesis in the dark. However, the mechanism for the PIF3-mediated transcription regulation remains largely unknown. In this study, we found that the REDUCED POTASSIUM DEPENDENCY3/HISTONE DEACETYLASE1-type histone deacetylase HDA15 directly interacted with PIF3 in vivo and in vitro. Genome-wide transcriptome analysis revealed that HDA15 acts mainly as a transcriptional repressor and negatively regulates chlorophyll biosynthesis and photosynthesis gene expression in etiolated seedlings. HDA15 and PIF3 cotarget to the genes involved in chlorophyll biosynthesis and photosynthesis in the dark and repress gene expression by decreasing the acetylation levels and RNA Polymerase II–associated transcription. The binding of HDA15 to the target genes depends on the presence of PIF3. In addition, PIF3 and HDA15 are dissociated from the target genes upon exposure to red light. Taken together, our results indicate that PIF3 associates with HDA15 to repress chlorophyll biosynthetic and photosynthetic genes in etiolated seedlings. PMID:23548744
Liu, Ke; Jing, Ying; Zhang, Wen; Fu, Xuejie; Zhao, Huan; Zhou, Xichao; Tao, Yunxia; Yang, Huilin; Zhang, Yan; Zen, Ke; Zhang, Chenyu; Li, Donghai; Shi, Qin
2017-04-01
Osteoporosis is a serious health problem worldwide. MicroRNA is a post-transcriptional regulator of gene expression by either promoting mRNA degradation or interfering with mRNA translation of specific target genes. It plays a significant role in the pathogenesis of osteoporosis. Here, we first demonstrated that miR-106b (miR-106b-5p) negatively regulated osteogenic differentiation of mesenchymal stem cells in vitro. Then, we found that miR-106b expression increased in C57BL/6 mice with glucocorticoid-induced osteoporosis (GIOP), and that silencing of miR-106b signaling protected mice against GIOP through promoting bone formation and inhibiting bone resorption. At last, we showed that miR-106b inhibited osteoblastic differentiation and bone formation partly through directly targeting bone morphogenetic protein 2 (BMP2) both in vitro and in the GIOP model. Together, our findings have identified the role and mechanism of miR-106b in negatively regulating osteogenesis. Inhibition of miR-106b might be a potential new strategy for treating osteoporosis and bone defects. Copyright © 2017. Published by Elsevier Inc.
GlpR is a direct transcriptional repressor of fructose metabolic genes in Haloferax volcanii.
Martin, Jonathan H; Rawls, Katie Sherwood; Chan, Jou Chin; Hwang, Sungmin; Martinez-Pastor, Mar; McMillan, Lana J; Prunetti, Laurence; Schmid, Amy K; Maupin-Furlow, Julie A
2018-06-18
DeoR-type helix-turn-helix (HTH) domain proteins are transcriptional regulators of sugar and nucleoside metabolism in diverse bacteria and occur in select archaea. In the model archaeon Haloferax volcanii , previous work implicated GlpR, a DeoR-type transcriptional regulator, in transcriptional repression of glpR and the gene encoding the fructose-specific phosphofructokinase ( pfkB ) during growth on glycerol. However, the global regulon governed by GlpR remained unclear. Here we compared transcriptomes of wild type and Δ glpR mutant strains grown on glycerol and glucose to detect significant transcript level differences for nearly 50 new genes regulated by GlpR. By coupling computational prediction of GlpR binding sequences with in vivo and in vitro DNA binding experiments, we determined that GlpR directly controls genes encoding enzymes in fructose degradation, including fructose bisphosphate aldolase, a central control point in glycolysis. GlpR also directly controls other transcription factors. In contrast, other metabolic pathways appear to be under indirect influence of GlpR. In vitro experiments demonstrated that GlpR purifies as a tetramer that binds the effector molecule fructose-1-phosphate (F1P). These results suggest that Hfx. volcanii GlpR functions as a direct negative regulator of fructose degradation during growth on carbon sources other than fructose, such as glucose and glycerol, and that GlpR bears striking functional similarity to bacterial DeoR-type regulators. IMPORTANCE Many archaea are extremophiles, able to thrive in habitats of extreme salinity, pH and temperature. These biological properties are ideal for applications in biotechnology. However, limited knowledge of archaeal metabolism is a bottleneck that prevents broad use of archaea as microbial factories for industrial products. Here we characterize how sugar uptake and use is regulated in a species that lives in high salinity. We demonstrate that a key sugar regulatory protein in this archaeal species functions using molecular mechanisms conserved with distantly related bacterial species. Copyright © 2018 American Society for Microbiology.
Yang, Liwang; Li, Yutian; Wang, Xiaohong; Mu, Xingjiang; Qin, Dongze; Huang, Wei; Alshahrani, Saeed; Nieman, Michelle; Peng, Jiangtong; Essandoh, Kobina; Peng, Tianqing; Wang, Yigang; Lorenz, John; Soleimani, Manoocher; Zhao, Zhi-Qing; Fan, Guo-Chang
2016-01-01
MicroRNAs (miRNAs) have been extensively examined in pathological cardiac hypertrophy. However, few studies focused on profiling the miRNA alterations in physiological hypertrophic hearts. In this study we generated a transgenic mouse model with cardiac-specific overexpression of miR-223. Our results showed that elevation of miR-223 caused physiological cardiac hypertrophy with enhanced cardiac function but no fibrosis. Using the next generation RNA sequencing, we observed that most of dys-regulated genes (e.g. Atf3/5, Egr1/3, Sfrp2, Itgb1, Ndrg4, Akip1, Postn, Rxfp1, and Egln3) in miR-223-transgenic hearts were associated with cell growth, but they were not directly targeted by miR-223. Interestingly, these dys-regulated genes are known to regulate the Akt signaling pathway. We further identified that miR-223 directly interacted with 3′-UTRs of FBXW7 and Acvr2a, two negative regulators of the Akt signaling. However, we also validated that miR-223 directly inhibited the expression of IGF-1R and β1-integrin, two positive regulators of the Akt signaling. Lastly, Western blotting did reveal that Akt was activated in miR-223-overexpressing hearts. Adenovirus-mediated overexpression of miR-223 in neonatal rat cardiomyocytes induced cell hypertrophy, which was blocked by the addition of MK2206, a specific inhibitor of Akt. Taken together, these data represent the first piece of work showing that miR-223 tips the balance of promotion and inactivation of Akt signaling cascades toward activation of Akt, a key regulator of physiological cardiac hypertrophy. Thus, our study suggests that the ultimate phenotype outcome of a miRNA may be decided by the secondary net effects of the whole target network rather than by several primary direct targets in an organ/tissue. PMID:27226563
How Quorum Sensing Connects Sporulation to Necrotrophism in Bacillus thuringiensis
Poncet, Sandrine; Lazar, Noureddine; Li de la Sierra-Gallay, Inès; Gohar, Michel; Lereclus, Didier; Nessler, Sylvie
2016-01-01
Bacteria use quorum sensing to coordinate adaptation properties, cell fate or commitment to sporulation. The infectious cycle of Bacillus thuringiensis in the insect host is a powerful model to investigate the role of quorum sensing in natural conditions. It is tuned by communication systems regulators belonging to the RNPP family and directly regulated by re-internalized signaling peptides. One such RNPP regulator, NprR, acts in the presence of its cognate signaling peptide NprX as a transcription factor, regulating a set of genes involved in the survival of these bacteria in the insect cadaver. Here, we demonstrate that, in the absence of NprX and independently of its transcriptional activator function, NprR negatively controls sporulation. NprR inhibits expression of Spo0A-regulated genes by preventing the KinA-dependent phosphorylation of the phosphotransferase Spo0F, thus delaying initiation of the sporulation process. This NprR function displays striking similarities with the Rap proteins, which also belong to the RNPP family, but are devoid of DNA-binding domain and indirectly control gene expression via protein-protein interactions in Bacilli. Conservation of the Rap residues directly interacting with Spo0F further suggests a common inhibition of the sporulation phosphorelay. The crystal structure of apo NprR confirms that NprR displays a highly flexible Rap-like structure. We propose a molecular regulatory mechanism in which key residues of the bifunctional regulator NprR are directly and alternatively involved in its two functions. NprX binding switches NprR from a dimeric inhibitor of sporulation to a tetrameric transcriptional activator involved in the necrotrophic lifestyle of B. thuringiensis. NprR thus tightly coordinates sporulation and necrotrophism, ensuring survival and dissemination of the bacteria during host infection. PMID:27483473
How Quorum Sensing Connects Sporulation to Necrotrophism in Bacillus thuringiensis.
Perchat, Stéphane; Talagas, Antoine; Poncet, Sandrine; Lazar, Noureddine; Li de la Sierra-Gallay, Inès; Gohar, Michel; Lereclus, Didier; Nessler, Sylvie
2016-08-01
Bacteria use quorum sensing to coordinate adaptation properties, cell fate or commitment to sporulation. The infectious cycle of Bacillus thuringiensis in the insect host is a powerful model to investigate the role of quorum sensing in natural conditions. It is tuned by communication systems regulators belonging to the RNPP family and directly regulated by re-internalized signaling peptides. One such RNPP regulator, NprR, acts in the presence of its cognate signaling peptide NprX as a transcription factor, regulating a set of genes involved in the survival of these bacteria in the insect cadaver. Here, we demonstrate that, in the absence of NprX and independently of its transcriptional activator function, NprR negatively controls sporulation. NprR inhibits expression of Spo0A-regulated genes by preventing the KinA-dependent phosphorylation of the phosphotransferase Spo0F, thus delaying initiation of the sporulation process. This NprR function displays striking similarities with the Rap proteins, which also belong to the RNPP family, but are devoid of DNA-binding domain and indirectly control gene expression via protein-protein interactions in Bacilli. Conservation of the Rap residues directly interacting with Spo0F further suggests a common inhibition of the sporulation phosphorelay. The crystal structure of apo NprR confirms that NprR displays a highly flexible Rap-like structure. We propose a molecular regulatory mechanism in which key residues of the bifunctional regulator NprR are directly and alternatively involved in its two functions. NprX binding switches NprR from a dimeric inhibitor of sporulation to a tetrameric transcriptional activator involved in the necrotrophic lifestyle of B. thuringiensis. NprR thus tightly coordinates sporulation and necrotrophism, ensuring survival and dissemination of the bacteria during host infection.
Tian, Hainan; Wang, Xianling; Guo, Hongyan; Cheng, Yuxin; Hou, Chunjiang
2017-01-01
The NAM, ATAF1/2, and CUC (NAC) are plant-specific transcription factors that regulate multiple aspects of plant growth and development and plant response to environmental stimuli. We report here the identification of NTM1-LIKE8 (NTL8), a membrane-associated NAC transcription factor, as a novel regulator of trichome formation in Arabidopsis (Arabidopsis thaliana). From an activation-tagged Arabidopsis population, we identified a dominant, gain-of-function mutant with glabrous inflorescence stem. By using plasmid rescue and RT-PCR analyses, we found that NTL8 was tagged; thus, the mutant was named ntl8-1 Dominant (ntl8-1D). Recapitulation experiment further confirmed that the phenotype observed in the ntl8-1D mutant was caused by elevated expression of NTL8. Quantitative RT-PCR results showed that the expression level of the single-repeat R3 MYB genes TRIPTYCHON (TRY) and TRICHOMELESS1 (TCL1) was elevated in the ntl8-1D mutant. Genetic analyses demonstrated that NTL8 acts upstream of TRY and TCL1 in the regulation of trichome formation. When recruited to the promoter region of the reporter gene Gal4:GUS by a fused GAL4 DNA-binding domain, NTL8 activated the expression of the reporter gene. Chromatin immunoprecipitation results indicated that TRY and TCL1 are direct targets of NTL8. However, NTL8 did not interact with SQUAMOSA PROMOTER BINDING PROTEIN LIKE9, another transcription factor that regulates the expression of TRY and TCL1, in yeast and plant cells. Taken together, our results suggest that NTL8 negatively regulates trichome formation in Arabidopsis by directly activating the expression of TRY and TCL1. PMID:28649093
Data-driven reconstruction of directed networks
NASA Astrophysics Data System (ADS)
Hempel, Sabrina; Koseska, Aneta; Nikoloski, Zoran
2013-06-01
We investigate the properties of a recently introduced asymmetric association measure, called inner composition alignment (IOTA), aimed at inferring regulatory links (couplings). We show that the measure can be used to determine the direction of coupling, detect superfluous links, and to account for autoregulation. In addition, the measure can be extended to infer the type of regulation (positive or negative). The capabilities of IOTA to correctly infer couplings together with their directionality are compared against Kendall's rank correlation for time series of different lengths, particularly focussing on biological examples. We demonstrate that an extended version of the measure, bidirectional inner composition alignment (biIOTA), increases the accuracy of the network reconstruction for short time series. Finally, we discuss the applicability of the measure to infer couplings in chaotic systems.
Emotion regulation ability varies in relation to intrinsic functional brain architecture
Uchida, Mai; Biederman, Joseph; Gabrieli, John D. E.; Micco, Jamie; de Los Angeles, Carlo; Brown, Ariel; Kenworthy, Tara; Kagan, Elana
2015-01-01
This study investigated the neural basis of individual variation in emotion regulation, specifically the ability to reappraise negative stimuli so as to down-regulate negative affect. Brain functions in young adults were measured with functional Magnetic Resonance Imaging during three conditions: (i) attending to neutral pictures; (ii) attending to negative pictures and (iii) reappraising negative pictures. Resting-state functional connectivity was measured with amygdala and dorsolateral prefrontal cortical (DLPFC) seed regions frequently associated with emotion regulation. Participants reported more negative affect after attending to negative than neutral pictures, and less negative affect following reappraisal. Both attending to negative vs neutral pictures and reappraising vs attending to negative pictures yielded widespread activations that were significantly right-lateralized for attending to negative pictures and left-lateralized for reappraising negative pictures. Across participants, more successful reappraisal correlated with less trait anxiety and more positive daily emotion, greater activation in medial and lateral prefrontal regions, and lesser resting-state functional connectivity between (a) right amygdala and both medial prefrontal and posterior cingulate cortices, and (b) bilateral DLPFC and posterior visual cortices. The ability to regulate emotion, a source of resilience or of risk for distress, appears to vary in relation to differences in intrinsic functional brain architecture. PMID:25999363
Emotion regulation ability varies in relation to intrinsic functional brain architecture.
Uchida, Mai; Biederman, Joseph; Gabrieli, John D E; Micco, Jamie; de Los Angeles, Carlo; Brown, Ariel; Kenworthy, Tara; Kagan, Elana; Whitfield-Gabrieli, Susan
2015-12-01
This study investigated the neural basis of individual variation in emotion regulation, specifically the ability to reappraise negative stimuli so as to down-regulate negative affect. Brain functions in young adults were measured with functional Magnetic Resonance Imaging during three conditions: (i) attending to neutral pictures; (ii) attending to negative pictures and (iii) reappraising negative pictures. Resting-state functional connectivity was measured with amygdala and dorsolateral prefrontal cortical (DLPFC) seed regions frequently associated with emotion regulation. Participants reported more negative affect after attending to negative than neutral pictures, and less negative affect following reappraisal. Both attending to negative vs neutral pictures and reappraising vs attending to negative pictures yielded widespread activations that were significantly right-lateralized for attending to negative pictures and left-lateralized for reappraising negative pictures. Across participants, more successful reappraisal correlated with less trait anxiety and more positive daily emotion, greater activation in medial and lateral prefrontal regions, and lesser resting-state functional connectivity between (a) right amygdala and both medial prefrontal and posterior cingulate cortices, and (b) bilateral DLPFC and posterior visual cortices. The ability to regulate emotion, a source of resilience or of risk for distress, appears to vary in relation to differences in intrinsic functional brain architecture. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Constant voltage electro-slag remelting control
Schlienger, M.E.
1996-10-22
A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an electrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable. 1 fig.
Calcium-Mediated Apoptosis and Apoptotic Sensitization in Prostate Cancer
2004-06-01
calcium- sensitive protease calpain, stimulating two distinct pathways that regulate phosphotyrosine-initiated cell signaling ( PTP1B ) or directly...trigger apoptosis (caspase 7). The role of caspase 7 and PTP1B in PC cell death and survival signaling was investigated using dominant negatives, siRNA...of a calpain-proteolyzed variant of PTP1B (tPTP1B) had minimal impact on growth-factor or cytokine-mediated tyrosine phosphorylation or cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Baocan; Li, Wenxi; Guo, Kun
2012-04-27
Highlights: Black-Right-Pointing-Pointer miR-181a and miR-181b, especially, miR-181b could be induced by transforming growth factor-beta 1 (TGF-{beta}1) in hepatic stellate cells. Black-Right-Pointing-Pointer miR-181b could promote HSC-T6 cell proliferation by directly targeting the negative cell regulator-p27 in HSC-T6 cell. Black-Right-Pointing-Pointer miR-181b was identified as potential serum diagnostic marker for liver cirrhosis patients. -- Abstract: MicroRNAs, as a kind of negative gene regulators, were demonstrated to be involved in many types of diseases. In this study, we found that transforming growth factor-beta 1 could induce the expression of miR-181a and miR-181b, and miR-181b increased in the much higher folds than miR-181a. Because ofmore » the important role of transforming growth factor-beta 1 in HSC activation and liver cirrhosis, we investigate the effect of miR-181a and miR-181b on HSC proliferation. The results showed that miR-181b could promote HSC-T6 cell proliferation by regulating cell cycle. Further study showed p27, the cell cycle regulator, was the direct target of miR-181b in HSC-T6 cell. But miR-181a had no effects on HSC-T6 cell proliferation and cell cycle, and did not target p27. Interestingly, miR-181b is elevated significantly in serum of liver cirrhosis cases comparing to that of normal persons, whereas miR-181a expression was in the similar level with that of normal persons. These results suggested that miR-181b could be induced by TGF-{beta}1 and promote the growth of HSCs by directly targeting p27. The elevation of miR-181b in serum suggested that it may be potential diagnostic biomarkers for cirrhosis. As for miR-181a, it may work in TGF-{beta}1 pathway by a currently unknown mechanism.« less
Wu, Yen-Chi; Lee, Kyu-Sun; Song, Yan; Gehrke, Stephan; Lu, Bingwei
2017-05-01
Notch (N) signaling is central to the self-renewal of neural stem cells (NSCs) and other tissue stem cells. Its deregulation compromises tissue homeostasis and contributes to tumorigenesis and other diseases. How N regulates stem cell behavior in health and disease is not well understood. Here we show that N regulates bantam (ban) microRNA to impact cell growth, a process key to NSC maintenance and particularly relied upon by tumor-forming cancer stem cells. Notch signaling directly regulates ban expression at the transcriptional level, and ban in turn feedback regulates N activity through negative regulation of the Notch inhibitor Numb. This feedback regulatory mechanism helps maintain the robustness of N signaling activity and NSC fate. Moreover, we show that a Numb-Myc axis mediates the effects of ban on nucleolar and cellular growth independently or downstream of N. Our results highlight intricate transcriptional as well as translational control mechanisms and feedback regulation in the N signaling network, with important implications for NSC biology and cancer biology.
Zeng, Lin; Chakraborty, Brinta; Farivar, Tanaz; Burne, Robert A
2017-11-01
The glucose/mannose-phosphotransferase system (PTS) permease EII Man encoded by manLMN in the dental caries pathogen Streptococcus mutans has a dominant influence on sugar-specific, CcpA-independent catabolite repression (CR). Mutations in manL affect energy metabolism and virulence-associated traits, including biofilm formation, acid tolerance, and competence. Using promoter::reporter fusions, expression of the manLMN and the fruRKI operons, encoding a transcriptional regulator, a fructose-1-phosphate kinase and a fructose-PTS permease EII Fru , respectively, was monitored in response to carbohydrate source and in mutants lacking CcpA, FruR, and components of EII Man Expression of genes for EII Man and EII Fru was directly regulated by CcpA and CR, as evinced by in vivo and in vitro methods. Unexpectedly, not only was the fruRKI operon negatively regulated by FruR, but also so was manLMN Carbohydrate transport by EII Man had a negative influence on expression of manLMN but not fruRKI In agreement with the proposed role of FruR in regulating these PTS operons, loss of fruR or fruK substantially altered growth on a number of carbohydrates, including fructose. RNA deep sequencing revealed profound changes in gene regulation caused by deletion of fruK or fruR Collectively, these findings demonstrate intimate interconnection of the regulation of two major PTS permeases in S. mutans and reveal novel and important contributions of fructose metabolism to global regulation of gene expression. IMPORTANCE The ability of Streptococcus mutans and other streptococcal pathogens to survive and cause human diseases is directly dependent upon their capacity to metabolize a variety of carbohydrates, including glucose and fructose. Our research reveals that metabolism of fructose has broad influences on the regulation of utilization of glucose and other sugars, and mutants with changes in certain genes involved in fructose metabolism display profoundly different abilities to grow and express virulence-related traits. Mutants lacking the FruR regulator or a particular phosphofructokinase, FruK, display changes in expression of a large number of genes encoding transcriptional regulators, enzymes required for energy metabolism, biofilm development, biosynthetic and degradative processes, and tolerance of a spectrum of environmental stressors. Since fructose is a major component of the modern human diet, the results have substantial significance in the context of oral health and the development of dental caries. Copyright © 2017 American Society for Microbiology.
Prospects and problems of direct-to-public genetic tests.
Tracy, Erin E
2008-09-01
Direct-to-consumer advertising of genetic tests is prevalent, poorly regulated and fraught with potential negative public-health ramifications. While some genetic tests are available through means that safeguard patient understanding of the implications of having genetic tests performed, others are available to anyone who has a credit card, without any individualized counseling, assessment of whether such tests are indicated, or interpretation of test results. While the US FDA, the Centers for Medicare and Medicaid Services and the Federal Trade Commission all have a regulatory role, most experts agree that the industry is not adequately being reigned in to best protect the public it serves.
Li, Xinrui; Wu, Jianming; Ptacek, Travis; Redden, David T; Brown, Elizabeth E; Alarcón, Graciela S; Ramsey-Goldman, Rosalind; Petri, Michelle A; Reveille, John D.; Kaslow, Richard A; Kimberly, Robert P; Edberg, Jeffrey C
2014-01-01
B cells are pivotal regulators of acquired immune responses and recent work in both experimental murine models and humans has demonstrated that subtle changes in the regulation of B cell function can significantly alter immunological responses. The balance of negative and positive signals in maintaining an appropriate B cell activation threshold is critical in B lymphocyte immune tolerance and autoreactivity. FcγRIIb (CD32B), the only recognized Fcγ receptor on B cells, provides IgG-mediated negative modulation through a tyrosine-based inhibition motif which down-regulates B cell receptor initiated signaling. These properties make FcγRIIb a promising target for antibody-based therapy. Here we report the discovery of allele-dependent expression of the activating FcγRIIc on B cells. Identical to FcγRIIb in the extracellular domain, FcγRIIc has a tyrosine-based activation motif in its cytoplasmic domain. In both human B cells and in B cells from mice transgenic for human FcγRIIc, FcγRIIc expression counterbalances the negative feedback of FcγRIIb and enhances humoral responses to immunization in mice and to BioThrax® vaccination in a human Anthrax vaccine trial. Moreover, the FCGR2C-ORF allele is associated with the risk of development of autoimmunity in humans. FcγRIIc expression on B cells challenges the prevailing paradigm of uni-directional negative feedback by IgG immune complexes via the inhibitory FcγRIIb, is a previously unrecognized determinant in human antibody/autoantibody responses, and opens the opportunity for more precise personalized use of B cell targeted antibody-based therapy. PMID:24353158
Luo, Wen; Chen, Jiahui; Li, Limin; Ren, Xueyi; Cheng, Tian; Lu, Shiyi; Lawal, Raman Akinyanju; Nie, Qinghua; Zhang, Xiquan; Hanotte, Olivier
2018-05-21
The transcription factor c-Myc is an important regulator of cellular proliferation, differentiation and embryogenesis. While c-Myc can inhibit myoblast differentiation, the underlying mechanisms remain poorly understood. Here, we found that c-Myc does not only inhibits myoblast differentiation but also promotes myoblast proliferation and muscle fibre hypertrophy. By performing chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), we identified the genome-wide binding profile of c-Myc in skeletal muscle cells. c-Myc achieves its regulatory effects on myoblast proliferation and differentiation by targeting the cell cycle pathway. Additionally, c-Myc can regulate cell cycle genes by controlling miRNA expression of which dozens of miRNAs can also be regulated directly by c-Myc. Among these c-Myc-associated miRNAs (CAMs), the roles played by c-Myc-induced miRNAs in skeletal muscle cells are similar to those played by c-Myc, whereas c-Myc-repressed miRNAs play roles that are opposite to those played by c-Myc. The cell cycle, ERK-MAPK and Akt-mediated pathways are potential target pathways of the CAMs during myoblast differentiation. Interestingly, we identified four CAMs that can directly bind to the c-Myc 3' UTR and inhibit c-Myc expression, suggesting that a negative feedback loop exists between c-Myc and its target miRNAs during myoblast differentiation. c-Myc also potentially regulates many long intergenic noncoding RNAs (lincRNAs). Linc-2949 and linc-1369 are directly regulated by c-Myc, and both lincRNAs are involved in the regulation of myoblast proliferation and differentiation by competing for the binding of muscle differentiation-related miRNAs. Our findings do not only provide a genome-wide overview of the role the c-Myc plays in skeletal muscle cells but also uncover the mechanism of how c-Myc and its target genes regulate myoblast proliferation and differentiation, and muscle fibre hypertrophy.
Lahdaoui, F; Delpu, Y; Vincent, A; Renaud, F; Messager, M; Duchêne, B; Leteurtre, E; Mariette, C; Torrisani, J; Jonckheere, N; Van Seuningen, I
2015-02-05
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal cancers in the world with one of the worst outcome. The oncogenic mucin MUC4 has been identified as an actor of pancreatic carcinogenesis as it is involved in many processes regulating pancreatic cancer cell biology. MUC4 is not expressed in healthy pancreas whereas it is expressed very early in pancreatic carcinogenesis. Targeting MUC4 in these early steps may thus appear as a promising strategy to slow-down pancreatic tumorigenesis. miRNA negative regulation of MUC4 could be one mechanism to efficiently downregulate MUC4 gene expression in early pancreatic neoplastic lesions. Using in silico studies, we found two putative binding sites for miR-219-1-3p in the 3'-UTR of MUC4 and showed that miR-219-1-3p expression is downregulated both in PDAC-derived cell lines and human PDAC tissues compared with their normal counterparts. We then showed that miR-219-1-3p negatively regulates MUC4 mucin expression via its direct binding to MUC4 3'-UTR. MiR-219-1-3p overexpression (transient and stable) in pancreatic cancer cell lines induced a decrease of cell proliferation associated with a decrease of cyclin D1 and a decrease of Akt and Erk pathway activation. MiR-219-1-3p overexpression also decreased cell migration. Furthermore, miR-219-1-3p expression was found to be conversely correlated with Muc4 expression in early pancreatic intraepithelial neoplasia lesions of Pdx1-Cre;LSL-Kras(G12D) mice. Most interestingly, in vivo studies showed that miR-219-1-3p injection in xenografted pancreatic tumors in mice decreased both tumor growth and MUC4 mucin expression. Altogether, these results identify miR-219-1-3p as a new negative regulator of MUC4 oncomucin that possesses tumor-suppressor activity in PDAC.
SCF(KMD) controls cytokinin signaling by regulating the degradation of type-B response regulators.
Kim, Hyo Jung; Chiang, Yi-Hsuan; Kieber, Joseph J; Schaller, G Eric
2013-06-11
Cytokinins are plant hormones that play critical roles in growth and development. In Arabidopsis, the transcriptional response to cytokinin is regulated by action of type-B Arabidopsis response regulators (ARRs). Although central elements in the cytokinin signal transduction pathway have been identified, mechanisms controlling output remain to be elucidated. Here we demonstrate that a family of F-box proteins, called the kiss me deadly (KMD) family, targets type-B ARR proteins for degradation. KMD proteins form an S-phase kinase-associated PROTEIN1 (SKP1)/Cullin/F-box protein (SCF) E3 ubiquitin ligase complex and directly interact with type-B ARR proteins. Loss-of-function KMD mutants stabilize type-B ARRs and exhibit an enhanced cytokinin response. In contrast, plants with elevated KMD expression destabilize type-B ARR proteins leading to cytokinin insensitivity. Our results support a model in which an SCF(KMD) complex negatively regulates cytokinin responses by controlling levels of a key family of transcription factors.
Identification of JAK/STAT pathway regulators—Insights from RNAi screens
Müller, Patrick; Boutros, Michael; Zeidler, Martin P.
2008-01-01
While many core JAK/STAT pathway components have been discovered in Drosophila via classical genetic approaches, the identification of pathway regulators has been more challenging. Recently two cell-based RNAi screens for JAK/STAT pathway regulators have been undertaken using libraries of double-stranded RNAs targeting a large proportion of the predicted Drosophila transcriptome. While both screens identified multiple regulators, only relatively few loci are common to both data sets. Here we compare the two screens and discuss these differences. Although many factors are likely to be contributory, differences in the assay design are of key importance. Low levels of stimulation favouring the identification of negative pathway regulators and high levels of stimulation favouring the identification of positively acting factors. Ultimately, the results from both screens are likely to be largely complementary and have identified a range of novel candidate regulators of JAK/STAT pathway activity as a starting point for new research directions in the future. PMID:18586112
miR-215 functions as an oncogene in high-grade glioma by regulating retinoblastoma 1.
Meng, Xiaofeng; Shi, Baozhong
2017-09-01
To investigate the roles of miR-215 in high-grade glioma and to clarify the regulation of retinoblastoma 1 (RB1) by miR-215. miR-215 is frequently up-regulated in high-grade glioma tissues. Increased miR-215 expression is significantly associated with World Health Organization grade (P < 0.01) tumor size (P < 0.05) and poor prognosis (P < 0.01). Over-expression of miR-215 promoted cell proliferation and knockdown of miR-215 inhibited cell proliferation in vitro. RB1 was identified as a direct and functional target of miR-215. RB1 is generally down-regulated in glioma tissues and its expression inversely correlated with miR-215, which is up-regulated in high-grade glioma tissues, and its expression was negatively correlated with miR-215. The new miR-215/RB1 axis provides new insights into the molecular mechanism and treatment for glioma.
Goh, Fera Y; Upton, Nadine; Guan, Shouping; Cheng, Chang; Shanmugam, Muthu K; Sethi, Gautam; Leung, Bernard P; Wong, W S Fred
2012-03-15
Persistent activation of nuclear factor-κB (NF-κB) has been associated with the development of asthma. Fisetin (3,7,3',4'-tetrahydroxyflavone), a naturally occurring bioactive flavonol, has been shown to inhibit NF-κB activity. We hypothesized that fisetin may attenuate allergic asthma via negative regulation of the NF-κB activity. Female BALB/c mice sensitized and challenged with ovalbumin developed airway inflammation. Bronchoalveolar lavage fluid was assessed for total and differential cell counts, and cytokine and chemokine levels. Lung tissues were examined for cell infiltration and mucus hypersecretion, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Fisetin dose-dependently inhibited ovalbumin-induced increases in total cell count, eosinophil count, and IL-4, IL-5 and IL-13 levels recovered in bronchoalveolar lavage fluid. It attenuated ovalbumin-induced lung tissue eosinophilia and airway mucus production, mRNA expression of adhesion molecules, chitinase, IL-17, IL-33, Muc5ac and inducible nitric oxide synthase in lung tissues, and airway hyperresponsiveness to methacholine. Fisetin blocked NF-κB subunit p65 nuclear translocation and DNA-binding activity in the nuclear extracts from lung tissues of ovalbumin-challenged mice. In normal human bronchial epithelial cells, fisetin repressed TNF-α-induced NF-κB-dependent reporter gene expression. Our findings implicate a potential therapeutic value of fisetin in the treatment of asthma through negative regulation of NF-κB pathway. Copyright © 2012 Elsevier B.V. All rights reserved.
Emotion Regulation in Schema Therapy and Dialectical Behavior Therapy
Fassbinder, Eva; Schweiger, Ulrich; Martius, Desiree; Brand-de Wilde, Odette; Arntz, Arnoud
2016-01-01
Schema therapy (ST) and dialectical behavior therapy (DBT) have both shown to be effective treatment methods especially for borderline personality disorder. Both, ST and DBT, have their roots in cognitive behavioral therapy and aim at helping patient to deal with emotional dysregulation. However, there are major differences in the terminology, explanatory models and techniques used in the both methods. This article gives an overview of the major therapeutic techniques used in ST and DBT with respect to emotion regulation and systematically puts them in the context of James Gross' process model of emotion regulation. Similarities and differences of the two methods are highlighted and illustrated with a case example. A core difference of the two approaches is that DBT directly focusses on the acquisition of emotion regulation skills, whereas ST does seldom address emotion regulation directly. All DBT-modules (mindfulness, distress tolerance, emotion regulation, interpersonal effectiveness) are intended to improve emotion regulation skills and patients are encouraged to train these skills on a regular basis. DBT assumes that improved skills and skills use will result in better emotion regulation. In ST problems in emotion regulation are seen as a consequence of adverse early experiences (e.g., lack of safe attachment, childhood abuse or emotional neglect). These negative experiences have led to unprocessed psychological traumas and fear of emotions and result in attempts to avoid emotions and dysfunctional meta-cognitive schemas about the meaning of emotions. ST assumes that when these underlying problems are addressed, emotion regulation improves. Major ST techniques for trauma processing, emotional avoidance and dysregulation are limited reparenting, empathic confrontation and experiential techniques like chair dialogs and imagery rescripting. PMID:27683567
Zhang, Xuebin; Liu, Chang -Jun; Gou, Mingyue; ...
2014-12-01
Phenylpropanoid biosynthesis in plants engenders myriad phenolics with diverse biological functions. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway, directing primary metabolic flux into a phenylpropanoid branch. Previously, we demonstrated that the Arabidopsis Kelch-domain containing F-box proteins, AtKFB01, -20, and -50, function as the negative regulators controlling phenylpropanoid biosynthesis via mediating PAL’s ubiquitination and subsequent degradation. Here, we reveal that Arabidopsis KFB39, a close homolog of AtKFB50, also interacts physically with PAL isozymes and modulates PALs' stability and activity. Disturbing the expression of KFB39 reciprocally affects the accumulation/deposition of a set of phenylpropanoid end products, suggesting thatmore » KFB39 is an additional post-translational regulator responsible for the turnover of PAL and negatively controlling phenylpropanoid biosynthesis. Furthermore, we discover that exposure of Arabidopsis to UV-B radiation suppresses the expression of all four KFB genes while inducing the transcription of PAL isogenes; these data suggest that Arabidopsis consolidates both transcriptional and post-translational regulation mechanisms to maximize its responses to UV stress. Simultaneous down-regulation of all four identified KFBs significantly enhances the production of (poly)phenols and the plant’s tolerance to UV irradiation. This study offers a biotechnological approach for engineering the production of useful phenolic chemicals and for increasing a plant’s resistance to environmental stress.« less
Zhang, Xuebin; Gou, Mingyue; Guo, Chunrong; Yang, Huijun; Liu, Chang-Jun
2015-01-01
Phenylpropanoid biosynthesis in plants engenders myriad phenolics with diverse biological functions. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway, directing primary metabolic flux into a phenylpropanoid branch. Previously, we demonstrated that the Arabidopsis (Arabidopsis thaliana) Kelch domain-containing F-box proteins, AtKFB01, AtKFB20, and AtKFB50, function as the negative regulators controlling phenylpropanoid biosynthesis via mediating PAL’s ubiquitination and subsequent degradation. Here, we reveal that Arabidopsis KFB39, a close homolog of AtKFB50, also interacts physically with PAL isozymes and modulates PAL stability and activity. Disturbing the expression of KFB39 reciprocally affects the accumulation/deposition of a set of phenylpropanoid end products, suggesting that KFB39 is an additional posttranslational regulator responsible for the turnover of PAL and negatively controlling phenylpropanoid biosynthesis. Furthermore, we discover that exposure of Arabidopsis to ultraviolet (UV)-B radiation suppresses the expression of all four KFB genes while inducing the transcription of PAL isogenes; these data suggest that Arabidopsis consolidates both transcriptional and posttranslational regulation mechanisms to maximize its responses to UV light stress. Simultaneous down-regulation of all four identified KFBs significantly enhances the production of (poly)phenols and the plant’s tolerance to UV irradiation. This study offers a biotechnological approach for engineering the production of useful phenolic chemicals and for increasing a plant’s resistance to environmental stress. PMID:25502410
Davis, Tchiki S; Mauss, Iris B; Lumian, Daniel; Troy, Allison S; Shallcross, Amanda J; Zarolia, Paree; Ford, Brett Q; McRae, Kateri
2014-08-01
Intentionally hurting one's body (deliberate self-harm; DSH) is theorized to be associated with high negative emotional reactivity and poor emotion regulation ability. However, little research has assessed the relationship between these potential risk factors and DSH using laboratory measures. Therefore, we conducted 2 studies using laboratory measures of negative emotional reactivity and emotion regulation ability. Study 1 assessed self-reported negative emotions during a sad film clip (reactivity) and during a sad film clip for which participants were instructed to use reappraisal (regulation). Those with a history of DSH were compared with 2 control groups without a history of DSH matched on key demographics: 1 healthy group low in depression and anxiety symptoms and 1 group matched to the DSH group on depression and anxiety symptoms. Study 2 extended Study 1 by assessing neural responding to negative images (reactivity) and negative images for which participants were instructed to use reappraisal (regulation). Those with a history of DSH were compared with a control group matched to the DSH group on demographics, depression, and anxiety symptoms. Compared with control groups, participants with a history of DSH did not exhibit greater negative emotional reactivity but did exhibit lower ability to regulate emotion with reappraisal (greater self-reported negative emotions in Study 1 and greater amygdala activation in Study 2 during regulation). These results suggest that poor emotion regulation ability, but not necessarily greater negative emotional reactivity, is a correlate of and may be a risk factor for DSH, even when controlling for mood disorder symptoms. (c) 2014 APA, all rights reserved.
Davis, Tchiki S.; Mauss, Iris B.; Lumian, Daniel; Troy, Allison S.; Shallcross, Amanda J.; Zarolia, Paree; Ford, Brett Q.; McRae, Kateri
2014-01-01
Intentionally hurting one’s own body (deliberate self-harm; DSH) is theorized to be associated with high negative emotional reactivity and poor emotion regulation ability. However, little research has assessed the relationship between these potential risk factors and DSH using laboratory measures. Therefore, we conducted two studies using laboratory measures of negative emotional reactivity and emotion regulation ability. Study 1 assessed self-reported negative emotions during a sad film clip (Reactivity) and during a sad film clip for which participants were instructed to use reappraisal (Regulation). Those with a history of DSH were compared to two control groups without a history of DSH matched on key demographics: one healthy group low in depression and anxiety symptoms and one group matched to the DSH group on depression and anxiety symptoms. Study 2 extended Study 1 by assessing neural responding to negative images (Reactivity) and negative images for which participants were instructed to use reappraisal (Regulation). Those with a history of DSH were compared to a control group matched to the DSH group on demographics, depression, and anxiety symptoms. Compared to control groups, participants with a history of DSH did not exhibit greater negative emotional reactivity but did exhibit lower ability to regulate emotion with reappraisal (greater self-reported negative emotions in Study 1 and greater amygdala activation in Study 2 during regulation). These results suggest that poor emotion regulation ability, but not necessarily greater negative emotional reactivity, is a correlate of and may be a risk factor for DSH, even when controlling for mood disorder symptoms. PMID:24865373
Leisy, D.J.; Rasmussen, C.; Owusu, E.O.; Rohrmann, G.F.
1997-01-01
The Autographa californica multinucleocapsid nuclear polyhedrosis virus (AcMNPV) ie-1 gene product (IE-1) is thought to play a central role in stimulating early viral transcription. IE-1 has been demonstrated to activate several early viral gene promoters and to negatively regulate the promoters of two other AcMNPV regulatory genes, ie-0 and ie-2. Our results indicate that IE-1 negatively regulates the expression of certain genes by binding directly, or as part of a complex, to promoter regions containing a specific IE-1-binding motif (5'-ACBYGTAA-3') near their mRNA start sites. The IE-1 binding motif was also found within the palindromic sequences of AcMNPV homologous repeat (hr) regions that have been shown to bind IE-1. The role of this IE-1 binding motif in the regulation of the ie-2 and pe-38 promoters was examined by introducing mutations in these promoters in which the central 6 bp were replaced with Bg/II sites. GUS reporter constructs containing ie-2 and pe-38 promoter fragments with and without these specific mutations were cotransfected into Sf9 cells with various amounts of an ie-1-containing plasmid (ple-1). Comparisons of GUS expression produced by the mutant and wild-type constructs demonstrated that the IE-1 binding motif mediated a significant decrease in expression from the ie-2 and pe-38 promoters in response to increasing pIe-1 concentrations. Electrophoretic mobility shift assays with pIe-1-transfected cell extracts and supershift assays with IE-1- specific antiserum demonstrated that IE-1 binds to promoter fragments containing the IE-1 binding motif but does not bind to promoter fragments lacking this motif.
Tracing How Normative Messages May Influence Physical Activity Intention.
van Bavel, René; Esposito, Gabriele; Baranowski, Tom; Duch-Brown, Néstor
2017-04-01
Normative messages have been shown to increase intention to do physical activity. We traced how "positive" and "negative" normative messages influenced physical activity intention by comparing constructs of the model of goal-directed behavior with descriptive norms (MGDB + DNs) across control and treatment groups in an experiment. For this purpose, 16-24-year-old respondents (n = 1,200) in Bulgaria, Croatia, and Romania were asked about their age, sex, and levels of physical activity before being exposed to positive and negative normative messages and completing a questionnaire with MGDB + DNs scales. Different MGDB + DNs constructs were influenced by the normative messages: compared with the control, the negative message group showed stronger attitudes (p = .003) and the positive message group showed higher positive anticipated emotions (p = .005). The positive message's effect is consistent with the literature on conformity to social norms. The negative message's effect lends itself to interpretations based on social identity and deviance regulation theories.
ERIC Educational Resources Information Center
Magno, Carlo
2010-01-01
The present study investigated the composition of negative affect and its function as inhibitory to thought processes such as self-regulation. Negative affect in the present study were composed of anxiety, worry, thought suppression, and fear of negative evaluation. These four factors were selected based on the criteria of negative affect by…
Gao, Fei; Ma, Xinghong; Ostmann, Alicia B.
2011-01-01
Although estradiol-17β (E2)-regulated early and late phase uterine responses have been well defined, the molecular mechanisms linking the phases remain poorly understood. We have previously shown that E2-regulated early signals mediate cross talk with estrogen receptor (ER)-α to elicit uterine late growth responses. G protein-coupled receptor (GPR30) has been implicated in early nongenomic signaling mediated by E2, although its role in E2-dependent uterine biology is unclear. Using selective activation of GPR30 by G-1, we show here a new function of GPR30 in regulating early signaling events, including the inhibition of ERK1/2 and ERα (Ser118) phosphorylation signals and perturbation of growth regulation under the direction of E2 in the mouse uterus. We observed that GPR30 primarily localizes in the uterine epithelial cells, and its activation alters gene expression and mediates inhibition of ERK1/2 and ERα (Ser118) phosphorylation signals in the stromal compartment, suggesting a paracrine signaling is involved. Importantly, viral-driven manipulation of GPR30 or pharmacological inhibition of ERK1/2 activation effectively alters E2-dependent uterine growth responses. Overall, GPR30 is a negative regulator of ERα-dependent uterine growth in response to E2. Our work has uncovered a novel GPR30-regulated inhibitory event, which may be physiologically relevant in both normal and pathological situations to negatively balance ERα-dependent uterine growth regulatory functions induced by E2. PMID:21303939
MicroRNA-204-5p regulates 3T3-L1 preadipocyte proliferation, apoptosis and differentiation.
Du, Jingjing; Zhang, Peiwen; Gan, Mailin; Zhao, Xue; Xu, Yan; Li, Qiang; Jiang, Yanzhi; Tang, Guoqing; Li, Mingzhou; Wang, Jinyong; Li, Xuewei; Zhang, Shunhua; Zhu, Li
2018-08-20
Obesity due to excessive lipid accumulation is closely associated with metabolic diseases such as type 2 diabetes, insulin resistance and inflammation. Therefore, a detailed understanding of the molecular mechanisms that underlie adipogenesis is crucial to develop treatments for diseases related to obesity. Here, we found that the microRNA-204-5p (miR-204-5p) was expressed at low levels in fat tissues from obese mice fed long-term with a high-fat diet (HFD). Overexpression or inhibition of miR-204-5p in vitro in 3T3-L1 preadipocytes significantly inhibited or promoted 3T3-L1 proliferation, respectively, an effect mediated by regulating cell proliferation factors. miR-204-5p also induced preadipocyte apoptosis by directly targeting the 3' UTR region of Bcl-2, reducing the constitutive suppression of Bcl-2 on p53-dependent apoptosis. Interestingly, overexpression of miR-204-5p during adipocyte differentiation significantly increased the number of oil red O+ cells, triglyceride accumulation and the expression of markers associated with adipocyte differentiation. In contrast, inhibition of miR-204-5p had the opposite effect on 3T3-L1 adipocyte differentiation. Luciferase activity assays and qRT-PCR showed that miR-204-5p regulates adipocyte differentiation by negatively regulating KLF3, a negative regulator of lipogenesis. Taken together, our findings showed that miR-204-5p inhibits proliferation and induces apoptosis of preadipocytes by regulating Bcl-2, but also promotes adipocyte differentiation by targeting KLF3. Copyright © 2018. Published by Elsevier B.V.
Patzwald, Christiane; Curley, Charlotte A; Hauf, Petra; Elsner, Birgit
2018-05-01
Infants use others' emotional signals to regulate their own object-directed behavior and action reproduction, and they typically produce more actions after having observed positive as compared to negative emotional cues. This study explored infants' understanding of the referential specificity of others' emotional cues when being confronted with two actions that are accompanied by different emotional displays. Selective action reproduction was measured after 18-month-olds (N = 42) had observed two actions directed at the same object, one of which was modeled with a positive emotional expression and the other with a negative emotional expression. Across four trials with different objects, infants' first actions matched the positively-emoted actions more often than the negatively-emoted actions. In comparison with baseline-level, infants' initial performance changed only for the positively-emoted actions, in that it increased during test. Latencies to first object-touch during test did not differ when infants reproduced the positively- or negatively-emoted actions, respectively, indicating that infants related the cues to the respective actions rather than to the object. During demonstration, infants looked relatively longer at the object than at the model's face, with no difference in positive or negative displays. Infants during their second year of life thus capture the action-related referential specificity of others' emotional cues and seem to follow positive signals more readily when actively selecting which of two actions to reproduce preferentially. Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Dich, Nadya; Doan, Stacey; Evans, Gary
2015-01-01
The present study examined the concurrent and prospective, longitudinal effects of childhood negative emotionality and self-regulation on allostatic load (AL), a physiological indicator of chronic stress. We hypothesized that negative emotionality in combination with poor self-regulation would predict elevated AL. Mothers reported on children's…
Farrell, Anne M.; Goh, Joshua O. S.; White, Brian J.
2018-01-01
Emotional and economic incentives often conflict in decision environments. To make economically desirable decisions then, deliberative neural processes must be engaged to regulate automatic emotional reactions. In this functional magnetic resonance imaging (fMRI) study, we evaluated how fixed wage (FW) incentives and performance-based (PB) financial incentives, in which pay is proportional to outcome, differentially regulate positive and negative emotional reactions to hypothetical colleagues that conflicted with the economics of available alternatives. Neural activity from FW to PB incentive contexts decreased for positive emotional stimuli but increased for negative stimuli in middle temporal, insula, and medial prefrontal regions. In addition, PB incentives further induced greater responses to negative than positive emotional decisions in the frontal and anterior cingulate regions involved in emotion regulation. Greater response to positive than negative emotional features in these regions also correlated with lower frequencies of economically desirable choices. Our findings suggest that whereas positive emotion regulation involves a reduction of responses in valence representation regions, negative emotion regulation additionally engages brain regions for deliberative processing and signaling of incongruous events. PMID:29487519
Farrell, Anne M; Goh, Joshua O S; White, Brian J
2018-01-01
Emotional and economic incentives often conflict in decision environments. To make economically desirable decisions then, deliberative neural processes must be engaged to regulate automatic emotional reactions. In this functional magnetic resonance imaging (fMRI) study, we evaluated how fixed wage (FW) incentives and performance-based (PB) financial incentives, in which pay is proportional to outcome, differentially regulate positive and negative emotional reactions to hypothetical colleagues that conflicted with the economics of available alternatives. Neural activity from FW to PB incentive contexts decreased for positive emotional stimuli but increased for negative stimuli in middle temporal, insula, and medial prefrontal regions. In addition, PB incentives further induced greater responses to negative than positive emotional decisions in the frontal and anterior cingulate regions involved in emotion regulation. Greater response to positive than negative emotional features in these regions also correlated with lower frequencies of economically desirable choices. Our findings suggest that whereas positive emotion regulation involves a reduction of responses in valence representation regions, negative emotion regulation additionally engages brain regions for deliberative processing and signaling of incongruous events.
Hurrell, Katherine E; Hudson, Jennifer L; Schniering, Carolyn A
2015-01-01
Research has demonstrated that parental reactions to children's emotions play a significant role in the development of children's emotion regulation (ER) and adjustment. This study compared parent reactions to children's negative emotions between families of anxious and non-anxious children (aged 7-12) and examined associations between parent reactions and children's ER. Results indicated that children diagnosed with an anxiety disorder had significantly greater difficulty regulating a range of negative emotions and were regarded as more emotionally negative and labile by their parents. Results also suggested that mothers of anxious children espoused less supportive parental emotional styles when responding to their children's negative emotions. Supportive and non-supportive parenting reactions to children's negative emotions related to children's emotion regulation skills, with father's non-supportive parenting showing a unique relationship to children's negativity/lability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Saukko, Paula
2013-02-01
Direct-to-consumer (DTC) genetic tests have aroused controversy. Critics have argued many of the tests are not backed by scientific evidence, misguide their customers and should be regulated more stringently. Proponents suggest that finding out genetic susceptibilities for diseases could encourage healthier behaviours and makes the results of genetics research available to the public. This paper reviews the state of play in DTC genetic testing, focusing on tests identifying susceptibilities for lifestyle-related diseases. It will start with mapping the market for the tests. The paper will review (1) research on the content of the online marketing of DTC tests, (2) studies on the effects of DTC genetic tests on customers and (3) academic and policy proposals on how to regulate the tests. Current studies suggest that the marketing of DTC genetic tests often exaggerates their predictive powers, which could misguide consumers. However, research indicates that the tests do not seem to have major negative effects (worry and confusion) but neither do they engender positive effects (lifestyle change) on current users. Research on regulation of the tests has most commonly suggested regulating the marketing claims of the companies. In conclusion, the risks and benefits of DTC genetic tests are less significant than what has been predicted by critics and proponents, which will be argued reflects broader historical trends transforming health and medicine.
Superenhancer reprogramming drives a B-cell–epithelial transition and high-risk leukemia
Hu, Yeguang; Zhang, Zhihong; Kashiwagi, Mariko; Yoshida, Toshimi; Joshi, Ila; Jena, Nilamani; Somasundaram, Rajesh; Emmanuel, Akinola Olumide; Sigvardsson, Mikael; Fitamant, Julien; El-Bardeesy, Nabeel; Gounari, Fotini; Van Etten, Richard A.; Georgopoulos, Katia
2016-01-01
IKAROS is required for the differentiation of highly proliferative pre-B-cell precursors, and loss of IKAROS function indicates poor prognosis in precursor B-cell acute lymphoblastic leukemia (B-ALL). Here we show that IKAROS regulates this developmental stage by positive and negative regulation of superenhancers with distinct lineage affiliations. IKAROS defines superenhancers at pre-B-cell differentiation genes together with B-cell master regulators such as PAX5, EBF1, and IRF4 but is required for a highly permissive chromatin environment, a function that cannot be compensated for by the other transcription factors. IKAROS is also highly enriched at inactive enhancers of genes normally expressed in stem–epithelial cells. Upon IKAROS loss, expression of pre-B-cell differentiation genes is attenuated, while a group of extralineage transcription factors that are directly repressed by IKAROS and depend on EBF1 relocalization at their enhancers for expression is induced. LHX2, LMO2, and TEAD–YAP1, normally kept separate from native B-cell transcription regulators by IKAROS, now cooperate directly with them in a de novo superenhancer network with its own feed-forward transcriptional reinforcement. Induction of de novo superenhancers antagonizes Polycomb repression and superimposes aberrant stem–epithelial cell properties in a B-cell precursor. This dual mechanism of IKAROS regulation promotes differentiation while safeguarding against a hybrid stem–epithelial–B-cell phenotype that underlies high-risk B-ALL. PMID:27664237
Mindfulness facets and problematic Internet use: A six-month longitudinal study.
Calvete, Esther; Gámez-Guadix, Manuel; Cortazar, Nerea
2017-09-01
The aim of this study was to study the cross-sectional and longitudinal associations between mindfulness facets and problematic Internet use in adolescents. The sample consisted of 609 adolescents (313 girls, 296 boys; Mean age=14.21years, SD=1.71; age range 11-18). Participants completed a measure of five facets of mindfulness (describing, observing, acting with awareness, non-judging and non-reacting) at the beginning of the year, and measures of several components of problematic Internet use (preference for online social interactions, the use of the Internet to regulate mood, deficient self-regulation and negative outcomes) at beginning of the year and six months later. Findings indicated that non-judging is the only dimension of mindfulness that predicts a decrease in preference for online social interactions over face-to-face relationships. Moreover, non-judging indirectly predicted reductions in the rest of the problematic Internet use components. The observing and acting with awareness dimensions of mindfulness directly predicted less deficient self-regulation of Internet use and indirectly predicted less negative outcomes through their impact on deficient self-regulation. Thus, these dimensions seem to act when the maladaptive use of the Internet is consolidated. These findings suggest that interventions should include approaches to develop those mindfulness facets that protect against the development of problematic Internet use. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ismail, Ku Syahidah Ku; Sakamoto, Takatoshi; Hatanaka, Haruyo; Hasunuma, Tomohisa; Kondo, Akihiko
2013-01-10
Production of ethanol from xylose at high temperature would be an economical approach since it reduces risk of contamination and allows both the saccharification and fermentation steps in SSF to be running at elevated temperature. Eight recombinant xylose-utilizing Saccharomyces cerevisiae strains developed from industrial strains were constructed and subjected to high-temperature fermentation at 38 °C. The best performing strain was sun049T, which produced up to 15.2 g/L ethanol (63% of the theoretical production), followed by sun048T and sun588T, both with 14.1 g/L ethanol produced. Via transcriptomic analysis, expression profiling of the top three best ethanol producing strains compared to a negative control strain, sun473T, led to the discovery of genes in common that were regulated in the same direction. Identification of the 20 most highly up-regulated and the 20 most highly down-regulated genes indicated that the cells regulate their central metabolism and maintain the integrity of the cell walls in response to high temperature. We also speculate that cross-protection in the cells occurs, allowing them to maintain ethanol production at higher concentration under heat stress than the negative controls. This report provides further transcriptomics information in the interest of producing a robust microorganism for high-temperature ethanol production utilizing xylose. Copyright © 2012 Elsevier B.V. All rights reserved.
Adipocyte iron regulates leptin and food intake
Gao, Yan; Li, Zhonggang; Gabrielsen, J. Scott; Simcox, Judith A.; Lee, Soh-hyun; Jones, Deborah; Cooksey, Bob; Stoddard, Gregory; Cefalu, William T.; McClain, Donald A.
2015-01-01
Dietary iron supplementation is associated with increased appetite. Here, we investigated the effect of iron on the hormone leptin, which regulates food intake and energy homeostasis. Serum ferritin was negatively associated with serum leptin in a cohort of patients with metabolic syndrome. Moreover, the same inverse correlation was observed in mice fed a high-iron diet. Adipocyte-specific loss of the iron exporter ferroportin resulted in iron loading and decreased leptin, while decreased levels of hepcidin in a murine hereditary hemochromatosis (HH) model increased adipocyte ferroportin expression, decreased adipocyte iron, and increased leptin. Treatment of 3T3-L1 adipocytes with iron decreased leptin mRNA in a dose-dependent manner. We found that iron negatively regulates leptin transcription via cAMP-responsive element binding protein activation (CREB activation) and identified 2 potential CREB-binding sites in the mouse leptin promoter region. Mutation of both sites completely blocked the effect of iron on promoter activity. ChIP analysis revealed that binding of phosphorylated CREB is enriched at these two sites in iron-treated 3T3-L1 adipocytes compared with untreated cells. Consistent with the changes in leptin, dietary iron content was also directly related to food intake, independently of weight. These findings indicate that levels of dietary iron play an important role in regulation of appetite and metabolism through CREB-dependent modulation of leptin expression. PMID:26301810
Boukhris, Ines; Dulermo, Thierry; Chouayekh, Hichem; Virolle, Marie-Joëlle
2016-01-01
Sco7697, a gene encoding a phytase, enzyme able to degrade phytate (myo-inositol 1,2,3,4,5,6-hexakis phosphate), the most abundant phosphorus storing compound in plants is present in the genome of S. coelicolor, a soil born bacteria with a saprophytic lifestyle. The expression of this gene was previously shown to be induced in conditions of Pi limitation by the response regulator PhoP binding to an operator sequence, the PHO box, located upstream of the -35 promoter sequence. A close examination of the promoter region of sco7697 revealed the presence of another putative operator site, a Direct Repeat (DR), located downstream of the -10 promoter sequence. In order to determine whether this DR played a role in regulation of sco7697 expression, different variants of the phytase gene promoter region were transcriptionally fused to the ß-glucuronidase reporter gene (GUS). As expected, deletion of the PHO box led to abolition of sco7697 induction in conditions of Pi limitation. Interestingly, alteration of the DR correlated with a dramatic increase of GUS expression but only when PhoP was present. These results demonstrated that this DR is the site of strong negative regulation by an unknown repressor. The latter would impede the necessary activation of phytase expression by PhoP. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phosphoinositide regulation of TRPV1 revisited
Rohacs, Tibor
2015-01-01
The heat- and capsaicin-sensitive Transient Receptor Potential Vanilloid 1 ion channel (TRPV1) is regulated by plasma membrane phosphoinositides. The effects of these lipids on this channel have been controversial. Recent articles re-ignited the debate and also offered resolution to place some of the data in a coherent picture. This review summarizes the literature on this topic and provides a detailed and critical discussion on the experimental evidence for the various effects of phosphatidylinositol 4,5-bisphosphayte [PI(4,5)P2 or PIP2] on TRPV1. We conclude that PI(4,5)P2 and potentially its precursor PI(4)P are positive cofactors for TRPV1, acting via direct interaction with the channel, and their depletion by Ca2+-induced activation of phospholipase Cδ isoforms (PLCδ) limits channel activity during capsaicin-induced desensitization. Other negatively charged lipids at higher concentrations can also support channel activity, which may explain some controversies in the literature. PI(4,5)P2 also partially inhibits channel activity in some experimental settings, and relief from this inhibition upon PLCβ activation may contribute to sensitization. The negative effect of PI(4,5)P2 is more controversial and its mechanism is less well understood. Other TRP channels from the TRPV and TRPC families may also undergo similar dual regulation by phosphoinositides, thus the complexity of TRPV1 regulation is not unique to this channel. PMID:25754030
Liu, Wei; Li, Qiwei; Wang, Yi; Wu, Ting; Yang, Yafei; Zhang, Xinzhong; Han, Zhenhai; Xu, Xuefeng
2017-09-23
Ethylene regulates the plant's response to stress caused by iron (Fe) deficiency. However, specific roles of ERF proteins in response to Fe deficiency remain poorly understood. Here, we investigated the role of ERF72 in response to iron deficiency in Arabidopsis thaliana. In this study, the levels of the ethylene response factor AtERF72 increased in leaves and roots induced under the iron deficient conditions. erf72 mutant plants showed increased growth compared to wild type (WT) when grown in iron deficient medium for 5 d. erf72 mutants had increased root H + velocity and the ferric reductase activity, and increase in the expression of the iron deficiency response genes iron-regulated transporter 1 (IRT1) and H + -ATPase (HA2) levels in iron deficient conditions. Compared to WT plants, erf72 mutants retained healthy chloroplast structure with significantly higher Fe and Mg content, and decreased chlorophyll degradation gene pheophorbide a oxygenase (PAO) and chlorophyllase (CLH1) expression when grown in iron deficient media. Yeast one-hybrid analysis showed that ERF72 could directly bind to the promoter regions of iron deficiency responses genes IRT1, HA2 and CLH1. Based on our results, we suggest that ethylene released from plants under iron deficiency stress can activate the expression of ERF72, which responds to iron deficiency in the negative regulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Autoinducer-2 Quorum Sensing Contributes to Regulation of Microcin PDI in Escherichia coli
Lu, Shao-Yeh; Zhao, Zhe; Avillan, Johannetsy J.; Liu, Jinxin; Call, Douglas R.
2017-01-01
The Escherichia coli quorum sensing (QS) signal molecule, autoinducer-2 (AI-2), reaches its maximum concentration during mid-to-late growth phase after which it quickly degrades during stationary phase. This pattern of AI-2 concentration coincides with the up- then down-regulation of a recently described microcin PDI (mccPDI) effector protein (McpM). To determine if there is a functional relationship between these systems, a prototypical mccPDI-expressing strain of E. coli 25 was used to generate ΔluxS, ΔlsrACDBFG (Δlsr), and ΔlsrR mutant strains that are deficient in AI-2 production, transportation, and AI-2 transport regulation, respectively. Trans-complementation, RT-qPCR, and western blot assays were used to detect changes of microcin expression and synthesis under co-culture and monoculture conditions. Compared to the wild-type strain, the AI-2-deficient strain (ΔluxS) and -uptake negative strain (Δlsr) were >1,000-fold less inhibitory to susceptible bacteria (P < 0.05). With in trans complementation of luxS, the AI-2 deficient mutant reduced the susceptible E. coli population by 4-log, which was within 1-log of the wild-type phenotype. RT-qPCR and western blot results for the AI-2 deficient E. coli 25 showed a 5-fold reduction in mcpM transcription with an average 2-h delay in McpM synthesis. Furthermore, overexpression of sRNA micC and micF (both involved in porin protein regulation) was correlated with mcpM regulation, consistent with a possible link between QS and mcpM regulation. This is the direct first evidence that microcin regulation can be linked to quorum sensing in a Gram-negative bacterium. PMID:29312248
Scoffier-Mériaux, Stéphanie; Falzon, Charlène; Lewton-Brain, Peter; Filaire, Edith; d'Arripe-Longueville, Fabienne
2015-09-01
Dancers are at high risk of developing disordered eating attitudes, notably because of internalized thinness norms. Although the big five personality traits have been shown to be associated with eating attitudes in daily life, in dancers where eating issues and thinness norms internalization could be salient little is known about these associations and the role of the internalization of thinness norms in this relationship. The main objectives of this study were thus to examine the relationships between the personality traits defined in the big five model and the self-regulation of eating attitudes, and to assess the role of internalized thinness norms in this association. The study included 180 intensively training dancers with an average age of 15.6 years (SD = 2.8). Dancers completed questionnaires measuring the big five personality traits, internalization of thinness norms and self-regulation of eating attitudes in sport. Bootstrapped mediation analyses showed that neuroticism was negatively associated with self-regulation of eating attitudes, both directly and indirectly through the mediating role of internalized thinness norms. This study suggested that: (a) neuroticism is a vulnerability factor for self-regulation of eating attitudes in dancers, as already evidenced in the general population, and (b) the internalization of thinness norms is a pathway through which neuroticism affects self-regulation of eating attitudes. The big five model is therefore partially related to the internalization of thinness norms and eating attitudes in dancers. Key pointsThe big five model relates to the internalization of thinness norms and eating attitudes in dancers.Neuroticism is negatively related to the self-regulation of eating attitudes.The internalization of thinness norms is correlated to the relationship between neuroticism and self-regulation of eating attitudes.
Lei, Chao; Wang, Jingzhi; Liu, Yuanyuan; Liu, Xinqiang; Zhao, Guoping; Wang, Jin
2018-01-29
Due to the important role of rifamycin in curing tuberculosis infection, the study on rifamycin has never been stopped. Although RifZ, which locates within the rifamycin biosynthetic cluster, has recently been characterized as a pathway-specific regulator for rifamycin biosynthesis, little is known about the regulation of rifamycin export. In this work, we proved that the expression of the rifamycin efflux pump (RifP) was regulated by RifQ, a TetR-family transcriptional regulator. Deletion of rifQ had little impact on bacterial growth, but resulted in improved rifamycin production, which was consistent with the reverse transcription PCR results that RifQ negatively regulated rifP's transcription. With electrophoretic mobility shift assay and DNase I Footprinting assay, RifQ was found to directly bind to the promoter region of rifP, and a typical inverted repeat was identified within the RifQ-protected sequences. The transcription initiation site of rifP was further characterized and found to be upstream of the RifQ binding sites, well explaining the RifQ-mediated repression of rifP's transcription in vivo. Moreover, rifamycin B (the end product of rifamycin biosynthesis) remarkably decreased the DNA binding affinity of RifQ, which led to derepression of rifamycin export, reducing the intracellular concentration of rifamycin B as well as its toxicity against the host. Here, we proved that the export of rifamycin B was repressed by RifQ in Amycolatopsis mediterranei, and the RifQ-mediated repression could be specifically relieved by rifamycin B, the end product of rifamycin biosynthesis, based on which a feedback model was proposed for regulation of rifamycin export. With the findings here, one could improve the antibiotic yield by simply inactivating the negative regulator of the antibiotic transporter.
Scoffier-Mériaux, Stéphanie; Falzon, Charlène; Lewton-Brain, Peter; Filaire, Edith; d’Arripe-Longueville, Fabienne
2015-01-01
Dancers are at high risk of developing disordered eating attitudes, notably because of internalized thinness norms. Although the big five personality traits have been shown to be associated with eating attitudes in daily life, in dancers where eating issues and thinness norms internalization could be salient little is known about these associations and the role of the internalization of thinness norms in this relationship. The main objectives of this study were thus to examine the relationships between the personality traits defined in the big five model and the self-regulation of eating attitudes, and to assess the role of internalized thinness norms in this association. The study included 180 intensively training dancers with an average age of 15.6 years (SD = 2.8). Dancers completed questionnaires measuring the big five personality traits, internalization of thinness norms and self-regulation of eating attitudes in sport. Bootstrapped mediation analyses showed that neuroticism was negatively associated with self-regulation of eating attitudes, both directly and indirectly through the mediating role of internalized thinness norms. This study suggested that: (a) neuroticism is a vulnerability factor for self-regulation of eating attitudes in dancers, as already evidenced in the general population, and (b) the internalization of thinness norms is a pathway through which neuroticism affects self-regulation of eating attitudes. The big five model is therefore partially related to the internalization of thinness norms and eating attitudes in dancers. Key points The big five model relates to the internalization of thinness norms and eating attitudes in dancers. Neuroticism is negatively related to the self-regulation of eating attitudes. The internalization of thinness norms is correlated to the relationship between neuroticism and self-regulation of eating attitudes PMID:26336350
Protecting the people?: risk communication and the chequered history and performance of bureaucracy.
Hugman, Bruce
2012-11-01
The history and characteristics of bureaucracy1 are examined with a view to understanding the impact of the bureaucratic mindset on medicines' regulation, the pharmaceutical industry and healthcare delivery with a focus on risk communication, pharmacovigilance and patient safety. Controversies and allegations relating to common, negative effects of bureaucratic regulatory and management systems are reviewed and examples of creative and effective practice provided. Strategic directions and specific actions for reform are proposed.2.
The rice F-box protein KISS ME DEADLY2 functions as a negative regulator of cytokinin signalling.
Kim, Hyo Jung; Kieber, Joseph J; Schaller, G Eric
2013-01-01
Cytokinins are plant hormones that play critical roles in growth and development. We recently determined that the transcriptional response to cytokinin of Arabidopsis is modulated by the KISS ME DEADLY (KMD) family of F-box proteins. Here we demonstrate a conserved function for a member of the rice KMD family. Ectopic overexpression of OsKMD2 in Arabidopsis results in decreased cytokinin sensitivity based on a hypocotyl growth response assay, the decrease in sensitivity correlating with a decrease in the levels of the transcriptional regulator AtARR12. Furthermore, OsKMD2 directly interacts with AtARR12 based on yeast two-hybrid and co-immunoprecipitation assays. These results indicate that both monocots and dicots employ a similar KMD-dependent mechanism to regulate the transcriptional response to cytokinin.
Dietary Potassium: a Key Mediator of the Cardiovascular Response to Dietary Sodium Chloride
Kanbay, Mehmet; Bayram, Yeter; Solak, Yalcin; Sanders, Paul W.
2014-01-01
Potassium and sodium share a yin/yang relationship in the regulation of blood pressure (BP). BP is directly associated with the total body sodium and negatively correlated with the total body potassium. Epidemiologic, experimental, and clinical studies have demonstrated that potassium is a significant regulator of BP and further improves cardiovascular outcomes. Hypertensive cardiovascular damage, stroke and stroke-related death are accelerated by salt intake but could be prevented by increased dietary potassium intake. The antihypertensive effect of potassium supplementation appears to occur through several mechanisms that include regulation of vascular sensitivity to catecholamines, promotion of natriuresis, limiting plasma renin activity, and improving endothelial function. In the absence of chronic kidney disease, the combined evidence supports a diet high in potassium content serves a vasculoprotective function, especially in the setting of salt-sensitive hypertension and prehypertension. PMID:23735420
Thøgersen-Ntoumani, Cecilie; Ntoumanis, Nikos
2007-03-01
This study examined motivational predictors of body image concerns, self-presentation and self-perceptions using Self-determination Theory as a guiding framework. Aerobic instructors (N = 149) completed questionnaires measuring general need satisfaction, exercise motivational regulations, body image concerns, social physique anxiety and self-perceptions. Introjected regulation predicted all outcome variables in the expected direction. Intrinsic motivation positively predicted physical self-worth. Further, autonomy need satisfaction negatively predicted body image concerns. Finally, differences existed in need satisfaction, introjected regulation, self-perceptions and social physique anxiety between those at risk of developing eating disorders and those not at risk. The results underline the importance of overall and exercise-specific feelings of self-determination in dealing with body image concerns and low self-perceptions of aerobics instructors.
Situation Selection and Modification for Emotion Regulation in Younger and Older Adults.
Livingstone, Kimberly M; Isaacowitz, Derek M
2015-11-01
This research investigated age differences in use and effectiveness of situation selection and situation modification for emotion regulation. Socioemotional selectivity theory suggests stronger emotional well-being goals in older age; emotion regulation may support this goal. Younger and older adults assigned to an emotion regulation or "just view" condition first freely chose to engage with negative, neutral, or positive material (situation selection), then chose to view or skip negative and positive material (situation modification), rating affect after each experience. In both tasks, older adults in both goal conditions demonstrated pro-hedonic emotion regulation, spending less time with negative material compared to younger adults. Younger adults in the regulate condition also engaged in pro-hedonic situation selection, but not modification. Whereas situation selection was related to affect, modification of negative material was not. This research supports more frequent pro-hedonic motivation in older age, as well as age differences in use of early-stage emotion regulation.
Martins, Bruna; Sheppes, Gal; Gross, James J; Mather, Mara
2018-04-16
Previous research demonstrates that younger and older adults prefer distraction over engagement (reappraisal) when regulating high-intensity negative emotion. Older adults also demonstrate a greater bias for positive over negative information in attention and memory compared with younger adults. In this study, we investigated whether emotion regulation choice preferences may differ as a function of stimulus valence with age. The effect of stimulus intensity on negative and positive emotion regulation strategy preferences was investigated in younger and older men. Participants indicated whether they favored distraction or reappraisal to attenuate emotional reactions to negative and positive images that varied in intensity. Men in both age-groups preferred distraction over reappraisal when regulating high-intensity emotion. As no age-related strategic differences were found in negative emotion regulation preferences, older men chose to distract less from high-intensity positive images than did younger men. Older men demonstrated greater engagement with highly positive emotional contexts than did younger men. Thus, age differences in emotion regulation goals when faced with intense emotional stimuli depend on the valence of the emotional stimuli.
MBSR vs aerobic exercise in social anxiety: fMRI of emotion regulation of negative self-beliefs
Ziv, Michal; Jazaieri, Hooria; Hahn, Kevin; Gross, James J.
2013-01-01
Mindfulness-based stress reduction (MBSR) is thought to reduce emotional reactivity and enhance emotion regulation in patients with social anxiety disorder (SAD). The goal of this study was to examine the neural correlates of deploying attention to regulate responses to negative self-beliefs using functional magnetic resonance imaging. Participants were 56 patients with generalized SAD in a randomized controlled trial who were assigned to MBSR or a comparison aerobic exercise (AE) stress reduction program. Compared to AE, MBSR yielded greater (i) reductions in negative emotion when implementing regulation and (ii) increases in attention-related parietal cortical regions. Meditation practice was associated with decreases in negative emotion and social anxiety symptom severity, and increases in attention-related parietal cortex neural responses when implementing attention regulation of negative self-beliefs. Changes in attention regulation during MBSR may be an important psychological factor that helps to explain how mindfulness meditation training benefits patients with anxiety disorders. PMID:22586252
Exercise motivational regulations and exercise addiction: The mediating role of passion.
Sicilia, Álvaro; Alcaraz-Ibáñez, Manuel; Lirola, María-Jesús; Burgueño, Rafael; Maher, Anthony
2018-05-23
Background and aims The study explored the mediating role of forms of passion in the relationship between motivational regulations in exercise and exercise addiction (EA). Methods A total of 485 university students (368 males and 117 females; M age = 20.43, SD = 3.21) completed a questionnaire measuring the frequency and intensity of exercise, motivational regulations in exercise, passion for exercise, and EA. Controlling the effects of age, frequency, and intensity of practice, the relationships between the study variables were examined though a path analysis. Results Both self-determined and non-self-determined forms of motivation showed positive association with EA. The forms of motivation with greatest predictive power for EA were introjected and integrated regulations. Both forms of motivation had positive direct and indirect effects through obsessive passion (OP) on EA; however, integrated regulation also showed negative indirect effects through harmonious passion on EA. Conclusions Both forms of passion and, especially, OP, seem to affect how motivational regulations are associated with EA. These findings clarify the association found in previous studies between self-determined forms of motivation and EA.
MYB36 regulates the transition from proliferation to differentiation in the Arabidopsis root
Liberman, Louisa M.; Sparks, Erin E.; Moreno-Risueno, Miguel A.; Petricka, Jalean J.; Benfey, Philip N.
2015-01-01
Stem cells are defined by their ability to self-renew and produce daughter cells that proliferate and mature. These maturing cells transition from a proliferative state to a terminal state through the process of differentiation. In the Arabidopsis thaliana root the transcription factors SCARECROW and SHORTROOT regulate specification of the bipotent stem cell that gives rise to cortical and endodermal progenitors. Subsequent progenitor proliferation and differentiation generate mature endodermis, marked by the Casparian strip, a cell-wall modification that prevents ion diffusion into and out of the vasculature. We identified a transcription factor, MYB DOMAIN PROTEIN 36 (MYB36), that regulates the transition from proliferation to differentiation in the endodermis. We show that SCARECROW directly activates MYB36 expression, and that MYB36 likely acts in a feed-forward loop to regulate essential Casparian strip formation genes. We show that myb36 mutants have delayed and defective barrier formation as well as extra divisions in the meristem. Our results demonstrate that MYB36 is a critical positive regulator of differentiation and negative regulator of cell proliferation. PMID:26371322
van Duijvenvoorde, Anna C. K.; Bakermans-Kranenburg, Marian J.; Crone, Eveline A.
2016-01-01
Abstract Negative social feedback often generates aggressive feelings and behavior. Prior studies have investigated the neural basis of negative social feedback, but the underlying neural mechanisms of aggression regulation following negative social feedback remain largely undiscovered. In the current study, participants viewed pictures of peers with feedback (positive, neutral or negative) to the participant’s personal profile. Next, participants responded to the peer feedback by pressing a button, thereby producing a loud noise toward the peer, as an index of aggression. Behavioral analyses showed that negative feedback led to more aggression (longer noise blasts). Conjunction neuroimaging analyses revealed that both positive and negative feedback were associated with increased activity in the medial prefrontal cortex (PFC) and bilateral insula. In addition, more activation in the right dorsal lateral PFC (dlPFC) during negative feedback vs neutral feedback was associated with shorter noise blasts in response to negative social feedback, suggesting a potential role of dlPFC in aggression regulation, or top-down control over affective impulsive actions. This study demonstrates a role of the dlPFC in the regulation of aggressive social behavior. PMID:26755768
Milojevich, Helen M; Haskett, Mary E
2018-03-01
The present study took a developmental psychopathology approach to examine the longitudinal association between parents' emotional expressiveness and children's self-regulation. Data collection spanned from 2004 to 2008. Ninety-two physically abusive parents completed yearly assessments of their emotional expressiveness, as well as their children's self-regulation abilities. Observational and behavioral measures were also obtained yearly to capture both parents' emotional expressiveness and children's self-regulation. Specifically, parents participated in a parent-child interaction task, which provided insight into their levels of flat affect. A puzzle box task was completed by each child to assess self-regulation. Results indicated, first, that greater parental expression of negative emotions predicted poorer self-regulation in children, both concurrently and across time. Second, parental expressions of positive emotions and parents' flat affect were unrelated to children's self-regulation. Findings inform our understanding of parental socialization of self-regulation and provide insight into the roles of distinct components of emotional expressiveness. Moreover, findings have crucial implications for understanding emotional expressiveness in high-risk samples and increase our understanding of within-group functioning among maltreating families that may serve as a means to direct intervention efforts. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhang, Hui; Wang, Zhenhong; You, Xuqun; Lü, Wei; Luo, Yun
2015-09-01
The aim of the current study was to examine the direct and interactive effects of two types of narcissism (overt and covert) and respiratory sinus arrhythmia (RSA) reactivity on emotion regulation difficulties in 227 undergraduate students. Overt and covert narcissism and emotion regulation difficulties were assessed with self-report measures (narcissistic personality inventory (NPI)-16, hypersensitive narcissism scale (HSNS), and difficulties in emotion regulation scale (DERS)), and physiological data were measured during the baseline, stress (a public-speaking task), and recovery periods in the laboratory. Results indicated that overt narcissism was negatively related to a lack of emotional awareness and emotional clarity, whereas covert narcissism was positively related to overall emotion regulation difficulties, nonacceptance of emotional responses, impulse control difficulties, limited access to emotion regulation strategies, and a lack of emotional clarity. RSA reactivity in response to a mock job interview moderated the associations between covert narcissism (as a predictor) and overall emotion regulation difficulties and impulse control difficulties (as outcomes). This finding showed that a greater stress-induced RSA decrease may serve as a protective factor and ameliorate the effect of covert narcissism on individuals' emotion regulation difficulties. Copyright © 2015 Elsevier B.V. All rights reserved.
Iron regulates expression of Bacillus cereus hemolysin II via global regulator Fur.
Sineva, Elena; Shadrin, Andrey; Rodikova, Ekaterina A; Andreeva-Kovalevskaya, Zhanna I; Protsenko, Alexey S; Mayorov, Sergey G; Galaktionova, Darya Yu; Magelky, Erica; Solonin, Alexander S
2012-07-01
The capacity of pathogens to respond to environmental signals, such as iron concentration, is key to bacterial survival and establishment of a successful infection. Bacillus cereus is a widely distributed bacterium with distinct pathogenic properties. Hemolysin II (HlyII) is one of its pore-forming cytotoxins and has been shown to be involved in bacterial pathogenicity in a number of cell and animal models. Unlike many other B. cereus pathogenicity factors, HlyII is not regulated by pleiotropic transcriptional regulator PlcR but is controlled by its own regulator, HlyIIR. Using a combination of in vivo and in vitro techniques, we show that hlyII expression is also negatively regulated by iron by the global regulator Fur via direct interaction with the hlyII promoter. DNase I footprinting and in vitro transcription experiments indicate that Fur prevents RNA polymerase binding to the hlyII promoter. HlyII expression profiles demonstrate that both HlyIIR and Fur regulate HlyII expression in a concerted fashion, with the effect of Fur being maximal in the early stages of bacterial growth. In sum, these results show that Fur serves as a transcriptional repressor for hlyII expression.
Ekas, Naomi V.; Braungart-Rieker, Julia M.; Lickenbrock, Diane M.; Zentall, Shannon R.; Maxwell, Scott M.
2010-01-01
The present study investigated temporal associations between putative emotion regulation strategies and negative affect in 20-month-old toddlers. Toddlers’ parent-focused, self-distraction, and toy-focused strategies, as well as negative affect, were rated on a second-by-second basis during laboratory parent-toddler interactions. Longitudinal mixed-effects models were conducted to determine the degree to which behavioral strategy use predicts subsequent negative affect and negative affect predicts subsequent strategy use. Results with mother-toddler and father-toddler dyads indicated that parent-focused strategies with an unresponsive parent were followed by increases in negative affect, whereas toy-focused strategies were followed by decreases in negative affect. Results also indicated that toddler negative affect serves to regulate behavioral strategy use within both parent contexts. PMID:21552335
Pecora, Giulia; Sette, Stefania; Baumgartner, Emma; Laghi, Fiorenzo; Spinrad, Tracy L
2015-08-28
The purpose of this study was to examine the moderating role of internalising negative emotionality (i.e., anxious, concerned, and embarrassed displays) in the association between children's self-regulation and social adjustment. Seventy-four Italian children (44 girls, 30 boys; M age = 35.05 months, SD = 3.57) were assessed using two self-regulation tasks. Internalising negative emotionality was assessed through observations of children's emotion expressions during the tasks. Teachers evaluated children's social competence and internalising and externalising problems. Results demonstrated that among children who exhibited internalising negative emotionality, self-regulation was positively associated with social competence and negatively related to externalising problems. Our results suggest that self-regulation may play a crucial role for social adjustment when children show emotions such as anxiety and embarrassment during challenging situations.
Vadde, Batthula Vijaya Lakshmi; Challa, Krishna Reddy; Nath, Utpal
2018-01-01
Trichomes are the first cell type to be differentiated during the morphogenesis of leaf epidermis and serve as an ideal model to study cellular differentiation. Many genes involved in the patterning and differentiation of trichome cells have been studied over the past decades, and the majority of these genes encode transcription factors that specifically regulate epidermal cell development. However, the upstream regulators of these genes that link early leaf morphogenesis with cell type differentiation are less studied. The TCP proteins are the plant-specific transcription factors involved in regulating diverse aspects of plant development including lateral organ morphogenesis by modulating cell proliferation and differentiation. Here, we show that the miR319-regulated class II TCP proteins, notably TCP4, suppress trichome branching in Arabidopsis leaves and inflorescence stem by direct transcriptional activation of GLABROUS INFLORESCENCE STEMS (GIS), a known negative regulator of trichome branching. The trichome branch number is increased in plants with reduced TCP activity and decreased in the gain-of-function lines of TCP4. Biochemical analyses show that TCP4 binds to the upstream regulatory region of GIS and activates its expression. Detailed genetic analyses show that GIS and TCP4 work in same pathway and GIS function is required for TCP4-mediated regulation of trichome differentiation. Taken together, these results identify a role for the class II TCP genes in trichome differentiation, thus providing a connection between organ morphogenesis and cellular differentiation. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Direct regulation of androgen receptor-associated protein 70 by thyroid hormone and its receptors.
Tai, Pei-Ju; Huang, Ya-Hui; Shih, Chung-Hsuan; Chen, Ruey-Nan; Chen, Chi-De; Chen, Wei-Jan; Wang, Chia-Siu; Lin, Kwang-Huei
2007-07-01
Thyroid hormone (T3) regulates multiple physiological processes during development, growth, differentiation, and metabolism. Most T3 actions are mediated via thyroid hormone receptors (TRs) that are members of the nuclear hormone receptor superfamily of ligand-dependent transcription factors. The effects of T3 treatment on target gene regulation was previously examined in TRalpha1-overexpressing hepatoma cell lines (HepG2-TRalpha1). Androgen receptor (AR)-associated protein 70 (ARA70) was one gene found to be up-regulated by T3. The ARA70 is a ligand-dependent coactivator for the AR and was significantly increased by 4- to 5-fold after T3 treatment by Northern blot analyses in the HepG2-TRalpha1 stable cell line. T3 induced a 1- to 2-fold increase in the HepG2-TRbeta1 stable cell line. Both stable cell lines attained the highest fold expression after 24 h treatment with 10 nM T3. The ARA70 protein was increased up to 1.9-fold after T3 treatment in HepG2-TRalpha1 cells. Similar findings were obtained in thyroidectomized rats after T3 application. Cycloheximide treatment did not suppress induction of ARA70 transcription by T3, suggesting that this regulation is direct. A series of deletion mutants of ARA70 promoter fragments in pGL2 plasmid were generated to localize the thyroid hormone response element (TRE). The DNA fragments (-234/-190 or +56/+119) gave 1.55- or 2-fold enhanced promoter activity by T3. Thus, two TRE sites exist in the upstream-regulatory region of ARA70. The TR-TRE interaction was further confirmed with EMSAs. Additionally, ARA70 could interfere with TR/TRE complex formation. Therefore, the data indicated that ARA70 suppresses T3 signaling in a TRE-dependent manner. These experimental results suggest that T3 directly up-regulates ARA70 gene expression. Subsequently, ARA70 negatively regulates T3 signaling.
Older and younger adults differently judge the similarity between negative affect terms.
Ready, Rebecca E; Santorelli, Gennarina D; Mather, Molly A
2018-01-02
Theoretical models of aging suggest changes across the adult lifespan in the capacity to differentiate emotions. Greater emotion differentiation is associated with advantages in terms of emotion regulation and emotion resiliency. This study utilized a novel method that directly measures judgments of affect differentiation and does not confound affective experience with knowledge about affect terms. Theoretical predictions that older adults would distinguish more between affect terms than younger persons were tested. Older (n = 27; aged 60-92) and younger (n = 56; aged 18-32) adults rated the difference versus similarity of 16 affect terms from the Kessler and Staudinger ( 2009 ) scales; each of the 16 items was paired with every other item for a total of 120 ratings. Participants provided self-reports of trait emotions, alexithymia, and depressive symptoms. Older adults significantly differentiated more between low arousal and high arousal negative affect (NA) items than younger persons. Depressive symptoms were associated with similarity ratings across and within valence and arousal. Findings offer partial support for theoretical predictions that older adults differentiate more between affect terms than younger persons. To the extent that differentiating between negative affects can aid in emotion regulation, older adults may have an advantage over younger persons. Future research should investigate mechanisms that underlie age group differences in emotion differentiation.
The temporal deployment of emotion regulation strategies during negative emotional episodes.
Kalokerinos, Elise K; Résibois, Maxime; Verduyn, Philippe; Kuppens, Peter
2017-04-01
Time is given a central place in theoretical models of emotion regulation (Gross, 1998, 2015), but key questions regarding the role of time remain unanswered. We investigated 2 such unanswered questions. First, we explored when different emotion regulation strategies were used within the course of an emotional episode in daily life. Second, we investigated the association between the temporal deployment of strategies and negative emotional experience. We conducted a daily diary study in which participants (N = 74) drew an intensity profile depicting the temporal unfolding of their negative emotional experience across daily events (N = 480), and mapped their usage of emotion regulation strategies onto this intensity profile. Strategies varied in their temporal deployment, with suppression and rumination occurring more at the beginning of the episode, and reappraisal and distraction occurring more toward the end of the episode. Strategies also varied in their association with negative emotion: rumination was positively associated with negative emotion, and reappraisal and distraction were negatively associated with negative emotion. Finally, both rumination and reappraisal interacted with time to predict negative emotional experience. Rumination was more strongly positively associated with negative emotions at the end of the episode than the beginning, but reappraisal was more strongly negatively associated with negative emotion at the beginning of the episode than the end. These findings highlight the importance of accounting for timing in the study of emotion regulation, as well as the necessity of studying these temporal processes in daily life. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Barhl1 is directly regulated by thyroid hormone in the developing cerebellum of mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Hongyan, E-mail: hongyan_dong@hc-sc.gc.ca; Yauk, Carole L.; Wade, Michael G.
Highlights: Black-Right-Pointing-Pointer Thyroid hormone receptor binds to the promoter region of Barhl1. Black-Right-Pointing-Pointer Barhl1 expression in cerebellum is negatively regulated by thyroid hormone. Black-Right-Pointing-Pointer Negative regulation of Barhl1 by thyroid hormone was confirmed in vitro. Black-Right-Pointing-Pointer Thyroid hormone may play a role in normal brain development through transcriptional control of Barhl1. -- Abstract: Thyroid hormones (THs) are essential for the brain development. Despite considerable effort, few genes directly regulated by THs have been identified. In this study, we investigate the effects of THs on the regulation of Barhl1, a transcription factor that regulates sensorineural development. Using DNA microarray combined withmore » chromatin immunoprecipitation (ChIP-chip), we identified a TR{beta} binding site in the promoter of Barhl1. The binding was further confirmed by ChIP-PCR. The site is located approximately 755 bp upstream of the transcription start site. Reporter vectors containing the binding site or mutated fragments were transfected into GH3 cells. T3 treatment decreased the transcriptional activity of the wild fragment but not the mutant. Two 28 bp oligonucleotides containing sequences that resemble known TH response elements (TREs) were derived from this binding site and DNA-protein interaction was performed using electrophoretic mobility shift assays (EMSA). Binding analysis in a nuclear extract containing TR{beta} revealed that one of these fragments bound TR{beta}. This complex was shifted with the addition of anti-TR{beta} antibody. We investigated Barhl1 expression in animal models and TH-treated cultured cells. Both long term treatment with 6-propyl-2-thiouracil and short-term treatment with 0.05% methimazole/1% sodium perchlorate (both treatments render mice hypothyroid) resulted in up-regulation of Barhl1. TH supplementation of hypothyroid mice caused a decrease in the expression of Barhl1 compared to control animals. Similarly, the expression of Barhl1 in cultured GH3 decreased with the addition of T3. Given the important role of Barhl1 in brain development, we propose that perturbations of TH-mediated transcriptional control of Barhl1 may play a role in the impaired neurodevelopment induced by hypothyroidism.« less
Fitzgerald, Jacklynn M; Phan, K Luan; Kennedy, Amy E; Shankman, Stewart A; Langenecker, Scott A; Klumpp, Heide
2017-08-15
Emotion dysregulation is prominent in generalized anxiety disorder (GAD), characterized clinically by exaggerated reactivity to negative stimuli and difficulty in down-regulating this response. Although limited research implicates frontolimbic disturbances in GAD, whether neural aberrations occur during emotional reactivity, regulation, or both is not well understood. During functional magnetic resonance imaging (fMRI), 30 individuals with GAD and 30 healthy controls (HC) completed a well-validated explicit emotion regulation task designed to measure emotional reactivity and regulation of reactivity. During the task, participants viewed negative images ('Look-Negative' condition) and, on some trials, used a cognitive strategy to reduce negative affective response ('Reappraise' condition). Results from an Analysis of Variance corrected for whole brain multiple comparisons showed a significant group x condition interaction in the left amygdala and left inferior frontal gyrus (IFG). Results from post-hoc analyses showed that the GAD group engaged these regions to a greater extent than HCs during Look-Negative but not Reappraise. Behaviorally, the GAD group reported feeling more negative than the HC group in each condition, although both groups reported reduced negative affect following regulation. As comorbidity was permitted, the presence of concurrent disorders, like other anxiety disorders and depression, detracts our ability to classify neural engagement particular to GAD alone. Individuals with GAD exhibited over-engagement of amygdala and frontal regions during the viewing of negative images, compared to HCs. Together, these aberrations may indicate that deficits in emotional reactivity rather than regulation contribute to emotion dysregulation in those with GAD. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yunzhen; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025; Wang, Gaoxiong
Long non-coding RNAs (LncRNAs) have played very important roles in the malignancy behaviors of hepatocellular carcinoma (HCC). Linc-cdh4-2 (TCONS-00027978) is a novel LncRNA that has been identified in HCC tissues from our previous study. Overexpression of linc-cdh4-2 in HCC cell lines (SK-Hep-1 and Huh7) significantly decreases the migration and invasion abilities of these cells, while knockdown the expression of linc-cdh4-2 significantly increases the migration and invasion abilities. Interestingly, neither the over expression nor the knock down of linc-cdh4-2 could affect the viability and proliferation of HCC cells. Mechanistically, the linc-cdh4-2 could up-regulate the protein level of R-cadherin through direct bindingmore » that might improve the protein stability. Over expression of linc-cdh4-2 could significantly increase the protein levels of R-cadherin and decrease the protein levels of small GTPase RAC1, and vice-versa. Further knockdown R-cadherin in linc-cdh4-2 stably overexpressed cells, could significantly upregulate the protein levels of RAC1 and improve the cell migration and invasion abilities. Taken together, the novel linc-cdh4-2 may negatively regulate the motility of the HCC cells through targeting R-cadherin-RAC1 signaling pathway. - Highlights: • Linc-cdh4-2 negatively related with the invasion and metastasis ability of HCC cells. • Linc-cdh4-2 could up-regulate the protein level of R-cadherin through direct binding. • Knockdown of R-cadherin increases the migration and invasion abilities of HCC cell. • Knockdown of R-cadherin could significantly upregulate the protein levels of RAC1.« less
Jo, Sungsin; Lee, Young Lim; Kim, Sojin; Lee, Hongki; Chung, Heekyoung
2016-07-01
Arsenic trioxide (ATO) is a therapeutic agent for acute promyelocytic leukemia (APL) which induces PML-RARA protein degradation via enhanced UBE2I-mediated sumoylation. PCGF2, a Polycomb group protein, has been suggested as an anti-SUMO E3 protein by inhibiting the sumoylation of UBE2I substrates, HSF2 and RANGAP1, via direct interaction. Thus, we hypothesized that PCGF2 might play a role in ATO-induced PML-RARA degradation by interacting with UBE2I. PCGF2 protein was down-regulated upon ATO treatment in human APL cell line, NB4. Knockdown of PCGF2 in NB4 cells, in the absence of ATO treatment, was sufficient to induce sumoylation-, ubiquitylation- and PML nuclear body-mediated degradation of PML-RARA protein. Moreover, overexpression of PCGF2 protected ATO-mediated degradation of ectopic and endogenous PML-RARA in 293T and NB4 cells, respectively. In 293T cells, UBE2I-mediated PML-RARA degradation was reduced upon PCGF2 co-expression. In addition, UBE2I-mediated sumoylation of PML-RARA was reduced upon PCGF2 co-expression and PCGF2-UBE2I interaction was confirmed by co-immunoprecipitation. Likewise, endogenous PCGF2-UBE2I interaction was detected by co-immunoprecipitation and immunofluorescence assays in NB4 cells. Intriguingly, upon ATO-treatment, such interaction was disrupted and UBE2I was co-immunoprecipitated or co-localized with its SUMO substrate, PML-RARA. Taken together, our results suggested a novel role of PCGF2 in ATO-mediated degradation of PML-RARA that PCGF2 might act as a negative regulator of UBE2I via direct interaction. Copyright © 2016 Elsevier B.V. All rights reserved.
Cai, Wen-Peng; Pan, Yu; Zhang, Shui-Miao; Wei, Cun; Dong, Wei; Deng, Guang-Hui
2017-10-01
The current study aimed to explore the association of cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers and to understand the multiple mediation effects of social support and resilience on the relationship between cognitive emotion regulation and acute stress responses. A total of 1477 male soldiers completed mental scales, including the cognitive emotion regulation questionnaire-Chinese version, the perceived social support scale, the Chinese version of the Connor-Davidson resilience scale, and the military acute stress scale. As hypothesized, physiological responses, psychological responses, and acute stress were associated with negative-focused cognitive emotion regulation, and negatively associated with positive-focused cognitive emotion regulation, social supports and resilience. Besides, positive-focused cognitive emotion regulation, social support, and resilience were significantly associated with one another, and negative-focused cognitive emotion regulation was negatively associated with social support. Regression analysis and bootstrap analysis showed that social support and resilience had partly mediating effects on negative strategies and acute stress, and fully mediating effects on positive strategies and acute stress. These results thus indicate that military acute stress is significantly associated with cognitive emotion regulation, social support, and resilience, and that social support and resilience have multiple mediation effects on the relationship between cognitive emotion regulation and acute stress responses. Copyright © 2017 Elsevier B.V. All rights reserved.
Planar cell polarity controls directional Notch signaling in the Drosophila leg
Capilla, Amalia; Johnson, Ruth; Daniels, Maki; Benavente, María; Bray, Sarah J.; Galindo, Máximo Ibo
2012-01-01
The generation of functional structures during development requires tight spatial regulation of signaling pathways. Thus, in Drosophila legs, in which Notch pathway activity is required to specify joints, only cells distal to ligand-producing cells are capable of responding. Here, we show that the asymmetric distribution of planar cell polarity (PCP) proteins correlates with this spatial restriction of Notch activation. Frizzled and Dishevelled are enriched at distal sides of each cell and hence localize at the interface with ligand-expressing cells in the non-responding cells. Elimination of PCP gene function in cells proximal to ligand-expressing cells is sufficient to alleviate the repression, resulting in ectopic Notch activity and ectopic joint formation. Mutations that compromise a direct interaction between Dishevelled and Notch reduce the efficacy of repression. Likewise, increased Rab5 levels or dominant-negative Deltex can suppress the ectopic joints. Together, these results suggest that PCP coordinates the spatial activity of the Notch pathway by regulating endocytic trafficking of the receptor. PMID:22736244
FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase
Doan, Khanh V.; Kinyua, Ann W.; Yang, Dong Joo; Ko, Chang Mann; Moh, Sang Hyun; Shong, Ko Eun; Kim, Hail; Park, Sang-Kyu; Kim, Dong-Hoon; Kim, Inki; Paik, Ji-Hye; DePinho, Ronald A.; Yoon, Seul Gi; Kim, Il Yong; Seong, Je Kyung; Choi, Yun-Hee; Kim, Ki Woo
2016-01-01
Dopaminergic (DA) neurons are involved in the integration of neuronal and hormonal signals to regulate food consumption and energy balance. Forkhead transcriptional factor O1 (FoxO1) in the hypothalamus plays a crucial role in mediation of leptin and insulin function. However, the homoeostatic role of FoxO1 in DA system has not been investigated. Here we report that FoxO1 is highly expressed in DA neurons and mice lacking FoxO1 specifically in the DA neurons (FoxO1 KODAT) show markedly increased energy expenditure and interscapular brown adipose tissue (iBAT) thermogenesis accompanied by reduced fat mass and improved glucose/insulin homoeostasis. Moreover, FoxO1 KODAT mice exhibit an increased sucrose preference in concomitance with higher dopamine and norepinephrine levels. Finally, we found that FoxO1 directly targets and negatively regulates tyrosine hydroxylase (TH) expression, the rate-limiting enzyme of the catecholamine synthesis, delineating a mechanism for the KO phenotypes. Collectively, these results suggest that FoxO1 in DA neurons is an important transcriptional factor that directs the coordinated control of energy balance, thermogenesis and glucose homoeostasis. PMID:27681312
Cui, Hong-Yong; Wang, Shi-Jie; Miao, Ji-Yu; Fu, Zhi-Guang; Feng, Fei; Wu, Jiao; Yang, Xiang-Min; Chen, Zhi-Nan; Jiang, Jian-Li
2016-02-02
The acquisition of inappropriate migratory feature is crucial for tumor metastasis. It has been suggested that CD147 and Annexin A2 are involved in regulating tumor cell movement, while the regulatory mechanisms are far from clear. In this study, we demonstrated that CD147 physically interacted with the N-terminal domain of Annexin A2 and decreased Annexin A2 phosphorylation on tyrosine 23. In vitro kinase assay showed that the I domain of CD147 was indispensable for CD147-mediated downregulation of Annexin A2 phosphorylation by Src. Furthermore, we determined that p-Annexin A2 promoted the expression of dedicator of cytokinesis 3 (DOCK3) and DOCK3 blocked β-catenin nuclear translocation, resulting in inhibition of β-catenin signaling. In addition, DOCK3 inhibited lamellipodium dynamics and tumor cell movement. Also, we found that β-catenin signaling increased WAVE2 expression. Therefore, DOCK3 was characterized as a negative regulator of WAVE2 expression via inhibiting β-catenin signaling. Our study provides the first evidence that CD147 promotes tumor cell movement and metastasis via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling axis.
YebC controls virulence by activating T3SS gene expression in the pathogen Edwardsiella piscicida.
Wei, Lifan; Wu, Yanyan; Qiao, Haoxian; Xu, Wensheng; Zhang, Yuanxing; Liu, Xiaohong; Wang, Qiyao
2018-06-12
Edwardsiella piscicida is an infectious Gram-negative bacterium that causes great losses to the aquaculture industry worldwide. Based on pattern analysis of conditional essentiality (PACE), a new method for transposon insertion sequencing (Tn-seq) data analysis, we investigated the genome-wide genetic requirements during the dynamic process of infection and colonization in turbot in this study. As a result, disruption of ETAE_1437 was discovered to lead to substantially reduced colonization, which was similar to the in vivo dynamic patterns of the mutants of T3SS or T6SS. Bioinformatics analysis indicated that ETAE_1437 is a YebC/PmpR family regulator. Moreover, we found that ETAE_1437 not only regulated quorum sensing by directly binding to the edwR promoter region but also activated T3SS expression by directly binding to the promoter region of the T3SS gene ETAE_0873. In addition, ETAE_1437 mutants exhibited substantial colonization defects and significantly decreased virulence in turbot. Overall, this study identified ETAE_1437 as a novel virulence regulator in E. piscicida and enriched our understanding of the pathogenesis of E. piscicida in fish. We thus reannotated ETAE_1437 as YebC.
Tanning and teens: Is indoor exposure the tip of the iceberg?
Hay, Jennifer L.; Riley, Kristen E.; Geller, Alan C.
2017-01-01
Due to recent state regulations and the reduced availability of free-standing tanning salons, indoor tanning prevalence is beginning to decline. This may lead to unintended consequences – increases in outdoor intentional tanning. We advance a series of research directions to track and intervene to address all forms of intentional tanning. First, we advocate for enforcement of indoor tanning regulation and encourage collection of data on tanning salon compliance and alternative indoor tanning strategies. Second, we suggest questions about outdoor and indoor tanning should be included in national surveys. Third, we need to understand the potentially complex patterns of indoor and outdoor tanning that may exist among those who tan. Fourth, research examining changing motivations for intentional tanning is needed. Finally, indoor tanning intervention studies should include outdoor tanning as an outcome to examine the effect of interventions on these related risk behaviors. These advances will ensure the development of novel interventions to address intentional tanning through multiple routes, and to avoid any unintended negative consequence of indoor tanning regulation. The promising downward direction of indoor tanning use in the United States should now lead the public health field to sharpen its focus on outdoor tanning. PMID:28765337
Gravity sensing, a largely misunderstood trigger of plant orientated growth.
Lopez, David; Tocquard, Kévin; Venisse, Jean-Stéphane; Legué, Valerie; Roeckel-Drevet, Patricia
2014-01-01
Gravity is a crucial environmental factor regulating plant growth and development. Plants have the ability to sense a change in the direction of gravity, which leads to the re-orientation of their growth direction, so-called gravitropism. In general, plant stems grow upward (negative gravitropism), whereas roots grow downward (positive gravitropism). Models describing the gravitropic response following the tilting of plants are presented and highlight that gravitropic curvature involves both gravisensing and mechanosensing, thus allowing to revisit experimental data. We also discuss the challenge to set up experimental designs for discriminating between gravisensing and mechanosensing. We then present the cellular events and the molecular actors known to be specifically involved in gravity sensing.
Identification of a small molecule that overcomes HdmX-mediated suppression of p53
Chakrabarti, Amit; Karan, Sukanya; Liu, Zhigang; Xia, Zhiqiang; Gundluru, Mahesh; Moreton, Stephen; Saunthararajah, Yogen; Jackson, Mark W; Agarwal, Mukesh K; Wald, David N
2016-01-01
Inactivation of the p53 tumor suppressor by mutation or overexpression of negative regulators occurs frequently in cancer. Since p53 plays a key role in regulating proliferation or apoptosis in response to DNA damaging chemotherapies, strategies aimed at reactivating p53 are increasingly being sought. Strategies to reactivate wild-type p53 include the use of small molecules capable of releasing wild-type p53 from key, cellular negative regulators, such as Hdm2 and HdmX. Derivatives of the Hdm2 antagonist Nutlin-3 are in clinical trials. However, Nutlin-3 specifically disrupts Hdm2-p53, leaving tumors harboring high levels of HdmX resistant to Nutlin-3 treatment. Here we identify CTX1, a novel small molecule that overcomes HdmX-mediated p53 repression. CTX1 binds directly to HdmX to prevent p53-HdmX complex formation, resulting in the rapidly induction of p53 in a DNA damage-independent manner. Treatment of a panel of cancer cells with CTX1 induced apoptosis or suppressed proliferation and importantly, CTX1 demonstrates promising activity as a single agent in a mouse model of circulating primary human leukemia. CTX1 is a small molecule HdmX inhibitor that demonstrates promise as a cancer therapeutic candidate. PMID:26883273
Raccanello, Daniela; Burro, Roberto; Brondino, Margherita; Pasini, Margherita
2018-04-01
Notwithstanding the dramatically increasing frequency of acts of terrorism in Europe and the extent of their media coverage, there is lack of knowledge on people's affective reactions and associated emotion regulation strategies. We explored the affective impact on two cohorts of Italian students (n = 193) possibly exposed vicariously through the mass media to the 2015 Paris or the 2016 Brussels terrorist attacks, respectively. We accessed data from three online questionnaires: one on emotion regulation administered before each attack; one on daily affect administered just before and after each attack; and one on causes of weekly affect and life satisfaction administered at the end of the week in which each attack occurred. The attacks were perceived as relevant for influencing negative affect for 22% of the students. For them, suppression-less frequently used than reappraisal-was associated with an improvement of affect after each attack but negatively related to life satisfaction concerning the week in which the attacks occurred. Our data showed that the recent terrorist attacks occurring in Europe had an affective impact on people at some distance who were vicariously exposed and point to the protective role of emotion regulation as a key resource for individuals' well-being. Copyright © 2017 John Wiley & Sons, Ltd.
Household instability and self-regulation among poor children
McCoy, Dana Charles; Raver, C. Cybele
2015-01-01
Past research suggests that poverty may negatively influence children’s psychological and behavioral health by increasing their exposure to chaotic living conditions in the household. The present study provides a descriptive ‘snapshot’ of instability in low-income households, and examines the associations between exposure to major destabilizing events over the course of a year and three domains of poor urban children’s self-regulation. Descriptive analyses suggest that although caregivers from unstable households report higher average levels of health problems and depression, they also have greater assets/savings, are more educated, and are less likely to be immigrants than caregivers from stable households. Results of propensity score-matched regression analyses reveal that high levels of household instability are significantly and negatively associated with preschoolers’ effortful control and global attention/impulsivity control, but not with their executive function. Children from mildly unstable homes (i.e., those who had experienced a single destabilizing event in the past year) showed no significant differences in any domain of self-regulation relative to their peers from stable households, suggesting a dose-response relationship between the number of destabilizing events experienced by children and their outcomes. Implications for theories of poverty-related adversity, stress, and parenting are discussed in addition to future directions for research. PMID:26924923
miR-25 modulates NSCLC cell radio-sensitivity through directly inhibiting BTG2 expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Zhiwei, E-mail: carlhe@126.com; Liu, Yi, E-mail: cassieliu@126.com; Xiao, Bing, E-mail: rockg714@aliyun.com
2015-02-13
A large proportion of the NSCLC patients were insensitive to radiotherapy, but the exact mechanism is still unclear. This study explored the role of miR-25 in regulating sensitivity of NSCLC cells to ionizing radiation (IR) and its downstream targets. Based on measurement in tumor samples from NSCLC patients, this study found that miR-25 expression is upregulated in both NSCLC and radio-resistant NSCLC patients compared the healthy and radio-sensitive controls. In addition, BTG expression was found negatively correlated with miR-25a expression in the both tissues and cells. By applying luciferase reporter assay, we verified two putative binding sites between miR-25 andmore » BTG2. Therefore, BTG2 is a directly target of miR-25 in NSCLC cancer. By applying loss-and-gain function analysis in NSCLC cell lines, we demonstrated that miR-25-BTG2 axis could directly regulated BTG2 expression and affect radiotherapy sensitivity of NSCLC cells. - Highlights: • miR-25 is upregulated, while BTG2 is downregulated in radioresistant NSCLC patients. • miR-25 modulates sensitivity to radiation induced apoptosis. • miR-25 directly targets BTG2 and suppresses its expression. • miR-25 modulates sensitivity to radiotherapy through inhibiting BTG2 expression.« less
Effects of Transcranial Direct Current Stimulation on Expression of Immediate Early Genes (IEG’s)
2015-12-01
enhancing cognitive capabilities in human subjects1, 2, and 3. Studies have also shown tDCS can produce positive outcomes in treating depression ...translated into DNA, they can re-enter the nucleus and cause the induction of novel gene transcription (Figure 1). As stated earlier, there has been...in striatum due to caffeine intake26, and activation in auditory cortex due to auditory cues27. cFos is able to auto- regulate itself, by a negative
PTP1B is a negative regulator of interleukin 4–induced STAT6 signaling
Lu, Xiaoqing; Malumbres, Raquel; Shields, Benjamin; Jiang, Xiaoyu; Sarosiek, Kristopher A.; Natkunam, Yasodha
2008-01-01
Protein tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed enzyme shown to negatively regulate multiple tyrosine phosphorylation-dependent signaling pathways. PTP1B can modulate cytokine signaling pathways by dephosphorylating JAK2, TYK2, and STAT5a/b. Herein, we report that phosphorylated STAT6 may serve as a cytoplasmic substrate for PTP1B. Overexpression of PTP1B led to STAT6 dephosphorylation and the suppression of STAT6 transcriptional activity, whereas PTP1B knockdown or deficiency augmented IL-4–induced STAT6 signaling. Pretreatment of these cells with the PTK inhibitor staurosporine led to sustained STAT6 phosphorylation consistent with STAT6 serving as a direct substrate of PTP1B. Furthermore, PTP1B-D181A “substrate-trapping” mutants formed stable complexes with phosphorylated STAT6 in a cellular context and endogenous PTP1B and STAT6 interacted in an interleukin 4 (IL-4)–inducible manner. We delineate a new negative regulatory loop of IL-4–JAK-STAT6 signaling. We demonstrate that IL-4 induces PTP1B mRNA expression in a phosphatidylinositol 3-kinase–dependent manner and enhances PTP1B protein stability to suppress IL-4–induced STAT6 signaling. Finally, we show that PTP1B expression may be preferentially elevated in activated B cell–like diffuse large B-cell lymphomas. These observations identify a novel regulatory loop for the regulation of IL-4–induced STAT6 signaling that may have important implications in both neoplastic and inflammatory processes. PMID:18716132
Neural correlates of preparatory and regulatory control over positive and negative emotion.
Seo, Dongju; Olman, Cheryl A; Haut, Kristen M; Sinha, Rajita; MacDonald, Angus W; Patrick, Christopher J
2014-04-01
This study used functional magnetic resonance imaging to investigate brain activation during preparatory and regulatory control while participants (N = 24) were instructed either to simply view or decrease their emotional response to, pleasant, neutral or unpleasant pictures. A main effect of emotional valence on brain activity was found in the right precentral gyrus, with greater activation during positive than negative emotion regulation. A main effect of regulation phase was evident in the bilateral anterior prefrontal cortex (PFC), precuneus, posterior cingulate cortex, right putamen and temporal and occipital lobes, with greater activity in these regions during preparatory than regulatory control. A valence X regulation interaction was evident in regions of ventromedial PFC and anterior cingulate cortex, reflecting greater activation while regulating negative than positive emotion, but only during active emotion regulation (not preparation). Conjunction analyses revealed common brain regions involved in differing types of emotion regulation including selected areas of left lateral PFC, inferior parietal lobe, temporal lobe, right cerebellum and bilateral dorsomedial PFC. The right lateral PFC was additionally activated during the modulation of both positive and negative valence. Findings demonstrate significant modulation of brain activity during both preparation for, and active regulation of positive and negative emotional states.
Wang, Zhipeng; Yang, Huan; Ren, Lei
2015-09-04
MicroRNA-21 (miR-21) has been well-established and found to be over-expressed in various human cancers and has been associated with hepatocellular carcinoma (HCC) progression. However, the underlying mechanism of miR-21 involvement in the development and progression of HCC remains to be understood. In the present study, we firstly identified that the Navigator-3 (NAV-3) gene as a novel direct target of miR-21. Knock-down of NAV-3 using shRNA can rescue the effects of anti-miR-21 inhibitor in HCC cell lines, whereas re-expression of miR-21 using transfection with miR-21 mimics phenocopied the NAV-3 knock-down model. Additionally, miR-21 levels inversely correlated with NAV-3 both in HCC cells and tissues. Knock-down of NAV-3 promoted both the proliferation and migration in HCC cells. Together, our findings suggest an important role for miR-21 in the progression of HCC, which negatively regulated Navigator-3 in the migration of HCC. Copyright © 2015 Elsevier Inc. All rights reserved.
Episode-specific drinking-to-cope motivation and next-day stress-reactivity.
Armeli, Stephen; O'Hara, Ross E; Covault, Jon; Scott, Denise M; Tennen, Howard
2016-11-01
Research consistently shows drinking-to-cope (DTC) motivation is uniquely associated with drinking-related problems. We furthered this line of research by examining whether DTC motivation is predictive of processes indicative of poor emotion regulation. Specifically, we tested whether nighttime levels of episode-specific DTC motivation, controlling for drinking level, were associated with intensified affective reactions to stress the following day (i.e. stress-reactivity). We used a micro-longitudinal design to test this hypothesis in two college student samples from demographically distinct institutions: a large, rural state university (N = 1421; 54% female) and an urban historically Black college/university (N = 452; 59% female). In both samples the within-person association between daily stress and negative affect on days following drinking episodes was stronger in the positive direction when previous night's drinking was characterized by relatively higher levels of DTC motivation. We also found evidence among students at the state university that average levels of DTC motivation moderated the daily stress-negative affect association. Findings are consistent with the notion that DTC motivation confers a unique vulnerability that affects processes associated with emotion regulation.
Fujita, Toshitsugu; Piuz, Isabelle; Schlegel, Werner
2010-05-05
Transcription elongation of many eukaryotic genes is regulated. Two negative transcription elongation factors, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) are known to stall collaboratively RNA polymerase II promoter proximally. We discovered that DSIF and NELF are linked to hormone expression in rat pituitary GH4C1 cells. When NELF-E, a subunit of NELF or Spt5, a subunit of DSIF was stably knocked-down, prolactin (PRL) expression was increased both at the mRNA and protein levels. In contrast, stable knock-down of only Spt5 abolished growth hormone (GH) expression. Transient NELF-E knock-down increased coincidentally PRL expression and enhanced transcription of a PRL-promoter reporter gene. However, no direct interaction of NELF with the PRL gene could be demonstrated by chromatin immuno-precipitation. Thus, NELF suppressed PRL promoter activity indirectly. In conclusion, transcription regulation by NELF and DSIF is continuously involved in the control of hormone production and may contribute to neuroendocrine cell differentiation. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Bonilla-Claudio, Margarita; Wang, Jun; Bai, Yan; Klysik, Elzbieta; Selever, Jennifer; Martin, James F
2012-02-01
We performed an in depth analysis of Bmp4, a critical regulator of development, disease, and evolution, in cranial neural crest (CNC). Conditional Bmp4 overexpression, using a tetracycline-regulated Bmp4 gain-of-function allele, resulted in facial skeletal changes that were most dramatic after an E10.5 Bmp4 induction. Expression profiling uncovered a signature of Bmp4-induced genes (BIG) composed predominantly of transcriptional regulators that control self-renewal, osteoblast differentiation and negative Bmp autoregulation. The complimentary experiment, CNC inactivation of Bmp2, Bmp4 and Bmp7, resulted in complete or partial loss of multiple CNC-derived skeletal elements, revealing a crucial requirement for Bmp signaling in membranous bone and cartilage development. Importantly, the BIG signature was reduced in Bmp loss-of-function mutants, indicating Bmp-regulated target genes are modulated by Bmp dose. Chromatin immunoprecipitation (ChIP) revealed a subset of the BIG signature, including Satb2, Smad6, Hand1, Gadd45γ and Gata3, that was bound by Smad1/5 in the developing mandible, revealing direct Smad-mediated regulation. These data support the hypothesis that Bmp signaling regulates craniofacial skeletal development by balancing self-renewal and differentiation pathways in CNC progenitors.
Regulated provider perceptions of feedback reports.
O'Rourke, Hannah M; Fraser, Kimberly D; Boström, Anne-Marie; Baylon, Melba Andrea B; Sales, Anne E
2013-11-01
This paper reports on regulated (or licensed) care providers' understanding and perceptions of feedback reports in a sample of Canadian long-term care settings using a cross-sectional survey design. Audit with feedback quality improvement studies have seldom targeted front-line providers in long-term care to receive feedback information. Feedback reports were delivered to front-line regulated care providers in four long-term care facilities for 13 months in 2009-10. Providers completed a postfeedback survey. Most (78%) regulated care providers (n = 126) understood the reports and felt they provided useful information for making changes to resident care (64%). Perceptions of the report differed, depending on the role of the regulated care provider. In multivariable logistic regression, the regulated nurses' understanding of more than half the report was negatively associated with 'usefulness of information for changing resident care', and perceiving the report as generally useful had a positive association. Front-line regulated providers are an appropriate target for feedback reports in long-term care. Long-term care administrators should share unit-level information on care quality with unit-level managers and other professional front-line direct care providers. © 2013 John Wiley & Sons Ltd.
Jermann, Françoise; Billieux, Joël; Larøi, Frank; d'Argembeau, Arnaud; Bondolfi, Guido; Zermatten, Ariane; Van der Linden, Martial
2009-12-01
Over the past few years, several questionnaires have been developed to measure mindfulness. The Mindful Attention Awareness Scale (MAAS) was created to specifically capture attention and awareness in daily life (Brown & Ryan, 2003). In this article, we present a French adaptation of the MAAS. In the 1st study, we explored the psychometric properties of this adaptation. In the 2nd study, we investigated its relation to cognitive emotion regulation and depressive symptomatology using path analysis. As in the original version of the MAAS, the French adaptation has a strong 1-factor structure. Moreover, there was a negative relationship between the MAAS and the severity of depressive symptoms, both directly and indirectly. The indirect pathway was mediated by the nonadaptive cognitive emotion regulation strategy of self-blame and the adaptive cognitive emotion regulation strategy of positive reappraisal. In conclusion, this questionnaire represents a valid mindfulness measure for French-speaking clinicians and researchers.
A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus.
Nishida, Hanna; Tanaka, Sachiko; Handa, Yoshihiro; Ito, Momoyo; Sakamoto, Yuki; Matsunaga, Sachihiro; Betsuyaku, Shigeyuki; Miura, Kenji; Soyano, Takashi; Kawaguchi, Masayoshi; Suzaki, Takuya
2018-02-05
Legumes and rhizobia establish symbiosis in root nodules. To balance the gains and costs associated with the symbiosis, plants have developed two strategies for adapting to nitrogen availability in the soil: plants can regulate nodule number and/or stop the development or function of nodules. Although the former is accounted for by autoregulation of nodulation, a form of systemic long-range signaling, the latter strategy remains largely enigmatic. Here, we show that the Lotus japonicus NITRATE UNRESPONSIVE SYMBIOSIS 1 (NRSYM1) gene encoding a NIN-LIKE PROTEIN transcription factor acts as a key regulator in the nitrate-induced pleiotropic control of root nodule symbiosis. NRSYM1 accumulates in the nucleus in response to nitrate and directly regulates the production of CLE-RS2, a root-derived mobile peptide that acts as a negative regulator of nodule number. Our data provide the genetic basis for how plants respond to the nitrogen environment and control symbiosis to achieve proper plant growth.
DDX3X RNA helicase affects breast cancer cell cycle progression by regulating expression of KLF4.
Cannizzaro, Ester; Bannister, Andrew John; Han, Namshik; Alendar, Andrej; Kouzarides, Tony
2018-05-21
DDX3X is a multifunctional RNA helicase with documented roles in different cancer types. Here, we demonstrate that DDX3X plays an oncogenic role in breast cancer cells by modulating the cell cycle. Depletion of DDX3X in MCF7 cells slows cell proliferation by inducing a G1 phase arrest. Notably, DDX3X inhibits expression of Kruppel-like factor 4 (KLF4), a transcription factor and cell cycle repressor. Moreover, DDX3X directly interacts with KLF4 mRNA and regulates its splicing. We show that DDX3X-mediated repression of KLF4 promotes expression of S-phase inducing genes in MCF7 breast cancer cells. These findings provide evidence for a novel function of DDX3X in regulating expression and downstream functions of KLF4, a master negative regulator of the cell cycle. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators.
Bhattacharjee, Saikat; Halane, Morgan K; Kim, Sang Hee; Gassmann, Walter
2011-12-09
Plant resistance proteins detect the presence of specific pathogen effectors and initiate effector-triggered immunity. Few immune regulators downstream of resistance proteins have been identified, none of which are known virulence targets of effectors. We show that Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), a positive regulator of basal resistance and of effector-triggered immunity specifically mediated by Toll-interleukin-1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR) resistance proteins, forms protein complexes with the TIR-NB-LRR disease resistance proteins RPS4 and RPS6 and with the negative immune regulator SRFR1 at a cytoplasmic membrane. Further, the cognate bacterial effectors AvrRps4 and HopA1 disrupt these EDS1 complexes. Tight association of EDS1 with TIR-NB-LRR-mediated immunity may therefore derive mainly from being guarded by TIR-NB-LRR proteins, and activation of this branch of effector-triggered immunity may directly connect to the basal resistance signaling pathway via EDS1.
Situation Selection and Modification for Emotion Regulation in Younger and Older Adults
Livingstone, Kimberly M.; Isaacowitz, Derek M.
2016-01-01
This research investigated age differences in use and effectiveness of situation selection and situation modification for emotion regulation. Socioemotional selectivity theory suggests stronger emotional well-being goals in older age; emotion regulation may support this goal. Younger and older adults assigned to an emotion regulation or “just view” condition first freely chose to engage with negative, neutral, or positive material (situation selection), then chose to view or skip negative and positive material (situation modification), rating affect after each experience. In both tasks, older adults in both goal conditions demonstrated pro-hedonic emotion regulation, spending less time with negative material compared to younger adults. Younger adults in the regulate condition also engaged in pro-hedonic situation selection, but not modification. Whereas situation selection was related to affect, modification of negative material was not. This research supports more frequent pro-hedonic motivation in older age, as well as age differences in use of early-stage emotion regulation. PMID:26998196
Mobile Phone Use, Emotion Regulation, and Well-Being.
Hoffner, Cynthia A; Lee, Sangmi
2015-07-01
This study examined the use of mobile phones to regulate negative emotions, considering both the role of different aspects of phone use and individual differences in emotion regulation strategies. A total of 287 young adult smartphone users completed an online survey that addressed use of mobile phones for negative emotion regulation. They responded to a phone loss scenario by rating how much they would miss various uses/functions of the phone (which could be involved in emotion regulation). Habitual use of reappraisal to regulate emotion was associated with missing both interpersonal contact and social support, but not access to entertainment/information. In contrast, habitual use of emotion suppression was associated only with missing entertainment/information content. Regulating negative emotions via mobile phone was associated with missing all three uses/functions of the phone, but perception that the phone was effective in remediating negative emotion was associated only with missing social support. Well-being was related to greater use and perceived effectiveness of the mobile phone for emotion regulation. Overall, this study demonstrates that mobile phones can yield psychological benefits, depending on how they are used. Findings suggest that using the phone for social support is most likely to lead to effective remediation of negative emotion. Interpretations and implications of the findings are discussed.
Kuo, Janice R; Fitzpatrick, Skye; Metcalfe, Rebecca K; McMain, Shelley
2016-03-01
Borderline personality disorder (BPD) is conceptualized as a disorder of heightened emotional reactivity and difficulties with emotion regulation. However, findings regarding emotional reactivity in BPD are mixed and there are limited studies examining emotion regulation capabilities in this population. Twenty-five individuals with BPD and 30 healthy controls (HCs) engaged in a baseline assessment followed by the presentation of neutral and BPD-relevant negative images. Participants were instructed to react as they naturally would to the image, or to use a mindfulness-based or distraction-based strategy to feel less negative. Self-reported and physiological (i.e., heart rate, electrodermal activity, and respiratory sinus arrhythmia) measures were collected. Compared with the HCs, the BPD group exhibited elevated heart rate and reduced respiratory sinus arrhythmia at baseline. However, there were no differences in emotional reactivity in self-report or physiological indices between the two groups. In addition, the BPD group did not exhibit deficits in the ability to implement either emotion regulation strategy, with the exception that the BPD group reported less positive emotions while distracting compared with the HCs. This study is limited by a small sample size and the inclusion of a medicated BPD sample. Emotion dysregulation in BPD might be better accounted for by abnormal baseline emotional functioning rather than heightened emotional reactivity or deficits in emotion regulation. Treatments for BPD might be enhanced by directly targeting resting state emotional functioning rather than emotional reactions or regulatory attempts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Johnson, Adrienne L; McLeish, Alison C
2016-02-01
Although negative affect is associated with a number of smoking-related cognitive processes, the mechanisms underlying these associations have yet to be examined. The current study sought to examine the indirect effect of emotion regulation difficulties in terms of the association between negative affect and smoking-related cognitive processes (internal barriers to cessation, negative affect reduction smoking motives, negative affect reduction smoking outcome expectancies). Participants were 126 daily cigarette smokers (70.4% male, Mage=36.5years, SD=13.0; 69.8% Caucasian) who smoked an average of 18.5 (SD=8.7) cigarettes per day and reported moderate nicotine dependence. Formal mediation analyses were conducted using PROCESS to examine the indirect effect of negative affect on internal barriers to cessation and negative affect reduction smoking motives and outcome expectancies through emotion regulation difficulties. After accounting for the effects of gender, daily smoking rate, and anxiety sensitivity, negative affect was indirectly related to internal barriers to cessation and negative affect reduction smoking motives through emotion regulation difficulties. There was no significant indirect effect for negative affect reduction smoking outcome expectancies. These findings suggest that greater negative affect is associated with a desire to smoke to reduce this negative affect and perceptions that quitting smoking will be difficult due to negative emotions because of greater difficulties managing these negative emotions. Thus, emotion regulation difficulties may be an important target for smoking cessation interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fisher, Naomi R; Mead, Bethan R; Lattimore, Paul; Malinowski, Peter
2017-11-01
Evidence regarding the effectiveness of mindfulness based interventions (MBIs) for eating disorders, weight management and food craving is emerging and further studies are required to understand the underlying mechanisms of MBIs in these domains. The current study was designed to establish the role of specific mechanisms underlying the putative relationship between mindfulness and reward motivated eating. We predicted that mindfulness would be negatively related to features of reward motivated eating and that this association would be mediated by emotion regulation and habitual negative self-thinking. A cross-sectional survey measuring uncontrolled and emotional eating, mindfulness, emotion regulation and habitual negative self-thinking was completed by female and male meditators and non-meditators (N = 632). Lower levels of dispositional mindfulness were associated with difficulties in emotion regulation, habitual negative self-thinking and both emotional and uncontrolled eating. Difficulties in emotion regulation significantly mediated the mindfulness-uncontrolled eating relationship. Habitual negative self-thinking significantly mediated the mindfulness-emotional eating relationship. Participants with meditation experience reported greater levels of dispositional mindfulness, fewer difficulties with emotion regulation and habitual negative self-thinking and reduced uncontrolled eating tendencies, compared to non-meditators. The findings suggest that MBIs designed to change reward motivated eating and weight control should focus on emotion regulation and mental habits as underlying mechanisms. Copyright © 2017. Published by Elsevier Ltd.
Kalapos, Miklós Péter
2011-01-01
Talking of the Act LXXX. of 2009, the amendment of the Act IV. of 1978 on Criminal Code, the author reviews the Hungarian history of the changes of regulations referring to mentally ill criminals. He discusses the treatment regulations referring to criminals identified as insane, too. From historical and legal philosophical points of view, those parts of the modification of Criminal Code are analyzed that deal with mandatory treatment and took effect in he May 2010. The changes are judged as paradigm changing in a negative course that represents a doubtful step from the direction of perpetrator based criminal law to criminal act based criminal law.
Interferon Gamma in African Trypanosome Infections: Friends or Foes?
Wu, Hui; Liu, Gongguan; Shi, Meiqing
2017-01-01
African trypanosomes cause fatal infections in both humans and livestock. Interferon gamma (IFN-γ) plays an essential role in resistance to African trypanosomes. However, increasing evidence suggests that IFN-γ, when excessively synthesized, also induces immunopathology, enhancing susceptibility to the infection. Thus, production of IFN-γ must be tightly regulated during infections with African trypanosomes to ensure that a robust immune response is elicited without tissue destruction. Early studies have shown that secretion of IFN-γ is downregulated by interleukin 10 (IL-10). More recently, IL-27 has been identified as a negative regulator of IFN-γ production during African trypanosome infections. In this review, we discuss the current state of our understanding of the role of IFN-γ in African trypanosome infections. We have focused on the cellular source of IFN-γ, its beneficial and detrimental effects, and mechanisms involved in regulation of its production, highlighting some recent advances and offering some perspectives on future directions.
Dietary potassium: a key mediator of the cardiovascular response to dietary sodium chloride.
Kanbay, Mehmet; Bayram, Yeter; Solak, Yalcin; Sanders, Paul W
2013-01-01
Potassium and sodium share a yin/yang relationship in the regulation of blood pressure (BP). BP is directly associated with the total body sodium and negatively correlated with the total body potassium. Epidemiologic, experimental, and clinical studies have shown that potassium is a significant regulator of BP and further improves cardiovascular outcomes. Hypertensive cardiovascular damage, stroke, and stroke-related death are accelerated by salt intake but might be curbed by increasing dietary potassium intake. The antihypertensive effect of potassium supplementation appears to occur through several mechanisms that include regulation of vascular sensitivity to catecholamines, promotion of natriuresis, limiting plasma renin activity, and improving endothelial function. In the absence of chronic kidney disease, the combined evidence suggests that a diet rich in potassium content serves a vasculoprotective function, particularly in the setting of salt-sensitive hypertension and prehypertension. Copyright © 2013 American Society of Hypertension. All rights reserved.
Role of affective self-regulatory efficacy in diverse spheres of psychosocial functioning.
Bandura, Albert; Caprara, Gian Vittorio; Barbaranelli, Claudio; Gerbino, Maria; Pastorelli, Concetta
2003-01-01
This prospective study with 464 older adolescents (14 to 19 years at Time 1; 16 to 21 years at Time 2) tested the structural paths of influence through which perceived self-efficacy for affect regulation operates in concert with perceived behavioral efficacy in governing diverse spheres of psychosocial functioning. Self-efficacy to regulate positive and negative affect is accompanied by high efficacy to manage one's academic development, to resist social pressures for antisocial activities, and to engage oneself with empathy in others' emotional experiences. Perceived self-efficacy for affect regulation essentially operated mediationally through the latter behavioral forms of self-efficacy rather than directly on prosocial behavior, delinquent conduct, and depression. Perceived empathic self-efficacy functioned as a generalized contributor to psychosocial functioning. It was accompanied by prosocial behavior and low involvement in delinquency but increased vulnerability to depression in adolescent females.
Sung, Sharon C.; Porter, Eliora; Robinaugh, Donald J.; Marks, Elizabeth H.; Marques, Luana M.; Otto, Michael W.; Pollack, Mark H.; Simon, Naomi M.
2014-01-01
The present study examined negative mood regulation expectancies, anxiety symptom severity, and quality of life in a sample of 167 patients with social anxiety disorder (SAD) and 165 healthy controls with no DSM-IV Axis I disorders. Participants completed the Generalized Expectancies for Negative Mood Regulation Scale (NMR), the Beck Anxiety Inventory, and the Quality of Life Enjoyment and Satisfaction Questionnaire. SAD symptom severity was assessed using the Liebowitz Social Anxiety Scale. Individuals with SAD scored significantly lower than controls on the NMR. Among SAD participants, NMR scores were negatively correlated with anxiety symptoms and SAD severity, and positively correlated with quality of life. NMR expectancies positively predicted quality of life even after controlling for demographic variables, comorbid diagnoses, anxiety symptoms, and SAD severity. Individuals with SAD may be less likely to engage in emotion regulating strategies due to negative beliefs regarding their effectiveness, thereby contributing to poorer quality of life. PMID:22343166
NASA Astrophysics Data System (ADS)
Nawan Hasrimi, Adila; Budiharjo, Anto; Nur Jannah, Siti
2018-05-01
Vibrio parahaemolyticus is hallophilic gram-negative bacteria that live as natural inhabitant in aquatic environment. All Vibrio parahaemolyticus strain known to have thermolabile hemolysin encoded by tlh gene as species marker. Thermostable direct hemolysin encoded by tdh gene is responsible for regulating virulence factor in Vibrio parhaemolyticus. Aim of this research is to detect tlh and tdh gene from water of L. vannamei aquaculture in Rembang regency. Colonies of green-blueish bacteria grew from isolation of L. vannamei aquaculture water in CD-VP media which was identified as Vibrio parahaemolyticus. Colonies of V. parahaemolyticus grew to be small and green-blueish bacteria colonies in TCBS agar. Result of molecular analysis showed that bacteria isolated from water sample are specifically identified as Vibrio parahaemolyticus bacteria by the detection of tlh gene. Vibrio parahaemolyticus isolated from water of L. vannamei aquaculture detected as tdh negative that indicates tdh gene is not present in isolated bacteria. Vibrio parahaemolyticus isolate were cultured in Wagatsuma agar for tdh gene confirmation test that showed Kanagawa negative result, which indicated that V. parahaemolyticus did not produce thermostable direct hemolysin. These results showed that Vibrio parahaemolyticus isolated from aquatic environment of L. vannamei aquaculture in Rembang regency did not show virulence factors.
Helicobacter pylori induces activation of human peripheral γδ+ T lymphocytes.
Romi, Benedetta; Soldaini, Elisabetta; Pancotto, Laura; Castellino, Flora; Del Giudice, Giuseppe; Schiavetti, Francesca
2011-04-29
Helicobacter pylori is a gram-negative bacterium that causes gastric and duodenal diseases in humans. Despite a robust antibody and cellular immune response, H. pylori infection persists chronically. To understand if and how H. pylori could modulate T cell activation, in the present study we investigated in vitro the interaction between H. pylori and human T lymphocytes freshly isolated from peripheral blood of H. pylori-negative donors. A direct interaction of live, but not killed bacteria with purified CD3+ T lymphocytes was observed by microscopy and confirmed by flow cytometry. Live H. pylori activated CD3+ T lymphocytes and predominantly γδ+ T cells bearing the TCR chain Vδ2. Upon interaction with H. pylori, these cells up-regulated the activation molecule CD69 and produced cytokines (such as TNFα, IFNγ) and chemokines (such as MIP-1β, RANTES) in a non-antigen-specific manner. This activation required viable H. pylori and was not exhibited by other gram-negative bacteria. The cytotoxin-associated antigen-A (CagA), was at least partially responsible of this activation. Our results suggest that H. pylori can directly interact with T cells and modulate the response of γδ+ T cells, thereby favouring an inflammatory environment which can contribute to the chronic persistence of the bacteria and eventually to the gastric pathology.
Greening, Steven G.; Osuch, Elizabeth A.; Williamson, Peter C.
2014-01-01
Depressive cognitive schemas play an important role in the emergence and persistence of major depressive disorder (MDD). The current study adapted emotion regulation techniques to reflect elements of cognitive behavioural therapy (CBT) and related psychotherapies to delineate neurocognitive abnormalities associated with modulating the negative cognitive style in MDD. Nineteen non-medicated patients with MDD and 19 matched controls reduced negative or enhanced positive feelings elicited by emotional scenes while undergoing functional magnetic resonance imaging. Although both groups showed significant emotion regulation success as measured by subjective ratings of affect, the controls were significantly better at modulating both negative and positive emotion. Both groups recruited regions of dorsolateral prefrontal cortex and ventrolateral prefrontal cortex (VLPFC) when regulating negative emotions. Only in controls was this accompanied by reduced activity in sensory cortices and amygdala. Similarly, both groups showed enhanced activity in VLPFC and ventral striatum when enhancing positive affect; however, only in controls was ventral striatum activity correlated with regulation efficacy. The results suggest that depression is associated with both a reduced capacity to achieve relief from negative affect despite recruitment of ventral and dorsal prefrontal cortical regions implicated in emotion regulation, coupled with a disconnect between activity in reward-related regions and subjective positive affect. PMID:23482626
Cao, Lulu; Ding, Yiyuan; Hung, Norris; Yu, Kebing; Ritz, Anna; Raphael, Benjamin J.; Salomon, Arthur R.
2012-01-01
The SH2-domain-containing leukocyte protein of 76 kDa (SLP-76) plays a critical scaffolding role in T cell receptor (TCR) signaling. As an adaptor protein that contains multiple protein-binding domains, SLP-76 interacts with many signaling molecules and links proximal receptor stimulation to downstream effectors. The function of SLP-76 in TCR signaling has been widely studied using the Jurkat human leukaemic T cell line through protein disruption or site-directed mutagenesis. However, a wide-scale characterization of SLP-76-dependant phosphorylation events is still lacking. Quantitative profiling of over a hundred tyrosine phosphorylation sites revealed new modes of regulation of phosphorylation of PAG, PI3K, and WASP while reconfirming previously established regulation of Itk, PLCγ, and Erk phosphorylation by SLP-76. The absence of SLP-76 also perturbed the phosphorylation of Src family kinases (SFKs) Lck and Fyn, and subsequently a large number of SFK-regulated signaling molecules. Altogether our data suggests unique modes of regulation of positive and negative feedback pathways in T cells by SLP-76, reconfirming its central role in the pathway. PMID:23071622
Cao, Lulu; Ding, Yiyuan; Hung, Norris; Yu, Kebing; Ritz, Anna; Raphael, Benjamin J; Salomon, Arthur R
2012-01-01
The SH2-domain-containing leukocyte protein of 76 kDa (SLP-76) plays a critical scaffolding role in T cell receptor (TCR) signaling. As an adaptor protein that contains multiple protein-binding domains, SLP-76 interacts with many signaling molecules and links proximal receptor stimulation to downstream effectors. The function of SLP-76 in TCR signaling has been widely studied using the Jurkat human leukaemic T cell line through protein disruption or site-directed mutagenesis. However, a wide-scale characterization of SLP-76-dependant phosphorylation events is still lacking. Quantitative profiling of over a hundred tyrosine phosphorylation sites revealed new modes of regulation of phosphorylation of PAG, PI3K, and WASP while reconfirming previously established regulation of Itk, PLCγ, and Erk phosphorylation by SLP-76. The absence of SLP-76 also perturbed the phosphorylation of Src family kinases (SFKs) Lck and Fyn, and subsequently a large number of SFK-regulated signaling molecules. Altogether our data suggests unique modes of regulation of positive and negative feedback pathways in T cells by SLP-76, reconfirming its central role in the pathway.
MyomiR-133 regulates brown fat differentiation through Prdm16.
Trajkovski, Mirko; Ahmed, Kashan; Esau, Christine C; Stoffel, Markus
2012-12-01
Brown adipose tissue (BAT) uses the chemical energy of lipids and glucose to produce heat, a function that can be induced by cold exposure or diet. A key regulator of BAT is the gene encoding PR domain containing 16 (Prdm16), whose expression can drive differentiation of myogenic and white fat precursors to brown adipocytes. Here we show that after cold exposure, the muscle-enriched miRNA-133 is markedly downregulated in BAT and subcutaneous white adipose tissue (SAT) as a result of decreased expression of its transcriptional regulator Mef2. miR-133 directly targets and negatively regulates PRDM16, and inhibition of miR-133 or Mef2 promotes differentiation of precursors from BAT and SAT to mature brown adipocytes, thereby leading to increased mitochondrial activity. Forced expression of miR-133 in brown adipogenic conditions prevents the differentiation to brown adipocytes in both BAT and SAT precursors. Our results point to Mef2 and miR-133 as central upstream regulators of Prdm16 and hence of brown adipogenesis in response to cold exposure in BAT and SAT.
Bai, Aiping; Guo, Yuan
2017-01-01
Acid sphingomyelinase (ASM) is a lipid hydrolase. By generating ceramide, ASM had been reported to have an important role in regulating immune cell functions inclusive of macrophages, NK cells, and CD8+ T cells, whereas the role of ASM bioactivity in regulation of human CD4+ T-cell functions remained uncertain. Recent studies have provided novel findings in this field. Upon stimulation of CD3 and/or CD28, ASM-dependent ceramide signaling mediates intracellular downstream signal cascades of CD3 and CD28, and regulates CD4+ T-cell activation and proliferation. Meanwhile, CD39 and CD161 have direct interactions with ASM, which mediates downstream signals inclusive of STAT3 and mTOR and thus defines human Th17 cells. Intriguingly, ASM mediates Th1 responses, but negatively regulates Treg functions. In this review, we summarized the pivotal roles of ASM in regulation of human CD4+ T-cell activation and responses. ASM/sphingolipid signaling may be a novel target for the therapy of human autoimmune diseases. PMID:28749465
Li, Jin; Ding, Zhiyong; Wang, Zhengxin; Lu, Jing-Fang; Maity, Sankar N.; Navone, Nora M.; Logothetis, Christopher J.; Mills, Gordon B.; Kim, Jeri
2011-01-01
The enzyme 5α-reductase, which converts testosterone to dihydrotestosterone (DHT), performs key functions in the androgen receptor (AR) signaling pathway. The three isoenzymes of 5α-reductase identified to date are encoded by different genes: SRD5A1, SRD5A2, and SRD5A3. In this study, we investigated mechanisms underlying androgen regulation of 5α-reductase isoenzyme expression in human prostate cells. We found that androgen regulates the mRNA level of 5α-reductase isoenzymes in a cell type–specific manner, that such regulation occurs at the transcriptional level, and that AR is necessary for this regulation. In addition, our results suggest that AR is recruited to a negative androgen response element (nARE) on the promoter of SRD5A3 in vivo and directly binds to the nARE in vitro. The different expression levels of 5α-reductase isoenzymes may confer response or resistance to 5α-reductase inhibitors and thus may have importance in prostate cancer prevention. PMID:22194926
Miller, Alison L.; Song, Ju-Hyun; Sturza, Julie; Lumeng, Julie C.; Rosenblum, Katherine; Kaciroti, Niko; Vazquez, Delia M.
2018-01-01
Biological and social influences both shape emotion regulation. In 380 low-income children, we tested whether biological stress profile (cortisol) moderated the association among positive and negative home environment factors (routines; chaos) and emotion regulation (negative lability; positive regulation). Children (M age = 50.6, SD = 6.4 months) provided saliva samples to assess diurnal cortisol parameters across 3 days. Parents reported on home environment and child emotion regulation. Structural equation modeling was used to test whether cortisol parameters moderated associations between home environment and child emotion regulation. Results showed that home chaos was negatively associated with emotion regulation outcomes; cortisol did not moderate the association. Child cortisol level moderated the routines-emotion regulation association such that lack of routine was most strongly associated with poor emotion regulation among children with lower cortisol output. Findings suggest that underlying child stress biology may shape response to environmental influences. PMID:27594200
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi, Mingjun; Chen, Wei; Yu, Hongmei
MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. Here, we identified that miR-543 is up-regulated in gefitinib-resistant non-small cell lung cancer (NSCLC) patients comparing gefitinib-sensitive ones. It promotes NSCLC cell proliferation by negatively regulates its target gene PTEN. In NSCLC cell lines, CCK-8 proliferation assay indicated that the cell proliferation is promoted by miR-543 mimics. Transwell assay showed that miR-543 mimics promotes the invasion and migration of NSCLC cells. Luciferase assays confirmed that miR-543 directly binds to the 3'untranslated region of PTEN, and western blotting showed thatmore » miR-543 suppresses the expression of PTEN at the protein level. This study indicates that miR-543 promotes proliferation and invasion of NSCLC cell lines by PTEN. The miR-543 may represent a potential therapeutic target for gefitinib-resistant NSCLC intervention. - Highlights: • miR-543 is highly expressed in gefitinib-resistant NSCLC. • miR-543 promotes the proliferation and invasion of NSCLC cells. • miR-543 inhibitors inhibits the proliferation and invasion of NSCLC cells. • miR-543 targets 3′ UTR of PTEN in NSCLC cells. • miR-543 inhibits PTEN in NSCLC cells.« less
Liu, C C; Xia, M; Zhang, Y J; Jin, P; Zhao, L; Zhang, J; Li, T; Zhou, X M; Tu, Y Y; Kong, F; Sun, C; Shi, L; Zhao, M Q
2018-06-02
MicroRNAs represent a component of the innate immune responses that can restrain inflammatory signaling, miR124 is an important member of inflammation-associated miRNAs, and abnormal miR124 expression is observed in many inflammatory diseases and immune disorders. However, the role and signaling pathways of miR124 in chronic rhinosinusitis with nasal polyps (CRSwNPs) have not been studied in detail. The aryl hydrocarbon receptor (AHR) is a ligand-inducible transcription factor that is highly conserved in evolution and plays important roles in the inflammatory response process. In our study, we describe the role of miR124 in the inflammatory response of CRS with nasal polyps. We found that the expression of miR124 was decreased in nasal polyps, and negatively correlated with the expression of AHR. MiR124 can inhibit AHR expression by directly target 3' untranslated region (3'-UTR) of AHR. To further investigate the relationship between miR124, AHR and CRS inflammatory response, we transfect HNEpC cells with miR124 mimic, miR124 inhibitors or siRNA of AHR, then all the results showed that miR124 could regulates cellular inflammatory response through negatively regulating AHR expression. This study demonstrated that the regulation of AHR expression by miR124 is critical to the development of inflammatory response in CRSwNPs. Copyright © 2018. Published by Elsevier Inc.
StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato
Zhou, Xiangjun; Zha, Manrong; Huang, Jing; Li, Li; Imran, Muhammad
2017-01-01
Abstract Phosphorus is an important macronutrient for plant growth, but often deficient in soil. To understand the molecular basis of the complex responses of potato (Solanum tuberosum L.) to phosphate (Pi) deficiency stress, the RNA-Seq approach was taken to identify genes responding to Pi starvation in potato roots. A total of 359 differentially expressed genes were identified, among which the Solanum tuberosum transcription factor gene MYB44 (StMYB44) was found to be down-regulated by Pi starvation. StMYB44 was ubiquitously expressed in potato tissues and organs, and StMYB44 protein was exclusively localized in the nucleus. Overexpression of StMYB44 in potato resulted in lower accumulation of Pi in shoots. Transcriptomic analysis indicated that the abundance of S. tuberosum PHOSPHATE1 (StPHO1), a Pi transport-related gene, was reduced in StMYB44 overexpression lines. In contrast, knock-out of StMYB44 by a CRISPR/Cas9 system failed to increase transcription of StPHO1. Moreover, StMYB44 was found to interact in the nucleus with AtWRKY6, a known Arabidopsis transcription factor directly regulating PHO1 expression, and StWRKY6, indicating that StMYB44 could be a member of the regulatory complex controlling transcription of StPHO1. Taken together, our study demonstrates that StMYB44 negatively regulates Pi transport in potato by suppressing StPHO1 expression. PMID:28338870
DYRK1A is a novel negative regulator of cardiomyocyte hypertrophy.
Kuhn, Christian; Frank, Derk; Will, Rainer; Jaschinski, Christoph; Frauen, Robert; Katus, Hugo A; Frey, Norbert
2009-06-19
Activation of the phosphatase calcineurin and its downstream targets, transcription factors of the NFAT family, results in cardiomyocyte hypertrophy. Recently, it has been shown that the dual specificity tyrosine (Y) phosphorylation-regulated kinase 1A (DYRK1A) is able to antagonize calcineurin signaling by directly phosphorylating NFATs. We thus hypothesized that DYRK1A might modulate the hypertrophic response of cardiomyocytes. In a model of phenylephrine-induced hypertrophy, adenovirus-mediated overexpression of DYKR1A completely abrogated the hypertrophic response and significantly reduced the expression of the natriuretic peptides ANF and BNP. Furthermore, DYRK1A blunted cardiomyocyte hypertrophy induced by overexpression of constitutively active calcineurin and attenuated the induction of the hypertrophic gene program. Conversely, knockdown of DYRK1A, utilizing adenoviruses encoding for a specific synthetic miRNA, resulted in an increase in cell surface area accompanied by up-regulation of ANF- mRNA. Similarly, treatment of cardiomyocytes with harmine, a specific inhibitor of DYRK1A, revealed cardiomyocyte hypertrophy on morphological and molecular level. Moreover, constitutively active calcineurin led to robust induction of an NFAT-dependent luciferase reporter, whereas DYRK1A attenuated calcineurin-induced reporter activation in cardiomyocytes. Conversely, both knockdown and pharmacological inhibition of DYRK1A significantly augmented the effect of calcineurin in this assay. In summary, we identified DYRK1A as a novel negative regulator of cardiomyocyte hypertrophy. Mechanistically, this effect appears to be mediated via inhibition of NFAT transcription factors.
DYRK1A Is a Novel Negative Regulator of Cardiomyocyte Hypertrophy*
Kuhn, Christian; Frank, Derk; Will, Rainer; Jaschinski, Christoph; Frauen, Robert; Katus, Hugo A.; Frey, Norbert
2009-01-01
Activation of the phosphatase calcineurin and its downstream targets, transcription factors of the NFAT family, results in cardiomyocyte hypertrophy. Recently, it has been shown that the dual specificity tyrosine (Y) phosphorylation-regulated kinase 1A (DYRK1A) is able to antagonize calcineurin signaling by directly phosphorylating NFATs. We thus hypothesized that DYRK1A might modulate the hypertrophic response of cardiomyocytes. In a model of phenylephrine-induced hypertrophy, adenovirus-mediated overexpression of DYKR1A completely abrogated the hypertrophic response and significantly reduced the expression of the natriuretic peptides ANF and BNP. Furthermore, DYRK1A blunted cardiomyocyte hypertrophy induced by overexpression of constitutively active calcineurin and attenuated the induction of the hypertrophic gene program. Conversely, knockdown of DYRK1A, utilizing adenoviruses encoding for a specific synthetic miRNA, resulted in an increase in cell surface area accompanied by up-regulation of ANF- mRNA. Similarly, treatment of cardiomyocytes with harmine, a specific inhibitor of DYRK1A, revealed cardiomyocyte hypertrophy on morphological and molecular level. Moreover, constitutively active calcineurin led to robust induction of an NFAT-dependent luciferase reporter, whereas DYRK1A attenuated calcineurin-induced reporter activation in cardiomyocytes. Conversely, both knockdown and pharmacological inhibition of DYRK1A significantly augmented the effect of calcineurin in this assay. In summary, we identified DYRK1A as a novel negative regulator of cardiomyocyte hypertrophy. Mechanistically, this effect appears to be mediated via inhibition of NFAT transcription factors. PMID:19372220
Zatyka, Malgorzata; Da Silva Xavier, Gabriela; Bellomo, Elisa A.; Leadbeater, Wendy; Astuti, Dewi; Smith, Joel; Michelangeli, Frank; Rutter, Guy A.; Barrett, Timothy G.
2015-01-01
Wolfram syndrome is an autosomal recessive disorder characterized by neurodegeneration and diabetes mellitus. The gene responsible for the syndrome (WFS1) encodes an endoplasmic reticulum (ER)-resident transmembrane protein that is involved in the regulation of the unfolded protein response (UPR), intracellular ion homeostasis, cyclic adenosine monophosphate production and regulation of insulin biosynthesis and secretion. In this study, single cell Ca2+ imaging with fura-2 and direct measurements of free cytosolic ATP concentration ([ATP]CYT) with adenovirally expressed luciferase confirmed a reduced and delayed rise in cytosolic free Ca2+ concentration ([Ca2+]CYT), and additionally, diminished [ATP]CYT rises in response to elevated glucose concentrations in WFS1-depleted MIN6 cells. We also observed that sarco(endo)plasmic reticulum ATPase (SERCA) expression was elevated in several WFS1-depleted cell models and primary islets. We demonstrated a novel interaction between WFS1 and SERCA by co-immunoprecipitation in Cos7 cells and with endogenous proteins in human neuroblastoma cells. This interaction was reduced when cells were treated with the ER stress inducer dithiothreitol. Treatment of WFS1-depleted neuroblastoma cells with the proteasome inhibitor MG132 resulted in reduced accumulation of SERCA levels compared with wild-type cells. Together these results reveal a role for WFS1 in the negative regulation of SERCA and provide further insights into the function of WFS1 in calcium homeostasis. PMID:25274773
Yang, Fengming; Wei, Ke; Qin, Zhiqiang; Liu, Weitao; Shao, Chuchu; Wang, Chaoshan; Ma, Ling; Xie, Mengyan; Shu, Yongqian; Shen, Hua
2018-05-11
MicroRNAs regulate a wide range of biological processes of non-small cell lung cancer (NSCLC). Although miR-598 has been reported to act as a suppressor in osteosarcoma and colorectal cancer, the physiological function of miR-598 in NSCLC remains unknown. In this study, the role of miR-598 in NSCLC was investigated. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to estimate the expression of miR-598 and Derlin-1 (DERL1) in both NSCLC tissues and cell lines. Immunohistochemistry (IHC) analyzed the association between the miR-598 expression and epithelial-mesenchymal transition (EMT) hallmark genes (E-cadherin, Vimentin) by staining the tumors representative of the high- and low-expression groups. The effect of miR-598 and DERL1 on invasion and migration was determined in vitro using transwell and wound-healing assays. The molecular mechanism underlying the relevance between miR-598 and DERL1 was elucidated by luciferase assay and Western blot. Western blot assessed the expression levels of EMT hallmark genes in cell lines. Xenograft tumor formation assay was conducted as an in vivo experiment. In this study, a relatively low level of miR-598 and high DERL1 expressions were found in NSCLC specimens and cell lines. IHC results established a positive correlation between the miR-598 expression and E-cadherin and a negative with Vimentin. DERL1 was verified as a direct target of miR-598 by luciferase assay. In vitro, the over-expression of miR-598 negatively regulated DERL1 and EMT for the suppression of invasion and migration. In vivo, the over-expression of miR-598 could inhibit tumor cell metastasis in NSCLC. These findings for the first time revealed that miR-598, as a tumor suppressor, negatively regulate DERL1 and EMT to suppress the invasion and migration in NSCLC, thereby putatively serving as a novel therapeutic target for NSCLC clinical treatment. © 2018 The Author(s). Published by S. Karger AG, Basel.
Martínez, Luary C; Yakhnin, Helen; Camacho, Martha I; Georgellis, Dimitris; Babitzke, Paul; Puente, José L; Bustamante, Víctor H
2011-06-01
Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) play key roles in the pathogenesis of Salmonella enterica. Previously, we showed that when Salmonella grows in Luria-Bertani medium, HilD, encoded in SPI-1, first induces the expression of hilA, located in SPI-1, and subsequently of the ssrAB operon, located in SPI-2. These genes code for HilA and the SsrA/B two-component system, the positive regulators of the SPI-1 and SPI-2 regulons respectively. In this study, we demonstrate that CsrA, a global regulatory RNA binding protein, post-transcriptionally regulates hilD expression by directly binding near the Shine-Dalgarno and translation initiation codon sequences of the hilD mRNA, preventing its translation and leading to its accelerated turnover. Negative regulation is counteracted by the global SirA/BarA two-component system, which directly activates the expression of CsrB and CsrC, two non-coding regulatory RNAs that sequester CsrA, thereby preventing it from binding to its target mRNAs. Our results illustrate the integration of global and specific regulators into a multifactorial regulatory cascade controlling the expression of virulence genes acquired by horizontal transfer events. © 2011 Blackwell Publishing Ltd.
Li, Qing; Li, Hua; Zhao, Xueling; Wang, Bing; Zhang, Lin; Zhang, Caiguo; Zhang, Fan
2017-01-01
MicroRNAs (miRNAs) are critical regulators of gene expression, and they have broad roles in the pathogenesis of different diseases including cancer. Limited studies and expression profiles of miRNAs are available in human osteosarcoma cells. By applying a miRNA microarray analysis, we observed a number of miRNAs with abnormal expression in cancerous tissues from osteosarcoma patients. Of particular interest in this study was miR-449c, which was significantly downregulated in osteosarcoma cells and patients, and its expression was negatively correlated with tumor size and tumor MSTS stages. Ectopic expression of miR-449c significantly inhibited osteosarcoma cell proliferation and colony formation ability, and caused cell cycle arrest at the G1 phase. Further analysis identified that miR-449c was able to directly target the oncogene c-Myc and negatively regulated its expression. Overexpression of c-Myc partially reversed miR-449c-mimic-inhibited cell proliferation and colony formation. Moreover, DNA hypermethylation was observed in two CpG islands adjacent to the genomic locus of miR-449c in osteosarcoma cells. Conversely, treatment with the DNA methylation inhibitor AZA caused induction of miR-449c. In conclusion, our results support a model that DNA methylation mediates downregulation of miR-449c, diminishing miR-449c mediated inhibition of c-Myc and thus leading to the activation of downstream targets, eventually contributing to osteosarcoma tumorigenesis. PMID:28924385
Regeneration of bovine and octopus opsins in situ with natural and artificial retinals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koutalos, Y.; Ebrey, T.G.; Tsuda, M.
1989-03-21
The authors consider the problem of color regulation in visual pigments for both bovine rhodopsin and octopus rhodopsin. Both pigments have 11-cis-retinal as their chromophore. These rhodopsins were bleached in their native membranes, and the opsins were regenerated with natural and artificial chromophores. Both bovine and octopus opsins were regenerated with the 9-cis- and 11-cis-retinal isomers, but the octopus opsin was additionally regenerated with the 13-cis and all-trans isomers. Titration of the octopus opsin with 11-cis-retinal gave an extinction coefficient for octopus rhodopsin of 27,000 {plus minus} 3,000 M{sup {minus}1} cm{sup {minus}1} at 475 nm. The absorption maxima of bovinemore » artificial pigments formed by regenerating opsin with the 11-cis dihydro series of chromophores support a color regulation model for bovine rhodopsin in which the chromophore-binding site of the protein has two negative charges: one directly hydrogen bonded to the Schiff base nitrogen and another near carbon-13. Formation of octopus artificial pigments with both all-trans and 11-cis dihydro chromophores leads to a similar model for octopus rhodopsin and metarhodopsin: there are two negative charges in the chromophore-binding site, one directly hydrogen bonded to the Schiff base nitrogen and a second near carbon-13. The interaction of this second charge with the chromophore in octopus rhodopsin is weaker than in bovine, while in metarhodopsin it is as strong as in bovine.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Yohan; Chung, Kwang Chul, E-mail: kchung@yonsei.ac.kr
Highlights: Black-Right-Pointing-Pointer ZNF131 directly interacts with ER{alpha}. Black-Right-Pointing-Pointer The binding affinity of ZNF131 to ER{alpha} increases upon E2 stimulation. Black-Right-Pointing-Pointer ZNF131 inhibits ER{alpha}-mediated trans-activation by suppressing its homo-dimerization. Black-Right-Pointing-Pointer ZNF131 inhibits ER{alpha}-dimerization and E2-induced breast cancer cell proliferation. Black-Right-Pointing-Pointer ZNF131 inhibits estrogen signaling by acting as an ER{alpha}-co-repressor. -- Abstract: Steroid hormone estrogen elicits various physiological functions, many of which are mediated through two structurally and functionally distinct estrogen receptors, ER{alpha} and ER{beta}. The functional role of zinc finger protein 131 (ZNF131) is poorly understood, but it is assumed to possess transcriptional regulation activity due to the presence of amore » DNA binding motif. A few recent reports, including ours, revealed that ZNF131 acts as a negative regulator of ER{alpha} and that SUMO modification potentiates the negative effect of ZNF131 on estrogen signaling. However, its molecular mechanism for ER{alpha} inhibition has not been elucidated in detail. Here, we demonstrate that ZNF131 directly interacts with ER{alpha}, which consequently inhibits ER{alpha}-mediated trans-activation by suppressing its homo-dimerization. Moreover, we show that the C-terminal region of ZNF131 containing the SUMOylation site is necessary for its inhibition of estrogen signaling. Taken together, these data suggest that ZNF131 inhibits estrogen signaling by acting as an ER{alpha}-co-repressor.« less
Hoxb3 negatively regulates Hoxb1 expression in mouse hindbrain patterning.
Wong, Elaine Y M; Wang, Xing An; Mak, Siu Shan; Sae-Pang, Jearn Jang; Ling, Kam Wing; Fritzsch, Bernd; Sham, Mai Har
2011-04-15
The spatial regulation of combinatorial expression of Hox genes is critical for determining hindbrain rhombomere (r) identities. To address the cross-regulatory relationship between Hox genes in hindbrain neuronal specification, we have generated a gain-of-function transgenic mouse mutant Hoxb3(Tg) using the Hoxb2 r4-specific enhancer element. Interestingly, in r4 of the Hoxb3(Tg) mutant where Hoxb3 was ectopically expressed, the expression of Hoxb1 was specifically abolished. The hindbrain neuronal defects of the Hoxb3(Tg) mutant mice were similar to those of Hoxb1(-/-) mutants. Therefore, we hypothesized that Hoxb3 could directly suppress Hoxb1 expression. We first identified a novel Hoxb3 binding site S3 on the Hoxb1 locus and confirmed protein binding to this site by EMSA, and by in vivo ChIP analysis using P19 cells and hindbrain tissues from the Hoxb3(Tg) mutant. We further showed that Hoxb3 could suppress Hoxb1 transcriptional activity by chick in ovo luciferase reporter assay. Moreover, in E10.5 wildtype caudal hindbrain, where Hoxb1 is not expressed, we showed by in vivo ChIP that Hoxb3 was consistently bound to the S3 site on the Hoxb1 gene. This study reveals a novel negative regulatory mechanism by which Hoxb3 as a posterior gene serves to restrict Hoxb1 expression in r4 by direct transcriptional repression to maintain the rhombomere identity. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Deug-Nam; Park, Mi-Ryung; Park, Jong-Yi
Highlights: {yields} The sequences of -604 to -84 bp of the pUPII promoter contained the region of a putative negative cis-regulatory element. {yields} The core promoter was located in the 5F-1. {yields} Transcription factor HNF4 can directly bind in the pUPII core promoter region, which plays a critical role in controlling promoter activity. {yields} These features of the pUPII promoter are fundamental to development of a target-specific vector. -- Abstract: Uroplakin II (UPII) is a one of the integral membrane proteins synthesized as a major differentiation product of mammalian urothelium. UPII gene expression is bladder specific and differentiation dependent, butmore » little is known about its transcription response elements and molecular mechanism. To identify the cis-regulatory elements in the pig UPII (pUPII) gene promoter region, we constructed pUPII 5' upstream region deletion mutants and demonstrated that each of the deletion mutants participates in controlling the expression of the pUPII gene in human bladder carcinoma RT4 cells. We also identified a new core promoter region and putative negative cis-regulatory element within a minimal promoter region. In addition, we showed that hepatocyte nuclear factor 4 (HNF4) can directly bind in the pUPII core promoter (5F-1) region, which plays a critical role in controlling promoter activity. Transient cotransfection experiments showed that HNF4 positively regulates pUPII gene promoter activity. Thus, the binding element and its binding protein, HNF4 transcription factor, may be involved in the mechanism that specifically regulates pUPII gene transcription.« less
Jimmefors, Alexander; Mousavi, Fariba; Adrianson, Lillemor; Rosenberg, Patricia; Archer, Trevor
2015-01-01
Background. Self-regulation is the procedure implemented by an individual striving to reach a goal and consists of two inter-related strategies: assessment and locomotion. Moreover, both subjective and psychological well-being along exercise behaviour might also play a role on adolescents academic achievement. Method. Participants were 160 Swedish high school pupils (111 boys and 49 girls) with an age mean of 17.74 (sd = 1.29). We used the Regulatory Mode Questionnaire to measure self-regulation strategies (i.e., locomotion and assessment). Well-being was measured using Ryff’s Psychological Well-Being Scales short version, the Temporal Satisfaction with Life Scale, and the Positive Affect and Negative Affect Schedule. Exercise behaviour was self-reported using questions pertaining to frequency and intensity of exercise compliance. Academic achievement was operationalized through the pupils’ mean value of final grades in Swedish, Mathematics, English, and Physical Education. Both correlation and regressions analyses were conducted. Results. Academic achievement was positively related to assessment, well-being, and frequent/intensive exercise behaviour. Assessment was, however, negatively related to well-being. Locomotion on the other hand was positively associated to well-being and also to exercise behaviour. Conclusions. The results suggest a dual (in)direct model to increase pupils’ academic achievement and well-being—assessment being directly related to higher academic achievement, while locomotion is related to frequently exercising and well-being, which in turn, increase academic achievement. PMID:25861553
The Strong African American Families Program: translating research into prevention programming.
Brody, Gene H; Murry, Velma McBride; Gerrard, Meg; Gibbons, Frederick X; Molgaard, Virginia; McNair, Lily; Brown, Anita C; Wills, Thomas A; Spoth, Richard L; Luo, Zupei; Chen, Yi-Fu; Neubaum-Carlan, Eileen
2004-01-01
A randomized prevention trial contrasted families who took part in the Strong African American Families Program (SAAF), a preventive intervention for rural African American mothers and their 11-year-olds, with control families. SAAF is based on a contextual model positing that regulated, communicative parenting causes changes in factors protecting youths from early alcohol use and sexual activity. Parenting variables included involvement-vigilance, racial socialization, communication about sex, and clear expectations for alcohol use. Youth protective factors included negative attitudes about early alcohol use and sexual activity, negative images of drinking youths, resistance efficacy, a goal-directed future orientation, and acceptance of parental influence. Intervention-induced changes in parenting mediated the effect of intervention group influences on changes in protective factors over a 7-month period.
Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators.
Le Mercier, Isabelle; Lines, J Louise; Noelle, Randolph J
2015-01-01
In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy.
Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators
Le Mercier, Isabelle; Lines, J. Louise; Noelle, Randolph J.
2015-01-01
In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy. PMID:26347741
Perry, Nicole B; Calkins, Susan D; Nelson, Jackie A; Leerkes, Esther M; Marcovitch, Stuart
2012-07-01
The current study examined the moderating effect of children's cardiac vagal suppression on the association between maternal socialization of negative emotions (supportive and nonsupportive responses) and children's emotion regulation behaviors. One hundred and ninety-seven 4-year-olds and their mothers participated. Mothers reported on their reactions to children's negative emotions and children's regulatory behaviors. Observed distraction, an adaptive self-regulatory strategy, and vagal suppression were assessed during a laboratory task designed to elicit frustration. Results indicated that children's vagal suppression moderated the association between mothers' nonsupportive emotion socialization and children's emotion regulation behaviors such that nonsupportive reactions to negative emotions predicted lower observed distraction and lower reported emotion regulation behaviors when children displayed lower levels of vagal suppression. No interaction was found between supportive maternal emotion socialization and vagal suppression for children's emotion regulation behaviors. Results suggest physiological regulation may serve as a buffer against nonsupportive emotion socialization. Copyright © 2011 Wiley Periodicals, Inc.
Self-Compassion and the Self-Regulation of Exercise: Reactions to Recalled Exercise Setbacks.
Semenchuk, Brittany N; Strachan, Shaelyn M; Fortier, Michelle
2018-02-01
Self-compassion facilitates health behavior self-regulation; few studies have examined self-compassion and exercise. This online, cross-sectional study investigated self-compassion's relationship with exercise self-regulation of an exercise setback. Adults (N = 105) who had experienced an exercise setback within the last 6 months completed baseline measures, recalled an exercise setback, and completed questionnaires assessing self-regulation in this context. Self-compassion associated with self-determined motivations and exercise goal reengagement, and negatively related to extrinsic motivations, state rumination, and negative affect. Self-compassion predicted unique variance, beyond self-esteem, in exercise goal reengagement, external regulation, state rumination, and negative affect experienced after an exercise setback. Self-compassion and self-esteem had unique relationships with goal reengagement, state rumination, and situational motivation, while having a complementary relationship with negative affect. This research adds to the few studies that examine the role of self-compassion in exercise self-regulation by examining how self-compassion and self-esteem relate to reactions to a recalled exercise setback.
Perry, Nicole B.; Calkins, Susan D.; Nelson, Jackie A.; Leerkes, Esther M.; Marcovitch, Stuart
2011-01-01
The current study examined the moderating effect of children’s cardiac vagal suppression on the association between maternal socialization of negative emotions (supportive and non-supportive responses) and children’s emotion regulation behaviors. One hundred and ninety-seven 4-year-olds and their mothers participated. Mothers reported on their reactions to children’s negative emotions and children’s regulatory behaviors. Observed distraction, an adaptive self-regulatory strategy, and vagal suppression were assessed during a laboratory task designed to elicit frustration. Results indicated that children’s vagal suppression moderated the association between mothers’ non-supportive emotion socialization and children’s emotion regulation behaviors such that non-supportive reactions to negative emotions predicted lower observed distraction and lower reported emotion regulation behaviors when children displayed lower levels of vagal suppression. No interaction was found between supportive maternal emotion socialization and vagal suppression for children’s emotion regulation behaviors. Results suggest physiological regulation may serve as a buffer against non-supportive emotion socialization. PMID:22072217
Bromberg, Maggie H.; Anthony, Kelly K.; Gil, Karen M.; Franks, Lindsey; Schanberg, Laura E.
2012-01-01
Objectives This study utilized e-diaries to evaluate whether components of emotion regulation predict daily pain and function in children with juvenile idiopathic arthritis (JIA). Methods 43 children ages 8–17 years and their caregivers provided baseline reports of child emotion regulation. Children then completed thrice daily e-diary assessments of emotion, pain, and activity involvement for 28 days. E-diary ratings of negative and positive emotions were used to calculate emotion variability and to infer adaptive emotion modulation following periods of high or low emotion intensity. Hierarchical linear models were used to evaluate how emotion regulation related to pain and function. Results The attenuation of negative emotion following a period of high negative emotion predicted reduced pain; greater variability of negative emotion predicted higher pain and increased activity limitation. Indices of positive emotion regulation also significantly predicted pain. Conclusions Components of emotion regulation as captured by e-diaries predict important health outcomes in children with JIA. PMID:22037006
Sun, Jinxia; Luan, Yi; Xiang, Dong; Tan, Xiao; Chen, Hui; Deng, Qi; Zhang, Jiaojiao; Chen, Minghui; Huang, Hongjun; Wang, Weichao; Niu, Tingting; Li, Wenjie; Peng, Hu; Li, Shuangxi; Li, Lei; Tang, Wenwen; Li, Xiaotao; Wu, Dianqing; Wang, Ping
2016-02-02
The NF-κB pathway plays important roles in immune responses. Although its regulation has been extensively studied, here, we report an unknown feedforward mechanism for the regulation of this pathway by Toll-like receptor (TLR) ligands in macrophages. During bacterial infections, TLR ligands upregulate the expression of the 11S proteasome subunit PSME3 via NF-κB-mediated transcription in macrophages. PSME3, in turn, enhances the transcriptional activity of NF-κB by directly binding to and destabilizing KLF2, a negative regulator of NF-κB transcriptional activity. Consistent with this positive role of PSME3 in NF-κB regulation and importance of the NF-κB pathway in host defense against bacterial infections, the lack of PSME3 in hematopoietic cells renders the hosts more susceptible to bacterial infections, accompanied by increased bacterial burdens in host tissues. Thus, this study identifies a substrate for PSME3 and elucidates a proteolysis-dependent, but ubiquitin-independent, mechanism for NF-κB regulation that is important for host defense and innate immunity. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Christou-Champi, Spyros; Farrow, Tom F D; Webb, Thomas L
2015-01-01
Emotion regulation (ER) is vital to everyday functioning. However, the effortful nature of many forms of ER may lead to regulation being inefficient and potentially ineffective. The present research examined whether structured practice could increase the efficiency of ER. During three training sessions, comprising a total of 150 training trials, participants were presented with negatively valenced images and asked either to "attend" (control condition) or "reappraise" (ER condition). A further group of participants did not participate in training but only completed follow-up measures. Practice increased the efficiency of ER as indexed by decreased time required to regulate emotions and increased heart rate variability (HRV). Furthermore, participants in the ER condition spontaneously regulated their negative emotions two weeks later and reported being more habitual in their use of ER. These findings indicate that structured practice can facilitate the automatic control of negative emotions and that these effects persist beyond training.
Davis, Elizabeth L; Levine, Linda J; Lench, Heather C; Quas, Jodi A
2010-08-01
Metacognitive emotion regulation strategies involve deliberately changing thoughts or goals to alleviate negative emotions. Adults commonly engage in this type of emotion regulation, but little is known about the developmental roots of this ability. Two studies were designed to assess whether 5- and 6-year-old children can generate such strategies and, if so, the types of metacognitive strategies they use. In Study 1, children described how story protagonists could alleviate negative emotions. In Study 2, children recalled times that they personally had felt sad, angry, and scared and described how they had regulated their emotions. In contrast to research suggesting that young children cannot use metacognitive regulation strategies, the majority of children in both studies described such strategies. Children were surprisingly sophisticated in their suggestions for how to cope with negative emotions and tailored their regulatory responses to specific emotional situations. Copyright 2010 APA
Davis, Elizabeth L.; Levine, Linda J.; Lench, Heather C.; Quas, Jodi A.
2010-01-01
Metacognitive emotion regulation strategies involve deliberately changing thoughts or goals to alleviate negative emotions. Adults commonly engage in this type of emotion regulation, but little is known about the developmental roots of this ability. Two studies were designed to assess whether 5- and 6-year-old children can generate such strategies and, if so, the types of metacognitive strategies they employ. In Study 1, children described how story protagonists could alleviate negative emotions. In Study 2, children recalled times that they personally had felt sad, angry, and scared, and described how they had regulated their emotions. In contrast to research suggesting that young children cannot use metacognitive regulation strategies, the majority of children in both studies described such strategies. Children were surprisingly sophisticated in their suggestions for how to cope with negative emotions and tailored their regulatory responses to specific emotional situations. PMID:20677867
miR-133 inhibits pituitary tumor cell migration and invasion via down-regulating FOXC1 expression.
Wang, D S; Zhang, H Q; Zhang, B; Yuan, Z B; Yu, Z K; Yang, T; Zhang, S Q; Liu, Y; Jia, X X
2016-03-24
Many studies have shown that microRNA (miR)-133 functions as a tumor suppressor in a variety of metastatic cancers, including breast cancer, gastric cancer, and liver fibrosis. However, the influence of miR-133 on pituitary tumor malignancy has not yet been reported. The purpose of this study was to explore the role of miR-133 in pituitary tumor cell migration and invasive ability and the molecular mechanisms involved. Our findings suggest that in pituitary adenoma cell lines, through direct targeting and negative control of forkhead box C1 (FOXC1), miR-133 can inhibit pituitary adenoma cell migration and invasion. In addition, epithelial-to-mesenchymal transition can be induced by miR-133. Additionally, a negative correlation was found between FOXC1 and miR-133 expression when comparing their expression levels between cancerous tissue and adjacent normal tissue. This suggests that miR-133 can inhibit cell migration and invasion by directly targeting FOXC1, implying that miR-133 could be a potential therapeutic target for treatment of invasive pituitary adenoma.
Smadja-Lamère, Nicolas; Shum, Michael; Déléris, Paul; Roux, Philippe P.; Abe, Jun-Ichi; Marette, André
2013-01-01
We previously demonstrated that the mTORC1/S6K1 pathway is activated by insulin and nutrient overload (e.g. amino acids (AA)), which leads to the inhibition of the PI3K/Akt pathway via the inhibitory serine phosphorylation of IRS-1, notably on serine 1101 (Ser-1101). However, even in the absence of AA, insulin can still promote IRS-1 Ser-1101 phosphorylation by other kinases that remain to be fully characterized. Here, we describe a new negative regulator of IRS-1, the p90 ribosomal S6 kinase (RSK). Computational analyses revealed that Ser-1101 within IRS-1 falls into the consensus motif of RSK. Moreover, recombinant RSK phosphorylated IRS-1 C-terminal fragment on Ser-1101, which was prevented by mutations of this site or when a kinase-inactive mutant of RSK was used. Using antibodies directed toward the phosphorylation sites located in the activation segment of RSK (Ser-221 or Ser-380), we found that insulin activates RSK in L6 myocytes in the absence of AA overload. Inhibition of RSK using either the pharmacological inhibitor BI-D1870 or after adenoviral expression of a dominant negative RSK1 mutant (RSK1-DN) showed that RSK selectively phosphorylates IRS-1 on Ser-1101. Accordingly, expression of the RSK1-DN mutant in L6 myocytes and FAO hepatic cells improved insulin action on glucose uptake and glucose production, respectively. Furthermore, RSK1 inhibition prevented insulin resistance in L6 myocytes chronically exposed to high glucose and high insulin. These results show that RSK is a novel regulator of insulin signaling and glucose metabolism and a potential mediator of insulin resistance, notably through the negative phosphorylation of IRS-1 on Ser-1101. PMID:24036112
Neural Correlates of Emotion Regulation in Patients with Schizophrenia and Non-Affected Siblings
van der Velde, Jorien; Pijnenborg, Gerdina; Wiersma, Durk; Bruggeman, Richard; Aleman, André
2014-01-01
Background Patients with schizophrenia often experience problems regulating their emotions. Non-affected relatives show similar difficulties, although to a lesser extent, and the neural basis of such difficulties remains to be elucidated. In the current paper we investigated whether schizophrenia patients, non-affected siblings and healthy controls (HC) exhibit differences in brain activation during emotion regulation. Methods All subjects (n = 20 per group) performed an emotion regulation task while they were in an fMRI scanner. The task contained two experimental conditions for the down-regulation of emotions (reappraise and suppress), in which IAPS pictures were used to generate a negative affect. We also assessed whether the groups differed in emotion regulation strategies used in daily life by means of the emotion regulation questionnaire (ERQ). Results Though the overall negative affect was higher for patients as well as for siblings compared to HC for all conditions, all groups reported decreased negative affect after both regulation conditions. Nonetheless, neuroimaging results showed hypoactivation relative to HC in VLPFC, insula, middle temporal gyrus, caudate and thalamus for patients when reappraising negative pictures. In siblings, the same pattern was evident as in patients, but only in cortical areas. Conclusions Given that all groups performed similarly on the emotion regulation task, but differed in overall negative affect ratings and brain activation, our findings suggest reduced levels of emotion regulation processing in neural circuits in patients with schizophrenia. Notably, this also holds for siblings, albeit to a lesser extent, indicating that it may be part and parcel of a vulnerability for psychosis. PMID:24941136
Chen, Huamin; Xue, Li; Chintamanani, Satya; Germain, Hugo; Lin, Huiqiong; Cui, Haitao; Cai, Run; Zuo, Jianru; Tang, Xiaoyan; Li, Xin; Guo, Hongwei; Zhou, Jian-Min
2009-08-01
Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) trigger plant immunity that forms the first line inducible defenses in plants. The regulatory mechanism of MAMP-triggered immunity, however, is poorly understood. Here, we show that Arabidopsis thaliana transcription factors ETHYLENE INSENSITIVE3 (EIN3) and ETHYLENE INSENSITIVE3-LIKE1 (EIL1), previously known to mediate ethylene signaling, also negatively regulate PAMP-triggered immunity. Plants lacking EIN3 and EIL1 display enhanced PAMP defenses and heightened resistance to Pseudomonas syringae bacteria. Conversely, plants overaccumulating EIN3 are compromised in PAMP defenses and exhibit enhanced disease susceptibility to Pseudomonas syringae. Microarray analysis revealed that EIN3 and EIL1 negatively control PAMP response genes. Further analyses indicated that SALICYLIC ACID INDUCTION DEFICIENT2 (SID2), which encodes isochorismate synthase required for pathogen-induced biosynthesis of salicylic acid (SA), is a key target of EIN3 and EIL1. Consistent with this, the ein3-1 eil1-1 double mutant constitutively accumulates SA in the absence of pathogen attack, and a mutation in SID2 restores normal susceptibility in the ein3 eil1 double mutant. EIN3 can specifically bind SID2 promoter sequence in vitro and in vivo. Taken together, our data provide evidence that EIN3/EIL1 directly target SID2 to downregulate PAMP defenses.
Takaya, Akiko; Tabuchi, Fumiaki; Tsuchiya, Hiroko; Isogai, Emiko; Yamamoto, Tomoko
2008-06-01
Lon protease, a member of the ATP-dependent protease family, regulates numerous cellular systems by degrading specific substrates. Here, we demonstrate that Lon is involved in the regulation of quorum-sensing (QS) signaling systems in Pseudomonas aeruginosa, an opportunistic human pathogen. The organism has two acyl-homoserine lactone (HSL)-mediated QS systems, LasR/LasI and RhlR/RhlI. Many reports have demonstrated that these two systems are regulated and interconnected by global regulators. We found that lon-disrupted cells overproduce pyocyanin, the biosynthesis of which depends on the RhlR/RhlI system, and show increased levels of a transcriptional regulator, RhlR. The QS systems are organized hierarchically: the RhlR/RhlI system is subordinate to LasR/LasI. To elucidate the mechanism by which Lon negatively regulates RhlR/RhlI, we examined the effect of lon disruption on the LasR/LasI system. We found that Lon represses the expression of LasR/LasI by degrading LasI, an HSL synthase, leading to negative regulation of the RhlR/RhlI system. RhlR/RhlI was also shown to be regulated by Lon independently of LasR/LasI via regulation of RhlI, an HSL synthase. In view of these findings, it is suggested that Lon protease is a powerful negative regulator of both HSL-mediated QS systems in P. aeruginosa.
Butler, Emily A; Gross, James J; Barnard, Kobus
2014-04-01
In theory, the essence of emotion is coordination across experiential, behavioral, and physiological systems in the service of functional responding to environmental demands. However, people often regulate emotions, which could either reduce or enhance cross-system concordance. The present study tested the effects of two forms of emotion regulation (expressive suppression, positive reappraisal) on concordance of subjective experience (positive-negative valence), expressive behavior (positive and negative), and physiology (inter-beat interval, skin conductance, blood pressure) during conversations between unacquainted young women. As predicted, participants asked to suppress showed reduced concordance for both positive and negative emotions. Reappraisal instructions also reduced concordance for negative emotions, but increased concordance for positive ones. Both regulation strategies had contagious interpersonal effects on average levels of responding. Suppression reduced overall expression for both regulating and uninstructed partners, while reappraisal reduced negative experience. Neither strategy influenced the uninstructed partners' concordance. These results suggest that emotion regulation impacts concordance by altering the temporal coupling of phasic subsystem responses, rather than by having divergent effects on subsystem tonic levels. Copyright © 2013 Elsevier B.V. All rights reserved.
Domínguez-Gil, Teresa; Molina, Rafael; Alcorlo, Martín; Hermoso, Juan A
2016-09-01
Antimicrobial resistance is one of the most serious health threats. Cell-wall remodeling processes are tightly regulated to warrant bacterial survival and in some cases are directly linked to antibiotic resistance. Remodeling produces cell-wall fragments that are recycled but can also act as messengers for bacterial communication, as effector molecules in immune response and as signaling molecules triggering antibiotic resistance. This review is intended to provide state-of-the-art information about the molecular mechanisms governing this process and gather structural information of the different macromolecular machineries involved in peptidoglycan recycling in Gram-negative bacteria. The growing body of literature on the 3D structures of the corresponding macromolecules reveals an extraordinary complexity. Considering the increasing incidence and widespread emergence of Gram-negative multidrug-resistant pathogens in clinics, structural information on the main actors of the recycling process paves the way for designing novel antibiotics disrupting cellular communication in the recycling-resistance pathway. Copyright © 2016. Published by Elsevier Ltd.
Farmer, Antonina S.; Kashdan, Todd B.
2014-01-01
Research on affect and self-esteem in social anxiety disorder (SAD) has focused on trait or average levels, but we know little about the dynamic patterns of these experiences in the daily lives of people with SAD. We asked 40 adults with SAD and 39 matched healthy controls to provide end-of-day reports on their affect and self-esteem over two weeks. Compared to healthy adults, participants with SAD exhibited greater instability of negative affect and self-esteem, though the self-esteem effect was driven by mean level differences. The SAD group also demonstrated a higher probability of acute changes in negative affect and self-esteem (i.e., from one assessment period to the next), as well as difficulty maintaining positive states and improving negative states (i.e., dysfunctional self-regulation). Our findings provide insights on the phenomenology of SAD, with particular attention to the temporal dependency, magnitude of change, and directional patterns of psychological experiences in everyday life. PMID:25821659
Two spatiotemporally distinct value systems shape reward-based learning in the human brain.
Fouragnan, Elsa; Retzler, Chris; Mullinger, Karen; Philiastides, Marios G
2015-09-08
Avoiding repeated mistakes and learning to reinforce rewarding decisions is critical for human survival and adaptive actions. Yet, the neural underpinnings of the value systems that encode different decision-outcomes remain elusive. Here coupling single-trial electroencephalography with simultaneously acquired functional magnetic resonance imaging, we uncover the spatiotemporal dynamics of two separate but interacting value systems encoding decision-outcomes. Consistent with a role in regulating alertness and switching behaviours, an early system is activated only by negative outcomes and engages arousal-related and motor-preparatory brain structures. Consistent with a role in reward-based learning, a later system differentially suppresses or activates regions of the human reward network in response to negative and positive outcomes, respectively. Following negative outcomes, the early system interacts and downregulates the late system, through a thalamic interaction with the ventral striatum. Critically, the strength of this coupling predicts participants' switching behaviour and avoidance learning, directly implicating the thalamostriatal pathway in reward-based learning.
Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel
2016-04-26
Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.
Alexithymia and Mood: Recognition of Emotion in Self and Others.
Lyvers, Michael; Kohlsdorf, Susan M; Edwards, Mark S; Thorberg, Fred Arne
2017-01-01
The present study explored relationships between alexithymia-a trait characterized by difficulties identifying and describing feelings and an external thinking style-and negative moods, negative mood regulation expectancies, facial recognition of emotions, emotional empathy, and alcohol consumption. The sample consisted of 102 university (primarily psychology) students (13 men, 89 women) aged 18 to 50 years (M = 22.18 years). Participants completed the Toronto Alexithymia Scale (TAS-20), Negative Mood Regulation Scale (NMRS), Depression Anxiety Stress Scales (DASS-21), Reading the Mind in the Eyes Test (RMET), Interpersonal Reactivity Index (IRI), and Alcohol Use Disorders Identification Test (AUDIT). Results were consistent with previous findings of positive relationships of TAS-20 alexithymia scores with both alcohol use (AUDIT) and negative moods (DASS-21) and a negative relationship with emotional self-regulation as indexed by NMRS. Predicted negative associations of both overall TAS-20 alexithymia scores and the externally oriented thinking (EOT) subscale of the TAS-20 with both RMET facial recognition of emotions and the empathic concern (EC) subscale of the IRI were supported. The mood self-regulation index NMRS fully mediated the relationship between alexithymia and negative moods. Hierarchical linear regressions revealed that, after other relevant variables were controlled for, the EOT subscale of the TAS-20 predicted RMET and EC. The concrete thinking or EDT facet of alexithymia thus appears to be associated with diminished facial recognition of emotions and reduced emotional empathy. The negative moods associated with alexithymia appear to be linked to subjective difficulties in self-regulation of emotions.
You, Xuqun; Ju, Chengting; Wang, Mo; Zhang, Baoshan; Liu, Pei
2017-11-19
In this study, we hypothesized that there is an age difference in the influence of negative emotion on decision-making and that this age difference is related to emotion regulation strategies. We carried out two studies. In the first, the older and younger adults completed the ultimatum game (UG) while in either an induced negative emotional or a neutral context. In the second, both the older and younger adults completed the UG while in an induced negative emotion while using either emotion reappraisal or expressive suppression to regulate their emotions during the task. The first study showed that, unlike younger adults, the older adults made similar choices in the neutral and negative induction groups. In addition, the older adults predominantly used a reappraisal strategy in both the negative and neutral emotional states, whereas the younger adults predominantly used a suppression strategy in the negative emotional state. In the second study, after the emotion regulation strategies were experimentally manipulated so that both age groups used the same strategy, we found no age difference in decision-making. Our findings indicated that the influence of negative emotion on decision-making differs between older and younger adults and that this age difference was associated with their different emotion regulation processes. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Emotional Stroop as an Emotion Regulation Task.
Kappes, Cathleen; Bermeitinger, Christina
2016-01-01
The present studies investigate age differences observed when performing the emotional Stroop task considered as an expression of emotion regulation. Previous studies employing this task showed mixed findings regarding age differences, with a lack of evidence for positivity effects. However, moderating factors such as arousal or dispositional (emotion) regulation strategies were mostly not taken into account. Moreover, relations between Stroop effects and emotional reactions were not examined. In two studies (Study 1/2: nyoung = 26/41; nold = 19/39), an emotional Stroop task was employed and valence (negative, neutral, positive [Study 2 only]) and arousal of the word stimuli were varied. Additionally, flexible goal adjustment (FGA), positive and negative affect in the last 12 months, and change in momentary affect (Study 2 only) were measured. Study 1 showed larger emotional Stroop effects (ESE) in older than younger adults with medium arousing negative words. We also found correlations between FGA (positive correlation) as well as negative affect (negative correlation) and the ESE with medium arousing negative words. Study 2 corroborates these findings by exhibiting positive change in momentary affect with larger ESEs for medium arousing negative words in the older age group. The findings emphasize the importance of including arousal level and dispositional regulation measures (such as FGA) as moderating factors in age differences and within-group differences in emotion regulation. Although we did not find evidence for a positivity effect, processing in the emotional Stroop task was related to positive change in momentary affect and less negative affect in the older age group. Taken together, our experiments demonstrate that the emotional Stroop task is suited as a measure for emotion induction and related emotion regulation mechanisms.
Stein, Rebecca A.; Chang, Ching-yi; Kazmin, Dmitri A.; Way, James; Schroeder, Thies; Wergin, Melanie; Dewhirst, Mark W.; McDonnell, Donald P.
2009-01-01
Expression of estrogen-related receptor alpha (ERRα) has recently been shown to carry negative prognostic significance in breast and ovarian cancers. The specific role of this orphan nuclear receptor in tumor growth and progression, however, is yet to be fully understood. The significant homology between estrogen receptor alpha (ERα) and ERRα initially suggested that these receptors may have similar transcriptional targets. Using the well-characterized ERα-positive MCF-7 breast cancer cell line, we sought to gain a genome-wide picture of ERα-ERRα cross-talk using an unbiased microarray approach. In addition to generating a host of novel ERRα target genes, this study yielded the surprising result that most ERRα-regulated genes are unrelated to estrogen-signaling. The relatively small number of genes regulated by both ERα and ERRα led us to expand our study to the more aggressive and less clinically treatable ERα-negative class of breast cancers. In this setting we found that ERRα expression is required for the basal level of expression of many known and novel ERRα target genes. Introduction of an siRNA directed to ERRα into the highly aggressive breast carcinoma MDA-MB-231 cell line dramatically reduced the migratory potential of these cells. Although stable knockdown of ERRα expression in MDA-MB-231 cells had no impact on in vitro cell proliferation, a significant reduction of tumor growth rate was observed when these cells were implanted as xenografts. Our results confirm a role for ERRα in breast cancer growth and highlight it as a potential therapeutic target for estrogen receptor-negative breast cancer. PMID:18974123
Pringle, Robert M.; Goheen, Jacob R.; Palmer, Todd M.; Charles, Grace K.; DeFranco, Elyse; Hohbein, Rhianna; Ford, Adam T.; Tarnita, Corina E.
2014-01-01
Large herbivorous mammals play an important role in structuring African savannahs and are undergoing widespread population declines and local extinctions, with the largest species being the most vulnerable. The impact of these declines on key ecological processes hinges on the degree of functional redundancy within large-herbivore assemblages, a subject that has received little study. We experimentally quantified the effects of three browser species (elephant, impala and dik-dik) on individual- and population-level attributes of Solanum campylacanthum (Solanum incanum sensu lato), an encroaching woody shrub, using semi-permeable exclosures that selectively removed different-sized herbivores. After nearly 5 years, shrub abundance was lowest where all browser species were present and increased with each successive species deletion. Different browsers ate the same plant species in different ways, thereby exerting distinct suites of direct and indirect effects on plant performance and density. Not all of these effects were negative: elephants and impala also dispersed viable seeds and indirectly reduced seed predation by rodents and insects. We integrated these diffuse positive effects with the direct negative effects of folivory using a simple population model, which reinforced the conclusion that different browsers have complementary net effects on plant populations, and further suggested that under some conditions, these net effects may even differ in direction. PMID:24789900
Yakubchyk, Yury; Abramovici, Hanan; Maillet, Jean-Christian; Daher, Elias; Obagi, Christopher; Parks, Robin J.; Topham, Matthew K.; Gee, Stephen H.
2005-01-01
Syntrophins are scaffold proteins that regulate the subcellular localization of diacylglycerol kinase ζ (DGK-ζ), an enzyme that phosphorylates the lipid second-messenger diacylglycerol to yield phosphatidic acid. DGK-ζ and syntrophins are abundantly expressed in neurons of the developing and adult brain, but their function is unclear. Here, we show that they are present in cell bodies, neurites, and growth cones of cultured cortical neurons and differentiated N1E-115 neuroblastoma cells. Overexpression of DGK-ζ in N1E-115 cells induced neurite formation in the presence of serum, which normally prevents neurite outgrowth. This effect was independent of DGK-ζ kinase activity but dependent on a functional C-terminal PDZ-binding motif, which specifically interacts with syntrophin PDZ domains. DGK-ζ mutants with a blocked C terminus acted as dominant-negative inhibitors of outgrowth from serum-deprived N1E-115 cells and cortical neurons. Several lines of evidence suggest DGK-ζ promotes neurite outgrowth through association with the GTPase Rac1. DGK-ζ colocalized with Rac1 in neuronal processes and DGK-ζ-induced outgrowth was inhibited by dominant-negative Rac1. Moreover, DGK-ζ directly interacts with Rac1 through a binding site located within its C1 domains. Together with syntrophin, these proteins form a tertiary complex in N1E-115 cells. A DGK-ζ mutant that mimics phosphorylation of the MARCKS domain was unable to bind an activated Rac1 mutant (Rac1V12) and phorbol myristate acetate-induced protein kinase C activation inhibited the interaction of DGK-ζ with Rac1V12, suggesting protein kinase C-mediated phosphorylation of the MARCKS domain negatively regulates DGK-ζ binding to active Rac1. Collectively, these findings suggest DGK-ζ, syntrophin, and Rac1 form a regulated signaling complex that controls polarized outgrowth in neuronal cells. PMID:16055737
Zheng, Yungui; Lu, Xiaowen; Xu, Liepeng; Chen, Zhe; Li, Qinxi; Yuan, Jun
2017-11-01
Previous studies indicated that microRNA (miR)-675 and its precursor lncRNA H19 were both overexpressed in glioma tissues, and H19 might play an oncogenic role. To investigate the involvement of miR-675 in gliomas and its underlying mechanisms, we here collected candidate target genes of miR-675-5p from miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/, Release 6.0), which contains the experimentally validated microRNA-target interactions. Then, regulatory effects of miR-675 on its target genes were validated using clinical samples and glioma cell lines. Involvement of the miR-675-target axis deregulation in cell proliferation, migration and invasion of glioma was demonstrated by both gain- and loss-of-function experiments. As a result, retinoblastoma 1 (RB1) was identified as a candidate target gene of miR-675-5p. Expression levels of miR-675-5p in glioma tissues and cells were negatively correlated with RB1 expression at both mRNA and protein levels. Importantly, deregulation of the miR-675-5p-RB1 axis was significantly associated with advanced World Health Organization (WHO) grade and low Karnofsky performance score (KPS) score of glioma patients. Luciferase reporter assay verified that RB1 was a direct target gene of miR-675 in glioma cells. Functionally, miR-675 promoted glioma cell proliferation, migration and invasion. Notably, simulation of RB1 antagonized the effects induced by miR-675 up-regulation in glioma cells. In conclusion, our data suggest that miR-675 may be a key negative regulator of RB1 and the imbalance of the miR-675-RB1 axis may be clinically associated with aggressive progression of glioma patients. In addition, miR-675 may act as an oncogenic miRNA in glioma cells via regulating its target gene RB1. Copyright © 2017 Elsevier Inc. All rights reserved.
Seong, Hyun-A; Jung, Haiyoung; Kim, Kyong-Tai; Ha, Hyunjung
2007-04-20
We have reported previously that PDK1 physically interacts with STRAP, a transforming growth factor-beta (TGF-beta) receptor-interacting protein, and enhances STRAP-induced inhibition of TGF-beta signaling. In this study we show that PDK1 coimmunoprecipitates with Smad proteins, including Smad2, Smad3, Smad4, and Smad7, and that this association is mediated by the pleckstrin homology domain of PDK1. The association between PDK1 and Smad proteins is increased by insulin treatment but decreased by TGF-beta treatment. Analysis of the interacting proteins shows that Smad proteins enhance PDK1 kinase activity by removing 14-3-3, a negative regulator of PDK1, from the PDK1-14-3-3 complex. Knockdown of endogenous Smad proteins, including Smad3 and Smad7, by transfection with small interfering RNA produced the opposite trend and decreased PDK1 activity, protein kinase B/Akt phosphorylation, and Bad phosphorylation. Moreover, coexpression of Smad proteins and wild-type PDK1 inhibits TGF-beta-induced transcription, as well as TGF-beta-mediated biological functions, such as apoptosis and cell growth arrest. Inhibition was dose-dependent on PDK1, but no inhibition was observed in the presence of an inactive kinase-dead PDK1 mutant. In addition, confocal microscopy showed that wild-type PDK1 prevents translocation of Smad3 and Smad4 from the cytoplasm to the nucleus, as well as the redistribution of Smad7 from the nucleus to the cytoplasm in response to TGF-beta. Taken together, our results suggest that PDK1 negatively regulates TGF-beta-mediated signaling in a PDK1 kinase-dependent manner via a direct physical interaction with Smad proteins and that Smad proteins can act as potential positive regulators of PDK1.
Brockman, Robert; Ciarrochi, Joseph; Parker, Philip; Kashdan, Todd
2017-03-01
Most empirical studies of emotion regulation have relied on retrospective trait measures, and have not examined the link between daily regulatory strategies and every day emotional well-being. We used a daily diary methodology with multilevel modelling data analyses (n = 187) to examine the influence of three emotion regulation strategies (mindfulness, cognitive reappraisal and emotion suppression) on the experience of daily negative and positive affect. Our results suggested that daily mindfulness was associated with lower negative and higher positive affect whereas the converse pattern was found for daily emotion suppression; cognitive reappraisal was related to daily positive, but not negative affect. When daily mindfulness, suppression and reappraisal were included in the same models, these strategies predicted unique variance in emotional well-being. Random slope analyses revealed substantial variability in the utility of these strategies. Indeed the presumably "adaptive" cognitive reappraisal strategy seemed to confer no benefit to the regulation of negative affect in approximately half the sample. Additional analyses revealed that age moderates the effect of cognitive reappraisal on daily negative affect: Higher use of reappraisal was associated with more negative affect for adolescents (aged 17 to 19) but became associated with less negative affect with increasing age. We interpret these results in line with a contextual view of emotion regulation where no strategy is inherently "good" or "bad".
Peng, D H; Ungewiss, C; Tong, P; Byers, L A; Wang, J; Canales, J R; Villalobos, P A; Uraoka, N; Mino, B; Behrens, C; Wistuba, I I; Han, R I; Wanna, C A; Fahrenholtz, M; Grande-Allen, K J; Creighton, C J; Gibbons, D L
2017-04-06
Lung cancer is the leading cause of cancer-related deaths, primarily due to distant metastatic disease. Metastatic lung cancer cells can undergo an epithelial-to-mesenchymal transition (EMT) regulated by various transcription factors, including a double-negative feedback loop between the microRNA-200 (miR-200) family and ZEB1, but the precise mechanisms by which ZEB1-dependent EMT promotes malignancy remain largely undefined. Although the cell-intrinsic effects of EMT are important for tumor progression, the reciprocal dynamic crosstalk between mesenchymal cancer cells and the extracellular matrix (ECM) is equally critical in regulating invasion and metastasis. Investigating the collaborative effect of EMT and ECM in the metastatic process reveals increased collagen deposition in metastatic tumor tissues as a direct consequence of amplified collagen gene expression in ZEB1-activated mesenchymal lung cancer cells. In addition, collagen fibers in metastatic lung tumors exhibit greater linearity and organization as a result of collagen crosslinking by the lysyl oxidase (LOX) family of enzymes. Expression of the LOX and LOXL2 isoforms is directly regulated by miR-200 and ZEB1, respectively, and their upregulation in metastatic tumors and mesenchymal cell lines is coordinated to that of collagen. Functionally, LOXL2, as opposed to LOX, is the principal isoform that crosslinks and stabilizes insoluble collagen deposition in tumor tissues. In turn, focal adhesion formation and FAK/SRC signaling is activated in mesenchymal tumor cells by crosslinked collagen in the ECM. Our study is the first to validate direct regulation of LOX and LOXL2 by the miR-200/ZEB1 axis, defines a novel mechanism driving tumor metastasis, delineates collagen as a prognostic marker, and identifies LOXL2 as a potential therapeutic target against tumor progression.
Peng, David H.; Ungewiss, Christin; Tong, Pan; Byers, Lauren A.; Wang, Jing; Canales, Jaime Rodriguez; Villalobos, Pamela A.; Uraoka, Naohiro; Mino, Barbara; Behrens, Carmen; Wistuba, Ignacio I.; Han, Richard I; Wanna, Charles A.; Fahrenholtz, Monica; Grande-Allen, Kathryn Jane; Creighton, Chad J.; Gibbons, Don L.
2016-01-01
Lung cancer is the leading cause of cancer-related death, primarily due to distant metastatic disease. Metastatic lung cancer cells can undergo an epithelial-to-mesenchymal transition (EMT) regulated by many transcription factors, including double-negative feedback loop between the microRNA-200 (miR-200) family and ZEB1, but the precise mechanisms by which ZEB1-dependent EMT promotes malignancy remain largely undefined. While the cell-intrinsic effects of EMT are important for tumor progression, the reciprocal dynamic crosstalk between mesenchymal cancer cells and the extracellular matrix (ECM) is equally critical in regulating invasion and metastasis. Investigating the collaborative effect of EMT and ECM in the metastatic process reveals increased collagen deposition in metastatic tumor tissues as a direct consequence of amplified collagen gene expression in ZEB1-activated mesenchymal lung cancer cells. Additionally, collagen fibers in metastatic lung tumors exhibit greater linearity and organization as a result of collagen crosslinking by the lysyl oxidase (LOX) family of enzymes. Expression of the LOX and LOXL2 isoforms is directly regulated by miR-200 and ZEB1, respectively, and their upregulation in metastatic tumors and mesenchymal cell lines is coordinated to that of collagen. Functionally, LOXL2, as opposed to LOX, is the principle isoform that crosslinks and stabilizes insoluble collagen deposition in tumor tissues. In turn, focal adhesion formation and FAK/SRC signaling is activated in mesenchymal tumor cells by crosslinked collagen in the ECM. Our study is the first to validate direct regulation of LOX and LOXL2 by the miR-200/ZEB1 axis, defines a novel mechanism driving tumor metastasis, delineates collagen as a prognostic marker, and identifies LOXL2 as a potential therapeutic target against tumor progression. PMID:27694892
BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation.
Moreira, Ricardo N; Dressaire, Clémentine; Barahona, Susana; Galego, Lisete; Kaever, Volkhard; Jenal, Urs; Arraiano, Cecília M
2017-09-19
The bacterial second messenger cyclic dimeric GMP (c-di-GMP) is a nearly ubiquitous intracellular signaling molecule involved in the transition from the motile to the sessile/biofilm state in bacteria. C-di-GMP regulates various cellular processes, including biofilm formation, motility, and virulence. BolA is a transcription factor that promotes survival in different stresses and is also involved in biofilm formation. Both BolA and c-di-GMP participate in the regulation of motility mechanisms leading to similar phenotypes. Here, we establish the importance of the balance between these two factors for accurate regulation of the transition between the planktonic and sessile lifestyles. This balance is achieved by negative-feedback regulation of BolA and c-di-GMP. BolA not only contributes directly to the motility of bacteria but also regulates the expression of diguanylate cyclases and phosphodiesterases. This expression modulation influences the synthesis and degradation of c-di-GMP, while this signaling metabolite has a negative influence in bolA mRNA transcription. Finally, we present evidence of the dominant role of BolA in biofilm, showing that, even in the presence of elevated c-di-GMP levels, biofilm formation is reduced in the absence of BolA. C-di-GMP is one of the most important bacterial second messengers involved in several cellular processes, including virulence, cell cycle regulation, biofilm formation, and flagellar synthesis. In this study, we unravelled a direct connection between the bolA morphogene and the c-di-GMP signaling molecule. We show the important cross-talk that occurs between these two molecular regulators during the transition between the motile/planktonic and adhesive/sessile lifestyles in Escherichia coli This work provides important clues that can be helpful in the development of new strategies, and the results can be applied to other organisms with relevance for human health. IMPORTANCE Bacterial cells have evolved several mechanisms to cope with environmental stresses. BolA-like proteins are widely conserved from prokaryotes to eukaryotes, and in Escherichia coli , in addition to its pleiotropic effects, this protein plays a determinant role in bacterial motility and biofilm formation regulation. Similarly, the bacterial second messenger c-di-GMP is a molecule with high importance in coordinating the switch between planktonic and sessile life in bacteria. Here we have unravelled the importance of accurate regulation of cross-talk between BolA and c-di-GMP for a proper response in the regulation of these bacterial lifestyles. This finding underlines the complexity of bacterial cell regulation, revealing the existence of one additional tool for fine-tuning such important cellular molecular mechanisms. The relationship between BolA and c-di-GMP gives new perspectives regarding biofilm formation and opens the possibility to extend our studies to other organisms with relevance for human health. Copyright © 2017 Moreira et al.
Ding, NanXiang; Yang, JieMin; Liu, YingYing; Yuan, JiaJin
2015-08-01
Previous studies indicate that emotion regulation may occur unconsciously, without the cost of cognitive effort, while conscious acceptance may enhance negative experiences despite having potential long-term health benefits. Thus, it is important to overcome this weakness to boost the efficacy of the acceptance strategy in negative emotion regulation. As unconscious regulation occurs with little cost of cognitive resources, the current study hypothesizes that unconscious acceptance regulates the emotional consequence of negative events more effectively than does conscious acceptance. Subjects were randomly assigned to conscious acceptance, unconscious acceptance and no-regulation conditions. A frustrating arithmetic task was used to induce negative emotion. Emotional experiences were assessed on the Positive Affect and Negative Affect Scale while emotion- related physiological activation was assessed by heart-rate reactivity. Results showed that conscious acceptance had a significant negative affective consequence, which was absent during unconscious acceptance. That is, unconscious acceptance was linked with little reduction of positive affect during the experience of frustration, while this reduction was prominent in the control and conscious acceptance groups. Instructed, conscious acceptance resulted in a greater reduction of positive affect than found for the control group. In addition, both conscious and unconscious acceptance strategies significantly decreased emotion-related heart-rate activity (to a similar extent) in comparison with the control condition. Moreover, heart-rate reactivity was positively correlated with negative affect and negatively correlated with positive affect during the frustration phase relative to the baseline phase, in both the control and unconscious acceptance groups. Thus, unconscious acceptance not only reduces emotion-related physiological activity but also better protects mood stability compared with conscious acceptance. This suggests that the clinical practice of acceptance therapy may need to consider using the unconscious priming of an accepting attitude, instead of intentionally instructing people to implement such a strategy, to boost the efficacy of acceptance in emotion regulation.
Ryan, Calen P.; McDade, Thomas W; Gettler, Lee T.; Eisenberg, Dan T.A.; Rzhetskaya, Margarita; Hayes, M. Geoffey; Kuzawa, Christopher W.
2016-01-01
Objectives Testosterone (T), the primary androgenic hormone in males, is stimulated through pulsatile secretion of LH and regulated through negative feedback inhibition at the hypothalamus and pituitary. The hypothalamic-pituitary-gonadal (HPG) axis also controls sperm production through the secretion of follicle-stimulating hormone (FSH). Negative feedback in the HPG axis is achieved in part through the binding of T to the androgen receptor (AR), which contains a highly variable trinucleotide repeat polymorphism (AR-CAGn). The number of repeats in the AR-CAGn inversely correlates with transcriptional activity of the AR. Thus, we predicted longer AR-CAGn to be associated with higher T, LH, and FSH levels. Methods We examined the relationship between AR-CAGn and total plasma T, LH, and FSH, as well as 'bioavailable' morning (AM-T) and evening (PM-T) testosterone in 722 young (21.5 ± 0.5 years) Filipino males. Results There was no relationship between AR-CAGn and total T, AM-T, or LH (P > 0.25 for all). We did observe a marginally non-significant (P = 0.066) correlation between AR-CAGn and PM-T in the predicted direction, and a negative correlation between AR-CAGn and FSH (P = 0.005). Conclusions Our results both support and differ from previous findings in this area, and study parameters that differ between our study and others, such as participant age, sample time, and the role of other hormones should be considered when interpreting our findings. While our data point to a modest effect of AR-CAGn on HPG regulation at best, the AR-CAGn may still affect somatic traits by regulating androgenic activity at peripheral tissues. PMID:27417274
Dixon-Gordon, Katherine L; Whalen, Diana J; Scott, Lori N; Cummins, Nicole D; Stepp, Stephanie D
2016-06-01
The transaction of adolescent's expressed negative affect and parental interpersonal emotion regulation are theoretically implicated in the development of borderline personality disorder (BPD). Although problem solving and support/validation are interpersonal strategies that foster emotion regulation, little is known about whether these strategies are associated with less BPD severity among adolescents. Adolescent girls (age 16; N = 74) and their mothers completed a conflict discussion task, and maternal problem solving, support/validation, and girls' negative affect were coded. Girls' BPD symptoms were assessed at four time points. A 3-way interaction of girls' negative affect, problem solving, and support/validation indicated that girls' negative affect was only associated with BPD severity in the context of low maternal support/validation and high maternal problem solving. These variables did not predict changes in BPD symptoms over time. Although high negative affect is a risk for BPD severity in adolescent girls, maternal interpersonal emotion regulation strategies moderate this link. Whereas maternal problem solving coupled with low support/validation is associated with a stronger negative affect-BPD relation, maternal problem solving paired with high support/validation is associated with an attenuated relationship.
Whalen, Diana J.; Scott, Lori N.; Cummins, Nicole D.; Stepp, Stephanie D.
2015-01-01
The transaction of adolescent’s expressed negative affect and parental interpersonal emotion regulation are theoretically implicated in the development of borderline personality disorder (BPD). Although problem solving and support/validation are interpersonal strategies that foster emotion regulation, little is known about whether these strategies are associated with less BPD severity among adolescents. Adolescent girls (age 16; N = 74) and their mothers completed a conflict discussion task, and maternal problem solving, support/validation, and girls’ negative affect were coded. Girls’ BPD symptoms were assessed at four time points. A 3-way interaction of girls’ negative affect, problem solving, and support/validation indicated that girls’ negative affect was only associated with BPD severity in the context of low maternal support/validation and high maternal problem solving. These variables did not predict changes in BPD symptoms over time. Although high negative affect is a risk for BPD severity in adolescent girls, maternal interpersonal emotion regulation strategies moderate this link. Whereas maternal problem solving coupled with low support/validation is associated with a stronger negative affect-BPD relation, maternal problem solving paired with high support/validation is associated with an attenuated relationship. PMID:27185969
Huang, Feiyi; Liu, Tongkun; Hou, Xilin
2018-01-01
MADS-box genes form a large gene family in plants and are involved in multiple biological processes, such as flowering. However, the regulation mechanism of MADS-box genes in flowering remains unresolved, especially under short-term cold conditions. In the present study, we isolated BcMAF1 , a Pak-choi ( Brassica rapa ssp. Chinensis ) MADS AFFECTING FLOWERING ( MAF ), as a floral repressor and functionally characterized BcMAF1 in Arabidopsis and Pak-choi. Subcellular localization and sequence analysis indicated that BcMAF1 was a nuclear protein and contained a conserved MADS-box domain. Expression analysis revealed that BcMAF1 had higher expression levels in leaves, stems, and petals, and could be induced by short-term cold conditions in Pak-choi. Overexpressing BcMAF1 in Arabidopsis showed that BcMAF1 had a negative function in regulating flowering, which was further confirmed by silencing endogenous BcMAF1 in Pak-choi. In addition, qPCR results showed that AtAP3 expression was reduced and AtMAF2 expression was induced in BcMAF1 -overexpressing Arabidopsis . Meanwhile, BcAP3 transcript was up-regulated and BcMAF2 transcript was down-regulated in BcMAF1 -silencing Pak-choi. Yeast one-hybrid and dual luciferase transient assays showed that BcMAF1 could bind to the promoters of BcAP3 and BcMAF2 . These results indicated that BcAP3 and BcMAF2 might be the targets of BcMAF1. Taken together, our results suggested that BcMAF1 could negatively regulate flowering by directly activating BcMAF2 and repressing BcAP3 .
Shin, Jinwook; Park, Boyoun; Lee, Sungwook; Kim, Youngkyun; Biegalke, Bonita J.; Kang, Seongman; Ahn, Kwangseog
2006-01-01
Human cytomegalovirus encodes four unique short (US) region proteins, each of which is independently sufficient for causing the down-regulation of major histocompatibility complex (MHC) class I molecules on the cell surface. This down-regulation enables infected cells to evade recognition by cytotoxic T lymphocytes (CTLs) but makes them vulnerable to lysis by natural killer (NK) cells, which lyse those cells that lack MHC class I molecules. The 22-kDa US3 glycoprotein is able to down-regulate the surface expression of MHC class I molecules by dual mechanisms: direct endoplasmic reticulum retention by physical association and/or tapasin inhibition. The alternative splicing of the US3 gene generates two additional products, including 17-kDa and 3.5-kDa truncated isoforms; however, the functional significance of these isoforms during viral infection is unknown. Here, we describe a novel mode of self-regulation of US3 function that uses the endogenously produced truncated isoform. The truncated isoform itself neither binds to MHC class I molecules nor prevents the full-length US3 from interacting with MHC class I molecules. Instead, the truncated isoform associates with tapasin and competes with full-length US3 for binding to tapasin; thus, it suppresses the action of US3 that causes the disruption of the function of tapasin. Our results indicate that the truncated isoform of the US3 locus acts as a dominant negative regulator of full-length US3 activity. These data reflect the manner in which the virus has developed temporal survival strategies during viral infection against immune surveillance involving both CTLs and NK cells. PMID:16699020
Wang, Xiaoyu; Wang, Xianling; Hu, Qingnan; ...
2015-06-17
In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins.more » Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Altogether, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes.« less
Cesario, Jeffry M.; Landin Malt, Andre; Deacon, Lindsay J.; Sandberg, Magnus; Vogt, Daniel; Tang, Zuojian; Zhao, Yangu; Brown, Stuart; Rubenstein, John L.; Jeong, Juhee
2015-01-01
Cleft palate is a common birth defect in humans. Therefore, understanding the molecular genetics of palate development is important from both scientific and medical perspectives. Lhx6 and Lhx8 encode LIM homeodomain transcription factors, and inactivation of both genes in mice resulted in profound craniofacial defects including cleft secondary palate. The initial outgrowth of the palate was severely impaired in the mutant embryos, due to decreased cell proliferation. Through genome-wide transcriptional profiling, we discovered that p57Kip2 (Cdkn1c), encoding a cell cycle inhibitor, was up-regulated in the prospective palate of Lhx6−/−;Lhx8−/− mutants. p57Kip2 has been linked to Beckwith–Wiedemann syndrome and IMAGe syndrome in humans, which are developmental disorders with increased incidents of palate defects among the patients. To determine the molecular mechanism underlying the regulation of p57Kip2 by the Lhx genes, we combined chromatin immunoprecipitation, in silico search for transcription factor-binding motifs, and in vitro reporter assays with putative cis-regulatory elements. The results of these experiments indicated that LHX6 and LHX8 regulated p57Kip2 via both direct and indirect mechanisms, with the latter mediated by Forkhead box (FOX) family transcription factors. Together, our findings uncovered a novel connection between the initiation of palate development and a cell cycle inhibitor via LHX. We propose a model in which Lhx6 and Lhx8 negatively regulate p57Kip2 expression in the prospective palate area to allow adequate levels of cell proliferation and thereby promote normal palate development. This is the first report elucidating a molecular genetic pathway downstream of Lhx in palate development. PMID:26071365
Roberts, Nicole A; Burleson, Mary H
2013-01-01
Cultural and ethnic identities influence the relationships individuals seek out and how they feel and behave in these relationships, which can strongly affect mental and physical health through their impacts on emotions, physiology, and behavior. We proposed and tested a model in which ethnocultural identifications and ingroup affiliations were hypothesized explicitly to enhance social connectedness, which would in turn promote expectancy for effective regulation of negative emotions and reduce self-reported symptoms of depression and anxiety. Our sample comprised women aged 18-30 currently attending college in the Southwestern US, who self-identified as Hispanic of Mexican descent (MAs; n = 82) or as non-Hispanic White/European American (EAs; n = 234) and who completed an online survey. In the full sample and in each subgroup, stronger ethnocultural group identity and greater comfort with mainstream American culture were associated with higher social connectedness, which in turn was associated with expectancy for more effective regulation of negative emotions, fewer depressive symptoms, and less anxiety. Unexpectedly, preference for ingroup affiliation predicted lower social connectedness in both groups. In addition to indirect effects through social connection, direct paths from mainstream comfort and preference for ingroup affiliation to emotion regulation expectancy were found for EAs. Models of our data underscore that social connection is a central mechanism through which ethnocultural identities-including with one's own group and the mainstream cultural group-relate to mental health, and that emotion regulation may be a key aspect of this linkage. We use the term ethnocultural social connection to make explicit a process that, we believe, has been implied in the ethnic identity literature for many years, and that may have consequential implications for mental health and conceptualizations of processes underlying mental disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoyu; Wang, Xianling; Hu, Qingnan
In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins.more » Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Altogether, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes.« less
Roberts, Nicole A.; Burleson, Mary H.
2013-01-01
Cultural and ethnic identities influence the relationships individuals seek out and how they feel and behave in these relationships, which can strongly affect mental and physical health through their impacts on emotions, physiology, and behavior. We proposed and tested a model in which ethnocultural identifications and ingroup affiliations were hypothesized explicitly to enhance social connectedness, which would in turn promote expectancy for effective regulation of negative emotions and reduce self-reported symptoms of depression and anxiety. Our sample comprised women aged 18–30 currently attending college in the Southwestern US, who self-identified as Hispanic of Mexican descent (MAs; n = 82) or as non-Hispanic White/European American (EAs; n = 234) and who completed an online survey. In the full sample and in each subgroup, stronger ethnocultural group identity and greater comfort with mainstream American culture were associated with higher social connectedness, which in turn was associated with expectancy for more effective regulation of negative emotions, fewer depressive symptoms, and less anxiety. Unexpectedly, preference for ingroup affiliation predicted lower social connectedness in both groups. In addition to indirect effects through social connection, direct paths from mainstream comfort and preference for ingroup affiliation to emotion regulation expectancy were found for EAs. Models of our data underscore that social connection is a central mechanism through which ethnocultural identities—including with one's own group and the mainstream cultural group—relate to mental health, and that emotion regulation may be a key aspect of this linkage. We use the term ethnocultural social connection to make explicit a process that, we believe, has been implied in the ethnic identity literature for many years, and that may have consequential implications for mental health and conceptualizations of processes underlying mental disorders. PMID:23450647
Shin, Jinwook; Park, Boyoun; Lee, Sungwook; Kim, Youngkyun; Biegalke, Bonita J; Kang, Seongman; Ahn, Kwangseog
2006-06-01
Human cytomegalovirus encodes four unique short (US) region proteins, each of which is independently sufficient for causing the down-regulation of major histocompatibility complex (MHC) class I molecules on the cell surface. This down-regulation enables infected cells to evade recognition by cytotoxic T lymphocytes (CTLs) but makes them vulnerable to lysis by natural killer (NK) cells, which lyse those cells that lack MHC class I molecules. The 22-kDa US3 glycoprotein is able to down-regulate the surface expression of MHC class I molecules by dual mechanisms: direct endoplasmic reticulum retention by physical association and/or tapasin inhibition. The alternative splicing of the US3 gene generates two additional products, including 17-kDa and 3.5-kDa truncated isoforms; however, the functional significance of these isoforms during viral infection is unknown. Here, we describe a novel mode of self-regulation of US3 function that uses the endogenously produced truncated isoform. The truncated isoform itself neither binds to MHC class I molecules nor prevents the full-length US3 from interacting with MHC class I molecules. Instead, the truncated isoform associates with tapasin and competes with full-length US3 for binding to tapasin; thus, it suppresses the action of US3 that causes the disruption of the function of tapasin. Our results indicate that the truncated isoform of the US3 locus acts as a dominant negative regulator of full-length US3 activity. These data reflect the manner in which the virus has developed temporal survival strategies during viral infection against immune surveillance involving both CTLs and NK cells.
Zebrowitz, Leslie A; Boshyan, Jasmine; Ward, Noreen; Gutchess, Angela; Hadjikhani, Nouchine
2017-01-01
An older adult positivity effect, i.e., the tendency for older adults to favor positive over negative stimulus information more than do younger adults, has been previously shown in attention, memory, and evaluations. This effect has been attributed to greater emotion regulation in older adults. In the case of attention and memory, this explanation has been supported by some evidence that the older adult positivity effect is most pronounced for negative stimuli, which would motivate emotion regulation, and that it is reduced by cognitive load, which would impede emotion regulation. We investigated whether greater older adult positivity in the case of evaluative responses to faces is also enhanced for negative stimuli and attenuated by cognitive load, as an emotion regulation explanation would predict. In two studies, younger and older adults rated trustworthiness of faces that varied in valence both under low and high cognitive load, with the latter manipulated by a distracting backwards counting task. In Study 1, face valence was manipulated by attractiveness (low /disfigured faces, medium, high/fashion models' faces). In Study 2, face valence was manipulated by trustworthiness (low, medium, high). Both studies revealed a significant older adult positivity effect. However, contrary to an emotion regulation account, this effect was not stronger for more negative faces, and cognitive load increased rather than decreased the rated trustworthiness of negatively valenced faces. Although inconsistent with emotion regulation, the latter effect is consistent with theory and research arguing that more cognitive resources are required to process negative stimuli, because they are more cognitively elaborated than positive ones. The finding that increased age and increased cognitive load both enhanced the positivity of trustworthy ratings suggests that the older adult positivity effect in evaluative ratings of faces may reflect age-related declines in cognitive capacity rather than increases in the regulation of negative emotions.
Asymmetric distribution of type IV pili triggered by directional light in unicellular cyanobacteria
Nishizaka, Takayuki
2017-01-01
The type IV pili (T4P) system is a supermolecular machine observed in prokaryotes. Cells repeat the cycle of T4P extension, surface attachment, and retraction to drive twitching motility. Although the properties of T4P as a motor have been scrutinized with biophysics techniques, the mechanism of regulation remains unclear. Here we provided the framework of the T4P dynamics at the single-cell level in Synechocystis sp. PCC6803, which can recognize light direction. We demonstrated that the dynamics was detected by fluorescent beads under an optical microscope and controlled by blue light that induces negative phototaxis; extension and retraction of T4P was activated at the forward side of lateral illumination to move away from the light source. Additionally, we directly visualized each pilus by fluorescent labeling, allowing us to quantify their asymmetric distribution. Finally, quantitative analyses of cell tracking indicated that T4P was generated uniformly within 0.2 min after blue-light exposure, and within the next 1 min the activation became asymmetric along the light axis to achieve directional cell motility; this process was mediated by the photo-sensing protein, PixD. This sequential process provides clues toward a general regulation mechanism of T4P system, which might be essentially common between archaella and other secretion apparatuses. PMID:28584115
The Molecular Basis of β-Thalassemia
Thein, Swee Lay
2013-01-01
The β-thalassemias are characterized by a quantitative deficiency of β-globin chains underlaid by a striking heterogeneity of molecular defects. Although most of the molecular lesions involve the structural β gene directly, some down-regulate the gene through distal cis effects, and rare trans-acting mutations have also been identified. Most β-thalassemias are inherited in a Mendelian recessive fashion but there is a subgroup of β-thalassemia alleles that behave as dominant negatives. Unraveling the molecular basis of β-thalassemia has provided a paradigm for understanding of much of human genetics. PMID:23637309
Avoiding mandatory hospital nurse staffing ratios: an economic commentary.
Buerhaus, Peter I
2009-01-01
The imposition of mandatory hospital nurse staffing ratios is among the more visible public policy initiatives affecting the nursing profession. Although the practice is intended to address problems in hospital nurse staffing and quality of patient care, this commentary argues that staffing ratios will lead to negative consequences for nurses involving the equity, efficiency, and costs of producing nursing care in hospitals. Rather than spend time and effort attempting to regulate nurse staffing, this commentary offers alternatives strategies that are directed at fixing the problems that motivate the advocates of staffing ratios.
Lost in transcription: p21 repression, mechanisms, and consequences.
Gartel, Andrei L; Radhakrishnan, Senthil K
2005-05-15
The cyclin-dependent kinase inhibitor p21WAF1/CIP1 is a major player in cell cycle control and it is mainly regulated at the transcriptional level. Whereas induction of p21 predominantly leads to cell cycle arrest, repression of p21 may have a variety of outcomes depending on the context. In this review, we concentrate on transcriptional repression of p21 by cellular and viral factors, and delve in detail into its possible biological implications and its role in cancer. It seems that the major mode of p21 transcriptional repression by negative regulators is the interference with positive transcription factors without direct binding to the p21 promoter. Specifically, the negative factors may either inhibit binding of positive regulators to the promoter or hinder their transcriptional activity. The ability of p21 to inhibit proliferation may contribute to its tumor suppressor function. Because of this, it is not surprising that a number of oncogenes repress p21 to promote cell growth and tumorigenesis. However, p21 is also an inhibitor of apoptosis and p21 repression may also have an anticancer effect. For example, c-Myc and chemical p21 inhibitors, which repress p21, sensitize tumor cells to apoptosis by anticancer drugs. Further identification of factors that repress p21 is likely to contribute to the better understanding of its role in cancer.
Expressive Suppression Tendencies, Projection Bias in Memory of Negative Emotions, and Well-Being.
Chang, Valerie T; Overall, Nickola C; Madden, Helen; Low, Rachel S T
2018-02-01
The current research extends prior research linking negative emotions and emotion regulation tendencies to memory by investigating whether (a) naturally occurring negative emotions during routine weekly life are associated with more negatively biased memories of prior emotional experiences-a bias called projection; (b) tendencies to regulate emotions via expressive suppression are associated with greater projection bias in memory of negative emotions; and (c) greater projection bias in memory is associated with poorer future well-being. Participants (N = 308) completed a questionnaire assessing their general tendencies to engage in expressive suppression. Then, every week for 7 weeks, participants reported on (a) the negative emotions they experienced across the current week (e.g., "This week, I felt 'sad'"), (b) their memories of the negative emotions they experienced the prior week (e.g., "Last week, I felt 'sad'"), and (c) their well-being. First, participants demonstrated significant projection bias in memory: Greater negative emotions in a given week were associated with remembering emotions in the prior week more negatively than those prior emotions were originally reported. Second, projection bias in memory of negative emotions was greater for individuals who reported greater tendencies to regulate emotions via expressive suppression. Third, greater projection bias in memory of negative emotions was associated with reductions in well-being across weeks. These 3 novel findings indicate that (a) current negative emotions bias memory of past emotions, (b) this memory bias is magnified for people who habitually use expressive suppression to regulate emotions, and (c) this memory bias may undermine well-being over time. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Tanning and Teens: Is Indoor Exposure the Tip of the Iceberg?
Hay, Jennifer L; Riley, Kristen E; Geller, Alan C
2017-08-01
Because of recent state regulations and the reduced availability of free-standing tanning salons, indoor tanning (IT) prevalence is beginning to decline. This may lead to unintended consequences, such as increases in outdoor intentional tanning. We advance a series of research directions to track and intervene to address all forms of intentional tanning. First, we advocate for enforcement of IT regulation and encourage collection of data on tanning salon compliance and alternative IT strategies. Second, we suggest questions about outdoor and IT should be included in national surveys. Third, we need to understand the potentially complex patterns of indoor and outdoor tanning that may exist among those who tan. Fourth, research examining changing motivations for intentional tanning is needed. Finally, IT intervention studies should include outdoor tanning as an outcome to examine the effect of interventions on these related risk behaviors. These advances will ensure the development of novel interventions to address intentional tanning through multiple routes, and to avoid any unintended negative consequence of IT regulation. The promising downward direction of IT use in the United States should now lead the public health field to sharpen its focus on outdoor tanning. Cancer Epidemiol Biomarkers Prev; 26(8); 1170-4. ©2017 AACR . ©2017 American Association for Cancer Research.
The NOTCH Ligand JAG1 Regulates GDNF Expression in Sertoli Cells
Garcia, Thomas X.; Parekh, Parag; Gandhi, Pooja; Sinha, Krishna
2017-01-01
In the seminiferous epithelium of the testis, Sertoli cells are key niche cells directing proliferation and differentiation of spermatogonial stem cells (SSCs) into spermatozoa. Sertoli cells produce glial cell line-derived neurotrophic factor (GDNF), which is essential for SSC self-renewal and progenitor expansion. While the role of GDNF in the testis stem cell niche is established, little is known about how this factor is regulated. Our previous studies on NOTCH activity in Sertoli cells demonstrated a role of this pathway in limiting stem/progenitor cell numbers, thus ultimately downregulating sperm cell output. In this study we demonstrate through a double-mutant mouse model that NOTCH signaling in Sertoli cells functions solely through the canonical pathway. Further, we demonstrate through Dual luciferase assay and chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) analysis that the NOTCH targets HES1 and HEY1, which are transcriptional repressors, directly downregulate GDNF expression by binding to the Gdnf promoter, thus antagonizing the effects of FSH/cAMP. Finally, we demonstrate that testicular stem/progenitors cells are activating NOTCH signaling in Sertoli cells in vivo and in vitro through the NOTCH ligand JAG1 at their surface, indicating that these cells may ensure their own homeostasis through negative feedback regulation. PMID:28051360
Feng, Fei; Wu, Jiao; Yang, Xiang-Min; Chen, Zhi-Nan; Jiang, Jian-Li
2016-01-01
The acquisition of inappropriate migratory feature is crucial for tumor metastasis. It has been suggested that CD147 and Annexin A2 are involved in regulating tumor cell movement, while the regulatory mechanisms are far from clear. In this study, we demonstrated that CD147 physically interacted with the N-terminal domain of Annexin A2 and decreased Annexin A2 phosphorylation on tyrosine 23. In vitro kinase assay showed that the I domain of CD147 was indispensable for CD147-mediated downregulation of Annexin A2 phosphorylation by Src. Furthermore, we determined that p-Annexin A2 promoted the expression of dedicator of cytokinesis 3 (DOCK3) and DOCK3 blocked β-catenin nuclear translocation, resulting in inhibition of β-catenin signaling. In addition, DOCK3 inhibited lamellipodium dynamics and tumor cell movement. Also, we found that β-catenin signaling increased WAVE2 expression. Therefore, DOCK3 was characterized as a negative regulator of WAVE2 expression via inhibiting β-catenin signaling. Our study provides the first evidence that CD147 promotes tumor cell movement and metastasis via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling axis. PMID:26716413
ERIC Educational Resources Information Center
Ekas, Naomi V.; Braungart-Rieker, Julia M.; Lickenbrock, Diane M.; Zentall, Shannon R.; Maxwell, Scott M.
2011-01-01
The present study investigated temporal associations between putative emotion regulation strategies and negative affect in 20-month-old toddlers. Toddlers' parent-focused, self-distraction, and toy-focused strategies, as well as negative affect, were rated on a second-by-second basis during laboratory parent-toddler interactions. Longitudinal…
Sex differences and emotion regulation: an event-related potential study.
Gardener, Elyse K T; Carr, Andrea R; Macgregor, Amy; Felmingham, Kim L
2013-01-01
Difficulties in emotion regulation have been implicated as a potential mechanism underlying anxiety and mood disorders. It is possible that sex differences in emotion regulation may contribute towards the heightened female prevalence for these disorders. Previous fMRI studies of sex differences in emotion regulation have shown mixed results, possibly due to difficulties in discriminating the component processes of early emotional reactivity and emotion regulation. The present study used event-related potentials (ERPs) to examine sex differences in N1 and N2 components (reflecting early emotional reactivity) and P3 and LPP components (reflecting emotion regulation). N1, N2, P3, and LPP were recorded from 20 men and 23 women who were instructed to "increase," "decrease," and "maintain" their emotional response during passive viewing of negative images. Results indicated that women had significantly greater N1 and N2 amplitudes (reflecting early emotional reactivity) to negative stimuli than men, supporting a female negativity bias. LPP amplitudes increased to the "increase" instruction, and women displayed greater LPP amplitudes than men to the "increase" instruction. There were no differences to the "decrease" instruction in women or men. These findings confirm predictions of the female negativity bias hypothesis and suggest that women have greater up-regulation of emotional responses to negative stimuli. This finding is highly significant in light of the female vulnerability for developing anxiety disorders.
Florio, Francesca; Ferri, Cinzia; Scapin, Cristina; Feltri, M Laura; Wrabetz, Lawrence; D'Antonio, Maurizio
2018-05-02
Schwann cell differentiation and myelination in the PNS are the result of fine-tuning of positive and negative transcriptional regulators. As myelination starts, negative regulators are downregulated, whereas positive ones are upregulated. Fully differentiated Schwann cells maintain an extraordinary plasticity and can transdifferentiate into "repair" Schwann cells after nerve injury. Reactivation of negative regulators of myelination is essential to generate repair Schwann cells. Negative regulators have also been implicated in demyelinating neuropathies, although their role in disease remains elusive. Here, we used a mouse model of Charcot-Marie-Tooth neuropathy type 1B (CMT1B), the P0S63del mouse characterized by ER stress and the activation of the unfolded protein response, to show that adult Schwann cells are in a partial differentiation state because they overexpress transcription factors that are normally expressed only before myelination. We provide evidence that two of these factors, Sox2 and Id2, act as negative regulators of myelination in vivo However, their sustained expression in neuropathy is protective because ablation of Sox2 or/and Id2 from S63del mice of both sexes results in worsening of the dysmyelinating phenotype. This is accompanied by increased levels of mutant P0 expression and exacerbation of ER stress, suggesting that limited differentiation may represent a novel adaptive mechanism through which Schwann cells counter the toxic effect of a mutant terminal differentiation protein. SIGNIFICANCE STATEMENT In many neuropathies, Schwann cells express high levels of early differentiation genes, but the significance of these altered expression remained unclear. Because many of these factors may act as negative regulators of myelination, it was suggested that their misexpression could contribute to dysmyelination. Here, we show that the transcription factors Sox2 and Id2 act as negative regulators of myelination in vivo , but that their sustained expression in Charcot-Marie-Tooth type 1B (CMT1B) represents an adaptive response activated by the Schwann cells to reduce mutant protein toxicity and prevent demyelination. Copyright © 2018 the authors 0270-6474/18/384275-14$15.00/0.
Distract or reappraise? Age-related differences in emotion-regulation choice.
Scheibe, Susanne; Sheppes, Gal; Staudinger, Ursula M
2015-12-01
Does aging impact strategy choice with regard to regulating negative emotions? Based on the assumption that older adults are highly motivated to quickly defuse negative states, we predicted that older adults, relative to young adults, would show an increased preference for distraction (a cognitive disengagement strategy) over reappraisal (a cognitive engagement strategy) in the face of negative material. A stronger preference for distraction, in turn, should be associated with higher affective well-being at older ages, as it helps to avoid high physiological arousal. Young (19-28 years, n = 38) and older (65-75 years, n = 39) adults completed a laboratory task of emotion-regulation choice in which they viewed negative pictures of high and low intensity and chose between distraction and reappraisal to regulate their emotional response. Confirming predictions, age was associated with an increased preference to choose distraction over reappraisal. Among older but not young adults, the relative preference for distraction to reappraisal predicted higher state-affective well-being. In addition, across age groups, the preference for distraction over reappraisal was positively predicted by stimulus intensity and negatively by cognitive resources. Findings support the notion of an age-related shift toward disengagement strategies to regulate negative emotions, which maps onto older adults' prohedonic orientation and holds affective benefits. (c) 2015 APA, all rights reserved).
[Attentional bias and emotional suppression in borderline personality disorder].
Fernando, Silvia Carvalho; Griepenstroh, Julia; Urban, Sabine; Driessen, Martin; Beblo, Thomas
2014-01-01
Emotion regulation dysfunctions marked by negative affectivity are a core feature of borderline personality disorder (BPD). In addition, patients with BPD show disturbed attentional processes which become particularly apparent in the domain of selective attention when emotional stimuli are presented (negative attentional bias). Assuming that emotion regulation is linked to attentional deployment processes, this study aimed (1) to determine whether a negative attentional bias is established by using film clips of fearful faces and (2) to investigate the association between dysfunctional emotion regulation strategies (emotional suppression) and negative attention bias in BPD. We investigated 18 inpatients with BPD and 18 healthy control participants using the modified version of the fearful face-paradigm to assess the inhibition of emotional stimuli. We also administered self-report emotion regulation questionnaires. Compared to the healthy controls, patients with BPD showed significant longer reaction times during the emotional versus the neutral film stimuli in the modified fearful face-paradigm. With regard to the second hypothesis, we failed to find an association between the negative attentional bias and the habitual use of emotional suppression in BPD. In this study, we could confirm an attentional bias for negative stimuli, using complex, dynamic material. Future studies need to address the impact of confounding variables (e. g. comorbid disorders) on the relationship between maladaptive emotion regulation and selective attentional bias.
Jo, Yoon Kyung; Roh, Seon Ae; Lee, Heejin; Park, Na Yeon; Choi, Eun Sun; Oh, Ju-Hee; Park, So Jung; Shin, Ji Hyun; Suh, Young-Ah; Lee, Eun Kyung; Cho, Dong-Hyung; Kim, Jin Cheon
2017-01-28
Autophagy plays complex roles in tumor initiation and development, and the expression of autophagy-related genes (ATGs) is differentially regulated in various cancer cells, depending on their environment. In this study, we analyzed the expressional relationship between polypyrimidine tract-binding protein 1 (PTBP1) and ATG10 in metastatic colorectal cancer. PTBP1 is associated with tumor metastasis in primary colorectal tumors and colorectal cancer liver metastasis (CLM) tissues. In addition, PTPB1 directly interacts with mRNA of ATG10, and regulates ATG10 expression level in colorectal cancer cells. Ectopic expression of PTBP1 decreased ATG10 expression, whereas down-regulation of PTBP1 increased ATG10 level. In contrast to PTBP1, expression of ATG10 was decreased in CLM tissues. Knock down of ATG10 promoted cell migration and invasion of colorectal cancer cells. Moreover, depletion of ATG10 modulated epithelial-mesenchymal transition-associated proteins in colorectal cancer cells: N-cadherin, TCF-8/ZEB1, and CD44 were up-regulated, whereas E-cadherin was down-regulated. Taken together, our findings suggest that expression of ATG10 negatively regulated by PTBP1 is associated with metastasis of colorectal cancer cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Canova, Marc J; Baronian, Grégory; Brelle, Solène; Cohen-Gonsaud, Martin; Bischoff, Markus; Molle, Virginie
2014-04-25
The Staphylococcus aureus Vancomycin-resistance-associated response regulator VraR is known as an important response regulator, member of the VraTSR three-component signal transduction system that modulates the expression of the cell wall stress stimulon in response to a number of different cell wall active antibiotics. Given its crucial role in regulating gene expression in response to antibiotic challenges, VraR must be tightly regulated. We report here for the first time in S. aureus convergence of two major signal transduction systems, serine/threonine protein kinase and two (three)-component systems. We demonstrate that VraR can be phosphorylated by the staphylococcal Ser/Thr protein kinase Stk1 and that phosphorylation negatively affects its DNA-binding properties. Mass spectrometric analyses and site-directed mutagenesis identified Thr106, Thr119, Thr175 and Thr178 as phosphoacceptors. A S. aureus ΔvraR mutant expressing a VraR derivative that mimics constitutive phosphorylation, VraR_Asp, still exhibited markedly decreased antibiotic resistance against different cell wall active antibiotics, when compared to the wild-type, suggesting that VraR phosphorylation may represent a novel and presumably more general mechanism of regulation of the two (three)-component systems in staphylococci. Copyright © 2014 Elsevier Inc. All rights reserved.
Gerhart, James I; Burns, John W; Bruehl, Stephen; Smith, David A; Post, Kristina M; Porter, Laura S; Schuster, Erik; Buvanendran, Asokumar; Fras, Anne Marie; Keefe, Francis J
2017-11-13
Chronic pain is associated with elevated negative emotions, and resources needed to adaptively regulate these emotions can be depleted during prolonged pain. Studies of links between pain, function, and negative emotions in people with chronic pain, however, have focused almost exclusively on relationships among mean levels of these factors. Indexes that may reflect aspects of emotion regulation have typically not been analyzed. We propose that 1 index of emotion regulation is variability in emotion over time as opposed to average emotion over time. The sample was 105 people with chronic low back pain and 105 of their pain-free spouses. They completed electronic diary measures 5x/d for 14 consecutive days, producing 70 observations per person from which we derived estimates of within-subject variance in negative emotions. Location-scale models were used to simultaneously model predictors of both mean level and variance in patient negative emotions over time. Patients reported significantly more variability in negative emotions compared to their spouses. Patients who reported higher average levels of pain, pain interference, and downtime reported significantly higher levels of variability in negative emotions. Spouse-observed pain and pain behaviors were also associated with greater variability in patients' negative emotions. Test of the inverse associations between negative emotion level and variability in pain and function were significant but weaker in magnitude. These findings support the notion that chronic pain may erode negative emotion regulation resources, to the potential detriment of intra- and inter-personal function.
SIRT1 and HIF1α signaling in metabolism and immune responses.
Yu, Qing; Dong, Lin; Li, Yan; Liu, Gaungwei
2018-04-01
SIRT1 and HIF1α are regarded as two key metabolic sensors in cellular metabolism pathways and play vital roles in influencing immune responses. SIRT1 and HIF1α regulate immune responses in metabolism-dependent and -independent ways. Here, we summarized the recent knowledge of SIRT1 and HIF1α signaling in metabolism and immune responses. HIF1α is a direct target of SIRT1. Sometimes, SIRT1 and HIF1α cooperate or act separately to mediate immune responses. In innate immune responses, SIRT1 can regulate the glycolytic activity of myeloid-derived suppressor cells (MDSCs) and influence MDSC functional differentiation. SIRT1 can regulate monocyte function through NF-κB and PGC-1, accompanying an increased NAD + level. The SIRT1-HIF1α axis bridges the innate immune signal to an adaptive immune response by directing cytokine production of dendritic cells in a metabolism-independent manner, promoting the differentiation of CD4 + T cells. For adaptive immune cells, SIRT1 can mediate the differentiation of inflammatory T cell subsets in a NAD + -dependent manner. HIF1α can stimulate some glycolysis-associated genes and regulate the ATP and ROS generations. In addition, SIRT1-and HIF1α-associated metabolism inhibits the activity of mTOR, thus negatively regulating the differentiation and function of Th9 cells. As immune cells are crucial in controlling immune-associated diseases, SIRT1-and HIF1α associated-metabolism is closely linked to immune-associated diseases, including infection, tumors, allergic airway inflammation, and autoimmune diseases. Copyright © 2018 Elsevier B.V. All rights reserved.
Attachment Security and Child's Empathy: The Mediating Role of Emotion Regulation
ERIC Educational Resources Information Center
Panfile, Tia M.; Laible, Deborah J.
2012-01-01
The current study examined the influence of multiple factors on individual differences in empathy; namely, attachment, negative emotionality, and emotion regulation. A total of 63 mothers completed the Attachment Q-set and questionnaires about their children's empathy, negative emotionality, and emotion regulation when children were 3 years old.…
Milewska, Malgorzata; Romano, David; Herrero, Ana; Guerriero, Maria Luisa; Birtwistle, Marc; Quehenberger, Franz; Hatzl, Stefan; Kholodenko, Boris N.; Segatto, Oreste; Kolch, Walter; Zebisch, Armin
2015-01-01
BRAF functions in the RAS-extracellular signal-regulated kinase (ERK) signaling cascade. Activation of this pathway is necessary to mediate the transforming potential of oncogenic BRAF, however, it may also cause a negative feedback that inhibits the epidermal growth factor receptor (EGFR). Mitogen-inducible gene-6 (MIG-6) is a potent inhibitor of the EGFR and has been demonstrated to function as a tumor suppressor. As MIG-6 can be induced via RAS-ERK signaling, we investigated its potential involvement in this negative regulatory loop. Focus formation assays were performed and demonstrated that MIG-6 significantly reduces malignant transformation induced by oncogenic BRAF. Although this genetic interaction was mirrored by a physical interaction between MIG-6 and BRAF, we did not observe a direct regulation of BRAF kinase activity by MIG-6. Interestingly, a selective chemical EGFR inhibitor suppressed transformation to a similar degree as MIG-6, whereas combining these approaches had no synergistic effect. By analyzing a range of BRAF mutated and wildtype cell line models, we could show that BRAF V600E causes a strong upregulation of MIG-6, which was mediated at the transcriptional level via the RAS-ERK pathway and resulted in downregulation of EGFR activation. This feedback loop is operational in tumors, as shown by the analysis of almost 400 patients with papillary thyroid cancer (PTC). Presence of BRAF V600E correlated with increased MIG-6 expression on the one hand, and with inactivation of the EGFR and of PI3K/AKT signaling on the other hand. Importantly, we also observed a more aggressive disease phenotype when BRAF V600E coexisted with low MIG-6 expression. Finally, analysis of methylation data was performed and revealed that higher methylation of MIG-6 correlated to its decreased expression. Taken together, we demonstrate that MIG-6 efficiently reduces cellular transformation driven by oncogenic BRAF by orchestrating a negative feedback circuit directed towards the EGFR. PMID:26065894
Lee, Kkot-Nim; Jang, Won-Gu; Kim, Eun-Jung; Oh, Sin-Hye; Son, Hye-Ju; Kim, Sun-Hun; Franceschi, Renny; Zhang, Xiao-Kun; Lee, Shee-Eun; Koh, Jeong-Tae
2012-06-01
Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) is an orphan nuclear receptor of the steroid-thyroid hormone receptor superfamily. COUP-TFII is widely expressed in multiple tissues and organs throughout embryonic development and has been shown to regulate cellular growth, differentiation, and organ development. However, the role of COUP-TFII in osteoblast differentiation has not been systematically evaluated. In the present study, COUP-TFII was strongly expressed in multipotential mesenchymal cells, and the endogenous expression level decreased during osteoblast differentiation. Overexpression of COUP-TFII inhibited bone morphogenetic protein 2 (BMP2)-induced osteoblastic gene expression. The results of alkaline phosphatase, Alizarin Red staining, and osteocalcin production assay showed that COUP-TFII overexpression blocks BMP2-induced osteoblast differentiation. In contrast, the down-regulation of COUP-TFII synergistically induced the expression of BMP2-induced osteoblastic genes and osteoblast differentiation. Furthermore, the immunoprecipitation assay showed that COUP-TFII and Runx2 physically interacted and COUP-TFII significantly impaired the Runx2-dependent activation of the osteocalcin promoter. From the ChIP assay, we found that COUP-TFII repressed DNA binding of Runx2 to the osteocalcin gene, whereas Runx2 inhibited COUP-TFII expression via direct binding to the COUP-TFII promoter. Taken together, these findings demonstrate that COUP-TFII negatively regulates osteoblast differentiation via interaction with Runx2, and during the differentiation state, BMP2-induced Runx2 represses COUP-TFII expression and promotes osteoblast differentiation.
Gao, Wei; Lin, Weili
2012-01-01
Recent reports demonstrate the anti-correlated behaviors between the default (DF) and the dorsal attention (DA) networks. We aimed to investigate the roles of the frontal parietal control (FPC) network in regulating the two anti-correlated networks through three experimental conditions, including resting, continuous self-paced/attended sequential finger tapping (FT), and natural movie watching (MW), respectively. The two goal-directed tasks were chosen to engage either one of the two competing networks-FT for DA whereas MW for default. We hypothesized that FPC will selectively augment/suppress either network depending on how the task targets the specific network; FPC will positively correlate with the target network, but negatively correlate with the network anti-correlated with the target network. We further hypothesized that significant causal links from FPC to both DA and DF are present during all three experimental conditions, supporting the initiative regulating role of FPC over the two opposing systems. Consistent with our hypotheses, FPC exhibited a significantly higher positive correlation with DA (P = 0.0095) whereas significantly more negative correlation with default (P = 0.0025) during FT when compared to resting. Completely opposite to that observed during FT, the FPC was significantly anti-correlated with DA (P = 2.1e-6) whereas positively correlated with default (P = 0.0035) during MW. Furthermore, extensive causal links from FPC to both DA and DF were observed across all three experimental states. Together, our results strongly support the notion that the FPC regulates the anti-correlated default and DA networks. Copyright © 2011 Wiley Periodicals, Inc.
Frontal Parietal Control Network Regulates the Anti-Correlated Default and Dorsal Attention Networks
Gao, Wei; Lin, Weili
2011-01-01
Recent reports demonstrate the anti-correlated behaviors between the default and the dorsal attention (DA) networks. We aimed to investigate the roles of the frontal parietal control (FPC) network in regulating the two anti-correlated networks through three experimental conditions, including resting, continuous self-paced/attended sequential finger tapping (FT), and natural movie watching (MW), respectively. The two goal-directed tasks were chosen to engage either one of the two competing networks—FT for DA whereas MW for default. We hypothesized that FPC will selectively augment/suppress either network depending on how the task targets the specific network; FPC will positively correlate with the target network, but negatively correlate with the network anti-correlated with the target network. We further hypothesized that significant causal links from FPC to both DA and DF are present during all three experimental conditions, supporting the initiative regulating role of FPC over the two opposing systems. Consistent with our hypotheses, FPC exhibited a significantly higher positive correlation with DA (P = 0.0095) whereas significantly more negative correlation with default (P = 0.0025) during FT when compared to resting. Completely opposite to that observed during FT, the FPC was significantly anti-correlated with DA (P = 2.1e-6) whereas positively correlated with default (P = 0.0035) during MW. Furthermore, extensive causal links from FPC to both DA and DF were observed across all three experimental states. Together, our results strongly support the notion that the FPC regulates the anti-correlated default and DA networks. PMID:21391263
Cognitive-behavioral stress management reverses anxiety-related leukocyte transcriptional dynamics
Antoni, Michael H.; Lutgendorf, Susan K.; Blomberg, Bonnie; Carver, Charles S.; Lechner, Suzanne; Diaz, Alain; Stagl, Jamie; Arevalo, Jesusa M.G.; Cole, Steven W.
2011-01-01
Background Chronic threat and anxiety are associated with pro-inflammatory transcriptional profiles in circulating leukocytes, but the causal direction of that relationship has not been established. This study tested whether a Cognitive-Behavioral Stress Management (CBSM) intervention targeting negative affect and cognition might counteract anxiety-related transcriptional alterations in people confronting a major medical threat. Methods 199 women undergoing primary treatment of Stage 0–III breast cancer were randomized to a 10-week CBSM protocol or an active control condition. 79 provided peripheral blood leukocyte samples for genome-wide transcriptional profiling and bioinformatic analyses at baseline, 6-, and 12-month follow-ups. Results Baseline negative affect was associated with > 50% differential expression of 201 leukocyte transcripts, including up-regulated expression of pro-inflammatory and metastasis-related genes. CBSM altered leukocyte expression of 91 genes by > 50% at follow-up (Group × Time interaction), including down-regulation of pro-inflammatory and metastasis-related genes and up-regulation of Type I interferon response genes. Promoter-based bioinformatic analyses implicated decreased activity of NF-κB/Rel and GATA family transcription factors and increased activity of Interferon Response Factors and the Glucocorticoid Receptor (GR) as potential mediators of CBSM-induced transcriptional alterations. Conclusions In early stage breast cancer patients, a 10-week CBSM intervention can reverse anxiety-related up-regulation of pro-inflammatory gene expression in circulating leukocytes. These findings clarify the molecular signaling pathways by which behavioral interventions can influence physical health and alter peripheral inflammatory processes that may reciprocally affect brain affective and cognitive processes. PMID:22088795
Zhuo, Shu; Yang, Mengmei; Zhao, Yanan; Chen, Xiaofang; Zhang, Feifei; Li, Na; Yao, Pengle; Zhu, Tengfei; Mei, Hong; Wang, Shanshan; Li, Yu; Chen, Shiting; Le, Yingying
2016-11-01
MicroRNAs (miRNAs) are a new class of regulatory molecules implicated in type 2 diabetes, which is characterized by insulin resistance and hepatic glucose overproduction. We show that miRNA-451 (miR-451) is elevated in the liver tissues of dietary and genetic mouse models of diabetes. Through an adenovirus-mediated gain- and loss-of-function study, we found that miR-451 negatively regulates hepatic gluconeogenesis and blood glucose levels in normal mice and identified glycerol kinase (Gyk) as a direct target of miR-451. We demonstrate that miR-451 and Gyk regulate hepatic glucose production, the glycerol gluconeogenesis axis, and the AKT-FOXO1-PEPCK/G6Pase pathway in an opposite manner; Gyk could reverse the effect of miR-451 on hepatic gluconeogenesis and AKT-FOXO1-PEPCK/G6Pase pathway. Moreover, overexpression of miR-451 or knockdown of Gyk in diabetic mice significantly inhibited hepatic gluconeogenesis, alleviated hyperglycemia, and improved glucose tolerance. Further studies showed that miR-451 is upregulated by glucose and insulin in hepatocytes; the elevation of hepatic miR-451 in diabetic mice may contribute to inhibiting Gyk expression. This study provides the first evidence that miR-451 and Gyk regulate the AKT-FOXO1-PEPCK/G6Pase pathway and play critical roles in hepatic gluconeogenesis and glucose homeostasis and identifies miR-451 and Gyk as potential therapeutic targets against hyperglycemia in diabetes. © 2016 by the American Diabetes Association.
Emotion regulation deficits in regular marijuana users.
Zimmermann, Kaeli; Walz, Christina; Derckx, Raissa T; Kendrick, Keith M; Weber, Bernd; Dore, Bruce; Ochsner, Kevin N; Hurlemann, René; Becker, Benjamin
2017-08-01
Effective regulation of negative affective states has been associated with mental health. Impaired regulation of negative affect represents a risk factor for dysfunctional coping mechanisms such as drug use and thus could contribute to the initiation and development of problematic substance use. This study investigated behavioral and neural indices of emotion regulation in regular marijuana users (n = 23) and demographically matched nonusing controls (n = 20) by means of an fMRI cognitive emotion regulation (reappraisal) paradigm. Relative to nonusing controls, marijuana users demonstrated increased neural activity in a bilateral frontal network comprising precentral, middle cingulate, and supplementary motor regions during reappraisal of negative affect (P < 0.05, FWE) and impaired emotion regulation success on the behavioral level (P < 0.05). Amygdala-focused analyses further revealed impaired amygdala downregulation in the context of decreased amygdala-dorsolateral prefrontal cortex functional connectivity (P < 0.05, FWE) during reappraisal in marijuana users relative to controls. Together, the present findings could reflect an unsuccessful attempt of compensatory recruitment of additional neural resources in the context of disrupted amygdala-prefrontal interaction during volitional emotion regulation in marijuana users. As such, impaired volitional regulation of negative affect might represent a consequence of, or risk factor for, regular marijuana use. Hum Brain Mapp 38:4270-4279, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Feeling Is Believing: Evaluative Conditioning and the Ethics of Pharmaceutical Advertising.
Biegler, Paul; Vargas, Patrick
2016-06-01
A central goal in regulating direct-to-consumer advertising of prescription pharmaceuticals (DTCA) is to ensure that explicit drug claims are truthful. Yet imagery can also alter viewer attitudes, and the degree to which this occurs in DTCA is uncertain. Addressing this data gap, we provide evidence that positive feelings produced by images can promote favourable beliefs about pharmaceuticals. We had participants view a fictitious anti-influenza drug paired with unrelated images that elicited either positive, neutral or negative feelings. Participants who viewed positive images rated the influenza drug as significantly more effective, safe, and beneficial than did participants who viewed negative images. This effect, known as evaluative conditioning, is well described in experimental social psychology but has not previously been shown with pharmaceuticals. We discuss how evaluative conditioning in DTCA may compromise viewer autonomy, and canvass possible regulatory responses.
Regulation of Effector Delivery by Type III Secretion Chaperone Proteins in Erwinia amylovora.
Castiblanco, Luisa F; Triplett, Lindsay R; Sundin, George W
2018-01-01
Type III secretion (TTS) chaperones are critical for the delivery of many effector proteins from Gram-negative bacterial pathogens into host cells, functioning in the stabilization and hierarchical delivery of the effectors to the type III secretion system (TTSS). The plant pathogen Erwinia amylovora secretes at least four TTS effector proteins: DspE, Eop1, Eop3, and Eop4. DspE specifically interacts with the TTS chaperone protein DspF, which stabilizes the effector protein in the cytoplasm and promotes its efficient translocation through the TTSS. However, the role of E. amylovora chaperones in regulating the delivery of other secreted effectors is unknown. In this study, we identified functional interactions between the effector proteins DspE, Eop1, and Eop3 with the TTS chaperones DspF, Esc1 and Esc3 in yeast. Using site-directed mutagenesis, secretion, and translocation assays, we demonstrated that the three TTS chaperones have additive roles for the secretion and translocation of DspE into plant cells whereas DspF negatively affects the translocation of Eop1 and Eop3. Collectively, these results indicate that TTS chaperone proteins exhibit a cooperative behavior to orchestrate the effector secretion and translocation dynamics in E. amylovora .
Episode-Specific Drinking-to-Cope Motivation and Next-Day Stress-Reactivity
Armeli, Stephen; O’Hara, Ross E.; Covault, Jon; Scott, Denise M.; Tennen, Howard
2016-01-01
Background Research consistently shows drinking-to-cope (DTC) motivation is uniquely associated with drinking-related problems. We furthered this line of research by examining whether DTC motivation is predictive of processes indicative of poor emotion regulation. Specifically, we tested whether nighttime levels of episode-specific DTC motivation, controlling for drinking level, were associated with intensified affective reactions to stress the following day (i.e., stress-reactivity). Design and Methods We used a micro-longitudinal design to test this hypothesis in two college student samples from demographically distinct institutions: a large, rural state university (N = 1421; 54% female) and an urban historically Black college/university (N = 452; 59% female). Results In both samples the within-person association between daily stress and negative affect on days following drinking episodes was stronger in the positive direction when previous night’s drinking was characterized by relatively higher levels of DTC motivation. We also found evidence among students at the state university that average levels of DTC motivation moderated the daily stress-negative affect association. Conclusions Findings are consistent with the notion that DTC motivation confers a unique vulnerability that affects processes associated with emotion regulation. PMID:26691066
Dai, Cheng; Xue, Hong-Wei
2010-06-02
The plant hormone gibberellin (GA) is crucial for multiple aspects of plant growth and development. To study the relevant regulatory mechanisms, we isolated a rice mutant earlier flowering1, el1, which is deficient in a casein kinase I that has critical roles in both plants and animals. el1 had an enhanced GA response, consistent with the suppression of EL1 expression by exogenous GA(3). Biochemical characterization showed that EL1 specifically phosphorylates the rice DELLA protein SLR1, proving a direct evidence for SLR1 phosphorylation. Overexpression of SLR1 in wild-type plants caused a severe dwarf phenotype, which was significantly suppressed by EL1 deficiency, indicating the negative effect of SLR1 on GA signalling requires the EL1 function. Further studies showed that the phosphorylation of SLR1 is important for maintaining its activity and stability, and mutation of the candidate phosphorylation site of SLR1 results in the altered GA signalling. This study shows EL1 a novel and key regulator of the GA response and provided important clues on casein kinase I activities in GA signalling and plant development.
Characterization and Expression Patterns of microRNAs Involved in Rice Grain Filling
Du, Yanxiu; Zhang, Jing; Li, Junzhou; Liu, Yanxia; Zhao, Yafan; Zhao, Quanzhi
2013-01-01
MicroRNAs (miRNAs) are upstream gene regulators of plant development and hormone homeostasis through their directed cleavage or translational repression of the target mRNAs, which may play crucial roles in rice grain filling and determining the final grain weight and yield. In this study, high-throughput sequencing was performed to survey the dynamic expressions of miRNAs and their corresponding target genes at five distinct developmental stages of grain filling. In total, 445 known miRNAs and 45 novel miRNAs were detected with most of them expressed in a developmental stage dependent manner, and the majority of known miRNAs, which increased gradually with rice grain filling, showed negatively related to the grain filling rate. Detailed expressional comparisons revealed a clear negative correlation between most miRNAs and their target genes. It was found that specific miRNA cohorts are expressed in a developmental stage dependent manner during grain filling and the known functions of these miRNAs are involved in plant hormone homeostasis and starch accumulation, indicating that the expression dynamics of these miRNAs might play key roles in regulating rice grain filling. PMID:23365650
Pratt, Maayan; Singer, Magi; Kanat-Maymon, Yaniv; Feldman, Ruth
2015-11-01
How infants shape their own development has puzzled developmentalists for decades. Recent models suggest that infant dispositions, particularly negative reactivity and regulation, affect outcome by determining the extent of parental effects. Here, we used a microanalytic experimental approach and proposed that infants with varying levels of negative reactivity will be differentially impacted by parent-infant synchrony in predicting physiological and behavioral regulation of increasing social stress during an experimental paradigm. One hundred and twenty-two mother-infant dyads (4-6 months) were observed in the face-to-face still face (SF) paradigm and randomly assigned to three experimental conditions: SF with touch, standard SF, and SF with arms' restraint. Mother-infant synchrony and infant negative reactivity were observed at baseline, and three mechanisms of behavior regulation were microcoded; distress, disengagement, and social regulation. Respiratory sinus arrhythmia baseline, reactivity, and recovery were quantified. Structural equation modeling provided support for our hypothesis. For physiological regulation, infants high in negative reactivity receiving high mother-infant synchrony showed greater vagal withdrawal, which in turn predicted comparable levels of vagal recovery to that of nonreactive infants. In behavioral regulation, only infants low in negative reactivity who received high synchrony were able to regulate stress by employing social engagement cues during the SF phase. Distress was reduced only among calm infants to highly synchronous mothers, and disengagement was lowest among highly reactive infants experiencing high mother-infant synchrony. Findings chart two pathways by which synchrony may bolster regulation in infants of high and low reactivity. Among low reactive infants, synchrony builds a social repertoire for handling interpersonal stress, whereas in highly reactive infants, it constructs a platform for repeated reparation of momentary interactive "failures" and reduces the natural tendency of stressed infants to disengage from source of distress. Implications for the construction of synchrony-focused interventions targeting infants of varying dispositions are discussed.
Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis.
Kapelko, Magdalena; Oude Lansink, Alfons; Stefanou, Spiro E
2015-01-01
This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change.
Sepulveda, Denisse; Rojas-Rivera, Diego; Rodríguez, Diego A; Groenendyk, Jody; Köhler, Andres; Lebeaupin, Cynthia; Ito, Shinya; Urra, Hery; Carreras-Sureda, Amado; Hazari, Younis; Vasseur-Cognet, Mireille; Ali, Maruf M U; Chevet, Eric; Campos, Gisela; Godoy, Patricio; Vaisar, Tomas; Bailly-Maitre, Béatrice; Nagata, Kazuhiro; Michalak, Marek; Sierralta, Jimena; Hetz, Claudio
2018-01-18
Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR. Copyright © 2018 Elsevier Inc. All rights reserved.
Mondal, Arindam; Potts, Gregory K.; Dawson, Anthony R.; Coon, Joshua J.; Mehle, Andrew
2015-01-01
Negative-sense RNA viruses assemble large ribonucleoprotein (RNP) complexes that direct replication and transcription of the viral genome. Influenza virus RNPs contain the polymerase, genomic RNA and multiple copies of nucleoprotein (NP). During RNP assembly, monomeric NP oligomerizes along the length of the genomic RNA. Regulated assembly of the RNP is essential for virus replication, but how NP is maintained as a monomer that subsequently oligomerizes to form RNPs is poorly understood. Here we elucidate a mechanism whereby NP phosphorylation regulates oligomerization. We identified new evolutionarily conserved phosphorylation sites on NP and demonstrated that phosphorylation of NP decreased formation of higher-order complexes. Two phosphorylation sites were located on opposite sides of the NP:NP interface. In both influenza A and B virus, mutating or mimicking phosphorylation at these residues blocked homotypic interactions and drove NP towards a monomeric form. Highlighting the central role of this process during infection, these mutations impaired RNP formation, polymerase activity and virus replication. Thus, dynamic phosphorylation of NP regulates RNP assembly and modulates progression through the viral life cycle. PMID:25867750
Regulation of FOXO1-mediated transcription and cell proliferation by PARP-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamaki, Jun-ichi; Daitoku, Hiroaki; Yoshimochi, Kenji
2009-05-08
Forkhead box O (FOXO) transcription factors play an important role in a wide range of biological processes, including cell cycle control, apoptosis, detoxification of reactive oxygen species, and gluconeogenesis through regulation of gene expression. In this study, we demonstrated that PARP-1 functions as a negative regulator of FOXO1. We showed that PARP-1 directly binds to and poly(ADP-ribosyl)ates FOXO1 protein. PARP-1 represses FOXO1-mediated expression of cell cycle inhibitor p27{sup Kip1} gene. Notably, poly(ADP-ribosyl)ation activity was not required for the repressive effect of PARP-1 on FOXO1 function. Furthermore, knockdown of PARP-1 led to a decrease in cell proliferation in a manner dependentmore » on FOXO1 function. Chromatin immunoprecipitation experiments confirmed that PARP-1 is recruited to the p27{sup Kip1} gene promoter through a binding to FOXO1. These results suggest that PARP-1 acts as a corepressor for FOXO1, which could play an important role in proper cell proliferation by regulating p27{sup Kip1} gene expression.« less
Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis
Kapelko, Magdalena; Lansink, Alfons Oude; Stefanou, Spiro E.
2015-01-01
This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change. PMID:26057878
Pten Cell Autonomously Modulates the Hematopoietic Stem Cell Response to Inflammatory Cytokines.
Porter, Shaina N; Cluster, Andrew S; Signer, Robert A J; Voigtmann, Jenna; Monlish, Darlene A; Schuettpelz, Laura G; Magee, Jeffrey A
2016-06-14
Pten negatively regulates the phosphatidylinositol 3-kinase (PI3K) pathway and is required to maintain quiescent adult hematopoietic stem cells (HSCs). Pten has been proposed to regulate HSCs cell autonomously and non-cell autonomously, but the relative importance of each mechanism has not been directly tested. Furthermore, the cytokines that activate the PI3K pathway upstream of Pten are not well defined. We sought to clarify whether Pten cell autonomously or non-cell autonomously regulates HSC mobilization. We also tested whether Pten deficiency affects the HSC response to granulocyte colony-stimulating factor (G-CSF) and interferon-α (IFNα) since these cytokines induce HSC mobilization or proliferation, respectively. We show that Pten regulates HSC mobilization and expansion in the spleen primarily via cell-autonomous mechanisms. Pten-deficient HSCs do not require G-CSF to mobilize, although they are hyper-sensitized to even low doses of exogenous G-CSF. Pten-deficient HSCs are similarly sensitized to IFNα. Pten therefore modulates the HSC response to inflammatory cytokines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
miR-133 regulates Evi1 expression in AML cells as a potential therapeutic target.
Yamamoto, Haruna; Lu, Jun; Oba, Shigeyoshi; Kawamata, Toyotaka; Yoshimi, Akihide; Kurosaki, Natsumi; Yokoyama, Kazuaki; Matsushita, Hiromichi; Kurokawa, Mineo; Tojo, Arinobu; Ando, Kiyoshi; Morishita, Kazuhiro; Katagiri, Koko; Kotani, Ai
2016-01-12
The Ecotropic viral integration site 1 (Evi1) is a zinc finger transcription factor, which is located on chromosome 3q26, over-expression in some acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Elevated Evi1 expression in AML is associated with unfavorable prognosis. Therefore, Evi1 is one of the strong candidate in molecular target therapy for the leukemia. MicroRNAs (miRNAs) are small non-coding RNAs, vital to many cell functions that negatively regulate gene expression by translation or inducing sequence-specific degradation of target mRNAs. As a novel biologics, miRNAs is a promising therapeutic target due to its low toxicity and low cost. We screened miRNAs which down-regulate Evi1. miR-133 was identified to directly bind to Evi1 to regulate it. miR-133 increases drug sensitivity specifically in Evi1 expressing leukemic cells, but not in Evi1-non-expressing cells The results suggest that miR-133 can be promising therapeutic target for the Evi1 dysregulated poor prognostic leukemia.
Chemical Proteomics Identifies Druggable Vulnerabilities in a Genetically Defined Cancer.
Bar-Peled, Liron; Kemper, Esther K; Suciu, Radu M; Vinogradova, Ekaterina V; Backus, Keriann M; Horning, Benjamin D; Paul, Thomas A; Ichu, Taka-Aki; Svensson, Robert U; Olucha, Jose; Chang, Max W; Kok, Bernard P; Zhu, Zhou; Ihle, Nathan T; Dix, Melissa M; Jiang, Ping; Hayward, Matthew M; Saez, Enrique; Shaw, Reuben J; Cravatt, Benjamin F
2017-10-19
The transcription factor NRF2 is a master regulator of the cellular antioxidant response, and it is often genetically activated in non-small-cell lung cancers (NSCLCs) by, for instance, mutations in the negative regulator KEAP1. While direct pharmacological inhibition of NRF2 has proven challenging, its aberrant activation rewires biochemical networks in cancer cells that may create special vulnerabilities. Here, we use chemical proteomics to map druggable proteins that are selectively expressed in KEAP1-mutant NSCLC cells. Principal among these is NR0B1, an atypical orphan nuclear receptor that we show engages in a multimeric protein complex to regulate the transcriptional output of KEAP1-mutant NSCLC cells. We further identify small molecules that covalently target a conserved cysteine within the NR0B1 protein interaction domain, and we demonstrate that these compounds disrupt NR0B1 complexes and impair the anchorage-independent growth of KEAP1-mutant cancer cells. Our findings designate NR0B1 as a druggable transcriptional regulator that supports NRF2-dependent lung cancers. Copyright © 2017 Elsevier Inc. All rights reserved.
TRIM21 ubiquitylates SQSTM1/p62 and suppresses protein sequestration to regulate redox homeostasis
Pan, Ji-An; Sun, Yu; Jiang, Ya-Ping; Bott, Alex J.; Jaber, Nadia; Dou, Zhixun; Yang, Bin; Chen, Juei-Suei; Catanzaro, Joseph M.; Du, Chunying; Ding, Wen-Xing; Diaz-Meco, Maria T.; Moscat, Jorge; Ozato, Keiko; Lin, Richard Z.; Zong, Wei-Xing
2016-01-01
Summary TRIM21 is a RING finger domain-containing ubiquitin E3 ligase whose expression is elevated in autoimmune disease. While TRIM21 plays an important role in immune activation during pathogen infection, little is known about its inherent cellular function. Here we show that TRIM21 plays an essential role in redox regulation by directly interacting with SQSTM1/p62 and ubiquitylating p62 at lysine(K)7 via K63-linkage. As p62 oligomerizes and sequesters client proteins in inclusions, the TRIM21-mediated p62 ubiquitylation abrogates p62 oligomerization and sequestration of proteins including Keap1, a negative regulator of antioxidant response. TRIM21-deficient cells display an enhanced antioxidant response and reduced cell death in response to oxidative stress. Genetic ablation of TRIM21 in mice confers protection from oxidative damages caused by arsenic-induced liver insult and pressure overload heart injury. Therefore, TRIM21 plays an essential role in p62-regulated redox homeostasis and may be a viable target for treating pathological conditions resulting from oxidative damage. PMID:26942676
Huang, Cong; Geng, Junnan; Wei, Xiajie; Zhang, Ruirui; Jiang, Siwen
2016-03-01
Despite extensive research on osteoblast differentiation and proliferation in mesenchymal stem cells (MSCs), the accurate mechanism remains to be further elucidated. MicroRNAs have been reported to be key regulators of osteoblast differentiation and proliferation. Here, we found that miR-144-3p is down-regulated during osteoblast differentiation of C3H10T1/2 cells. Overexpression of miR-144-3p inhibited osteogenic differentiation, whereas inhibition of miR-144-3p reversed this process. Furthermore, miR-144-3p inhibited the proliferation of C3H10T1/2 cells by arresting cells at the G0/G1 phase. Results from bioinformatics analysis, luciferase assay and western blotting demonstrated that miR-144-3p directly targeted Smad4. Additionally, Smad4 knockdown blocks the effects of miR-144-3p inhibitor. Therefore, we conclude that miR-144-3p negatively regulates osteogenic differentiation and proliferation of C3H10T1/2 cells by targeting Smad4. © 2016 Federation of European Biochemical Societies.
TRIM21 Ubiquitylates SQSTM1/p62 and Suppresses Protein Sequestration to Regulate Redox Homeostasis.
Pan, Ji-An; Sun, Yu; Jiang, Ya-Ping; Bott, Alex J; Jaber, Nadia; Dou, Zhixun; Yang, Bin; Chen, Juei-Suei; Catanzaro, Joseph M; Du, Chunying; Ding, Wen-Xing; Diaz-Meco, Maria T; Moscat, Jorge; Ozato, Keiko; Lin, Richard Z; Zong, Wei-Xing
2016-03-03
TRIM21 is a RING finger domain-containing ubiquitin E3 ligase whose expression is elevated in autoimmune disease. While TRIM21 plays an important role in immune activation during pathogen infection, little is known about its inherent cellular function. Here we show that TRIM21 plays an essential role in redox regulation by directly interacting with SQSTM1/p62 and ubiquitylating p62 at lysine 7 (K7) via K63-linkage. As p62 oligomerizes and sequesters client proteins in inclusions, the TRIM21-mediated p62 ubiquitylation abrogates p62 oligomerization and sequestration of proteins including Keap1, a negative regulator of antioxidant response. TRIM21-deficient cells display an enhanced antioxidant response and reduced cell death in response to oxidative stress. Genetic ablation of TRIM21 in mice confers protection from oxidative damages caused by arsenic-induced liver insult and pressure overload heart injury. Therefore, TRIM21 plays an essential role in p62-regulated redox homeostasis and may be a viable target for treating pathological conditions resulting from oxidative damage. Copyright © 2016 Elsevier Inc. All rights reserved.
Mindfulness and emotion regulation—an fMRI study
Lutz, Jacqueline; Herwig, Uwe; Opialla, Sarah; Hittmeyer, Anna; Jäncke, Lutz; Rufer, Michael; Grosse Holtforth, Martin
2014-01-01
Mindfulness—an attentive non-judgmental focus on present experiences—is increasingly incorporated in psychotherapeutic treatments as a skill fostering emotion regulation. Neurobiological mechanisms of actively induced emotion regulation are associated with prefrontally mediated down-regulation of, for instance, the amygdala. We were interested in neurobiological correlates of a short mindfulness instruction during emotional arousal. Using functional magnetic resonance imaging, we investigated effects of a short mindfulness intervention during the cued expectation and perception of negative and potentially negative pictures (50% probability) in 24 healthy individuals compared to 22 controls. The mindfulness intervention was associated with increased activations in prefrontal regions during the expectation of negative and potentially negative pictures compared to controls. During the perception of negative stimuli, reduced activation was identified in regions involved in emotion processing (amygdala, parahippocampal gyrus). Prefrontal and right insular activations when expecting negative pictures correlated negatively with trait mindfulness, suggesting that more mindful individuals required less regulatory resources to attenuate emotional arousal. Our findings suggest emotion regulatory effects of a short mindfulness intervention on a neurobiological level. PMID:23563850
ERIC Educational Resources Information Center
Schleicher, Holly E.; Harris, Kari Jo; Catley, Delwyn; Nazir, Niaman
2009-01-01
Objective: Expectancies about nicotine's ability to alleviate negative mood states may play a role in the relationship between smoking and depression. The authors examined the role of negative affect regulation expectancies as a potential mediator of depression (history of depression and depressive symptoms) and smoking among college students.…
Sun, Tian-Wen; Wu, Zhi-Hong; Weng, Xi-Sheng
2015-01-01
This study aimed to investigate the effect of a selective cyclooxygenase-2 (COX-2) inhibitor (celecoxib) on the expression of arachidonate-associated inflammatory genes in cultured human normal chondrocytes. Normal chondrocytes were obtained from the cartilage of three different amputated patients without osteoarthritis (OA). Affymetrix Human microarray was used to assess the alterations in gene expression in three groups of cells: untreated cells (negative control group), cells treated with interleukin-1β (IL-1β) (positive control group), and cells treated with IL-1β and celecoxib. The patterns of up-regulation and down-regulation of gene expression were further validated by real-time PCR. A total of 1091 up-regulated genes and 1252 down-regulated genes were identified in the positive control group compared with the negative control group. Among them, PTGS2, ADAMTS5, PTGER2, mPTGES and PTGER4 are known to be involved in chondrocyte inflammation, while VEGFA, BCL2, TRAF1, CYR61, BMP6, DAPK1, DUSP7, IL1RN, MMP13 and TNFSF10 were reported being associated with cytokine and chemokine signaling. 189 up-regulated genes and 177 down-regulated genes were identified in the positive control group compared with intervention group. PTGS1, PTGS2, ADAMTS5, PTGER2, mPTGES and PTGER4 were among the genes down-regulated upon the treatment with celecoxib. Our results demonstrated that the OA chondrocytes are the site of active eicosanoid production. IL-1β can activate inflammation in chondrocytes and trigger the production of various proteins involved in cyclooxygenase pathway. The expression of genes corresponding to these proteins can be down-regulated by celecoxib. The findings indicate that the therapy with prostaglandin E2 (PGE2)-blocking agents may decrease the PGE2 production not only by direct inhibition of COX-2 activity, but also by down-regulating the expression of genes encoding for COX-2, microsomal prostaglandin-endoperoxide synthase 1 (mPGES-1) and prostaglandin E receptors 4 (EP4) in the articular chondrocytes.
Within Your Control? When Problem Solving May Be Most Helpful.
Sarfan, Laurel D; Gooch, Peter; Clerkin, Elise M
2017-08-01
Emotion regulation strategies have been conceptualized as adaptive or maladaptive, but recent evidence suggests emotion regulation outcomes may be context-dependent. The present study tested whether the adaptiveness of a putatively adaptive emotion regulation strategy-problem solving-varied across contexts of high and low controllability. The present study also tested rumination, suggested to be one of the most putatively maladaptive strategies, which was expected to be associated with negative outcomes regardless of context. Participants completed an in vivo speech task, in which they were randomly assigned to a controllable ( n = 65) or an uncontrollable ( n = 63) condition. Using moderation analyses, we tested whether controllability interacted with emotion regulation use to predict negative affect, avoidance, and perception of performance. Partially consistent with hypotheses, problem solving was associated with certain positive outcomes (i.e., reduced behavioral avoidance) in the controllable (vs. uncontrollable) condition. Consistent with predictions, rumination was associated with negative outcomes (i.e., desired avoidance, negative affect, negative perception of performance) in both conditions. Overall, findings partially support contextual models of emotion regulation, insofar as the data suggest that the effects of problem solving may be more adaptive in controllable contexts for certain outcomes, whereas rumination may be maladaptive regardless of context.
Thornback, Kristin; Muller, Robert T
2015-12-01
This study examined improvement in emotion regulation throughout Trauma-Focused Cognitive-Behavioral Therapy (TF-CBT) and the degree to which improvement in emotion regulation predicted improvement in symptoms. Traumatized children, 7-12 years (69.9% female), received TF-CBT. Data from 4 time periods were used: pre-assessment (n=107), pre-treatment (n=78), post-treatment (n=58), and 6-month follow-up (n=44). Questionnaires measured emotion regulation in the form of inhibition and dysregulation (Children's Emotion Management Scales) and lability/negativity and emotion regulation skill (Emotion Regulation Checklist), as well as child-reported (Trauma Symptom Checklist for Children) and parent-reported (Trauma Symptom Checklist for Young Children) posttraumatic stress, and internalizing and externalizing problems (Child Behaviuor Checklist). To the extent that children's dysregulation and lability/negativity improved, their parents reported fewer symptoms following therapy. Improvements in inhibition best predicted improvements in child-reported posttraumatic stress (PTS) during clinical services, but change in dysregulation and lability/negativity best predicted improvement in child-reported PTS symptoms at 6-month follow-up. Moreover, statistically significant improvements of small effect size were found following therapy, for inhibition, dysregulation, and lability/negativity, but not emotion regulation skill. These findings suggest that emotion regulation is a worthy target of intervention and that improvements in emotion regulation can be made. Suggestions for future research are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Urgesi, Cosimo; Mattiassi, Alan D A; Buiatti, Tania; Marini, Andrea
2016-08-01
In everyday life we need to continuously regulate our emotional responses according to their social context. Strategies of emotion regulation allow individuals to control time, intensity, nature and expression of emotional responses to environmental stimuli. The left inferior frontal gyrus (LIFG) is involved in the cognitive control of the selection of semantic content. We hypothesized that it might also be involved in the regulation of emotional feelings and expressions. We applied continuous theta burst stimulation (cTBS) over LIFG or a control site before a newly-developed ecological regulation task that required participants to produce storytelling of pictures with negative or neutral valence to either a peer (unregulated condition) or a child (regulated condition). Linguistic, expressive, and physiological responses were analyzed in order to assess the effects of LIFG-cTBS on emotion regulation. Results showed that the emotion regulation context modulated the emotional content of narrative productions, but not the physiologic orienting response or the early expressive behavior to negative stimuli. Furthermore, LIFG-cTBS disrupted the text-level structuring of negative picture storytelling and the early cardiac and muscular response to negative pictures; however, it did not affect the contextual emotional regulation of storytelling. These results may suggest that LIFG is involved in the initial detection of the affective arousal of emotional stimuli. Copyright © 2016 Elsevier Inc. All rights reserved.
Shanks, Robert M. Q.; Lahr, Roni M.; Stella, Nicholas A.; Arena, Kristin E.; Brothers, Kimberly M.; Kwak, Daniel H.; Liu, Xinyu; Kalivoda, Eric J.
2013-01-01
Swarming motility and hemolysis are virulence-associated determinants for a wide array of pathogenic bacteria. The broad host-range opportunistic pathogen Serratia marcescens produces serratamolide, a small cyclic amino-lipid, that promotes swarming motility and hemolysis. Serratamolide is negatively regulated by the transcription factors HexS and CRP. Positive regulators of serratamolide production are unknown. Similar to serratamolide, the antibiotic pigment, prodigiosin, is regulated by temperature, growth phase, HexS, and CRP. Because of this co-regulation, we tested the hypothesis that a homolog of the PigP transcription factor of the atypical Serratia species ATCC 39006, which positively regulates prodigiosin biosynthesis, is also a positive regulator of serratamolide production in S. marcescens. Mutation of pigP in clinical, environmental, and laboratory strains of S. marcescens conferred pleiotropic phenotypes including the loss of swarming motility, hemolysis, and severely reduced prodigiosin and serratamolide synthesis. Transcriptional analysis and electrophoretic mobility shift assays place PigP in a regulatory pathway with upstream regulators CRP and HexS. The data from this study identifies a positive regulator of serratamolide production, describes novel roles for the PigP transcription factor, shows for the first time that PigP directly regulates the pigment biosynthetic operon, and identifies upstream regulators of pigP. This study suggests that PigP is important for the ability of S. marcescens to compete in the environment. PMID:23469212
Thyroid hormone regulates muscle fiber type conversion via miR-133a1.
Zhang, Duo; Wang, Xiaoyun; Li, Yuying; Zhao, Lei; Lu, Minghua; Yao, Xuan; Xia, Hongfeng; Wang, Yu-Cheng; Liu, Mo-Fang; Jiang, Jingjing; Li, Xihua; Ying, Hao
2014-12-22
It is known that thyroid hormone (TH) is a major determinant of muscle fiber composition, but the molecular mechanism by which it does so remains unclear. Here, we demonstrated that miR-133a1 is a direct target gene of TH in muscle. Intriguingly, miR-133a, which is enriched in fast-twitch muscle, regulates slow-to-fast muscle fiber type conversion by targeting TEA domain family member 1 (TEAD1), a key regulator of slow muscle gene expression. Inhibition of miR-133a in vivo abrogated TH action on muscle fiber type conversion. Moreover, TEAD1 overexpression antagonized the effect of miR-133a as well as TH on muscle fiber type switch. Additionally, we demonstrate that TH negatively regulates the transcription of myosin heavy chain I indirectly via miR-133a/TEAD1. Collectively, we propose that TH inhibits the slow muscle phenotype through a novel epigenetic mechanism involving repression of TEAD1 expression via targeting by miR-133a1. This identification of a TH-regulated microRNA therefore sheds new light on how TH achieves its diverse biological activities. © 2014 Zhang et al.
Thyroid hormone regulates muscle fiber type conversion via miR-133a1
Zhang, Duo; Wang, Xiaoyun; Li, Yuying; Zhao, Lei; Lu, Minghua; Yao, Xuan; Xia, Hongfeng; Wang, Yu-cheng; Liu, Mo-Fang; Jiang, Jingjing; Li, Xihua
2014-01-01
It is known that thyroid hormone (TH) is a major determinant of muscle fiber composition, but the molecular mechanism by which it does so remains unclear. Here, we demonstrated that miR-133a1 is a direct target gene of TH in muscle. Intriguingly, miR-133a, which is enriched in fast-twitch muscle, regulates slow-to-fast muscle fiber type conversion by targeting TEA domain family member 1 (TEAD1), a key regulator of slow muscle gene expression. Inhibition of miR-133a in vivo abrogated TH action on muscle fiber type conversion. Moreover, TEAD1 overexpression antagonized the effect of miR-133a as well as TH on muscle fiber type switch. Additionally, we demonstrate that TH negatively regulates the transcription of myosin heavy chain I indirectly via miR-133a/TEAD1. Collectively, we propose that TH inhibits the slow muscle phenotype through a novel epigenetic mechanism involving repression of TEAD1 expression via targeting by miR-133a1. This identification of a TH-regulated microRNA therefore sheds new light on how TH achieves its diverse biological activities. PMID:25512392
Zeng, Huan-Chang; Bae, Yangjin; Dawson, Brian C.; Chen, Yuqing; Bertin, Terry; Munivez, Elda; Campeau, Philippe M.; Tao, Jianning; Chen, Rui; Lee, Brendan H.
2017-01-01
Osteocytes are the terminally differentiated cell type of the osteoblastic lineage and have important functions in skeletal homeostasis. Although the transcriptional regulation of osteoblast differentiation has been well characterized, the factors that regulate differentiation of osteocytes from mature osteoblasts are poorly understood. Here we show that miR-23a∼27a∼24-2 (miR-23a cluster) promotes osteocyte differentiation. Osteoblast-specific miR-23a cluster gain-of-function mice have low bone mass associated with decreased osteoblast but increased osteocyte numbers. By contrast, loss-of-function transgenic mice overexpressing microRNA decoys for either miR-23a or miR-27a, but not miR24-2, show decreased osteocyte numbers. Moreover, RNA-sequencing analysis shows altered transforming growth factor-β (TGF-β) signalling. Prdm16, a negative regulator of the TGF-β pathway, is directly repressed by miR-27a with concomitant alteration of sclerostin expression, and pharmacological inhibition of TGF-β rescues the phenotypes observed in the gain-of-function transgenic mice. Taken together, the miR-23a cluster regulates osteocyte differentiation by modulating the TGF-β signalling pathway through targeting of Prdm16. PMID:28397831
Driving reproduction: RFamide peptides behind the wheel.
Kriegsfeld, Lance J
2006-12-01
The availability of tools for probing the genome and proteome more efficiently has allowed for the rapid discovery of novel genes and peptides that play important, previously uncharacterized roles in neuroendocrine regulation. In this review, the role of a class of neuropeptides containing the C-terminal Arg-Phe-NH(2) (RFamide) in regulating the reproductive axis will be highlighted. Neuropeptides containing the C-terminal Phe-Met-Arg-Phe-NH(2) (FMRFamide) were first identified as cardioregulatory elements in the bi-valve mollusk Macrocallista nimbosa. During the past two decades, numerous studies have shown the presence of structurally similar peptides sharing the RFamide motif across taxa. In vertebrates, RFamide peptides have pronounced influences on opiatergic regulation and neuroendocrine function. Two key peptides in this family are emerging as important regulators of the reproductive axis, kisspeptin and gonadotropin-inhibitory hormone (GnIH). Kisspeptin acts as the accelerator, directly driving gonadotropin-releasing hormone (GnRH) neurons, whereas GnIH acts as the restraint. Recent evidence suggests that both peptides play a role in mediating the negative feedback effects of sex steroids. This review presents the hypothesis that these peptides share complementary roles by responding to internal and external stimuli with opposing actions to precisely regulate the reproductive axis.
Driving Reproduction: RFamide Peptides Behind the Wheel
Kriegsfeld, Lance J.
2012-01-01
The availability of tools for probing the genome and proteome more efficiently has allowed for the rapid discovery of novel genes and peptides that play important, previously-uncharacterized roles in neuroendocrine regulation. In this review, the role of a class of neuropeptides containing the C-terminal Arg-Phe-NH2 (RFamide) in regulating the reproductive axis will be highlighted. Neuropeptides containing the C-terminal Phe- Met-Arg-Phe-NH2 (FMRFamide) were first identified as cardioregulatory elements in the bi-valve mollusk, Macrocallista nimbosa. During the past two decades, numerous studies have shown the presence of structurally-similar peptides sharing the RFamide motif across taxa. In vertebrates, RFamide peptides have pronounced influences on opiatergic regulation and neuroendocrine function. Two key peptides in this family are emerging as important regulators of the reproductive axis, kisspeptin and gonadotropin-inhibitory hormone (GnIH). Kisspeptin acts as the accelerator, directly driving gonadotropin-releasing hormone (GnRH) neurons, whereas GnIH acts as the restraint. Recent evidence suggests that both peptides play a role in mediating the negative feedback effects of sex steroids. This review presents the hypothesis that these peptides share complementary roles by responding to internal and external stimuli with opposing actions to precisely regulate the reproductive axis. PMID:16876801
Perego, M
1997-08-05
The phosphorelay signal transduction system activates developmental transcription in sporulation of Bacillus subtilis by phosphorylation of aspartyl residues of the Spo0F and Spo0A response regulators. The phosphorylation level of these response regulators is determined by the opposing activities of protein kinases and protein aspartate phosphatases that interpret positive and negative signals for development in a signal integration circuit. The RapA protein aspartate phosphatase of the phosphorelay is regulated by a peptide that directly inhibits its activity. This peptide is proteolytically processed from an inactive pre-inhibitor protein encoded in the phrA gene. The pre-inhibitor is cleaved by the protein export apparatus to a putative pro-inhibitor that is further processed to the active inhibitor peptide and internalized by the oligopeptide permease. This export-import circuit is postulated to be a mechanism for timing phosphatase activity where the processing enzymes regulate the rate of formation of the active inhibitor. The processing events may, in turn, be controlled by a regulatory hierarchy. Chromosome sequencing has revealed several other phosphatase-prepeptide gene pairs in B. subtilis, suggesting that the use of this mechanism may be widespread in signal transduction.
Perego, Marta
1997-01-01
The phosphorelay signal transduction system activates developmental transcription in sporulation of Bacillus subtilis by phosphorylation of aspartyl residues of the Spo0F and Spo0A response regulators. The phosphorylation level of these response regulators is determined by the opposing activities of protein kinases and protein aspartate phosphatases that interpret positive and negative signals for development in a signal integration circuit. The RapA protein aspartate phosphatase of the phosphorelay is regulated by a peptide that directly inhibits its activity. This peptide is proteolytically processed from an inactive pre-inhibitor protein encoded in the phrA gene. The pre-inhibitor is cleaved by the protein export apparatus to a putative pro-inhibitor that is further processed to the active inhibitor peptide and internalized by the oligopeptide permease. This export–import circuit is postulated to be a mechanism for timing phosphatase activity where the processing enzymes regulate the rate of formation of the active inhibitor. The processing events may, in turn, be controlled by a regulatory hierarchy. Chromosome sequencing has revealed several other phosphatase–prepeptide gene pairs in B. subtilis, suggesting that the use of this mechanism may be widespread in signal transduction. PMID:9238025
Jia, Da; Gomez, Timothy S; Metlagel, Zoltan; Umetani, Junko; Otwinowski, Zbyszek; Rosen, Michael K; Billadeau, Daniel D
2010-06-08
We recently showed that the Wiskott-Aldrich syndrome protein (WASP) family member, WASH, localizes to endosomal subdomains and regulates endocytic vesicle scission in an Arp2/3-dependent manner. Mechanisms regulating WASH activity are unknown. Here we show that WASH functions in cells within a 500 kDa core complex containing Strumpellin, FAM21, KIAA1033 (SWIP), and CCDC53. Although recombinant WASH is constitutively active toward the Arp2/3 complex, the reconstituted core assembly is inhibited, suggesting that it functions in cells to regulate actin dynamics through WASH. FAM21 interacts directly with CAPZ and inhibits its actin-capping activity. Four of the five core components show distant (approximately 15% amino acid sequence identify) but significant structural homology to components of a complex that negatively regulates the WASP family member, WAVE. Moreover, biochemical and electron microscopic analyses show that the WASH and WAVE complexes are structurally similar. Thus, these two distantly related WASP family members are controlled by analogous structurally related mechanisms. Strumpellin is mutated in the human disease hereditary spastic paraplegia, and its link to WASH suggests that misregulation of actin dynamics on endosomes may play a role in this disorder.
Jeon, Lieny; Hur, Eunhye; Buettner, Cynthia K
2016-12-01
Teachers in early child-care settings are key contributors to children's development. However, the role of teachers' emotional abilities (i.e., emotion regulation and coping skills) and the role of teacher-perceived environmental chaos in relation to their responsiveness to children are understudied. The current study explored the direct and indirect associations between teachers' perceptions of child-care chaos and their self-reported contingent reactions towards children's negative emotions and challenging social interactions via teachers' emotional regulation and coping strategies. The sample consisted of 1129 preschool-aged classroom teachers in day care and public pre-K programs across the US. We first found that child-care chaos was directly associated with teachers' non-supportive reactions after controlling for multiple program and teacher characteristics. In addition, teachers in more chaotic child-care settings had less reappraisal and coping skills, which in turn, was associated with lower levels of positive responsiveness to children. Teachers reporting a higher degree of chaos used more suppression strategies, which in turn, was associated with teachers' non-supportive reactions and fewer expressive encouragement reactions to children's emotions. Results of this exploratory study suggest that it is important to prepare teachers to handle chaotic environments with clear guidelines and rules. In order to encourage teachers' supportive responses to children, intervention programs are needed to address teachers' coping and emotion regulation strategies in early childhood education. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Kisspeptin Signaling in the Brain
Oakley, Amy E.; Clifton, Donald K.; Steiner, Robert A.
2009-01-01
Kisspeptin (a product of the Kiss1 gene) and its receptor (GPR54 or Kiss1r) have emerged as key players in the regulation of reproduction. Mutations in humans or genetically targeted deletions in mice of either Kiss1 or Kiss1r cause profound hypogonadotropic hypogonadism. Neurons that express Kiss1/kisspeptin are found in discrete nuclei in the hypothalamus, as well as other brain regions in many vertebrates, and their distribution, regulation, and function varies widely across species. Kisspeptin neurons directly innervate and stimulate GnRH neurons, which are the final common pathway through which the brain regulates reproduction. Kisspeptin neurons are sexually differentiated with respect to cell number and transcriptional activity in certain brain nuclei, and some kisspeptin neurons express other cotransmitters, including dynorphin and neurokinin B (whose physiological significance is unknown). Kisspeptin neurons express the estrogen receptor and the androgen receptor, and these cells are direct targets for the action of gonadal steroids in both male and female animals. Kisspeptin signaling in the brain has been implicated in mediating the negative feedback action of sex steroids on gonadotropin secretion, generating the preovulatory GnRH/LH surge, triggering and guiding the tempo of sexual maturation at puberty, controlling seasonal reproduction, and restraining reproductive activity during lactation. Kisspeptin signaling may also serve diverse functions outside of the classical realm of reproductive neuroendocrinology, including the regulation of metastasis in certain cancers, vascular dynamics, placental physiology, and perhaps even higher-order brain function. PMID:19770291
Gu, Dachuan; Chen, Chia-Yang; Zhao, Minglei; Zhao, Linmao; Duan, Xuewu; Duan, Jun; Wu, Keqiang; Liu, Xuncheng
2017-07-07
Light is a major external factor in regulating seed germination. Photoreceptor phytochrome B (PHYB) plays a predominant role in promoting seed germination in the initial phase after imbibition, partially by repressing phytochrome-interacting factor1 (PIF1). However, the mechanism underlying the PHYB-PIF1-mediated transcription regulation remains largely unclear. Here, we identified that histone deacetylase15 (HDA15) is a negative component of PHYB-dependent seed germination. Overexpression of HDA15 in Arabidopsis inhibits PHYB-dependent seed germination, whereas loss of function of HDA15 increases PHYB-dependent seed germination. Genetic evidence indicated that HDA15 acts downstream of PHYB and represses seed germination dependent on PIF1. Furthermore, HDA15 interacts with PIF1 both in vitro and in vivo. Genome-wide transcriptome analysis revealed that HDA15 and PIF1 co-regulate the transcription of the light-responsive genes involved in multiple hormonal signaling pathways and cellular processes in germinating seeds in the dark. In addition, PIF1 recruits HDA15 to the promoter regions of target genes and represses their expression by decreasing the histone H3 acetylation levels in the dark. Taken together, our analysis uncovered the role of histone deacetylation in the light-regulated seed germination process and identified that HDA15-PIF1 acts as a key repression module directing the transcription network of seed germination. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Gu, Dachuan; Chen, Chia-Yang; Zhao, Minglei; Zhao, Linmao; Duan, Xuewu
2017-01-01
Abstract Light is a major external factor in regulating seed germination. Photoreceptor phytochrome B (PHYB) plays a predominant role in promoting seed germination in the initial phase after imbibition, partially by repressing phytochrome-interacting factor1 (PIF1). However, the mechanism underlying the PHYB-PIF1-mediated transcription regulation remains largely unclear. Here, we identified that histone deacetylase15 (HDA15) is a negative component of PHYB-dependent seed germination. Overexpression of HDA15 in Arabidopsis inhibits PHYB-dependent seed germination, whereas loss of function of HDA15 increases PHYB-dependent seed germination. Genetic evidence indicated that HDA15 acts downstream of PHYB and represses seed germination dependent on PIF1. Furthermore, HDA15 interacts with PIF1 both in vitro and in vivo. Genome-wide transcriptome analysis revealed that HDA15 and PIF1 co-regulate the transcription of the light-responsive genes involved in multiple hormonal signaling pathways and cellular processes in germinating seeds in the dark. In addition, PIF1 recruits HDA15 to the promoter regions of target genes and represses their expression by decreasing the histone H3 acetylation levels in the dark. Taken together, our analysis uncovered the role of histone deacetylation in the light-regulated seed germination process and identified that HDA15-PIF1 acts as a key repression module directing the transcription network of seed germination. PMID:28444370
Di Plinio, Simone; Ferri, Francesca; Marzetti, Laura; Romani, Gian Luca; Northoff, Georg; Pizzella, Vittorio
2018-04-24
Recent evidence shows that task-deactivations are functionally relevant for cognitive performance. Indeed, higher cognitive engagement has been associated with higher suppression of activity in task-deactivated brain regions - usually ascribed to the Default Mode Network (DMN). Moreover, a negative correlation between these regions and areas actively engaged by the task is associated with better performance. DMN regions show positive modulation during autobiographical, social, and emotional tasks. However, it is not clear how processing of emotional stimuli affects the interplay between the DMN and executive brain regions. We studied this interplay in an fMRI experiment using emotional negative stimuli as distractors. Activity modulations induced by the emotional interference of negative stimuli were found in frontal, parietal, and visual areas, and were associated with modulations of functional connectivity between these task-activated areas and DMN regions. A worse performance was predicted both by lower activity in the superior parietal cortex and higher connectivity between visual areas and frontal DMN regions. Connectivity between right inferior frontal gyrus and several DMN regions in the left hemisphere was related to the behavioral performance. This relation was weaker in the negative than in the neutral condition, likely suggesting less functional inhibitions of DMN regions during emotional processing. These results show that both executive and DMN regions are crucial for the emotional interference process and suggest that DMN connections are related to the interplay between externally-directed and internally-focused processes. Among DMN regions, superior frontal gyrus may be a key node in regulating the interference triggered by emotional stimuli. © 2018 Wiley Periodicals, Inc.
Mathiak, Krystyna A; Klasen, Martin; Weber, René; Ackermann, Hermann; Shergill, Sukhwinder S; Mathiak, Klaus
2011-07-12
Violent content in video games evokes many concerns but there is little research concerning its rewarding aspects. It was demonstrated that playing a video game leads to striatal dopamine release. It is unclear, however, which aspects of the game cause this reward system activation and if violent content contributes to it. We combined functional Magnetic Resonance Imaging (fMRI) with individual affect measures to address the neuronal correlates of violence in a video game. Thirteen male German volunteers played a first-person shooter game (Tactical Ops: Assault on Terror) during fMRI measurement. We defined success as eliminating opponents, and failure as being eliminated themselves. Affect was measured directly before and after game play using the Positive and Negative Affect Schedule (PANAS). Failure and success events evoked increased activity in visual cortex but only failure decreased activity in orbitofrontal cortex and caudate nucleus. A negative correlation between negative affect and responses to failure was evident in the right temporal pole (rTP). The deactivation of the caudate nucleus during failure is in accordance with its role in reward-prediction error: it occurred whenever subject missed an expected reward (being eliminated rather than eliminating the opponent). We found no indication that violence events were directly rewarding for the players. We addressed subjective evaluations of affect change due to gameplay to study the reward system. Subjects reporting greater negative affect after playing the game had less rTP activity associated with failure. The rTP may therefore be involved in evaluating the failure events in a social context, to regulate the players' mood.
TRIF Licenses Caspase-11-Dependent NLRP3 Inflammasome Activation by Gram-Negative Bacteria
Rathinam, Vijay A.K.; Vanaja, Sivapriya Kailasan; Waggoner, Lisa; Sokolovska, Anna; Becker, Christine; Stuart, Lynda M.; Leong, John M.; Fitzgerald, Katherine A.
2013-01-01
SUMMARY Systemic infections with Gram-negative bacteria are characterized by high mortality rates due to the “sepsis syndrome,” a widespread and uncontrolled inflammatory response. Though it is well recognized that the immune response during Gram-negative bacterial infection is initiated after the recognition of endotoxin by Toll-like receptor 4, the molecular mechanisms underlying the detrimental inflammatory response during Gram-negative bacteremia remain poorly defined. Here, we identify a TRIF pathway that licenses NLRP3 inflammasome activation by all Gram-negative bacteria. By engaging TRIF, Gram-negative bacteria activate caspase-11. TRIF activates caspase-11 via type I IFN signaling, an event that is both necessary and sufficient for caspase-11 induction and autoactivation. Caspase-11 subsequently synergizes with the assembled NLRP3 inflammasome to regulate caspase-1 activation and leads to caspase-1-independent cell death. These events occur specifically during infection with Gram-negative, but not Gram-positive, bacteria. The identification of TRIF as a regulator of caspase-11 underscores the importance of TLRs as master regulators of inflammasomes during Gram-negative bacterial infection. PMID:22819539
Evaluating the content and reception of messages from incarcerated parents to their children.
Folk, Johanna B; Nichols, Emily B; Dallaire, Danielle H; Loper, Ann B
2012-10-01
In the current study, children's reactions to video messages from their incarcerated parents were evaluated. Previous research has yielded mixed results when it examined the impact of contact between incarcerated parents and their children; one reason for these mixed results may be a lack of attention to the quality of contact. This is the first study to examine the actual content and quality of a remote form of contact in this population. Participants included 186 incarcerated parents (54% mothers) who participated in a filming with The Messages Project and 61 caregivers of their children. Parental mood prior to filming the message and children's mood after viewing the message were assessed using the Positive and Negative Affect Scale. After coding the content of 172 videos, the data from the 61 videos with caregiver responses were used in subsequent path analyses. Analyses indicated that when parents were in more negative moods prior to filming their message, they displayed more negative emotions in the video messages ( = .210), and their children were in more negative moods after viewing the message ( = .288). Considering that displays of negative emotion can directly affect how children respond to contact, it seems important for parents to learn to regulate these emotional displays to improve the quality of their contact with their children. © 2012 American Orthopsychiatric Association.
MicroRNA-1231 exerts a tumor suppressor role through regulating the EGFR/PI3K/AKT axis in glioma.
Zhang, Jiale; Zhang, Jie; Qiu, Wenjin; Zhang, Jian; Li, Yangyang; Kong, Enjun; Lu, Ailin; Xu, Jia; Lu, Xiaoming
2018-05-17
MicroRNAs (miRNAs) have been shown to be involved in the initiation and progression of glioma. However, the underlying molecular mechanisms are still unclear. We performed microarray analysis to evaluate miRNA expression levels in 158 glioma tissue samples, and examined miR-1231 levels in glioma samples and healthy brain tissues using qRT-PCR. In vitro analyses were performed using miR-1231 mimics, inhibitors, and siRNA targeting EGFR. We used flow cytometry, CCK-8 assays, and colony formation assays to examine glioma proliferation and cell cycle analysis. A dual luciferase reporter assay was performed to examine miR-1231 regulation of EGFR, and the effect of upregulated miR-1231 was investigated in a subcutaneous GBM model. We found that miR-1231 expression was decreased in human glioma tissues and negatively correlated with EGFR levels. Moreover, the downregulation of miR-1231 negatively correlated with the clinical stage of human glioma patients. miR-1231 overexpression dramatically downregulated glioma cell proliferation, and suppressed tumor growth in a nude mouse model. Bioinformatics prediction and a luciferase assay confirmed EGFR as a direct target of miR-1231. EGFR overexpression abrogated the suppressive effect of miR-1231 on the PI3K/AKT pathway and G1 arrest. Taken together, these results demonstrated that EGFR is a direct target of miR-1231. Our findings suggest that the miR-1231/EGFR axis may be a helpful future diagnostic target for malignant glioma.