Sample records for direct physiological effects

  1. Systematic review and meta-analysis of hemodynamic-directed feedback during cardiopulmonary resuscitation in cardiac arrest.

    PubMed

    Chopra, A S; Wong, N; Ziegler, C P; Morrison, L J

    2016-04-01

    Physiologic monitoring of resuscitative efforts during cardiac arrest is gaining in importance, as it provides a real-time window into the cellular physiology of patients. The aim of this review is to assess the quality of evidence surrounding the use of physiologic monitoring to guide cardiopulmonary resuscitation (CPR), and to examine whether the evidence demonstrates an improvement in patient outcome when comparing hemodynamic-directed CPR versus standard CPR. Studies were obtained through a search of the PubMed, Embase and Cochrane databases. Peer-reviewed randomized trials, case-control studies, systematic reviews, and cohort studies that titrated CPR to physiologic measures, compared results to standard CPR, and examined patient outcome were included. Six studies met inclusion criteria, with all studies conducted in animal populations. Four studies examined the effects of hemodynamic-directed CPR on survival, with 35/37 (94.6%) animals surviving in the hemodynamic-directed CPR groups and 12/35 (34.3%) surviving in the control groups (p<0.001). Two studies examined the effects of hemodynamic-directed CPR on ROSC, with 22/30 (73.3%) achieving ROSC in the hemodynamic-directed CPR group and 19/30 (63.3%) achieving ROSC in the control group (p=0.344). These results suggest a trend in survival from hemodynamic-directed CPR over standard CPR, however the small sample size and lack of human data make these results of limited value. Future human studies examining hemodynamic-directed CPR versus current CPR standards are needed to enhance our understanding of how to effectively use physiologic measures to improve resuscitation efforts and ultimately incorporate concrete targets into international resuscitation guidelines. Crown Copyright © 2016. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Affective response to 5 microT ELF magnetic field-induced physiological changes.

    PubMed

    Stevens, Paul

    2007-02-01

    Research into effects of weak magnetic fields (MFs) at biologically relevant frequencies has produced ambiguous results. Although they do affect human physiology and behaviour, the direction of effects is inconsistent, with a range of complex and unrelated behaviours being susceptible. A possible explanation is that these effects, rather than being directly caused, are instead related to changes in affective state. A previous study showed that MFs altered the affective content of concurrent perceptions, but it was unclear whether the emotional response was direct or indirect. Here it is shown that exposure to a 0-5 microT MF (DC-offset sinudsoidal wave form) within EEG alpha-band frequencies (8-12 Hz), results in a reported change in emotional state. This relates to a decrease global field power but lacks the frontal alpha-asymmetry that would physiologically indicate a directly induced emotional state, suggesting that participant experiences are due to an interpretation of the effects of MF exposure.

  3. Sex differences in physiological reactivity to acute psychosocial stress in adolescence.

    PubMed

    Ordaz, Sarah; Luna, Beatriz

    2012-08-01

    Females begin to demonstrate greater negative affective responses to stress than males in adolescence. This may reflect the concurrent emergence of underlying differences in physiological response systems, including corticolimbic circuitries, the hypothalamic-pituitary-adrenal axis (HPAA), and the autonomic nervous system (ANS). This review examines when sex differences in physiological reactivity to acute psychosocial stress emerge and the directionality of these differences over development. Indeed, the literature indicates that sex differences emerge during adolescence and persist into adulthood for all three physiological response systems. However, the directionality of the differences varies by system. The emerging corticolimbic reactivity literature suggests greater female reactivity, particularly in limbic regions densely innervated by gonadal hormone receptors. In contrast, males generally show higher levels of HPAA and ANS reactivity. We argue that the contrasting directionality of corticolimbic and peripheral physiological responses may reflect specific effects of gonadal hormones on distinct systems and also sex differences in evolved behavioral responses that demand different levels of peripheral physiological activation. Studies that examine both subjective reports of negative affect and physiological responses indicate that beginning in adolescence, females respond to acute stressors with more intense negative affect than males despite their comparatively lower peripheral physiological responses. This dissociation is not clearly explained by sex differences in the strength of the relationship between physiological and subjective responses. We suggest that females' greater subjective responsivity may instead arise from a greater activity in brain regions that translate stress responses to subjective awareness in adolescence. Future research directions include investigations of the role of pubertal hormones in physiological reactivity across all systems, examining the relationship of corticolimbic reactivity and negative affect, and sex differences in emotion regulation processes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Sex differences in physiological reactivity to acute psychosocial stress in adolescence

    PubMed Central

    Ordaz, Sarah; Luna, Beatriz

    2012-01-01

    Summary Females begin to demonstrate greater negative affective responses to stress than males in adolescence. This may reflect the concurrent emergence of underlying differences in physiological response systems, including corticolimbic circuitries, the hypothalamic—pituitary— adrenal axis (HPAA), and the autonomic nervous system (ANS). This review examines when sex differences in physiological reactivity to acute psychosocial stress emerge and the directionality of these differences over development. Indeed, the literature indicates that sex differences emerge during adolescence and persist into adulthood for all three physiological response systems. However, the directionality of the differences varies by system. The emerging corti-colimbic reactivity literature suggests greater female reactivity, particularly in limbic regions densely innervated by gonadal hormone receptors. In contrast, males generally show higher levels of HPAA and ANS reactivity. We argue that the contrasting directionality of corticolimbic and peripheral physiological responses may reflect specific effects of gonadal hormones on distinct systems and also sex differences in evolved behavioral responses that demand different levels of peripheral physiological activation. Studies that examine both subjective reports of negative affect and physiological responses indicate that beginning in adolescence, females respond to acute stressors with more intense negative affect than males despite their comparatively lower peripheral physiological responses. This dissociation is not clearly explained by sex differences in the strength of the relationship between physiological and subjective responses. We suggest that females' greater subjective responsivity may instead arise from a greater activity in brain regions that translate stress responses to subjective awareness in adolescence. Future research directions include investigations of the role of pubertal hormones in physiological reactivity across all systems, examining the relationship of corticolimbic reactivity and negative affect, and sex differences in emotion regulation processes. PMID:22281210

  5. Rapid Sensitization of Physiological, Neuronal, and Locomotor Effects of Nicotine: Critical Role of Peripheral Drug Actions

    PubMed Central

    Lenoir, Magalie; Tang, Jeremy S.; Woods, Amina S.

    2013-01-01

    Repeated exposure to nicotine and other psychostimulant drugs produces persistent increases in their psychomotor and physiological effects (sensitization), a phenomenon related to the drugs' reinforcing properties and abuse potential. Here we examined the role of peripheral actions of nicotine in nicotine-induced sensitization of centrally mediated physiological parameters (brain, muscle, and skin temperatures), cortical and VTA EEG, neck EMG activity, and locomotion in freely moving rats. Repeated injections of intravenous nicotine (30 μg/kg) induced sensitization of the drug's effects on all these measures. In contrast, repeated injections of the peripherally acting analog of nicotine, nicotine pyrrolidine methiodide (nicotinePM, 30 μg/kg, i.v.) resulted in habituation (tolerance) of the same physiological, neuronal, and behavioral measures. However, after repeated nicotine exposure, acute nicotinePM injections induced nicotine-like physiological responses: powerful cortical and VTA EEG desynchronization, EMG activation, a large brain temperature increase, but weaker hyperlocomotion. Additionally, both the acute locomotor response to nicotine and nicotine-induced locomotor sensitization were attenuated by blockade of peripheral nicotinic receptors by hexamethonium (3 mg/kg, i.v.). These data suggest that the peripheral actions of nicotine, which precede its direct central actions, serve as a conditioned interoceptive cue capable of eliciting nicotine-like physiological and neural responses after repeated nicotine exposure. Thus, by providing a neural signal to the CNS that is repeatedly paired with the direct central effects of nicotine, the drug's peripheral actions play a critical role in the development of nicotine-induced physiological, neural, and behavioral sensitization. PMID:23761889

  6. Rapid sensitization of physiological, neuronal, and locomotor effects of nicotine: critical role of peripheral drug actions.

    PubMed

    Lenoir, Magalie; Tang, Jeremy S; Woods, Amina S; Kiyatkin, Eugene A

    2013-06-12

    Repeated exposure to nicotine and other psychostimulant drugs produces persistent increases in their psychomotor and physiological effects (sensitization), a phenomenon related to the drugs' reinforcing properties and abuse potential. Here we examined the role of peripheral actions of nicotine in nicotine-induced sensitization of centrally mediated physiological parameters (brain, muscle, and skin temperatures), cortical and VTA EEG, neck EMG activity, and locomotion in freely moving rats. Repeated injections of intravenous nicotine (30 μg/kg) induced sensitization of the drug's effects on all these measures. In contrast, repeated injections of the peripherally acting analog of nicotine, nicotine pyrrolidine methiodide (nicotine(PM), 30 μg/kg, i.v.) resulted in habituation (tolerance) of the same physiological, neuronal, and behavioral measures. However, after repeated nicotine exposure, acute nicotine(PM) injections induced nicotine-like physiological responses: powerful cortical and VTA EEG desynchronization, EMG activation, a large brain temperature increase, but weaker hyperlocomotion. Additionally, both the acute locomotor response to nicotine and nicotine-induced locomotor sensitization were attenuated by blockade of peripheral nicotinic receptors by hexamethonium (3 mg/kg, i.v.). These data suggest that the peripheral actions of nicotine, which precede its direct central actions, serve as a conditioned interoceptive cue capable of eliciting nicotine-like physiological and neural responses after repeated nicotine exposure. Thus, by providing a neural signal to the CNS that is repeatedly paired with the direct central effects of nicotine, the drug's peripheral actions play a critical role in the development of nicotine-induced physiological, neural, and behavioral sensitization.

  7. Physiological reactivity in children of Oklahoma City bombing survivors 7 years postdisaster: a pilot study.

    PubMed

    Pfefferbaum, Betty; Tucker, Phebe; North, Carol S; Jeon-Slaughter, Haekyung

    2011-08-01

    Relatively few studies of children exposed to trauma have used objective indicators such as heart rate and blood pressure measurements to assess physiological reactivity. This pilot study examined physiological reactivity (heart rate, systolic blood pressure, and diastolic blood pressure) and emotional indicators (posttraumatic stress and depressive symptoms) in 17 children of directly exposed Oklahoma City bombing survivors and in 17 demographically matched community comparison children, 7 years after the incident. Despite generally low levels of subjectively reported posttraumatic stress and depressive symptoms 7 years after the disaster, the children of survivors showed heightened objectively measured physiological reactivity relative to the comparison group. The extent to which this heightened physiological reactivity in the children of survivors was pathologic is unclear. Only 1 participant reported high levels of posttraumatic stress and depressive symptoms; this individual also demonstrated physiological reactivity. Results suggest children of disaster survivors may experience physiological reactivity despite absence of direct exposure to the trauma or acknowledgement of symptoms. These findings indicate the physiological effects of trauma may endure separate from subjective affect in the offspring of highly exposed disaster survivors. More research is needed to determine the potential consequences of persistent physiological reactivity.

  8. INFLUENCE OF SUMMER TEMPERATURE SPATIAL VARIABILITY ON DISTRIBUTION AND CONDITION OF JUVENILE COHO SALMON

    EPA Science Inventory

    abstract

    Temperature during the summer months can influence the distribution, abundance and physiology of stream salmonids such as coho salmon (Oncorhynchus kisutch). Effects can be direct, via physiological responses, as well as indirect, via limited food resources, alter...

  9. Intranasal administration of oxytocin: behavioral and clinical effects, a review.

    PubMed

    Veening, Jan G; Olivier, Berend

    2013-09-01

    The intranasal (IN-) administration of substances is attracting attention from scientists as well as pharmaceutical companies. The effects are surprisingly fast and specific. The present review explores our current knowledge about the routes of access to the cranial cavity. 'Direct-access-pathways' from the nasal cavity have been described but many additional experiments are needed to answer a variety of open questions regarding anatomy and physiology. Among the IN-applied substances oxytocin (OT) has an extensive history. Originally applied in women for its physiological effects related to lactation and parturition, over the last decade most studies focused on their behavioral 'prosocial' effects: from social relations and 'trust' to treatment of 'autism'. Only very recently in a microdialysis study in rats and mice, the 'direct-nose-brain-pathways' of IN-OT have been investigated directly, implying that we are strongly dependent on results obtained from other IN-applied substances. Especially the possibility that IN-OT activates the 'intrinsic' OT-system in the hypothalamus as well needs further clarification. We conclude that IN-OT administration may be a promising approach to influence human communication but that the existing lack of information about the neural and physiological mechanisms involved is a serious problem for the proper understanding and interpretation of the observed effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Conservation physiology of marine fishes: state of the art and prospects for policy.

    PubMed

    McKenzie, David J; Axelsson, Michael; Chabot, Denis; Claireaux, Guy; Cooke, Steven J; Corner, Richard A; De Boeck, Gudrun; Domenici, Paolo; Guerreiro, Pedro M; Hamer, Bojan; Jørgensen, Christian; Killen, Shaun S; Lefevre, Sjannie; Marras, Stefano; Michaelidis, Basile; Nilsson, Göran E; Peck, Myron A; Perez-Ruzafa, Angel; Rijnsdorp, Adriaan D; Shiels, Holly A; Steffensen, John F; Svendsen, Jon C; Svendsen, Morten B S; Teal, Lorna R; van der Meer, Jaap; Wang, Tobias; Wilson, Jonathan M; Wilson, Rod W; Metcalfe, Julian D

    2016-01-01

    The state of the art of research on the environmental physiology of marine fishes is reviewed from the perspective of how it can contribute to conservation of biodiversity and fishery resources. A major constraint to application of physiological knowledge for conservation of marine fishes is the limited knowledge base; international collaboration is needed to study the environmental physiology of a wider range of species. Multifactorial field and laboratory studies on biomarkers hold promise to relate ecophysiology directly to habitat quality and population status. The 'Fry paradigm' could have broad applications for conservation physiology research if it provides a universal mechanism to link physiological function with ecological performance and population dynamics of fishes, through effects of abiotic conditions on aerobic metabolic scope. The available data indicate, however, that the paradigm is not universal, so further research is required on a wide diversity of species. Fish physiologists should interact closely with researchers developing ecological models, in order to investigate how integrating physiological information improves confidence in projecting effects of global change; for example, with mechanistic models that define habitat suitability based upon potential for aerobic scope or outputs of a dynamic energy budget. One major challenge to upscaling from physiology of individuals to the level of species and communities is incorporating intraspecific variation, which could be a crucial component of species' resilience to global change. Understanding what fishes do in the wild is also a challenge, but techniques of biotelemetry and biologging are providing novel information towards effective conservation. Overall, fish physiologists must strive to render research outputs more applicable to management and decision-making. There are various potential avenues for information flow, in the shorter term directly through biomarker studies and in the longer term by collaborating with modellers and fishery biologists.

  11. An Investigative Laboratory Course in Human Physiology Using Computer Technology and Collaborative Writing

    ERIC Educational Resources Information Center

    FitzPatrick, Kathleen A.

    2004-01-01

    Active investigative student-directed experiences in laboratory science are being encouraged by national science organizations. A growing body of evidence from classroom assessment supports their effectiveness. This study describes four years of implementation and assessment of an investigative laboratory course in human physiology for 65…

  12. Experiencing and Regulating Sadness: Physiological and Cognitive Effects

    ERIC Educational Resources Information Center

    Robinson, Jennifer L.; Demaree, Heath A.

    2009-01-01

    No prior study has examined the two most prominent response-focused regulation strategies (suppression and exaggeration) using a within-subjects design. Utilizing this design allows for a direct comparison of physiological patterns and cognitive impairment associated with such efforts. One hundred and nine participants were asked to view a series…

  13. Direct Manipulation of Physiological Arousal in Induced Anxiety Therapy-Biofeedback Approach

    ERIC Educational Resources Information Center

    Sappington, A. A.

    1977-01-01

    Induced Anxiety is a brief psychotherapy procedure that teaches individuals to cope with negative effect by using relaxation techniques. This research investigated the role of physiological arousal in the affect induction phase of Induced Anxiety therapy by using biofeedback to facilitate arousal. Twenty-one college students suffering from…

  14. Effects of Social Isolation on Glucocorticoid Regulation in Social Mammals

    PubMed Central

    Hawkley, Louise C.; Cole, Steve W.; Capitanio, John P.; Norman, Greg J.; Cacioppo, John T.

    2012-01-01

    The regulation and function of the hypothalamic-pituitary-adrenocortical (HPA) axis and glucocorticoids have been well conserved across vertebrate species. Glucocorticoids influence a wide range of physiological functions that include glucose regulation, metabolism, inflammatory control, as well as cardiovascular, reproductive, and neuronal effects. Some of these are relatively quick-acting non-genomic effects, but most are slower-acting genomic effects. Thus, any stimulus that affects HPA function has the potential to exert wide-ranging short-term and long-term effects on much of vertebrate physiology. Here, we review the effects of social isolation on the functioning of the HPA axis in social species, and on glucocorticoid physiology in social mammals in particular. Evidence indicates that objective and perceived social isolation alter HPA regulation, although the nature and direction of the HPA response differs among species and across age. The inconsistencies in the direction and nature of HPA effects have implications for drawing cross-species conclusions about the effects of social isolation, and are particularly problematic for understanding HPA-related physiological processes in humans. The animal and human data are incommensurate because, for example, animal studies of objective isolation have typically not been modeled on, or for comparability with, the subjective experience of isolation in humans. An animal model of human isolation must be taken more seriously if we want to advance our understanding of the mechanisms for the effects of objective and perceived isolation in humans. PMID:22663934

  15. Biological causal links on physiological and evolutionary time scales.

    PubMed

    Karmon, Amit; Pilpel, Yitzhak

    2016-04-26

    Correlation does not imply causation. If two variables, say A and B, are correlated, it could be because A causes B, or that B causes A, or because a third factor affects them both. We suggest that in many cases in biology, the causal link might be bi-directional: A causes B through a fast-acting physiological process, while B causes A through a slowly accumulating evolutionary process. Furthermore, many trained biologists tend to consistently focus at first on the fast-acting direction, and overlook the slower process in the opposite direction. We analyse several examples from modern biology that demonstrate this bias (codon usage optimality and gene expression, gene duplication and genetic dispensability, stem cell division and cancer risk, and the microbiome and host metabolism) and also discuss an example from linguistics. These examples demonstrate mutual effects between the fast physiological processes and the slow evolutionary ones. We believe that building awareness of inference biases among biologists who tend to prefer one causal direction over another could improve scientific reasoning.

  16. Effects of exercise on tumor physiology and metabolism.

    PubMed

    Pedersen, Line; Christensen, Jesper Frank; Hojman, Pernille

    2015-01-01

    Exercise is a potent regulator of a range of physiological processes in most tissues. Solid epidemiological data show that exercise training can reduce disease risk and mortality for several cancer diagnoses, suggesting that exercise training may directly regulate tumor physiology and metabolism. Here, we review the body of literature describing exercise intervention studies performed in rodent tumor models and elaborate on potential mechanistic effects of exercise on tumor physiology. Exercise has been shown to reduce tumor incidence, tumor multiplicity, and tumor growth across numerous different transplantable, chemically induced or genetic tumor models. We propose 4 emerging mechanistic effects of exercise, including (1) vascularization and blood perfusion, (2) immune function, (3) tumor metabolism, and (4) muscle-to-cancer cross-talk, and discuss these in details. In conclusion, exercise training has the potential to be a beneficial and integrated component of cancer management, but has yet to fully elucidate its potential. Understanding the mechanistic effects of exercise on tumor physiology is warranted. Insight into these mechanistic effects is emerging, but experimental intervention studies are still needed to verify the cause-effect relationship between these mechanisms and the control of tumor growth.

  17. The Influence of Depression on the Progression of HIV: Direct and Indirect Effects

    ERIC Educational Resources Information Center

    Schuster, Randi; Bornovalova, Marina; Hunt, Elizabeth

    2012-01-01

    The authors suggest a theoretical model of pathways of HIV progression, with a focus on the contributions of depression--as well as secondary, behavioral and emotional variables. Literature was reviewed regarding (a) comorbid depression and the direct physiological effects on HIV progression and (b) intermediary factors between HIV and disease…

  18. Costs of living for juvenile Chinook salmon (Oncorhynchus tshawytscha) in an increasingly warming and invaded world

    USGS Publications Warehouse

    Kuehne, Lauren M.; Olden, Julian D.; Duda, Jeffrey J.

    2012-01-01

    Rapid environmental change in freshwater ecosystems has created a need to understand the interactive effects of multiple stressors, with temperature and invasive predators identified as key threats to imperiled fish species. We tested the separate and interactive effects of water temperature and predation by non-native smallmouth bass (Micropterus dolomieu) on the lethal (mortality) and sublethal (behavior, physiology, and growth) effects for juvenile Chinook salmon (Oncorhynchus tshawytscha) in seminatural stream channel experiments. Over 48 h trials, there was no difference in direct predation with warmer temperatures, but significant interactive effects on sublethal responses of juvenile salmon. Warmer temperatures resulted in significantly stronger and more variable antipredator responses (surface shoaling and swimming activity), while physiological indicators (plasma glucose, plasma cortisol) suggested suppression of physiological mechanisms in response to the combined stressors. These patterns corresponded with additive negative growth in predation, temperature, and combined treatments. Our results suggest that chronic increases in temperature may not increase direct predation over short periods, but can result in significant sublethal costs with negative implications for long-term development, disease resistance, and subsequent size-selective mortality of Pacific salmon.

  19. The effects of chemotherapeutics on cellular metabolism and consequent immune recognition.

    PubMed

    Newell, M Karen; Melamede, Robert; Villalobos-Menuey, Elizabeth; Swartzendruber, Douglas; Trauger, Richard; Camley, Robert E; Crisp, William

    2004-02-02

    Awidely held view is that oncolytic agents induce death of tumor cells directly. In this report we review and discuss the apoptosis-inducing effects of chemotherapeutics, the effects of chemotherapeutics on metabolic function, and the consequent effects of metabolic function on immune recognition. Finally, we propose that effective chemotherapeutic and/or apoptosis-inducing agents, at concentrations that can be achieved physiologically, do not kill tumor cells directly. Rather, we suggest that effective oncolytic agents sensitize immunologically altered tumor cells to immune recognition and immune-directed cell death.

  20. The effects of chemotherapeutics on cellular metabolism and consequent immune recognition

    PubMed Central

    Newell, M Karen; Melamede, Robert; Villalobos-Menuey, Elizabeth; Swartzendruber, Douglas; Trauger, Richard; Camley, Robert E; Crisp, William

    2004-01-01

    A widely held view is that oncolytic agents induce death of tumor cells directly. In this report we review and discuss the apoptosis-inducing effects of chemotherapeutics, the effects of chemotherapeutics on metabolic function, and the consequent effects of metabolic function on immune recognition. Finally, we propose that effective chemotherapeutic and/or apoptosis-inducing agents, at concentrations that can be achieved physiologically, do not kill tumor cells directly. Rather, we suggest that effective oncolytic agents sensitize immunologically altered tumor cells to immune recognition and immune-directed cell death. PMID:14756899

  1. Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    PubMed

    Rajagopalan, Ramesh; Litvan, Irene; Jung, Tzyy-Ping

    2017-11-01

    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems.

  2. Reduced birthweight in short or primiparous mothers: physiological or pathological?

    PubMed Central

    Zhang, X; Mumford, SL; Cnattingius, S; Schisterman, EF; Kramer, MS

    2011-01-01

    Objective Customisation of birthweight-for-gestational-age standards for maternal characteristics assumes that variation in birth weight as a result of those characteristics is physiological, rather than pathological. Maternal height and parity are among the characteristics widely assumed to be physiological. Our objective was to test that assumption by using an association with perinatal mortality as evidence of a pathological effect. Design Population-based cohort study. Setting Sweden. Population A total of 952 630 singletons born at ≥28 weeks of gestation in the period 1992–2001. Methods We compared perinatal mortality among mothers of short stature (<160 cm) versus those of normal height (≥160 cm), and primiparous versus multiparous mothers, using an internal reference of estimated fetal weight for gestational age. The total effects of maternal height and parity were estimated, as well as the effects of height and parity independent of birthweight (controlled direct effects). All analyses were based on fetuses at risk, using marginal structural Cox models for the estimation of total and controlled direct effects. Main outcome measures Perinatal mortality, stillbirth, and early neonatal mortality. Results The estimated total effect (HR; 95% CI) of short stature on perinatal death among short mothers was 1.2 (95% CI 1.1–1.3) compared with women of normal height; the effect of short stature independent of birthweight (controlled direct effect) was 0.8 (95% CI 0.6–1.0) among small-for-gestational-age (SGA) births, but 1.1 (95% CI 1.0–1.3) among non-SGA births. Similar results were observed for primiparous mothers. Conclusions The effect of maternal short stature or primiparity on perinatal mortality is partly mediated through SGA birth. Thus, birthweight differences resulting from these maternal characteristics appear not only to be physiological, but also to have an important pathological component. PMID:20618317

  3. Looking at physiological anthropology from a historical standpoint.

    PubMed

    Katsuura, Tetsuo

    2005-05-01

    As one way of thinking about physiological anthropology, let us survey it from a historical viewpoint. At the beginning of the 19th century, Blumenbach, considered the father of Physical Anthropology, wrote his "Handbook of Comparative Anatomy and Physiology." The subsequent research conducted and papers written by researchers such as Broca and Martin pointed in the direction of physiological anthropology; furthermore, the research carried out by the American researchers Demon and Baker had a physiological anthropology "feel." The courses in Physiological Anthropology taught by Tokizane exerted a major influence on physiological anthropology in Japan. The precursor of the Japan Society of Physiological Anthropology, organized by Sato in 1978, was extremely significant in the effect that it had on the subsequent development of physiological anthropology. The holding of the biennial International Congress of Physiological Anthropology, along with the allocation of the Research sub-field of Physiological Anthropology in the Grant-in-Aid for Scientific Research, would seem to suggest that the field of physiological anthropology is set to increasingly grow and evolve.

  4. Thermosensory perception regulates speed of movement in response to temperature changes in Drosophila melanogaster.

    PubMed

    Soto-Padilla, Andrea; Ruijsink, Rick; Sibon, Ody C M; van Rijn, Hedderik; Billeter, Jean-Christophe

    2018-04-12

    Temperature influences physiology and behavior of all organisms. For ectotherms, which lack central temperature regulation, temperature adaptation requires sheltering from or moving to a heat source. As temperature constrains the rate of metabolic reactions, it can directly affect ectotherm physiology and thus behavioral performance. This direct effect is particularly relevant for insects whose small body readily equilibrates with ambient temperature. In fact, models of enzyme kinetics applied to insect behavior predict performance at different temperatures, suggesting that thermal physiology governs behavior. However, insects also possess thermosensory neurons critical for locating preferred temperatures, showing cognitive control. This suggests that temperature-related behavior can emerge directly from a physiological effect, indirectly as consequence of thermosensory processing, or through both. To separate the roles of thermal physiology and cognitive control, we developed an arena that allows fast temperature changes in time and space, and in which animals' movements are automatically quantified. We exposed wild-type and thermosensory receptor mutants Drosophila melanogaster to a dynamic temperature environment and tracked their movements. The locomotor speed of wild-type flies closely matched models of enzyme kinetics, but the behavior of thermosensory mutants did not. Mutations in thermosensory receptor dTrpA1 ( Transient receptor potential ) expressed in the brain resulted in a complete lack of response to temperature changes, while mutation in peripheral thermosensory receptor Gr28b(D) resulted in diminished response. We conclude that flies react to temperature through cognitive control, informed by interactions between various thermosensory neurons, whose behavioral output resembles that of enzyme kinetics. © 2018. Published by The Company of Biologists Ltd.

  5. Repeated Sprint Ability in Young Basketball Players (Part 2): The Chronic Effects of Multidirection and of One Change of Direction Are Comparable in Terms of Physiological and Performance Responses

    PubMed Central

    Attene, Giuseppe; Nikolaidis, Pantelis T.; Bragazzi, Nicola L.; Dello Iacono, Antonio; Pizzolato, Fabio; Zagatto, Alessandro M.; Dal Pupo, Juliano; Oggianu, Marcello; Migliaccio, Gian M.; Mannucci Pacini, Elena; Padulo, Johnny

    2016-01-01

    The aim of this study was to examine the effects of a 5-week training program, consisting of repeated 30-m sprints, on two repeated sprint ability (RSA) test formats: one with one change of direction (RSA) and the other with multiple changes of direction (RSM). Thirty-six young male and female basketball players (age 16.1 ± 0.9 years), divided into two experimental groups, were tested for RSA, RSM, squat jump, counter-movement jump, and the Yo-Yo Intermittent Recovery-Level-1 (Yo-Yo IR1) test, before and after a 4-week training program and 1 week of tapering. One group performed 30-m sprints with one change of direction (RSA group, RSAG), whereas the other group performed multidirectional 30-m sprints (RSM group, RSMG). Both groups improved in all scores in the post-intervention measurements (P < 0.05), except for the fatigue index in the RSM test. However, when comparing the two groups, similar effects were found for almost all parameters of the tests applied, except for RPE in the RSA test, which had a greater decrease in the RSAG (from 8.7 to 5.9) than in the RSMG (from 8.5 to 6.6, P = 0.021). We can conclude that repeated 30-m sprints, either with one change of direction or multidirectional, induce similar physiological and performance responses in young basketball players, but have a different psycho-physiological impact. PMID:27445852

  6. Space Life Sciences Directorate's Position on the Physiological Effects of Exposing the Crewmemeber to Low-Voltage Electrical Hazards During Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas; Kramer, Leonard; Mikatarian, Ron; Polk, James; Duncan, Michael; Koontz, Steven

    2010-01-01

    The models predict that, for low voltage exposures in the space suit, physiologically active current could be conducted across the crew member causing catastrophic hazards. Future work with Naval Health Research Center Detachment Directed Energy Bio-effects Laboratory is being proposed to analyze additional current paths across the human torso and upper limbs. These models may need to be verified with human studies.

  7. The relieving effects of shelter modes on physiological stress of traffic police in summer

    NASA Astrophysics Data System (ADS)

    Zheng, G. Z.; Wang, Y. J.; Bu, W. T.; Lu, Y. Z.; Li, Ke; Li, Z. H.

    2018-03-01

    In summer, high temperature and strong sun radiation last for a long time. However, traffic police still stick to their positions to ensure normal traffic order. Therefore, the health and safety of traffic police are challenged by the high temperature weather. To protect the safety of the traffic police in the outdoor high temperature environment, some shelter modes, such as sun hat and sun umbrella are selected for duty traffic police. The relieving effects on the physiological stress of the shelter modes are analyzed by comparison of the physiological parameters in these shelter modes. The results show that sun umbrella has a good effect on relieving physiological stress. And sun hat has no effect on relieving physiological stress, although it avoids the direct sunlight on the face. However, it causes the increase of the thermal sensation. This study can provide important methods for health protecting of traffic police in the outdoor high temperature environment. It also provides a theoretical support for the revision of the outdoor high temperature labour protection standard.

  8. Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions

    PubMed Central

    Rajagopalan, Ramesh; Jung, Tzyy-Ping

    2017-01-01

    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems. PMID:29104256

  9. Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria.

    PubMed

    Kavanagh, N I; Ainscow, E K; Brand, M D

    2000-02-24

    Activation of oxidative phosphorylation by physiological levels of calcium in mitochondria from rat skeletal muscle was analysed using top-down elasticity and regulation analysis. Oxidative phosphorylation was conceptually divided into three subsystems (substrate oxidation, proton leak and phosphorylation) connected by the membrane potential or the protonmotive force. Calcium directly activated the phosphorylation subsystem and (with sub-saturating 2-oxoglutarate) the substrate oxidation subsystem but had no effect on the proton leak kinetics. The response of mitochondria respiring on 2-oxoglutarate at two physiological concentrations of free calcium was quantified using control and regulation analysis. The partial integrated response coefficients showed that direct stimulation of substrate oxidation contributed 86% of the effect of calcium on state 3 oxygen consumption, and direct activation of the phosphorylation reactions caused 37% of the increase in phosphorylation flux. Calcium directly activated phosphorylation more strongly than substrate oxidation (78% compared to 45%) to achieve homeostasis of mitochondrial membrane potential during large increases in flux.

  10. Effects of acute thermal stress on the survival, predator avoidance, and physiology of juvenile fall Chinook salmon

    USGS Publications Warehouse

    Mesa, M.G.; Weiland, L.K.; Wagner, P.

    2002-01-01

    We subjected juvenile fall chinook salmon from the Hanford Reach of the Columbia River to acute thermal stressors in the laboratory that were derived from field data. We assessed the effects of thermal stress on: (1) the extent of direct mortality; (2) the vulnerability of fish to predation by smallmouth bass; and (3) some general physiological stress responses and synthesis of heat shock protein 70 (hsp70). Thermally-stressed fish showed little direct mortality and no increases in vulnerability to predation. However, these fish showed transient increases in plasma concentrations of cortisol, glucose, and lactate, and a dramatic (25-fold higher than controls) and persistent (lasting 2 wk) increase in levels of liver hsp70. Our results indicate that exposure of Hanford Reach juvenile fall chinook salmon to such stressors did not lead to significant increases in direct mortality or vulnerability to predation, but did alter physiological homeostasis, which should be of concern to those managing this resource. Because our fish received only a single exposure to one of the stressors we examined, we are also concerned about the consequences of exposing fish to multiple, cumulative stressors - a likely scenario for fish in the wild.

  11. The effect of current flow direction on motor hot spot allocation by transcranial magnetic stimulation.

    PubMed

    Stephani, Caspar; Paulus, Walter; Sommer, Martin

    2016-01-01

    The objective of this study was to investigate the significance of pulse configurations and current direction for corticospinal activation using transcranial magnetic stimulation (TMS). In 11 healthy subjects (8 female), a motor map for the motor evoked potentials (MEPs) recorded from the first dorsal interosseus (FDI), abductor digiti minimi (ADM), extensor carpi radialis, and biceps brachii (BB) muscles of the dominant side was established. Starting from a manually determined hot spot of the FDI representation, we measured MEPs at equal oriented points on an hexagonal grid, with 7 MEPs recorded at each point, using the following pulse configurations: posteriorly directed monophasic (Mo-P), anteriorly directed monophasic (Mo-A), biphasic with the more relevant second cycle oriented posteriorly (Bi-P) as well as a reversed biphasic condition (Bi-A). For each pulse configuration, a hot spot was determined and a center of gravity (CoG) was calculated. We found that the factor current direction had an effect on location of the CoG-adjusted hot spot in the cranio-caudal axis but not in the latero-medial direction with anteriorly directed pulses locating the CoG more anteriorly and vice versa. In addition, the CoG for the FDI was more laterally than the cortical representations for the abductor digiti minimi (ADM) and extensor carpi radialis (ECR) which were registered as well. The results indicate that direction of the current pulse should be taken into account for determination of the motor representation of a muscle by TMS. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  12. Three-dimensional printing physiology laboratory technology.

    PubMed

    Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R

    2013-12-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.

  13. Indirect Effects of Global Change: From Physiological and Behavioral Mechanisms to Ecological Consequences.

    PubMed

    Gunderson, Alex R; Tsukimura, Brian; Stillman, Jonathon H

    2017-07-01

    A major focus of current ecological research is to understand how global change makes species vulnerable to extirpation. To date, mechanistic ecophysiological analyses of global change vulnerability have focused primarily on the direct effects of changing abiotic conditions on whole-organism physiological traits, such as metabolic rate, locomotor performance, cardiac function, and critical thermal limits. However, species do not live in isolation within their physical environments, and direct effects of climate change are likely to be compounded by indirect effects that result from altered interactions with other species, such as competitors and predators. The Society for Integrative and Comparative Biology 2017 Symposium "Indirect Effects of Global Change: From Physiological and Behavioral Mechanisms to Ecological Consequences" was designed to synthesize multiple approaches to investigating the indirect effects of global change by bringing together researchers that study the indirect effects of global change from multiple perspectives across habitat, type of anthropogenic change, and level of biological organization. Our goal in bringing together researchers from different backgrounds was to foster cross-disciplinary insights into the mechanistic bases and higher-order ecological consequences of indirect effects of global change, and to promote collaboration among fields. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  14. Differential behavioral and physiological effects of anodal transcranial direct current stimulation in healthy adults of younger and older age

    PubMed Central

    Heise, Kirstin-Friederike; Niehoff, Martina; Feldheim, J.-F.; Liuzzi, Gianpiero; Gerloff, Christian; Hummel, Friedhelm C.

    2014-01-01

    Changes in γ-aminobutyric acid (GABA) mediated synaptic transmission have been associated with age-related motor and cognitive functional decline. Since anodal transcranial direct current stimulation (atDCS) has been suggested to target cortical GABAergic inhibitory interneurons, its potential for the treatment of deficient inhibitory activity and functional decline is being increasingly discussed. Therefore, after-effects of a single session of atDCS on resting-state and event-related short-interval intracortical inhibition (SICI) as evaluated with double-pulse TMS and dexterous manual performance were examined using a sham-controlled cross-over design in a sample of older and younger participants. The atDCS effect on resting-state inhibition differed in direction, magnitude, and timing, i.e., late relative release of inhibition in the younger and early relative increase in inhibition in the older. More pronounced release of event-related inhibition after atDCS was exclusively seen in the older. Event-related modulation of inhibition prior to stimulation predicted the magnitude of atDCS-induced effects on resting-state inhibition. Specifically, older participants with high modulatory capacity showed a disinhibitory effect comparable to the younger. Beneficial effects on behavior were mainly seen in the older and in tasks requiring higher dexterity, no clear association with physiological changes was found. Differential effects of atDCS on SICI, discussed to reflect GABAergic inhibition at the level of the primary motor cortex, might be distinct in older and younger participants depending on the functional integrity of the underlying neural network. Older participants with preserved modulatory capacity, i.e., a physiologically “young” motor network, were more likely to show a disinhibitory effect of atDCS. These results favor individually tailored application of tDCS with respect to specific target groups. PMID:25071555

  15. The Physiological Mechanisms of Effect of Vitamins and Amino Acids on Tendon and Muscle Healing: A Systematic Review.

    PubMed

    Tack, Christopher; Shorthouse, Faye; Kass, Lindsy

    2018-05-01

    To evaluate the current literature via systematic review to ascertain whether amino acids/vitamins provide any influence on musculotendinous healing and if so, by which physiological mechanisms. EBSCO, PubMed, ScienceDirect, Embase Classic/Embase, and MEDLINE were searched using terms including "vitamins," "amino acids," "healing," "muscle," and "tendon." The primary search had 479 citations, of which 466 were excluded predominantly due to nonrandomized design. Randomized human and animal studies investigating all supplement types/forms of administration were included. Critical appraisal of internal validity was assessed using the Cochrane risk of Bias Tool or the Systematic Review Centre for Laboratory Animal Experimentation Risk of Bias Tool for human and animal studies, respectively. Two reviewers performed duel data extraction. Twelve studies met criteria for inclusion: eight examined tendon healing and four examined muscle healing. All studies used animal models, except two human trials using a combined integrator. Narrative synthesis was performed via content analysis of demonstrated statistically significant effects and thematic analysis of proposed physiological mechanisms of intervention. Vitamin C/taurine demonstrated indirect effects on tendon healing through antioxidant activity. Vitamin A/glycine showed direct effects on extracellular matrix tissue synthesis. Vitamin E shows an antiproliferative influence on collagen deposition. Leucine directly influences signaling pathways to promote muscle protein synthesis. Preliminary evidence exists, demonstrating that vitamins and amino acids may facilitate multilevel changes in musculotendinous healing; however, recommendations on clinical utility should be made with caution. All animal studies and one human study showed high risk of bias with moderate interobserver agreement (k = 0.46). Currently, there is limited evidence to support the use of vitamins and amino acids for musculotendinous injury. Both high-quality animal experimentation of the proposed mechanisms confirming the physiological influence of supplementation and human studies evaluating effects on tissue morphology and biochemistry are required before practical application.

  16. The physiological determinants of drug-induced lysosomal stress resistance

    PubMed Central

    Woldemichael, Tehetina; Rosania, Gus R.

    2017-01-01

    Many weakly basic, lipophilic drugs accumulate in lysosomes and exert complex, pleiotropic effects on organelle structure and function. Thus, modeling how perturbations of lysosomal physiology affect the maintenance of lysosomal ion homeostasis is necessary to elucidate the key factors which determine the toxicological effects of lysosomotropic agents, in a cell-type dependent manner. Accordingly, a physiologically-based mathematical modeling and simulation approach was used to explore the dynamic, multi-parameter phenomenon of lysosomal stress. With this approach, parameters that are either directly involved in lysosomal ion transportation or lysosomal morphology were transiently altered to investigate their downstream effects on lysosomal physiology reflected by the changes they induce in lysosomal pH, chloride, and membrane potential. In addition, combinations of parameters were simultaneously altered to assess which parameter was most critical for recovery of normal lysosomal physiology. Lastly, to explore the relationship between organelle morphology and induced stress, we investigated the effects of parameters controlling organelle geometry on the restoration of normal lysosomal physiology following a transient perturbation. Collectively, our results indicate a key, interdependent role of V-ATPase number and membrane proton permeability in lysosomal stress tolerance. This suggests that the cell-type dependent regulation of V-ATPase subunit expression and turnover, together with the proton permeability properties of the lysosomal membrane, is critical to understand the differential sensitivity or resistance of different cell types to the toxic effects of lysosomotropic drugs. PMID:29117253

  17. The Interaction of Motor Performance and Psycho-Physiological Effects During Acceleration to Hypergravity

    NASA Astrophysics Data System (ADS)

    Guardiera, Simon; Schneider, Stefan

    2008-06-01

    Several studies reported that human motor performance is impaired during acceleration to hypergravity. While physiological explanations (e.g. vestibular activity) are widely discussed, psycho-physiological reasons (e.g. stress) are less considered. The present study therefore evaluates the interaction between psycho-physiological effects and motor performance in hypergravity. Eleven subjects performed a manual tracking task. Additionally, stress hormone concentration, EEG and subjective mood were evaluated. All measurements were performed in normal (+1Gz), and in (or directly after) three times gravitational acceleration (+3Gz). Motor performance decreased, while all determined stress hormone concentrations increased in +3Gz. EEG analysis revealed an increase of brain cortical activity in right frontal lobe in +3Gz. Subjective mood decreased due to +3Gz. Our data confirm, that motor performance is decreased in hypergravity, whereas an increase in psychophysiological stress markers could be obtained. We conclude that psycho-physiological changes have to be regarded as a possible explanation for deficits in motor performance in hypergravity.

  18. Physiological reactivity and facial expression to emotion-inducing films in patients with schizophrenia.

    PubMed

    Park, Sungwon; Kim, Kiwoong

    2011-12-01

    The present study aimed to investigate the physiological reactivity and recognition to emotional stimuli in outpatients with schizophrenia and in healthy controls. Skin conductance response, skin conductance level, heart rate, respiration, corrugator muscle, and orbicularis muscle were all measured using five emotion-eliciting film clips. The patients reported lower intensity of experienced anger and disgust than controls. The patient and control groups did not differ in accuracy to recognize emotions except anger. Anger, fear, amusement, and sadness had a discriminative effect on physiological responses in the two groups. These findings provide helpful physiological evidence influenced by harmful or favorable emotional stimuli. Future directions may include to clarify how physiological reactivity and subject experience to emotion are related to their functioning. 2011 Elsevier Inc. All rights reserved.

  19. Blood Pressure Regulation XI: Overview and Future Research Directions

    PubMed Central

    Raven, Peter B.; Chapleau, Mark W.

    2014-01-01

    While the importance of regulating arterial blood pressure within a ‘normal’ range is widely appreciated, the definition of ‘normal’ and the means by which humans and other species regulate blood pressure under various conditions remain hotly debated. The effects of diverse physiological, pathological and environmental challenges on blood pressure and the mechanisms that attempt to maintain it at an optimal level are reviewed and critically analyzed in a series of articles published in this themed issue of the European Journal of Applied Physiology. We summarize here the major points made in these reviews, with emphasis on unifying concepts of regulatory mechanisms and future directions for research. PMID:24463603

  20. Biological effects of exposure to static electric fields in humans and vertebrates: a systematic review.

    PubMed

    Petri, Anne-Kathrin; Schmiedchen, Kristina; Stunder, Dominik; Dechent, Dagmar; Kraus, Thomas; Bailey, William H; Driessen, Sarah

    2017-04-17

    High-voltage direct current (HVDC) lines are the technology of choice for the transport of large amounts of energy over long distances. The operation of these lines produces static electric fields (EF), but the data reviewed in previous assessments were not sufficient to assess the need for any environmental limit. The aim of this systematic review was to update the current state of research and to evaluate biological effects of static EF. Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) recommendations, we collected and evaluated experimental and epidemiological studies examining biological effects of exposure to static EF in humans (n = 8) and vertebrates (n = 40). There is good evidence that humans and animals are able to perceive the presence of static EF at sufficiently high levels. Hair movements caused by electrostatic forces may play a major role in this perception. A large number of studies reported responses of animals (e.g., altered metabolic, immunologic or developmental parameters) to a broad range of static EF strengths as well, but these responses are likely secondary physiological responses to sensory stimulation. Furthermore, the quality of many of the studies reporting physiological responses is poor, which raises concerns about confounding. The weight of the evidence from the literature reviewed did not indicate that static EF have adverse biological effects in humans or animals. The evidence strongly supported the role of superficial sensory stimulation of hair and skin as the basis for perception of the field, as well as reported indirect behavioral and physiological responses. Physical considerations also preclude any direct effect of static EF on internal physiology, and reports that some physiological processes are affected in minor ways may be explained by other factors. While this literature does not support a level of concern about biological effects of exposure to static EF, the conditions that affect thresholds for human detection and possible annoyance at suprathreshold levels should be investigated.

  1. Incorporating Research Findings into Standards and Requirements for Space Medicine

    NASA Technical Reports Server (NTRS)

    Duncan, J. Michael

    2006-01-01

    The Vision for Exploration has been the catalyst for NASA to refocus its life sciences research. In the future, life sciences research funded by NASA will be focused on answering questions that directly impact setting physiological standards and developing effective countermeasures to the undesirable physiological and psychological effects of spaceflight for maintaining the health of the human system. This, in turn, will contribute to the success of exploration class missions. We will show how research will impact setting physiologic standards, such as exposure limits, outcome limits, and accepted performance ranges. We will give examples of how a physiologic standard can eventually be translated into an operational requirement, then a functional requirement, and eventually spaceflight hardware or procedures. This knowledge will be important to the space medicine community as well as to vehicle contractors who, for the first time, must now consider the human system in developing and constructing a vehicle that can achieve the goal of success.

  2. Control of hepatic glucose metabolism by islet and brain.

    PubMed

    Rojas, J M; Schwartz, M W

    2014-09-01

    Dysregulation of hepatic glucose uptake (HGU) and inability of insulin to suppress hepatic glucose production (HGP) contribute to hyperglycaemia in patients with type 2 diabetes (T2D). Growing evidence suggests that insulin can inhibit HGP not only through a direct effect on the liver but also through a mechanism involving the brain. Yet, the notion that insulin action in the brain plays a physiological role in the control of HGP continues to be controversial. Although studies in dogs suggest that the direct hepatic effect of insulin is sufficient to explain day-to-day control of HGP, a surprising outcome has been revealed by recent studies in mice, investigating whether the direct hepatic action of insulin is necessary for normal HGP: when the hepatic insulin signalling pathway was genetically disrupted, HGP was maintained normally even in the absence of direct input from insulin. Here, we present evidence that points to a potentially important role of the brain in the physiological control of both HGU and HGP in response to input from insulin as well as other hormones and nutrients. © 2014 John Wiley & Sons Ltd.

  3. The effect of working on-call on stress physiology and sleep: A systematic review.

    PubMed

    Hall, Sarah J; Ferguson, Sally A; Turner, Anne I; Robertson, Samuel J; Vincent, Grace E; Aisbett, Brad

    2017-06-01

    On-call work is becoming an increasingly common work pattern, yet the human impacts of this type of work are not well established. Given the likelihood of calls to occur outside regular work hours, it is important to consider the potential impact of working on-call on stress physiology and sleep. The aims of this review were to collate and evaluate evidence on the effects of working on-call from home on stress physiology and sleep. A systematic search of Ebsco Host, Embase, Web of Science, Scopus and ScienceDirect was conducted. Search terms included: on-call, on call, standby, sleep, cortisol, heart rate, adrenaline, noradrenaline, nor-adrenaline, epinephrine, norepinephrine, nor-epinephrine, salivary alpha amylase and alpha amylase. Eight studies met the inclusion criteria, with only one study investigating the effect of working on-call from home on stress physiology. All eight studies investigated the effect of working on-call from home on sleep. Working on-call from home appears to adversely affect sleep quantity, and in most cases, sleep quality. However, studies did not differentiate between night's on-call from home with and without calls. Data examining the effect of working on-call from home on stress physiology were not sufficient to draw meaningful conclusions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Antimicrobial growth promoters modulate host responses in mice with a defined intestinal microbiota

    PubMed Central

    Brown, Kirsty; Zaytsoff, Sarah J. M.; Uwiera, Richard R. E.; Inglis, G. Douglas

    2016-01-01

    Antibiotics can promote growth in livestock (antimicrobial growth promoters, AGPs), however lack of knowledge regarding mechanisms has hampered the development of effective non-antibiotic alternatives. Antibiotics affect eukaryotic cells at therapeutic concentrations, yet effects of AGPs on host physiology are relatively understudied, partially due to the complexity of host-microorganism interactions within the gastrointestinal tract. To determine the direct effects of AGPs on the host, we generated Altered Schaedler Flora (ASF) mice, and administered chlortetracycline (CTC) and tylosin phosphate (TYL) in feed. Mice were challenged with Citrobacter rodentium to determine how AGPs alter host responses to physiological stress. Although CTC and TYL had inconsistent effects on the ASF taxa, AGPs protected mice from weight loss following C. rodentium inoculation. Mice treated with either CTC or TYL had lower expression of βd1 and Il17a in the intestine and had a robust induction of Il17a and Il10. Furthermore, AGP administration resulted in a lower hepatic expression of acute phase proteins (Saa1, Hp, and Cp) in liver tissue, and ameliorated C. rodentium-induced reductions in the expression of genes involved in lipogenesis (Hmgcl and Fabp1). Collectively, this indicates that AGPs directly affect host physiology, and highlights important considerations in the development of non-antibiotic alternatives. PMID:27929072

  5. GROUP REPORT: PHYSIOLOGICAL AND ECOLOGICAL EFFECTS OF ACIDIFICATION ON AQUATIC BIOTA

    EPA Science Inventory

    Acidification affects all components of biological communities in lakes and streams: microbes, algae, macrophytes, invertebrates, fish, amphibians, and other vertebrates that rely on aquatic ecosystems for habitat or food. echanisms of effect are both direct (toxic responses to c...

  6. Nitric oxide-mediated pathogenesis during nicotine and alcohol consumption.

    PubMed

    Cooper, R G; Magwere, T

    2008-01-01

    Nitric oxide (NO) is formed by different cell types in response to a variety of physiological and patho-physiological stimuli. The intake of nicotine and/or alcohol has patho-physiological effects on organ function, and the progression of alcohol-/tobacco-related diseases seem to be directly influenced by NO-mediated mechanisms. Nicotine has an adverse influence on blood vessel functionality, repair and maintenance. Chronic nicotine exposure augments atherosclerosis by enhancing the production of proinflammatory cytokines by macrophages which then activate atherogenic NF-kB target genes in aortic lesions. Alcohol produces NO which speeds up the apoptosis of neutrophils. Alcohol sensitizes the liver to endotoxemic shock. Nitrosative stress and increased basal levels of NO contribute to tumour growth. The progression of disease seems to be directed via a definite NO-mediated mechanism. This review gives an insight into how intake of tobacco and alcohol may affect quality of life.

  7. Acylated and unacylated ghrelin do not directly stimulate glucose transport in isolated rodent skeletal muscle.

    PubMed

    Cervone, Daniel T; Dyck, David J

    2017-07-01

    Emerging evidence implicates ghrelin, a gut-derived, orexigenic hormone, as a potential mediator of insulin-responsive peripheral tissue metabolism. However, in vitro and in vivo studies assessing ghrelin's direct influence on metabolism have been controversial, particularly due to confounding factors such as the secondary rise in growth hormone (GH) after ghrelin injection. Skeletal muscle is important in the insulin-stimulated clearance of glucose, and ghrelin's exponential rise prior to a meal could potentially facilitate this. This study was aimed at elucidating any direct stimulatory action that ghrelin may have on glucose transport and insulin signaling in isolated rat skeletal muscle, in the absence of confounding secondary factors. Oxidative soleus and glycolytic extensor digitorum longus skeletal muscles were isolated from male Sprague Dawley rats in the fed state and incubated with various concentrations of acylated and unacylated ghrelin in the presence or absence of insulin. Ghrelin did not stimulate glucose transport in either muscle type, with or without insulin. Moreover, GH had no acute, direct stimulatory effect on either basal or insulin-stimulated muscle glucose transport. In agreement with the lack of observed effect on glucose transport, ghrelin and GH also had no stimulatory effect on Ser 473 AKT or Thr 172 AMPK phosphorylation, two key signaling proteins involved in glucose transport. Furthermore, to our knowledge, we are among the first to show that ghrelin can act independent of its receptor and cause an increase in calmodulin-dependent protein kinase 2 (CaMKII) phosphorylation in glycolytic muscle, although this was not associated with an increase in glucose transport. We conclude that both acylated and unacylated ghrelin have no direct, acute influence on skeletal muscle glucose transport. Furthermore, the immediate rise in GH in response to ghrelin also does not appear to directly stimulate glucose transport in muscle. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  8. Yolk testosterone affects growth and promotes individual-level consistency in behavioral lateralization of yellow-legged gull chicks.

    PubMed

    Possenti, Cristina Daniela; Romano, Andrea; Caprioli, Manuela; Rubolini, Diego; Spiezio, Caterina; Saino, Nicola; Parolini, Marco

    2016-04-01

    Behavioral lateralization is common in animals and may be expressed at the individual- and at the population-level. The ontogenetic processes that control lateralization, however, are largely unknown. Well-established sex-dependence in androgen physiology and sex-dependent variation in lateralization have led to the hypothesis that testosterone (T) has organizational effects on lateralization. The effects of T exposure in early life on lateralization can be efficiently investigated by manipulating T levels in the cleidoic eggs of birds, because the embryo is isolated from maternal and sibling physiological interference, but this approach has been adopted very rarely. In the yellow-legged gull (Larus michahellis) we increased yolk T concentration within the physiological limits and tested the effects on the direction of lateralization in two functionally fundamental behaviors (begging for parental care and escape to cover) of molecularly sexed hatchlings. We also speculated that T may intervene in regulating consistency, rather than direction of lateralization, and therefore tested if T affected the 'repeatability' of lateral preference in consecutive behavioral trials. T treatment had no effect on the direction of lateralization, but enhanced the consistency of lateral preference in escape responses. Sex did not predict lateralization. Neither behavior was lateralized at the population-level. We therefore showed for the first time in any species an effect of egg T on consistency in lateralization. The implications of the effect of T for the evolution of trade-offs in maternal allocation of egg hormones, and the evolutionary interpretations of findings from our studies on lateralization among unmanipulated birds are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Interaction between parathyroid hormone and endogenous estrogen in normal women.

    PubMed

    Buchanan, J R; Santen, R J; Cavaliere, A; Cauffman, S W; Greer, R B; Demers, L M

    1986-06-01

    It has been hypothesized that estrogens conserve bone substance by blocking the resorbing effect of parathyroid hormone (PTH). We evaluated this hypothesis by examining the relation of circulating PTH to endogenous estrogen fluctuation during four quarters of a single menstrual cycle in 20 normal women. The hypothesis predicts that PTH should vary directly with estrogen, since PTH should increase following estrogen elevation to satisfy physiologic demands for calcium. Contrary to the predicted direct variation, PTH remained constant throughout the menstrual cycle despite sharply fluctuating estrogen levels. Furthermore, PTH was negatively associated with estrone during the early follicular (r = -.65, P less than 0.005) and late follicular (r = -.84, P less than 0.0001) phases. We attempted to determine whether this unexpected relationship between estrone and PTH signified a direct physiologic link, by excluding factors which could have spuriously engendered the inverse correlation. Stepwise multiple regression and partial correlation showed that estrone contributed significantly to circulating PTH independent of the effects of dietary calcium, 25-hydroxyvitamin D, serum calcium, 1,25-dihydroxyvitamin D, phosphate, estradiol, progesterone, and body weight. Therefore, it is possible that the inverse correlation between estrone and PTH signified a direct physiologic link, as an artifactual cause for the relationship could not be identified. These data imply that estrone interacts with PTH, but not by blocking PTH-mediated bone resorption. We conclude that estrone is associated with reduced circulating PTH through an as yet undetermined mechanism.

  10. Physiologic and psychobehavioral research in oncology.

    PubMed

    Redd, W H; Silberfarb, P M; Andersen, B L; Andrykowski, M A; Bovbjerg, D H; Burish, T G; Carpenter, P J; Cleeland, C; Dolgin, M; Levy, S M

    1991-02-01

    A major thrust in research in psychosocial oncology is the study of the interaction of psychologic and physiologic variables. This discussion reviews the current status and future directions of such research. Areas addressed include pain, nausea and vomiting with chemotherapy, sexuality, effects of cancer on psychologic and neuropsychologic function, impact of psychologic factors on cancer and its treatment, and psychoneuroimmunology. In addition, specific recommendations for strategies to facilitate research in these areas of psychosocial oncology are proposed.

  11. Western forest diseases and climate relations: Root diseases and climate change

    Treesearch

    Mee-Sook Kim; Bryce A. Richardson; Ned B. Klopfenstein

    2008-01-01

    Climate change could alter patterns of disturbances from pathogens through (1) direct effects on the development, survival, reproduction, dispersal, and distribution of pathogens; (2) physiological changes in tree defenses; (3) indirect effects from changes in the abundance of mutualists and competitors.

  12. Assessing the Effectiveness of Neurofeedback Training in the Context of Clinical and Social Neuroscience

    PubMed Central

    Orndorff-Plunkett, Franklin; Singh, Fiza

    2017-01-01

    Social neuroscience benefits from the experimental manipulation of neuronal activity. One possible manipulation, neurofeedback, is an operant conditioning-based technique in which individuals sense, interact with, and manage their own physiological and mental states. Neurofeedback has been applied to a wide variety of psychiatric illnesses, as well as to treat sub-clinical symptoms, and even to enhance performance in healthy populations. Despite growing interest, there persists a level of distrust and/or bias in the medical and research communities in the USA toward neurofeedback and other functional interventions. As a result, neurofeedback has been largely ignored, or disregarded within social neuroscience. We propose a systematic, empirically-based approach for assessing the effectiveness, and utility of neurofeedback. To that end, we use the term perturbative physiologic plasticity to suggest that biological systems function as an integrated whole that can be perturbed and guided, either directly or indirectly, into different physiological states. When the intention is to normalize the system, e.g., via neurofeedback, we describe it as self-directed neuroplasticity, whose outcome is persistent functional, structural, and behavioral changes. We argue that changes in physiological, neuropsychological, behavioral, interpersonal, and societal functioning following neurofeedback can serve as objective indices and as the metrics necessary for assessing levels of efficacy. In this chapter, we examine the effects of neurofeedback on functional connectivity in a few clinical disorders as case studies for this approach. We believe this broader perspective will open new avenues of investigation, especially within social neuroscience, to further elucidate the mechanisms and effectiveness of these types of interventions, and their relevance to basic research. PMID:28783134

  13. Assessing the Effectiveness of Neurofeedback Training in the Context of Clinical and Social Neuroscience.

    PubMed

    Orndorff-Plunkett, Franklin; Singh, Fiza; Aragón, Oriana R; Pineda, Jaime A

    2017-08-07

    Social neuroscience benefits from the experimental manipulation of neuronal activity. One possible manipulation, neurofeedback, is an operant conditioning-based technique in which individuals sense, interact with, and manage their own physiological and mental states. Neurofeedback has been applied to a wide variety of psychiatric illnesses, as well as to treat sub-clinical symptoms, and even to enhance performance in healthy populations. Despite growing interest, there persists a level of distrust and/or bias in the medical and research communities in the USA toward neurofeedback and other functional interventions. As a result, neurofeedback has been largely ignored, or disregarded within social neuroscience. We propose a systematic, empirically-based approach for assessing the effectiveness, and utility of neurofeedback. To that end, we use the term perturbative physiologic plasticity to suggest that biological systems function as an integrated whole that can be perturbed and guided, either directly or indirectly, into different physiological states. When the intention is to normalize the system, e.g., via neurofeedback, we describe it as self-directed neuroplasticity, whose outcome is persistent functional, structural, and behavioral changes. We argue that changes in physiological, neuropsychological, behavioral, interpersonal, and societal functioning following neurofeedback can serve as objective indices and as the metrics necessary for assessing levels of efficacy. In this chapter, we examine the effects of neurofeedback on functional connectivity in a few clinical disorders as case studies for this approach. We believe this broader perspective will open new avenues of investigation, especially within social neuroscience, to further elucidate the mechanisms and effectiveness of these types of interventions, and their relevance to basic research.

  14. Journal of Gravitational Physiology, Volume 13, No. 1

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A. (Editor); Cogoli, Augusto (Editor); Hargens, Alan R. (Editor); Smith, Arthur H. (Editor)

    2006-01-01

    At the outset, the Journal published one issue in 1994. The first number comprised the Proceedings of the 15th Annual International Gravitational Physiology Meeting, held in Barcelona, Spain in October 1993. The Proceedings of the previous 14 Annual Meetings appeared as supplements to The Physiologist from 1979 to 1993. Each year, one issue of the Journal is devoted to the Annual Meeting Proceedings, and up to four more issues are comprised of full-length research papers. Additionally, Supplement Issues are considered by the Editorial Board as they are submitted. The Journal is published for the International Society for Gravitational Physiology by the Galileo Foundation, a 501(c)(3) nonprofit public benefit corporation. This issue, the first number of 2006, comprises the Proceedings of the joint meeting of the International Society for Gravitational Physiology s 27th Annual International Gravitational Physiology Meeting, held in Osaka, Japan 23- 28 April, 2006. The Journal of Gravitational Physiology invites the submission of original experimental or observational papers on subjects in the field of gravitational physiology. Review articles, theoretical papers and historical or biographical articles will also be solicited by the Editor for publication. The wide scientific span of the Journal rests on physiology as its keystone. Gravitational physiology is considered to include the effects of changes in the magnitude and directions of the gravitational force environment on cells and physiological systems and behavior of humans, animals and plants. The effects of weightlessness during space flight, high sustained G forces and chronic acceleration, vibration, impact and the various forms of simulated weightlessness are also included, as well as is consideration of the evolutionary consequences of gravity and the role of gravity in the manifestation of scale effects in animals and plants.

  15. Laser Doppler imaging of genital blood flow: a direct measure of female sexual arousal.

    PubMed

    Waxman, Samantha E; Pukall, Caroline F

    2009-08-01

    Female sexual arousal is a challenging construct to measure, partly because of the subtle nature of its indicators, vaginal lubrication and genital swelling. As a result, many instruments have been used in an attempt to accurately measure it; however, problems are associated with each. Furthermore, the relationship between subjective and physiological indicators of arousal appears to be influenced by the instrument used to measure physiological arousal. Specifically, instruments measuring physiological arousal internally yield lower correlations between measures of physiological and subjective arousal than instruments examining the external genitals. Laser Doppler imaging (LDI) is a direct measure of external genital blood flow. The purpose of this study was to investigate the usefulness of LDI for measuring genital blood flow in women in response to erotic visual stimuli, and to explore the relationship between physiological and subjective sexual arousal. Sixty-five participants watched three 15-minute films during LDI scanning. Two nature films (measuring acclimatization and baseline blood flow levels) and one randomly assigned experimental film (erotic, anxiety, humor, or neutral) were used. Participants rated their level of subjective arousal following the third film. Results indicated a significant effect of film condition on genital blood flow, P < 0.001, with the erotic condition differing significantly from the other three conditions. In terms of the relationship between physiological and subjective sexual arousal, physiological arousal was significantly predicted by subjective ratings of sexual arousal (P < 0.001). LDI appears to be able to differentiate blood flow during erotic and nonerotic conditions. In addition, physiological sexual arousal was significantly predicted by women's reported subjective sexual arousal. These findings suggest that LDI is a useful instrument for measuring female sexual arousal, and that women may be more aware of their level of physiological arousal than previously assumed.

  16. Listening to music and physiological and psychological functioning: the mediating role of emotion regulation and stress reactivity.

    PubMed

    Thoma, M V; Scholz, U; Ehlert, U; Nater, U M

    2012-01-01

    Music listening has been suggested to have short-term beneficial effects. The aim of this study was to investigate the association and potential mediating mechanisms between various aspects of habitual music-listening behaviour and physiological and psychological functioning. An internet-based survey was conducted in university students, measuring habitual music-listening behaviour, emotion regulation, stress reactivity, as well as physiological and psychological functioning. A total of 1230 individuals (mean = 24.89 ± 5.34 years, 55.3% women) completed the questionnaire. Quantitative aspects of habitual music-listening behaviour, i.e. average duration of music listening and subjective relevance of music, were not associated with physiological and psychological functioning. In contrast, qualitative aspects, i.e. reasons for listening (especially 'reducing loneliness and aggression', and 'arousing or intensifying specific emotions') were significantly related to physiological and psychological functioning (all p = 0.001). These direct effects were mediated by distress-augmenting emotion regulation and individual stress reactivity. The habitual music-listening behaviour appears to be a multifaceted behaviour that is further influenced by dispositions that are usually not related to music listening. Consequently, habitual music-listening behaviour is not obviously linked to physiological and psychological functioning.

  17. Microbial stress-response physiology and its implications for ecosystem function.

    PubMed

    Schimel, Joshua; Balser, Teri C; Wallenstein, Matthew

    2007-06-01

    Microorganisms have a variety of evolutionary adaptations and physiological acclimation mechanisms that allow them to survive and remain active in the face of environmental stress. Physiological responses to stress have costs at the organismal level that can result in altered ecosystem-level C, energy, and nutrient flows. These large-scale impacts result from direct effects on active microbes' physiology and by controlling the composition of the active microbial community. We first consider some general aspects of how microbes experience environmental stresses and how they respond to them. We then discuss the impacts of two important ecosystem-level stressors, drought and freezing, on microbial physiology and community composition. Even when microbial community response to stress is limited, the physiological costs imposed on soil microbes are large enough that they may cause large shifts in the allocation and fate of C and N. For example, for microbes to synthesize the osmolytes they need to survive a single drought episode they may consume up to 5% of total annual net primary production in grassland ecosystems, while acclimating to freezing conditions switches Arctic tundra soils from immobilizing N during the growing season to mineralizing it during the winter. We suggest that more effectively integrating microbial ecology into ecosystem ecology will require a more complete integration of microbial physiological ecology, population biology, and process ecology.

  18. Cross-spectral analysis of physiological tremor and muscle activity. I. Theory and application to unsynchronized electromyogram.

    PubMed

    Timmer, J; Lauk, M; Pfleger, W; Deuschl, G

    1998-05-01

    We investigate the relationship between the extensor electromyogram (EMG) and tremor times series in physiological hand tremor by cross-spectral analysis. Special attention is directed to the phase spectrum and the effects of observational noise. We calculate the theoretical phase spectrum for a second-order linear stochastic process and compare the results to measured tremor data recorded from subjects who did not show a synchronized EMG activity in the corresponding extensor muscle. The results show that physiological tremor is well described by the proposed model and that the measured EMG represents a Newtonian force by which the muscle acts on the hand.

  19. Mentalizing eye contact with a face on a video: Gaze direction does not influence autonomic arousal.

    PubMed

    Lyyra, Pessi; Myllyneva, Aki; Hietanen, Jari K

    2018-04-26

    Recent research has revealed enhanced autonomic and subjective responses to eye contact only when perceiving another live person. However, these enhanced responses to eye contact are abolished if the viewer believes that the other person is not able to look back at the viewer. We purported to investigate whether this "genuine" eye contact effect can be reproduced with pre-recorded videos of stimulus persons. Autonomic responses, gaze behavior, and subjective self-assessments were measured while participants viewed pre-recorded video persons with direct or averted gaze, imagined that the video person was real, and mentalized that the person could see them or not. Pre-recorded videos did not evoke similar physiological or subjective eye contact effect as previously observed with live persons, not even when the participants were mentalizing being seen by the person. Gaze tracking results showed, however, increased attention allocation to faces with direct gaze compared to averted gaze directions. The results suggest that elicitation of the physiological arousal in response to genuine eye contact seems to require spontaneous experience of seeing and of being seen by another individual. © 2018 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  20. Nonauditory-system response to noise and effects on health

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Continued exposure to noise in real life can be a source of physiological stress possibly capable of causing health disorders beyond that of direct damage to the auditory receptor system. Some theorists hold that some of these effects occur because of innate, reflexive responses to noise that cannot be prevented or, when suppressed, that require some effort that may itself become somewhat debilitting in time. An alternative theory is that the truly nonhabituating reflexive responses to noise are not sufficient in character to cause any ill health, and that those responses to noise that are or could be significant in this regard are not directly the result of exposure to noise but are responses to the emotional meanings conveyed by the sounds. Obviously, the degree to which noise can lead to harm to nonauditory physiological systems of the body are questions of utmost importance for the assessment of the need for noise control.

  1. Neuroendocrine Disruption: More than Hormones are Upset

    PubMed Central

    Waye, Andrew; Trudeau, Vance L.

    2011-01-01

    Only a small proportion of the published research on endocrine-disrupting chemicals (EDC) directly examined effects on neuroendocrine processes. There is an expanding body of evidence that anthropogenic chemicals exert effects on neuroendocrine systems and that these changes might impact peripheral organ systems and physiological processes. Neuroendocrine disruption extends the concept of endocrine disruption to include the full breadth of integrative physiology (i.e., more than hormones are upset). Pollutants may also disrupt numerous other neurochemical pathways to affect an animal's capacity to reproduce, develop and grow, or deal with stress and other challenges. Several examples are presented in this review, from both vertebrates and invertebrates, illustrating that diverse environmental pollutants including pharmaceuticals, organochlorine pesticides, and industrial contaminants have the potential to disrupt neuroendocrine control mechanisms. While most investigations on EDC are carried out with vertebrate models, an attempt is also made to highlight the importance of research on invertebrate neuroendocrine disruption. The neurophysiology of many invertebrates is well described and many of their neurotransmitters are similar or identical to those in vertebrates; therefore, lessons learned from one group of organisms may help us understand potential adverse effects in others. This review argues for the adoption of systems biology and integrative physiology to address the effects of EDC. Effects of pulp and paper mill effluents on fish reproduction are a good example of where relatively narrow hypothesis testing strategies (e.g., whether or not pollutants are sex steroid mimics) have only partially solved a major problem in environmental biology. It is clear that a global, integrative physiological approach, including improved understanding of neuroendocrine control mechanisms, is warranted to fully understand the impacts of pulp and paper mill effluents. Neuroendocrine disruptors are defined as pollutants in the environment that are capable of acting as agonists/antagonists or modulators of the synthesis and/or metabolism of neuropeptides, neurotransmitters, or neurohormones, which subsequently alter diverse physiological, behavioral, or hormonal processes to affect an animal's capacity to reproduce, develop and grow, or deal with stress and other challenges. By adopting a definition of neuroendocrine disruption that encompasses both direct physiological targets and their indirect downstream effects, from the level of the individual to the ecosystem, a more comprehensive picture of the consequences of environmentally relevant EDC exposure may emerge. PMID:21790312

  2. Physiological levels of testosterone kill salmonid leukocytes in vitro

    USGS Publications Warehouse

    Slater, C.H.; Schreck, C.B.

    1997-01-01

    Adult spring chinook salmon (Oncorhynchus tshawytscha) elaborate high plasma concentrations of testosterone during sexual maturation, and these levels of testosterone have been shown to reduce the salmonid immune response in vitro. Our search for the mechanism of testosterone's immunosuppressive action has led to the characterization of an androgen receptor in salmonid leukocytes. In the present study we examined the specific effects that testosterone had on salmonid leukocytes. Direct counts of viable leukocytes after incubation with and without physiological levels of testosterone demonstrate a significant loss of leukocytes in cultures exposed to testosterone. At least 5 days of contact with testosterone was required to produce significant immunosuppression and addition of a 'conditioned media' (supernatant from proliferating lymphocytes not exposed to testosterone) did not reverse the immunosuppressive effects of testosterone. These data lead us to conclude that testosterone may exert its immunosuppressive effects by direct action on salmonid leukocytes, through the androgen receptor described, and that this action leads to the death of a significant number of these leukocytes.

  3. Maternal Physiological Dysregulation While Parenting Poses Risk for Infant Attachment Disorganization and Behavior Problems

    PubMed Central

    Leerkes, Esther M.; Su, Jinni; Calkins, Susan D.; O’Brien, Marion; Supple, Andrew J.

    2017-01-01

    The extent to which indices of maternal physiological arousal (skin conductance augmentation) and regulation (vagal withdrawal) while parenting predict infant attachment disorganization and behavior problems directly or indirectly via maternal sensitivity was examined in a sample of 259 mothers and their infants. Two covariates, maternal self-reported emotional risk and AAI attachment coherence were assessed prenatally. Mothers’ physiological arousal and regulation were measured during parenting tasks when infants were 6 months old. Maternal sensitivity was observed during distress-eliciting tasks when infants were 6 and 14 months old, and an average sensitivity score was calculated. Attachment disorganization was observed during the Strange Situation when infants were 14 months old and mothers reported on infants’ behavior problems when infants were 27 months old. Over and above covariates, mothers’ arousal and regulation while parenting interacted to predict infant attachment disorganization and behavior problems such that maternal arousal was associated with higher attachment disorganization and behavior problems when maternal regulation was low but not when maternal regulation was high. This effect was direct and not explained by maternal sensitivity. Results suggest that maternal physiological dysregulation while parenting places infants at risk for psychopathology. PMID:26902983

  4. Under a neighbour's influence: public information affects stress hormones and behaviour of a songbird

    PubMed Central

    Cornelius, Jamie M.; Breuner, Creagh W.; Hahn, Thomas P.

    2010-01-01

    Socially acquired information improves the accuracy and efficiency of environmental assessments and can increase fitness. Public information may be especially useful during unpredictable food conditions, or for species that depend on resources made less predictable by human disturbance. However, the physiological mechanisms by which direct foraging assessments and public information are integrated to affect behaviour remain largely unknown. We tested for potential effects of public information on the behavioural and hormonal response to food reduction by manipulating the social environment of captive red crossbills (Loxia curvirostra). Red crossbills are irruptive migrants that are considered sensitive to changes in food availability and use public information in decision making. Here, we show that public information can attenuate or intensify the release of glucocorticoids (i.e. stress hormones) during food shortage in red crossbills. The observed modulation of corticosterone may therefore be a physiological mechanism linking public information, direct environmental assessments and behavioural change. This mechanism would not only allow for public information to affect individual behaviour, but might also facilitate group decision making by bringing group members into more similar physiological states. The results further suggest that stressors affecting entire populations may be magnified in individual physiology through social interactions. PMID:20356895

  5. Maternal physiological dysregulation while parenting poses risk for infant attachment disorganization and behavior problems.

    PubMed

    Leerkes, Esther M; Su, Jinni; Calkins, Susan D; O'Brien, Marion; Supple, Andrew J

    2017-02-01

    The extent to which indices of maternal physiological arousal (skin conductance augmentation) and regulation (vagal withdrawal) while parenting predict infant attachment disorganization and behavior problems directly or indirectly via maternal sensitivity was examined in a sample of 259 mothers and their infants. Two covariates, maternal self-reported emotional risk and Adult Attachment Interview attachment coherence were assessed prenatally. Mothers' physiological arousal and regulation were measured during parenting tasks when infants were 6 months old. Maternal sensitivity was observed during distress-eliciting tasks when infants were 6 and 14 months old, and an average sensitivity score was calculated. Attachment disorganization was observed during the Strange Situation when infants were 14 months old, and mothers reported on infants' behavior problems when infants were 27 months old. Over and above covariates, mothers' arousal and regulation while parenting interacted to predict infant attachment disorganization and behavior problems such that maternal arousal was associated with higher attachment disorganization and behavior problems when maternal regulation was low but not when maternal regulation was high. This effect was direct and not explained by maternal sensitivity. The results suggest that maternal physiological dysregulation while parenting places infants at risk for psychopathology.

  6. Comparison of the Physiology of the Spaceflight and Hindlimb Suspended Rat

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.; Booth, F. W.

    1994-01-01

    The suspended rat has been used extensively as a simulation of the spaceflight animal. In suspension, hindlimbs are unloaded from the acceleration of gravity, much as they are in spaceflight. Comparisons of data from spaceflight (microgravity) and suspended (1G) rats have suggested that suspension my be an appropriate model, but no direct comparisons had been made between the spaceflight and suspended rat. Cosmos 2044 afforded the first opportunity to directly compare the effects of hindlimb suspension (HS) and spaceflight (SF) on a broad range of physiological and histological parameters. This paper reports on the comparison of skelton, skeletal muscle, heart, neural, pulmonary, kidney, liver, intestine, blood plasma, immune function, red blood cells, and endocrine and reproductive functions and systems.

  7. Child- or Adult-Directed Speech and Esteem: Effects on Performance and Arousal in Elderly Adults.

    ERIC Educational Resources Information Center

    Bunce, Vicki L.; Harrison, David W.

    1991-01-01

    Explored effects of speech type and esteem level on performance, physiological arousal level, and subsequent esteem in older adults (n=40). Results indicated that older adults performed difficult tasks better with clarified instructions given in attention-getting manner. Findings were contradictory to more intuitive accounts of child-directed…

  8. Basic cardiovascular variability signals: mutual directed interactions explored in the information domain.

    PubMed

    Javorka, Michal; Krohova, Jana; Czippelova, Barbora; Turianikova, Zuzana; Lazarova, Zuzana; Javorka, Kamil; Faes, Luca

    2017-05-01

    The study of short-term cardiovascular interactions is classically performed through the bivariate analysis of the interactions between the beat-to-beat variability of heart period (RR interval from the ECG) and systolic blood pressure (SBP). Recent progress in the development of multivariate time series analysis methods is making it possible to explore how directed interactions between two signals change in the context of networks including other coupled signals. Exploiting these advances, the present study aims at assessing directional cardiovascular interactions among the basic variability signals of RR, SBP and diastolic blood pressure (DBP), using an approach which allows direct comparison between bivariate and multivariate coupling measures. To this end, we compute information-theoretic measures of the strength and delay of causal interactions between RR, SBP and DBP using both bivariate and trivariate (conditioned) formulations in a group of healthy subjects in a resting state and during stress conditions induced by head-up tilt (HUT) and mental arithmetics (MA). We find that bivariate measures better quantify the overall (direct  +  indirect) information transferred between variables, while trivariate measures better reflect the existence and delay of directed interactions. The main physiological results are: (i) the detection during supine rest of strong interactions along the pathway RR  →  DBP  →  SBP, reflecting marked Windkessel and/or Frank-Starling effects; (ii) the finding of relatively weak baroreflex effects SBP  →  RR at rest; (iii) the invariance of cardiovascular interactions during MA, and the emergence of stronger and faster SBP  →  RR interactions, as well as of weaker RR  →  DBP interactions, during HUT. These findings support the importance of investigating cardiovascular interactions from a network perspective, and suggest the usefulness of directed information measures to assess physiological mechanisms and track their changes across different physiological states.

  9. The inhibitory effects of nicotine on physiological sexual arousal in nonsmoking women: results from a randomized, double-blind, placebo-controlled, cross-over trial.

    PubMed

    Harte, Christopher B; Meston, Cindy M

    2008-05-01

    Extensive research suggests that long-term cigarette smoking is an independent risk factor for the introduction of sexual dysfunction in men. However, results of limited data investigating this relationship in women are mixed. No studies have examined the acute effects of tobacco or nicotine on physiological sexual response in women. Controlled experimental studies examining acute effects of isolated nicotine intake on female physiological sexual responses are necessary in order to help elucidate tobacco's potential role in the development and/or maintenance of sexual impairment in women. To examine whether isolated nicotine intake acutely affects sexual arousal responses in nonsmoking women. Twenty-five sexually functional women (mean age = 20 years) each with less than 100 direct exposures to nicotine completed two counterbalanced conditions in which they were randomized to received either nicotine gum (6 mg) or placebo gum, both administered double-blind and matched for appearance, taste, and consistency, approximately 40 minutes prior to viewing an erotic film. Physiological (changes in vaginal pulse amplitude via vaginal photoplethysmography) and subjective (continuous self-report) sexual responses to erotic stimuli were examined, as well as changes in mood. Nicotine significantly reduced genital responses to the erotic films (P = 0.05), corresponding to a 30% attenuation in physiological sexual arousal. This occurred in 11 of 18 women with valid physiological assessments. Nicotine had no significant effect on continuous self-report ratings of sexual arousal (P = 0.45), or on mood (all Ps > 0.05). Acute nicotine intake significantly attenuates physiological sexual arousal in healthy nonsmoking women. Our findings provide support to the hypothesis that nicotine may be the primary pharmacological agent responsible for genital hemodynamic disruption, thereby facilitating a cascade of biochemical and vascular events which may impair normal sexual arousal responses.

  10. Predictive Physiological Anticipation Preceding Seemingly Unpredictable Stimuli: A Meta-Analysis

    PubMed Central

    Mossbridge, Julia; Tressoldi, Patrizio; Utts, Jessica

    2012-01-01

    This meta-analysis of 26 reports published between 1978 and 2010 tests an unusual hypothesis: for stimuli of two or more types that are presented in an order designed to be unpredictable and that produce different post-stimulus physiological activity, the direction of pre-stimulus physiological activity reflects the direction of post-stimulus physiological activity, resulting in an unexplained anticipatory effect. The reports we examined used one of two paradigms: (1) randomly ordered presentations of arousing vs. neutral stimuli, or (2) guessing tasks with feedback (correct vs. incorrect). Dependent variables included: electrodermal activity, heart rate, blood volume, pupil dilation, electroencephalographic activity, and blood oxygenation level dependent (BOLD) activity. To avoid including data hand-picked from multiple different analyses, no post hoc experiments were considered. The results reveal a significant overall effect with a small effect size [fixed effect: overall ES = 0.21, 95% CI = 0.15–0.27, z = 6.9, p < 2.7 × 10−12; random effects: overall (weighted) ES = 0.21, 95% CI = 0.13–0.29, z = 5.3, p < 5.7 × 10−8]. Higher quality experiments produced a quantitatively larger effect size and a greater level of significance than lower quality studies. The number of contrary unpublished reports that would be necessary to reduce the level of significance to chance (p > 0.05) was conservatively calculated to be 87 reports. We explore alternative explanations and examine the potential linkage between this unexplained anticipatory activity and other results demonstrating meaningful pre-stimulus activity preceding behaviorally relevant events. We conclude that to further examine this currently unexplained anticipatory activity, multiple replications arising from different laboratories using the same methods are necessary. The cause of this anticipatory activity, which undoubtedly lies within the realm of natural physical processes (as opposed to supernatural or paranormal ones), remains to be determined. PMID:23109927

  11. Traumatogenic Processes and Pathways to Mental Health Outcomes for Sexual Minorities Exposed to Bias Crime Information.

    PubMed

    Lannert, Brittany K

    2015-07-01

    Vicarious traumatization of nonvictim members of communities targeted by bias crimes has been suggested by previous qualitative studies and often dominates public discussion following bias events, but proximal and distal responses of community members have yet to be comprehensively modeled, and quantitative research on vicarious responses is scarce. This comprehensive review integrates theoretical and empirical literatures in social, clinical, and physiological psychology in the development of a model of affective, cognitive, and physiological responses of lesbian, gay, and bisexual individuals upon exposure to information about bias crimes. Extant qualitative research in vicarious response to bias crimes is reviewed in light of theoretical implications and methodological limitations. Potential pathways to mental health outcomes are outlined, including accumulative effects of anticipatory defensive responding, multiplicative effects of minority stress, and putative traumatogenic physiological and cognitive processes of threat. Methodological considerations, future research directions, and clinical implications are also discussed. © The Author(s) 2014.

  12. Endocannabinoids: Effectors of glucocorticoid signaling.

    PubMed

    Balsevich, Georgia; Petrie, Gavin N; Hill, Matthew N

    2017-10-01

    For decades, there has been speculation regarding the interaction of cannabinoids with glucocorticoid systems. Given the functional redundancy between many of the physiological effects of glucocorticoids and cannabinoids, it was originally speculated that the biological mechanisms of cannabinoids were mediated by direct interactions with glucocorticoid systems. With the discovery of the endocannabinoid system, additional research demonstrated that it was actually the opposite; glucocorticoids recruit endocannabinoid signaling, and that the engagement of endocannabinoid signaling mediated many of the neurobiological and physiological effects of glucocorticoids. With the development of advances in pharmacology and genetics, significant advances in this area have been made, and it is now clear that functional interactions between these systems are critical for a wide array of physiological processes. The current review acts a comprehensive summary of the contemporary state of knowledge regarding the biological interactions between glucocorticoids and endocannabinoids, and their potential role in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Amplification of heat extremes by plant CO2 physiological forcing.

    PubMed

    Skinner, Christopher B; Poulsen, Christopher J; Mankin, Justin S

    2018-03-15

    Plants influence extreme heat events by regulating land-atmosphere water and energy exchanges. The contribution of plants to changes in future heat extremes will depend on the responses of vegetation growth and physiology to the direct and indirect effects of elevated CO 2 . Here we use a suite of earth system models to disentangle the radiative versus vegetation effects of elevated CO 2 on heat wave characteristics. Vegetation responses to a quadrupling of CO 2 increase summer heat wave occurrence by 20 days or more-30-50% of the radiative response alone-across tropical and mid-to-high latitude forests. These increases are caused by CO 2 physiological forcing, which diminishes transpiration and its associated cooling effect, and reduces clouds and precipitation. In contrast to recent suggestions, our results indicate CO 2 -driven vegetation changes enhance future heat wave frequency and intensity in most vegetated regions despite transpiration-driven soil moisture savings and increases in aboveground biomass from CO 2 fertilization.

  14. Possible contribution of chronobiology to cardiovascular health.

    PubMed

    Sato, Miho; Matsuo, Takahiro; Atmore, Henry; Akashi, Makoto

    2013-01-01

    The daily variations found in many aspects of physiology are collectively known as circadian rhythm (from "circa" meaning "about" and "dien" meaning "day"). Circadian oscillation in clock gene expression can generate quantitative or functional variations of the molecules directly involved in many physiological functions. This paper reviews the molecular mechanisms of the circadian clock, the transmission of circadian effects to cardiovascular functions, and the effects of circadian dysfunction on cardiovascular diseases. An evaluation of the operation of the internal clock is needed in clinical settings and will be an effective tool in the diagnosis of circadian rhythm disorders. Toward this end, we introduce a novel non-invasive method for assessing circadian time-regulation in human beings through the utilization of hair follicle cells.

  15. Soil-mediated effects of global change on plant communities depend on plant growth form

    USDA-ARS?s Scientific Manuscript database

    (1) Understanding why species respond to climate change is critical for forecasting invasions, diversity, and productivity of communities. Although researchers often predict species’ distributions and productivity based on direct physiological responses to environments, theory suggests that striking...

  16. Space Radiation and the Brain

    NASA Astrophysics Data System (ADS)

    Hampson, R. E.

    Solar and cosmic radiation pose a number of physiological challenges to human spaceflight outside the protective region of Earth's magnetosphere. Aside from well-described effects of radiation on the blood-forming tissues of the hematopoietic system, there is increasing evidence of direct effects of radiation on the brain as evidenced by studies showing longitudinal decline in memory and cognitive function following radiation specifically directed at brain tissue. These indications strengthen the need to more fully research effects of radiation - particular those components associated with solar wind and galactic cosmic radiation - on the nervous system of mammals from rodents to humans.

  17. Chapter 5. Damage, effects, and importance of dwarf mistletoes

    Treesearch

    B. W. Geils; F. G. Hawksworth

    2002-01-01

    All dwarf mistletoes are parasites that extract water, nutrients, and carbohydrates from the infected host; they are also pathogens that alter host physiology and morphology (Gill and Hawksworth 1961, Hawksworth and Wiens 1996). Disease or direct effects are reductions in diameter and height increment, survival, reproduction, and quality; witches’ brooms are formed in...

  18. The Directed Case Method.

    ERIC Educational Resources Information Center

    Cliff, William H.; Curtin, Leslie Nesbitt

    2000-01-01

    Provides an example of a directed case on human anatomy and physiology. Uses brief real life newspaper articles and clinical descriptions of medical reference texts to describe an actual, fictitious, or composite event. Includes interrelated human anatomy and physiology topics in the scenario. (YDS)

  19. CRH-stimulated cortisol release and food intake in healthy, non-obese adults.

    PubMed

    George, Sophie A; Khan, Samir; Briggs, Hedieh; Abelson, James L

    2010-05-01

    There is considerable anecdotal and some scientific evidence that stress triggers eating behavior, but underlying physiological mechanisms remain uncertain. The hypothalamic-pituitary-adrenal (HPA) axis is a key mediator of physiological stress responses and may play a role in the link between stress and food intake. Cortisol responses to laboratory stressors predict consumption but it is unclear whether such responses mark a vulnerability to stress-related eating or whether cortisol directly stimulates eating in humans. We infused healthy adults with corticotropin-releasing hormone (CRH) at a dose that is subjectively undetectable but elicits a robust endogenous cortisol response, and measured subsequent intake of snack foods, allowing analysis of HPA reactivity effects on food intake without the complex psychological effects of a stress paradigm. CRH elevated cortisol levels relative to placebo but did not impact subjective anxious distress. Subjects ate more following CRH than following placebo and peak cortisol response to CRH was strongly related to both caloric intake and total consumption. These data show that HPA axis reactivity to pharmacological stimulation predicts subsequent food intake and suggest that cortisol itself may directly stimulate food consumption in humans. Understanding the physiological mechanisms that underlie stress-related eating may prove useful in efforts to attack the public health crises created by obesity. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. State of the body in disorders of diurnal physiological rhythms and long-term hypokinesia

    NASA Technical Reports Server (NTRS)

    Razin, S. N.; Rychko, A. V.

    1980-01-01

    In order to study the effects of hypokinesia and circadian rhythm restructuring on the morphological and functional status of the hypothalamo-hypophysic-adrenal system, young male Wistar rats were placed in small cages for varying periods. The animals were decapitated and preparations were made from sections of the brain and adrenals and numerous destructive changes were noted in the investigated regions of the brain, indicating that the condition of these areas is directly affected by disruption of established rhythms in physiological processes.

  1. Advertisements impact the physiological efficacy of a branded drug

    PubMed Central

    Kamenica, Emir; Naclerio, Robert; Malani, Anup

    2013-01-01

    We conducted randomized clinical trials to examine the impact of direct-to-consumer advertisements on the efficacy of a branded drug. We compared the objectively measured, physiological effect of Claritin (Merck & Co.), a leading antihistamine medication, across subjects randomized to watch a movie spliced with advertisements for Claritin or advertisements for Zyrtec (McNeil), a competitor antihistamine. Among subjects who test negative for common allergies, exposure to Claritin advertisements rather than Zyrtec advertisements increases the efficacy of Claritin. We conclude that branded drugs can interact with exposure to television advertisements. PMID:23878212

  2. Advertisements impact the physiological efficacy of a branded drug.

    PubMed

    Kamenica, Emir; Naclerio, Robert; Malani, Anup

    2013-08-06

    We conducted randomized clinical trials to examine the impact of direct-to-consumer advertisements on the efficacy of a branded drug. We compared the objectively measured, physiological effect of Claritin (Merck & Co.), a leading antihistamine medication, across subjects randomized to watch a movie spliced with advertisements for Claritin or advertisements for Zyrtec (McNeil), a competitor antihistamine. Among subjects who test negative for common allergies, exposure to Claritin advertisements rather than Zyrtec advertisements increases the efficacy of Claritin. We conclude that branded drugs can interact with exposure to television advertisements.

  3. Considering the influence of stimulation parameters on the effect of conventional and high-definition transcranial direct current stimulation.

    PubMed

    To, Wing Ting; Hart, John; De Ridder, Dirk; Vanneste, Sven

    2016-01-01

    Recently, techniques to non-invasively modulate specific brain areas gained popularity in the form of transcranial direct current stimulation (tDCS) and high-definition transcranial direct current stimulation. These non-invasive techniques have already shown promising outcomes in various studies with healthy subjects as well as patient populations. Despite widespread dissemination of tDCS, there remain significant unknowns about the influence of a diverse number of tDCS parameters (e.g. polarity, size, position of electrodes & duration of stimulation) in inducing neurophysiological and behavioral effects. This article explores both techniques starting with the history of tDCS, to the differences between conventional tDCS and high-definition transcranial direct current stimulation, the underlying physiological mechanism, the (in)direct effects, the applications of tDCS with varying parameters, the efficacy, the safety issues and the opportunities for future research.

  4. Narrative review: the role of leptin in human physiology: emerging clinical applications.

    PubMed

    Kelesidis, Theodore; Kelesidis, Iosif; Chou, Sharon; Mantzoros, Christos S

    2010-01-19

    Leptin is a hormone secreted by adipose tissue in direct proportion to amount of body fat. The circulating leptin levels serve as a gauge of energy stores, thereby directing the regulation of energy homeostasis, neuroendocrine function, and metabolism. Persons with congenital deficiency are obese, and treatment with leptin results in dramatic weight loss through decreased food intake and possible increased energy expenditure. However, most obese persons are resistant to the weight-reducing effects of leptin. Recent studies suggest that leptin is physiologically more important as an indicator of energy deficiency, rather than energy excess, and may mediate adaptation by driving increased food intake and directing neuroendocrine function to converse energy, such as inducing hypothalamic hypogonadism to prevent fertilization. Current studies investigate the role of leptin in weight-loss management because persons who have recently lost weight have relative leptin deficiency that may drive them to regain weight. Leptin deficiency is also evident in patients with diet- or exercise-induced hypothalamic amenorrhea and lipoatrophy. Replacement of leptin in physiologic doses restores ovulatory menstruation in women with hypothalamic amenorrhea and improves metabolic dysfunction in patients with lipoatrophy, including lipoatrophy associated with HIV or highly active antiretroviral therapy. The applications of leptin continue to grow and will hopefully soon be used therapeutically.

  5. Oral Insulin Delivery in a Physiologic Context: Review

    PubMed Central

    Arbit, Ehud; Kidron, Miriam

    2017-01-01

    Insulin remains indispensable to the treatment of diabetes, but its availability in injectable form only has hampered its timely and broader use. The development of an oral insulin remains an ultimate goal to both enhance ease of use, and to provide therapeutic advantages rooted in its direct delivery to the portal vein and liver. By mimicking the physiological path taken by pancreatic insulin, oral insulin is expected to have a distinct effect on the hepatic aspect of carbohydrate metabolism, hepatic insulin resistance, and, at the same time, avoid hyperinsulinemia and minimize the risk of hypoglycemia. With oral insulin approaching late stages of development, the goal of this review is to examine oral insulin in a physiological context and report on recent progress in its development. PMID:28654313

  6. Elevated non-esterified fatty acid concentrations hamper bovine oviductal epithelial cell physiology in three different in vitro culture systems.

    PubMed

    Jordaens, L; Arias-Alvarez, M; Pintelon, I; Thys, S; Valckx, S; Dezhkam, Y; Bols, P E J; Leroy, J L M R

    2015-10-01

    Elevated non-esterified fatty acids (NEFAs) have been recognized as an important link between lipolytic metabolic conditions and impaired fertility in high-yielding dairy cows. However, NEFA effects on the oviductal micro-environment currently remain unknown. We hypothesize that elevated NEFAs may contribute to the complex pathology of subfertility by exerting a negative effect on bovine oviductal epithelial cell (BOEC) physiology. Therefore, the objectives of this study were to elucidate direct NEFA effects on BOEC physiology in three different in vitro cell culture systems. Bovine oviductal epithelial cells (four replicates) were mechanically isolated, pooled, and cultured as conventional monolayers, as explants, and in a polarized cell culture system with Dulbecco's modified Eagle's medium/F12-based culture medium. Bovine oviductal epithelial cells were exposed to an NEFA mixture of oleic, stearic, and palmitic acids for 24 hours at both physiological and pathologic concentrations. A control (0 μM NEFA) and a solvent control (0 μM NEFA + 0.45% ethanol) group were implemented. Bovine oviductal epithelial cells physiology was assessed by means of cell number and viability, a sperm binding assay, transepithelial electric resistance (TER), and a wound-healing assay. Bovine oviductal epithelial cell morphology was assessed by scanning electron microscopy on cell polarity, presence of microvilli and cilia, and monolayer integrity. Bovine oviductal epithelial cell number was negatively affected by increasing NEFAs, however, cell viability was not. Sperm binding affinity significantly decreased with increasing NEFAs and tended (P = 0.051) to be more affected by the direction of NEFA exposure in the polarized cell culture system. The absolute TER increase after NEFA exposure in the control (110 ± 11 Ω.cm(2)) was significantly higher than that in all the other treatments and was also different depending on the exposure side. Bidirectional exposed monolayers were even associated with a significant TER reduction (-15 ± 10 Ω.cm(2); P < 0.05). Cell proliferation capacity showed a decreased cell migration with increasing NEFA concentrations but was irrespective of the exposure side. Bovine oviductal epithelial cell morphology was not affected. In conclusion, in an in vitro setting, NEFAs exert a negative effect on BOEC physiology but not morphology. Ultimately, these physiological alterations in its microenvironment may result in suboptimal development of the pre-implantation embryo and a reduced reproductive outcome in dairy cattle. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Physiological principles of vestibular function on earth and in space

    NASA Technical Reports Server (NTRS)

    Minor, L. B.

    1998-01-01

    Physiological mechanisms underlying vestibular function have important implications for our ability to understand, predict, and modify balance processes during and after spaceflight. The microgravity environment of space provides many unique opportunities for studying the effects of changes in gravitoinertial force on structure and function of the vestibular system. Investigations of basic vestibular physiology and of changes in reflexes occurring as a consequence of exposure to microgravity have important implications for diagnosis and treatment of vestibular disorders in human beings. This report reviews physiological principles underlying control of vestibular processes on earth and in space. Information is presented from a functional perspective with emphasis on signals arising from labyrinthine receptors. Changes induced by microgravity in linear acceleration detected by the vestibulo-ocular reflexes. Alterations of the functional requirements for postural control in space are described. Areas of direct correlation between studies of vestibular reflexes in microgravity and vestibular disorders in human beings are discussed.

  8. The physiological locus of the spiral after-effect.

    DOT National Transportation Integrated Search

    1964-09-01

    It has long been known that if an Archimedes spiral is rotated, an illusory motion of swelling or shrinking, depending on the direction of rotation, will be perceived. If, after the spiral is rotated, it is stopped and S looks at a stationary spiral,...

  9. Seasonal and diurnal gas exchange differences in ozone-sensitive common milkweed (Asclepias syriaca L.) in relation to ozone uptake.

    PubMed

    Bergweiler, Chris; Manning, William J; Chevone, Boris I

    2008-03-01

    Stomatal conductance and net photosynthesis of common milkweed (Asclepias syriaca L.) plants in two different soil moisture regimes were directly quantified and subsequently modeled over an entire growing season. Direct measurements captured the dynamic response of stomatal conductance to changing environmental conditions throughout the day, as well as declining gas exchange and carbon assimilation throughout the growth period beyond an early summer maximum. This phenomenon was observed in plants grown both with and without supplemental soil moisture, the latter of which should theoretically mitigate against harmful physiological effects caused by exposure to ozone. Seasonally declining rates of stomatal conductance were found to be substantial and incorporated into models, making them less susceptible to the overestimations of effective exposure that are an inherent source of error in ozone exposure indices. The species-specific evidence presented here supports the integration of dynamic physiological processes into flux-based modeling approaches for the prediction of ozone injury in vegetation.

  10. The role of physiology in the development of golf performance.

    PubMed

    Smith, Mark F

    2010-08-01

    The attainment of consistent high performance in golf requires effective physical conditioning that is carefully designed and monitored in accordance with the on-course demands the player will encounter. Appreciating the role that physiology plays in the attainment of consistent performance, and how a player's physicality can inhibit performance progression, supports the notion that the application of physiology is fundamental for any player wishing to excel in golf. With cardiorespiratory, metabolic, hormonal, musculoskeletal and nutritional demands acting on the golfer within and between rounds, effective physical screening of a player will ensure physiological and anatomical deficiencies that may influence performance are highlighted. The application of appropriate golf-specific assessment methods will ensure that physical attributes that have a direct effect on golf performance can be measured reliably and accurately. With the physical development of golf performance being achieved through a process of conditioning with the purpose of inducing changes in structural and metabolic functions, training must focus on foundation whole-body fitness and golf-specific functional strength and flexibility activities. For long-term player improvement to be effective, comprehensive monitoring will ensure the player reaches an optimal physical state at predetermined times in the competitive season. Through continual assessment of a player's physical attributes, training effectiveness and suitability, and the associated adaptive responses, key physical factors that may impact most on performance success can be determined.

  11. Rice Physiology

    Treesearch

    P.A. Counce; Davidi R. Gealy; Shi-Jean Susana Sung

    2002-01-01

    Physiology occurs tn physical space through chemical reactions constrained by anatomy and morphology, yet guided by genetics. Physiology has been called the logic of life. Genes encode structural and fimcdonal proteins. These proteins are subsequently processed to produce enzymes that direct and govern the biomechanical processes involved in the physiology of the...

  12. Elevated atmospheric CO2 negatively impacts photosynthesis through radiative forcing and physiology-mediated climate feedback

    NASA Astrophysics Data System (ADS)

    Zhu, Peng; Zhuang, Qianlai; Ciais, Philippe; Welp, Lisa; Li, Wenyu; Xin, Qinchuan

    2017-02-01

    Increasing atmospheric CO2 affects photosynthesis involving directly increasing leaf carboxylation rates, stomatal closure, and climatic effects. The direct effects are generally thought to be positive leading to increased photosynthesis, while its climatic effects can be regionally positive or negative. These effects are usually considered to be independent from each other, but they are in fact coupled through interactions between land surface exchanges of gases and heat and the physical climate system. In particular, stomatal closure reduces evapotranspiration and increases sensible heat emissions from ecosystems, leading to decreased atmospheric moisture and precipitation and local warming. We use a coupled earth system model to attribute the influence of the increase in CO2 on gross primary productivity (GPP) during the period of 1930-2011. In our model, CO2 radiative effects cause climate change that has only a negligible effect on global GPP (a reduction of 0.9 ± 2% during the last 80 years) because of opposite responses between tropical and northern biomes. On the other hand, CO2 physiological effects on GPP are both positive, by increased carboxylation rates and water use efficiency (7.1 ± 0.48% increase), and negative, by vegetation-climate feedback reducing precipitation, as a consequence of decreased transpiration and increased sensible heat in areas without water limitation (2.7 ± 1.76% reduction).When considering the coupled atmosphere-vegetation system, negative climate feedback on photosynthesis and plant growth due to the current level of CO2 opposes 29-38% of the gains from direct fertilization effects.

  13. Brain aromatase and circulating corticosterone are rapidly regulated by combined acute stress and sexual interaction in a sex specific manner

    PubMed Central

    Dickens, M.J.; Balthazart, J.; Cornil, C. A.

    2012-01-01

    Neural production of 17β-oestradiol via aromatisation of testosterone may play a critical role in rapid, non-genomic regulation of physiological and behavioural processes. In brain nuclei implicated in the control of sexual behaviour, sexual or stressfull stimuli induce respectively a rapid inhibition or increase in preoptic aromatase activity (AA). Here, we tested quail that were either non-stressed or acutely stressed (15 min restraint) immediately prior to sexual interaction (5 min) with stressed or non-stressed partners. We measured nuclei-specific AA changes, corresponding behavioural output, fertilisation rates and corticosterone (CORT) concentrations. In males, sexual interaction rapidly reversed stress-induced increases of AA in the medial preoptic nucleus (POM). This time scale (<5min) highlights the dynamic potential of the aromatase system to integrate input from stimuli that drive AA in opposing directions. Moreover, acute stress had minimal effects on male behaviour suggesting that the input from the sexual stimuli on POM AA may actively preserve sexual behaviour despite stress exposure. We also found distinct sex differences in contextual physiological responses: while males did not show any effect of partner status, females responded to both their stress exposure and the male partner’s stress exposure at the level of circulating CORT and AA. In addition, fertilisation rates and female CORT correlated with the male partner’s exhibition of sexually aggressive behaviour suggesting that female perception of the male can affect their physiology as much as direct stress. Overall, male reproduction appears relatively simple – sexual stimuli, irrespective of stress, drives major neural changes including rapid reversal of stress-induced changes of AA. In contrast, female reproduction appears more nuanced and context specific, with subjects responding physiologically and behaviourally to stress, the male partner’s stress exposure, and female-directed male behaviour. PMID:22612582

  14. Brain aromatase and circulating corticosterone are rapidly regulated by combined acute stress and sexual interaction in a sex-specific manner.

    PubMed

    Dickens, M J; Balthazart, J; Cornil, C A

    2012-10-01

    Neural production of 17β-oestradiol via aromatisation of testosterone may play a critical role in rapid, nongenomic regulation of physiological and behavioural processes. In brain nuclei implicated in the control of sexual behaviour, sexual or stressfull stimuli induce, respectively, a rapid inhibition or increase in preoptic aromatase activity (AA). In the present study, we tested quail that were either nonstressed or acutely stressed (15 min of restraint) immediately before sexual interaction (5 min) with stressed or nonstressed partners. We measured nuclei-specific AA changes, corresponding behavioural output, fertilisation rates and corticosterone (CORT) concentrations. In males, sexual interaction rapidly reversed stress-induced increases of AA in the medial preoptic nucleus (POM). This time scale (< 5 min) highlights the dynamic potential of the aromatase system to integrate input from stimuli that drive AA in opposing directions. Moreover, acute stress had minimal effects on male behaviour, suggesting that the input from the sexual stimuli on POM AA may actively preserve sexual behaviour despite stress exposure. We also found distinct sex differences in contextual physiological responses: males did not show any effect of partner status, whereas females responded to both their stress exposure and the male partner's stress exposure at the level of circulating CORT and AA. In addition, fertilisation rates and female CORT correlated with the male partner's exhibition of sexually aggressive behaviour, suggesting that female perception of the male can affect their physiology as much as direct stress. Overall, male reproduction appears relatively simple: sexual stimuli, irrespective of stress, drives major neural changes including rapid reversal of stress-induced changes of AA. By contrast, female reproduction appears more nuanced and context specific, with subjects responding physiologically and behaviourally to stress, the male partner's stress exposure, and female-directed male behaviour. © 2012 The Authors. Journal of Neuroendocrinology © 2012 British Society for Neuroendocrinology.

  15. Fertilizer responses of longleaf pine trees within a loblolly pine plantation: separating direct effects from competition effects

    Treesearch

    Peter H Anderson; Kurt H. Johnsen

    2009-01-01

    Evidence is mixed on how well longleaf pine (Pinus palustris Mill.) responds to increased soil nitrogen via fertilization. We examined growth and physiological responses of volunteer longleaf pine trees within an intensive loblolly pine (Pinus taeda L.) fertilization experiment. Fertilizer was applied annually following thinning at age 8 years (late 1992) at rates...

  16. Can Strategies Facilitate Learning from Illustrated Science Texts?

    ERIC Educational Resources Information Center

    Iding, Marie K.

    2000-01-01

    Examines the effectiveness of schema training in illustration types and text-illustration relations for learning from college level physiology texts and discusses findings that are consistent with prior research on learning from illustrated materials and with dual coding theory. Considers future directions for strategy training research and…

  17. Endogenous circadian regulation of carbon dioxide exchange in terrestrial ecosystems

    USDA-ARS?s Scientific Manuscript database

    We tested the hypothesis that diurnal changes in terrestrial CO2 exchange are driven exclusively by the direct effect of the physical environment on plant physiology. We failed to corroborate this assumption, finding instead large diurnal fluctuations in whole ecosystem carbon assimilation across a ...

  18. Stimulation artifact correction method for estimation of early cortico-cortical evoked potentials.

    PubMed

    Trebaul, Lena; Rudrauf, David; Job, Anne-Sophie; Mălîia, Mihai Dragos; Popa, Irina; Barborica, Andrei; Minotti, Lorella; Mîndruţă, Ioana; Kahane, Philippe; David, Olivier

    2016-05-01

    Effective connectivity can be explored using direct electrical stimulations in patients suffering from drug-resistant focal epilepsies and investigated with intracranial electrodes. Responses to brief electrical pulses mimic the physiological propagation of signals and manifest as cortico-cortical evoked potentials (CCEP). The first CCEP component is believed to reflect direct connectivity with the stimulated region but the stimulation artifact, a sharp deflection occurring during a few milliseconds, frequently contaminates it. In order to recover the characteristics of early CCEP responses, we developed an artifact correction method based on electrical modeling of the electrode-tissue interface. The biophysically motivated artifact templates are then regressed out of the recorded data as in any classical template-matching removal artifact methods. Our approach is able to make the distinction between the physiological responses time-locked to the stimulation pulses and the non-physiological component. We tested the correction on simulated CCEP data in order to quantify its efficiency for different stimulation and recording parameters. We demonstrated the efficiency of the new correction method on simulations of single trial recordings for early responses contaminated with the stimulation artifact. The results highlight the importance of sampling frequency for an accurate analysis of CCEP. We then applied the approach to experimental data. The model-based template removal was compared to a correction based on the subtraction of the averaged artifact. This new correction method of stimulation artifact will enable investigators to better analyze early CCEP components and infer direct effective connectivity in future CCEP studies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Hand Washing Induces a Clean Slate Effect in Moral Judgments: A Pupillometry and Eye-Tracking Study

    PubMed Central

    Kaspar, Kai; Krapp, Vanessa; König, Peter

    2015-01-01

    Physical cleansing is commonly understood to protect us against physical contamination. However, recent studies showed additional effects on moral judgments. Under the heading of the “Macbeth effect” direct links between bodily cleansing and one’s own moral purity have been demonstrated. Here we investigate (1) how moral judgments develop over time and how they are altered by hand washing, (2) whether changes in moral judgments can be explained by altered information sampling from the environment, and (3) whether hand washing affects emotional arousal. Using a pre-post control group design, we found that morality ratings of morally good and bad scenes acquired more extreme values in the control group over time, an effect that was fully counteracted by intermediate hand washing. This result supports the notion of a clean slate effect by hand washing. Thereby, eye-tracking data did not uncover differences in eye movement behavior that may explain differences in moral judgments. Thus, the clean slate effect is not due to altered information sampling from the environment. Finally, compared to the control group, pupil diameter decreased after hand washing, thus demonstrating a direct physiological effect. The results shed light on the physiological mechanisms behind this type of embodiment phenomenon. PMID:25994083

  20. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes

    PubMed Central

    Cantó, Carles; Sauve, Anthony A.; Bai, Peter

    2013-01-01

    Poly(ADP-ribose) polymerases (PARPs) are NAD+ dependent enzymes that were identified as DNA repair proteins, however, today it seems clear that PARPs are responsible for a plethora of biological functions. Sirtuins (SIRTs) are NAD+-dependent deacetylase enzymes involved in the same biological processes as PARPs raising the question whether PARP and SIRT enzymes may interact with each other in physiological and pathophysiological conditions. Hereby we review the current understanding of the SIRT-PARP interplay in regard to the biochemical nature of the interaction (competition for the common NAD+ substrate, mutual posttranslational modifications and direct transcriptional effects) and the physiological, or pathophysiological consequences of the interactions (metabolic events, oxidative stress response, genomic stability and ageing). Finally, we give an overview of the possibilities of pharmacological intervention to modulate PARP and SIRT enzymes either directly, or through modulating NAD+ homeostasis. PMID:23357756

  1. A Review of the Cognitive Effects Observed in Humans Following Acute Supplementation with Flavonoids, and Their Associated Mechanisms of Action.

    PubMed

    Bell, Lynne; Lamport, Daniel J; Butler, Laurie T; Williams, Claire M

    2015-12-09

    Flavonoids are polyphenolic compounds found in varying concentrations in many plant-based foods. Recent studies suggest that flavonoids can be beneficial to both cognitive and physiological health. Long term flavonoid supplementation over a period of weeks or months has been extensively investigated and reviewed, particularly with respect to cognitive ageing and neurodegenerative disease. Significantly less focus has been directed towards the short term effects of single doses of flavonoids on cognition. Here, we review 21 such studies with particular emphasis on the subclass and dose of flavonoids administered, the cognitive domains affected by flavonoid supplementation, and the effect size of the response. The emerging evidence suggests that flavonoids may be beneficial to attention, working memory, and psychomotor processing speed in a general population. Episodic memory effects are less well defined and may be restricted to child or older adult populations. The evidence also points towards a dose-dependent effect of flavonoids, but the physiological mechanisms of action remain unclear. Overall, there is encouraging evidence that flavonoid supplementation can benefit cognitive outcomes within an acute time frame of 0-6 h. But larger studies, combining cognitive and physiological measures, are needed to strengthen the evidence base.

  2. The Role of ERK1/2 in the Progression of Anti-Androgen Resistance of mtDNA Deficient Prostate Cancer

    DTIC Science & Technology

    2012-05-01

    of PCa and BCa. Signaled by a metabolic-to-proto-oncogenic pathway, it is plausible that the mitoGPS is a ubiquitous (patho) physiological response to...extracellular environment. We are the first to directly establish the mitochondrion as a direct physiological source of hypoxia in an in vitro system. Our...mitochondrial genome. It is plausible that the mitoGPS is a ubiquitous (patho) physiological response to the etiology and/or progression of a broad spectrum of

  3. Transcranial electric and magnetic stimulation: technique and paradigms.

    PubMed

    Paulus, Walter; Peterchev, Angel V; Ridding, Michael

    2013-01-01

    Transcranial electrical and magnetic stimulation techniques encompass a broad physical variety of stimuli, ranging from static magnetic fields or direct current stimulation to pulsed magnetic or alternating current stimulation with an almost infinite number of possible stimulus parameters. These techniques are continuously refined by new device developments, including coil or electrode design and flexible control of the stimulus waveforms. They allow us to influence brain function acutely and/or by inducing transient plastic after-effects in a range from minutes to days. Manipulation of stimulus parameters such as pulse shape, intensity, duration, and frequency, and location, size, and orientation of the electrodes or coils enables control of the immediate effects and after-effects. Physiological aspects such as stimulation at rest or during attention or activation may alter effects dramatically, as does neuropharmacological drug co-application. Non-linear relationships between stimulus parameters and physiological effects have to be taken into account. © 2013 Elsevier B.V. All rights reserved.

  4. Physiological and Psychophysical Modeling of the Precedence Effect

    PubMed Central

    Xia, Jing; Brughera, Andrew; Colburn, H. Steven

    2010-01-01

    Many past studies of sound localization explored the precedence effect (PE), in which a pair of brief, temporally close sounds from different directions is perceived as coming from a location near that of the first-arriving sound. Here, a computational model of low-frequency inferior colliculus (IC) neurons accounts for both physiological and psychophysical responses to PE click stimuli. In the model, IC neurons have physiologically plausible inputs, receiving excitation from the ipsilateral medial superior olive (MSO) and long-lasting inhibition from both ipsilateral and contralateral MSOs, relayed through the dorsal nucleus of the lateral lemniscus. In this model, physiological suppression of the lagging response depends on the inter-stimulus delay (ISD) between the lead and lag as well as their relative locations. Psychophysical predictions are generated from a population of model neurons. At all ISDs, predicted lead localization is good. At short ISDs, the estimated location of the lag is near that of the lead, consistent with subjects perceiving both lead and lag from the lead location. As ISD increases, the estimated lag location moves closer to the true lag location, consistent with listeners’ perception of two sounds from separate locations. Together, these simulations suggest that location-dependent suppression in IC neurons can explain the behavioral phenomenon known as the precedence effect. PMID:20358242

  5. Phloem function: A key to understanding and manipulating plant responses to rising atmospheric [CO2]?

    USDA-ARS?s Scientific Manuscript database

    Increasing atmospheric carbon dioxide concentration ([CO2]) directly stimulates photosynthesis and reduces stomatal conductance in C3 plants. Both of these physiological effects have the potential to alter phloem function at elevated [CO2]. Recent research has clearly established that photosynthetic...

  6. New Directions in Mass Communications Research: Physiological Measurement.

    ERIC Educational Resources Information Center

    Fletcher, James E.

    Psychophysiological research into the effects of mass media, specifically the music of the masses, promises increased insight into the control the media exert on all their consumers. Attention and retention of mass media messages can be tested by measuring the receiver's electrodernal activity, pupil dilation, peripheral vasodilation, and heart…

  7. Quantifying the roles of random motility and directed motility using advection-diffusion theory for a 3T3 fibroblast cell migration assay stimulated with an electric field.

    PubMed

    Simpson, Matthew J; Lo, Kai-Yin; Sun, Yung-Shin

    2017-03-17

    Directed cell migration can be driven by a range of external stimuli, such as spatial gradients of: chemical signals (chemotaxis); adhesion sites (haptotaxis); or temperature (thermotaxis). Continuum models of cell migration typically include a diffusion term to capture the undirected component of cell motility and an advection term to capture the directed component of cell motility. However, there is no consensus in the literature about the form that the advection term takes. Some theoretical studies suggest that the advection term ought to include receptor saturation effects. However, others adopt a much simpler constant coefficient. One of the limitations of including receptor saturation effects is that it introduces several additional unknown parameters into the model. Therefore, a relevant research question is to investigate whether directed cell migration is best described by a simple constant tactic coefficient or a more complicated model incorporating saturation effects. We study directed cell migration using an experimental device in which the directed component of the cell motility is driven by a spatial gradient of electric potential, which is known as electrotaxis. The electric field (EF) is proportional to the spatial gradient of the electric potential. The spatial variation of electric potential across the experimental device varies in such a way that there are several subregions on the device in which the EF takes on different values that are approximately constant within those subregions. We use cell trajectory data to quantify the motion of 3T3 fibroblast cells at different locations on the device to examine how different values of the EF influences cell motility. The undirected (random) motility of the cells is quantified in terms of the cell diffusivity, D, and the directed motility is quantified in terms of a cell drift velocity, v. Estimates D and v are obtained under a range of four different EF conditions, which correspond to normal physiological conditions. Our results suggest that there is no anisotropy in D, and that D appears to be approximately independent of the EF and the electric potential. The drift velocity increases approximately linearly with the EF, suggesting that the simplest linear advection term, with no additional saturation parameters, provides a good explanation of these physiologically relevant data. We find that the simplest linear advection term in a continuum model of directed cell motility is sufficient to describe a range of different electrotaxis experiments for 3T3 fibroblast cells subject to normal physiological values of the electric field. This is useful information because alternative models that include saturation effects involve additional parameters that need to be estimated before a partial differential equation model can be applied to interpret or predict a cell migration experiment.

  8. Effects of larval growth condition and water availability on desiccation resistance and its physiological basis in adult Anopheles gambiae sensu stricto

    PubMed Central

    2010-01-01

    Background Natural populations of the malaria mosquito Anopheles gambiae s.s. are exposed to large seasonal and daily fluctuations in relative humidity and temperature, which makes coping with drought a crucial aspect of their ecology. Methods To better understand natural variation in desiccation resistance in this species, the effects of variation in larval food availability and access to water as an adult on subsequent phenotypic quality and desiccation resistance of adult females of the Mopti chromosomal form were tested experimentally. Results It was found that, under normal conditions, larval food availability and adult access to water had only small direct effects on female wet mass, dry mass, and water, glycogen and body lipid contents corrected for body size. In contrast, when females subsequently faced a strong desiccation challenge, larval food availability and adult access to water had strong carry-over effects on most measured physiological and metabolic parameters, and affected female survival. Glycogen and water content were the most used physiological reserves in relative terms, but their usage significantly depended on female phenotypic quality. Adult access to water significantly influenced the use of water and body lipid reserves, which subsequently affected desiccation resistance. Conclusions These results demonstrate the importance of growth conditions and water availability on adult physiological status and subsequent resistance to desiccation. PMID:20691104

  9. Meeting Report: The Role of Environmental Lighting and Circadian Disruption in Cancer and Other Diseases

    PubMed Central

    Stevens, Richard G.; Blask, David E.; Brainard, George C.; Hansen, Johnni; Lockley, Steven W.; Provencio, Ignacio; Rea, Mark S.; Reinlib, Leslie

    2007-01-01

    Light, including artificial light, has a range of effects on human physiology and behavior and can therefore alter human physiology when inappropriately timed. One example of potential light-induced disruption is the effect of light on circadian organization, including the production of several hormone rhythms. Changes in light–dark exposure (e.g., by nonday occupation or transmeridian travel) shift the timing of the circadian system such that internal rhythms can become desynchronized from both the external environment and internally with each other, impairing our ability to sleep and wake at the appropriate times and compromising physiologic and metabolic processes. Light can also have direct acute effects on neuroendocrine systems, for example, in suppressing melatonin synthesis or elevating cortisol production that may have untoward long-term consequences. For these reasons, the National Institute of Environmental Health Sciences convened a workshop of a diverse group of scientists to consider how best to conduct research on possible connections between lighting and health. According to the participants in the workshop, there are three broad areas of research effort that need to be addressed. First are the basic biophysical and molecular genetic mechanisms for phototransduction for circadian, neuroendocrine, and neurobehavioral regulation. Second are the possible physiologic consequences of disrupting these circadian regulatory processes such as on hormone production, particularly melatonin, and normal and neoplastic tissue growth dynamics. Third are effects of light-induced physiologic disruption on disease occurrence and prognosis, and how prevention and treatment could be improved by application of this knowledge. PMID:17805428

  10. Cellular Immunosenescence in Adult Male Crickets, Gryllus assimilis

    USDA-ARS?s Scientific Manuscript database

    Ecological immunity studies in invertebrates, particularly insects, have generated new insights into trade-offs between immune functions and other physiological parameters. These studies document physiologically-directed reallocations of immune costs to other high-cost areas of physiology. Immunos...

  11. Environmental quality of mussel farms in the Vigo estuary: pollution by PAHs, origin and effects on reproduction.

    PubMed

    Ruiz, Y; Suarez, P; Alonso, A; Longo, E; Villaverde, A; San Juan, F

    2011-01-01

    This work analyzes the influence of environmental and physiological parameters on PAHs accumulation in cultured mussels. Lipid content and reproductive stage are directly related with PAHs accumulation pattern. We observed a rapid accumulation and depuration of PAHs, mainly during periods of nutrients accumulation, spawns and gonadic restorations. Correlations between PAHs accumulation and physiological status indicate when mussels are more susceptible to adverse effects of these pollutants. A positive correlation between mutagenic congener's accumulation and occurrence of gonadic neoplastic disorders is shown for the first time in mussels. Molecular indices were used to identify the origin of hydrocarbons accumulated by Mytilus, showing a chronic pyrolytic pollution and pollutant episodes by petrogenic sources and biomass combustion in the studied area. Multivariate analysis suggests the possibility of including physiological parameters of sentinel organisms in environmental biomonitoring programs, mainly in aquaculture areas, taking into account their two aspects: farms productivity and human food safety. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Comparative Analysis of Stress Induced Gene Expression in Caenorhabditis elegans following Exposure to Environmental and Lab Reconstituted Complex Metal Mixture

    PubMed Central

    Kumar, Ranjeet; Pradhan, Ajay; Khan, Faisal Ahmad; Lindström, Pia; Ragnvaldsson, Daniel; Ivarsson, Per; Olsson, Per-Erik; Jass, Jana

    2015-01-01

    Metals are essential for many physiological processes and are ubiquitously present in the environment. However, high metal concentrations can be harmful to organisms and lead to physiological stress and diseases. The accumulation of transition metals in the environment due to either natural processes or anthropogenic activities such as mining results in the contamination of water and soil environments. The present study used Caenorhabditis elegans to evaluate gene expression as an indicator of physiological response, following exposure to water collected from three different locations downstream of a Swedish mining site and a lab reconstituted metal mixture. Our results indicated that the reconstituted metal mixture exerted a direct stress response in C. elegans whereas the environmental waters elicited either a diminished or abrogated response. This suggests that it is not sufficient to use the biological effects observed from laboratory mixtures to extrapolate the effects observed in complex aquatic environments and apply this to risk assessment and intervention. PMID:26168046

  13. The Effects of Passive and Active Learning on Student Preference and Performance in an Undergraduate Basic Science Course

    ERIC Educational Resources Information Center

    Minhas, Paras Singh; Ghosh, Arundhati; Swanzy, Leah

    2012-01-01

    Active learning is based on self-directed and autonomous teaching methods, whereas passive learning is grounded in instructor taught lectures. An animal physiology course was studied over a two-year period (Year 1, n = 42 students; Year 2, n = 30 students) to determine the effects of student-led seminar (andragogical) and lecture (pedagogical)…

  14. Promoting the translation of intentions into action by implementation intentions: behavioral effects and physiological correlates

    PubMed Central

    Wieber, Frank; Thürmer, J. Lukas; Gollwitzer, Peter M.

    2015-01-01

    The present review addresses the physiological correlates of planning effects on behavior. Although intentions to act qualify as predictors of behavior, accumulated evidence indicates that there is a substantial gap between even strong intentions and subsequent action. One effective strategy to reduce this intention–behavior gap is the formation of implementation intentions that specify when, where, and how to act on a given goal in an if-then format (“If I encounter situation Y, then I will initiate action Z!”). It has been proposed that implementation intentions render the mental representation of the situation highly accessible and establish a strong associative link between the mental representations of the situation and the action. These process assumptions have been examined in behavioral research, and in physiological research, a field that has begun to investigate the temporal dynamics of and brain areas involved in implementation intention effects. In the present review, we first summarize studies on the cognitive processes that are central to the strategic automation of action control by implementation intentions. We then examine studies involving critical samples with impaired self-regulation. Lastly, we review studies that have applied physiological measures such as heart rate, cortisol level, and eye movement, as well as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) studies on the neural correlates of implementation intention effects. In support of the assumed processes, implementation intentions increased goal attainment in studies on cognitive processes and in critical samples, modulated brain waves related to perceptual and decision processes, and generated less activity in brain areas associated with effortful action control. In our discussion, we reflect on the status quo of physiological research on implementation intentions, methodological and conceptual issues, related research, and propose future directions. PMID:26236214

  15. Production and Physiological Effects of Hydrogen Sulfide

    PubMed Central

    2014-01-01

    Abstract Significance: Hydrogen sulfide (H2S) has been recognized as a physiological mediator with a variety of functions. It regulates synaptic transmission, vascular tone, inflammation, transcription, and angiogenesis; protects cells from oxidative stress and ischemia-reperfusion injury; and promotes healing of ulcers. Recent Advances: In addition to cystathionine β-synthase and cystathionine γ-lyase, 3-mercaptopyruvate sulfurtransferase along with cysteine aminotransferase was recently demonstrated to produce H2S. Even in bacteria, H2S produced by these enzymes functions as a defense against antibiotics, suggesting that the cytoprotective effect of H2S is a universal defense mechanism in organisms from bacteria to mammals. Critical Issues: The functional form of H2S—undissociated H2S gas, dissociated HS ion, or some other form of sulfur—has not been identified. Future Directions: The regulation of H2S production by three enzymes may lead to the identification of the physiological signals that are required to release H2S. The identification of the physiological functions of other forms of sulfur may also help understand the biological significance of H2S. Antioxid. Redox Signal. 20, 783–793. PMID:23581969

  16. Using a Combined Approach of Guided Inquiry & Direct Instruction to Explore How Physiology Affects Behavior

    ERIC Educational Resources Information Center

    Machtinger, Erika T.

    2014-01-01

    Hands-on activities with live organisms allow students to actively explore scientific investigation. Here, I present activities that combine guided inquiry with direct instruction and relate how nutrition affects the physiology and behavior of the common housefly. These experiments encourage student involvement in the formulation of experimental…

  17. Studies on functional foods in Japan--state of the art.

    PubMed

    Arai, S

    1996-01-01

    This paper pinpoints the "tertiary" function of foods which, different from the conventional "primary" and "secondary" functions that are related to nutrition and preference, respectively, is understood to be directly involved in the modulation of our physiological systems such as the immune, endocrine, nerve, circulatory, and digestive systems. Insights into this newly defined function are particularly important in that the intake of some physiologically functional constituents of foods could be effective in preventing diseases that may be caused by disorders in these physiological systems. Technologically, it has become feasible to design and produce physiologically functional foods (simply, functional foods) that are expected to satisfy in whole or in part a today's demand for disease prevention by eating. Such public expectations are reflected in the activation and development of systematic, large-scale studies on foods as seen in "Grant-in-Aid" research sponsored by the Ministry of Education, Science, and Culture. Meanwhile, the Ministry of Health and Welfare has initiated a policy of officially approving functional foods in terms of "foods for specified health uses" as defined by new legislation. Up to now (October 1995), 58 items have thus been approved. The first was a hypoallergenic rice product approved as of June 1, 1993. Here I discuss details of studies on rice-based functional foods. Other basic and applied studies directed toward the tertiary function, with future perspectives for functional foods, are also discussed.

  18. Circadian Desynchrony Promotes Metabolic Disruption in a Mouse Model of Shiftwork

    PubMed Central

    Barclay, Johanna L.; Husse, Jana; Bode, Brid; Naujokat, Nadine; Meyer-Kovac, Judit; Schmid, Sebastian M.; Lehnert, Hendrik; Oster, Henrik

    2012-01-01

    Shiftwork is associated with adverse metabolic pathophysiology, and the rising incidence of shiftwork in modern societies is thought to contribute to the worldwide increase in obesity and metabolic syndrome. The underlying mechanisms are largely unknown, but may involve direct physiological effects of nocturnal light exposure, or indirect consequences of perturbed endogenous circadian clocks. This study employs a two-week paradigm in mice to model the early molecular and physiological effects of shiftwork. Two weeks of timed sleep restriction has moderate effects on diurnal activity patterns, feeding behavior, and clock gene regulation in the circadian pacemaker of the suprachiasmatic nucleus. In contrast, microarray analyses reveal global disruption of diurnal liver transcriptome rhythms, enriched for pathways involved in glucose and lipid metabolism and correlating with first indications of altered metabolism. Although altered food timing itself is not sufficient to provoke these effects, stabilizing peripheral clocks by timed food access can restore molecular rhythms and metabolic function under sleep restriction conditions. This study suggests that peripheral circadian desynchrony marks an early event in the metabolic disruption associated with chronic shiftwork. Thus, strengthening the peripheral circadian system by minimizing food intake during night shifts may counteract the adverse physiological consequences frequently observed in human shift workers. PMID:22629359

  19. Overexpression of miR-223 Tips the Balance of Pro- and Anti-hypertrophic Signaling Cascades toward Physiologic Cardiac Hypertrophy*

    PubMed Central

    Yang, Liwang; Li, Yutian; Wang, Xiaohong; Mu, Xingjiang; Qin, Dongze; Huang, Wei; Alshahrani, Saeed; Nieman, Michelle; Peng, Jiangtong; Essandoh, Kobina; Peng, Tianqing; Wang, Yigang; Lorenz, John; Soleimani, Manoocher; Zhao, Zhi-Qing; Fan, Guo-Chang

    2016-01-01

    MicroRNAs (miRNAs) have been extensively examined in pathological cardiac hypertrophy. However, few studies focused on profiling the miRNA alterations in physiological hypertrophic hearts. In this study we generated a transgenic mouse model with cardiac-specific overexpression of miR-223. Our results showed that elevation of miR-223 caused physiological cardiac hypertrophy with enhanced cardiac function but no fibrosis. Using the next generation RNA sequencing, we observed that most of dys-regulated genes (e.g. Atf3/5, Egr1/3, Sfrp2, Itgb1, Ndrg4, Akip1, Postn, Rxfp1, and Egln3) in miR-223-transgenic hearts were associated with cell growth, but they were not directly targeted by miR-223. Interestingly, these dys-regulated genes are known to regulate the Akt signaling pathway. We further identified that miR-223 directly interacted with 3′-UTRs of FBXW7 and Acvr2a, two negative regulators of the Akt signaling. However, we also validated that miR-223 directly inhibited the expression of IGF-1R and β1-integrin, two positive regulators of the Akt signaling. Lastly, Western blotting did reveal that Akt was activated in miR-223-overexpressing hearts. Adenovirus-mediated overexpression of miR-223 in neonatal rat cardiomyocytes induced cell hypertrophy, which was blocked by the addition of MK2206, a specific inhibitor of Akt. Taken together, these data represent the first piece of work showing that miR-223 tips the balance of promotion and inactivation of Akt signaling cascades toward activation of Akt, a key regulator of physiological cardiac hypertrophy. Thus, our study suggests that the ultimate phenotype outcome of a miRNA may be decided by the secondary net effects of the whole target network rather than by several primary direct targets in an organ/tissue. PMID:27226563

  20. The perilous effects of racism on blacks.

    PubMed

    Clark, V R

    2001-01-01

    This paper focuses on understanding the perilous effects of interpersonal and institutional racism on the psychological and physiological well-being of Blacks. Interpersonal racism refers to prejudice and discriminatory behaviors directed toward individuals because of their race or ethnicity, and institutional racism refers to formal and informal policies and practices that deny equitable treatment to individuals because of their race or ethnic group affiliation. Racism can psychologically affect Blacks by allowing society to deny their value as individuals, and by compelling them to internalize the racist conceptions of them held by their oppressors. Racist stressors may also lead to increased physiological reactivity which, when sustained for a period of time, can lead to cardiovascular disorders and diseases. To eliminate the effects of racism, it is imperative that further research seek better ways to shield Blacks from these menacing stressors.

  1. PHYCAA+: an optimized, adaptive procedure for measuring and controlling physiological noise in BOLD fMRI.

    PubMed

    Churchill, Nathan W; Strother, Stephen C

    2013-11-15

    The presence of physiological noise in functional MRI can greatly limit the sensitivity and accuracy of BOLD signal measurements, and produce significant false positives. There are two main types of physiological confounds: (1) high-variance signal in non-neuronal tissues of the brain including vascular tracts, sinuses and ventricles, and (2) physiological noise components which extend into gray matter tissue. These physiological effects may also be partially coupled with stimuli (and thus the BOLD response). To address these issues, we have developed PHYCAA+, a significantly improved version of the PHYCAA algorithm (Churchill et al., 2011) that (1) down-weights the variance of voxels in probable non-neuronal tissue, and (2) identifies the multivariate physiological noise subspace in gray matter that is linked to non-neuronal tissue. This model estimates physiological noise directly from EPI data, without requiring external measures of heartbeat and respiration, or manual selection of physiological components. The PHYCAA+ model significantly improves the prediction accuracy and reproducibility of single-subject analyses, compared to PHYCAA and a number of commonly-used physiological correction algorithms. Individual subject denoising with PHYCAA+ is independently validated by showing that it consistently increased between-subject activation overlap, and minimized false-positive signal in non gray-matter loci. The results are demonstrated for both block and fast single-event task designs, applied to standard univariate and adaptive multivariate analysis models. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Direct Imaging of Lipid-Ion Network Formation under Physiological Conditions by Frequency Modulation Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Higgins, Michael J.; Jarvis, Suzanne P.

    2007-03-01

    Various metal cations in physiological solutions interact with lipid headgroups in biological membranes, having an impact on their structure and stability, yet little is known about the molecular-scale dynamics of the lipid-ion interactions. Here we directly investigate the extensive lipid-ion interaction networks and their transient formation between headgroups in a dipalmitoylphosphatidylcholine bilayer under physiological conditions. The spatial distribution of ion occupancy is imaged in real space by frequency modulation atomic force microscopy with sub-Ångstrom resolution.

  3. The use of multiple indices of physiological activity to access viability in chlorine disinfected Escherichia coli O157:H7

    NASA Technical Reports Server (NTRS)

    Lisle, J. T.; Pyle, B. H.; McFeters, G. A.

    1999-01-01

    A suite of fluorescent intracellular stains and probes was used, in conjunction with viable plate counts, to assess the effect of chlorine disinfection on membrane potential (rhodamine 123; Rh123 and bis-(1,3-dibutylbarbituric acid) trimethine oxonol; DiBAC4(3)), membrane integrity (LIVE/DEAD BacLight kit), respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride; CTC) and substrate responsiveness (direct viable counts; DVC) in the commensal pathogen Escherichia coli O157:H7. After a 5 min exposure to the disinfectant, physiological indices were affected in the following order: viable plate counts > substrate responsiveness > membrane potential > respiratory activity > membrane integrity. In situ assessment of physiological activity by examining multiple targets, as demonstrated in this study, permits a more comprehensive determination of the site and extent of injury in bacterial cells following sublethal disinfection with chlorine. This approach to assessing altered bacterial physiology has application in various fields where detection of stressed bacteria is of interest.

  4. Evolution of brain-computer interfaces: going beyond classic motor physiology

    PubMed Central

    Leuthardt, Eric C.; Schalk, Gerwin; Roland, Jarod; Rouse, Adam; Moran, Daniel W.

    2010-01-01

    The notion that a computer can decode brain signals to infer the intentions of a human and then enact those intentions directly through a machine is becoming a realistic technical possibility. These types of devices are known as brain-computer interfaces (BCIs). The evolution of these neuroprosthetic technologies could have significant implications for patients with motor disabilities by enhancing their ability to interact and communicate with their environment. The cortical physiology most investigated and used for device control has been brain signals from the primary motor cortex. To date, this classic motor physiology has been an effective substrate for demonstrating the potential efficacy of BCI-based control. However, emerging research now stands to further enhance our understanding of the cortical physiology underpinning human intent and provide further signals for more complex brain-derived control. In this review, the authors report the current status of BCIs and detail the emerging research trends that stand to augment clinical applications in the future. PMID:19569892

  5. Remote sensing of fire severity: linking post-fire reflectance data with physiological responses in two western conifer species

    NASA Astrophysics Data System (ADS)

    Sparks, A. M.; Smith, A. M.; Kolden, C.; Apostol, K. G.; Boschetti, L.

    2014-12-01

    Fire is a common disturbance in forested ecosystems in the western U.S. and can be responsible for long-term impacts on vegetation and soil. An improved understanding of how ecosystems recover after fire is necessary so that land managers can plan for and mitigate the effects of these disturbances. Although several studies have attempted to link fire intensity with severity, direct links between spectral indices of severity and key physiological changes in vegetation are not well understood. We conducted an assessment of how two western conifer species respond to four fire radiative energy treatments, with spectra acquired pre- and up to a month post-burn. After transforming the spectral data into Landsat 8 equivalent reflectance, burn severity indices commonly used in the remote sensing community were compared to concurrent physiological measurements including gas exchange and photosynthetic rate. Preliminary results indicate significant relationships between several fire severity indices and physiological responses measured in the conifer seedlings.

  6. Light, time, and the physiology of biotic response to rapid climate change in animals.

    PubMed

    Bradshaw, William E; Holzapfel, Christina M

    2010-01-01

    Examination of temperate and polar regions of Earth shows that the nonbiological world is exquisitely sensitive to the direct effects of temperature, whereas the biological world is largely organized by light. Herein, we discuss the use of day length by animals at physiological and genetic levels, beginning with a comparative experimental study that shows the preeminent role of light in determining fitness in seasonal environments. Typically, at seasonally appropriate times, light initiates a cascade of physiological events mediating the input and interpretation of day length to the output of specific hormones that ultimately determine whether animals prepare to develop, reproduce, hibernate, enter dormancy, or migrate. The mechanisms that form the basis of seasonal time keeping and their adjustment during climate change are reviewed at the physiological and genetic levels. Future avenues for research are proposed that span basic questions from how animals transition from dependency on tropical cues to temperate cues during range expansions, to more applied questions of species survival and conservation biology during periods of climatic stress.

  7. Disclosing HIV serostatus to family members: Effects on psychological and physiological health in minority women living with HIV.

    PubMed

    Fekete, Erin M; Antoni, Michael H; Durán, Ron; Stoelb, Brenda L; Kumar, Mahendra; Schneiderman, Neil

    2009-01-01

    Directly disclosing a positive HIV serostatus to family members can have psychological and physiological health benefits. Perceptions that one is in a supportive family environment may enhance these benefits. We examined a mediated moderation model in which we expected interactions between serostatus disclosure to family members and HIV-specific family support to be associated with women's perceived stress, which in turn would explain depressive symptoms and 24-h urinary cortisol in women living with HIV (WLWH). Low-income ethnic minority WLWH (n = 82) reported the percentage of family members they had directly disclosed their serostatus to, perceptions of HIV-related support from family members, perceived stress, and depressive symptoms. Cortisol was measured via 24-h urinary collection. Disclosure to spouses and children coupled with high levels of family support was associated with higher levels of depressive symptoms in women. For disclosure to spouses, this relationship was explained by higher perceived stress. Direct disclosure to mothers in tandem with high support was associated with lower cortisol, and this relationship was explained through higher levels of perceived stress. The effects of serostatus disclosure on perceived stress and health in WLWH may depend, in part, on women's family environment and to whom they disclose to within that environment.

  8. Evidence of a role for melatonin in fetal sheep physiology: direct actions of melatonin on fetal cerebral artery, brown adipose tissue and adrenal gland

    PubMed Central

    Torres-Farfan, Claudia; Valenzuela, Francisco J; Mondaca, Mauricio; Valenzuela, Guillermo J; Krause, Bernardo; Herrera, Emilio A; Riquelme, Raquel; Llanos, Anibal J; Seron-Ferre, Maria

    2008-01-01

    Although the fetal pineal gland does not secrete melatonin, the fetus is exposed to melatonin of maternal origin. In the non-human primate fetus, melatonin acts as a trophic hormone for the adrenal gland, stimulating growth while restraining cortisol production. This latter physiological activity led us to hypothesize that melatonin may influence some fetal functions critical for neonatal adaptation to extrauterine life. To test this hypothesis we explored (i) the presence of G-protein-coupled melatonin binding sites and (ii) the direct modulatory effects of melatonin on noradrenaline (norepinephrine)-induced middle cerebral artery (MCA) contraction, brown adipose tissue (BAT) lypolysis and ACTH-induced adrenal cortisol production in fetal sheep. We found that melatonin directly inhibits the response to noradrenaline in the MCA and BAT, and also inhibits the response to ACTH in the adrenal gland. Melatonin inhibition was reversed by the melatonin antagonist luzindole only in the fetal adrenal. MCA, BAT and adrenal tissue displayed specific high-affinity melatonin binding sites coupled to G-protein (Kd values: MCA 64 ± 1 pm, BAT 98.44 ± 2.12 pm and adrenal 4.123 ± 3.22 pm). Melatonin binding was displaced by luzindole only in the adrenal gland, supporting the idea that action in the MCA and BAT is mediated by different melatonin receptors. These direct inhibitory responses to melatonin support a role for melatonin in fetal physiology, which we propose prevents major contraction of cerebral vessels, restrains cortisol release and restricts BAT lypolysis during fetal life. PMID:18599539

  9. Consequences of climate change for biogeochemical cycling in forests of northeastern North America

    Treesearch

    John L. Campbell; Lindsey E. Rustad; Elizabeth W. Boyer; Sheila F. Christopher; Charles T. Driscoll; Ivan .J. Fernandez; Peter M. Groffman; Daniel Houle; Jana Kiekbusch; Alison H. Magill; Myron J. Mitchell; Scott V. Ollinger

    2009-01-01

    A critical component of assessing the impacts of climate change on forest ecosystems involves understanding associated changes in biogeochemical cycling of elements. Evidence from research on northeastern North American forests shows that direct effects of climate change will evoke changes in biogeochemical cycling by altering plant physiology forest productivity, and...

  10. Induction of diapause and seasonal morphs in butterflies and other insects: knowns, unknowns and the challenge of integration

    PubMed Central

    Nylin, Sören

    2013-01-01

    The ‘choice’ of whether to enter diapause or to develop directly has profound effects on the life histories of insects, and may thus have cascading consequences such as seasonal morphs and other less obvious forms of seasonal plasticity. Present knowledge of the control of diapause and seasonal morphs at the physiological and molecular levels is briefly reviewed. Examples, mainly derived from personal research (primarily on butterflies), are given as a starting point with the aim of outlining areas of research that are still poorly understood. These include: the role of the direction of change in photoperiod; the role of factors such as temperature and diet in modifying the photoperiodic responses; and the role of sex, parental effects and sex linkage on photoperiodic control. More generally, there is still a limited understanding of how external cues and physiological pathways regulating various traits are interconnected via gene action to form a co-adapted complete phenotype that is adaptive in the wild despite environmental fluctuation and change. PMID:23894219

  11. Rowing Physiology.

    ERIC Educational Resources Information Center

    Spinks, W. L.

    This review of the literature discusses and examines the methods used in physiological assessment of rowers, results of such assessments, and future directions emanating from research in the physiology of rowing. The first section discusses the energy demands of rowing, including the contribution of the energy system, anaerobic metabolism, and the…

  12. Behavioral and Physiological Responses to Child-Directed Speech of Children with Autism Spectrum Disorders or Typical Development

    ERIC Educational Resources Information Center

    Watson, Linda R.; Roberts, Jane E.; Baranek, Grace T.; Mandulak, Kerry C.; Dalton, Jennifer C.

    2012-01-01

    Young boys with autism were compared to typically developing boys on responses to nonsocial and child-directed speech (CDS) stimuli. Behavioral (looking) and physiological (heart rate and respiratory sinus arrhythmia) measures were collected. Boys with autism looked equally as much as chronological age-matched peers at nonsocial stimuli, but less…

  13. Direct but no transgenerational effects of decitabine and vorinostat on male fertility.

    PubMed

    Kläver, Ruth; Sánchez, Victoria; Damm, Oliver S; Redmann, Klaus; Lahrmann, Elisabeth; Sandhowe-Klaverkamp, Reinhild; Rohde, Christian; Wistuba, Joachim; Ehmcke, Jens; Schlatt, Stefan; Gromoll, Jörg

    2015-01-01

    Establishment and maintenance of the correct epigenetic code is essential for a plethora of physiological pathways and disturbed epigenetic patterns can provoke severe consequences, e.g. tumour formation. In recent years, epigenetic drugs altering the epigenome of tumours actively have been developed for anti-cancer therapies. However, such drugs could potentially also affect other physiological pathways and systems in which intact epigenetic patterns are essential. Amongst those, male fertility is one of the most prominent. Consequently, we addressed possible direct effects of two epigenetic drugs, decitabine and vorinostat, on both, the male germ line and fertility. In addition, we checked for putative transgenerational epigenetic effects on the germ line of subsequent generations (F1-F3). Parental adult male C57Bl/6 mice were treated with either decitabine or vorinostat and analysed as well as three subsequent untreated generations derived from these males. Treatment directly affected several reproductive parameters as testis (decitabine & vorinostat) and epididymis weight, size of accessory sex glands (vorinostat), the height of the seminiferous epithelium and sperm concentration and morphology (decitabine). Furthermore, after decitabine administration, DNA methylation of a number of loci was altered in sperm. However, when analysing fertility of treated mice (fertilisation, litter size and sex ratio), no major effect of the selected epigenetic drugs on male fertility was detected. In subsequent generations (F1-F3 generations) only subtle changes on reproductive organs, sperm parameters and DNA methylation but no overall effect on fertility was observed. Consequently, in mice, decitabine and vorinostat neither affected male fertility per se nor caused marked transgenerational effects. We therefore suggest that both drugs do not induce major adverse effects-in terms of male fertility and transgenerational epigenetic inheritance-when used in anti-cancer-therapies.

  14. Hypoglycemic effect of Opuntia cactus.

    PubMed

    Ibañez-Camacho, R; Roman-Ramos, R

    1979-01-01

    Nopal (Opuntia sp.) has been traditionally used by the Mexican population for the treatment of diabetes mellitus. The purpose of this work is to describe effects produced by directly liquified nopal and extracts from this plant in healthy and pancreatectomized rabbits. Preliminary results allow us to conclude that Opuntia streptacantha, Lemaire, has hypoglycemic properties when orally administered, in animals with experimentally induced diabetes as well as in healthy ones with physiologic hyperglycemia.

  15. The effects of acute alcohol exposure on the response properties of neurons in visual cortex area 17 of cats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Bo; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, Beijing 100101; Xia Jing

    Physiological and behavioral studies have demonstrated that a number of visual functions such as visual acuity, contrast sensitivity, and motion perception can be impaired by acute alcohol exposure. The orientation- and direction-selective responses of cells in primary visual cortex are thought to participate in the perception of form and motion. To investigate how orientation selectivity and direction selectivity of neurons are influenced by acute alcohol exposure in vivo, we used the extracellular single-unit recording technique to examine the response properties of neurons in primary visual cortex (A17) of adult cats. We found that alcohol reduces spontaneous activity, visual evoked unitmore » responses, the signal-to-noise ratio, and orientation selectivity of A17 cells. In addition, small but detectable changes in both the preferred orientation/direction and the bandwidth of the orientation tuning curve of strongly orientation-biased A17 cells were observed after acute alcohol administration. Our findings may provide physiological evidence for some alcohol-related deficits in visual function observed in behavioral studies.« less

  16. Physiological Effects of Free Fatty Acid Production in Genetically Engineered Synechococcus elongatus PCC 7942

    PubMed Central

    Ruffing, Anne M.; Jones, Howland D.T.

    2012-01-01

    The direct conversion of carbon dioxide into biofuels by photosynthetic microorganisms is a promising alternative energy solution. In this study, a model cyanobacterium, Synechococcus elongatus PCC 7942, is engineered to produce free fatty acids (FFA), potential biodiesel precursors, via gene knockout of the FFA-recycling acyl-ACP synthetase and expression of a thioesterase for release of the FFA. Similar to previous efforts, the engineered strains produce and excrete FFA, but the yields are too low for large-scale production. While other efforts have applied additional metabolic engineering strategies in an attempt to boost FFA production, we focus on characterizing the engineered strains to identify the physiological effects that limit cell growth and FFA synthesis. The strains engineered for FFA-production show reduced photosynthetic yields, chlorophyll-a degradation, and changes in the cellular localization of the light-harvesting pigments, phycocyanin and allophycocyanin. Possible causes of these physiological effects are also identified. The addition of exogenous linolenic acid, a polyunsaturated FFA, to cultures of S. elongatus 7942 yielded a physiological response similar to that observed in the FFA-producing strains with only one notable difference. In addition, the lipid constituents of the cell and thylakoid membranes in the FFA-producing strains show changes in both the relative amounts of lipid components and the degree of saturation of the fatty acid side chains. These changes in lipid composition may affect membrane integrity and structure, the binding and diffusion of phycobilisomes, and the activity of membrane-bound enzymes including those involved in photosynthesis. Thus, the toxicity of unsaturated FFA and changes in membrane composition may be responsible for the physiological effects observed in FFA-producing S. elongatus 7942. These issues must be addressed to enable the high yields of FFA synthesis necessary for large-scale biofuel production. PMID:22473793

  17. A Review of the Cognitive Effects Observed in Humans Following Acute Supplementation with Flavonoids, and Their Associated Mechanisms of Action

    PubMed Central

    Bell, Lynne; Lamport, Daniel J.; Butler, Laurie T.; Williams, Claire M.

    2015-01-01

    Flavonoids are polyphenolic compounds found in varying concentrations in many plant-based foods. Recent studies suggest that flavonoids can be beneficial to both cognitive and physiological health. Long term flavonoid supplementation over a period of weeks or months has been extensively investigated and reviewed, particularly with respect to cognitive ageing and neurodegenerative disease. Significantly less focus has been directed towards the short term effects of single doses of flavonoids on cognition. Here, we review 21 such studies with particular emphasis on the subclass and dose of flavonoids administered, the cognitive domains affected by flavonoid supplementation, and the effect size of the response. The emerging evidence suggests that flavonoids may be beneficial to attention, working memory, and psychomotor processing speed in a general population. Episodic memory effects are less well defined and may be restricted to child or older adult populations. The evidence also points towards a dose-dependent effect of flavonoids, but the physiological mechanisms of action remain unclear. Overall, there is encouraging evidence that flavonoid supplementation can benefit cognitive outcomes within an acute time frame of 0–6 h. But larger studies, combining cognitive and physiological measures, are needed to strengthen the evidence base. PMID:26690214

  18. DOSE-RATE DEPENDENCE OF INSTANTANEOUS PHYSIOLOGICAL RADIATION EFFECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hug, O.

    Nastic movements in Mimosa pudica were induced by x radiation. Using short radiation impulses of 10 to 30 sec and doses up to 120 kr/min, the leaflets were observed to close and the stem to bend in the main joint during the first minute. After irradiation of parts of the leaflet, the reaction spreads along the physiological pathways as in any other stimulus. When the action potential is completed, slow depolarization continues and reaches a maximum, finally returning to the initial value in about two hr. The effect was found to be dose- dependent. It is hypothesized that either amore » direct physicochemical change of the cell membrane or a damage of substances which influence the function of the cell membrane is induced by the irradiation. (H.M.G.)« less

  19. Copper signaling in the brain and beyond.

    PubMed

    Ackerman, Cheri M; Chang, Christopher J

    2018-03-30

    Transition metals have been recognized and studied primarily in the context of their essential roles as structural and metabolic cofactors for biomolecules that compose living systems. More recently, an emerging paradigm of transition-metal signaling, where dynamic changes in transitional metal pools can modulate protein function, cell fate, and organism health and disease, has broadened our view of the potential contributions of these essential nutrients in biology. Using copper as a canonical example of transition-metal signaling, we highlight key experiments where direct measurement and/or visualization of dynamic copper pools, in combination with biochemical, physiological, and behavioral studies, have deciphered sources, targets, and physiological effects of copper signals.

  20. Further observations on the relationship of EMG and muscle force

    NASA Technical Reports Server (NTRS)

    Agarwal, G. C.; Cecchini, L. R.; Gottlieb, G. L.

    1972-01-01

    Human skeletal muscle may be regarded as an electro-mechanical transducer. Its physiological input is a neural signal originating at the alpha motoneurons in the spinal cord and its output is force and muscle contraction, these both being dependent on the external load. Some experimental data taken during voluntary efforts around the ankle joint and by direct electrical stimulation of the nerve are described. Some of these experiments are simulated by an analog model, the input of which is recorded physiological soleus muscle EMG. The output is simulated foot torque. Limitations of a linear model and effect of some nonlinearities are discussed.

  1. Subjective, behavioral, and physiological effects of acute caffeine in light, nondependent caffeine users.

    PubMed

    Childs, Emma; de Wit, Harriet

    2006-05-01

    Caffeine produces mild psychostimulant effects that are thought to underlie its widespread use. However, the direct effects of caffeine are difficult to evaluate in regular users of caffeine because of tolerance and withdrawal. Indeed, some researchers hypothesize that the psychostimulant effects of caffeine are due largely to the reversal of withdrawal and question whether there are direct effects of caffeine consumption upon mood, alertness, or mental performance in nondependent individuals. This study investigated the physiological, subjective, and behavioral effects of 0, 50, 150, and 450 mg caffeine in 102 light, nondependent caffeine users. Using a within-subjects design, subjects participated in four experimental sessions, in which they received each of the four drug conditions in random order under double blind conditions. Participants completed subjective effects questionnaires and vital signs were measured before and at repeated time points after drug administration. Forty minutes after the capsules were ingested, subjects completed behavioral tasks that included tests of sustained attention, short-term memory, psychomotor performance, and behavioral inhibition. Caffeine significantly increased blood pressure, and produced feelings of arousal, positive mood, and high. Caffeine increased the number of hits and decreased reaction times in a vigilance task, but impaired performance on a memory task. We confirm that acute doses of caffeine, at levels typically found in a cup of coffee, produce stimulant-like subjective effects and enhance performance in light, nondependent caffeine users. These findings support the idea that the drug has psychoactive effects even in the absence of withdrawal.

  2. Detection of physiological noise in resting state fMRI using machine learning.

    PubMed

    Ash, Tom; Suckling, John; Walter, Martin; Ooi, Cinly; Tempelmann, Claus; Carpenter, Adrian; Williams, Guy

    2013-04-01

    We present a technique for predicting cardiac and respiratory phase on a time point by time point basis, from fMRI image data. These predictions have utility in attempts to detrend effects of the physiological cycles from fMRI image data. We demonstrate the technique both in the case where it can be trained on a subject's own data, and when it cannot. The prediction scheme uses a multiclass support vector machine algorithm. Predictions are demonstrated to have a close fit to recorded physiological phase, with median Pearson correlation scores between recorded and predicted values of 0.99 for the best case scenario (cardiac cycle trained on a subject's own data) down to 0.83 for the worst case scenario (respiratory predictions trained on group data), as compared to random chance correlation score of 0.70. When predictions were used with RETROICOR--a popular physiological noise removal tool--the effects are compared to using recorded phase values. Using Fourier transforms and seed based correlation analysis, RETROICOR is shown to produce similar effects whether recorded physiological phase values are used, or they are predicted using this technique. This was seen by similar levels of noise reduction noise in the same regions of the Fourier spectra, and changes in seed based correlation scores in similar regions of the brain. This technique has a use in situations where data from direct monitoring of the cardiac and respiratory cycles are incomplete or absent, but researchers still wish to reduce this source of noise in the image data. Copyright © 2011 Wiley Periodicals, Inc.

  3. Life in a dark biosphere: a review of circadian physiology in "arrhythmic" environments.

    PubMed

    Beale, Andrew David; Whitmore, David; Moran, Damian

    2016-12-01

    Most of the life with which humans interact is exposed to highly rhythmic and extremely predictable changes in illumination that occur with the daily events of sunrise and sunset. However, while the influence of the sun feels omnipotent to surface dwellers such as ourselves, life on earth is dominated, in terms of biomass, by organisms isolated from the direct effects of the sun. A limited understanding of what life is like away from the sun can be inferred from our knowledge of physiology and ecology in the light biosphere, but a full understanding can only be gained by studying animals from the dark biosphere, both in the laboratory and in their natural habitats. One of the least understood aspects of life in the dark biosphere is the rhythmicity of physiology and what it means to live in an environment of low or no rhythmicity. Here we describe methods that may be used to understand rhythmic physiology in the dark and summarise some of the studies of rhythmic physiology in "arrhythmic" environments, such as the poles, deep sea and caves. We review what can be understood about the adaptive value of rhythmic physiology on the Earth's surface from studies of animals from arrhythmic environments and what role a circadian clock may play in the dark.

  4. The evolution of honest communication: integrating social and physiological costs of ornamentation.

    PubMed

    Tibbetts, Elizabeth A

    2014-10-01

    Much research on animal communication has addressed how costs such as social costs or physiological costs favor the accuracy of signals. Previous work has largely considered these costs separately, but we may be missing essential connections by studying costs in isolation. After all, social interactions produce rapid changes in hormone titers which can then affect individual behavior and physiology. As a result, social costs are likely to have widespread physiological consequences. Here, I present a new perspective on the factors that maintain honest signals by describing how the interplay between social costs and physiological costs may maintain an accurate link between an animal's abilities and ornament elaboration. I outline three specific mechanisms by which the interaction between social behavior and hormones could favor honest signals and present specific predictions for each of the three models. Then, I review how ornaments alter agonistic behavior, agonistic behavior influences hormones, and how these hormonal effects influence fitness. I also describe the few previous studies that have directly tested how ornaments influence hormones. Finally, opportunities for future work are discussed. Considering the interaction between social behavior and physiology may address some challenges associated with both social and physiological models of costs. Understanding the dynamic feedbacks between physiology and social costs has potential to transform our understanding of the stability of animals' communication systems. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  5. Physiological actions of corticosterone and its modulation by an immune challenge in reptiles.

    PubMed

    Meylan, Sandrine; Haussy, Claudy; Voituron, Yann

    2010-11-01

    Hormones are an important interface between genome and environment, because of their ability to modulate the animal's phenotype. In particular, corticosterone, the stress hormone in lizards, is known to reallocate energy from non-essential functions to affect morphological, physiological and behavioral traits that help the organism to deal with acute or chronic stressors. However, the effects of corticosterone on life history stages are still unclear primarily because of the dependence of life history stages on both internal and external factors. Using a cross-design, we tested the effect of elevated levels of exogenous corticosterone on the physiology of pregnant females in different immune contexts in a wild population of common lizards (Lacerta vivipara). Immune challenge was induced by the injection of sheep red blood cells (SRBC) and corticosterone levels were increased using a transdermal administration of corticosterone. Thereafter, reproductive traits, metabolism and cellular immune responses were measured. The elevation of corticosterone in pregnant females significantly altered reproductive and physiological performance. The corticosterone treatment decreased clutch success, juvenile size and body condition, but enhanced measures of physiological performance, such as metabolism and catalase activity. These first results reinforce the understanding of the physiological actions of corticosterone in reptiles. The data also demonstrated different direct impacts of immune challenge by SRBC on inflammatory response and antioxidant activity. The injection of SRBC stimulated the SOD activity in larger females. Finally, we demonstrated experimentally the modulation of the corticosterone action by the immune challenge on stamina and hatching date. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. High-flow nasal cannula therapy for adult patients

    PubMed Central

    Zhang, Jian; Lin, Ling; Pan, Konghan; Zhou, Jiancang

    2016-01-01

    High-flow nasal cannula (HFNC) oxygen therapy has several physiological advantages over traditional oxygen therapy devices, including decreased nasopharyngeal resistance, washing out of the nasopharyngeal dead space, generation of positive pressure in the pharynx, increasing alveolar recruitment in the lungs, humidification of the airways, increased fraction of inspired oxygen and improved mucociliary clearance. Recently, the use of HFNC in treating adult critical illness patients has significantly increased, and it is now being used in many patients with a range of different disease conditions. However, there are no established guidelines to direct the safe and effective use of HFNC for these patients. This review article summarizes the available published literature on the positive physiological effects, mechanisms of action, and the clinical applications of HFNC, compared with traditional oxygen therapy devices. The available literature suggests that HFNC oxygen therapy is an effective modality for the early treatment of critically adult patients. PMID:27698207

  7. The circle of the soul: the role of spirituality in health care.

    PubMed

    Moss, Donald

    2002-12-01

    This paper examines the critical attitude of behavioral professionals toward spiritual phenomena, and the current growing openness toward a scientific study of spirituality and its effects on health. Health care professionals work amidst sickness and suffering, and become immersed in the struggles of suffering persons for meaning and spiritual direction. Biofeedback and neurofeedback training can facilitate relaxation, mental stillness, and the emergence of spiritual experiences. A growing body of empirical studies documents largely positive effects of religious involvement on health. The effects of religion and spirituality on health are diverse, ranging from such tangible and easily understood phenomena as a reduction of health-risk behaviors in church-goers, to more elusive phenomena such as the distant effects of prayer on health and physiology. Psychophysiological methods may prove useful in identifying specific physiological mechanisms mediating such effects. Spirituality is also a dimension in much of complementary and alternative medicine (CAM), and the CAM arena may offer a window of opportunity for biofeedback practice.

  8. FlyNap (Triethylamine) Increases the Heart Rate of Mosquitoes and Eliminates the Cardioacceleratory Effect of the Neuropeptide CCAP

    PubMed Central

    Chen, Weihan; Hillyer, Julián F.

    2013-01-01

    FlyNap (triethylamine) is commonly used to anesthetize Drosophila melanogaster fruit flies. The purpose of this study was to determine whether triethylamine is a suitable anesthetic agent for research into circulatory physiology and immune competence in the mosquito, Anopheles gambiae (Diptera: Culicidae). Recovery experiments showed that mosquitoes awaken from traditional cold anesthesia in less than 7 minutes, but that recovery from FlyNap anesthesia does not begin for several hours. Relative to cold anesthesia, moderate exposures to FlyNap induce an increase in the heart rate, a decrease in the percentage of the time the heart contracts in the anterograde direction, and a decrease in the frequency of heartbeat directional reversals. Experiments employing various combinations of cold and FlyNap anesthesia then showed that cold exposure does not affect basal heart physiology, and that the differences seen between the cold and the FlyNap groups are due to a FlyNap-induced alteration of heart physiology. Furthermore, exposure to FlyNap eliminated the cardioacceleratory effect of crustacean cardioactive peptide (CCAP), and reduced a mosquito’s ability to survive a bacterial infection. Together, these data show that FlyNap is not a suitable substitute to cold anesthesia in experiments assessing mosquito heart function or immune competence. Moreover, these data also illustrate the intricate biology of the insect heart. Specifically, they confirm that the neurohormone CCAP modulates heart rhythms and that it serves as an anterograde pacemaker. PMID:23875027

  9. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding.

    PubMed

    Pörtner, H O; Peck, M A

    2010-11-01

    Ongoing climate change is predicted to affect individual organisms during all life stages, thereby affecting populations of a species, communities and the functioning of ecosystems. These effects of climate change can be direct, through changing water temperatures and associated phenologies, the lengths and frequency of hypoxia events, through ongoing ocean acidification trends or through shifts in hydrodynamics and in sea level. In some cases, climate interactions with a species will also, or mostly, be indirect and mediated through direct effects on key prey species which change the composition and dynamic coupling of food webs. Thus, the implications of climate change for marine fish populations can be seen to result from phenomena at four interlinked levels of biological organization: (1) organismal-level physiological changes will occur in response to changing environmental variables such as temperature, dissolved oxygen and ocean carbon dioxide levels. An integrated view of relevant effects, adaptation processes and tolerance limits is provided by the concept of oxygen and capacity-limited thermal tolerance (OCLT). (2) Individual-level behavioural changes may occur such as the avoidance of unfavourable conditions and, if possible, movement into suitable areas. (3) Population-level changes may be observed via changes in the balance between rates of mortality, growth and reproduction. This includes changes in the retention or dispersion of early life stages by ocean currents, which lead to the establishment of new populations in new areas or abandonment of traditional habitats. (4) Ecosystem-level changes in productivity and food web interactions will result from differing physiological responses by organisms at different levels of the food web. The shifts in biogeography and warming-induced biodiversity will affect species productivity and may, thus, explain changes in fisheries economies. This paper tries to establish links between various levels of biological organization by means of addressing the effective physiological principles at the cellular, tissue and whole organism levels. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.

  10. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH.

    PubMed

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-07

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification.

  11. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH

    NASA Astrophysics Data System (ADS)

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-01

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification.

  12. Cholinergic modulation of cognitive processing: insights drawn from computational models

    PubMed Central

    Newman, Ehren L.; Gupta, Kishan; Climer, Jason R.; Monaghan, Caitlin K.; Hasselmo, Michael E.

    2012-01-01

    Acetylcholine plays an important role in cognitive function, as shown by pharmacological manipulations that impact working memory, attention, episodic memory, and spatial memory function. Acetylcholine also shows striking modulatory influences on the cellular physiology of hippocampal and cortical neurons. Modeling of neural circuits provides a framework for understanding how the cognitive functions may arise from the influence of acetylcholine on neural and network dynamics. We review the influences of cholinergic manipulations on behavioral performance in working memory, attention, episodic memory, and spatial memory tasks, the physiological effects of acetylcholine on neural and circuit dynamics, and the computational models that provide insight into the functional relationships between the physiology and behavior. Specifically, we discuss the important role of acetylcholine in governing mechanisms of active maintenance in working memory tasks and in regulating network dynamics important for effective processing of stimuli in attention and episodic memory tasks. We also propose that theta rhythm plays a crucial role as an intermediary between the physiological influences of acetylcholine and behavior in episodic and spatial memory tasks. We conclude with a synthesis of the existing modeling work and highlight future directions that are likely to be rewarding given the existing state of the literature for both empiricists and modelers. PMID:22707936

  13. Bacterial growth, flow, and mixing shape human gut microbiota density and composition.

    PubMed

    Arnoldini, Markus; Cremer, Jonas; Hwa, Terence

    2018-03-13

    The human gut microbiota is highly dynamic, and host physiology and diet exert major influences on its composition. In our recent study, we integrated new quantitative measurements on bacterial growth physiology with a reanalysis of published data on human physiology to build a comprehensive modeling framework. This can generate predictions of how changes in different host factors influence microbiota composition. For instance, hydrodynamic forces in the colon, along with colonic water absorption that manifests as transit time, exert a major impact on microbiota density and composition. This can be mechanistically explained by their effect on colonic pH which directly affects microbiota competition for food. In this addendum, we describe the underlying analysis in more detail. In particular, we discuss the mixing dynamics of luminal content by wall contractions and its implications for bacterial growth and density, as well as the broader implications of our insights for the field of gut microbiota research.

  14. System identification of closed-loop cardiovascular control: effects of posture and autonomic blockade

    NASA Technical Reports Server (NTRS)

    Mullen, T. J.; Appel, M. L.; Mukkamala, R.; Mathias, J. M.; Cohen, R. J.

    1997-01-01

    We applied system identification to the analysis of fluctuations in heart rate (HR), arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize quantitatively the physiological mechanisms responsible for the couplings between these variables. We characterized two autonomically mediated coupling mechanisms [the heart rate baroreflex (HR baroreflex) and respiratory sinus arrhythmia (ILV-HR)] and two mechanically mediated coupling mechanisms [the blood pressure wavelet generated with each cardiac contraction (circulatory mechanics) and the direct mechanical effects of respiration on blood pressure (ILV-->ABP)]. We evaluated the method in humans studied in the supine and standing postures under control conditions and under conditions of beta-sympathetic and parasympathetic pharmacological blockades. Combined beta-sympathetic and parasympathetic blockade abolished the autonomically mediated couplings while preserving the mechanically mediated coupling. Selective autonomic blockade and postural changes also altered the couplings in a manner consistent with known physiological mechanisms. System identification is an "inverse-modeling" technique that provides a means for creating a closed-loop model of cardiovascular regulation for an individual subject without altering the underlying physiological control mechanisms.

  15. Challenges in tracing the fate and effects of atmospheric polycyclic aromatic hydrocarbon deposition in vascular plants.

    PubMed

    Desalme, Dorine; Binet, Philippe; Chiapusio, Geneviève

    2013-05-07

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic pollutants that raise environmental concerns because of their toxicity. Their accumulation in vascular plants conditions harmful consequences to human health because of their position in the food chain. Consequently, understanding how atmospheric PAHs are taken up in plant tissues is crucial for risk assessment. In this review we synthesize current knowledge about PAH atmospheric deposition, accumulation in both gymnosperms and angiosperms, mechanisms of transfer, and ecological and physiological effects. PAHs emitted in the atmosphere partition between gas and particulate phases and undergo atmospheric deposition on shoots and soil. Most PAH concentration data from vascular plant leaves suggest that contamination occurs by both direct (air-leaf) and indirect (air-soil-root) pathways. Experimental studies demonstrate that PAHs affect plant growth, interfering with plant carbon allocation and root symbioses. Photosynthesis remains the most studied physiological process affected by PAHs. Among scientific challenges, identifying specific physiological transfer mechanisms and improving the understanding of plant-symbiont interactions in relation to PAH pollution remain pivotal for both fundamental and applied environmental sciences.

  16. Case-Based Learning in Endocrine Physiology: An Approach toward Self-Directed Learning and the Development of Soft Skills in Medical Students

    ERIC Educational Resources Information Center

    Gade, Shubhada; Chari, Suresh

    2013-01-01

    The Medical Council of India, in the recent "Vision 2015" document, recommended curricular reforms for undergraduates. Case-based learning (CBL) is one method where students are motivated toward self-directed learning and to develop analytic and problem-solving skills. An overview of thyroid physiology was given in a didactic lecture. A…

  17. Curcumin affects gene expression and reactive oxygen species via a PKA dependent mechanism in Dictyostelium discoideum

    PubMed Central

    Swatson, William S.; Katoh-Kurasawa, Mariko; Shaulsky, Gad

    2017-01-01

    Botanicals are widely used as dietary supplements and for the prevention and treatment of disease. Despite a long history of use, there is generally little evidence supporting the efficacy and safety of these preparations. Curcumin has been used to treat a myriad of human diseases and is widely advertised and marketed for its ability to improve health, but there is no clear understanding how curcumin interacts with cells and affects cell physiology. D. discoideum is a simple eukaryotic lead system that allows both tractable genetic and biochemical studies. The studies reported here show novel effects of curcumin on cell proliferation and physiology, and a pleiotropic effect on gene transcription. Transcriptome analysis showed that the effect is two-phased with an early transient effect on the transcription of approximately 5% of the genome, and demonstrates that cells respond to curcumin through a variety of previously unknown molecular pathways. This is followed by later unique transcriptional changes and a protein kinase A dependent decrease in catalase A and three superoxide dismutase enzymes. Although this results in an increase in reactive oxygen species (ROS; superoxide and H2O2), the effects of curcumin on transcription do not appear to be the direct result of oxidation. This study opens the door to future explorations of the effect of curcumin on cell physiology. PMID:29135990

  18. The social transmission of risk: Maternal stress physiology, synchronous parenting, and well-being mediate the effects of war exposure on child psychopathology.

    PubMed

    Halevi, Galit; Djalovski, Amir; Kanat-Maymon, Yaniv; Yirmiya, Karen; Zagoory-Sharon, Orna; Koren, Lee; Feldman, Ruth

    2017-11-01

    While chronic early stress increases child susceptibility to psychopathology, risk and resilience trajectories are shaped by maternal social influences whose role requires much further research in longitudinal studies. We examined the social transmission of risk by assessing paths leading from war-exposure to child symptoms as mediated by 3 sources of maternal social influence; stress physiology, synchronous parenting, and psychiatric disorder. Mothers and children living in a zone of continuous war were assessed in early childhood (1.5-5 years) and the current study revisited families in late (9-11years) childhood (N = 177; N = 101 war-exposed; N = 76 controls). At both time-points, maternal and child's salivary cortisol (SC), social behavior, and externalizing and internalizing symptoms were assessed. In late childhood, hair cortisol concentrations (HCC) were also measured and mother and child underwent psychiatric diagnosis. The social transmission model was tested against 2 alternative models; 1 proposing direct impact of war on children without maternal mediation, the other predicting late-childhood symptoms from early childhood variables, not change trajectories. Path analysis controlling for early childhood variables supported our conceptual model. Whereas maternal psychopathology was directly linked with child symptoms, defining direct mediation, the impact of maternal stress hormones was indirect and passed through stress contagion mechanisms involving coupling between maternal and child's HCC and SC. Similarly, maternal synchrony linked with child social engagement as the pathway to reduced symptomatology. Findings underscore the critical role of maternal stress physiology, attuned behavior, and well-being in shaping child psychopathology amid adversity and specify direct and indirect paths by which mothers stand between war and the child. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Mechanisms of nitrogen deposition effects on temperate forest lichens and trees

    USGS Publications Warehouse

    Carter, Therese S.; Clark, Christopher M.; Fenn, Mark E.; Jovan, Sarah E.; Perakis, Steven; Riddell, Jennifer; Schaberg, Paul G.; Greaver, Tara; Hastings, Meredith

    2017-01-01

    We review the mechanisms of deleterious nitrogen (N) deposition impacts on temperate forests, with a particular focus on trees and lichens. Elevated anthropogenic N deposition to forests has varied effects on individual organisms depending on characteristics both of the N inputs (form, timing, amount) and of the organisms (ecology, physiology) involved. Improved mechanistic knowledge of these effects can aid in developing robust predictions of how organisms respond to either increases or decreases in N deposition. Rising N levels affect forests in micro- and macroscopic ways from physiological responses at the cellular, tissue, and organism levels to influencing individual species and entire communities and ecosystems. A synthesis of these processes forms the basis for the overarching themes of this paper, which focuses on N effects at different levels of biological organization in temperate forests. For lichens, the mechanisms of direct effects of N are relatively well known at cellular, organismal, and community levels, though interactions of N with other stressors merit further research. For trees, effects of N deposition are better understood for N as an acidifying agent than as a nutrient; in both cases, the impacts can reflect direct effects on short time scales and indirect effects mediated through long-term soil and belowground changes. There are many gaps on fundamental N use and cycling in ecosystems, and we highlight the most critical gaps for understanding potential deleterious effects of N deposition. For lichens, these gaps include both how N affects specific metabolic pathways and how N is metabolized. For trees, these gaps include understanding the direct effects of N deposition onto forest canopies, the sensitivity of different tree species and mycorrhizal symbionts to N, the influence of soil properties, and the reversibility of N and acidification effects on plants and soils. Continued study of how these N response mechanisms interact with one another, and with other dimensions of global change, remains essential for predicting ongoing changes in lichen and tree populations across North American temperate forests.

  20. The effects of a psychological intervention directed at optimizing immune function: study protocol for a randomized controlled trial.

    PubMed

    Schakel, Lemmy; Veldhuijzen, Dieuwke S; van Middendorp, Henriët; Prins, Corine; Joosten, Simone A; Ottenhoff, Tom H M; Visser, Leo G; Evers, Andrea W M

    2017-05-26

    Previous research has provided evidence for the link between psychological processes and psychophysiological health outcomes. Psychological interventions, such as face-to-face or online cognitive behavioral therapy (CBT) and serious games aimed at improving health, have shown promising results in promoting health outcomes. Few studies so far, however, have examined whether Internet-based CBT combined with serious gaming elements is effective in modulating health outcomes. Moreover, studies often did not incorporate psychophysiological or immunological challenges in order to gain insight into physiological responses to real-life challenges after psychological interventions. The overall aim of this study is to investigate the effects of a psychological intervention on self-reported and physiological health outcomes in response to immune and psychophysiological challenges. In a randomized controlled trial, 60 healthy men are randomly assigned to either an experimental condition, receiving guided Internet-based (e-health) CBT combined with health-related serious gaming elements for 6 weeks, or a control condition receiving no intervention. After the psychological intervention, self-reported vitality is measured, and participants are given an immunological challenge in the form of a Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccination. One day after the vaccination, participants are asked to perform several psychophysiological tasks in order to explore the effects of the psychological intervention on participants' stress response following the immune challenge. To assess the delayed effects of vaccination on self-reported and physiological health outcomes, a follow-up visit is planned 4 weeks later. Total study duration is approximately 14 weeks. The primary outcome measure is self-reported vitality measured directly after the intervention. Secondary outcome measures include inflammatory and endocrine markers, as well as psychophysiological measures of heart rate and skin conductance in response to the psychophysiological tasks after the BCG vaccination. The innovative design features of this study - e.g., combining guided e-health CBT with health-related serious gaming elements and incorporating immunological and psychophysiological challenges - will provide valuable information on the effects of a psychological intervention on both self-reported and physiological health outcomes. This study will offer further insights into the mechanisms underlying the link between psychological factors and health outcomes and is anticipated to contribute to the optimization of health care strategies. Nederlands Trial Register, NTR5610 . Registered on 4 January 2016.

  1. Effects of chronic forced circadian desynchronization on body weight and metabolism in male mice.

    PubMed

    Casiraghi, Leandro P; Alzamendi, Ana; Giovambattista, Andrés; Chiesa, Juan J; Golombek, Diego A

    2016-04-01

    Metabolic functions are synchronized by the circadian clock setting daily patterns of food intake, nutrient delivery, and behavioral activity. Here, we study the impact of chronic jet-lag (CJL) on metabolism, and test manipulations aimed to overcome potential alterations. We recorded weight gain in C57Bl/6 mice under chronic 6 h advances or delays of the light-dark cycle every 2 days (ChrA and ChrD, respectively). We have previously reported ChrA, but not ChrD, to induce forced desynchronization of locomotor activity rhythms in mice (Casiraghi et al. 2012). Body weight was rapidly increased under ChrA, with animals tripling the mean weight gain observed in controls by day 10, and doubling it by day 30 (6% vs. 2%, and 15% vs. 7%, respectively). Significant increases in retroperitoneal and epidydimal adipose tissue masses (172% and 61%, respectively), adipocytes size (28%), and circulating triglycerides (39%) were also detected. Daily patterns of food and water intake were abolished under ChrA In contrast, ChrD had no effect on body weight. Wheel-running, housing of animals in groups, and restriction of food availability to hours of darkness prevented abnormal increase in body weight under ChrA Our findings suggest that the observed alterations under ChrA may arise either from a direct effect of circadian disruption on metabolism, from desynchronization between feeding and metabolic rhythms, or both. Direction of shifts, timing of feeding episodes, and other reinforcing signals deeply affect the outcome of metabolic function under CJL Such features should be taken into account in further studies of shift working schedules in humans. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  2. Comparative physiological and proteomic analyses reveal the actions of melatonin in the reduction of oxidative stress in Bermuda grass (Cynodon dactylon (L). Pers.).

    PubMed

    Shi, Haitao; Wang, Xin; Tan, Dun-Xian; Reiter, Russel J; Chan, Zhulong

    2015-08-01

    The fact of melatonin as an important antioxidant in animals led plant researchers to speculate that melatonin also acts in the similar manner in plants. Although melatonin has significant effects on alleviating stress-triggered reactive oxygen species (ROS), the involvement of melatonin in direct oxidative stress and the underlying physiological and molecular mechanisms remain unclear in plants. In this study, we found that exogenous melatonin significantly alleviated hydrogen peroxide (H2O2)-modulated plant growth, cell damage, and ROS accumulation in Bermuda grass. Additionally, 76 proteins significantly influenced by melatonin during mock or H2O2 treatment were identified by gel-free proteomics using iTRAQ (isobaric tags for relative and absolute quantitation). Metabolic pathway analysis showed that several pathways were markedly enhanced by melatonin and H2O2 treatments, including polyamine metabolism, ribosome pathway, major carbohydrate metabolism, photosynthesis, redox, and amino acid metabolism. Taken together, this study provides more comprehensive insights into the physiological and molecular mechanisms of melatonin in Bermuda grass responses to direct oxidative stress. This may relate to the activation of antioxidants, modulation of metabolic pathways, and extensive proteome reprograming. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. The Differential Impact of Oxytocin Receptor Gene in Violence-Exposed Boys and Girls

    PubMed Central

    Merrill, Livia C.; Jones, Christopher W.; Drury, Stacy S.; Theall, Katherine P.

    2017-01-01

    Childhood violence exposure is a prevalent public health problem. Understanding the lasting impact of violence requires an enhanced appreciation for the complex effects of violence across behavioral, physiologic, and molecular outcomes. This subject matched, cross-sectional study of 80 children explored the impact of violence exposure across behavioral, physiologic, and cellular outcomes. Externalizing behavior, diurnal cortisol rhythm, and telomere length (TL) were examined in a community recruited cohort of Black youth. Given evidence that genetic variation contributes to individual differences in response to the environment, we further tested whether a polymorphism in the oxytocin receptor gene (OXTR rs53576) moderated associations between violence and youth outcomes. Exposure to violence was directly associated with increased externalizing behavior, but no direct association of violence was found with cortisol or TL. Oxytocin genotype, however, moderated the association between violence and both cortisol and TL, suggesting that pathways linked to oxytocin may contribute to individual differences in the physiologic and molecular consequences of violence exposure. Sex differences with OXTR in cortisol and TL outcomes were also detected. Taken together, these findings suggest that there are complex pathways through which violence exposure impacts children, and that these pathways differ by both genetic variation and the sex of the child. PMID:28341538

  4. The differential impact of oxytocin receptor gene in violence-exposed boys and girls.

    PubMed

    Merrill, Livia C; Jones, Christopher W; Drury, Stacy S; Theall, Katherine P

    2017-06-01

    Childhood violence exposure is a prevalent public health problem. Understanding the lasting impact of violence requires an enhanced appreciation for the complex effects of violence across behavioral, physiologic, and molecular outcomes. This subject matched, cross-sectional study of 80 children explored the impact of violence exposure across behavioral, physiologic, and cellular outcomes. Externalizing behavior, diurnal cortisol rhythm, and telomere length (TL) were examined in a community recruited cohort of Black youth. Given evidence that genetic variation contributes to individual differences in response to the environment, we further tested whether a polymorphism in the oxytocin receptor gene (OXTR rs53576) moderated associations between violence and youth outcomes. Exposure to violence was directly associated with increased externalizing behavior, but no direct association of violence was found with cortisol or TL. Oxytocin genotype, however, moderated the association between violence and both cortisol and TL, suggesting that pathways linked to oxytocin may contribute to individual differences in the physiologic and molecular consequences of violence exposure. Sex differences with OXTR in cortisol and TL outcomes were also detected. Taken together, these findings suggest that there are complex pathways through which violence exposure impacts children, and that these pathways differ by both genetic variation and the sex of the child. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  5. Physiologic reactivity despite emotional resilience several years after direct exposure to terrorism.

    PubMed

    Tucker, Phebe M; Pfefferbaum, Betty; North, Carol S; Kent, Adrian; Burgin, Christie E; Parker, Don E; Hossain, Akm; Jeon-Slaughter, Haekyung; Trautman, Richard P

    2007-02-01

    Six and a half to 7 years after the 1995 terrorist bombing in Oklahoma City, the authors assessed autonomic reactivity to trauma reminders and psychiatric symptoms in adults who had some degree of direct exposure to the blast. Sixty survivors who were listed in a state health department registry of persons exposed to the bombing and 60 age- and gender-matched members of the Oklahoma City metropolitan area community were assessed for symptoms of PTSD and depression and for axis I diagnoses. Heart rate and systolic, diastolic, and mean arterial blood pressures were measured before, during, and after bombing-related interviews. The two groups were compared on both psychometric and physiologic assessments. Posttraumatic stress but not depressive symptoms were significantly more prevalent in the survivor group than in the comparison group, although symptoms were below levels considered clinically relevant. Despite apparent emotional resilience or recovery, blast survivors had significantly greater autonomic reactivity to trauma reminders on all measures than comparison subjects. The results suggest that physiologic assessment may capture long-term effects of terrorism that are not identified by psychometric instruments. The consequences of autonomic reactivity despite emotional resilience years after experiencing trauma are unknown but theoretically could range from facilitating a protective vigilance toward future disasters to more maladaptive avoidance behaviors, somatic symptoms, or medical problems.

  6. Morpho-Physiological and Proteome Level Responses to Cadmium Stress in Sorghum

    PubMed Central

    Kamal, Abu Hena Mostafa; Kim, Sang-Woo; Oh, Myeong-Won; Lee, Moon-Soon; Chung, Keun-Yook; Xin, Zhanguo; Woo, Sun-Hee

    2016-01-01

    Cadmium (Cd) stress may cause serious morphological and physiological abnormalities in addition to altering the proteome in plants. The present study was performed to explore Cd-induced morpho-physiological alterations and their potential associated mechanisms in Sorghum bicolor leaves at the protein level. Ten-day-old sorghum seedlings were exposed to different concentrations (0, 100, and 150 μM) of CdCl2, and different morpho-physiological responses were recorded. The effects of Cd exposure on protein expression patterns in S. bicolor were investigated using two-dimensional gel electrophoresis (2-DE) in samples derived from the leaves of both control and Cd-treated seedlings. The observed morphological changes revealed that the plants treated with Cd displayed dramatically altered shoot lengths, fresh weights and relative water content. In addition, the concentration of Cd was markedly increased by treatment with Cd, and the amount of Cd taken up by the shoots was significantly and directly correlated with the applied concentration of Cd. Using the 2-DE method, a total of 33 differentially expressed protein spots were analyzed using MALDI-TOF/TOF MS. Of these, treatment with Cd resulted in significant increases in 15 proteins and decreases in 18 proteins. Major changes were absorbed in the levels of proteins known to be involved in carbohydrate metabolism, transcriptional regulation, translation and stress responses. Proteomic results revealed that Cd stress had an inhibitory effect on carbon fixation, ATP production and the regulation of protein synthesis. Our study provides insights into the integrated molecular mechanisms involved in responses to Cd and the effects of Cd on the growth and physiological characteristics of sorghum seedlings. We have aimed to provide a reference describing the mechanisms involved in heavy metal damage to plants. PMID:26919231

  7. Risk of Therapeutic Failure due to Ineffectiveness of Medication

    NASA Technical Reports Server (NTRS)

    Woring, Virginia E.

    2011-01-01

    Given that terrestrial medical practices must be used as the basis for drug choice and use on missions, there is a possibility that medications used will be ineffective or inappropriate for the actual circumstances encountered on missions. Because the human body undergoes a variety of physiological changes during spaceflight, there is a risk that terrestrial medications may not perform as expected when used during spaceflight. Alterations in physiology due to spaceflight could result in unexpected drug action on the body (pharmacodynamics) or in unusual drug absorption, distribution, metabolism or excretion (pharmacokinetics). The spaceflight environment may also have direct effects on stored drugs themselves, leading to premature inactivation or degradation of stored drugs.

  8. A Chemosensory Adaptation Module for the Physiology Laboratory from Student-Directed "C. elegans" Research

    ERIC Educational Resources Information Center

    Lindblom, Tim

    2006-01-01

    The model organism, "Caenorhabditis elegans," in addition to being well suited to genetics and cell biology teaching applications, can also be useful in the physiology laboratory. In this article, the author describes how students in a junior level college Comparative Physiology course have made use of "C. elegans" in semester-long,…

  9. Exploration of Behavioral, Physiological, and Computational Approaches to Auditory Scene Analysis

    DTIC Science & Technology

    2004-01-01

    Bronkhorst and R. Plomp, "Effects of multiple speechlike maskers on binaural speech recognitions in normal and impaired listening". Journal of the Acoustical...of simultaneous vowels: cues arising from low frequency beating ". Journal of the Acoustical Society of America. 95: pp. 1559-1569. 1994. [41] C.J...and Hearing Research. 12: pp. 229-245. 1969. [44] T. Doll and T. Hanna, "Directional cueing effects in auditory recognition", in Binaural and

  10. Chronic variable stress and intravenous methamphetamine self-administration – role of individual differences in behavioral and physiological reactivity to novelty

    PubMed Central

    Taylor, S.B.; Watterson, L.R.; Kufahl, P.R.; Nemirovsky, N.E.; Tomek, S.E.; Conrad, C.D.; Olive, M.F.

    2016-01-01

    Stress is a contributing factor to the development and maintenance of addiction in humans. However, few studies have shown that stress potentiates the rewarding and/or reinforcing effects of methamphetamine in rodent models of addiction. The present study assessed the effects of exposure to 14 days of chronic variable stress (CVS), or no stress as a control (CON), on the rewarding and reinforcing effects of methamphetamine in adult rats using the conditioned place preference (Experiment 1) and intravenous self-administration (Experiment 2) paradigms. In Experiment 2, we also assessed individual differences in open field locomotor activity, anxiety-like behavior in the elevated plus maze (EPM), and physiological responses to a novel environment as possible predictors of methamphetamine intake patterns. Exposure to CVS for 14 days did not affect overall measures of methamphetamine conditioned reward or reinforcement. However, analyses of individual differences and direct vs. indirect effects revealed that rats exhibiting high physiological reactivity and locomotor activity in the EPM and open field tests self-administered more methamphetamine and reached higher breakpoints for drug reinforcement than rats exhibiting low reactivity. In addition, CVS exposure significantly increased the proportion of rats that exhibited high reactivity, and high reactivity was significantly correlated with increased levels of methamphetamine intake. These findings suggest that individual differences in physiological and locomotor reactivity to novel environments, as well as their interactions with stress history, predict patterns of drug intake in rodent models of methamphetamine addiction. Such predictors may eventually inform future strategies for implementing individualized treatment strategies for amphetamine use disorders. PMID:27163191

  11. Are Invasive Species Stressful? The Glucocorticoid Profile of Native Lizards Exposed to Invasive Fire Ants Depends on the Context.

    PubMed

    Graham, Sean P; Freidenfelds, Nicole A; Thawley, Christopher J; Robbins, Travis R; Langkilde, Tracy

    Invasive species represent a substantial threat to native species worldwide. Research on the impacts of invasive species on wild living vertebrates has focused primarily on population-level effects. The sublethal, individual-level effects of invaders may be equally important but are poorly understood. We investigated the effects of invasive fire ants (Solenopsis invicta) on the physiological stress response of a native lizard (Sceloporus undulatus) within two experimental contexts: directly exposing lizards to a fire ant attack and housing lizards with fire ants in seminatural field enclosures. Lizards directly exposed to brief attack by fire ants had elevated concentrations of the stress hormone corticosterone (CORT), suggesting that these encounters can be physiologically stressful. However, lizards exposed for longer periods to fire ants in field enclosures had lower concentrations of CORT. This may indicate that the combined effects of confinement and fire ant exposure have pushed lizards into allostatic overload. However, lizards from fire ant enclosures appeared to have intact negative feedback controls of the stress response, evidenced by functioning adrenocorticotropic hormone responsiveness and lack of suppression of innate immunity (plasma bactericidal capacity). We review previous studies examining the stress response of wild vertebrates to various anthropogenic stressors and discuss how these-in combination with our results-underscore the importance of considering context (the length, frequency, magnitude, and types of threat) when assessing these impacts.

  12. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors

    PubMed Central

    Gao, Ning; Gao, Teng; Yang, Xiao; Dai, Xiaochuan; Zhou, Wei; Zhang, Anqi; Lieber, Charles M.

    2016-01-01

    Nanomaterial-based field-effect transistor (FET) sensors are capable of label-free real-time chemical and biological detection with high sensitivity and spatial resolution, although direct measurements in high–ionic-strength physiological solutions remain challenging due to the Debye screening effect. Recently, we demonstrated a general strategy to overcome this challenge by incorporating a biomolecule-permeable polymer layer on the surface of silicon nanowire FET sensors. The permeable polymer layer can increase the effective screening length immediately adjacent to the device surface and thereby enable real-time detection of biomolecules in high–ionic-strength solutions. Here, we describe studies demonstrating both the generality of this concept and application to specific protein detection using graphene FET sensors. Concentration-dependent measurements made with polyethylene glycol (PEG)-modified graphene devices exhibited real-time reversible detection of prostate specific antigen (PSA) from 1 to 1,000 nM in 100 mM phosphate buffer. In addition, comodification of graphene devices with PEG and DNA aptamers yielded specific irreversible binding and detection of PSA in pH 7.4 1x PBS solutions, whereas control experiments with proteins that do not bind to the aptamer showed smaller reversible signals. In addition, the active aptamer receptor of the modified graphene devices could be regenerated to yield multiuse selective PSA sensing under physiological conditions. The current work presents an important concept toward the application of nanomaterial-based FET sensors for biochemical sensing in physiological environments and thus could lead to powerful tools for basic research and healthcare. PMID:27930344

  13. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors.

    PubMed

    Gao, Ning; Gao, Teng; Yang, Xiao; Dai, Xiaochuan; Zhou, Wei; Zhang, Anqi; Lieber, Charles M

    2016-12-20

    Nanomaterial-based field-effect transistor (FET) sensors are capable of label-free real-time chemical and biological detection with high sensitivity and spatial resolution, although direct measurements in high-ionic-strength physiological solutions remain challenging due to the Debye screening effect. Recently, we demonstrated a general strategy to overcome this challenge by incorporating a biomolecule-permeable polymer layer on the surface of silicon nanowire FET sensors. The permeable polymer layer can increase the effective screening length immediately adjacent to the device surface and thereby enable real-time detection of biomolecules in high-ionic-strength solutions. Here, we describe studies demonstrating both the generality of this concept and application to specific protein detection using graphene FET sensors. Concentration-dependent measurements made with polyethylene glycol (PEG)-modified graphene devices exhibited real-time reversible detection of prostate specific antigen (PSA) from 1 to 1,000 nM in 100 mM phosphate buffer. In addition, comodification of graphene devices with PEG and DNA aptamers yielded specific irreversible binding and detection of PSA in pH 7.4 1x PBS solutions, whereas control experiments with proteins that do not bind to the aptamer showed smaller reversible signals. In addition, the active aptamer receptor of the modified graphene devices could be regenerated to yield multiuse selective PSA sensing under physiological conditions. The current work presents an important concept toward the application of nanomaterial-based FET sensors for biochemical sensing in physiological environments and thus could lead to powerful tools for basic research and healthcare.

  14. Modulation of 14-3-3/Phosphotarget Interaction by Physiological Concentrations of Phosphate and Glycerophosphates

    PubMed Central

    Sluchanko, Nikolai N.; Chebotareva, Natalia A.; Gusev, Nikolai B.

    2013-01-01

    Molecular mechanisms governing selective binding of a huge number of various phosphorylated protein partners to 14-3-3 remain obscure. Phosphate can bind to 14-3-3 and therefore being present at high intracellular concentration, which undergoes significant changes under physiological conditions, phosphate can theoretically regulate interaction of 14-3-3 with phosphorylated targets. In order to check this hypothesis we analyzed effect of phosphate and other natural abundant anions on interaction of 14-3-3 with phosphorylated human small heat shock protein HspB6 (Hsp20) participating in regulation of different intracellular processes. Inorganic phosphate, glycerol-1-phosphate and glycerol-2-phosphate at physiologically relevant concentrations (5-15 mM) significantly destabilized complexes formed by 14-3-3ζ and phosphorylated HspB6 (pHspB6), presumably, via direct interaction with the substrate-binding site of 14-3-3. Phosphate also destabilized complexes between pHspB6 and 14-3-3γ or the monomeric mutant form of 14-3-3ζ. Inorganic sulfate and pyrophosphate were less effective in modulation of 14-3-3 interaction with its target protein. The inhibitory effect of all anions on pHspB6/14-3-3 interaction was concentration-dependent. It is hypothesized that physiological changes in phosphate anions concentration can modulate affinity and specificity of interaction of 14-3-3 with its multiple targets and therefore the actual phosphointeractome of 14-3-3. PMID:23977325

  15. Modulation of 14-3-3/phosphotarget interaction by physiological concentrations of phosphate and glycerophosphates.

    PubMed

    Sluchanko, Nikolai N; Chebotareva, Natalia A; Gusev, Nikolai B

    2013-01-01

    Molecular mechanisms governing selective binding of a huge number of various phosphorylated protein partners to 14-3-3 remain obscure. Phosphate can bind to 14-3-3 and therefore being present at high intracellular concentration, which undergoes significant changes under physiological conditions, phosphate can theoretically regulate interaction of 14-3-3 with phosphorylated targets. In order to check this hypothesis we analyzed effect of phosphate and other natural abundant anions on interaction of 14-3-3 with phosphorylated human small heat shock protein HspB6 (Hsp20) participating in regulation of different intracellular processes. Inorganic phosphate, glycerol-1-phosphate and glycerol-2-phosphate at physiologically relevant concentrations (5-15 mM) significantly destabilized complexes formed by 14-3-3ζ and phosphorylated HspB6 (pHspB6), presumably, via direct interaction with the substrate-binding site of 14-3-3. Phosphate also destabilized complexes between pHspB6 and 14-3-3γ or the monomeric mutant form of 14-3-3ζ. Inorganic sulfate and pyrophosphate were less effective in modulation of 14-3-3 interaction with its target protein. The inhibitory effect of all anions on pHspB6/14-3-3 interaction was concentration-dependent. It is hypothesized that physiological changes in phosphate anions concentration can modulate affinity and specificity of interaction of 14-3-3 with its multiple targets and therefore the actual phosphointeractome of 14-3-3.

  16. Direct measurement and characterization of active photosynthesis zones inside biofuel producing and wastewater remediating microalgal biofilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Hans C.; Kesaano, Maureen; Moll, Karen

    2014-03-01

    Abstract: Microalgal biofilm based technologies are of keen interest due to their high biomass concentrations and ability to utilize renewable resources, such as light and CO2. While photoautotrophic biofilms have long been used for wastewater remediation applications, biofuel production represents a relatively new and under-represented focus area. However, the direct measurement and characterization of fundamental parameters required for physiological analyses are challenging due to biofilm heterogeneity. This study evaluated oxygenic photosynthesis and biofuel precursor molecule production using a novel rotating algal biofilm reactor (RABR) operated at field- and laboratory-scales for wastewater remediation and biofuel production, respectively. Clear differences in oxygenic-photosynthesis,more » respiration and biofuel-precursor capacities were observed between the two systems and different conditions based on light and nitrogen availability. Nitrogen depletion was not found to have the same effect on lipid accumulation compared to prior planktonic studies. Physiological characterizations of these microalgal biofilms identify potential areas for future process optimization.« less

  17. Murburn Concept: A Molecular Explanation for Hormetic and Idiosyncratic Dose Responses.

    PubMed

    Parashar, Abhinav; Gideon, Daniel Andrew; Manoj, Kelath Murali

    2018-01-01

    Recently, electron transfers and catalyses in a bevy of redox reactions mediated by hemeproteins were explained by murburn concept. The term "murburn" is abstracted from " mur ed burn ing " or " m ild u n r estricted burn ing " and connotes a novel " m olecule- u nbound ion- r adical " interaction paradigm. Quite unlike the genetic regulations and protein-level affinity-based controls that govern order and specificity/selectivity in conventional treatments, murburn concept is based on stochastic/thermodynamic regulatory principles. The novel insight necessitates a "reactivity outside the active-site" perspective, because select redox enzymatic activity is obligatorily mediated via diffusible radical/species. Herein, reactions employing key hemeproteins (as exemplified by CYP2E1) establish direct experimental connection between "additive-influenced redox catalysis" and "unusual dose responses" in reductionist and physiological milieu. Thus, direct and conclusive molecular-level experimental evidence is presented, supporting the mechanistic relevance of murburn concept in "maverick" concentration-based effects brought about by additives. Therefore, murburn concept could potentially explain several physiological hormetic and idiosyncratic dose responses.

  18. The concept of function in modern physiology.

    PubMed

    Roux, Etienne

    2014-06-01

    An overview of the scientific literature shows that the concept of function is central in physiology. However, the concept itself is not defined by physiologists. On the other hand, the teleological, namely, the 'goal-directed' dimension of function, and its subsequent explanatory relevance, is a philosophical problem. Intuitively, the function of a trait in a system explains why this trait is present, but, in the early 1960s, Ernest Nagel and Carl Hempel have shown that this inference cannot be logically founded. However, they showed that self-regulated systems are teleological. According to the selectionist theories, the function of an item is its effect that has been selected by natural selection, a process that explains its presence. As they restrict the functional attribution of a trait to its past selective value and not its current properties, these theories are inconsistent with the concept of function in physiology. A more adequate one is the causal role theory, for which a function of a trait in a system is its causal contribution to the functional capacity of the system. However, this leaves unsolved the question of the 'surplus meaning' of the teleological dimension of function. The significance of considering organisms as 'purpose-like' (teleological) systems may reside not in its explanatory power but in its methodological fruitfulness in physiology. In this view, the teleological dimension of physiological functions is convergent to but not imported from, the teleological dimension of evolutionary biology. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  19. Wind constraints on the thermoregulation of high mountain lizards.

    PubMed

    Ortega, Zaida; Mencía, Abraham; Pérez-Mellado, Valentín

    2017-03-01

    Thermal biology of lizards affects their overall physiological performance. Thus, it is crucial to study how abiotic constraints influence thermoregulation. We studied the effect of wind speed on thermoregulation in an endangered mountain lizard (Iberolacerta aurelioi). We compared two populations of lizards: one living in a sheltered rocky area and the other living in a mountain ridge, exposed to strong winds. The preferred temperature range of I. aurelioi, which reflects thermal physiology, was similar in both areas, and it was typical of a cold specialist. Although the thermal physiology of lizards and the structure of the habitat were similar, the higher wind speed in the exposed population was correlated with a significant decrease in the effectiveness thermoregulation, dropping from 0.83 to 0.74. Our results suggest that wind reduces body temperatures in two ways: via direct convective cooling of the animal and via convective cooling of the substrate, which causes conductive cooling of the animal. The detrimental effect of wind on thermoregulatory effectiveness is surprising, since lizards are expected to thermoregulate more effectively in more challenging habitats. However, wind speed would affect the costs and benefits of thermoregulation in more complex ways than just the cooling of animals and their habitats. For example, it may reduce the daily activity, increase desiccation, or complicate the hunting of prey. Finally, our results imply that wind should also be considered when developing conservation strategies for threatened ectotherms.

  20. Wind constraints on the thermoregulation of high mountain lizards

    NASA Astrophysics Data System (ADS)

    Ortega, Zaida; Mencía, Abraham; Pérez-Mellado, Valentín

    2017-03-01

    Thermal biology of lizards affects their overall physiological performance. Thus, it is crucial to study how abiotic constraints influence thermoregulation. We studied the effect of wind speed on thermoregulation in an endangered mountain lizard ( Iberolacerta aurelioi). We compared two populations of lizards: one living in a sheltered rocky area and the other living in a mountain ridge, exposed to strong winds. The preferred temperature range of I. aurelioi, which reflects thermal physiology, was similar in both areas, and it was typical of a cold specialist. Although the thermal physiology of lizards and the structure of the habitat were similar, the higher wind speed in the exposed population was correlated with a significant decrease in the effectiveness thermoregulation, dropping from 0.83 to 0.74. Our results suggest that wind reduces body temperatures in two ways: via direct convective cooling of the animal and via convective cooling of the substrate, which causes conductive cooling of the animal. The detrimental effect of wind on thermoregulatory effectiveness is surprising, since lizards are expected to thermoregulate more effectively in more challenging habitats. However, wind speed would affect the costs and benefits of thermoregulation in more complex ways than just the cooling of animals and their habitats. For example, it may reduce the daily activity, increase desiccation, or complicate the hunting of prey. Finally, our results imply that wind should also be considered when developing conservation strategies for threatened ectotherms.

  1. Effectiveness of inquiry-based learning in an undergraduate exercise physiology course.

    PubMed

    Nybo, Lars; May, Michael

    2015-06-01

    The present study was conducted to investigate the effects of changing a laboratory physiology course for undergraduate students from a traditional step-by-step guided structure to an inquiry-based approach. With this aim in mind, quantitative and qualitative evaluations of learning outcomes (individual subject-specific tests and group interviews) were performed for a laboratory course in cardiorespiratory exercise physiology that was conducted in one year with a traditional step-by-step guided manual (traditional course) and the next year completed with an inquiry-based structure (I-based course). The I-based course was a guided inquiry course where students had to design the experimental protocol and conduct their own study on the basis of certain predefined criteria (i.e., they should evaluate respiratory responses to submaximal and maximal exercise and provide indirect and direct measures of aerobic exercise capacity). The results indicated that the overall time spent on the experimental course as well as self-evaluated learning outcomes were similar across groups. However, students in the I-based course used more time in preparation (102 ± 5 min) than students in the traditional course (42 ± 3 min, P < 0.05), and 65 ± 5% students in the I-based course searched for additional literature before experimentation compared with only 2 ± 1% students in the traditional course. Furthermore, students in the I-based course achieved a higher (P < 0.05) average score on the quantitative test (45 ± 3%) compared with students in the traditional course (31 ± 4%). Although students were unfamiliar with cardiorespiratory exercise physiology and the experimental methods before the course, it appears that an inquiry-based approach rather than one that provides students with step-by-step instructions may benefit learning outcomes in a laboratory physiology course. Copyright © 2015 The American Physiological Society.

  2. Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation.

    PubMed

    Jamil, Asif; Batsikadze, Giorgi; Kuo, Hsiao-I; Labruna, Ludovica; Hasan, Alkomiet; Paulus, Walter; Nitsche, Michael A

    2017-02-15

    Applications of transcranial direct current stimulation to modulate human neuroplasticity have increased in research and clinical settings. However, the need for longer-lasting effects, combined with marked inter-individual variability, necessitates a deeper understanding of the relationship between stimulation parameters and physiological effects. We systematically investigated the full DC intensity range (0.5-2.0 mA) for both anodal and cathodal tDCS in a sham-controlled repeated measures design, monitoring changes in motor-cortical excitability via transcranial magnetic stimulation up to 2 h after stimulation. For both tDCS polarities, the excitability after-effects did not linearly correlate with increasing DC intensity; effects of lower intensities (0.5, 1.0 mA) showed equal, if not greater effects in motor-cortical excitability. Further, while intra-individual responses showed good reliability, inter-individual sensitivity to TMS accounted for a modest percentage of the variance in the early after-effects of 1.0 mA anodal tDCS, which may be of practical relevance for future optimizations. Contemporary non-invasive neuromodulatory techniques, such as transcranial direct current stimulation (tDCS), have shown promising potential in both restituting impairments in cortical physiology in clinical settings, as well as modulating cognitive abilities in the healthy population. However, neuroplastic after-effects of tDCS are highly dependent on stimulation parameters, relatively short lasting, and not expectedly uniform between individuals. The present study systematically investigates the full range of current intensity between 0.5 and 2.0 mA on left primary motor cortex (M1) plasticity, as well as the impact of individual-level covariates on explaining inter-individual variability. Thirty-eight healthy subjects were divided into groups of anodal and cathodal tDCS. Five DC intensities (sham, 0.5, 1.0, 1.5 and 2.0 mA) were investigated in separate sessions. Using transcranial magnetic stimulation (TMS), 25 motor-evoked potentials (MEPs) were recorded before, and 10 time points up to 2 h following 15 min of tDCS. Repeated-measures ANOVAs indicated a main effect of intensity for both anodal and cathodal tDCS. With anodal tDCS, all active intensities resulted in equivalent facilitatory effects relative to sham while for cathodal tDCS, only 1.0 mA resulted in sustained excitability diminution. An additional experiment conducted to assess intra-individual variability revealed generally good reliability of 1.0 mA anodal tDCS (ICC(2,1) = 0.74 over the first 30 min). A post hoc analysis to discern sources of inter-individual variability confirmed a previous finding in which individual TMS SI 1mV (stimulus intensity for 1 mV MEP amplitude) sensitivity correlated negatively with 1.0 mA anodal tDCS effects on excitability. Our study thus provides further insights on the extent of non-linear intensity-dependent neuroplastic after-effects of anodal and cathodal tDCS. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  3. The vaginal microbiota, host defence and reproductive physiology.

    PubMed

    Smith, Steven B; Ravel, Jacques

    2017-01-15

    The interaction between the human host and the vaginal microbiota is highly dynamic. Major changes in the vaginal physiology and microbiota over a woman's lifetime are largely shaped by transitional periods such as puberty, menopause and pregnancy, while daily fluctuations in microbial composition observed through culture-independent studies are more likely to be the results of daily life activities and behaviours. The vaginal microbiota of reproductive-aged women is largely made up of at least five different community state types. Four of these community state types are dominated by lactic-acid producing Lactobacillus spp. while the fifth is commonly composed of anaerobes and strict anaerobes and is sometimes associated with vaginal symptoms. The production of lactic acid has been associated with contributing to the overall health of the vagina due to its direct and indirect effects on pathogens and host defence. Some species associated with non-Lactobacillus vaginal microbiota may trigger immune responses as well as degrade the host mucosa, processes that ultimately increase susceptibility to infections and contribute to negative reproductive outcomes such as infertility and preterm birth. Further studies are needed to better understand the functional underpinnings of how the vaginal microbiota affect host physiology but also how host physiology affects the vaginal microbiota. Understanding this fine-tuned interaction is key to maintaining women's reproductive health. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  4. Synergistic effects of abiotic stresses in plants: a case study of nitrogen limitation and saturating light intensity in Arabidopsis thaliana.

    PubMed

    Cohen, Itay; Rapaport, Tal; Chalifa-Caspi, Vered; Rachmilevitch, Shimon

    2018-05-22

    Under natural conditions, plants are regularly exposed to combinations of stress factors. A common example is the conjunction between nitrogen (N) deficiency and excess light. The combined effect of stress factors is often ignored in studies using controlled conditions, possibly resulting in misleading conclusions. To address this issue, the current study examined the physiological behavior of Arabidopsis thaliana under the effect of varying nitrogen levels and light intensities. The joint influence of low N and excess light had an adverse effect on plant growth, chlorophyll and anthocyanin concentrations, photochemical capacity, and the abundance of proteins involved in carbon assimilation and anti-oxidative metabolism. In contrast, no adverse physiological responses were observed for plants under either nitrogen limitation or high light intensity conditions (i.e., single stress). The underline mechanisms for the increased growth in conditions of high light and sufficient nitrogen was due to a combination of chlorophyll accumulation and an increased number of proteins involved in C3 carbon assimilation, amino acids biosynthesis and chloroplast development. In contrast, combined stress conditions caused anthocyanin accumulation and increased number proteins involved in catabolism of lipids and amino acids as energy substrates. Ultimately switching plants from growth to survival. Our results suggest that an assessment of the physiological response to the combined effect of multiple stresses cannot be directly extrapolated from the physiological response to a single stress. Specifically, the synergistic interaction between N deficiency and saturating light in Arabidopsis plants could not have been modeled via only one of the stress factors. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae)

    PubMed Central

    Terblanche, John S.; Chown, Steven L.

    2006-01-01

    Summary Recent reviews of the adaptive hypotheses for animal responses to acclimation have highlighted the importance of distinguishing between developmental and adult (non-developmental) phenotypic plasticity. However, little work has been undertaken separating the effects of developmental plasticity from adult acclimation in physiological traits. Therefore, we investigate the relative contributions of these two distinct forms of plasticity to the environmental physiology of adult tsetse flies by exposing developing pupae or adult flies to different temperatures and comparing their responses. We also exposed flies to different temperatures during development and re-exposed them as adults to the same temperatures to investigate possible cumulative effects. Critical thermal maxima were relatively inflexible in response to acclimation temperatures (21, 25, 29 °C) with plasticity type accounting for the majority of the variation (49-67 %, nested ANOVA). By contrast, acclimation had a larger effect on critical thermal minima with treatment temperature accounting for most of the variance (84-92 %). Surprisingly little of the variance in desiccation rate could be explained by plasticity type (30-47 %). The only significant effect of acclimation on standard (resting) metabolic rate of adult flies occurred in response to 21 °C, resulting in treatment temperature, rather than plasticity type, accounting for the majority of the variance (30-76 %). This study demonstrates that the stage at which acclimation takes place has significant, though often different effects on several adult physiological traits in G. pallidipes, and therefore that it is not only important to consider the form of plasticity but also the direction of the response and its significance from a life-history perspective. PMID:16513933

  6. Bidirectional motility of kinesin-5 motor proteins: structural determinants, cumulative functions and physiological roles.

    PubMed

    Singh, Sudhir Kumar; Pandey, Himanshu; Al-Bassam, Jawdat; Gheber, Larisa

    2018-05-01

    Mitotic kinesin-5 bipolar motor proteins perform essential functions in mitotic spindle dynamics by crosslinking and sliding antiparallel microtubules (MTs) apart within the mitotic spindle. Two recent studies have indicated that single molecules of Cin8, the Saccharomyces cerevisiae kinesin-5 homolog, are minus end-directed when moving on single MTs, yet switch directionality under certain experimental conditions (Gerson-Gurwitz et al., EMBO J 30:4942-4954, 2011; Roostalu et al., Science 332:94-99, 2011). This finding was unexpected since the Cin8 catalytic motor domain is located at the N-terminus of the protein, and such kinesins have been previously thought to be exclusively plus end-directed. In addition, the essential intracellular functions of kinesin-5 motors in separating spindle poles during mitosis can only be accomplished by plus end-directed motility during antiparallel sliding of the spindle MTs. Thus, the mechanism and possible physiological role of the minus end-directed motility of kinesin-5 motors remain unclear. Experimental and theoretical studies from several laboratories in recent years have identified additional kinesin-5 motors that are bidirectional, revealed structural determinants that regulate directionality, examined the possible mechanisms involved and have proposed physiological roles for the minus end-directed motility of kinesin-5 motors. Here, we summarize our current understanding of the remarkable ability of certain kinesin-5 motors to switch directionality when moving along MTs.

  7. Physicians' psychophysiological stress reaction in medical communication of bad news: A critical literature review.

    PubMed

    Studer, Regina Katharina; Danuser, Brigitta; Gomez, Patrick

    2017-10-01

    Stress is a common phenomenon in medical professions. Breaking bad news (BBN) is reported to be a particularly distressing activity for physicians. Traditionally, the stress experienced by physicians when BBN was assessed exclusively using self-reporting. Only recently, the field of difficult physician-patient communication has used physiological assessments to better understand physicians' stress reactions. This paper's goals are to (a) review current knowledge about the physicians' psychophysiological stress reactions in BBN situations, (b) discuss methodological aspects of these studies and (c) suggest directions for future research. The seven studies identified all used scenarios with simulated patients but were heterogeneous with regard to other methodological aspects, such as the psychophysiological parameters, time points and durations assessed, comparative settings, and operationalisation of the communication scenarios. Despite this heterogeneity, all the papers reported increases in psychological and/or physiological activation when breaking bad news in comparison to control conditions, such as history taking or breaking good news. Taken together, the studies reviewed support the hypothesis that BBN is a psychophysiologically arousing and stressful task for medical professionals. However, much remains to be done. We suggest several future directions to advance the field. These include (a) expanding and refining the conceptual framework, (b) extending assessments to include more diverse physiological parameters, (c) exploring the modulatory effects of physicians' personal characteristics (e.g. level of experience), (d) comparing simulated and real-life physician-patient encounters and (e) combining physiological assessment with a discourse analysis of physician-patient communication. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The effect of the arthroscopic augmentation of the subscapularis tendon on shoulder instability and range of motion: A biomechanical study.

    PubMed

    Schröter, S; Krämer, M; Welke, B; Hurschler, C; Russo, R; Herbst, M; Stöckle, U; Ateschrang, A; Maiotti, M

    2016-10-01

    Anterior shoulder dislocation is common. The treatment of recurrence with glenoid bone defect is still considered controversial. A new arthroscopic subscapularis augmentation has recently been described that functions to decrease the anterior translation of the humeral head. The purpose of the presented study was to examine the biomechanical effect on glenohumeral joint motion and stability. Eight fresh frozen cadaver shoulders were studied by use of a force guided industrial robot fitted with a six-component force-moment sensor to which the humerus was attached. The testing protocol includes measurement of glenohumeral translation in the anterior, anterior-inferior and inferior directions at 0°, 30° and 60° of glenohumeral abduction, respectively, with a passive humerus load of 30N in the testing direction. The maximum possible external rotation was measured at each abduction angle applying a moment of 1Nm. Each specimen was measured in a physiologic state, as well as after Bankart lesion with an anterior bone defect of 15-20% of the glenoid, after arthroscopic subscapularis augmentation and after Bankart repair. The arthroscopic subscapularis augmentation decreased the anterior and anterior-inferior translation. The Bankart repair did not restore the mechanical stability compared to the physiologic shoulder group. External rotation was decreased after arthroscopic subscapularis augmentation compared to the physiologic state, however, the limitation of external rotation was decreased at 60° abduction. The arthroscopic subscapularis augmentation investigated herein was observed to restore shoulder stability in an experimental model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Physiological and psychosocial factors that predict HIV-related fatigue.

    PubMed

    Barroso, Julie; Hammill, Bradley G; Leserman, Jane; Salahuddin, Naima; Harmon, James L; Pence, Brian Wells

    2010-12-01

    Fatigue is one of the most common and debilitating symptoms experienced by HIV-infected people. We report the results of our longitudinal analysis of physiological and psychosocial factors that were thought to predict changes in HIV-related fatigue in 128 participants over a 1-year period, in an effort to sort out the complex interplay among a comprehensive set of physiological and psychosocial variables. Physiological measures included hepatic function (aspartate aminotransferase, alanine aminotransferase, gamma glutamyl transpeptidase, alkaline phosphatase, total bilirubin, hepatitis C status), thyroid function (thyroid stimulating hormone, thyroxine), HIV viral load, immunologic function (CD4, CD8, CD4/CD8 ratio, CD16, CD8CD38), gonadal function (testosterone, dehydroepiandrosterone), hematologic function (hemoglobin, hematocrit, serum erythropoietin), and cellular injury (lactic acid). Psychosocial measures included childhood and adult trauma, anxiety, depression, social support, stressful life events, and post-traumatic stress disorder (PTSD). Unemployment, not being on antiretroviral therapy, having fewer years since HIV diagnosis, more childhood trauma, more stressful life events, less social support, and more psychological distress (e.g., PTSD, anxiety and depression) put HIV-infected persons at risk for greater fatigue intensity and fatigue-related impairment in functioning during 1-year follow-up. Physiological variables did not predict greater fatigue. Stressful life events had both direct and indirect effects on fatigue.

  10. Physiological and Psychosocial Factors that Predict HIV-Related Fatigue

    PubMed Central

    Hammill, Bradley G.; Leserman, Jane; Salahuddin, Naima; Harmon, James L.; Pence, Brian Wells

    2010-01-01

    Fatigue is one of the most common and debilitating symptoms experienced by HIV-infected people. We report the results of our longitudinal analysis of physiological and psychosocial factors that were thought to predict changes in HIV-related fatigue in 128 participants over a 1-year period, in an effort to sort out the complex interplay among a comprehensive set of physiological and psychosocial variables. Physiological measures included hepatic function (aspartate aminotransferase, alanine aminotransferase, gamma glutamyl transpeptidase, alkaline phosphatase, total bilirubin, hepatitis C status), thyroid function (thyroid stimulating hormone, thyroxine), HIV viral load, immunologic function (CD4, CD8, CD4/CD8 ratio, CD16, CD8CD38), gonadal function (testosterone, dehydroepiandrosterone), hematologic function (hemoglobin, hematocrit, serum erythropoietin), and cellular injury (lactic acid). Psychosocial measures included childhood and adult trauma, anxiety, depression, social support, stressful life events, and post-traumatic stress disorder (PTSD). Unemployment, not being on antiretroviral therapy, having fewer years since HIV diagnosis, more childhood trauma, more stressful life events, less social support, and more psychological distress (e.g., PTSD, anxiety and depression) put HIV-infected persons at risk for greater fatigue intensity and fatigue-related impairment in functioning during 1-year follow-up. Physiological variables did not predict greater fatigue. Stressful life events had both direct and indirect effects on fatigue. PMID:20352317

  11. Tissue Bioeffects during Ultrasound-mediated Drug Delivery

    NASA Astrophysics Data System (ADS)

    Sutton, Jonathan

    Ultrasound has been developed as both a valuable diagnostic tool and a potent promoter of beneficial tissue bioeffects for the treatment of cardiovascular disease. Vascular effects can be mediated by mechanical oscillations of circulating microbubbles, or ultrasound contrast agents, which may also encapsulate and shield a therapeutic agent in the bloodstream. Oscillating microbubbles can create stresses directly on nearby tissue or induce fluid effects that effect drug penetration into vascular tissue, lyse thrombi, or direct drugs to optimal locations for delivery. These investigations have spurred continued research into alternative therapeutic applications, such as bioactive gas delivery. This dissertation addresses a fundamental hypothesis in biomedical ultrasound: ultrasound-mediated drug delivery is capable of increasing the penetration of drugs across different physiologic barriers within the cardiovascular system, such as the vascular endothelium, blood clots, and smooth muscle cells.

  12. Catechol-O-methyltransferase Val(158)Met association with parahippocampal physiology during memory encoding in schizophrenia.

    PubMed

    Di Giorgio, A; Caforio, G; Blasi, G; Taurisano, P; Fazio, L; Romano, R; Ursini, G; Gelao, B; Bianco, L Lo; Papazacharias, A; Sinibaldi, L; Popolizio, T; Bellomo, A; Bertolino, A

    2011-08-01

    Catechol-O-methyltransferase (COMT) Val158Met has been associated with activity of the mesial temporal lobe during episodic memory and it may weakly increase risk for schizophrenia. However, how this variant affects parahippocampal and hippocampal physiology when dopamine transmission is perturbed is unclear. The aim of the present study was to compare the effects of the COMT Val158Met genotype on parahippocampal and hippocampal physiology during encoding of recognition memory in patients with schizophrenia and in healthy subjects. Using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI), we studied 28 patients with schizophrenia and 33 healthy subjects matched for a series of sociodemographic and genetic variables while they performed a recognition memory task. We found that healthy subjects had greater parahippocampal and hippocampal activity during memory encoding compared to patients with schizophrenia. We also found different activity of the parahippocampal region between healthy subjects and patients with schizophrenia as a function of the COMT genotype, in that the predicted COMT Met allele dose effect had an opposite direction in controls and patients. Our results demonstrate a COMT Val158Met genotype by diagnosis interaction in parahippocampal activity during memory encoding and may suggest that modulation of dopamine signaling interacts with other disease-related processes in determining the phenotype of parahippocampal physiology in schizophrenia. © Cambridge University Press 2010

  13. Indirect effects of parasitism: costs of infection to other individuals can be greater than direct costs borne by the host.

    PubMed

    Granroth-Wilding, Hanna M V; Burthe, Sarah J; Lewis, Sue; Herborn, Katherine A; Takahashi, Emi A; Daunt, Francis; Cunningham, Emma J A

    2015-07-22

    Parasitic infection has a direct physiological cost to hosts but may also alter how hosts interact with other individuals in their environment. Such indirect effects may alter both host fitness and the fitness of other individuals in the host's social network, yet the relative impact of direct and indirect effects of infection are rarely quantified. During reproduction, a host's social environment includes family members who may be in conflict over resource allocation. In such situations, infection may alter how resources are allocated, thereby redistributing the costs of parasitism between individuals. Here, we experimentally reduce parasite burdens of parent and/or nestling European shags (Phalacrocorax aristotelis) infected with Contracaecum nematodes in a factorial design, then simultaneously measure the impact of an individual's infection on all family members. We found no direct effect of infection on parent or offspring traits but indirect effects were detected in all group members, with both immediate effects (mass change and survival) and longer-term effects (timing of parents' subsequent breeding). Our results show that parasite infection can have a major impact on individuals other than the host, suggesting that the effect of parasites on population processes may be greater than previously thought. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Towards understanding the complexity of cardiovascular oscillations: Insights from information theory.

    PubMed

    Javorka, Michal; Krohova, Jana; Czippelova, Barbora; Turianikova, Zuzana; Lazarova, Zuzana; Wiszt, Radovan; Faes, Luca

    2018-07-01

    Cardiovascular complexity is a feature of healthy physiological regulation, which stems from the simultaneous activity of several cardiovascular reflexes and other non-reflex physiological mechanisms. It is manifested in the rich dynamics characterizing the spontaneous heart rate and blood pressure variability (HRV and BPV). The present study faces the challenge of disclosing the origin of short-term HRV and BPV from the statistical perspective offered by information theory. To dissect the physiological mechanisms giving rise to cardiovascular complexity in different conditions, measures of predictive information, information storage, information transfer and information modification were applied to the beat-to-beat variability of heart period (HP), systolic arterial pressure (SAP) and respiratory volume signal recorded non-invasively in 61 healthy young subjects at supine rest and during head-up tilt (HUT) and mental arithmetics (MA). Information decomposition enabled to assess simultaneously several expected and newly inferred physiological phenomena, including: (i) the decreased complexity of HP during HUT and the increased complexity of SAP during MA; (ii) the suppressed cardiorespiratory information transfer, related to weakened respiratory sinus arrhythmia, under both challenges; (iii) the altered balance of the information transferred along the two arms of the cardiovascular loop during HUT, with larger baroreflex involvement and smaller feedforward mechanical effects; and (iv) an increased importance of direct respiratory effects on SAP during HUT, and on both HP and SAP during MA. We demonstrate that a decomposition of the information contained in cardiovascular oscillations can reveal subtle changes in system dynamics and improve our understanding of the complexity changes during physiological challenges. Copyright © 2018. Published by Elsevier Ltd.

  15. Basic and functional effects of transcranial Electrical Stimulation (tES)-An introduction.

    PubMed

    Yavari, Fatemeh; Jamil, Asif; Mosayebi Samani, Mohsen; Vidor, Liliane Pinto; Nitsche, Michael A

    2018-02-01

    Non-invasive brain stimulation (NIBS) has been gaining increased popularity in human neuroscience research during the last years. Among the emerging NIBS tools is transcranial electrical stimulation (tES), whose main modalities are transcranial direct, and alternating current stimulation (tDCS, tACS). In tES, a small current (usually less than 3mA) is delivered through the scalp. Depending on its shape, density, and duration, the applied current induces acute or long-lasting effects on excitability and activity of cerebral regions, and brain networks. tES is increasingly applied in different domains to (a) explore human brain physiology with regard to plasticity, and brain oscillations, (b) explore the impact of brain physiology on cognitive processes, and (c) treat clinical symptoms in neurological and psychiatric diseases. In this review, we give a broad overview of the main mechanisms and applications of these brain stimulation tools. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. On the use of wearable physiological monitors to assess heat strain during occupational heat stress.

    PubMed

    Notley, Sean R; Flouris, Andreas D; Kenny, Glen P

    2018-05-04

    Workers in many industries are required to perform arduous work in high heat stress conditions, which can lead to rapid increases in body temperature that elevate the risk of heat-related illness or even death. Traditionally, effort to mitigate work-related heat injury has been directed to the assessment of environmental heat stress (e.g., wet-bulb globe temperature), rather than the associated physiological strain responses (e.g., heart rate, skin and core temperatures). However, since a workers physiological response to a given heat stress is modified independently by inter-individual factors (e.g., age, sex, chronic disease, others) and intra-individual factors both within (e.g., medication use, fitness, acclimation and hydration state, others) and beyond a workers control (e.g., shift duration, illness, others), it becomes challenging to protect workers on an individual basis from heat-related injury without assessing those physiological responses. Recent advancements in wearable technology have made it possible to monitor one or more physiological indices of heat strain. Nonetheless, information on the utility of the wearable systems available for assessing occupational heat strain is unavailable. This communication is therefore directed at identifying the physiological indices of heat strain that may be quantified in the workplace and evaluating the wearable monitoring systems available for assessing those responses. Finally, emphasis is directed to the barriers associated with implementing these devices to assist in mitigating work-related heat injury. This information is fundamental for protecting worker health and could also be utilized to prevent heat illnesses in vulnerable people during leisure or athletic activities in the heat.

  17. Direct impacts of climatic warming on heat stress in endothermic species: seabirds as bioindicators of changing thermoregulatory constraints.

    PubMed

    Oswald, Stephen A; Arnold, Jennifer M

    2012-06-01

    There is now abundant evidence that contemporary climatic change has indirectly affected a wide-range of species by changing trophic interactions, competition, epidemiology and habitat. However, direct physiological impacts of changing climates are rarely reported for endothermic species, despite being commonly reported for ectotherms. We review the evidence for changing physiological constraints on endothermic vertebrates at high temperatures, integrating theoretical and empirical perspectives on the morphology, physiology and behavior of marine birds. Potential for increasing heat stress exposure depends on changes in multiple environmental variables, not just air temperature, as well as organism-specific morphology, physiology and behavior. Endotherms breeding at high latitudes are vulnerable to the forecast, extensive temperature changes because of the adaptations they possess to minimize heat loss. Low-latitude species will also be challenged as they currently live close to their thermal limits and will likely suffer future water shortages. Small, highly-active species, particularly aerial foragers, are acutely vulnerable as they are least able to dissipate heat at high temperatures. Overall, direct physiological impacts of climatic change appear underrepresented in the published literature, but available data suggest they have much potential to shape behavior, morphology and distribution of endothermic species. Coincidence between future heat stress events and other energetic constraints on endotherms remains largely unexplored but will be key in determining the physiological impacts of climatic change. Multi-scale, biophysical modeling, informed by experiments that quantify thermoregulatory responses of endotherms to heat stress, is an essential precursor to urgently-needed analyses at the population or species level. © 2012 ISZS, Blackwell Publishing and IOZ/CAS.

  18. Low doses of ivermectin cause sensory and locomotor disorders in dung beetles

    NASA Astrophysics Data System (ADS)

    Verdú, José R.; Cortez, Vieyle; Ortiz, Antonio J.; González-Rodríguez, Estela; Martinez-Pinna, Juan; Lumaret, Jean-Pierre; Lobo, Jorge M.; Numa, Catherine; Sánchez-Piñero, Francisco

    2015-09-01

    Ivermectin is a veterinary pharmaceutical generally used to control the ecto- and endoparasites of livestock, but its use has resulted in adverse effects on coprophilous insects, causing population decline and biodiversity loss. There is currently no information regarding the direct effects of ivermectin on dung beetle physiology and behaviour. Here, based on electroantennography and spontaneous muscle force tests, we show sub-lethal disorders caused by ivermectin in sensory and locomotor systems of Scarabaeus cicatricosus, a key dung beetle species in Mediterranean ecosystems. Our findings show that ivermectin decreases the olfactory and locomotor capacity of dung beetles, preventing them from performing basic biological activities. These effects are observed at concentrations lower than those usually measured in the dung of treated livestock. Taking into account that ivermectin acts on both glutamate-gated and GABA-gated chloride ion channels of nerve and muscle cells, we predict that ivermectin’s effects at the physiological level could influence many members of the dung pat community. The results indicate that the decline of dung beetle populations could be related to the harmful effects of chemical contamination in the dung.

  19. Variations in carbachol- and ATP-induced contractions of the rat detrusor: effects of gender, mucosa and contractile direction.

    PubMed

    Liang, Willmann; Leung, Ping Chung

    2012-12-01

    Contractile characteristics of the bladder may depend on variables such as gender, mucosa (MU) and direction of the contractions. However, definitive information is not yet available despite earlier studies on the effects of one variable or another. Here, we explored the differences in the rat detrusor attributable to gender, mucosa and contractile direction. K+, carbachol (CCh) and ATP were used as contractile stimuli on rat detrusor strips with and without MU. Contractility was monitored using a myograph system. Both tonic and phasic contractile activities were analyzed. MU-independent contractions induced by CCh were more potent in females, an effect specific to the longitudinal direction only. The maximal CCh response was larger also in females when MU was removed, suggesting a stronger MU-independent component in the contraction. The larger area under curves of the females under ATP stimulation showed dependence on MU and contractile direction as well. ATP-induced contractions in the males were affected more by MU in the transverse direction than in the females. Direction- and MU-dependent variability of ATP responses was also observed in the males but not in females. Findings here added new information to the understanding of bladder contractile physiology, providing insights into the quest for better drugs in managing bladder disorders.

  20. Therapeutic actions of melatonin in cancer: possible mechanisms.

    PubMed

    Srinivasan, Venkataramanujan; Spence, D Warren; Pandi-Perumal, Seithikurippu R; Trakht, Ilya; Cardinali, Daniel P

    2008-09-01

    Melatonin is a phylogenetically well-preserved molecule with diverse physiological functions. In addition to its well-known regulatory control of the sleep/wake cycle, as well as circadian rhythms generally, melatonin is involved in immunomodulation, hematopoiesis, and antioxidative processes. Recent human and animal studies have now shown that melatonin also has important oncostatic properties. Both at physiological and pharmacological doses melatonin exerts growth inhibitory effects on breast cancer cell lines. In hepatomas, through its activation of MT1 and MT2 receptors, melatonin inhibits linoleic acid uptake, thereby preventing the formation of the mitogenic metabolite 1,3-hydroxyoctadecadienoic acid. In animal model studies, melatonin has been shown to have preventative action against nitrosodiethylamine (NDEA)-induced liver cancer. Melatonin also inhibits the growth of prostate tumors via activation of MT1 receptors thereby inducing translocation of the androgen receptor to the cytoplasm and inhibition of the effect of endogenous androgens. There is abundant evidence indicating that melatonin is involved in preventing tumor initiation, promotion, and progression. The anticarcinogenic effect of melatonin on neoplastic cells relies on its antioxidant, immunostimulating, and apoptotic properties. Melatonin's oncostatic actions include the direct augmentation of natural killer (NK) cell activity, which increases immunosurveillance, as well as the stimulation of cytokine production, for example, of interleukin (IL)-2, IL-6, IL-12, and interferon (IFN)-gamma. In addition to its direct oncostatic action, melatonin protects hematopoietic precursors from the toxic effect of anticancer chemotherapeutic drugs. Melatonin secretion is impaired in patients suffering from breast cancer, endometrial cancer, or colorectal cancer. The increased incidence of breast cancer and colorectal cancer seen in nurses and other night shift workers suggests a possible link between diminished secretion of melatonin and increased exposure to light during nighttime. The physiological surge of melatonin at night is thus considered a "natural restraint" on tumor initiation, promotion, and progression.

  1. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    PubMed

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  2. Stressor-Specific Alterations in Corticosterone and Immune Responses in Mice

    PubMed Central

    Bowers, Stephanie L.; Bilbo, Staci D.; Dhabhar, Firdaus S.; Nelson, Randy J.

    2007-01-01

    Different stressors likely elicit different physiological and behavioral responses. Previously reported differences in the effects of stressors on immune function may reflect qualitatively different physiological responses to stressors; alternatively, both large and subtle differences in testing protocols and methods among laboratories may make direct comparisons among studies difficult. Here we examine the effects of chronic stressors on plasma corticosterone concentrations, leukocyte redistribution, and skin delayed-type hypersensitivity (DTH) and the effects of acute stressors on plasma corticosterone and leukocyte redistribution. The effects of several commonly used laboratory stressors including restraint, forced swim, isolation, and low ambient temperatures (4°C) were examined. Exposure to each stressor elevated corticosterone concentrations, with restraint (a putative psychological stressor) evoking a significantly higher glucocorticoid response than other stressors. Chronic restraint and forced swim enhanced the DTH response compared to the handled, low temperature, or isolation conditions. Restraint, low temperature, and isolation significantly increased trafficking of lymphocytes and monocytes compared to forced swim or handling. Generally, acute restraint, low temperature, isolation, and handling increased trafficking of lymphocytes and monocytes. Considered together, our results suggest that the different stressors commonly used in psychoneuroimmunology research may not activate the physiological stress response to the same extent. The variation observed in the measured immune responses may reflect differential glucocorticoid activation, differential metabolic adjustments, or both processes in response to specific stressors. PMID:17890050

  3. Deposition of Aerosols in the Lung: Physiological Factors

    EPA Science Inventory

    Ventilation and mechanics of breathing are an integral part of respiratory physiology that directly affect aerosol transport and deposition in the lung. Although natural breathing pattern varies widely among individuals, breathing pattern is controllable, and by using an appropri...

  4. Physiological effects on fishes in a high-CO2 world

    NASA Astrophysics Data System (ADS)

    Ishimatsu, Atsushi; Hayashi, Masahiro; Lee, Kyoung-Seon; Kikkawa, Takashi; Kita, Jun

    2005-09-01

    Fish are important members of both freshwater and marine ecosystems and constitute a major protein source in many countries. Thus potential reduction of fish resources by high-CO2 conditions due to the diffusion of atmospheric CO2 into the surface waters or direct CO2 injection into the deep sea can be considered as another potential threat to the future world population. Fish, and other water-breathing animals, are more susceptible to a rise in environmental CO2 than terrestrial animals because the difference in CO2 partial pressure (PCO2) of the body fluid of water-breathing animals and ambient medium is much smaller (only a few torr (1 torr = 0.1333 kPa = 1316 μatm)) than in terrestrial animals (typically 30-40 torr). A survey of the literature revealed that hypercapnia acutely affects vital physiological functions such as respiration, circulation, and metabolism, and changes in these functions are likely to reduce growth rate and population size through reproduction failure and change the distribution pattern due to avoidance of high-CO2 waters or reduced swimming activities. This paper reviews the acute and chronic effects of CO2 on fish physiology and tries to clarify necessary areas of future research.

  5. Estrogen receptors in neuropeptide Y neurons: at the crossroads of feeding and reproduction.

    PubMed

    Acosta-Martinez, Maricedes; Horton, Teresa; Levine, Jon E

    2007-03-01

    Hypothalamic neuropeptide Y (NPY) neurons function as physiological integrators in at least two different neuroendocrine systems - one governing feeding and the other controlling reproduction. Estrogen might modulate both systems by regulating NPY gene expression; it might reduce food intake by suppressing NPY expression, and evoke reproductive hormone surges by stimulating it. How can estrogen exert opposing effects in an ostensibly homogeneous NPY neuronal population? Recent work with immortalized NPY-producing cells suggests that the ratio of estrogen receptor alpha:estrogen receptor beta can determine the direction and temporal pattern of transcriptional responses to estrogen. Because this ratio might itself be physiologically regulated, these findings provide one explanation for multiple neuropeptidergic responses to a single steroid hormone.

  6. Three-dimensional behavior of ice crystals and biological cells during freezing of cell suspensions.

    PubMed

    Ishiguro, H; Koike, K

    1998-09-11

    Behavior of ice crystals and human red blood cells during extracellular-freezing was investigated in three-dimensions using a confocal laser scanning microscope(CLSM), which noninvasively produces tomograms of biological materials. Physiological saline and physiological saline with 2.4 M glycerol were used for suspension. Various cooling rates for directional solidification were used for distinctive morphology of the ice crystals. Addition of acridine orange as a fluorescent dye into the cell suspension enabled ice crystal, cells and unfrozen solution to be distinguished by different colors. The results indicate that the microscopic structure is three-dimensional for flat, cellular, and dendritic solid-liquid interfaces and that a CLSM is very effective in studying three-dimensional structure during the freezing of cell suspensions.

  7. Regulation of gonadotropin-releasing hormone neurons by glucose

    PubMed Central

    Roland, Alison V.; Moenter, Suzanne M.

    2011-01-01

    Reproduction is influenced by energy balance, but the physiological pathways mediating their relationship have not been fully elucidated. As the central regulators of fertility, gonadotropin-releasing hormone (GnRH) neurons integrate numerous physiological signals, including metabolic cues. Circulating glucose levels regulate GnRH release and may in part mediate the effects of negative energy balance on fertility. Existing evidence suggests that neural pathways originating in the hindbrain, as well as in the hypothalamic feeding nuclei, transmit information concerning glucose availability to GnRH neurons. Here we review recent evidence suggesting that GnRH neurons may directly sense changes in glucose availability by a mechanism involving adenosine monophosphate-activated protein kinase (AMPK). These findings expand our understanding of how metabolic signaling in the brain regulates reproduction. PMID:21855365

  8. [Effects of plant viruses on vector and non-vector herbivorous arthropods and their natural enemies: a mini review].

    PubMed

    He, Xiao-Chan; Xu, Hong-Xing; Zhou, Xiao-Jun; Zheng, Xu-Song; Sun, Yu-Jian; Yang, Ya-Jun; Tian, Jun-Ce; Lü, Zhong-Xian

    2014-05-01

    Plant viruses transmitted by arthropods, as an important biotic factor, may not only directly affect the yield and quality of host plants, and development, physiological characteristics and ecological performances of their vector arthropods, but also directly or indirectly affect the non-vector herbivorous arthropods and their natural enemies in the same ecosystem, thereby causing influences to the whole agro-ecosystem. This paper reviewed the progress on the effects of plant viruses on herbivorous arthropods, including vector and non-vector, and their natural enemies, and on their ecological mechanisms to provide a reference for optimizing the management of vector and non-vector arthropod populations and sustainable control of plant viruses in agro-ecosystem.

  9. Chronic variable stress and intravenous methamphetamine self-administration - Role of individual differences in behavioral and physiological reactivity to novelty.

    PubMed

    Taylor, S B; Watterson, L R; Kufahl, P R; Nemirovsky, N E; Tomek, S E; Conrad, C D; Olive, M F

    2016-09-01

    Stress is a contributing factor to the development and maintenance of addiction in humans. However, few studies have shown that stress potentiates the rewarding and/or reinforcing effects of methamphetamine in rodent models of addiction. The present study assessed the effects of exposure to 14 days of chronic variable stress (CVS), or no stress as a control (CON), on the rewarding and reinforcing effects of methamphetamine in adult rats using the conditioned place preference (Experiment 1) and intravenous self-administration (Experiment 2) paradigms. In Experiment 2, we also assessed individual differences in open field locomotor activity, anxiety-like behavior in the elevated plus maze (EPM), and physiological responses to a novel environment as possible predictors of methamphetamine intake patterns. Exposure to CVS for 14 days did not affect overall measures of methamphetamine conditioned reward or reinforcement. However, analyses of individual differences and direct vs. indirect effects revealed that rats exhibiting high physiological reactivity and locomotor activity in the EPM and open field tests self-administered more methamphetamine and reached higher breakpoints for drug reinforcement than rats exhibiting low reactivity. In addition, CVS exposure significantly increased the proportion of rats that exhibited high reactivity, and high reactivity was significantly correlated with increased levels of methamphetamine intake. These findings suggest that individual differences in physiological and locomotor reactivity to novel environments, as well as their interactions with stress history, predict patterns of drug intake in rodent models of methamphetamine addiction. Such predictors may eventually inform future strategies for implementing individualized treatment strategies for amphetamine use disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The effect of normalization of Partial Directed Coherence on the statistical assessment of connectivity patterns: a simulation study.

    PubMed

    Toppi, J; Petti, M; Vecchiato, G; Cincotti, F; Salinari, S; Mattia, D; Babiloni, F; Astolfi, L

    2013-01-01

    Partial Directed Coherence (PDC) is a spectral multivariate estimator for effective connectivity, relying on the concept of Granger causality. Even if its original definition derived directly from information theory, two modifies were introduced in order to provide better physiological interpretations of the estimated networks: i) normalization of the estimator according to rows, ii) squared transformation. In the present paper we investigated the effect of PDC normalization on the performances achieved by applying the statistical validation process on investigated connectivity patterns under different conditions of Signal to Noise ratio (SNR) and amount of data available for the analysis. Results of the statistical analysis revealed an effect of PDC normalization only on the percentages of type I and type II errors occurred by using Shuffling procedure for the assessment of connectivity patterns. No effects of the PDC formulation resulted on the performances achieved during the validation process executed instead by means of Asymptotic Statistic approach. Moreover, the percentages of both false positives and false negatives committed by Asymptotic Statistic are always lower than those achieved by Shuffling procedure for each type of normalization.

  11. Multidimensional profiling platforms reveal metabolic dysregulation caused by organophosphorus pesticides.

    PubMed

    Medina-Cleghorn, Daniel; Heslin, Ann; Morris, Patrick J; Mulvihill, Melinda M; Nomura, Daniel K

    2014-02-21

    We are environmentally exposed to countless synthetic chemicals on a daily basis, with an increasing number of these chemical exposures linked to adverse health effects. However, our understanding of the (patho)physiological effects of these chemicals remains poorly understood, due in part to a general lack of effort to systematically and comprehensively identify the direct interactions of environmental chemicals with biological macromolecules in mammalian systems in vivo. Here, we have used functional chemoproteomic and metabolomic platforms to broadly identify direct enzyme targets that are inhibited by widely used organophosphorus (OP) pesticides in vivo in mice and to determine metabolic alterations that are caused by these chemicals. We find that these pesticides directly inhibit over 20 serine hydrolases in vivo leading to widespread disruptions in lipid metabolism. Through identifying direct biological targets of OP pesticides, we show heretofore unrecognized modes of toxicity that may be associated with these agents and underscore the utility of using multidimensional profiling approaches to obtain a more complete understanding of toxicities associated with environmental chemicals.

  12. The therapeutic potential of metabolic hormones in the treatment of age-related cognitive decline and Alzheimer’s disease

    PubMed Central

    Grizzanti, John; Lee, Hyoung-Gon; Camins, Antoni; Pallas, Merce; Casadesus, Gemma

    2017-01-01

    Aging leads to a number of physiological alterations, specifically changes in circulating hormone levels, increases in fat deposition, decreases in metabolism, changes in inflammatory responses, and reductions in growth factors. These progressive changes in physiology and metabolism are exacerbated by modern culture and Western diet and give rise to diseases such as obesity, metabolic syndrome, and type 2 (non–insulin-dependent) diabetes (T2D). These age and lifestyle-related metabolic diseases are often accompanied by insulin and leptin resistance, as well as aberrant amylin production and signaling. Many of these alterations in hormone production and signaling are directly influenced by an increase in both oxidative stress and inflammation. Importantly, changes in hormone production and signaling have direct effects on brain function and the development of age-related neurologic disorders. Therefore, this review aims to present evidence on the effects that diet and metabolic disease have on age-related cognitive decline and the development of cognitive diseases, particularly Alzheimer disease. This review will focus on the metabolic hormones insulin, leptin, and amylin and their role in cognitive decline, as well as the therapeutic potential of these hormones in treating cognitive disease. Future investigations targeting the long-term effects of insulin and leptin treatment may reveal evidence to reduce risk of cognitive decline and Alzheimer disease. PMID:27923524

  13. A Mechanistic Pharmacokinetic Model for Liver Transporter Substrates Under Liver Cirrhosis Conditions

    PubMed Central

    Li, R; Barton, HA; Maurer, TS

    2015-01-01

    Liver cirrhosis is a disease characterized by the loss of functional liver mass. Physiologically based pharmacokinetic (PBPK) modeling was applied to interpret and predict how the interplay among physiological changes in cirrhosis affects pharmacokinetics. However, previous PBPK models under cirrhotic conditions were developed for permeable cytochrome P450 substrates and do not directly apply to substrates of liver transporters. This study characterizes a PBPK model for liver transporter substrates in relation to the severity of liver cirrhosis. A published PBPK model structure for liver transporter substrates under healthy conditions and the physiological changes for cirrhosis are combined to simulate pharmacokinetics of liver transporter substrates in patients with mild and moderate cirrhosis. The simulated pharmacokinetics under liver cirrhosis reasonably approximate observations. This analysis includes meta-analysis to obtain system-dependent parameters in cirrhosis patients and a top-down approach to improve understanding of the effect of cirrhosis on transporter-mediated drug disposition under cirrhotic conditions. PMID:26225262

  14. Apoptosis-mediated endothelial toxicity but not direct calcification or functional changes in anti-calcification proteins defines pathogenic effects of calcium phosphate bions

    NASA Astrophysics Data System (ADS)

    Kutikhin, Anton G.; Velikanova, Elena A.; Mukhamadiyarov, Rinat A.; Glushkova, Tatiana V.; Borisov, Vadim V.; Matveeva, Vera G.; Antonova, Larisa V.; Filip'Ev, Dmitriy E.; Golovkin, Alexey S.; Shishkova, Daria K.; Burago, Andrey Yu.; Frolov, Alexey V.; Dolgov, Viktor Yu.; Efimova, Olga S.; Popova, Anna N.; Malysheva, Valentina Yu.; Vladimirov, Alexandr A.; Sozinov, Sergey A.; Ismagilov, Zinfer R.; Russakov, Dmitriy M.; Lomzov, Alexander A.; Pyshnyi, Dmitriy V.; Gutakovsky, Anton K.; Zhivodkov, Yuriy A.; Demidov, Evgeniy A.; Peltek, Sergey E.; Dolganyuk, Viatcheslav F.; Babich, Olga O.; Grigoriev, Evgeniy V.; Brusina, Elena B.; Barbarash, Olga L.; Yuzhalin, Arseniy E.

    2016-06-01

    Calcium phosphate bions (CPB) are biomimetic mineralo-organic nanoparticles which represent a physiological mechanism regulating the function, transport and disposal of calcium and phosphorus in the human body. We hypothesised that CPB may be pathogenic entities and even a cause of cardiovascular calcification. Here we revealed that CPB isolated from calcified atherosclerotic plaques and artificially synthesised CPB are morphologically and chemically indistinguishable entities. Their formation is accelerated along with the increase in calcium salts-phosphates/serum concentration ratio. Experiments in vitro and in vivo showed that pathogenic effects of CPB are defined by apoptosis-mediated endothelial toxicity but not by direct tissue calcification or functional changes in anti-calcification proteins. Since the factors underlying the formation of CPB and their pathogenic mechanism closely resemble those responsible for atherosclerosis development, further research in this direction may help us to uncover triggers of this disease.

  15. Adaptive control of bivalirudin in the cardiac intensive care unit.

    PubMed

    Zhao, Qi; Edrich, Thomas; Paschalidis, Ioannis Ch

    2015-02-01

    Bivalirudin is a direct thrombin inhibitor used in the cardiac intensive care unit when heparin is contraindicated due to heparin-induced thrombocytopenia. Since it is not a commonly used drug, clinical experience with its dosing is sparse. In earlier work [1], we developed a dynamic system model that accurately predicts the effect of bivalirudin given dosage over time and patient physiological characteristics. This paper develops adaptive dosage controllers that regulate its effect to desired levels. To that end, and in the case that bivalirudin model parameters are available, we develop a Model Reference Control law. In the case that model parameters are unknown, an indirect Model Reference Adaptive Control scheme is applied to estimate model parameters first and then adapt the controller. Alternatively, direct Model Reference Adaptive Control is applied to adapt the controller directly without estimating model parameters first. Our algorithms are validated using actual patient data from a large hospital in the Boston area.

  16. [Comprehensive testing system for cardiorespiratory interaction research].

    PubMed

    Zhang, Zhengbo; Wang, Buqing; Wang, Weidong; Zheng, Jiewen; Liu, Hongyun; Li, Kaiyuan; Sun, Congcong; Wang, Guojing

    2013-04-01

    To investigate the modulation effects of breathing movement on cardiovascular system and to study the physiological coupling relationship between respiration and cardiovascular system, we designed a comprehensive testing system for cardiorespiratory interaction research. This system, comprising three parts, i. e. physiological signal conditioning unit, data acquisition and USB medical isolation unit, and a PC based program, can acquire multiple physiological data such as respiratory flow, rib cage and abdomen movement, electrocardiograph, artery pulse wave, cardiac sounds, skin temperature, and electromyography simultaneously under certain experimental protocols. Furthermore this system can be used in research on short-term cardiovascular variability by paced breathing. Preliminary experiments showed that this system could accurately record rib cage and abdomen movement under very low breathing rate, using respiratory inductive plethysmography to acquire respiration signal in direct-current coupling mode. After calibration, this system can be used to estimate ventilation non-intrusively and correctly. The PC based program can generate audio and visual biofeedback signal, and guide the volunteers to perform a slow and regular breathing. An experiment on healthy volunteers showed that this system was able to guide the volunteers to do slow breathing effectively and simultaneously record multiple physiological data during the experiments. Signal processing techniques were used for off-line data analysis, such as non-invasive ventilation calibration, QRS complex wave detection, and respiratory sinus arrhythmia and pulse wave transit time calculation. The experiment result showed that the modulation effect on RR interval, respiratory sinus arrhythmia (RSA), pulse wave transit time (PWTT) by respiration would get stronger with the going of the slow and regular breathing.

  17. Ocean acidification dampens physiological stress response to warming and contamination in a commercially-important fish (Argyrosomus regius).

    PubMed

    Sampaio, Eduardo; Lopes, Ana R; Francisco, Sofia; Paula, Jose R; Pimentel, Marta; Maulvault, Ana L; Repolho, Tiago; Grilo, Tiago F; Pousão-Ferreira, Pedro; Marques, António; Rosa, Rui

    2018-03-15

    Increases in carbon dioxide (CO 2 ) and other greenhouse gases emissions are changing ocean temperature and carbonate chemistry (warming and acidification, respectively). Moreover, the simultaneous occurrence of highly toxic and persistent contaminants, such as methylmercury, will play a key role in further shaping the ecophysiology of marine organisms. Despite recent studies reporting mostly additive interactions between contaminant and climate change effects, the consequences of multi-stressor exposure are still largely unknown. Here we disentangled how Argyrosomus regius physiology will be affected by future stressors, by analysing organ-dependent mercury (Hg) accumulation (gills, liver and muscle) within isolated/combined warming (ΔT=4°C) and acidification (ΔpCO 2 =1100μatm) scenarios, as well as direct deleterious effects and phenotypic stress response over multi-stressor contexts. After 30days of exposure, although no mortalities were observed in any treatments, Hg concentration was enhanced under warming conditions, especially in the liver. On the other hand, elevated CO 2 decreased Hg accumulation and consistently elicited a dampening effect on warming and contamination-elicited oxidative stress (catalase, superoxide dismutase and glutathione-S-transferase activities) and heat shock responses. Thus, potentially unpinned on CO 2 -promoted protein removal and ionic equilibrium between hydrogen and reactive oxygen species, we found that co-occurring acidification decreased heavy metal accumulation and contributed to physiological homeostasis. Although this indicates that fish can be physiologically capable of withstanding future ocean conditions, additional experiments are needed to fully understand the biochemical repercussions of interactive stressors (additive, synergistic or antagonistic). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Interactive and Indirect Effects of Anxiety and Negative Urgency on Alcohol-Related Problems

    PubMed Central

    Menary, Kyle R.; Corbin, William R.; Leeman, Robert F.; Fucito, Lisa M.; Toll, Benjamin A.; DeMartini, Kelly; O’Malley, Stephanie S.

    2015-01-01

    Background Although drinking for tension reduction has long been posited as a risk factor for alcohol-related problems, studies investigating anxiety in relation to risk for alcohol problems have returned inconsistent results, leading researchers to search for potential moderators. Negative urgency (the tendency to become behaviorally dysregulated when experiencing negative affect) is a potential moderator of theoretical interest because it may increase risk for alcohol problems among those high in negative affect. The present study tested a cross-sectional mediated moderation hypothesis whereby an interactive effect of anxiety and negative urgency on alcohol problems is mediated through coping-related drinking motives. Method The study utilized baseline data from a hazardously drinking sample of young adults (N = 193) evaluated for participation in a randomized controlled trial of naltrexone and motivational interviewing for drinking reduction. Results The direct effect of anxiety on physiological dependence symptoms was moderated by negative urgency such that the positive association between anxiety and physiological dependence symptoms became stronger as negative urgency increased. Indirect effects of anxiety and negative urgency on alcohol problems (operating through coping motives) were also observed. Conclusions Although results of the current cross-sectional study require replication using longitudinal data, the findings suggest that the simultaneous presence of anxiety and negative urgency may be an important indicator of risk for AUDs via both direct interactive effects and indirect additive effects operating through coping motives. These findings have potentially important implications for prevention/intervention efforts for individuals who become disinhibited in the context of negative emotional states. PMID:26031346

  19. The Association between Discrimination and the Health of Sikh Asian Indians

    PubMed Central

    Nadimpalli, S.B.; Cleland, C.M.; Hutchinson, M.K.; Islam, N.; Barnes, L.L.; Van Devanter, N.

    2015-01-01

    Objective To investigate the relationships between self-reported discrimination (SRD) and mental and physical health (self-reported physical health conditions and direct, physiologic measures (BMI, waist-to-hip ratio, and blood pressure) among Sikh Asian Indians (AI), a group that may be particularly discriminated against due to physical manifestations of their faith, including a tendency to wear turbans or ethnic clothing. Methods Sikh AIs (N = 196) were recruited from Sikh gurdwaras in Queens, New York. Data were collected on SRD, social support and self-reported health, along with multiple direct physiological measures for cardiovascular health. Results Participants who wore turbans/scarves reported higher levels of discrimination than those who did not wear turbans/scarves. As hypothesized, multiple regression analysis supported that discrimination is significantly associated with poorer self-reported mental (B = −.53, p < .001) and physical health (B = −.16, p = .04) while controlling for socioeconomic, acculturation, and social support factors. The study did not support an association between SRD and physiologic measures (elevated BMI, waist-to-hip ratio, and blood pressure). Conclusion Consistent with previous discrimination and health reports, this study demonstrated an inverse relationship between discrimination and health among Sikh AIs, an understudied yet high risk minority population. Community-based efforts are also needed to reduce the occurrence or buffer the effects of discrimination experienced by Sikh AIs. PMID:27018726

  20. A cell biologist's perspective on physiological adaptation to opiate drugs.

    PubMed

    von Zastrow, Mark

    2004-01-01

    Opiate drugs such as morphine and heroin are among the most effective analgesics known but are also highly addictive. The clinical utility of opiates is limited by adaptive changes in the nervous system occurring after prolonged or repeated drug administration. These adaptations are believed to play an important role in the development of physiological tolerance and dependence to opiates, and to contribute to additional changes underlying the complex neurobehavioral syndrome of drug addiction. All of these adaptive changes are initiated by the binding of opiate drugs to a subfamily of G protein-coupled receptors that are also activated by endogenously produced opioid neuropeptides. It is increasingly evident that opiate-induced adaptations occur at multiple levels in the nervous system, beginning with regulation of opioid receptors themselves and extending to a complex network of direct and indirect modifications of "downstream" signaling machinery. Efforts in my laboratory are directed at understanding the biochemical and cell biological basis of opiate adaptations. So far, we have focused primarily on adaptations occurring at the level of opioid receptors themselves. These studies have contributed to defining a set of membrane trafficking mechanisms by which the number and functional activity of opioid receptors are controlled. The role of these mechanisms in affecting adaptation of "downstream" neurobiological substrates, and in mediating opiate-induced changes in whole-animal physiology and behavior, are exciting questions that are only beginning to be explored.

  1. A physiological perspective on fisheries-induced evolution.

    PubMed

    Hollins, Jack; Thambithurai, Davide; Koeck, Barbara; Crespel, Amelie; Bailey, David M; Cooke, Steven J; Lindström, Jan; Parsons, Kevin J; Killen, Shaun S

    2018-06-01

    There is increasing evidence that intense fishing pressure is not only depleting fish stocks but also causing evolutionary changes to fish populations. In particular, body size and fecundity in wild fish populations may be altered in response to the high and often size-selective mortality exerted by fisheries. While these effects can have serious consequences for the viability of fish populations, there are also a range of traits not directly related to body size which could also affect susceptibility to capture by fishing gears-and therefore fisheries-induced evolution (FIE)-but which have to date been ignored. For example, overlooked within the context of FIE is the likelihood that variation in physiological traits could make some individuals within species more vulnerable to capture. Specifically, traits related to energy balance (e.g., metabolic rate), swimming performance (e.g., aerobic scope), neuroendocrinology (e.g., stress responsiveness) and sensory physiology (e.g., visual acuity) are especially likely to influence vulnerability to capture through a variety of mechanisms. Selection on these traits could produce major shifts in the physiological traits within populations in response to fishing pressure that are yet to be considered but which could influence population resource requirements, resilience, species' distributions and responses to environmental change.

  2. Physiological Integration Affects Expansion of an Amphibious Clonal Plant from Terrestrial to Cu-Polluted Aquatic Environments.

    PubMed

    Xu, Liang; Zhou, Zhen-Feng

    2017-03-08

    The effects of physiological integration on clonal plants growing in aquatic and terrestrial habitats have been extensively studied, but little is known about the role in the extension of amphibious clonal plants in the heterogeneous aquatic-terrestrial ecotones, especially when the water environments are polluted by heavy metals. Ramets of the amphibious clonal herb Alternanthera philoxeroides were rooted in unpolluted soil and polluted water at three concentrations of Cu. The extension of populations from unpolluted terrestrial to polluted aqueous environments mainly relied on stem elongation rather than production of new ramets. The absorbed Cu in the ramets growing in polluted water could be spread horizontally to other ramets in unpolluted soil via physiological integration and redistributed in different organs. The performances of ramets in both terrestrial and aquatic habitats were negatively correlated with Cu intensities in different organs of plants. It is concluded that physiological integration might lessen the fitness of connected ramets in heterogeneously polluted environments. The mechanical strength of the stems decreased with increasing Cu levels, especially in polluted water. We suggest that, except for direct toxicity to growth and expansion, heavy metal pollution might also increase the mechanical risk in breaking failure of plants.

  3. Physiological Integration Affects Expansion of an Amphibious Clonal Plant from Terrestrial to Cu-Polluted Aquatic Environments

    PubMed Central

    Xu, Liang; Zhou, Zhen-Feng

    2017-01-01

    The effects of physiological integration on clonal plants growing in aquatic and terrestrial habitats have been extensively studied, but little is known about the role in the extension of amphibious clonal plants in the heterogeneous aquatic-terrestrial ecotones, especially when the water environments are polluted by heavy metals. Ramets of the amphibious clonal herb Alternanthera philoxeroides were rooted in unpolluted soil and polluted water at three concentrations of Cu. The extension of populations from unpolluted terrestrial to polluted aqueous environments mainly relied on stem elongation rather than production of new ramets. The absorbed Cu in the ramets growing in polluted water could be spread horizontally to other ramets in unpolluted soil via physiological integration and redistributed in different organs. The performances of ramets in both terrestrial and aquatic habitats were negatively correlated with Cu intensities in different organs of plants. It is concluded that physiological integration might lessen the fitness of connected ramets in heterogeneously polluted environments. The mechanical strength of the stems decreased with increasing Cu levels, especially in polluted water. We suggest that, except for direct toxicity to growth and expansion, heavy metal pollution might also increase the mechanical risk in breaking failure of plants. PMID:28272515

  4. Physiological Integration Affects Expansion of an Amphibious Clonal Plant from Terrestrial to Cu-Polluted Aquatic Environments

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Zhou, Zhen-Feng

    2017-03-01

    The effects of physiological integration on clonal plants growing in aquatic and terrestrial habitats have been extensively studied, but little is known about the role in the extension of amphibious clonal plants in the heterogeneous aquatic-terrestrial ecotones, especially when the water environments are polluted by heavy metals. Ramets of the amphibious clonal herb Alternanthera philoxeroides were rooted in unpolluted soil and polluted water at three concentrations of Cu. The extension of populations from unpolluted terrestrial to polluted aqueous environments mainly relied on stem elongation rather than production of new ramets. The absorbed Cu in the ramets growing in polluted water could be spread horizontally to other ramets in unpolluted soil via physiological integration and redistributed in different organs. The performances of ramets in both terrestrial and aquatic habitats were negatively correlated with Cu intensities in different organs of plants. It is concluded that physiological integration might lessen the fitness of connected ramets in heterogeneously polluted environments. The mechanical strength of the stems decreased with increasing Cu levels, especially in polluted water. We suggest that, except for direct toxicity to growth and expansion, heavy metal pollution might also increase the mechanical risk in breaking failure of plants.

  5. The effects of dynamic loading on the intervertebral disc.

    PubMed

    Chan, Samantha C W; Ferguson, Stephen J; Gantenbein-Ritter, Benjamin

    2011-11-01

    Loading is important to maintain the balance of matrix turnover in the intervertebral disc (IVD). Daily cyclic diurnal assists in the transport of large soluble factors across the IVD and its surrounding circulation and applies direct and indirect stimulus to disc cells. Acute mechanical injury and accumulated overloading, however, could induce disc degeneration. Recently, there is more information available on how cyclic loading, especially axial compression and hydrostatic pressure, affects IVD cell biology. This review summarises recent studies on the response of the IVD and stem cells to applied cyclic compression and hydrostatic pressure. These studies investigate the possible role of loading in the initiation and progression of disc degeneration as well as quantifying a physiological loading condition for the study of disc degeneration biological therapy. Subsequently, a possible physiological/beneficial loading range is proposed. This physiological/beneficial loading could provide insight into how to design loading regimes in specific system for the testing of various biological therapies such as cell therapy, chemical therapy or tissue engineering constructs to achieve a better final outcome. In addition, the parameter space of 'physiological' loading may also be an important factor for the differentiation of stem cells towards most ideally 'discogenic' cells for tissue engineering purpose.

  6. Emotion recognition based on physiological changes in music listening.

    PubMed

    Kim, Jonghwa; André, Elisabeth

    2008-12-01

    Little attention has been paid so far to physiological signals for emotion recognition compared to audiovisual emotion channels such as facial expression or speech. This paper investigates the potential of physiological signals as reliable channels for emotion recognition. All essential stages of an automatic recognition system are discussed, from the recording of a physiological dataset to a feature-based multiclass classification. In order to collect a physiological dataset from multiple subjects over many weeks, we used a musical induction method which spontaneously leads subjects to real emotional states, without any deliberate lab setting. Four-channel biosensors were used to measure electromyogram, electrocardiogram, skin conductivity and respiration changes. A wide range of physiological features from various analysis domains, including time/frequency, entropy, geometric analysis, subband spectra, multiscale entropy, etc., is proposed in order to find the best emotion-relevant features and to correlate them with emotional states. The best features extracted are specified in detail and their effectiveness is proven by classification results. Classification of four musical emotions (positive/high arousal, negative/high arousal, negative/low arousal, positive/low arousal) is performed by using an extended linear discriminant analysis (pLDA). Furthermore, by exploiting a dichotomic property of the 2D emotion model, we develop a novel scheme of emotion-specific multilevel dichotomous classification (EMDC) and compare its performance with direct multiclass classification using the pLDA. Improved recognition accuracy of 95\\% and 70\\% for subject-dependent and subject-independent classification, respectively, is achieved by using the EMDC scheme.

  7. Early caregiving and physiological stress responses.

    PubMed

    Luecken, Linda J; Lemery, Kathryn S

    2004-05-01

    Inadequate early caregiving has been associated with risks of stress-related psychological and physical illness over the life span. Dysregulated physiological stress responses may represent a mechanism linking early caregiving to health outcomes. This paper reviews evidence linking early caregiving to physiological responses that can increase vulnerability to stress-related illness. A number of high-risk family characteristics, including high conflict, divorce, abuse, and parental psychopathology, are considered in the development of stress vulnerability. Three theoretical pathways linking caregiving to physiological stress responses are outlined: genetic, psychosocial, and cognitive-affective. Exciting preliminary evidence suggests that early caregiving can impact long-term physiological stress responses. Directions for future research in this area are suggested.

  8. How can the study of physiological reactivity contribute to our understanding of adversity and resilience processes in development?

    PubMed

    Obradović, Jelena

    2012-05-01

    The focus of this article is to present current progress in understanding the interplay among adversity, physiological sensitivity to context, and adaptive functioning, with an emphasis on implications and future directions for resilience researchers. It includes a review of current literature that demonstrates (a) links between various levels of adversity exposure and variability in physiological reactivity, (b) how the interplay between children's physiological reactivity and different sources of risk and adversity relates to variability in adaptive functioning, and (c) various approaches for capturing a more dynamic nature of physiological reactivity and related processes. Throughout, important conceptual and empirical issues are highlighted.

  9. Employee subjective well-being and physiological functioning: An integrative model

    PubMed Central

    Tay, Louis

    2015-01-01

    Research shows that worker subjective well-being influences physiological functioning—an early signal of poor health outcomes. While several theoretical perspectives provide insights on this relationship, the literature lacks an integrative framework explaining the relationship. We develop a conceptual model explaining the link between subjective well-being and physiological functioning in the context of work. Integrating positive psychology and occupational stress perspectives, our model explains the relationship between subjective well-being and physiological functioning as a result of the direct influence of subjective well-being on physiological functioning and of their common relationships with work stress and personal resources, both of which are influenced by job conditions. PMID:28070359

  10. Employee subjective well-being and physiological functioning: An integrative model.

    PubMed

    Kuykendall, Lauren; Tay, Louis

    2015-01-01

    Research shows that worker subjective well-being influences physiological functioning-an early signal of poor health outcomes. While several theoretical perspectives provide insights on this relationship, the literature lacks an integrative framework explaining the relationship. We develop a conceptual model explaining the link between subjective well-being and physiological functioning in the context of work. Integrating positive psychology and occupational stress perspectives, our model explains the relationship between subjective well-being and physiological functioning as a result of the direct influence of subjective well-being on physiological functioning and of their common relationships with work stress and personal resources, both of which are influenced by job conditions.

  11. Comparison of subjective, pharmacokinetic, and physiologic effects of marijuana smoked as joints and blunts

    PubMed Central

    Cooper, Ziva D.; Haney, Margaret

    2009-01-01

    Recent increases in marijuana smoking among the young adult population have been accompanied by the popularization of smoking marijuana as blunts instead of as joints. Blunts consist of marijuana wrapped in tobacco leaves, whereas joints consist of marijuana wrapped in cigarette paper. To date, the effects of marijuana smoked as joints and blunts have not been systematically compared. The current within-subject, randomized, double-blind, placebo-controlled study sought to directly compare the subjective, physiologic, and pharmacokinetic effects of marijuana smoked by these two methods. Marijuana blunt smokers (12 women; 12 men) were recruited and participated in a 6-session outpatient study. Participants were blindfolded and smoked three puffs from either a blunt or a joint containing marijuana with varying delta-9-tetrahydrocannabinol (THC) concentrations (0.0, 1.8, and 3.6%). Subjective, physiological (heart rate, blood pressure, carbon monoxide levels) and pharmacokinetic effects (plasma THC concentration) were monitored before and at specified time points for three hours after smoking. Joints produced greater increases in plasma THC and subjective ratings of marijuana intoxication, strength, and quality compared to blunts, and these effects were more pronounced in women compared to men. However, blunts produced equivalent increases in heart rate and higher carbon monoxide levels than joints, despite producing lower levels of plasma THC. These findings demonstrate that smoking marijuana in a tobacco leaf may increase the risks of marijuana use by enhancing carbon monoxide exposure and increasing heart rate compared to joints. PMID:19443132

  12. Asynchronous vegetation phenology enhances winter body condition of a large mobile herbivore.

    PubMed

    Searle, Kate R; Rice, Mindy B; Anderson, Charles R; Bishop, Chad; Hobbs, N T

    2015-10-01

    Understanding how spatial and temporal heterogeneity influence ecological processes forms a central challenge in ecology. Individual responses to heterogeneity shape population dynamics, therefore understanding these responses is central to sustainable population management. Emerging evidence has shown that herbivores track heterogeneity in nutritional quality of vegetation by responding to phenological differences in plants. We quantified the benefits mule deer (Odocoileus hemionus) accrue from accessing habitats with asynchronous plant phenology in northwest Colorado over 3 years. Our analysis examined both the direct physiological and indirect environmental effects of weather and vegetation phenology on mule deer winter body condition. We identified several important effects of annual weather patterns and topographical variables on vegetation phenology in the home ranges of mule deer. Crucially, temporal patterns of vegetation phenology were linked with differences in body condition, with deer tending to show poorer body condition in areas with less asynchronous vegetation green-up and later vegetation onset. The direct physiological effect of previous winter precipitation on mule deer body condition was much less important than the indirect effect mediated by vegetation phenology. Additionally, the influence of vegetation phenology on body fat was much stronger than that of overall vegetation productivity. In summary, changing annual weather patterns, particularly in relation to seasonal precipitation, have the potential to alter body condition of this important ungulate species during the critical winter period. This finding highlights the importance of maintaining large contiguous areas of spatially and temporally variable resources to allow animals to compensate behaviourally for changing climate-driven resource patterns.

  13. Anthropogenic climate change and allergen exposure: The role of plant biology.

    PubMed

    Ziska, Lewis H; Beggs, Paul J

    2012-01-01

    Accumulation of anthropogenic gases, particularly CO(2), is likely to have 2 fundamental effects on plant biology. The first is an indirect effect through Earth's increasing average surface temperatures, with subsequent effects on other aspects of climate, such as rainfall and extreme weather events. The second is a direct effect caused by CO(2)-induced stimulation of photosynthesis and plant growth. Both effects are likely to alter a number of fundamental aspects of plant biology and human health, including aerobiology and allergic diseases, respectively. This review highlights the current and projected effect of increasing CO(2) and climate change in the context of plants and allergen exposure, emphasizing direct effects on plant physiologic parameters (eg, pollen production) and indirect effects (eg, fungal sporulation) related to diverse biotic and abiotic interactions. Overall, the review assumes that future global mitigation efforts will be limited and suggests a number of key research areas that will assist in adapting to the ongoing challenges to public health associated with increased allergen exposure. Published by Mosby, Inc.

  14. Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal

    PubMed Central

    Fisk, Angus S.; Tam, Shu K. E.; Brown, Laurence A.; Vyazovskiy, Vladyslav V.; Bannerman, David M.; Peirson, Stuart N.

    2018-01-01

    Light exerts a wide range of effects on mammalian physiology and behavior. As well as synchronizing circadian rhythms to the external environment, light has been shown to modulate autonomic and neuroendocrine responses as well as regulating sleep and influencing cognitive processes such as attention, arousal, and performance. The last two decades have seen major advances in our understanding of the retinal photoreceptors that mediate these non-image forming responses to light, as well as the neural pathways and molecular mechanisms by which circadian rhythms are generated and entrained to the external light/dark (LD) cycle. By contrast, our understanding of the mechanisms by which lighting influences cognitive processes is more equivocal. The effects of light on different cognitive processes are complex. As well as the direct effects of light on alertness, indirect effects may also occur due to disrupted circadian entrainment. Despite the widespread use of disrupted LD cycles to study the role circadian rhythms on cognition, the different experimental protocols used have subtly different effects on circadian function which are not always comparable. Moreover, these protocols will also disrupt sleep and alter physiological arousal, both of which are known to modulate cognition. Studies have used different assays that are dependent on different cognitive and sensory processes, which may also contribute to their variable findings. Here, we propose that studies addressing the effects of different lighting conditions on cognitive processes must also account for their effects on circadian rhythms, sleep, and arousal if we are to fully understand the physiological basis of these responses. PMID:29479335

  15. Effects of visual flow direction on signs and symptoms of cybersickness.

    PubMed

    Mazloumi Gavgani, Alireza; Hodgson, Deborah M; Nalivaiko, Eugene

    2017-01-01

    Our objective was to assess the influence of visual flow direction on physiological changes and symptoms elicited by cybersickness. Twelve healthy subjects (6 male and 6 female) were exposed to a 15-min virtual ride on a rollercoaster on two different days in a counterbalanced manner, such half of participants were facing forward during the first ride while another half was facing backward. Forehead skin conductance, heart rate and HRV parameters (SDRR, RMSSD) were collected as objective measures; subjective symptoms were assessed with the Motion Sickness Assessment Questioner immediately after exposure. We found that while nausea ratings at which participants terminated the experiment did not differ between forward/backward rides, the mean ride tolerance time was significantly longer during reverse ride compared to forward ride (6.1±0.4 vs 5.0±0.5 min, respectively, p = 0.01, η2 = 0.45). Analysis of HRV parameters revealed significant reduction in both RMSSD (p = 0.02, t = 2.62, η2 = 0.43) and SDRR (p = 0.01, t = 2.90, η2 = 0.45) in the forward ride; no such changes were found in the backward ride. We also found that amplitude of phasic changes in forehead skin conductance increased significantly in both ride directions. This increase however was significantly lower (p<0.05) in backward ride when compared to the forward ride. When assessed immediately post-ride, subjects reported significantly lower (p = 0.04) subjective symptom intensity after the reverse ride compared to the forward ride. We conclude that the direction of visual flow has a significant effect on the symptoms reported by the subjects and on the physiological changes during cybersickness.

  16. Effects of visual flow direction on signs and symptoms of cybersickness

    PubMed Central

    Mazloumi Gavgani, Alireza; Hodgson, Deborah M.

    2017-01-01

    Our objective was to assess the influence of visual flow direction on physiological changes and symptoms elicited by cybersickness. Twelve healthy subjects (6 male and 6 female) were exposed to a 15-min virtual ride on a rollercoaster on two different days in a counterbalanced manner, such half of participants were facing forward during the first ride while another half was facing backward. Forehead skin conductance, heart rate and HRV parameters (SDRR, RMSSD) were collected as objective measures; subjective symptoms were assessed with the Motion Sickness Assessment Questioner immediately after exposure. We found that while nausea ratings at which participants terminated the experiment did not differ between forward/backward rides, the mean ride tolerance time was significantly longer during reverse ride compared to forward ride (6.1±0.4 vs 5.0±0.5 min, respectively, p = 0.01, η2 = 0.45). Analysis of HRV parameters revealed significant reduction in both RMSSD (p = 0.02, t = 2.62, η2 = 0.43) and SDRR (p = 0.01, t = 2.90, η2 = 0.45) in the forward ride; no such changes were found in the backward ride. We also found that amplitude of phasic changes in forehead skin conductance increased significantly in both ride directions. This increase however was significantly lower (p<0.05) in backward ride when compared to the forward ride. When assessed immediately post-ride, subjects reported significantly lower (p = 0.04) subjective symptom intensity after the reverse ride compared to the forward ride. We conclude that the direction of visual flow has a significant effect on the symptoms reported by the subjects and on the physiological changes during cybersickness. PMID:28777827

  17. Modification of irrational ideas and test anxiety through rational stage directed hypnotherapy [RSDH].

    PubMed

    Boutin, G E; Tosi, D J

    1983-05-01

    Examined the effects of four treatment conditions on the modification of Irrational Ideas and test anxiety in female nursing students. The treatments were Rational Stage Directed Hypnotherapy, a cognitive behavioral approach that utilized hypnosis and vivid-emotive-imagery, a hypnosis-only treatment, a placebo condition, and a no-treatment control. The 48 Ss were assigned randomly to one of these treatment groups, which met for 1 hour per week for 6 consecutive weeks with in-vivo homework assignments also utilized. Statistically significant treatment effects on cognitive, affective, behavioral, and physiological measures were noted for both the RSDH and hypnosis group at the posttest and at a 2-month follow-up. Post-hoc analyses revealed the RSDH treatment group to be significantly more effective than the hypnosis only group on both the post- and follow-up tests. The placebo and control groups showed no significant effects either at post-treatment or at follow-up.

  18. Gravitational effects on body composition in birds

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Sanchez P., O.; Burton, R. R.

    1975-01-01

    Gallinaceous birds, presenting a wide range of body size, were adapted physiologically to hyperdynamic environments, provided by chronic centrifugation. Chemical composition was measured directly on prepared carcasses, which were anatomically comparable, and more amenable to analysis than the intact body. Body mass and body fat decreased arithmetically with increasing field strength and also with increasing body mass. Water content of lean tissue increased in hyperdynamic environments, but irrespectively of body size.

  19. Cardiorespiratory adaptation to breath-holding in air: Analysis via a cardiopulmonary simulation model.

    PubMed

    Albanese, Antonio; Limei Cheng; Ursino, Mauro; Chbat, Nicolas W

    2015-01-01

    Apnea via breath-holding (BH) in air induces cardiorespiratory adaptation that involves the activation of several reflex mechanisms and their complex interactions. Hence, the effects of BH in air on cardiorespiratory function can become hardly predictable and difficult to be interpreted. Particularly, the effect on heart rate is not yet completely understood because of the contradicting results of different physiological studies. In this paper we apply our previously developed cardiopulmonary model (CP Model) to a scenario of BH with a twofold intent: (1) further validating the CP Model via comparison against experimental data; (2) gaining insights into the physiological reasoning for such contradicting experimental results. Model predictions agreed with published experimental animal and human data and indicated that heart rate increases during BH in air. Changes in the balance between sympathetic and vagal effects on heart rate within the model proved to be effective in inverting directions of the heart rate changes during BH. Hence, the model suggests that intra-subject differences in such sympatho-vagal balance may be one of the reasons for the contradicting experimental results.

  20. Behavioral and biological interactions with small groups in confined microsocieties

    NASA Technical Reports Server (NTRS)

    Brady, Joseph V.

    1986-01-01

    Research on small group performance in confined microsocieties was focused upon the development of principles and procedures relevant to the selection and training of space mission personnel, upon the investigation of behavioral programming, preventive monitoring and corrective procedures to enhance space mission performance effectiveness, and upon the evaluation of behavioral and physiological countermeasures to the potentially disruptive effects of unfamiliar and stressful environments. An experimental microsociety environment was designed and developed for continuous residence of human volunteers over extended time periods. Studies were then undertaken to analyze experimentally: (1) conditions that sustain group cohesion and productivity and that prevent social fragmentation and performance deterioration, (2) motivational effects performance requirements, and (3) behavioral and physiological effects resulting from changes in group size and composition. The results show that both individual and group productivity can be enhanced under such conditions by the direct application of contingency management principles to designated high-value tasks. Similarly, group cohesiveness can be promoted and individual social isolation and/or alienation prevented by the application of contingency management principles to social interaction segments of the program.

  1. Brief virtual reality therapy for public speaking anxiety.

    PubMed

    Harris, Sandra R; Kemmerling, Robert L; North, Max M

    2002-12-01

    The primary goal of this research program was to investigate the effectiveness of virtual reality therapy (VRT) in reducing public speaking anxiety of university students. The prevalence and impact of public speaking anxiety as a type of Social Phobia are discussed. Studies of VRT as an emerging treatment for psychological problems are reviewed. In the present study, eight students completed VRT individual treatment and post-testing, and six students in a Wait-List control group completed post-testing. Assessment measures included four self-report inventories, self-report of Subjective Units of Discomfort during exposure to VRT and physiological measurements of heart rate during speaking tasks. Four weekly individual exposure treatment sessions of approximately 15 min each were conducted by the author serving as therapist. Results on self-report and physiological measures appear to indicate that four virtual reality treatment sessions were effective in reducing public speaking anxiety in university students, corroborating earlier studies of VRT's effectiveness as a psychotherapeutic modality. Future research directions are discussed, primarily the need for research on younger populations, to assess the effectiveness of VRT for earlier intervention with public speaking anxiety.

  2. The mouthfeel of white wine.

    PubMed

    Gawel, Richard; Smith, Paul A; Cicerale, Sara; Keast, Russell

    2017-07-05

    White wine mouthfeel which encompasses the tactile, chemosensory and taste attributes of perceived viscosity, astringency, hotness and bitterness is increasingly being recognized as an important component of overall white wine quality. This review summarizes the physiological basis for the perception of white wine mouthfeel and the direct and interactive effects of white wine composition, specifically those of low molecular weight phenolic compounds, polysaccharides, pH, ethanol, glycerol, dissolved carbon dioxide, and peptides. Ethyl alcohol concentration and pH play a direct role in determining most aspects of mouthfeel perception, and provide an overall framework on which the other minor wine components can interact to influence white wine mouthfeel. Phenolic compounds broadly impact on the mouthfeel by contributing to its viscosity, astringency, hotness and bitterness. Their breadth of influence likely results from their structural diversity which would allow them to activate multiple sensory mechanisms involved in mouthfeel perception. Conversely, polysaccharides have a small modulating effect on astringency and hotness perception, and glycerol does not affect perceived viscosity within the narrow concentration range found in white wine. Many of the major sensory attributes that contribute to the overall impression of mouthfeel are elicited by more than one class compound suggesting that different physiological mechanisms may be involved in the construct of mouthfeel percepts.

  3. Acute exposure to 2G phase shifts the rat circadian timing system

    NASA Technical Reports Server (NTRS)

    Hoban-Higgins, T. M.; Murakami, D. M.; Tandon, T.; Fuller, C. A.

    1995-01-01

    The circadian timing system (CTS) provides internal and external temporal coordination of an animal's physiology and behavior. In mammals, the generation and coordination of these circadian rhythms is controlled by a neural pacemaker, the suprachiasmatic nucleus (SCN), located within the hypothalamus. The pacemaker is synchronized to the 24 hour day by time cures (zeitgebers) such as the light/dark cycle. When an animal is exposed to an environment without time cues, the circadian rhythms maintain internal temporal coordination, but exhibit a 'free-running' condition in which the period length is determined by the internal pacemaker. Maintenance of internal and external temporal coordination are critical for normal physiological and psychological function in human and non-human primates. Exposure to altered gravitational environments has been shown to affect the amplitude, mean, and timing of circadian rhythms in species ranging from unicellular organisms to man. However, it has not been determined whether altered gravitational fields have a direct effect on the neural pacemaker, or affect peripheral parameters. In previous studies, the ability of a stimulus to phase shift circadian rhythms was used to determine whether a stimulus has a direct effect on the neural pacemaker. The present experiment was performed in order to determine whether acute exposure to a hyperdynamic field could phase shift circadian rhythms.

  4. A high performance biometric signal and image processing method to reveal blood perfusion towards 3D oxygen saturation mapping

    NASA Astrophysics Data System (ADS)

    Imms, Ryan; Hu, Sijung; Azorin-Peris, Vicente; Trico, Michaël.; Summers, Ron

    2014-03-01

    Non-contact imaging photoplethysmography (PPG) is a recent development in the field of physiological data acquisition, currently undergoing a large amount of research to characterize and define the range of its capabilities. Contact-based PPG techniques have been broadly used in clinical scenarios for a number of years to obtain direct information about the degree of oxygen saturation for patients. With the advent of imaging techniques, there is strong potential to enable access to additional information such as multi-dimensional blood perfusion and saturation mapping. The further development of effective opto-physiological monitoring techniques is dependent upon novel modelling techniques coupled with improved sensor design and effective signal processing methodologies. The biometric signal and imaging processing platform (bSIPP) provides a comprehensive set of features for extraction and analysis of recorded iPPG data, enabling direct comparison with other biomedical diagnostic tools such as ECG and EEG. Additionally, utilizing information about the nature of tissue structure has enabled the generation of an engineering model describing the behaviour of light during its travel through the biological tissue. This enables the estimation of the relative oxygen saturation and blood perfusion in different layers of the tissue to be calculated, which has the potential to be a useful diagnostic tool.

  5. Quantifying Direct and Indirect Effects of Elevated CO2 on Ecosystem Response

    NASA Astrophysics Data System (ADS)

    Fatichi, S.; Leuzinger, S.; Paschalis, A.; Donnellan-Barraclough, A.; Hovenden, M. J.; Langley, J. A.

    2015-12-01

    Increasing concentrations of atmospheric carbon dioxide are expected to affect carbon assimilation, evapotranspiration (ET) and ultimately plant growth. Direct leaf biochemical effects have been widely investigated, while indirect effects, although documented, are very difficult to quantify in experiments. We hypothesize that the interaction of direct and indirect effects is a possible reason for conflicting results concerning the magnitude of CO2 fertilization effects across different climates and ecosystems. A mechanistic ecohydrological model (Tethys-Chloris) is used to investigate the relative contribution of direct (through plant physiology) and indirect (via stomatal closure and thus soil moisture, and changes in Leaf Area Index, LAI) effects of elevated CO2 across a number of ecosystems. We specifically ask in which ecosystems and climate indirect effects are expected to be largest. Data and boundary conditions from flux-towers and free air CO2 enrichment (FACE) experiments are used to force the model and evaluate its performance. Numerical results suggest that indirect effects of elevated CO2, through water savings and increased LAI, are very significant and sometimes larger than direct effects. Indirect effects tend to be considerably larger in water-limited ecosystems, while direct effects correlate positively with mean air temperature. Increasing CO2 from 375 to 550 ppm causes a total effect on Net Primary Production in the order of 15 to 40% and on ET from 0 to -8%, depending on climate and ecosystem type. The total CO2 effect has a significant negative correlation with the wetness index and positive correlation with vapor pressure deficit. These results provide a more general mechanistic understanding of relatively short-term (less than 20 years) implications of elevated CO2 on ecosystem response and suggest plausible magnitudes for the expected changes.

  6. Developmental origins of adult health and disease: the role of periconceptional and foetal nutrition.

    PubMed

    McMillen, I Caroline; MacLaughlin, Severence M; Muhlhausler, Beverly S; Gentili, Sheridan; Duffield, Jaime L; Morrison, Janna L

    2008-02-01

    The 'developmental origins of adult health and disease' hypothesis stated that environmental factors, particularly maternal undernutrition, act in early life to programme the risks for adverse health outcomes, such as cardiovascular disease, obesity and the metabolic syndrome in adult life. Early physiological tradeoffs, including activation of the foetal hypothalamo-pituitary-adrenal (HPA) axis, confer an early fitness advantage such as foetal survival, while incurring delayed health costs. We review the evidence that such tradeoffs are anticipated from conception and that the periconceptional nutritional environment can programme the developmental trajectory of the stress axis and the systems that maintain and regulate arterial blood pressure. There is also evidence that restriction of placental growth and function, results in an increased dependence of the maintenance of arterial blood pressure on the sequential recruitment of the sympathetic nervous system and HPA axis. While the 'early origins of adult disease' hypothesis has focussed on the impact of maternal undernutrition, an increase in maternal nutritional intake and in maternal body mass intake has become more prevalent in developed countries. Exposure to overnutrition in foetal life results in a series of central and peripheral neuroendocrine responses that in turn programme development of the fat cell and of the central appetite regulatory system. While the physiological responses to foetal undernutrition result in the physiological trade off between foetal survival and poor health outcomes that emerge after reproductive senescence, exposure to early overnutrition results in poor health outcomes that emerge in childhood and adolescence. Thus, the effects of early overnutrition can directly impact on reproductive fitness and on the health of the next generation. In this context, the physiological responses to relative overnutrition in early life may directly contribute to an intergenerational cycle of obesity.

  7. Serial assessment of the physiological status of leatherback turtles (Dermochelys coriacea) during direct capture events in the northwestern Atlantic Ocean: comparison of post-capture and pre-release data.

    PubMed

    Innis, Charles J; Merigo, Constance; Cavin, Julie M; Hunt, Kathleen; Dodge, Kara L; Lutcavage, Molly

    2014-01-01

    The physiological status of seven leatherback turtles (Dermochelys coriacea) was assessed at two time points during ecological research capture events in the northwestern Atlantic Ocean. Data were collected as soon as possible after securing each turtle onboard the capture vessel and again immediately prior to release. Measured parameters included sea surface temperature, body temperature, morphometric data, sex, heart rate, respiratory rate and various haematological and blood biochemical variables. Results indicated generally stable physiological status in comparison to previously published studies of this species. However, blood pH and blood potassium concentrations increased significantly between the two time points (P = 0.0018 and P = 0.0452, respectively). Turtles were affected by a mild initial acidosis (mean [SD] temperature-corrected pH = 7.29 [0.07]), and blood pH increased prior to release (mean [SD] = 7.39 [0.07]). Initial blood potassium concentrations were considered normal (mean [SD] = 4.2 [0.9] mmol/l), but turtles experienced a mild to moderate increase in blood potassium concentrations during the event (mean [SD] pre-release potassium = 5.9 [1.7] mmol/l, maximum = 8.5 mmol/l). While these data support the general safety of direct capture for study of this species, the observed changes in blood potassium concentrations are of potential concern due to possible adverse effects of hyperkalaemia on cardiac function. The results of this study highlight the importance of physiological monitoring during scientific capture events. The results are also likely to be relevant to unintentional leatherback capture events (e.g. fisheries interactions), when interactions may be more prolonged or extreme.

  8. Direct spectrophotometric measurement of supra-physiological levels of ascorbate in plasma.

    PubMed

    Witmer, Jordan R; Wetherell, Bailey J; Wagner, Brett A; Du, Juan; Cullen, Joseph J; Buettner, Garry R

    2016-08-01

    Supra-physiological concentrations of ascorbate, vitamin C, in blood, greater than 1mM, achieved through intravenous administration (IV), are being tested in clinical trials to treat human disease, e.g. cancer. These trials need information on the high levels of ascorbate achieved in blood upon IV administration of pharmacological ascorbate so appropriate clinical decisions can be made. Here we demonstrate that in the complex matrix of human blood plasma supra-physiological levels of ascorbate can be quantified by direct UV spectroscopy with use of a microvolume UV-vis spectrophotometer. Direct quantitation of ascorbate in plasma in the range of 2.9mM, lower limit of detection, up to at least 35mM can be achieved without any sample processing, other than centrifugation. This approach is rapid, economical, and can be used to quantify supraphysiological blood levels of ascorbate associated with the use of IV administration of pharmacological ascorbate to treat disease. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Ocular tracking responses to background motion gated by feature-based attention.

    PubMed

    Souto, David; Kerzel, Dirk

    2014-09-01

    Involuntary ocular tracking responses to background motion offer a window on the dynamics of motion computations. In contrast to spatial attention, we know little about the role of feature-based attention in determining this ocular response. To probe feature-based effects of background motion on involuntary eye movements, we presented human observers with a balanced background perturbation. Two clouds of dots moved in opposite vertical directions while observers tracked a target moving in horizontal direction. Additionally, they had to discriminate a change in the direction of motion (±10° from vertical) of one of the clouds. A vertical ocular following response occurred in response to the motion of the attended cloud. When motion selection was based on motion direction and color of the dots, the peak velocity of the tracking response was 30% of the tracking response elicited in a single task with only one direction of background motion. In two other experiments, we tested the effect of the perturbation when motion selection was based on color, by having motion direction vary unpredictably, or on motion direction alone. Although the gain of pursuit in the horizontal direction was significantly reduced in all experiments, indicating a trade-off between perceptual and oculomotor tasks, ocular responses to perturbations were only observed when selection was based on both motion direction and color. It appears that selection by motion direction can only be effective for driving ocular tracking when the relevant elements can be segregated before motion onset. Copyright © 2014 the American Physiological Society.

  10. How ocean acidification can benefit calcifiers.

    PubMed

    Connell, Sean D; Doubleday, Zoë A; Hamlyn, Sarah B; Foster, Nicole R; Harley, Christopher D G; Helmuth, Brian; Kelaher, Brendan P; Nagelkerken, Ivan; Sarà, Gianluca; Russell, Bayden D

    2017-02-06

    Reduction in seawater pH due to rising levels of anthropogenic carbon dioxide (CO 2 ) in the world's oceans is a major force set to shape the future of marine ecosystems and the ecological services they provide [1,2]. In particular, ocean acidification is predicted to have a detrimental effect on the physiology of calcifying organisms [3]. Yet, the indirect effects of ocean acidification on calcifying organisms, which may counter or exacerbate direct effects, is uncertain. Using volcanic CO 2 vents, we tested the indirect effects of ocean acidification on a calcifying herbivore (gastropod) within the natural complexity of an ecological system. Contrary to predictions, the abundance of this calcifier was greater at vent sites (with near-future CO 2 levels). Furthermore, translocation experiments demonstrated that ocean acidification did not drive increases in gastropod abundance directly, but indirectly as a function of increased habitat and food (algal biomass). We conclude that the effect of ocean acidification on algae (primary producers) can have a strong, indirect positive influence on the abundance of some calcifying herbivores, which can overwhelm any direct negative effects. This finding points to the need to understand ecological processes that buffer the negative effects of environmental change. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Recombinant erythropoietin acutely decreases renal perfusion and decouples the renin-angiotensin-aldosterone system.

    PubMed

    Aachmann-Andersen, Niels J; Christensen, Soren J; Lisbjerg, Kristian; Oturai, Peter; Johansson, Pär I; Holstein-Rathlou, Niels-Henrik; Olsen, Niels V

    2018-03-01

    The effect of recombinant erythropoietin (rhEPO) on renal and systemic hemodynamics was evaluated in a randomized double-blinded, cross-over study. Sixteen healthy subjects were tested with placebo, or low-dose rhEPO for 2 weeks, or high-dose rhEPO for 3 days. Subjects refrained from excessive salt intake, according to instructions from a dietitian. Renal clearance studies were done for measurements of renal plasma flow, glomerular filtration rate (GFR) and the segmentel tubular handling of sodium and water (lithium clearance). rhEPO increased arterial blood pressure, total peripheral resistance, and renal vascular resistance, and decreased renal plasma flow in the high-dose rhEPO intervention and tended to decrease GFR. In spite of the decrease in renal perfusion, rhEPO tended to decrease reabsorption of sodium and water in the proximal tubule and induced a prompt decrease in circulating levels of renin and aldosterone, independent of changes in red blood cell mass, blood volumes, and blood pressure. We also found changes in biomarkers showing evidence that rhEPO induced a prothrombotic state. Our results suggest that rhEPO causes a direct downregulation in proximal tubular reabsorption that seems to decouple the activity of the renin-angiotensin-aldosterone system from changes in renal hemodynamics. This may serve as a negative feed-back mechanism on endogenous synthesis of EPO when circulating levels of EPO are high. These results demonstrates for the first time in humans a direct effect of rhEPO on renal hemodynamics and a decoupling of the renin-angiotensin-aldosterone system. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. The Relationship between Chlorophyll Fluorescence Parameter (Fv/Fm) and Frequency Component of Plant Bioelectric Potential in Spraying Chemical Herbicides

    NASA Astrophysics Data System (ADS)

    Shibata, Shin-Ichi; Satou, Fumitake; Kimura, Haruhiko; Oyabu, Takashi

    Recently, there is a problem of the steady supply of food therefore plant factory has been establishing and takes off in world wide countries. In the plant factory, the growing environment can be controlled and the crop can also be controlled. The products are growing in an enclosed environment, therefore agricultural chemicals has no use. Secure and safe food producing system can be constructed. However, efficient production formula for the plant (for example vegetable) is not defined well. It is an effective way to control the growing environmental factors using physiology information which are directly obtained from the vegetable. The chlorophyll fluorescence is used as evaluation of plant condition. It is necessary to clarify the bioelectric potential in the growth condition of the plant. In this study, we examined the relationship between the chlorophyll fluorescence and the plant bioelectric potential in bad condition. The plant in spraying chemical herbicides was assumed as the condition. In future, plant physiological function and environmental response can be understood by directly monitoring the bioelectric potential.

  13. Lipid microdomains and the regulation of ion channel function

    PubMed Central

    Dart, Caroline

    2010-01-01

    Many types of ion channel localize to cholesterol and sphingolipid-enriched regions of the plasma membrane known as lipid microdomains or ‘rafts’. The precise physiological role of these unique lipid microenvironments remains elusive due largely to difficulties associated with studying these potentially extremely small and dynamic domains. Nevertheless, increasing evidence suggests that membrane rafts regulate channel function in a number of different ways. Raft-enriched lipids such as cholesterol and sphingolipids exert effects on channel activity either through direct protein–lipid interactions or by influencing the physical properties of the bilayer. Rafts also appear to selectively recruit interacting signalling molecules to generate subcellular compartments that may be important for efficient and selective signal transduction. Direct interaction with raft-associated scaffold proteins such as caveolin can also influence channel function by altering gating kinetics or by affecting trafficking and surface expression. Selective association of ion channels with specific lipid microenvironments within the membrane is thus likely to be an important and fundamental regulatory aspect of channel physiology. This brief review highlights some of the existing evidence for raft modulation of channel function. PMID:20519314

  14. Experiments of draining and filling processes in a collapsible tube at high external pressure

    NASA Astrophysics Data System (ADS)

    Flaud, P.; Guesdon, P.; Fullana, J.-M.

    2012-02-01

    The venous circulation in the lower limb is mainly controlled by the muscular action of the calf. To study the mechanisms governing the venous draining and filling process in such a situation, an experimental setup, composed by a collapsible tube under external pressure, has been built. A valve preventing back flows is inserted at the bottom of the tube and allows to model two different configurations: physiological when the fluid flow is uni-directional and pathological when the fluid flows in both directions. Pressure and flow rate measurements are carried out at the inlet and outlet of the tube and an original optical device with three cameras is proposed to measure the instantaneous cross-sectional area. The experimental results (draining and filling with physiological or pathological valves) are confronted to a simple one-dimensional numerical model which completes the physical interpretation. One major observation is that the muscular contraction induces a fast emptying phase followed by a slow one controlled by viscous effects, and that a defect of the valve decreases, as expected, the ejected volume.

  15. Direct stimulation of pituitary prolactin release by glutamate.

    PubMed

    Login, I S

    1990-01-01

    The ability of glutamate and other excitatory amino acids to stimulate prolactin secretion when administered to adult animals is hypothesized to depend on a central site of action in the brain, but there are no data to support this position. An alternative hypothesis was tested that glutamate would stimulate prolactin release when applied directly to primary cultures of dispersed adult female rat anterior pituitary cells studied in a perifusion protocol. Glutamate increased the rate of prolactin release within two minutes in a self-limited manner. Glutamate-stimulated prolactin release was augmented about 4-fold by elimination of magnesium from the perfusate and was associated with stimulation of pituitary calcium flux. Ketamine and MK-801 both reduced the basal rate of prolactin release and abolished the effects of glutamate. Pituitary cells of 10-day-old rats responded similarly to glutamate. Exposure to glutamate did not influence subsequent responses to physiological hypothalamic secretagogues, thus the likelihood of toxicity was minimized. These results suggest that the N-methyl-D-aspartate (NMDA) subclass of the glutamate receptor complex is involved. Prolactin secretion may be regulated physiologically through a functional glutamate receptor on pituitary cells.

  16. Relevance of deprivation studies in understanding rapid eye movement sleep

    PubMed Central

    Mehta, Rachna; Khan, Shafa; Mallick, Birendra N

    2018-01-01

    Rapid eye movement sleep (REMS) is a unique phenomenon essential for maintaining normal physiological processes and is expressed at least in species higher in the evolution. The basic scaffold of the neuronal network responsible for REMS regulation is present in the brainstem, which may be directly or indirectly influenced by most other physiological processes. It is regulated by the neurons in the brainstem. Various manipulations including chemical, elec-trophysiological, lesion, stimulation, behavioral, ontogenic and deprivation studies have been designed to understand REMS genesis, maintenance, physiology and functional significance. Although each of these methods has its significance and limitations, deprivation studies have contributed significantly to the overall understanding of REMS. In this review, we discuss the advantages and limitations of various methods used for REMS deprivation (REMSD) to understand neural regulation and physiological significance of REMS. Among the deprivation strategies, the flowerpot method is by far the method of choice because it is simple and convenient, exploits physiological parameter (muscle atonia) for REMSD and allows conducting adequate controls to overcome experimental limitations as well as to rule out nonspecific effects. Notwithstanding, a major criticism that the flowerpot method faces is that of perceived stress experienced by the experimental animals. Nevertheless, we conclude that like most methods, particularly for in vivo behavioral studies, in spite of a few limitations, given the advantages described above, the flowerpot method is the best method of choice for REMSD studies. PMID:29881316

  17. Relevance of deprivation studies in understanding rapid eye movement sleep.

    PubMed

    Mehta, Rachna; Khan, Shafa; Mallick, Birendra N

    2018-01-01

    Rapid eye movement sleep (REMS) is a unique phenomenon essential for maintaining normal physiological processes and is expressed at least in species higher in the evolution. The basic scaffold of the neuronal network responsible for REMS regulation is present in the brainstem, which may be directly or indirectly influenced by most other physiological processes. It is regulated by the neurons in the brainstem. Various manipulations including chemical, elec-trophysiological, lesion, stimulation, behavioral, ontogenic and deprivation studies have been designed to understand REMS genesis, maintenance, physiology and functional significance. Although each of these methods has its significance and limitations, deprivation studies have contributed significantly to the overall understanding of REMS. In this review, we discuss the advantages and limitations of various methods used for REMS deprivation (REMSD) to understand neural regulation and physiological significance of REMS. Among the deprivation strategies, the flowerpot method is by far the method of choice because it is simple and convenient, exploits physiological parameter (muscle atonia) for REMSD and allows conducting adequate controls to overcome experimental limitations as well as to rule out nonspecific effects. Notwithstanding, a major criticism that the flowerpot method faces is that of perceived stress experienced by the experimental animals. Nevertheless, we conclude that like most methods, particularly for in vivo behavioral studies, in spite of a few limitations, given the advantages described above, the flowerpot method is the best method of choice for REMSD studies.

  18. Recent Trends and Future Directions of Research in Orienteering.

    ERIC Educational Resources Information Center

    Seiler, Roland

    1994-01-01

    Analyzes 220 documents on orienteering published 1984-94. Discusses publication numbers and types and content characteristics in the areas of psychological aspects, physiological demands, sports medicine and health aspects, psychological-physiological interactions, training and coaching, school programs for children and teaching manuals,…

  19. Directionality of coupling of physiological subsystems: age-related changes of cardiorespiratory interaction during different sleep stages in babies.

    PubMed

    Mrowka, Ralf; Cimponeriu, Laura; Patzak, Andreas; Rosenblum, Michael G

    2003-12-01

    Activity of many physiological subsystems has a well-expressed rhythmic character. Often, a dependency between physiological rhythms is established due to interaction between the corresponding subsystems. Traditional methods of data analysis allow one to quantify the strength of interaction but not the causal interrelation that is indispensable for understanding the mechanisms of interaction. Here we present a recently developed method for quantification of coupling direction and apply it to an important problem. Namely, we study the mutual influence of respiratory and cardiovascular rhythms in healthy newborns within the first 6 mo of life in quiet and active sleep. We find an age-related change of the coupling direction: the interaction is nearly symmetric during the first days and becomes practically unidirectional (from respiration to heart rhythm) at the age of 6 mo. Next, we show that the direction of interaction is mainly determined by respiratory frequency. If the latter is less than approximately 0.6 Hz, the interaction occurs dominantly from respiration to heart. With higher respiratory frequencies that only occur at very young ages, the dominating direction is less pronounced or even abolished. The observed dependencies are not related to sleep stage, suggesting that the coupling direction is determined by system-inherent dynamical processes, rather than by functional modulations. The directional analysis may be applied to other interacting narrow band oscillatory systems, e.g., in the central nervous system. Thus it is an important step forward in revealing and understanding causal mechanisms of interactions.

  20. Effect of copper on Mytilus californianus and Mytilus edulis. Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-06-06

    Mytilus edulis and Mytilus californianus have come into widespread use as valuable test animals in estimating the effects and extent of copper pollution, both naturally as indicators and under simulated conditions as bioassays. These mussels are known bioaccumulators of heavy metals. They have a broad distribution, and mutually exclusive habitats. How the mussel reacts to copper is directly related to how copper affects the physiology of the mussel. The filtration rate and oxygen consumption of Mytilus are known to decline by more than 50% under exposure to as low as 200 ppB Cu in the water. Decline in heart ratemore » (bradycardia) also occurs under exposure to copper. Byssus thread production suffers in copper concentrations of 500 ppB and higher. The ability of M. edulis to close its valves in the presence of copper has been documented by several researchers. Of all the physiological parameters, oxygen consumption, heart rate, and valve closure are basic physiological functions which are easily measured. Mortality of Mytilus edulis is known to occur at concentrations of copper 330 ppB and higher within four to five days. It would be advantageous to have a continuous monitoring of the heart, oxygen consumption, and valve gape during this period to determine the state of each and the contribution of each to the possible death of the mussel. This study involves monitoring the three above physiological functions under varying concentrations of copper. In both species, M. edulis and M. californianus, detailed toxicological response records were obtained for each function. These records were then used to compare the physiological responses of each species to different levels of ambient copper in order to explain the possibility of repeatable, species-specific, response patterns to copper. (ERB)« less

  1. Food, gastrointestinal pH, and models of oral drug absorption.

    PubMed

    Abuhelwa, Ahmad Y; Williams, Desmond B; Upton, Richard N; Foster, David J R

    2017-03-01

    This article reviews the major physiological and physicochemical principles of the effect of food and gastrointestinal (GI) pH on the absorption and bioavailability of oral drugs, and the various absorption models that are used to describe/predict oral drug absorption. The rate and extent of oral drug absorption is determined by a complex interaction between a drug's physicochemical properties, GI physiologic factors, and the nature of the formulation administered. GI pH is an important factor that can markedly affect oral drug absorption and bioavailability as it may have significant influence on drug dissolution & solubility, drug release, drug stability, and intestinal permeability. Different regions of the GI tract have different drug absorptive properties. Thus, the transit time in each GI region and its variability between subjects may contribute to the variability in the rate and/or extent of drug absorption. Food-drug interactions can result in delayed, decreased, increased, and sometimes un-altered drug absorption. Food effects on oral absorption can be achieved by direct and indirect mechanisms. Various models have been proposed to describe oral absorption ranging from empirical models to the more sophisticated "mechanism-based" models. Through understanding of the physicochemical and physiological rate-limiting factors affecting oral absorption, modellers can implement simplified population-based modelling approaches that are less complex than whole-body physiologically-based models but still capture the essential elements in a physiological way and hence will be more suited for population modelling of large clinical data sets. It will also help formulation scientists to better predict formulation performance and to develop formulations that maximize oral bioavailability. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Development of a rate model to investigate contributions of anatomic and physiologic determinants of in vivo skin permeation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleischer, N.M.

    The skin is a heterogeneous, bi-directional impediment to chemical flux, in which the stratum corneum is a major, though not the sole, rate-limiting barrier layer to permeation. Systemic toxicity following dermal exposure to environmental chemicals and use of skin as a portal for systemic administration of drugs have led to extensive investigations of the inward flux of xenobiotics applied to the outer surface of skin. Those investigations mainly utilized in vitro experimental systems that were limited by the absence of normal physiologic functions. The objective of the present research was to investigate an in vivo skin permeation model system thatmore » was sensitive to perturbations of skin capillary physiology and stratum corneum. A [open quotes]fuzzy[close quotes] rat model system was devised that employed outward cutaneous migration of a systemically administered permeation probe, isoflurane. Specially devised, transdermal vapor collection devices were used to capture the outward flux of isoflurane through the skin. Isoflurane flux measurements, coupled with blood isoflurane concentrations, were used to calculate cutaneous permeability coefficients (K[sub p]) of isolflurane, as an index of permeation, under various conditions of normal or perturbed cutaneous physiologic states. Physiologic perturbations were performed to test the sensitivity of the model system to detect effects of minoxidil-mediated vasodilation, phenylephrine-mediated vasoconstriction, and leukotriene D[sub 4]-mediated increased capillary permeability on the outward flux of isoflurane. Tape stripping and topical ether-ethanol application produced either physical removal or chemical disruption of the stratum corneum, respectively. Minoxidil, leukotriene D[sub 4], tape stripping of stratum corneum, and topical ether-ethanol experiments produced statistically significant increases (52 to 193%) in the K[sub p's], while phenylephrine had no significant effect on isoflurane permeation.« less

  3. The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment

    NASA Astrophysics Data System (ADS)

    Höppe, P.

    With considerably increased coverage of weather information in the news media in recent years in many countries, there is also more demand for data that are applicable and useful for everyday life. Both the perception of the thermal component of weather as well as the appropriate clothing for thermal comfort result from the integral effects of all meteorological parameters relevant for heat exchange between the body and its environment. Regulatory physiological processes can affect the relative importance of meteorological parameters, e.g. wind velocity becomes more important when the body is sweating. In order to take into account all these factors, it is necessary to use a heat-balance model of the human body. The physiological equivalent temperature (PET) is based on the Munich Energy-balance Model for Individuals (MEMI), which models the thermal conditions of the human body in a physiologically relevant way. PET is defined as the air temperature at which, in a typical indoor setting (without wind and solar radiation), the heat budget of the human body is balanced with the same core and skin temperature as under the complex outdoor conditions to be assessed. This way PET enables a layperson to compare the integral effects of complex thermal conditions outside with his or her own experience indoors. On hot summer days, for example, with direct solar irradiation the PET value may be more than 20 K higher than the air temperature, on a windy day in winter up to 15 K lower.

  4. Separation of sardine oil without heating from surimi waste and its effect on lipid metabolism in rats.

    PubMed

    Toyoshima, Kotoe; Noguchi, Ryoko; Hosokawa, Masashi; Fukunaga, Kenji; Nishiyama, Toshimasa; Takahashi, Riki; Miyashita, Kazuo

    2004-04-21

    Sardine oil was obtained by centrifugation of surimi wastewater without heating or chemical refining. This oil (CE) showed light yellow color and the peroxide value was less than 1.0 meq/kg. The main lipid class of CE was triacylglycerol (TG) (>99%). These features indicate that CE can be directly used as food materials without further purification. Commercial sardine oil (CO) is usually prepared via some kind of refining process with high temperature (250 degrees C) and chemical treatment. The comparative study on the physiological effects of these sardine oils (CE and CO) revealed that the dietary sardine oils were more effective in reducing abdominal fat pads, plasma total cholesterol, and TG levels of rats than was a soybean oil diet (control). Furthermore, these effects were greater in CE than CO, although there was little difference in the fatty acid composition of both oils. Although the main lipid class of CE was TG (>99%), CE was prepared by centrifugation from surimi waste and directly used as dietary fat without further purification. Therefore, CE may contain some kinds of minor components, which could be attributed to the higher physiological activity of CE. To reveal the involvement of the minor compounds in CE, we prepared TG from CE by column chromatography and measured its effect on lipid metabolism of rats. TG from CE also showed the reducing effects on abdominal fad pads and plasma lipid levels. The effect of TG from CE was almost the same as that of original CE, suggesting that the higher nutritional activity of CE than CO may not be due to the minor compounds in CE.

  5. Hyperbaric oxygen treatment in autism spectrum disorders

    PubMed Central

    2012-01-01

    Traditionally, hyperbaric oxygen treatment (HBOT) is indicated in several clinical disorders include decompression sickness, healing of problem wounds and arterial gas embolism. However, some investigators have used HBOT to treat individuals with autism spectrum disorders (ASD). A number of individuals with ASD possess certain physiological abnormalities that HBOT might ameliorate, including cerebral hypoperfusion, inflammation, mitochondrial dysfunction and oxidative stress. Studies of children with ASD have found positive changes in physiology and/or behavior from HBOT. For example, several studies have reported that HBOT improved cerebral perfusion, decreased markers of inflammation and did not worsen oxidative stress markers in children with ASD. Most studies of HBOT in children with ASD examined changes in behaviors and reported improvements in several behavioral domains although many of these studies were not controlled. Although the two trials employing a control group reported conflicting results, a recent systematic review noted several important distinctions between these trials. In the reviewed studies, HBOT had minimal adverse effects and was well tolerated. Studies which used a higher frequency of HBOT sessions (e.g., 10 sessions per week as opposed to 5 sessions per week) generally reported more significant improvements. Many of the studies had limitations which may have contributed to inconsistent findings across studies, including the use of many different standardized and non-standardized instruments, making it difficult to directly compare the results of studies or to know if there are specific areas of behavior in which HBOT is most effective. The variability in results between studies could also have been due to certain subgroups of children with ASD responding differently to HBOT. Most of the reviewed studies relied on changes in behavioral measurements, which may lag behind physiological changes. Additional studies enrolling children with ASD who have certain physiological abnormalities (such as inflammation, cerebral hypoperfusion, and mitochondrial dysfunction) and which measure changes in these physiological parameters would be helpful in further defining the effects of HBOT in ASD. PMID:22703610

  6. Melatonin in autism spectrum disorders.

    PubMed

    Rossignol, Daniel A; Frye, Richard E

    2014-01-01

    Melatonin is an endogenous neurohormone produced predominantly in the pineal gland. Recent studies have implicated abnormalities in melatonin physiology and the circadian rhythm in individuals with autism spectrum disorders (ASD). These physiological abnormalities include lower nighttime melatonin or melatonin metabolite concentrations in ASD compared to controls. These abnormalities in melatonin concentrations may be directly attributed to variations in melatonin pathway physiology as both functional and genetic variations in this pathway have been reported in children with ASD. Four studies have observed a correlation between abnormal melatonin concentrations and the severity of autistic behaviors. Twenty clinical studies have reported improvements in sleep parameters with exogenous melatonin supplementation in ASD, including longer sleep duration, less nighttime awakenings and quicker sleep onset. A recent meta-analysis of five randomized, double-blind, placebo-controlled crossover trials examining exogenous melatonin supplementation in ASD reported significant improvements with large effect sizes in total sleep duration and sleep onset latency compared to both baseline and placebo. Six studies reported that the nighttime administration of exogenous melatonin was associated with better daytime behaviors. Four studies reported improvements with exogenous melatonin supplementation when other sleep medications had previously failed. Adverse effects of melatonin were minimal to none in the twenty treatment studies. These studies indicate that the administration of exogenous melatonin for abnormal sleep parameters in ASD is evidence-based. Further studies examining optimal effective dosing and timing of dosing are warranted.

  7. Response mechanisms of conifers to air pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyssek, R.; Reich, P.; Oren, R.

    1995-07-01

    Conifers are known to respond to SO{sub 2}, O{sub 3}, NO{sub x} and acid deposition. Of these pollutants, O{sub 3} is likely the most widespread and phytotoxic compound, and therefore of great interest to individuals concerned with forest resources Direct biological responses have a toxicological effects on metabolism which can then scale to effects on tree growth and forest ecology, including processes of competition and succession. Air pollution can cause reductions in photosynthesis and stomatal conductance, which are the physiological parameters most rigorously studied for conifers. Some effects air pollutants can have on plants are influenced by the presence ofmore » co-occurring environmental stresses. For example, drought usually reduces vulnerability of plants to air pollution. In addition, air pollution sensitivity may differ among species and with plant/leaf age. Plants may make short-term physiological adjustments to compensate for air pollution or may evolve resistance to air pollution through the processes of selection. Models are necessary to understand how physiological processes, growth processes, and ecological processes are affected by air pollutants. The process of defining the ecological risk that air pollutants pose for coniferous forests requires approaches that exploit existing databases, environmental monitoring of air pollutants and forest resources, experiments with well-defined air pollution treatments and environmental control/monitoring, modeling, predicting air pollution-caused changes in productivity and ecological processes over time and space, and integration of social values.« less

  8. When anger dominates the mind: Increased motor corticospinal excitability in the face of threat

    PubMed Central

    Hortensius, Ruud

    2016-01-01

    Abstract Threat demands fast and adaptive reactions that are manifested at the physiological, behavioral, and phenomenological level and are responsive to the direction of threat and its severity for the individual. Here, we investigated the effects of threat directed toward or away from the observer on motor corticospinal excitability and explicit recognition. Sixteen healthy right‐handed volunteers completed a transcranial magnetic stimulation (TMS) task and a separate three‐alternative forced‐choice emotion recognition task. Single‐pulse TMS to the left primary motor cortex was applied to measure motor evoked potentials from the right abductor pollicis brevis in response to dynamic angry, fearful, and neutral bodily expressions with blurred faces directed toward or away from the observer. Results showed that motor corticospinal excitability increased independent of direction of anger compared with fear and neutral. In contrast, anger was better recognized when directed toward the observer compared with when directed away from the observer, while the opposite pattern was found for fear. The present results provide evidence for the differential effects of threat direction on explicit recognition and motor corticospinal excitability. In the face of threat, motor corticospinal excitability increases independently of the direction of anger, indicative of the importance of more automatic reactions to threat. PMID:27325519

  9. Influences of Vestibular System on Sympathetic Nervous System. Implications for countermeasures.

    NASA Astrophysics Data System (ADS)

    Denise, Pr Pierre

    As gravity is a direct and permanent stress on body fluids, muscles and bones, it is not surpris-ing that weightlessness has important effects on cardiovascular and musculo-skeletal systems. However, these harmful effects do not totally result from the removal of the direct stress of gravity on these organs, but are also partially and indirectly mediated by the vestibular sys-tem. Besides its well known crucial role in spatial orientation and postural equilibrium, it is now clear that the vestibular system is also involved in the regulation of other important physi-ological systems: respiratory and cardiovascular systems, circadian regulation, food intake and even bone mineralization. The neuroanatomical substrate for these vestibular-mediated reg-ulations is still poorly defined, but there is much evidence that vestibular system has strong impacts not only on brainstem autonomic centers but on many hypothalamic nuclei as well. As autonomic nervous system controls almost all body organs, bringing into play the vestibular system by hypergravity or microgravity could virtually affects all major physiological func-tions. There is experimental evidence that weightlessness as well as vestibular lesion induce sympathetic activation thus participating in space related physiological alterations. The fact that some effects of weightlessness on biological systems are mediated by the vestibular system has an important implication for using artificial gravity as a countermeasure: artificial gravity should load not only bones and the cardiovascular system but the vestibular system as well. In short-arm centrifuges, the g load at the head level is low because the head is near the axis of rotation. If the vestibular system is involved in cardiovascular deconditioning and bone loss during weightlessness, it would be more effective to significantly stimulate it and thus it would be necessary to place the head off-axis. Moreover, as the otolithic organs are non longer stimu-lated in term of gravity during space flight, and because of the plasticity of the brain, it might be possible that their inputs be progressively interpreted as resulting from translational move-ment with no gravity related activation. Therefore, on return to Earth the effect of the otoliths on cardiovascular regulation might be temporarily lost leading to orthostatic intolerance.

  10. [The Effect of Social-Psychological Factors on the Development of Occupational Stress].

    PubMed

    Kalinina, S A; Yushkova, O I

    2015-01-01

    The article presents data on social-psychological factors which cause the occupational stress. The results showed that there is a link between the level of work motivation and the physiological cost of work. We observed a number of peculiarities of occupational stress development caused by psychoemotional tension depending on the class of intensity of intellectual labor; we also studied biological age of the subjects. The speed of ageing of the employees who work under conditions of emotional stress (direct or indirect responsibility for the safety of other people) was found to increase. The study suggested promising directions of occupational stress prevention.

  11. Apollo food technology

    NASA Technical Reports Server (NTRS)

    Smith, M. C., Jr.; Heidelbaugh, N. D.; Rambaut, P. C.; Rapp, R. M.; Wheeler, H. O.; Huber, C. S.; Bourland, C. T.

    1975-01-01

    Large improvements and advances in space food systems achieved during the Apollo food program are discussed. Modifications of the Apollo food system were directed primarily toward improving delivery of adequate nutrition to the astronaut. Individual food items and flight menus were modified as nutritional countermeasures to the effects of weightlessness. Unique food items were developed, including some that provided nutritional completeness, high acceptability, and ready-to-eat, shelf-stable convenience. Specialized food packages were also developed. The Apollo program experience clearly showed that future space food systems will require well-directed efforts to achieve the optimum potential of food systems in support of the physiological and psychological well-being of astronauts and crews.

  12. A double-blind atropine trial for active learning of autonomic function.

    PubMed

    Fry, Jeffrey R; Burr, Steven A

    2011-12-01

    Here, we describe a human physiology laboratory class measuring changes in autonomic function over time in response to atropine. Students use themselves as subjects, generating ownership and self-interest in the learning as well as directly experiencing the active link between physiology and pharmacology in people. The class is designed to concomitantly convey the importance of bias in experimentation by adopting a double-blind placebo-controlled approach. We have used this class effectively in various forms with ∼600 students receiving atropine over the last 16 yr. This class has received favorable feedback from staff and students of medicine, pharmacy, and neuroscience, and we recommend it for such undergraduates. The learning objectives that students are expected to achieve are to be able to 1) know the ethical, safety, and hygiene requirements for using human volunteers as subjects; 2) implement and explain a double-blind placebo-controlled trial; 3) design, agree, and execute a protocol for making (and accurately recording) precise reproducible measurements of pulse rate, pupil diameter, and salivary flow; 4) evaluate the importance of predose periods and measurement consistency to detect effects (including any reversibility) after an intervention; 5) experience direct cause-and-effect relationships integrating physiology with pharmacology in people; 6) calculate appropriate summary statistics to describe the data and determine the data's statistical significance; 7) recognize normal variability both within and between subjects in baseline physiological parameters and also recognize normal variability in response to pharmacological treatment; 8) infer the distribution and role of muscarinic receptors in the autonomic nervous system with respect to the heart, eye, and mouth; 9) identify and explain the clinical significance of differences in effect due to the route and formulation of atropine; 10) produce and deliver a concise oral presentation of experimental findings; and 11) produce a written report in the form of a short scientific research article. The results of a typical study are presented, which demonstrate that the administration of atropine by a subcutaneous injection elicited a significant increase in pulse rate and pupil diameter and a significant decrease in salivary flow, whereas administration of atropine in an oral liquid elicited significant effects on pulse rate and salivary flow, and an oral solid format elicited a significant alteration in salivary flow alone. More detailed analysis of the salivary flow data demonstrated clear differences between the routes of administration and formulation in the onset and magnitude of action of atropine.

  13. Regulating plant/insect interactions using CO2 enrichment in model ecosystems

    NASA Astrophysics Data System (ADS)

    Grodzinski, B.; Schmidt, J. M.; Watts, B.; Taylor, J.; Bates, S.; Dixon, M. A.; Staines, H.

    1999-01-01

    The greenhouse environment is a challenging artificial ecosystem in which it is possible to study selected plant/insect interaction in a controlled environment. Due to a combination of ``direct'' and ``indirect'' effects of CO2 enrichment on plant photosynthesis and plant development, canopy productivity is generally increased. In this paper, we discuss the effects of daytime and nighttime CO2 enrichment protocols on gas exchange of pepper plants (Capsicum annuum L, cv Cubico) grown in controlled environments. In addition, we present the effects of thrips, a common insect pest, on the photosynthetic and respiratory activity of these plant canopies. Carbon dioxide has diverse effects on the physiology and mortality of insects. However, our data indicate that thrips and whiteflies, at least, are not killed ``directly'' by CO2 levels used to enhance photosynthesis and plant growth. Together the data suggest that the insect population is affected ``indirectly'' by CO2 and that the primary effect of CO2 is via its effects on plant metabolism.

  14. Linking Landscape-Scale Disturbances to Stress and Condition of Fish: Implications for Restoration and Conservation.

    PubMed

    Jeffrey, Jennifer D; Hasler, Caleb T; Chapman, Jacqueline M; Cooke, Steven J; Suski, Cory D

    2015-10-01

    Humans have dramatically altered landscapes as a result of urban and agricultural development, which has led to decreases in the quality and quantity of habitats for animals. This is particularly the case for freshwater fish that reside in fluvial systems, given that changes to adjacent lands have direct impacts on the structure and function of watersheds. Because choices of habitat have physiological consequences for organisms, animals that occupy sub-optimal habitats may experience increased expenditure of energy or homeostatic overload that can cause negative outcomes for individuals and populations. With the imperiled and threatened status of many freshwater fish, there is a critical need to define relationships between land use, quality of the habitat, and physiological performance for resident fish as an aid to restoration and management. Here, we synthesize existing literature to relate variation in land use at the scale of watersheds to the physiological status of resident fish. This examination revealed that landscape-level disturbances can influence a host of physiological properties of resident fishes, ranging from cellular and genomic levels to the hormonal and whole-animal levels. More importantly, these physiological responses have been integrated into traditional field-based monitoring protocols to provide a mechanistic understanding of how organisms interact with their environment, and to enhance restoration. We also generated a conceptual model that provides a basis for relating landscape-level changes to physiological responses in fish. We conclude that physiological sampling of resident fish has the potential to assess the effects of landscape-scale disturbances on freshwater fish and to enhance restoration and conservation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  15. Creating homogenous strain distribution within 3D cell-encapsulated constructs using a simple and cost-effective uniaxial tensile bioreactor: Design and validation study.

    PubMed

    Subramanian, Gayathri; Elsaadany, Mostafa; Bialorucki, Callan; Yildirim-Ayan, Eda

    2017-08-01

    Mechanical loading bioreactors capable of applying uniaxial tensile strains are emerging to be a valuable tool to investigate physiologically relevant cellular signaling pathways and biochemical expression. In this study, we have introduced a simple and cost-effective uniaxial tensile strain bioreactor for the application of precise and homogenous uniaxial strains to 3D cell-encapsulated collagen constructs at physiological loading strains (0-12%) and frequencies (0.01-1 Hz). The bioreactor employs silicone-based loading chambers specifically designed to stretch constructs without direct gripping to minimize stress concentration at the ends of the construct and preserve its integrity. The loading chambers are driven by a versatile stepper motor ball-screw actuation system to produce stretching of the constructs. Mechanical characterization of the bioreactor performed through Finite Element Analysis demonstrated that the constructs experienced predominantly uniaxial tensile strain in the longitudinal direction. The strains produced were found to be homogenous over a 15 × 4 × 2 mm region of the construct equivalent to around 60% of the effective region of characterization. The strain values were also shown to be consistent and reproducible during cyclic loading regimes. Biological characterization confirmed the ability of the bioreactor to promote cell viability, proliferation, and matrix organization of cell-encapsulated collagen constructs. This easy-to-use uniaxial tensile strain bioreactor can be employed for studying morphological, structural, and functional responses of cell-embedded matrix systems in response to physiological loading of musculoskeletal tissues. It also holds promise for tissue-engineered strategies that involve delivery of mechanically stimulated cells at the site of injury through a biological carrier to develop a clinically useful therapy for tissue healing. Biotechnol. Bioeng. 2017;114: 1878-1887. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Targeted knockout in Physcomitrella reveals direct actions of phytochrome in the cytoplasm.

    PubMed

    Mittmann, Franz; Brücker, Gerhard; Zeidler, Mathias; Repp, Alexander; Abts, Thomas; Hartmann, Elmar; Hughes, Jon

    2004-09-21

    The plant photoreceptor phytochrome plays an important role in the nucleus as a regulator of transcription. Numerous studies imply, however, that phytochromes in both higher and lower plants mediate physiological reactions within the cytoplasm. In particular, the tip cells of moss protonemal filaments use phytochrome to sense light direction, requiring a signaling system that transmits the directional information directly to the microfilaments that direct tip growth. In this work we describe four canonical phytochrome genes in the model moss species Physcomitrella patens, each of which was successfully targeted via homologous recombination and the distinct physiological functions of each gene product thereby identified. One homolog in particular mediates positive phototropism, polarotropism, and chloroplast movement in polarized light. This photoreceptor thus interacts with a cytoplasmic signal/response system. This is our first step in elucidating the cytoplasmic signaling function of phytochrome at the molecular level.

  17. Remote measurement of canopy reflectance shows the effects of elevated carbon dioxide and ozone on the structure and functioning of soybeans in a field setting.

    NASA Astrophysics Data System (ADS)

    Gray, S.; Dermody, O.; Delucia, E.

    2006-12-01

    By altering physiological processes and modifying canopy structure, elevated atmospheric CO2 and O3 directly and indirectly change the productivity of agroecosystems. Remote sensing of canopy reflectance can be used to monitor physiological and structural changes in an ecosystem over a growing season. To examine effects of changing tropospheric chemistry on water content, chlorophyll content, and changes in leaf area index (LAI), Free-Air Concentration Enrichment (FACE) technology was used to expose large plots of soybean (Glycine max) to elevated atmospheric CO2, elevated O3 (1.5 x ambient), and combined elevated CO2 and O3. The following indices were calculated from weekly measurements of reflectance: water index (WI), photochemical reflectance index (PRI), chlorophyll index, near-infrared/ red (NIR/red), and normalized difference vegetation index (NDVI). NIR/red and LAI were strongly correlated throughout the growth season; however NDVI and LAI were highly correlated only up to LAI of 3. Exposure to elevated CO2 accelerated early-season canopy development and delayed late-season senescence. Growth in elevated O3 had the opposite effect. Additionally, elevated CO2 compensated for negative effects of O3 when the canopy was exposed to both gases simultaneously. Reflectance indices revealed several physiological and structural responses of this agroecosystem to tropospheric change, and ultimately that elevated CO2 and O3 significantly affected this system's productivity and period for carbon gain.

  18. Blood circulation under conditions of weightlessness

    NASA Technical Reports Server (NTRS)

    Kastyan, I. I.; Kopanev, V. I.

    1980-01-01

    Experimental materials and published data on the problem of blood circulation in man and animals under conditions of short and long term weightlessness are summarized. The data obtained allow the conclusion, that when humans spent 5 days in a weightless state their blood circulation was not essentially distributed. Some features of the functioning of the cardiovascular system are pointed out: delay of adaptation rate, increase in lability, etc. There is a discussion of the physiological mechanisms for the direct and indirect effect of weightlessness. The direct effect comprise the complex of reactions caused by the significant fall in hydrostatic pressure and the indirect embraces all the reactions arising in the organism resulting from disturbance of the systematic character of the analyzers that take part in the analysis of space realtions and the body's orientation in space.

  19. The Effects of False Physiological Feedback on Sexual Arousal in Sexually Dysfunctional and Functional Males

    DTIC Science & Technology

    1999-01-01

    might increase their arousal or lead to orgasm , such as direct clitoral 10 stimulation . Poor sexual skills might also lead to frequent sexual failure and... orgasm . However, cessation of stimulation during the plateau or excitement phases results in eventual return to pre- stimulation levels. The orgasmic ...access to the physical and psychological stimulation that would normally produce heightened sexual arousal and "spontaneous" erection. This interference

  20. A Study of Pilots’ Value Systems and Their Effect on Career Intentions

    DTIC Science & Technology

    1978-09-01

    needs, Maslow’s need-hierarchy comes into play3 Maslow stated that there are five basic needs: physiological, safety, love. estt:em, and self ...then again direct his atttention to the next higher level need (10370-396). Maslow also asse-ced that man strives for eventual self -actualization...life) (affectionate, tender) SELF -RESPECT 0 BEDIENT ( self - esteem ) (dutiful, respectful) SOCIAL RECOGNITION PO LITE (respect, admiration) (courteous, well

  1. Enhanced recovery after surgery-Preoperative fasting and glucose loading-A review.

    PubMed

    Sarin, Ankit; Chen, Lee-Lynn; Wick, Elizabeth C

    2017-10-01

    In this review, we explore the rationale and history behind the practice of preoperative fasting in elective surgery including the gradual move toward longer fasting and the more recent change in direction of practice. Gastric emptying physiology and the metabolic effects of prolonged fasting and carbohydrate loading are examined. Most recent guidelines related to these topics are discussed and practical recommendations for implementing these guidelines are suggested. © 2017 Wiley Periodicals, Inc.

  2. Annotated Bibliography on the Physiological Effects of Acceleration in Aircraft.

    DTIC Science & Technology

    1945-09-01

    pulse wave deflection was reduced and the dicrotic notch was deepened. d. The size of the cardiac silhouette was reduced in all subjects during the...gradient and single pressure suits; arterial occlusion suit; p-essure transmission factors in suits; pneumatic lever suit... factors in anti-"g" suits. (Yale) CAM No. 129. 10 Dec. 42. a, Directly underneath pressurizing air bladders, the pressure is the same as in the

  3. Fisheries conservation on the high seas: linking conservation physiology and fisheries ecology for the management of large pelagic fishes

    PubMed Central

    Horodysky, Andrij Z.; Cooke, Steven J.; Graves, John E.; Brill, Richard W.

    2016-01-01

    Populations of tunas, billfishes and pelagic sharks are fished at or over capacity in many regions of the world. They are captured by directed commercial and recreational fisheries (the latter of which often promote catch and release) or as incidental catch or bycatch in commercial fisheries. Population assessments of pelagic fishes typically incorporate catch-per-unit-effort time-series data from commercial and recreational fisheries; however, there have been notable changes in target species, areas fished and depth-specific gear deployments over the years that may have affected catchability. Some regional fisheries management organizations take into account the effects of time- and area-specific changes in the behaviours of fish and fishers, as well as fishing gear, to standardize catch-per-unit-effort indices and refine population estimates. However, estimates of changes in stock size over time may be very sensitive to underlying assumptions of the effects of oceanographic conditions and prey distribution on the horizontal and vertical movement patterns and distribution of pelagic fishes. Effective management and successful conservation of pelagic fishes requires a mechanistic understanding of their physiological and behavioural responses to environmental variability, potential for interaction with commercial and recreational fishing gear, and the capture process. The interdisciplinary field of conservation physiology can provide insights into pelagic fish demography and ecology (including environmental relationships and interspecific interactions) by uniting the complementary expertise and skills of fish physiologists and fisheries scientists. The iterative testing by one discipline of hypotheses generated by the other can span the fundamental–applied science continuum, leading to the development of robust insights supporting informed management. The resulting species-specific understanding of physiological abilities and tolerances can help to improve stock assessments, develop effective bycatch-reduction strategies, predict rates of post-release mortality, and forecast the population effects of environmental change. In this synthesis, we review several examples of these interdisciplinary collaborations that currently benefit pelagic fisheries management. PMID:27382467

  4. The Effect of Seasonal Ambient Temperatures on Fire-Stimulated Germination of Species with Physiological Dormancy: A Case Study Using Boronia (Rutaceae).

    PubMed

    Mackenzie, Berin D E; Auld, Tony D; Keith, David A; Hui, Francis K C; Ooi, Mark K J

    2016-01-01

    Dormancy and germination requirements determine the timing and magnitude of seedling emergence, with important consequences for seedling survival and growth. Physiological dormancy is the most widespread form of dormancy in flowering plants, yet the seed ecology of species with this dormancy type is poorly understood in fire-prone vegetation. The role of seasonal temperatures as germination cues in these habitats is often overlooked due to a focus on direct fire cues such as heat shock and smoke, and little is known about the combined effects of multiple fire-related cues and environmental cues as these are seldom assessed in combination. We aimed to improve understanding of the germination requirements of species with physiological dormancy in fire-prone floras by investigating germination responses across members of the Rutaceae from south eastern Australia. We used a fully factorial experimental design to quantify the individual and combined effects of heat shock, smoke and seasonal ambient temperatures on germination of freshly dispersed seeds of seven species of Boronia, a large and difficult-to-germinate genus. Germination syndromes were highly variable but correlated with broad patterns in seed morphology and phylogenetic relationships between species. Seasonal temperatures influenced the rate and/or magnitude of germination responses in six species, and interacted with fire cues in complex ways. The combined effects of heat shock and smoke ranged from neutral to additive, synergistic, unitive or negative and varied with species, seasonal temperatures and duration of incubation. These responses could not be reliably predicted from the effect of the application of single cues. Based on these findings, fire season and fire intensity are predicted to affect both the magnitude and timing of seedling emergence in wild populations of species with physiological dormancy, with important implications for current fire management practices and for population persistence under climate change.

  5. The Effect of Seasonal Ambient Temperatures on Fire-Stimulated Germination of Species with Physiological Dormancy: A Case Study Using Boronia (Rutaceae)

    PubMed Central

    Auld, Tony D.; Keith, David A.; Hui, Francis K. C.; Ooi, Mark K. J.

    2016-01-01

    Dormancy and germination requirements determine the timing and magnitude of seedling emergence, with important consequences for seedling survival and growth. Physiological dormancy is the most widespread form of dormancy in flowering plants, yet the seed ecology of species with this dormancy type is poorly understood in fire-prone vegetation. The role of seasonal temperatures as germination cues in these habitats is often overlooked due to a focus on direct fire cues such as heat shock and smoke, and little is known about the combined effects of multiple fire-related cues and environmental cues as these are seldom assessed in combination. We aimed to improve understanding of the germination requirements of species with physiological dormancy in fire-prone floras by investigating germination responses across members of the Rutaceae from south eastern Australia. We used a fully factorial experimental design to quantify the individual and combined effects of heat shock, smoke and seasonal ambient temperatures on germination of freshly dispersed seeds of seven species of Boronia, a large and difficult-to-germinate genus. Germination syndromes were highly variable but correlated with broad patterns in seed morphology and phylogenetic relationships between species. Seasonal temperatures influenced the rate and/or magnitude of germination responses in six species, and interacted with fire cues in complex ways. The combined effects of heat shock and smoke ranged from neutral to additive, synergistic, unitive or negative and varied with species, seasonal temperatures and duration of incubation. These responses could not be reliably predicted from the effect of the application of single cues. Based on these findings, fire season and fire intensity are predicted to affect both the magnitude and timing of seedling emergence in wild populations of species with physiological dormancy, with important implications for current fire management practices and for population persistence under climate change. PMID:27218652

  6. Sublethal Toxicity Endpoints of Heavy Metals to the Nematode Caenorhabditis elegans

    PubMed Central

    Wu, Yue; Wang, Qiang; Li, Huixin

    2016-01-01

    Caenorhabditis elegans, a free-living nematode, is commonly used as a model organism in ecotoxicological studies. The current literatures have provided useful insight into the relative sensitivity of several endpoints, but few direct comparisons of multiple endpoints under a common set of experimental conditions. The objective of this study was to determine appropriate sublethal endpoints to develop an ecotoxicity screening and monitoring system. C. elegans was applied to explore the sublethal toxicity of four heavy metals (copper, zinc, cadmium and chromium). Two physiological endpoints (growth and reproduction), three behavioral endpoints (head thrash frequency, body bend frequency and feeding) and two enzymatic endpoints (acetylcholine esterase [AChE] and superoxide dismutase [SOD]) were selected for the assessment of heavy metal toxicity. The squared correlation coefficients (R2) between the responses observed and fitted by Logit function were higher than 0.90 and the RMSE were lower than 0.10, indicating a good significance statistically. There was no significant difference among the half effect concentration (EC50) endpoints in physiological and behavioral effects of the four heavy metals, indicating similar sensitivity of physiological and behavioral effects. AChE enzyme was more sensitive to copper, zinc, and cadmium than to other physiological and behavioral effects, and SOD enzyme was most sensitive to chromium. The EC50 of copper, zinc, and cadmium, to the AChE enzyme in the nematodes were 0.68 mg/L, 2.76 mg/L, and 0.92 mg/L respectively and the EC50 of chromium to the SOD enzyme in the nematode was 1.58 mg/L. The results of this study showed that there was a good concentration-response relationship between all four heavy metals and the sublethal toxicity effects to C. elegans. Considering these sublethal endpoints in terms of simplicity, accuracy, repeatability and costs of the experiments, feeding is the relatively ideal sublethal toxicity endpoint of heavy metals to C. elegans. PMID:26824831

  7. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model

    PubMed Central

    Zhang, Zhaoyan

    2016-01-01

    The goal of this study is to better understand the cause-effect relation between vocal fold physiology and the resulting vibration pattern and voice acoustics. Using a three-dimensional continuum model of phonation, the effects of changes in vocal fold stiffness, medial surface thickness in the vertical direction, resting glottal opening, and subglottal pressure on vocal fold vibration and different acoustic measures are investigated. The results show that the medial surface thickness has dominant effects on the vertical phase difference between the upper and lower margins of the medial surface, closed quotient, H1-H2, and higher-order harmonics excitation. The main effects of vocal fold approximation or decreasing resting glottal opening are to lower the phonation threshold pressure, reduce noise production, and increase the fundamental frequency. Increasing subglottal pressure is primarily responsible for vocal intensity increase but also leads to significant increase in noise production and an increased fundamental frequency. Increasing AP stiffness significantly increases the fundamental frequency and slightly reduces noise production. The interaction among vocal fold thickness, stiffness, approximation, and subglottal pressure in the control of F0, vocal intensity, and voice quality is discussed. PMID:27106298

  8. The Integration of Information and Communications Technology in Full Spectrum Operations: A Case Study of CJTF-101 in Afghanistan

    DTIC Science & Technology

    2010-06-11

    Albert Maslow , “Maslow’s Hierarchy of Needs .” Maslow describes basic needs as “physiological, safety, love, esteem, and self-actualization” and...Maslow’s Hierarchy of Needs Essential Service (Consolidated) DoD Definitions DoS Definitions Dept. of Army Definitions Physiological...the physiological and safety needs identified by Maslow . However, it 52 is also evident there are several services that do not directly correlate

  9. Biomechanics of Atlanto-Occipital and Atlanto-Axial Joint Injuries,

    DTIC Science & Technology

    1982-11-12

    conditions, after physiological lordosis is taken into account, the main acting forces are: the weight of the head--force P21 the force of the muscles...position, the force Pv’ because of physiological lordosis , is directed away from the cen- tral axis of the vertebral shafts and can be considered using two...and the equivalent tension force in the transverse ligament of the atlas--R. We found out that under intermediate degree of physiological lordosis

  10. Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology

    ERIC Educational Resources Information Center

    Sandage, Mary J.; Smith, Audrey G.

    2017-01-01

    Purpose: Intrinsic laryngeal skeletal muscle bioenergetics, the means by which muscles produce fuel for muscle metabolism, is an understudied aspect of laryngeal physiology with direct implications for voice habilitation and rehabilitation. The purpose of this review is to describe bioenergetic pathways identified in limb skeletal muscle and…

  11. Fishing for an ECG: A Student-Directed Electrocardiographic Laboratory Using Rainbow Trout

    ERIC Educational Resources Information Center

    Cotter, Paul A.; Rodnick, Kenneth J.

    2007-01-01

    Cardiac physiology is emphasized in many undergraduate physiology courses, but few nonmammalian vertebrate model systems exist that 1) can be studied fairly noninvasively, 2) are well suited for controlled experimentation, and 3) emphasize principles characteristic of the vertebrate heart. We have developed an inquiry-based…

  12. A review of factors influencing the stress response in Australian marsupials

    PubMed Central

    Hing, Stephanie; Narayan, Edward; Thompson, R. C. Andrew; Godfrey, Stephanie

    2014-01-01

    Many Australian marsupials are threatened species. In order to manage in situ and ex situ populations effectively, it is important to understand how marsupials respond to threats. Stress physiology (the study of the response of animals to challenging stimuli), a key approach in conservation physiology, can be used to characterize the physiological response of wildlife to threats. We reviewed the literature on the measurement of glucocorticoids (GCs), endocrine indicators of stress, in order to understand the stress response to conservation-relevant stressors in Australian marsupials and identified 29 studies. These studies employed a range of methods to measure GCs, with faecal glucocorticoid metabolite enzyme immunoassay being the most common method. The main stressors considered in studies of marsupials were capture and handling. To date, the benefits of stress physiology have yet to be harnessed fully in marsupial conservation. Despite a theoretical base dating back to the 1960s, GCs have only been used to understand how 21 of the 142 extant species of Australian marsupial respond to stressors. These studies include merely six of the 60 marsupial species of conservation concern (IUCN Near Threatened to Critically Endangered). Furthermore, the fitness consequences of stress for Australian marsupials are rarely examined. Individual and species differences in the physiological stress response also require further investigation, because significant species-specific variations in GC levels in response to stressors can shed light on why some individuals or species are more vulnerable to stress factors while others appear more resilient. This review summarizes trends, knowledge gaps and future research directions for stress physiology research in Australian marsupial conservation. PMID:27293648

  13. Does the vestibular system contribute to head direction cell activity in the rat?

    NASA Technical Reports Server (NTRS)

    Brown, J. E.; Yates, B. J.; Taube, J. S.; Oman, C. M. (Principal Investigator)

    2002-01-01

    Head direction cells (HDC) located in several regions of the brain, including the anterior dorsal nucleus of the thalamus (ADN), postsubiculum (PoS), and lateral mammillary nuclei (LMN), provide the neural substrate for the determination of head direction. Although activity of HDC is influenced by various sensory signals and internally generated cues, lesion studies and some anatomical and physiological evidence suggest that vestibular inputs are critical for the maintenance of directional sensitivity of these cells. However, vestibular inputs must be transformed considerably in order to signal head direction, and the neuronal circuitry that accomplishes this signal processing has not been fully established. Furthermore, it is unclear why the removal of vestibular inputs abolishes the directional sensitivity of HDC, as visual and other sensory inputs and motor feedback signals strongly affect the firing of these neurons and would be expected to maintain their directional-related activity. Further physiological studies will be required to establish the role of vestibular system in producing HDC responses, and anatomical studies are needed to determine the neural circuitry that mediates vestibular influences on determination of head direction.

  14. Visible red light enhances physiological anagen entry in vivo and has direct and indirect stimulative effects in vitro.

    PubMed

    Sheen, Yi-Shuan; Fan, Sabrina Mai-Yi; Chan, Chih-Chieh; Wu, Yueh-Feng; Jee, Shiou-Hwa; Lin, Sung-Jan

    2015-01-01

    Hair follicles are located at the interface of the external and internal environments and their cycling has been shown to be regulated by intra- and extra-follicular factors. The aim of this study is to examine whether or how hair follicles respond to visible light. We examined the effect of 3 mW red (630 nm, 1 J/cm(2)), 2 mW green (522 nm, 1 J/cm(2)), and 2 mW blue light (463 nm, 1 J/cm(2)) on telogen in mice for 3 weeks. The photobiologic effects of red light on cell proliferation of outer root sheath keratinocytes and dermal papilla cells were studied in vitro. We found that red light accelerated anagen entry faster than green and blue light in mice. Red light irradiation stimulated the proliferation of both outer root sheath keratinocytes and dermal papilla cells in a dose-dependent manner by promoting cell cycle progression. This stimulative effect was mediated via extracellular signal-regulated kinase phosphorylation in both cells. In a co-culture condition, dermal papilla cells irradiated by red light further enhanced keratinocyte proliferation, suggesting enhanced epithelial-mesenchymal interaction. In search for factors that mediated this paracrine effect, we found fibroblast growth factor 7 was upregulated in both mRNA and protein levels. The stimulative paracrine effect on keratinocytes was significantly inhibited by neutralizing antibody against fibroblast growth factor 7. These results suggest that hair follicles respond to visible light in vivo. Red light may promote physiological telogen to anagen transition by directly stimulating outer root sheath keratinocytes and indirectly by enhancing epithelial-mesenchymal interaction in vitro. © 2014 Wiley Periodicals, Inc.

  15. The optimal timing of stimulation to induce long-lasting positive effects on episodic memory in physiological aging.

    PubMed

    Manenti, Rosa; Sandrini, Marco; Brambilla, Michela; Cotelli, Maria

    2016-09-15

    Episodic memory displays the largest degree of age-related decline. A noninvasive brain stimulation technique that can be used to modulate memory in physiological aging is transcranial Direct Current Stimulation (tDCS). However, an aspect that has not been adequately investigated in previous studies is the optimal timing of stimulation to induce long-lasting positive effects on episodic memory function. Our previous studies showed episodic memory enhancement in older adults when anodal tDCS was applied over the left lateral prefrontal cortex during encoding or after memory consolidation with or without a contextual reminder. Here we directly compared the two studies to explore which of the tDCS protocols would induce longer-lasting positive effects on episodic memory function in older adults. In addition, we aimed to determine whether subjective memory complaints would be related to the changes in memory performance (forgetting) induced by tDCS, a relevant issue in aging research since individuals with subjective memory complaints seem to be at higher risk of later memory decline. The results showed that anodal tDCS applied after consolidation with a contextual reminder induced longer-lasting positive effects on episodic memory, conceivably through reconsolidation, than anodal tDCS during encoding. Furthermore, we reported, providing new data, a moderate negative correlation between subjective memory complaints and forgetting when anodal tDCS was applied after consolidation with a contextual reminder. This study sheds light on the best-suited timing of stimulation to induce long-lasting positive effects on memory function and might help the clinicians to select the most effective tDCS protocol to prevent memory decline. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Extraction and phytochemical investigation of Calotropis procera: effect of plant extracts on the activity of diverse muscles.

    PubMed

    Moustafa, A M Y; Ahmed, S H; Nabil, Z I; Hussein, A A; Omran, M A

    2010-10-01

    Calotropis procera (Ait.) R.Br. (Asclepiadaceae) is a shrub or small tree that grows wild in Egypt. Calotropis acts as a purgative, anthelmintic, anticoagulant, palliative (in problems with respiration, blood pressure), antipyretic, and analgesic, and induces neuromuscular blocking activity. Little research has been done to study the electrophysiological effects of this plant's extracts on cardiac, smooth, and skeletal muscle activities. The present study was conducted to determine the phytochemical composition and the effect of the total alcohol extract of the shoot of the plant, which contains almost all of C. procera's cardiac glycosides, flavonoids, and saponins. Also, this study attempted to throw more light on the electrophysiological effects of the plant extracts on cardiac, smooth, and skeletal muscle activities and to clarify the mechanism(s) of their observed action(s). The aerial parts of the plant were air dried and their ethanol extracts partitioned with successive solvents. Cardiac, smooth, and skeletal muscles were used in this study to investigate the physiological and pharmacological effects of the plant extracts from different solvents. The data were analyzed by paired t-test. The phytochemical investigation of Calotropis procera revealed the presence of cardenolides, flavonoids, and saponins. The effects of ethanol, n-butanol, and ethyl acetate (EtOAc) extracts were each evaluated on isolated toad heart and their mechanisms of action determined. Perfusion with 2 μg/mL ethanol, 0.2 μg/mL butanol, and 0.2 μg/mL EtOAc extracts caused a significant decrease in heart rate (bradycardia), significant increase in the force of ventricular contraction, and increase in T-wave amplitude. In addition, the effects of different extracts of the studied plant on smooth muscle and skeletal muscle were investigated in this study. The different extracts and latex of C. procera induced a negative chronotropic effect and decreased the heart rate (HR) of isolated toad heart. The different extracts increased the power of contraction of the duodenum (trace a). Pretreatment with atropine sulfate as a muscarinic receptor blocker abolished the stimulatory effect of the different plant extracts and latex of C. procera (trace b). The present data suggest that ethanol, butanol, and EtOAc extracts of Calotropis procera have negative chronotropism and positive inotropism. Verapamil could abolish the inotropic effect of ethanol as well as that of butanol and EtOAc extracts. Meanwhile, atropine did not abolish the observed negative chronotropic effect. The ethanol extract increased the power of contraction of rabbit duodenum, but atropine abolished this effect. It also decreased the skeletal muscle contraction; this effect could be through blocking of the nicotinic receptors. Butanol and EtOAc extract data for smooth and skeletal muscles are very close to those for the corresponding ethanol extract of the studied plant. The present data for C. procera indicate its direct action on the myocardium, its increase of smooth muscle motility, and its relaxation of skeletal muscle contraction. The chemical constituents could directly affect the cell membrane probably through receptors coupling to G proteins. They regulate the ion channel physiology as in the myocardium. The present data on the extracts of C. procera indicate a direct action on the myocardium, stimulatory effect on smooth muscle motility, and relaxant action on skeletal muscle contraction. Chemical constituents could directly affect the cell membrane probably through receptors coupling to G proteins. They regulate the ion channel physiology as in the myocardium.

  17. Melatonin and male reproductive health: relevance of darkness and antioxidant properties.

    PubMed

    Rocha, C S; Rato, L; Martins, A D; Alves, M G; Oliveira, P F

    2015-01-01

    The pineal hormone melatonin controls several physiological functions that reach far beyond the regulation of the circadian rhythm. Moreover, it can be produced in extra-pineal organs such as reproductive organs. The role of melatonin in the mammalian seasonal and circadian rhythm is well known. Nevertheless, its overall effect in male reproductive physiology remains largely unknown. Melatonin is a very powerful endogenous antioxidant that can also be exogenously taken safely. Interestingly, its antioxidant properties have been consistently reported to improve the male reproductive dysfunctions associated with pathological conditions and also with the exposure to toxicants. Nevertheless, the exact molecular mechanisms by which melatonin exerts its action in the male reproductive system remain a matter of debate. Herein, we propose to present an up-to-date overview of the melatonin effects in the male reproductive health and debate future directions to disclose possible sites of melatonin action in male reproductive system. We will discuss not only the role of melatonin during darkness and sleep but also the importance of the antioxidant properties of this hormone to male fertility. Since melatonin readily crosses the physiological barriers, such as the blood-testis barrier, and has a very low toxicity, it appears as an excellent candidate in the prevention and/or treatment of the multiple male reproductive dysfunctions associated with various pathologies.

  18. Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate

    PubMed Central

    Gao, Haixia; Boillat, Aurélien; Huang, Dongyang; Liang, Ce; Peers, Chris

    2017-01-01

    M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epilepsy. However, physiological mechanisms resulting in M channel potentiation are rare. Here we report that intracellular free zinc directly and reversibly augments the activity of recombinant and native M channels. This effect is mechanistically distinct from the known redox-dependent KCNQ channel potentiation. Interestingly, the effect of zinc cannot be attributed to a single histidine- or cysteine-containing zinc-binding site within KCNQ channels. Instead, zinc dramatically reduces KCNQ channel dependence on its obligatory physiological activator, phosphatidylinositol 4,5-bisphosphate (PIP2). We hypothesize that zinc facilitates interactions of the lipid-facing interface of a KCNQ protein with the inner leaflet of the plasma membrane in a way similar to that promoted by PIP2. Because zinc is increasingly recognized as a ubiquitous intracellular second messenger, this discovery might represent a hitherto unknown native pathway of M channel modulation and provide a fresh strategy for the design of M channel activators for therapeutic purposes. PMID:28716904

  19. Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Gao, Haixia; Boillat, Aurélien; Huang, Dongyang; Liang, Ce; Peers, Chris; Gamper, Nikita

    2017-08-01

    M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epilepsy. However, physiological mechanisms resulting in M channel potentiation are rare. Here we report that intracellular free zinc directly and reversibly augments the activity of recombinant and native M channels. This effect is mechanistically distinct from the known redox-dependent KCNQ channel potentiation. Interestingly, the effect of zinc cannot be attributed to a single histidine- or cysteine-containing zinc-binding site within KCNQ channels. Instead, zinc dramatically reduces KCNQ channel dependence on its obligatory physiological activator, phosphatidylinositol 4,5-bisphosphate (PIP 2 ). We hypothesize that zinc facilitates interactions of the lipid-facing interface of a KCNQ protein with the inner leaflet of the plasma membrane in a way similar to that promoted by PIP 2 Because zinc is increasingly recognized as a ubiquitous intracellular second messenger, this discovery might represent a hitherto unknown native pathway of M channel modulation and provide a fresh strategy for the design of M channel activators for therapeutic purposes.

  20. The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments.

    PubMed

    Ferrari, Marco; Muthalib, Makii; Quaresima, Valentina

    2011-11-28

    This article provides a snapshot of muscle near-infrared spectroscopy (NIRS) at the end of 2010 summarizing the recent literature, offering the present status and perspectives of the NIRS instrumentation and methods, describing the main NIRS studies on skeletal muscle physiology, posing open questions and outlining future directions. So far, different NIRS techniques (e.g. continuous-wave (CW) and spatially, time- and frequency-resolved spectroscopy) have been used for measuring muscle oxygenation during exercise. In the last four years, approximately 160 muscle NIRS articles have been published on different physiological aspects (primarily muscle oxygenation and haemodynamics) of several upper- and lower-limb muscle groups investigated by using mainly two-channel CW and spatially resolved spectroscopy commercial instruments. Unfortunately, in only 15 of these studies were the advantages of using multi-channel instruments exploited. There are still several open questions in the application of NIRS in muscle studies: (i) whether NIRS can be used in subjects with a large fat layer; (ii) the contribution of myoglobin desaturation to the NIRS signal during exercise; (iii) the effect of scattering changes during exercise; and (iv) the effect of changes in skin perfusion, particularly during prolonged exercise. Recommendations for instrumentation advancements and future muscle NIRS studies are provided.

  1. Measurement of the exposure of workers to pesticides*

    PubMed Central

    Durham, William F.; Wolfe, Homer R.

    1962-01-01

    There is not a single pesticide for which the interrelationships between occupational exposure by different routes, the fate of the compound in the human body, and its clinical effects are all adequately known. Results of the direct measurement of exposure to pesticides may be used in evaluating the relative hazard of different routes of exposure, different operational procedures, and different protective devices. Results of the indirect measurement of exposure may be of use for the same purpose; in addition, these indirect measures may be used in relating exposures under observed conditions to clinical effects. This paper describes and evaluates detailed procedures for the use of air samples, pads, and washes in the direct measurement of the dermal and respiratory exposure of workers to pesticides. Good methods are not available for measuring oral exposure. Any measure of the absorption, storage, physiological effect, or excretion of a compound constitutes an indirect indication of exposure to it. ImagesFIG. 2 PMID:13888659

  2. Hall effect in a moving liquid

    NASA Astrophysics Data System (ADS)

    Di Lieto, Alberto; Giuliano, Alessia; Maccarrone, Francesco; Paffuti, Giampiero

    2012-01-01

    A simple experiment, suitable for performing in an undergraduate physics laboratory, illustrates electromagnetic induction through the water entering into a cylindrical rubber tube by detecting the voltage developed across the tube in the direction transverse both to the flow velocity and to the magnetic field. The apparatus is a very simple example of an electromagnetic flowmeter, a device which is commonly used both in industrial and physiological techniques. The phenomenology observed is similar to that of the Hall effect in the absence of an electric current in the direction of motion of the carriers. The experimental results show a dependence on the intensity of the magnetic field and on the carrier velocity, in good agreement with the theory. Discussion of the system, based on classical electromagnetism, indicates that the effect depends only on the flow rate, and is independent both of the velocity profile and of the electrical conductivity of the medium.

  3. Conservation implications of physiological carry-over effects in bats recovering from white-nose syndrome.

    PubMed

    Davy, Christina M; Mastromonaco, Gabriela F; Riley, Julia L; Baxter-Gilbert, James H; Mayberry, Heather; Willis, Craig K R

    2017-06-01

    Although it is well documented that infectious diseases can pose threats to biodiversity, the potential long-term consequences of pathogen exposure on individual fitness and its effects on population viability have rarely been studied. We tested the hypothesis that pathogen exposure causes physiological carry-over effects with a pathogen that is uniquely suited to this question because the infection period is specific and time limited. The fungus Pseudogymnoascus destructans causes white-nose syndrome (WNS) in hibernating bats, which either die due to the infection while hibernating or recover following emergence from hibernation. The fungus infects all exposed individuals in an overwintering site simultaneously, and bats that survive infection during hibernation clear the pathogen within a few weeks following emergence. We quantified chronic stress during the active season, when bats are not infected, by measuring cortisol in bat claws. Free-ranging Myotis lucifugus who survived previous exposure to P. destructans had significantly higher levels of claw cortisol than naïve individuals. Thus, cryptic physiological carry-over effects of pathogen exposure may persist in asymptomatic, recovered individuals. If these effects result in reduced survival or reproductive success, they could also affect population viability and even act as a third stream in the extinction vortex. For example, significant increases in chronic stress, such as those indicated here, are correlated with reduced reproductive success in a number of species. Future research should directly explore the link between pathogen exposure and the viability of apparently recovered populations to improve understanding of the true impacts of infectious diseases on threatened populations. © 2016 Society for Conservation Biology.

  4. Light-evoked S-nitrosylation in the retina

    PubMed Central

    Tooker, Ryan E; Vigh, Jozsef

    2015-01-01

    Nitric oxide (NO) synthesis in the retina is triggered by light stimulation. NO has been shown to modulate visual signal processing at multiple sites in the vertebrate retina, via activation of the most sensitive target of NO signaling, soluble guanylate cyclase. NO can also alter protein structure and function and exert biological effects directly by binding to free thiol groups of cysteine residues in a chemical reaction called S-nitrosylation. However, in the central nervous system, including the retina, this reaction has not been considered to be significant under physiological conditions. Here we provide immunohistochemical evidence for extensive S-nitrosylation that takes place in the goldfish and mouse retinas under physiologically relevant light intensities, in an intensity-dependent manner, with a strikingly similar pattern in both species. Pre-treatment with NEM, which occludes S-nitrosylation, or with TRIM, an inhibitor of neuronal NO synthase, eliminated the light-evoked increase in S-nitrosylated protein immunofluorescence (SNI) in the retinas of both species. Similarly, light did not increase SNI, above basal levels, in retinas of transgenic mice lacking neuronal NO synthase. Qualitative analysis of the light-adapted mouse retina with mass spectrometry revealed more than 300 proteins that were S-nitrosylated upon illumination, many of which are known to participate directly in retinal signal processing. Our data strongly suggest that in the retina, light-evoked NO production leads to extensive S-nitrosylation and that this process is a significant post-translational modification affecting a wide range of proteins under physiological conditions. PMID:25823749

  5. Complex Physiological Response of Norway Spruce to Atmospheric Pollution - Decreased Carbon Isotope Discrimination and Unchanged Tree Biomass Increment.

    PubMed

    Čada, Vojtěch; Šantrůčková, Hana; Šantrůček, Jiří; Kubištová, Lenka; Seedre, Meelis; Svoboda, Miroslav

    2016-01-01

    Atmospheric pollution critically affects forest ecosystems around the world by directly impacting the assimilation apparatus of trees and indirectly by altering soil conditions, which subsequently also leads to changes in carbon cycling. To evaluate the extent of the physiological effect of moderate level sulfate and reactive nitrogen acidic deposition, we performed a retrospective dendrochronological analysis of several physiological parameters derived from periodic measurements of carbon stable isotope composition ((13)C discrimination, intercellular CO2 concentration and intrinsic water use efficiency) and annual diameter increments (tree biomass increment, its inter-annual variability and correlation with temperature, cloud cover, precipitation and Palmer drought severity index). The analysis was performed in two mountain Norway spruce (Picea abies) stands of the Bohemian Forest (Czech Republic, central Europe), where moderate levels of pollution peaked in the 1970s and 1980s and no evident impact on tree growth or link to mortality has been reported. The significant influence of pollution on trees was expressed most sensitively by a 1.88‰ reduction of carbon isotope discrimination (Δ(13)C). The effects of atmospheric pollution interacted with increasing atmospheric CO2 concentration and temperature. As a result, we observed no change in intercellular CO2 concentrations (Ci), an abrupt increase in water use efficiency (iWUE) and no change in biomass increment, which could also partly result from changes in carbon partitioning (e.g., from below- to above-ground). The biomass increment was significantly related to Δ(13)C on an individual tree level, but the relationship was lost during the pollution period. We suggest that this was caused by a shift from the dominant influence of the photosynthetic rate to stomatal conductance on Δ(13)C during the pollution period. Using biomass increment-climate correlation analyses, we did not identify any clear pollution-related change in water stress or photosynthetic limitation (since biomass increment did not become more sensitive to drought/precipitation or temperature/cloud cover, respectively). Therefore, we conclude that the direct effect of moderate pollution on stomatal conductance was likely the main driver of the observed physiological changes. This mechanism probably caused weakening of the spruce trees and increased sensitivity to other stressors.

  6. Complex Physiological Response of Norway Spruce to Atmospheric Pollution – Decreased Carbon Isotope Discrimination and Unchanged Tree Biomass Increment

    PubMed Central

    Čada, Vojtěch; Šantrůčková, Hana; Šantrůček, Jiří; Kubištová, Lenka; Seedre, Meelis; Svoboda, Miroslav

    2016-01-01

    Atmospheric pollution critically affects forest ecosystems around the world by directly impacting the assimilation apparatus of trees and indirectly by altering soil conditions, which subsequently also leads to changes in carbon cycling. To evaluate the extent of the physiological effect of moderate level sulfate and reactive nitrogen acidic deposition, we performed a retrospective dendrochronological analysis of several physiological parameters derived from periodic measurements of carbon stable isotope composition (13C discrimination, intercellular CO2 concentration and intrinsic water use efficiency) and annual diameter increments (tree biomass increment, its inter-annual variability and correlation with temperature, cloud cover, precipitation and Palmer drought severity index). The analysis was performed in two mountain Norway spruce (Picea abies) stands of the Bohemian Forest (Czech Republic, central Europe), where moderate levels of pollution peaked in the 1970s and 1980s and no evident impact on tree growth or link to mortality has been reported. The significant influence of pollution on trees was expressed most sensitively by a 1.88‰ reduction of carbon isotope discrimination (Δ13C). The effects of atmospheric pollution interacted with increasing atmospheric CO2 concentration and temperature. As a result, we observed no change in intercellular CO2 concentrations (Ci), an abrupt increase in water use efficiency (iWUE) and no change in biomass increment, which could also partly result from changes in carbon partitioning (e.g., from below- to above-ground). The biomass increment was significantly related to Δ13C on an individual tree level, but the relationship was lost during the pollution period. We suggest that this was caused by a shift from the dominant influence of the photosynthetic rate to stomatal conductance on Δ13C during the pollution period. Using biomass increment-climate correlation analyses, we did not identify any clear pollution-related change in water stress or photosynthetic limitation (since biomass increment did not become more sensitive to drought/precipitation or temperature/cloud cover, respectively). Therefore, we conclude that the direct effect of moderate pollution on stomatal conductance was likely the main driver of the observed physiological changes. This mechanism probably caused weakening of the spruce trees and increased sensitivity to other stressors. PMID:27375659

  7. Exercise as a countermeasure for physiological adaptation to prolonged spaceflight

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1996-01-01

    Exercise represents the primary countermeasure used during spaceflight to maintain or restore maximal aerobic capacity (VO2max), musculoskeletal structure, and orthostatic function. However, no single exercise or combination of prescriptions has proven entirely effective in restoring cardiovascular and musculoskeletal functions to preflight levels following prolonged spaceflight. As human spaceflight exposures increase in duration, assessment and development of various effective exercise-based protective procedures become paramount. This must involve improvement in specific countermeasure prescription as well as development of additional approaches that will allow space travelers greater flexibility and medical safety during long flights. Effective exercise prescription will be based on identification of basic physiological stimuli that maintain normal function in terrestrial gravity and understanding of how specific combinations of exercise characteristics e.g., duration, frequency, intensity, mode) can mimic these stimuli and affect the overall process of adaptation to microgravity. This can be accomplished only with greater emphasis of research on ground-based experiments. Future attention must be directed to improving exercise compliance while minimizing both crew time and the impact of the exercise on life-support resources.

  8. Cooling interventions for athletes: An overview of effectiveness, physiological mechanisms, and practical considerations

    PubMed Central

    Bongers, Coen C. W. G.; Hopman, Maria T. E.; Eijsvogels, Thijs M. H.

    2017-01-01

    ABSTRACT Exercise-induced increases in core body temperature could negative impact performance and may lead to development of heat-related illnesses. The use of cooling techniques prior (pre-cooling), during (per-cooling) or directly after (post-cooling) exercise may limit the increase in core body temperature and therefore improve exercise performance. The aim of the present review is to provide a comprehensive overview of current scientific knowledge in the field of pre-cooling, per-cooling and post-cooling. Based on existing studies, we will discuss 1) the effectiveness of cooling interventions, 2) the underlying physiological mechanisms and 3) practical considerations regarding the use of different cooling techniques. Furthermore, we tried to identify the optimal cooling technique and compared whether cooling-induced performance benefits are different between cool, moderate and hot ambient conditions. This article provides researchers, physicians, athletes and coaches with important information regarding the implementation of cooling techniques to maintain exercise performance and to successfully compete in thermally stressful conditions. PMID:28349095

  9. Does attention redirection contribute to the effectiveness of attention bias modification on social anxiety?

    PubMed

    Yao, Nisha; Yu, Hongyu; Qian, Mingyi; Li, Songwei

    2015-12-01

    Attention bias modification (ABM) is designed to modify threat-related attention bias and thus alleviate anxiety. The current research examined whether consistently directing attention towards targeted goals per se contributes to ABM efficacy. We randomly assigned 68 non-clinical college students with elevated social anxiety to non-valence-specific attend-to-geometrics (AGC), attention modification (AMC), or attention control (ACC) conditions. We assessed subjective, behavioral, and physiological reactivity to a speech task and self-reported social anxiety symptoms. After training, participants in the AMC exhibited an attention avoidance from threat, and those in the AGC responded more rapidly toward targeted geometrics. There was a significant pre- to post-reduction in subjective speech distress across groups, but behavioral and physiological reactivity to speech, as well as self-report social anxiety symptoms, remained unchanged. These results lead to questions concerning effectiveness of ABM training for reducing social anxiety. Further examination of the current ABM protocol is required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Basic physiological systems indicator's informative assessment for children and adolescents obesity diagnosis tasks

    NASA Astrophysics Data System (ADS)

    Marukhina, O. V.; Berestneva, O. G.; Emelyanova, Yu A.; Romanchukov, S. V.; Petrova, L.; Lombardo, C.; Kozlova, N. V.

    2018-05-01

    The healthcare computerization creates opportunities to the clinical decision support system development. In the course of diagnosis, doctor manipulates a considerable amount of data and makes a decision in the context of uncertainty basing upon the first-hand experience and knowledge. The situation is exacerbated by the fact that the knowledge scope in medicine is incrementally growing, but the decision-making time does not increase. The amount of medical malpractice is growing and it leads to various negative effects, even the mortality rate increase. IT-solution's development for clinical purposes is one of the most promising and efficient ways to prevent these effects. That is why the efforts of many IT specialists are directed to the doctor's heuristics simulating software or expert-based medical decision-making algorithms development. Thus, the objective of this study is to develop techniques and approaches for the body physiological system's informative value assessment index for the obesity degree evaluation based on the diagnostic findings.

  11. The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO₂ transport facilitator.

    PubMed

    Heckwolf, Marlies; Pater, Dianne; Hanson, David T; Kaldenhoff, Ralf

    2011-09-01

    Cellular exchange of carbon dioxide (CO₂) is of extraordinary importance for life. Despite this significance, its molecular mechanisms are still unclear and a matter of controversy. In contrast to other living organisms, plants are physiologically limited by the availability of CO₂. In most plants, net photosynthesis is directly dependent on CO₂ diffusion from the atmosphere to the chloroplast. Thus, it is important to analyze CO₂ transport with regards to its effect on photosynthesis. A mutation of the Arabidopsis thaliana AtPIP1;2 gene, which was characterized as a non-water transporting but CO₂ transport-facilitating aquaporin in heterologous expression systems, correlated with a reduction in photosynthesis under a wide range of atmospheric CO₂ concentrations. Here, we could demonstrate that the effect was caused by reduced CO₂ conductivity in leaf tissue. It is concluded that the AtPIP1;2 gene product limits CO₂ diffusion and photosynthesis in leaves. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  12. How Placebo Needles Differ From Placebo Pills?

    PubMed Central

    Chae, Younbyoung; Lee, Ye-Seul; Enck, Paul

    2018-01-01

    Because acupuncture treatment is defined by the process of needles penetrating the body, placebo needles were originally developed with non-penetrating mechanisms. However, whether placebo needles are valid controls in acupuncture research is subject of an ongoing debate. The present review provides an overview of the characteristics of placebo needles and how they differ from placebo pills in two aspects: (1) physiological response and (2) blinding efficacy. We argue that placebo needles elicit physiological responses similar to real acupuncture and therefore provide similar clinical efficacy. We also demonstrate that this efficacy is further supported by ineffective blinding (even in acupuncture-naïve patients) which may lead to opposite guesses that will further enhances efficacy, as compared to no-treatment, e.g., with waiting list controls. Additionally, the manner in which placebo needles can exhibit therapeutic effects relative to placebo pills include enhanced touch sensations, direct stimulation of the somatosensory system and activation of multiple brain systems. We finally discuss alternative control strategies for the placebo effects in acupuncture therapy.

  13. Use of automated monitoring to assess behavioral toxicology in fish: Linking behavior and physiology

    USGS Publications Warehouse

    Brewer, S.K.; DeLonay, A.J.; Beauvais, S.L.; Little, E.E.; Jones, S.B.

    1999-01-01

    We measured locomotory behaviors (distance traveled, speed, tortuosity of path, and rate of change in direction) with computer-assisted analysis in 30 day posthatch rainbow trout (Oncorhynchus mykiss) exposed to pesticides. We also examined cholinesterase inhibition as a potential endpoint linking physiology and behavior. Sublethal exposure to chemicals often causes changes in swimming behavior, reflecting alterations in sensory and motor systems. Swimming behavior also integrates functions of the nervous system. Rarely are the connections between physiology and behavior made. Although behavior is often suggested as a sensitive, early indicator of toxicity, behavioral toxicology has not been used to its full potential because conventional methods of behavioral assessment have relied on manual techniques, which are often time-consuming and difficult to quantify. This has severely limited the application and utility of behavioral procedures. Swimming behavior is particularly amenable to computerized assessment and automated monitoring. Locomotory responses are sensitive to toxicants and can be easily measured. We briefly discuss the use of behavior in toxicology and automated techniques used in behavioral toxicology. We also describe the system we used to determine locomotory behaviors of fish, and present data demonstrating the system's effectiveness in measuring alterations in response to chemical challenges. Lastly, we correlate behavioral and physiological endpoints.

  14. A way forward for teaching and learning of Physiology: Students’ perception of the effectiveness of teaching methodologies

    PubMed Central

    Rehan, Rabiya; Ahmed, Khalid; Khan, Hira; Rehman, Rehana

    2016-01-01

    Objective: To compare the perception of medical students on the usefulness of the interactive lectures, case-based lectures, and structured interactive sessions (SIS) in teaching and learning of Physiology. Methods: A cross-sectional study was carried out from January to December 2012 at Bahria University Medical & Dental College, Karachi, which had qualitative and quantitative aspects, assessed by self- reported questionnaire and focused group discussion (FGD). The questionnaire was distributed to 100 medical students after completion of first year of teaching of MBBS Physiology. The data was analyzed using SPSS version 15. Differences were considered significant at p-values <0.05 after application of Friedman test. Responses of FGD were analyzed. Results: All the teaching methodologies helped in understanding of precise learning objectives. The comprehension of structure and functions with understanding of difficult concepts was made best possible by SIS (p=0.04, p<0.01). SIS enabled adult learning, self-directed learning, peer learning and critical reasoning more than the other teaching strategies (p< 0.01). Conclusion: SIS involved students who used reasoning skills and power of discussion in a group to comprehend difficult concepts for better understanding of Physiology as compared to interactive and case-based lectures. PMID:28083047

  15. The vaginal microbiota, host defence and reproductive physiology

    PubMed Central

    Smith, Steven B

    2016-01-01

    Abstract The interaction between the human host and the vaginal microbiota is highly dynamic. Major changes in the vaginal physiology and microbiota over a woman's lifetime are largely shaped by transitional periods such as puberty, menopause and pregnancy, while daily fluctuations in microbial composition observed through culture‐independent studies are more likely to be the results of daily life activities and behaviours. The vaginal microbiota of reproductive‐aged women is largely made up of at least five different community state types. Four of these community state types are dominated by lactic‐acid producing Lactobacillus spp. while the fifth is commonly composed of anaerobes and strict anaerobes and is sometimes associated with vaginal symptoms. The production of lactic acid has been associated with contributing to the overall health of the vagina due to its direct and indirect effects on pathogens and host defence. Some species associated with non‐Lactobacillus vaginal microbiota may trigger immune responses as well as degrade the host mucosa, processes that ultimately increase susceptibility to infections and contribute to negative reproductive outcomes such as infertility and preterm birth. Further studies are needed to better understand the functional underpinnings of how the vaginal microbiota affect host physiology but also how host physiology affects the vaginal microbiota. Understanding this fine‐tuned interaction is key to maintaining women's reproductive health. PMID:27373840

  16. Are fish immune systems really affected by parasites? an immunoecological study of common carp (Cyprinus carpio)

    PubMed Central

    2011-01-01

    Background The basic function of the immune system is to protect an organism against infection in order to minimize the fitness costs of being infected. According to life-history theory, energy resources are in a trade-off between the costly demands of immunity and other physiological demands. Concerning fish, both physiology and immunity are influenced by seasonal changes (i.e. temporal variation) associated to the changes of abiotic factors (such as primarily water temperature) and interactions with pathogens and parasites. In this study, we investigated the potential associations between the physiology and immunocompetence of common carp (Cyprinus carpio) collected during five different periods of a given year. Our sampling included the periods with temporal variability and thus, it presented a different level in exposure to parasites. We analyzed which of two factors, seasonality or parasitism, had the strongest impact on changes in fish physiology and immunity. Results We found that seasonal changes play a key role in affecting the analyzed measurements of physiology, immunity and parasitism. The correlation analysis revealed the relationships between the measures of overall host physiology, immunity and parasite load when temporal variability effect was removed. When analyzing separately parasite groups with different life-strategies, we found that fish with a worse condition status were infected more by monogeneans, representing the most abundant parasite group. The high infection by cestodes seems to activate the phagocytes. A weak relationship was found between spleen size and abundance of trematodes when taking into account seasonal changes. Conclusions Even if no direct trade-off between the measures of host immunity and physiology was confirmed when taking into account the seasonality, it seems that seasonal variability affects host immunity and physiology through energy allocation in a trade-off between life important functions, especially reproduction and fish condition. Host immunity measures were not found to be in a trade-off with the investigated physiological traits or functions, but we confirmed the immunosuppressive role of 11-ketotestosterone on fish immunity measured by complement activity. We suggest that the different parasite life-strategies influence different aspects of host physiology and activate the different immunity pathways. PMID:21708010

  17. Social defeat protocol and relevant biomarkers, implications for stress response physiology, drug abuse, mood disorders and individual stress vulnerability: a systematic review of the last decade.

    PubMed

    Vasconcelos, Mailton; Stein, Dirson João; de Almeida, Rosa Maria M

    2015-01-01

    Social defeat (SD) in rats, which results from male intraspecific confrontations, is ethologically relevant and useful to understand stress effects on physiology and behavior. A systematic review of studies about biomarkers induced by the SD protocol and published from 2002 to 2013 was carried out in the electronic databases PubMed, Web of Knowledge and ScienceDirect. The search terms were: social defeat, rat, neurotrophins, neuroinflammatory markers, and transcriptional factors. Classical and recently discovered biomarkers were found to be relevant in stress-induced states. Findings were summarized in accordance to the length of exposure to stress: single, repeated, intermittent and continuous SD. This review found that the brain-derived neurotrophic factor (BDNF) is a distinct marker of stress adaptation. Along with glucocorticoids and catecholamines, BDNF seems to be important in understanding stress physiology. The SD model provides a relevant tool to study stress response features, development of addictive behaviors, clinic depression and anxiety, as well as individual differences in vulnerability and resilience to stress.

  18. The Role of ERK1/2 in the Progression of Anti-Androgen Resistance of MtDNA Deficient Prostate Cancer

    DTIC Science & Technology

    2012-03-01

    proto-oncogenic pathway, it is plausible that the mitoGPS is a ubiquitous (patho) physiological response to the etiology and/or progression of a broad...the mitochondrion as a direct physiological source of hypoxia in an in vitro system. Our results demonstrate that the reduction of the mitochondrial...ubiquitous (patho) physiological response to the etiology and/or progression of a broad spectrum of human diseases that are attributed to respiratory

  19. Biofield Physiology: A Framework for an Emerging Discipline

    PubMed Central

    Levin, Michael; McCraty, Rollin; Bat, Namuun; Ives, John A.; Lutgendorf, Susan K.; Oschman, James L.

    2015-01-01

    Biofield physiology is proposed as an overarching descriptor for the electromagnetic, biophotonic, and other types of spatially-distributed fields that living systems generate and respond to as integral aspects of cellular, tissue, and whole organism self-regulation and organization. Medical physiology, cell biology, and biophysics provide the framework within which evidence for biofields, their proposed receptors, and functions is presented. As such, biofields can be viewed as affecting physiological regulatory systems in a manner that complements the more familiar molecular-based mechanisms. Examples of clinically relevant biofields are the electrical and magnetic fields generated by arrays of heart cells and neurons that are detected, respectively, as electrocardiograms (ECGs) or magnetocardiograms (MCGs) and electroencephalograms (EEGs) or magnetoencephalograms (MEGs). At a basic physiology level, electromagnetic activity of neural assemblies appears to modulate neuronal synchronization and circadian rhythmicity. Numerous nonneural electrical fields have been detected and analyzed, including those arising from patterns of resting membrane potentials that guide development and regeneration, and from slowly-varying transepithelial direct current fields that initiate cellular responses to tissue damage. Another biofield phenomenon is the coherent, ultraweak photon emissions (UPE), detected from cell cultures and from the body surface. A physiological role for biophotons is consistent with observations that fluctuations in UPE correlate with cerebral blood flow, cerebral energy metabolism, and EEG activity. Biofield receptors are reviewed in 3 categories: molecular-level receptors, charge flux sites, and endogenously generated electric or electromagnetic fields. In summary, sufficient evidence has accrued to consider biofield physiology as a viable scientific discipline. Directions for future research are proposed. PMID:26665040

  20. Biofield Physiology: A Framework for an Emerging Discipline.

    PubMed

    Hammerschlag, Richard; Levin, Michael; McCraty, Rollin; Bat, Namuun; Ives, John A; Lutgendorf, Susan K; Oschman, James L

    2015-11-01

    Biofield physiology is proposed as an overarching descriptor for the electromagnetic, biophotonic, and other types of spatially-distributed fields that living systems generate and respond to as integral aspects of cellular, tissue, and whole organism self-regulation and organization. Medical physiology, cell biology, and biophysics provide the framework within which evidence for biofields, their proposed receptors, and functions is presented. As such, biofields can be viewed as affecting physiological regulatory systems in a manner that complements the more familiar molecular-based mechanisms. Examples of clinically relevant biofields are the electrical and magnetic fields generated by arrays of heart cells and neurons that are detected, respectively, as electrocardiograms (ECGs) or magnetocardiograms (MCGs) and electroencephalograms (EEGs) or magnetoencephalograms (MEGs). At a basic physiology level, electromagnetic activity of neural assemblies appears to modulate neuronal synchronization and circadian rhythmicity. Numerous nonneural electrical fields have been detected and analyzed, including those arising from patterns of resting membrane potentials that guide development and regeneration, and from slowly-varying transepithelial direct current fields that initiate cellular responses to tissue damage. Another biofield phenomenon is the coherent, ultraweak photon emissions (UPE), detected from cell cultures and from the body surface. A physiological role for biophotons is consistent with observations that fluctuations in UPE correlate with cerebral blood flow, cerebral energy metabolism, and EEG activity. Biofield receptors are reviewed in 3 categories: molecular-level receptors, charge flux sites, and endogenously generated electric or electromagnetic fields. In summary, sufficient evidence has accrued to consider biofield physiology as a viable scientific discipline. Directions for future research are proposed.

  1. The political left rolls with the good and the political right confronts the bad: connecting physiology and cognition to preferences

    PubMed Central

    Dodd, Michael D.; Balzer, Amanda; Jacobs, Carly M.; Gruszczynski, Michael W.; Smith, Kevin B.; Hibbing, John R.

    2012-01-01

    We report evidence that individual-level variation in people's physiological and attentional responses to aversive and appetitive stimuli are correlated with broad political orientations. Specifically, we find that greater orientation to aversive stimuli tends to be associated with right-of-centre and greater orientation to appetitive (pleasing) stimuli with left-of-centre political inclinations. These findings are consistent with recent evidence that political views are connected to physiological predispositions but are unique in incorporating findings on variation in directed attention that make it possible to understand additional aspects of the link between the physiological and the political. PMID:22271780

  2. An overview of current approaches and future challenges in physiological monitoring

    NASA Technical Reports Server (NTRS)

    Horst, Richard L.

    1988-01-01

    Sufficient evidence exists from laboratory studies to suggest that physiological measures can be useful as an adjunct to behavioral and subjective measures of human performance and capabilities. Thus it is reasonable to address the conceptual and engineering challenges that arise in applying this technology in operational settings. Issues reviewed include the advantages and disadvantages of constructs such as mental states, the need for physiological measures of performance, areas of application for physiological measures in operational settings, which measures appear to be most useful, problem areas that arise in the use of these measures in operational settings, and directions for future development.

  3. Interactive direct and plant-mediated effects of elevated atmospheric [CO2 ] and temperature on a eucalypt-feeding insect herbivore.

    PubMed

    Murray, T J; Ellsworth, D S; Tissue, D T; Riegler, M

    2013-05-01

    Understanding the direct and indirect effects of elevated [CO2 ] and temperature on insect herbivores and how these factors interact are essential to predict ecosystem-level responses to climate change scenarios. In three concurrent glasshouse experiments, we measured both the individual and interactive effects of elevated [CO2 ] and temperature on foliar quality. We also assessed the interactions between their direct and plant-mediated effects on the development of an insect herbivore of eucalypts. Eucalyptus tereticornis saplings were grown at ambient or elevated [CO2 ] (400 and 650 μmol mol(-1) respectively) and ambient or elevated ( + 4 °C) temperature for 10 months. Doratifera quadriguttata (Lepidoptera: Limacodidae) larvae were feeding directly on these trees, on their excised leaves in a separate glasshouse, or on excised field-grown leaves within the temperature and [CO2 ] controlled glasshouse. To allow insect gender to be determined and to ensure that any sex-specific developmental differences could be distinguished from treatment effects, insect development time and consumption were measured from egg hatch to pupation. No direct [CO2 ] effects on insects were observed. Elevated temperature accelerated larval development, but did not affect leaf consumption. Elevated [CO2 ] and temperature independently reduced foliar quality, slowing larval development and increasing consumption. Simultaneously increasing both [CO2 ] and temperature reduced these shifts in foliar quality, and negative effects on larval performance were subsequently ameliorated. Negative nutritional effects of elevated [CO2 ] and temperature were also independently outweighed by the direct positive effect of elevated temperature on larvae. Rising [CO2 ] and temperature are thus predicted to have interactive effects on foliar quality that affect eucalypt-feeding insects. However, the ecological consequences of these interactions will depend on the magnitude of concurrent temperature rise and its direct effects on insect physiology and feeding behaviour. © 2013 Blackwell Publishing Ltd.

  4. Student perceptions and learning outcomes of blended learning in a massive first-year core physiology for allied health subjects.

    PubMed

    Page, Janelle; Meehan-Andrews, Terri; Weerakkody, Nivan; Hughes, Diane L; Rathner, Joseph A

    2017-03-01

    Evidence shows that factors contributing to success in physiology education for allied health students at universities include not only their high school achievement and background but also factors such as confidence with their teachers and quality of their learning experience, justifying intensive and continued survey of students' perceptions of their learning experience. Here we report data covering a 3-yr period in a physiology subject that has been redesigned for blended and online presentation. Consistent with previous reports, we show that when we undertook a blended mode of delivery, students demonstrated better grades than traditional modes of teaching; however the absence of didactic teaching in this subject resulted in lower grades overall. Students have very strong positive attitudes to weekly quizzes (80% positive approval) but report ambivalent attitudes to online self-directed learning (61% negative perception), even though they had 2-h weekly facilitated workshops. Overwhelmingly, students who undertook the subject in a self-directed online learning mode requested more face-to-face-teaching (70% of comments). From these data, we suggest that there is a quantifiable benefit to didactic teaching in the blended teaching mode that is not reproduced in online self-directed learning, even when face-to-face guided inquiry-based learning is embedded in the subject. Copyright © 2017 the American Physiological Society.

  5. Physiology of motion sickness symptoms

    NASA Technical Reports Server (NTRS)

    Harm, Deborah L.

    1990-01-01

    Motion sickness research is reviewed with the emphasis placed on theories developed to explain its symptomatology. A general review of central nervous system, autonomic nervous system, and neuroendocrine system involvement in the syndrome. Particular attention is given to signs, symptoms, and physiological correlates, methodological issues, and directions for future research based on a dynamic interactive systems model.

  6. Using time-series intervention analysis to model cow heart rate affected by programmed audio and environmental/physiological

    USDA-ARS?s Scientific Manuscript database

    This research is the first use of the Box-Jenkins time-series models to describe changes in heart rate (HR) of free-ranging crossbred cows (Bos taurus) receiving both programmed audio cues from directional virtual fencing (DVFTM) devices and non-programmed environmental/physiological cues. The DVFT...

  7. Biology 23. Unit One -- The Cell: Structure and Physiology.

    ERIC Educational Resources Information Center

    Nederland Independent School District, TX.

    GRADES OR AGES: Not given. SUBJECT MATTER: Biology, the structure and physiology of the cell. ORGANIZATION AND PHYSICAL APPEARANCE: There are four sections: a) objectives for the unit, b) bibliography, c) activities, and d) evaluation. The guide is directed to the student rather than the teacher. The guide is mimeographed and stapled, with no…

  8. A Double-Blind Atropine Trial for Active Learning of Autonomic Function

    ERIC Educational Resources Information Center

    Fry, Jeffrey R.; Burr, Steven A.

    2011-01-01

    Here, we describe a human physiology laboratory class measuring changes in autonomic function over time in response to atropine. Students use themselves as subjects, generating ownership and self-interest in the learning as well as directly experiencing the active link between physiology and pharmacology in people. The class is designed to…

  9. Reduced reproductive function in wild baboons (Papio hamadryas anubis) related to natural consumption of the African black plum (Vitex doniana).

    PubMed

    Higham, James P; Ross, Caroline; Warren, Ymke; Heistermann, Michael; MacLarnon, Ann M

    2007-09-01

    Several authors have suggested that the consumption of plant compounds may have direct effects on wild primate reproductive biology, but no studies have presented physiological evidence of such effects. Here, for two troops of olive baboons (Papio hamadryas anubis) at Gashaka-Gumti National Park, Nigeria, we show major seasonal increases in levels of fecal progesterone metabolites in females, and provide evidence that this is linked to the consumption of natural plant compounds. Increases in fecal progestogen excretion occurred seasonally in all females, in all reproductive states, including lactation. Detailed feeding data on the study animals showed that only one food species is consumed by both troops at the time of observed progestogen peaks, and at no other times of the year: the African black plum, Vitex doniana. Laboratory tests demonstrated the presence of high concentrations of progestogen-like compounds in V. doniana. Together with published findings linking the consumption of a related Vitex species (Vitex agnus castus) to increased progestogen levels in humans, our data suggest that natural consumption of V. doniana was a likely cause of the observed increases in progestogens. Levels of progestogen excretion in the study baboons during periods of V. doniana consumption are higher than those found during pregnancy, and prevent the expression of the sexual swelling, which is associated with ovulatory activity. As consortship and copulatory activity in baboons occur almost exclusively in the presence of a sexual swelling, V. doniana appears to act on cycling females as both a physiological contraceptive (simulating pregnancy in a similar way to some forms of the human contraceptive pill) and a social contraceptive (preventing sexual swelling, thus reducing association and copulation with males). The negative effects of V. doniana on reproduction may be counter-balanced by the wide-range of medicinal properties attributed to plants in this genus. This is the first time that physiological evidence has been presented of direct effects of plant consumption on the reproductive biology of wild primates.

  10. Mechanical interactions between ice crystals and red blood cells during directional solidification.

    PubMed

    Ishiguro, H; Rubinsky, B

    1994-10-01

    Experiments in which red blood cells were frozen on a directional solidification stage under a microscope show that there is a mechanical interaction between ice crystals and cells in which cells are pushed and deformed by the ice crystals. The mechanical interaction occurs during freezing of cells in physiological saline and is significantly inhibited by the addition of 20% v/v glycerol to the solution. The addition of osmotically insignificant quantities of antifreeze proteins from the winter flounder or ocean pout to the physiological saline with 20% v/v glycerol generates strong mechanical interactions between the ice and the cells. The cells were destroyed during freezing in physiological saline, survived freezing in physiological saline with glycerol, and were completely destroyed by the addition of antifreeze proteins to the solution with glycerol. The difference in cell survival through freezing and thawing appears to be related, in part, to the habit of ice crystal growing in the suspension of red blood cells and the nature of mechanical interaction between the ice crystal and the cells. This suggests that mechanical damage may be a factor during cryopreservation of cells.

  11. Network Physiology: How Organ Systems Dynamically Interact

    PubMed Central

    Bartsch, Ronny P.; Liu, Kang K. L.; Bashan, Amir; Ivanov, Plamen Ch.

    2015-01-01

    We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems. PMID:26555073

  12. Effects of microgravity on vestibular ontogeny: direct physiological and anatomical measurements following space flight (STS-29)

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Fermin, C.; Hester, P. Y.; Vellinger, J.

    1993-01-01

    Does space flight change gravity receptor development? The present study measured vestibular form and function in birds flown as embryos for 5 days in earth orbit (STS-29). No major changes in vestibular gross morphology were found. Vestibular response mean amplitudes and latencies were unaffected by space flight. However, the results of measuring vestibular thresholds were mixed and abnormal responses in 3 of the 8 flight animals raise important questions.

  13. High temperature, oxygen, and performance: Insights from reptiles and amphibians.

    PubMed

    Gangloff, Eric J; Telemeco, Rory S

    2018-04-25

    Much recent theoretical and empirical work has sought to describe the physiological mechanisms underlying thermal tolerance in animals. Leading hypotheses can be broadly divided into two categories that primarily differ in organizational scale: 1) high temperature directly reduces the function of subcellular machinery, such as enzymes and cell membranes, or 2) high temperature disrupts system-level interactions, such as mismatches in the supply and demand of oxygen, prior to having any direct negative effect on the subcellular machinery. Nonetheless, a general framework describing the contexts under which either subcellular component or organ system failure limits organisms at high temperatures remains elusive. With this commentary, we leverage decades of research on the physiology of ectothermic tetrapods (amphibians and non-avian reptiles) to address these hypotheses. Available data suggest both mechanisms are important. Thus, we expand previous work and propose the Hierarchical Mechanisms of Thermal Limitation (HMTL) hypothesis, which explains how subcellular and organ system failures interact to limit performance and set tolerance limits at high temperatures. We further integrate this framework with the thermal performance curve paradigm commonly used to predict the effects of thermal environments on performance and fitness. The HMTL framework appears to successfully explain diverse observations in reptiles and amphibians and makes numerous predictions that remain untested. We hope that this framework spurs further research in diverse taxa and facilitates mechanistic forecasts of biological responses to climate change.

  14. Physiological responses of bacteria in biofilms to disinfection.

    PubMed Central

    Yu, F P; McFeters, G A

    1994-01-01

    In situ enumeration methods using fluorescent probes and a radioisotope labelling technique were applied to evaluate physiological changes of Klebsiella pneumoniae within biofilms after disinfection treatment. Chlorine (0.25 mg of free chlorine per liter [pH 7.2]) and monochloramine (1 mg/liter [pH 9.0]) were employed as disinfectants in the study. Two fluorgenic compounds, 5-cyano-2,3-ditolyl tetrazolium chloride and rhodamine 123, and tritiated uridine incorporation were chosen for assessment of physiological activities. Results obtained by these methods were compared with those from the plate count and direct viable count methods. 5-Cyano-2,3-ditolyl tetrazolium chloride is an indicator of bacterial respiratory activity, rhodamine 123 is incorporated into bacteria in response to transmembrane potential, and the incorporation of uridine represents the global RNA turnover rate. The results acquired by these methods following disinfection exposure showed a range of responses and suggested different physiological reactions in biofilms exposed to chlorine and monochloramine. The direct viable count response and respiratory activity were affected more by disinfection than were the transmembrane potential and RNA turnover rate on the basis of comparable efficiency as evaluated by plate count enumeration. Information revealed by these approaches can provide different physiological insights that may be used in evaluating the efficacy of biofilm disinfection. PMID:8074525

  15. Synergistic association of elevated serum free fatty acid and glucose levels with large arterial stiffness in a general population: The Nagahama Study.

    PubMed

    Tabara, Yasuharu; Takahashi, Yoshimitsu; Setoh, Kazuya; Kawaguchi, Takahisa; Gotoh, Norimoto; Terao, Chikashi; Yamada, Ryo; Kosugi, Shinji; Sekine, Akihiro; Nakayama, Takeo; Matsuda, Fumihiko

    2016-01-01

    Previous studies have reported that artificial increases in circulating free fatty acid (FFA) levels might have adverse effects on the vasculature. However, whether or not this effect can be extrapolated to physiological variations in FFA levels has not been clarified. Given that FFAs exert a lipotoxic effect on pancreatic β-cells and might directly damage the arterial endothelium, we hypothesized that these adverse effects might synergize with hyperglycemia. A total of 9396 Japanese subjects were included in the study. Serum FFA levels were measured at baseline examination. Brachial-to-ankle pulse wave velocity (baPWV) was measured as an index of arterial stiffness. As serum levels of FFA were markedly lower in subjects with higher insulin level, a significant association between FFA levels and baPWV was observed only in subjects with blood samples taken under fasting (≥12 h, P<0.001) or near-fasting (5-11 h, P<0.001) conditions, and not in those taken under non-fasting (<5 h, P=0.307) conditions. Although type 2 diabetes and HbA1c showed a strong association with baPWV, the association between FFA level and baPWV remained significant (β=0.052, P<0.001) after adjustment for glycemic levels. In addition to their direct relationship, FFA and glucose levels were synergistically associated with baPWV (FFA(⁎)glucose; β=0.036, P<0.001). Differences in baPWV between the lowest and highest subgroups divided by a combination of FFA and glucose reached approximately 300 cm/s. Physiological variations in FFA concentrations might be a risk factor for large arterial stiffness. FFA and hyperglycemia exert a synergistic adverse effect on the vasculature. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Effects of Cortisone Administration on the Metabolism and Localization of 25-Hydroxycholecalciferol in the Rat

    PubMed Central

    Favus, Murray J.; Kimberg, Daniel V.; Millar, Gail N.; Gershon, Elaine

    1973-01-01

    Glucocorticoid administration is known to decrease calcium absorption in vivo and the vitamin D-dependent active transport of calcium by rat duodenum in vitro. The basis for this antivitamin D-like effect of glucocorticoids is unclear. Previous studies in the rat failed to demonstrate an effect of glucocorticoid treatment on the hepatic conversion of the parent vitamin to 25-hydroxycholecalciferol (25-HCC). Moreover, pharmacologic doses of 25-HCC did not restore intestinal calcium transport to normal. The results of these experiments suggested that if indeed glucocorticoids interfere with the metabolism of vitamin D, the step involved must be subsequent to 25-hydroxylation. The present studies demonstrate that the administration of cortisone to vitamin D-deficient rats does not affect the rate of conversion of a physiologic dose of [3H]25-HCC to the biologically important metabolite, 1,25-dihydroxycholecalciferol (1,25-DHCC). Furthermore, pretreatment with glucocorticoids affects neither the tissue distribution nor the subcellular localization on or in intestinal mucosal cell nuclei of 1,25-DHCC. Of note is the fact that 1,25-DHCC is currently considered to be the “tissue-active” form of the vitamin in the intestine. Whereas tissues from cortisone-treated animals had increased concentrations of the biologically less active 24,25-DHCC, the physiologic significance of this observation remains unclear. The results of the present studies strongly support the concept that the antivitamin D-like effects of glucocorticoids in the intestine are due to hormonal influences on the biochemical reactions responsible for calcium transport. While the effects of these hormones are opposite in direction to those of vitamin D, they occur by a mechanism that is independent of a direct interaction with either the vitamin or its biologically active metabolites. PMID:4703222

  17. Subjective and physiological effects, and expired carbon monoxide concentrations in frequent and occasional cannabis smokers following smoked, vaporized, and oral cannabis administration.

    PubMed

    Newmeyer, Matthew N; Swortwood, Madeleine J; Abulseoud, Osama A; Huestis, Marilyn A

    2017-06-01

    Although smoking is the most common cannabis administration route, vaporization and consumption of cannabis edibles are common. Few studies directly compare cannabis' subjective and physiological effects following multiple administration routes. Subjective and physiological effects, and expired carbon monoxide (CO) were evaluated in frequent and occasional cannabis users following placebo (0.001% Δ 9 -tetrahydrocannabinol [THC]), smoked, vaporized, and oral cannabis (6.9% THC, ∼54mg). Participants' subjective ratings were significantly elevated compared to placebo after smoking and vaporization, while only occasional smokers' ratings were significantly elevated compared to placebo after oral dosing. Frequent smokers' maximum ratings were significantly different between inhaled and oral routes, while no differences in occasional smokers' maximum ratings between active routes were observed. Additionally, heart rate increases above baseline 0.5h after smoking (mean 12.2bpm) and vaporization (10.7bpm), and at 1.5h (13.0bpm) and 3h (10.2bpm) after oral dosing were significantly greater than changes after placebo, with no differences between frequent and occasional smokers. Finally, smoking produced significantly increased expired CO concentrations 0.25-6h post-dose compared to vaporization. All participants had significant elevations in subjective effects after smoking and vaporization, but only occasional smokers after oral cannabis, indicating partial tolerance to subjective effects with frequent exposure. There were no differences in occasional smokers' maximum subjective ratings across the three active administration routes. Vaporized cannabis is an attractive alternative for medicinal administrations over smoking or oral routes; effects occur quickly and doses can be titrated with minimal CO exposure. These results have strong implications for safety and abuse liability assessments. Published by Elsevier B.V.

  18. Effect of flecainide derivatives on sarcoplasmic reticulum calcium release suggests a lack of direct action on the cardiac ryanodine receptor.

    PubMed

    Bannister, Mark L; Alvarez-Laviada, Anita; Thomas, N Lowri; Mason, Sammy A; Coleman, Sharon; du Plessis, Christo L; Moran, Abbygail T; Neill-Hall, David; Osman, Hasnah; Bagley, Mark C; MacLeod, Kenneth T; George, Christopher H; Williams, Alan J

    2016-08-01

    Flecainide is a use-dependent blocker of cardiac Na(+) channels. Mechanistic analysis of this block showed that the cationic form of flecainide enters the cytosolic vestibule of the open Na(+) channel. Flecainide is also effective in the treatment of catecholaminergic polymorphic ventricular tachycardia but, in this condition, its mechanism of action is contentious. We investigated how flecainide derivatives influence Ca(2) (+) -release from the sarcoplasmic reticulum through the ryanodine receptor channel (RyR2) and whether this correlates with their effectiveness as blockers of Na(+) and/or RyR2 channels. We compared the ability of fully charged (QX-FL) and neutral (NU-FL) derivatives of flecainide to block individual recombinant human RyR2 channels incorporated into planar phospholipid bilayers, and their effects on the properties of Ca(2) (+) sparks in intact adult rat cardiac myocytes. Both QX-FL and NU-FL were partial blockers of the non-physiological cytosolic to luminal flux of cations through RyR2 channels but were significantly less effective than flecainide. None of the compounds influenced the physiologically relevant luminal to cytosol cation flux through RyR2 channels. Intracellular flecainide or QX-FL, but not NU-FL, reduced Ca(2) (+) spark frequency. Given its inability to block physiologically relevant cation flux through RyR2 channels, and its lack of efficacy in blocking the cytosolic-to-luminal current, the effect of QX-FL on Ca(2) (+) sparks is likely, by analogy with flecainide, to result from Na(+) channel block. Our data reveal important differences in the interaction of flecainide with sites in the cytosolic vestibules of Na(+) and RyR2 channels. © 2016 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  19. The effect of xanthine oxidase and hypoxanthine on the permeability of red cells from patients with sickle cell anemia.

    PubMed

    Al Balushi, Halima W M; Rees, David C; Brewin, John N; Hannemann, Anke; Gibson, John S

    2018-03-01

    Red cells from patients with sickle cell anemia (SCA) are under greater oxidative challenge than those from normal individuals. We postulated that oxidants generated by xanthine oxidase (XO) and hypoxanthine (HO) contribute to the pathogenesis of SCA through altering solute permeability. Sickling, activities of the main red cell dehydration pathways (P sickle , Gardos channel, and KCl cotransporter [KCC]), and cell volume were measured at 100, 30, and 0 mmHg O 2 , together with deoxygenation-induced nonelectrolyte hemolysis. Unexpectedly, XO/HO mixtures had mainly inhibitory effects on sickling, P sickle , and Gardos channel activities, while KCC activity and nonelectrolyte hemolysis were increased. Gardos channel activity was significantly elevated in red cells pharmacologically loaded with Ca 2+ using the ionophore A23187, consistent with an effect on the transport system per se as well as via Ca 2+ entry likely via the P sickle pathway. KCC activity is controlled by several pairs of conjugate protein kinases and phosphatases. Its activity, however, was also stimulated by XO/HO mixtures in red cells pretreated with N-ethylmaleimide (NEM), which is thought to prevent regulation via changes in protein phosphorylation, suggesting that the oxidants formed could also have direct effects on this transporter. In the presence of XO/HO, red cell volume was better maintained in deoxygenated red cells. Overall, the most notable effect of XO/HO mixtures was an increase in red cell fragility. These findings increase our understanding of the effects of oxidative challenge in SCA patients and are relevant to the behavior of red cells in vivo. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  20. Heterogeneous binary interactions of taste primaries: perceptual outcomes, physiology, and future directions.

    PubMed

    Wilkie, Lynn M; Capaldi Phillips, Elizabeth D

    2014-11-01

    Complex taste experiences arise from the combinations of five taste primaries. Here we review the literature on binary interactions of heterogeneous taste primaries, focusing on perceptual results of administering mixtures of aqueous solutions to human participants. Some interactions proved relatively consistent across tastants and experimental methods: sour acids enhanced saltiness, salts and sweeteners suppressed bitterness, sweeteners suppressed sourness, and sour acids enhanced bitterness. However, for the majority of interactions there were differential effects based on the tastants and their concentrations. Drawing conclusions about interactions with umami is currently not possible due to the low number of primary source studies investigating it and the confounding sodium ions in monosodium glutamate (MSG). Speculative physiological explanations are provided that fit the current data and suggestions for future research studies are proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Not just sticks and stones: Indirect ethnic discrimination leads to greater physiological reactivity.

    PubMed

    Huynh, Virginia W; Huynh, Que-Lam; Stein, Mary-Patricia

    2017-07-01

    We examined the effect of indirect ethnic discrimination on physiological reactivity (i.e., cortisol, blood pressure, heart rate) in Latino emerging adults. Participants (N = 32) were randomly assigned to be exposed to indirect ethnic discrimination (experimental condition) or not (control condition) while undergoing a cognitive stress task. Greater total cortisol output was observed in participants in the experimental condition, relative to those in the control condition. No significant differences in heart rate or blood pressure were noted. Results suggest that witnessing ethnic discrimination affects cortisol recovery responses, but not cardiovascular reactivity. Words that are not intentionally hurtful or directed at a specific person may still "hurt"-affecting biological processes associated with hypothalamic-pituitary-adrenocortical (HPA) axis and potentially leading to long-term health consequences. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Gynecomastia in Infants, Children, and Adolescents.

    PubMed

    Leung, Alexander K C; Leung, Alexander A C

    2017-01-01

    Gynecomastia may occur physiologically in the neonatal period, during puberty, and in old age. It may also develop in association with various pathologic states. The challenge for the physician is to distinguish physiological gynecomastia from those with an underlying pathology. To review in depth the pathophysiology, clinical manifestations, and treatment of gynecomastia. A PubMed search was completed in Clinical Queries using the key term "gynecomastia". Patents were searched using the key term "gynecomastia" from www.google.com/patents, www.uspto.gov, and www.freepatentsonline.com. Gynecomastia is caused by an imbalance between the stimulatory effect of estrogen and the inhibitory effect of androgen at the breast tissue level. Clinically, gynecomastia is characterized by the presence of a firm or rubbery, discrete, subareolar ridge of glandular tissue that is symmetrical in shape, freely movable, and nonadherent to skin or underlying tissue. Since most cases of physiological gynecomastia regress spontaneously with time, reassurance is all that is necessary. For pathological gynecomastia, treatment should be directed at the underlying cause, if possible. If gynecomastia persists in spite of the above measures, pharmacologic therapy and reduction mammoplasty may be considered. Recent patents related to the management of gynecomastia are discussed. The majority of cases are physiological and do not require treatment other than reassurance. For pathological cases, the underlying cause should be treated if possible. If gynecomastia persists in spite of the above measures and treatment becomes necessary, tamoxifen is the treatment of choice. Reduction mammoplasty may be considered for resistant cases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. [Review on infrared temperature characteristics of acupoints in recent 10 years].

    PubMed

    Lin, Min; Wei, Haiyan; Zhao, Ling; Zhao, Jizhong; Cheng, Ke; Deng, Haiping; Shen, Xueyong; Zhang, Haimeng

    2017-04-12

    In the paper, the study was reviewed on the infrared temperature characteristics of acupoints in recent 10 years. CNKI, WANFANG, VIP, SciVerse ScienceDirect and Springer databases were retrieved, with"infrared thermal imaging" and "acupoint" as the key words. The retrieving time was from January 1, 2006 to December 31, 2016. Totally, 468 relevant papers were searched and 169 papers of them were read carefully on acupoint infrared temperature. In terms of physiological condition, pathological condition and the stimulation methods such as acupuncture, moxibustion, tuina , embedding therapy and cupping therapy, the general situation was reviewed on the infrared temperature characteristics of acupoints separately. It was found that the study on infrared temperature characteristics of acupoints in physiological condition was limited and the characteristics discovered were not enough to systematically review the physiological and physical properties of acupoints. The study in terms of the pathological condition objectively reflected the effects and rules of diseases. It was showed in the study of acupoint infrared temperature characteristics after stimulation that the changes of infrared thermal imaging tempe-rature at some specific region induced by different therapies and parameters might be used to deduce the potential mechanism and optimal parameters or schemes of intervention method and contributed to the formation and deve-lopment of quantitative diagnosis and treatment. The authors believe that the study on infrared temperature characteristics of acupoint provides the active significance in the exploration on the physiological and physical characteristics of acupoint, the effects and rules of diseases as well as the quantitative diagnosis and treatment.

  4. A comparison of traditional and engaging lecture methods in a large, professional-level course.

    PubMed

    Miller, Cynthia J; McNear, Jacquee; Metz, Michael J

    2013-12-01

    In engaging lectures, also referred to as broken or interactive lectures, students are given short periods of lecture followed by "breaks" that can consist of 1-min papers, problem sets, brainstorming sessions, or open discussion. While many studies have shown positive effects when engaging lectures are used in undergraduate settings, the literature surrounding use of the learning technique for professional students is inconclusive. The novelty of this study design allowed a direct comparison of engaging physiology lectures versus didactic lecture formats in the same cohort of 120 first-year School of Dentistry DMD students. All students were taught five physiological systems using traditional lecture methods and six physiological systems using engaging lecture methods. The use of engaging lectures led to a statistically significant higher average on unit exams compared with traditional didactic lectures (8.6% higher, P < 0.05). Furthermore, students demonstrated an improved long-term retention of information via higher scores on the comprehensive final exam (22.9% higher in engaging lecture sections, P < 0.05). Many qualitative improvements were also indicated via student surveys and evaluations, including an increased perceived effectiveness of lectures, decrease in distractions during lecture, and increased confidence with the material. The development of engaging lecture activities requires a significant amount of instructor preparation and limits the time available to provide traditional lectures. However, the positive results of this study suggest the need for a restructuring of the physiology curriculum to incorporate more engaging lectures to improve both the qualitative experiences and performance levels of professional students.

  5. Sensing of triacylglycerol in the gut: different mechanisms for fatty acids and 2-monoacylglycerol.

    PubMed

    Kleberg, Karen; Jacobsen, Anne Katrine; Ferreira, Jozelia G; Windeløv, Johanne Agerlin; Rehfeld, Jens F; Holst, Jens Juul; de Araujo, Ivan E; Hansen, Harald S

    2015-04-15

    Sensing of dietary triacylglycerol in the proximal small intestine results in physiological, hormonal and behavioural responses. However, the exact physiological pathways linking intestinal fat sensing to food intake and the activation of brain circuits remain to be identified. In this study we examined the role of triacylglycerol digestion for intestinal fat sensing, and compared the effects of the triacylglycerol digestion products, fatty acids and 2-monoacylglycerol, on behavioural, hormonal and dopaminergic responses in behaving mice. Using an operant task in which mice are trained to self-administer lipid emulsions directly into the stomach, we show that inhibiting triacylglycerol digestion disrupts normal behaviour of self-administration in mice, indicating that fat sensing is conditional to digestion. When administered separately, both digestion products, 2-monoacylglycerol and fatty acids, were sensed by the mice, and self-administration patterns of fatty acids were affected by the fatty acid chain length. Peripheral plasma concentrations of the gut hormones GLP-1, GIP, PYY, CCK and insulin did not offer an explanation of the differing behavioural effects produced by 2-monoacylglycerol and fatty acids. However, combined with behavioural responses, striatal dopamine effluxes induced by gut infusions of oleic acid were significantly greater than those produced by equivalent infusions of 2-oleoylglycerol. Our data demonstrate recruitment of different signalling pathways by fatty acids and 2-monoacylglycerol, and suggest that the structural properties of fat rather than total caloric value determine intestinal sensing and the assignment of reward value to lipids. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  6. Endocrinology of year-round reproduction in a highly seasonal habitat: environmental variability in testosterone and glucocorticoids in baboon males

    PubMed Central

    Gesquiere, Laurence R.; Onyango, Patrick O.; Alberts, Susan C.; Altmann, Jeanne

    2010-01-01

    In conditions characterized by energetic constraints, such as in periods of low food availability, some trade-offs between reproduction and self-maintenance may be necessary; even year-round breeders may then be forced to exhibit some reproductive seasonality. Prior research has largely focused on female reproduction and physiology, and few studies have evaluated the impact of environmental factors on males. Here we assessed the effects of season and ambient temperatures on fecal glucocorticoid (fGC) and testosterone (fT) levels in male baboons in Amboseli, Kenya. The Amboseli basin is a highly challenging, semi-arid tropical habitat that is characterized by strongly seasonal patterns of rainfall and by high ambient temperatures. We previously reported that female baboons were impacted by these challenging environmental conditions. We ask here whether male baboons in the same environment and groups as females exhibit similar physiological effects. We found that after accounting for male age and individual variability, males exhibited higher fGC levels and lower fT levels during the dry season than during the wet season. Furthermore, fT but not fGC levels were lower in months of high average daily maximum temperatures, suggesting a direct impact of heat on testes. Our results demonstrate that male baboons, like females, experience ecological stress that alters their reproductive physiology. The impact of the environment on male reproduction deserves more attention both in its own right and because alteration in male physiology may contribute to the reduction in female fertility observed in challenging environments. PMID:20721938

  7. The Power of Physiology in Changing Landscapes: Considerations for the Continued Integration of Conservation and Physiology.

    PubMed

    Madliger, Christine L; Love, Oliver P

    2015-10-01

    The growing field of conservation physiology applies a diversity of physiological traits (e.g., immunological, metabolic, endocrine, and nutritional traits) to understand and predict organismal, population, and ecosystem responses to environmental change and stressors. Although the discipline of conservation physiology is gaining momentum, there is still a pressing need to better translate knowledge from physiology into real-world tools. The goal of this symposium, ‘‘Physiology in Changing Landscapes: An Integrative Perspective for Conservation Biology’’, was to highlight that many current investigations in ecological, evolutionary, and comparative physiology are necessary for understanding the applicability of physiological measures for conservation goals, particularly in the context of monitoring and predicting the health, condition, persistence, and distribution of populations in the face of environmental change. Here, we outline five major investigations common to environmental and ecological physiology that can contribute directly to the progression of the field of conservation physiology: (1) combining multiple measures of physiology and behavior; (2) employing studies of dose–responses and gradients; (3) combining a within-individual and population-level approach; (4) taking into account the context-dependency of physiological traits; and (5) linking physiological variables with fitness metrics. Overall, integrative physiologists have detailed knowledge of the physiological systems that they study; however, communicating theoretical and empirical knowledge to conservation biologists and practitioners in an approachable and applicable way is paramount to the practical development of physiological tools that will have a tangible impact for conservation.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heberlein, Wolf E., E-mail: weheberlein@uams.edu; Goodwin, Whitney J.; Wood, Clint E.

    Purpose: Our study evaluated techniques for percutaneous gastrostomy (G)-tube placement without the use of a nasogastric (NG) tube. Instead, direct puncture of a physiologic air bubble or effervescent-enhanced gastric bubble distention was performed in patients with upper digestive tract obstruction (UDTO) or psychological objections to NG tubes. Materials and Methods: A total of 886 patients underwent G-tube placement in our department during a period of 7 years. We present our series of 85 (9.6%) consecutive patients who underwent percutaneous G-tube placement without use of an NG tube. Results: Of these 85 patients, fluoroscopic guided access was attempted by direct puncturemore » of a physiologically present gastric air bubble in 24 (28%) cases. Puncture of an effervescent-induced large gastric air bubble was performed in 61 (72%) patients. Altogether, 82 (97%) of 85 G tubes were successfully placed in this fashion. The three failures comprised refusal of effervescent, vomiting of effervescent, and one initial tube misplacement when a deviation from our standard technique occurred. Conclusion: The described techniques compare favorably with published large series on G-tube placement with an NG tube in place. The techniques are especially suited for patients with UDTO due to head, neck, or esophageal malignancies, but they should be considered as an alternative in all patients. Direct puncture of effervescent-enhanced gastric bubble distention is a safe, patient-friendly and effective technique.« less

  9. Do cytokinins function as two-way signals between plants and animals? Cytokinins may not only mediate defence reactions via secondary compounds, but may directly interfere with developmental signals in insects.

    PubMed

    Robischon, Marcel

    2015-04-01

    Cytokinins are plant hormones that have, among many other functions, senescence-modulatory effects in plant tissue. This is evident not only from biochemical data, but is vividly illustrated in the "green island" phenotype in plant leaves caused by cytokinins released for example by leaf mining insects or microbial pathogens. It is beyond doubt that, in addition to their roles in plants, cytokinins also provoke physiological and developmental effects in animals. It is hypothesized that the recently much discussed modification of plant metabolism by insects and associated microbes via cytokinin signals has a counterpart in direct cytokinin signalling that interferes with the animals' hormonal systems and impacts their population dynamics. © 2015 WILEY Periodicals, Inc.

  10. An aura of confusion: 'seeing auras-vital energy or human physiology?' Part 1 of a three part series.

    PubMed

    Duerden, Tim

    2004-02-01

    The first of three papers that considers claims made for the perception or detection of vital energy. Many systems of Complementary and Alternative Medicine (CAM) assume the existence of a vital force that mediates therapeutic efficacy, for example chi or qi in Traditional Chinese medicine. Vital energy directly perceived or imaged that surrounds living organisms is frequently termed the aura. This paper aims to show how phenomena that arise as a consequence of the normal functioning of the human visual system can be inappropriately offered as support of claims for the direct perception of vital energy or the aura. Specifically, contrast and complementary colour phenomena, entoptic phenomena and the deformation phosphene, the 'flying corpuscle effect', the blind spot and the 'reverse telescope effect' are explained and discussed.

  11. The Effects Of An Exercise Physiology Program on Physical Fitness Variables, Body Satisfaction, and Physiology Knowledge.

    ERIC Educational Resources Information Center

    Perry, Arlette C.; Rosenblatt, Evelyn S.; Kempner, Lani; Feldman, Brandon B.; Paolercio, Maria A.; Van Bemden, Angie L.

    2002-01-01

    Examined the effects of an exercise physiology program on high school students' physical fitness, body satisfaction, and physiology knowledge. Intervention students received exercise physiology theory and active aerobic and resistance exercise within their biology course. Data from student surveys and measurements indicated that the integrated…

  12. Seasonal fecundity and costs to λ are more strongly affected by direct than indirect predation effects across species

    USGS Publications Warehouse

    LaManna, Joseph A.; Martin, Thomas E.

    2017-01-01

    Increased perceived predation risk can cause behavioral and physiological responses to reduce direct predation mortality, but these responses can also cause demographic costs through reduced reproductive output. Such indirect costs of predation risk have received increased attention in recent years, but the relative importance of direct vs. indirect predation costs to population growth (λ) across species remains unclear. We measured direct nest predation rates as well as indirect benefits (i.e., reduced predation rates) and costs (i.e., decreased reproductive output) arising from parental responses to perceived offspring predation risk for 10 songbird species breeding along natural gradients in nest predation risk. We show that reductions in seasonal fecundity from behavioral responses to perceived predation risk represent significant demographic costs for six of the 10 species. However, demographic costs from these indirect predation effects on seasonal fecundity comprised only 12% of cumulative predation costs averaged across species. In contrast, costs from direct predation mortality comprised 88% of cumulative predation costs averaged across species. Demographic costs from direct offspring predation were relatively more important for species with higher within-season residual-reproductive value (i.e., multiple-brooded species) than for species with lower residual-reproductive value (i.e., single-brooded species). Costs from indirect predation effects were significant across single- but not multiple-brooded species. Ultimately, demographic costs from behavioral responses to offspring predation risk differed among species as a function of their life-history strategies. Yet direct predation mortality generally wielded a stronger influence than indirect effects on seasonal fecundity and projected λ across species.

  13. Hepatic functions of GLP-1 and its based drugs: current disputes and perspectives.

    PubMed

    Jin, Tianru; Weng, Jianping

    2016-09-01

    GLP-1 and its based drugs possess extrapancreatic metabolic functions, including that in the liver. These direct hepatic metabolic functions explain their therapeutic efficiency for subjects with insulin resistance. The direct hepatic functions could be mediated by previously assumed "degradation" products of GLP-1 without involving canonic GLP-1R. Although GLP-1 analogs were created as therapeutic incretins, extrapancreatic functions of these drugs, as well as native GLP-1, have been broadly recognized. Among them, the hepatic functions are particularly important. Postprandial GLP-1 release contributes to insulin secretion, which represses hepatic glucose production. This indirect effect of GLP-1 is known as the gut-pancreas-liver axis. Great efforts have been made to determine whether GLP-1 and its analogs possess direct metabolic effects on the liver, as the determination of the existence of direct hepatic effects may advance the therapeutic theory and clinical practice on subjects with insulin resistance. Furthermore, recent investigations on the metabolic beneficial effects of previously assumed "degradation" products of GLP-1 in the liver and elsewhere, including GLP-128-36 and GLP-132-36, have drawn intensive attention. Such investigations may further improve the development and the usage of GLP-1-based drugs. Here, we have reviewed the current advancement and the existing controversies on the exploration of direct hepatic functions of GLP-1 and presented our perspectives that the direct hepatic metabolic effects of GLP-1 could be a GLP-1 receptor-independent event involving Wnt signaling pathway activation. Copyright © 2016 the American Physiological Society.

  14. An exploration of the hypothesis that testosterone is implicated in the psychological functioning of women with polycystic ovary syndrome (PCOS).

    PubMed

    Barry, J A; Qu, F; Hardiman, P J

    2018-01-01

    One of the diagnostic features of polycystic ovary syndrome (PCOS) is elevation of the androgen, testosterone. It is known that women with PCOS are more likely to suffer from psychological problems, especially anxiety and depression, than other women. However, little is known of how much of this is due to testosterone, and if so, what the mechanism(s) might be. This study explores the hypothesis that testosterone impacts women with PCOS both directly and indirectly, via testosterone currently in the bloodstream and through prenatal exposure. It is hypothesised that direct effects occur when testosterone acts directly upon receptors; indirect effects occur where the impact of testosterone is mediated via another variable; activational effects are ephemeral and are caused by testosterone in the bloodstream; organizational effects occur prenatally and cause permanent changes. Four pathways are hypothesised in this paper: 1/ a direct and activational pathway which improves mental rotation ability; 2/ an indirect and activational pathway, whereby distress is caused when the physiological symptoms of testosterone are experienced as embarrassing or otherwise disturbing; 3/ an indirect and organizational effect on mood, where elevated prenatal testosterone predisposes women with PCOS to low blood sugar levels and thus low mood; 4/ and finally, it is suggested that the pathway from biology to psychology can be travelled in reverse, with a direct activational effect of relaxation training on the reduction of adrenal androgens. Testing these hypotheses has important implications for our understanding of PCOS, and our ability to treat this condition more effectively. Copyright © 2017. Published by Elsevier Ltd.

  15. Neuroendocrine considerations in the treatment of men and women with epilepsy

    PubMed Central

    Harden, Cynthia L; Pennell, Page B

    2016-01-01

    Complex, multidirectional interactions between hormones, seizures, and the medications used to control them can present a challenge for clinicians treating patients with epilepsy. Many hormones act as neurosteroids, modulating brain excitability via direct binding sites. Thus, changes in endogenous or exogenous hormone levels can affect the occurrence of seizures directly as well as indirectly through pharmacokinetic effects that alter the concentrations of antiepileptic drugs. The underlying structural and physiological brain abnormalities of epilepsy and the metabolic activity of antiepileptic drugs can adversely affect hypothalamic and gonadal functioning. Knowledge of these complex interactions has increased and can now be incorporated in meaningful treatment approaches for men and women with epilepsy. PMID:23237902

  16. Studying the lower limit of human vision with a single-photon source

    NASA Astrophysics Data System (ADS)

    Holmes, Rebecca; Christensen, Bradley; Street, Whitney; Wang, Ranxiao; Kwiat, Paul

    2015-05-01

    Humans can detect a visual stimulus of just a few photons. Exactly how few is not known--psychological and physiological research have suggested that the detection threshold may be as low as one photon, but the question has never been directly tested. Using a source of heralded single photons based on spontaneous parametric downconversion, we can directly characterize the lower limit of vision. This system can also be used to study temporal and spatial integration in the visual system, and to study visual attention with EEG. We may eventually even be able to investigate how human observers perceive quantum effects such as superposition and entanglement. Our progress and some preliminary results will be discussed.

  17. Limb deficiency and prosthetic management. 2. Aging with limb loss.

    PubMed

    Flood, Katherine M; Huang, Mark E; Roberts, Toni L; Pasquina, Paul F; Nelson, Virginia S; Bryant, Phillip R

    2006-03-01

    This self-directed learning module highlights the issues faced by people aging with limb loss. It is part of the study guide on limb deficiency and vascular rehabilitation in the Self-Directed Physiatric Education Program for practitioners and trainees in physical medicine and rehabilitation. This article specifically focuses on the impact that limb loss has on health and physical function throughout the life span. Case examples are used to illustrate what effect limb loss in childhood or young adulthood has on the incidence and management of new impairments or disease processes commonly associated with aging. To discuss the impact of early-life limb loss on the incidence and management of physiologic and functional changes associated with aging.

  18. Light and Color in Nature and Art

    NASA Astrophysics Data System (ADS)

    Williamson, Samuel J.; Cummins, Herman Z.

    1983-02-01

    An introduction to the science of light and color and its applications to photography, art, natural phenomena, and other related areas. Explains the origin of phenomena commonly encountered in nature and art, emphasizing the physical aspects but also touching on aspects of physiology and psychology that directly influence how visual images are perceived. Covers the effect of mixing color, the notion of color spaces, how atoms and molecules affect light, how light can be measured, the effect of using a lens, and many other topics. Requires little or no mathematical background. Includes questions and references for further reading.

  19. [Burden and health effects of shift work].

    PubMed

    Heitmann, Jörg

    2010-10-01

    In Germany aprox. 15% of all employees have irregular or flexible working hours. Disturbed sleep and/or hypersomnia are direct consequences of shift work and therefore described as shift work disorder. Beyond this, shift work can also be associated with specific pathological disorders. There are individual differences in tolerance to shift work. Optimization of both shift schedules and sleep to "non-physiological" times of the day are measures to counteract the negative effects of shift work. There is still not enough evidence to recommend drugs for routine use in shift workers. © Georg Thieme Verlag Stuttgart · New York.

  20. A Classification method for eye movements direction during REM sleep trained on wake electro-oculographic recordings.

    PubMed

    Betta, M; Laurino, M; Gemignani, A; Landi, A; Menicucci, D

    2015-01-01

    Rapid eye movements (REMs) are a peculiar and intriguing aspect of REM sleep, even if their physiological function still remains unclear. During this work, a new automatic tool was developed, aimed at a complete description of REMs activity during the night, both in terms of their timing of occurrence that in term of their directional properties. A classification stage of each singular movement detected during the night according to its main direction, was in fact added to our procedure of REMs detection and ocular artifact removal. A supervised classifier was constructed, using as training and validation set EOG data recorded during voluntary saccades of five healthy volunteers. Different classification methods were tested and compared. The further information about REMs directional characteristic provided by the procedure would represent a valuable tool for a deeper investigation into REMs physiological origin and functional meaning.

  1. History-dependence of muscle slack length following contraction and stretch in the human vastus lateralis.

    PubMed

    Stubbs, Peter W; Walsh, Lee D; D'Souza, Arkiev; Héroux, Martin E; Bolsterlee, Bart; Gandevia, Simon C; Herbert, Robert D

    2018-06-01

    In reduced muscle preparations, the slack length and passive stiffness of muscle fibres have been shown to be influenced by previous muscle contraction or stretch. In human muscles, such behaviours have been inferred from measures of muscle force, joint stiffness and reflex magnitudes and latencies. Using ultrasound imaging, we directly observed that isometric contraction of the vastus lateralis muscle at short lengths reduces the slack lengths of the muscle-tendon unit and muscle fascicles. The effect is apparent 60 s after the contraction. These observations imply that muscle contraction at short lengths causes the formation of bonds which reduce the effective length of structures that generate passive tension in muscles. In reduced muscle preparations, stretch and muscle contraction change the properties of relaxed muscle fibres. In humans, effects of stretch and contraction on properties of relaxed muscles have been inferred from measurements of time taken to develop force, joint stiffness and reflex latencies. The current study used ultrasound imaging to directly observe the effects of stretch and contraction on muscle-tendon slack length and fascicle slack length of the human vastus lateralis muscle in vivo. The muscle was conditioned by (a) strong isometric contractions at long muscle-tendon lengths, (b) strong isometric contractions at short muscle-tendon lengths, (c) weak isometric contractions at long muscle-tendon lengths and (d) slow stretches. One minute after conditioning, ultrasound images were acquired from the relaxed muscle as it was slowly lengthened through its physiological range. The ultrasound image sequences were used to identify muscle-tendon slack angles and fascicle slack lengths. Contraction at short muscle-tendon lengths caused a mean 13.5 degree (95% CI 11.8-15.0 degree) shift in the muscle-tendon slack angle towards shorter muscle-tendon lengths, and a mean 5 mm (95% CI 2-8 mm) reduction in fascicle slack length, compared to the other conditions. A supplementary experiment showed the effect could be demonstrated if the muscle was conditioned by contraction at short lengths but not if the relaxed muscle was held at short lengths, confirming the role of muscle contraction. These observations imply that muscle contraction at short lengths causes the formation of bonds which reduce the effective length of structures that generate passive tension in muscles. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  2. The Effect of Muscle Direction on the Predictions of Finite Element Model of Human Lumbar Spine

    PubMed Central

    Wang, Zhi-peng; Pei, Xiao-long

    2018-01-01

    The normal physiological loads from muscles experienced by the spine are largely unknown due to a lack of data. The aim of this study is to investigate the effects of varying muscle directions on the outcomes predicted from finite element models of human lumbar spine. A nonlinear finite element model of L3–L5 was employed. The force of the erector spinae muscle, the force of the rectus abdominis muscle, follower loads, and upper body weight were applied. The model was fixed in a neural standing position and the direction of the force of the erector spinae muscle and rectus abdominis muscle was varied in three directions. The intradiscal pressure, reaction moments, and intervertebral rotations were calculated. The intradiscal pressure of L4-L5 was 0.56–0.57 MPa, which agrees with the in vivo pressure of 0.5 MPa from the literatures. The models with the erector spinae muscle loaded in anterior-oblique direction showed the smallest reaction moments (less than 0.6 Nm) and intervertebral rotations of L3-L4 and L4-L5 (less than 0.2 degrees). In comparison with loading in the vertical direction and posterior-oblique direction, the erector spinae muscle loaded in the anterior-oblique direction required lower external force or moment to keep the lumbar spine in the neutral position. PMID:29511680

  3. The Effect of Muscle Direction on the Predictions of Finite Element Model of Human Lumbar Spine.

    PubMed

    Zhu, Rui; Niu, Wen-Xin; Wang, Zhi-Peng; Pei, Xiao-Long; He, Bin; Zeng, Zhi-Li; Cheng, Li-Ming

    2018-01-01

    The normal physiological loads from muscles experienced by the spine are largely unknown due to a lack of data. The aim of this study is to investigate the effects of varying muscle directions on the outcomes predicted from finite element models of human lumbar spine. A nonlinear finite element model of L3-L5 was employed. The force of the erector spinae muscle, the force of the rectus abdominis muscle, follower loads, and upper body weight were applied. The model was fixed in a neural standing position and the direction of the force of the erector spinae muscle and rectus abdominis muscle was varied in three directions. The intradiscal pressure, reaction moments, and intervertebral rotations were calculated. The intradiscal pressure of L4-L5 was 0.56-0.57 MPa, which agrees with the in vivo pressure of 0.5 MPa from the literatures. The models with the erector spinae muscle loaded in anterior-oblique direction showed the smallest reaction moments (less than 0.6 Nm) and intervertebral rotations of L3-L4 and L4-L5 (less than 0.2 degrees). In comparison with loading in the vertical direction and posterior-oblique direction, the erector spinae muscle loaded in the anterior-oblique direction required lower external force or moment to keep the lumbar spine in the neutral position.

  4. Physiological and pharmacological features of the novel gasotransmitter: Hydrogen sulfide

    PubMed Central

    Mancardi, Daniele; Penna, Claudia; Merlino, Annalisa; Del Soldato, Piero; Wink, David A.; Pagliaro, Pasquale

    2012-01-01

    Hydrogen sulfide (H2S) has been known for hundreds of years because of its poisoning effect. Once the basal bio-production became evident its pathophysiological role started to be investigated in depth. H2S is a gas that can be formed by the action of two enzymes, cystathionine gamma-lyase and cystathionine beta-synthase, both involved in the metabolism of cysteine. It has several features in common with the other two well known “gasotransmitters” (nitric oxide and carbon monoxide) in the biological systems. These three gasses share some biological targets; however, they also have dissimilarities. For instance, the three gases target heme-proteins and open KATP channels; H2S as NO is an antioxidant, but in contrast to the latter molecule, H2S does not directly form radicals. In the last years H2S has been implicated in several physiological and pathophysiological processes such as long term synaptic potentiation, vasorelaxation, pro- and anti-inflammatory conditions, cardiac inotropism regulation, cardioprotection, and several other physiological mechanisms. We will focus on the biological role of H2S as a molecule able to trigger cell signaling. Our attention will be particularly devoted on the effects in cardiovascular system and in cardioprotection. We will also provide available information on H2S-donating drugs which have so far been tested in order to conjugate the beneficial effect of H2S with other pharmaceutical properties. PMID:19285949

  5. Growth, biofilm formation, antifungal susceptibility and oxidative stress resistance of Candida glabrata are affected by different glucose concentrations.

    PubMed

    Ng, Tzu Shan; Desa, Mohd Nasir Mohd; Sandai, Doblin; Chong, Pei Pei; Than, Leslie Thian Lung

    2016-06-01

    Glucose is an important fuel source to support many living organisms. Its importance in the physiological fitness and pathogenicity of Candida glabrata, an emerging human fungal pathogen has not been extensively studied. The present study aimed to investigate the effects of glucose on the growth, biofilm formation, antifungal susceptibility and oxidative stress resistance of C. glabrata. In addition, its effect on the expression of a putative high affinity glucose sensor gene, SNF3 was also investigated. Glucose concentrations were found to exert effects on the physiological responses of C. glabrata. The growth rate of the species correlated positively to the amount of glucose. In addition, low glucose environments were found to induce C. glabrata to form biofilm and resist amphotericin B. Conversely, high glucose environments promoted oxidative stress resistance of C. glabrata. The expression of CgSNF3 was found to be significantly up-regulated in low glucose environments. The expression of SNF3 gene in clinical isolates was found to be higher compared to ATCC laboratory strains in low glucose concentrations, which may explain the better survivability of clinical isolates in the low glucose environment. These observations demonstrated the impact of glucose in directing the physiology and virulence fitness of C. glabrata through the possible modulation by SNF3 as a glucose sensor, which in turn aids the species to adapt, survive and thrive in hostile host environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Variations of cortisol, fatigue and sleep disturbances in sound engineers: effect of job task and fast backward-rotating shifts.

    PubMed

    Vangelova, Katia K

    2008-01-01

    The aim was to study the effect of job task and fast backward-rotating shifts on the time-of-day variations of cortisol, fatigue, and sleep disturbances in broadcasting sound engineers. The concentration of saliva cortisol and ratings of stress, sleepiness, and fatigue were followed at 3-hour intervals during the fast backward-rotating shifts in 26 sound engineers: 14 subjects from control rooms, aged 45.1 +/- 7.3 years, and 12 subjects working in direct transmissions, aged 51.7 +/- 6.0 years. Saliva cortisol was assessed using an radioimmunology kit. The participants reported for stress symptoms after the shifts and filled a sleep diary. The effects of job task, shift, and time-of-day were analyzed by tests of between-subjects effects (SPSS). Cortisol retained the typical diurnal pattern with a highly significant effect of the shift. The job task and the shift interacted significantly. Higher cortisol values during the morning and night shifts in engineers working in direct transmissions were found. Their stress ratings were also higher, as well as the ratings of sleepiness and fatigue. The quality of sleep was worse in engineers working in direct transmissions. In conclusion, our data indicate that stress and fast backward-rotating shifts in sound engineers working in direct transmissions affect physiological stress markers such as cortisol and increase sleepiness, fatigue, and sleep problems.

  7. DNA hydrogel-based supercapacitors operating in physiological fluids

    PubMed Central

    Hur, Jaehyun; Im, Kyuhyun; Hwang, Sekyu; Choi, ByoungLyong; Kim, Sungjee; Hwang, Sungwoo; Park, Nokyoung; Kim, Kinam

    2013-01-01

    DNA nanostructures have been attractive due to their structural properties resulting in many important breakthroughs especially in controlled assemblies and many biological applications. Here, we report a unique energy storage device which is a supercapacitor that uses nanostructured DNA hydrogel (Dgel) as a template and layer-by-layer (LBL)-deposited polyelectrolyte multilayers (PEMs) as conductors. Our device, named as PEM-Dgel supercapacitor, showed excellent performance in direct contact with physiological fluids such as artificial urine and phosphate buffered saline without any need of additional electrolytes, and exhibited almost no cytotoxicity during cycling tests in cell culture medium. Moreover, we demonstrated that the PEM-Dgel supercapacitor has greater charge-discharge cycling stability in physiological fluids than highly concentrated acid electrolyte solution which is normally used for supercapacitor operation. These conceptually new supercapacitors have the potential to be a platform technology for the creation of implantable energy storage devices for packageless applications directly utilizing biofluids. PMID:23412432

  8. A model for the solution structure of the rod arrestin tetramer.

    PubMed

    Hanson, Susan M; Dawson, Eric S; Francis, Derek J; Van Eps, Ned; Klug, Candice S; Hubbell, Wayne L; Meiler, Jens; Gurevich, Vsevolod V

    2008-06-01

    Visual rod arrestin has the ability to self-associate at physiological concentrations. We previously demonstrated that only monomeric arrestin can bind the receptor and that the arrestin tetramer in solution differs from that in the crystal. We employed the Rosetta docking software to generate molecular models of the physiologically relevant solution tetramer based on the monomeric arrestin crystal structure. The resulting models were filtered using the Rosetta energy function, experimental intersubunit distances measured with DEER spectroscopy, and intersubunit contact sites identified by mutagenesis and site-directed spin labeling. This resulted in a unique model for subsequent evaluation. The validity of the model is strongly supported by model-directed crosslinking and targeted mutagenesis that yields arrestin variants deficient in self-association. The structure of the solution tetramer explains its inability to bind rhodopsin and paves the way for experimental studies of the physiological role of rod arrestin self-association.

  9. Physiological and performance effects of pyridostigmine bromide in healthy volunteers: a dose-response study.

    PubMed

    Cook, Mary R; Graham, Charles; Sastre, Antonio; Gerkovich, Mary M

    2002-07-01

    Questions have been raised about the role pyridostigmine bromide (PB) plays in the etiology of Gulf War veterans' illnesses. There is a need to understand better the physiological and behavioral effects of this drug, particularly at the 30-mg/8-h regimen recommended by the US Military. OBJECTIVE. To perform a double-blind, cross-over, dose-response study of PB in 67 healthy, young volunteers (31 women, 36 men). Volunteers were initially trained on a standardized test battery. Supervised administration of placebo (PL) and PB (every 8 h/5 days) occurred in each of two dosing weeks, separated by a non-dosing week. One group received 30 mg PB and PL, and the other 60 mg PB and PL. In each dosing week, the battery was performed after the first pill and again when steady-state plasma PB levels were achieved. PB was associated with an overall improvement in reaction time on tests of memory and attention, and with a reduction in RMS error on a tracking task. PB slowed heart rate and decreased the high frequency component of heart rate variability (HF HRV). Dose-response effects were found only for HF HRV, and RMS error. The extent of cholinesterase inhibition was directly related to the magnitude of the HF HRV decrease, and was predicted by the weight-normalized PB dose. Cholinesterase inhibition was not related to the extent or severity of reported drug side effects. PB does not appear to have detrimental physiological or performance consequences at the recommended 30-mg dose, or at twice that dose, when evaluated under non-stressful laboratory conditions.

  10. Stress among Parents of Children with and without Autism Spectrum Disorder: A Comparison Involving Physiological Indicators and Parent Self-Reports.

    PubMed

    Padden, Ciara; James, Jack E

    2017-01-01

    Parents of children with Autism Spectrum Disorder (ASD) have been reported as experiencing higher levels of stress and poorer physical health than parents of typically developing children. However, most of the relevant literature has been based on parental self-reports of stress and health. While research on physiological outcomes has grown in recent years, gaps still exist in our understanding of the physiological effects, if any, of stress related to parenting a child with ASD. The present study compared parent-reported stress, anxiety, and depression, as well as selected physiological measures of stress (i.e., cortisol, alpha-amylase, and ambulatory blood pressure and heart rate) between matched groups of parents of children with ( N =  38) and without ( N  = 38) ASD. Participants completed questionnaires, collected saliva samples for the purpose of measuring cortisol and alpha-amylase, and wore an ambulatory blood pressure monitor for 24 h. Parents of children with ASD reported significantly higher levels of parental distress, anxiety, and depression than parents of typically developing children. Parent-reported distress, anxiety, depression, and health were not correlated with physiological measures. With the exception that parents of children with ASD had significantly lower cortisol levels 30 min after waking, no other significant group differences were found for physiological measures. Parents of children with ASD reported significantly higher use of a number of adaptive coping strategies (e.g., emotional support) in comparison to parents of typically developing children. Results are discussed in the context of implications for future research directions, stress research, and practical implications for parental support.

  11. Biaxial Mechanical Evaluation of Absorbable and Nonabsorbable Synthetic Surgical Meshes Used for Hernia Repair: Physiological Loads Modify Anisotropy Response.

    PubMed

    Cordero, A; Hernández-Gascón, B; Pascual, G; Bellón, J M; Calvo, B; Peña, E

    2016-07-01

    The aim of this study was to obtain information about the mechanical properties of six meshes commonly used for hernia repair (Surgipro(®), Optilene(®), Infinit(®), DynaMesh(®), Ultrapro™ and TIGR(®)) by planar biaxial tests. Stress-stretch behavior and equibiaxial stiffness were evaluated, and the anisotropy was determined by testing. In particular, equibiaxial test (equal simultaneous loading in both directions) and biaxial test (half of the load in one direction following the Laplace law) were selected as a representation of physiologically relevant loads. The majority of the meshes displayed values in the range of 8 and 18 (N/mm) in each direction for equibiaxial stiffness (tangent modulus under equibiaxial load state in both directions), while a few achieved 28 and 50 (N/mm) (Infinit (®) and TIGR (®)). Only the Surgipro (®) mesh exhibited planar isotropy, with similar mechanical properties regardless of the direction of loading, and an anisotropy ratio of 1.18. Optilene (®), DynaMesh (®), Ultrapro (®) and TIGR (®) exhibited moderate anisotropy with ratios of 1.82, 1.84, 2.17 and 1.47, respectively. The Infinit (®) scaffold exhibited very high anisotropy with a ratio of 3.37. These trends in material anisotropic response changed during the physiological state in the human abdominal wall, i.e. T:0.5T test, which the meshes were loaded in one direction with half the load used in the other direction. The Surgipro (®) mesh increased its anisotropic response (Anis[Formula: see text] = 0.478) and the materials that demonstrated moderate and high anisotropic responses during multiaxial testing presented a quasi-isotropic response, especially the Infinit(®) mesh that decreased its anisotropic response from 3.369 to 1.292.

  12. Anatomy and Physiology. Module No. IV. Health Occupations Education II.

    ERIC Educational Resources Information Center

    Day, Nancy; And Others

    This package of 31 modules on anatomy and physiology is one of six such packages containing a total of 46 modules that comprise Health Occupations Education II, the second course of a two-year course of study. Each module may contain some or all of the following components: introduction, directions, objectives, a list of learning activities,…

  13. Using time-series intervention analysis to model cow heart rate affected by programmed audio and environmental/physiological cues

    USDA-ARS?s Scientific Manuscript database

    This research is the first use of the Box-Jenkins time-series models to describe changes in heart rate (HR) of free-ranging crossbred cows (Bos taurus) receiving both programmed audio cues from directional virtual fencing (DVFTM) devices and non-programmed environmental/physiological cues. The DVFT...

  14. An Organotypic Liver System for Tumor Progression

    DTIC Science & Technology

    2006-04-01

    a physiologically relevant microreactor that has proved suitable for organotypic liver culture to investigate metastatic seeding. The sub-millimeter...metastasis. Our objective is to utilize a physiologically relevant microreactor that has proved suitable for organotypic liver culture (3) to...C Yates, D B Stolz, L Griffith, A Wells (2004) Direct Visualization of Prostate Cancer Progression Utilizing a Bioreactor. American Association

  15. Path analysis of risk factors leading to premature birth.

    PubMed

    Fields, S J; Livshits, G; Sirotta, L; Merlob, P

    1996-01-01

    The present study tested whether various sociodemographic, anthropometric, behavioral, and medical/physiological factors act in a direct or indirect manner on the risk of prematurity using path analysis on a sample of Israeli births. The path model shows that medical complications, primarily toxemia, chorioammionitis, and a previous low birth weight delivery directly and significantly act on the risk of prematurity as do low maternal pregnancy weight gain and ethnicity. Other medical complications, including chronic hypertension, preclampsia, and placental abruption, although significantly correlated with prematurity, act indirectly on prematurity through toxemia. The model further shows that the commonly accepted sociodemographic, anthropometric, and behavioral risk factors act by modifying the development of medical complications that lead to prematurity as opposed to having a direct effect on premature delivery. © 1996 Wiley-Liss, Inc. Copyright © 1996 Wiley-Liss, Inc.

  16. Exploring First-Year Undergraduate Medical Students' Self-Directed Learning Readiness to Physiology

    ERIC Educational Resources Information Center

    Abraham, Reem Rachel; Fisher, Murray; Kamath, Asha; Izzati, T. Aizan; Nabila, Saidatul; Atikah, Nik Nur

    2011-01-01

    Medical students are expected to possess self-directed learning skills to pursue lifelong learning. Previous studies have reported that the readiness for self-directed learning depends on personal attributes as well as the curriculum followed in institutions. Melaka Manipal Medical College of Manipal University (Karnataka, India) offers a Bachelor…

  17. RNA interference in the clinic: challenges and future directions

    PubMed Central

    Pecot, Chad V.; Calin, George A.; Coleman, Robert L.; Lopez-Berestein, Gabriel; Sood, Anil K.

    2011-01-01

    Inherent difficulties with blocking many desirable targets using conventional approaches have prompted many to consider using RNA interference (RNAi) as a therapeutic approach. Although exploitation of RNAi has immense potential as a cancer therapeutic, many physiological obstacles stand in the way of successful and efficient delivery. This Review explores current challenges to the development of synthetic RNAi-based therapies and considers new approaches to circumvent biological barriers, to avoid intolerable side effects and to achieve controlled and sustained release. PMID:21160526

  18. Effect of Heat on Wounded Warriors in Ground Combat Vehicles: Insights from the Army Medical Community, and the Simulation of a Novel Method for Soldier Thermal Control

    DTIC Science & Technology

    2012-08-01

    soldiers via microclimate cooling [13]. Unfortunately, a common method for direct cooling of the soldiers – surface cooling – can cause cutaneous...Intermittent, Regional Microclimate Cooling," Journal of Applied Physiology, vol. 94, pp. 1841-48, 2003. [18] L. A. Stephenson, C. R. Vernieuw, W...Leammukda and M. A. Kolka, "Skin Temperature Feedback Optimizes Microclimate Cooling," Aviation, Space and Environmental Medicine, vol. 78, pp. 377-382

  19. Effect of Organophosphate Compounds on Renal Function and Transport.

    DTIC Science & Technology

    1983-09-15

    DiBona , 15) have presented physiological data that suggest a direct role of the sympathetic nerves in renal tubular sodium reabsorption, i.e., not...tubular sodium reabsorp- tion. Amer. J. Physiol., 233 (1977) F73-81. 16. G.F. DiBona , 1.3. Zambraski, A.S. Aquilera and G.3. Kaloyanides, Neurogenic...reflex renal nerve stimulation. J. Pharuacol. Exptl. flerap.. 198 (1976a) 464-472. 29. 1.3. Zambraski, G.E. DiBona and 0.3. Kloyanides, Specificity of

  20. Effect of diastolic flow patterns on the function of the left ventricle

    NASA Astrophysics Data System (ADS)

    Seo, Jung Hee; Mittal, Rajat

    2013-11-01

    Direct numerical simulations are used to study the effect of intraventricular flow patterns on the pumping efficiency and the blood mixing and transport characteristics of the left ventricle. The simulations employ a geometric model of the left ventricle which is derived from contrast computed tomography. A variety of diastolic flow conditions are generated for a fixed ejection fraction in order to delineate the effect of flow patterns on ventricular performance. The simulations indicate that the effect of intraventricular blood flow pattern on the pumping power is physiologically insignificant. However, diastolic flow patterns have a noticeable effect on the blood mixing as well as the residence time of blood cells in the ventricle. The implications of these findings on ventricular function are discussed.

  1. Cell physiology at the Mount Desert Island Biological Laboratory: a brief look back and forward

    PubMed Central

    2011-01-01

    The Mount Desert Island Biological Laboratory (MDIBL) has played important roles in the development of modern physiological concepts and tools, particularly in the fields of kidney and epithelial cell physiology. Over the last decade, MDIBL has undergone remarkable growth and evolution. This article will briefly review MDIBL's past and outline its future directions. It is hoped that this overview will renew and stimulate interest in MDIBL and, in particular, will encourage an even wider community of physiologists to participate in its ongoing growth and development. PMID:21068363

  2. Direct and trans-generational effects of male and female gut microbiota in Drosophila melanogaster.

    PubMed

    Morimoto, Juliano; Simpson, Stephen J; Ponton, Fleur

    2017-07-01

    There is increasing evidence of the far-reaching effects of gut bacteria on physiological and behavioural traits, yet the fitness-related consequences of changes in the gut bacteria composition of sexually interacting individuals remain unknown. To address this question, we manipulated the gut microbiota of fruit flies, Drosophila melanogaster , by monoinfecting flies with either Acetobacter pomorum ( AP ) or Lactobacillus plantarum ( LP ) . Re-inoculated individuals were paired in all treatment combinations. LP- infected males had longer mating duration and induced higher short-term offspring production in females compared with AP -infected males. Furthermore, females of either re-inoculation state mated with AP- infected males were more likely to have zero offspring after mating, suggesting a negative effect of AP on male fertility . Finally, we found that the effects of male and female gut bacteria interacted to modulate their daughters', but not sons' body mass, revealing a new trans-generational effect of parental gut microbiota. In conclusion, this study shows direct and trans-generational effects of the gut microbiota on mating and reproduction. © 2017 The Authors.

  3. Synergistic and Antagonistic Effects of Thermal Shock, Air Exposure, and Fishing Capture on the Physiological Stress of Squilla mantis (Stomatopoda)

    PubMed Central

    Raicevich, Saša; Minute, Fabrizio; Finoia, Maria Grazia; Caranfa, Francesca; Di Muro, Paolo; Scapolan, Lucia; Beltramini, Mariano

    2014-01-01

    This study is aimed at assessing the effects of multiple stressors (thermal shock, fishing capture, and exposure to air) on the benthic stomatopod Squilla mantis, a burrowing crustacean quite widespread in the Mediterranean Sea. Laboratory analyses were carried out to explore the physiological impairment onset over time, based on emersion and thermal shocks, on farmed individuals. Parallel field-based studies were carried out to also investigate the role of fishing (i.e., otter trawling) in inducing physiological imbalance in different seasonal conditions. The dynamics of physiological recovery from physiological disruption were also studied. Physiological stress was assessed by analysing hemolymph metabolites (L-Lactate, D-glucose, ammonia, and H+), as well as glycogen concentration in muscle tissues. The experiments were carried out according to a factorial scheme considering the three factors (thermal shock, fishing capture, and exposure to air) at two fixed levels in order to explore possible synergistic, additive, or antagonistic effects among factors. Additive effects on physiological parameters were mainly detected when the three factors interacted together while synergistic effects were found as effect of the combination of two factors. This finding highlights that the physiological adaptive and maladaptive processes induced by the stressors result in a dynamic response that may encounter physiological limits when high stress levels are sustained. Thus, a further increase in the physiological parameters due to synergies cannot be reached. Moreover, when critical limits are encountered, mortality occurs and physiological parameters reflect the response of the last survivors. In the light of our mortality studies, thermal shock and exposure to air have the main effect on the survival of S. mantis only on trawled individuals, while lab-farmed individuals did not show any mortality during exposure to air until after 2 hours. PMID:25133593

  4. Underwater Electrical Safety Practices

    DTIC Science & Technology

    1976-01-01

    under water. While advances continue in developing new and more effective underwater electrical equipment, the Navy is concerned that its underwater...levels passing through human tissue is known to alter, temporarily, the physiological function of cells. The long-term effects , if any, are unknown. Much...of the system--human physiology, equipment, procedures, and training. Human Physiology Present knowledge of the physiological effects of electrical

  5. Fifty years of chasing lizards: new insights advance optimal escape theory.

    PubMed

    Samia, Diogo S M; Blumstein, Daniel T; Stankowich, Theodore; Cooper, William E

    2016-05-01

    Systematic reviews and meta-analyses often examine data from diverse taxa to identify general patterns of effect sizes. Meta-analyses that focus on identifying generalisations in a single taxon are also valuable because species in a taxon are more likely to share similar unique constraints. We conducted a comprehensive phylogenetic meta-analysis of flight initiation distance in lizards. Flight initiation distance (FID) is a common metric used to quantify risk-taking and has previously been shown to reflect adaptive decision-making. The past decade has seen an explosion of studies focused on quantifying FID in lizards, and, because lizards occur in a wide range of habitats, are ecologically diverse, and are typically smaller and differ physiologically from the better studied mammals and birds, they are worthy of detailed examination. We found that variables that reflect the costs or benefits of flight (being engaged in social interactions, having food available) as well as certain predator effects (predator size and approach speed) had large effects on FID in the directions predicted by optimal escape theory. Variables that were associated with morphology (with the exception of crypsis) and physiology had relatively small effects, whereas habitat selection factors typically had moderate to large effect sizes. Lizards, like other taxa, are very sensitive to the costs of flight. © 2015 Cambridge Philosophical Society.

  6. New Horizons for the Study of Dietary Fiber and Health: A Review.

    PubMed

    Fuller, Stacey; Beck, Eleanor; Salman, Hayfa; Tapsell, Linda

    2016-03-01

    Dietary fibre has been consumed for centuries with known health benefits, but defining dietary fibre is a real challenge. From a functional perspective, dietary fibre is described as supporting laxation, attenuating blood glucose responses and assisting with cholesterol lowering. The problem is different types of dietary fibre have different effects, and new effects are increasingly observed, such as the influence on gut microbiota. Thus, a single definition may need to be described in more generic terms. Rather than being bound by a few functional definitions, we may need to embrace the possibilities of new horizons, and derive a working definition of dietary fibre based on a set of conceptual principles, rather than the limited definitions we have to date. To begin this process, a review of individual fibre types and their physiological effects would be helpful. Dietary fibre is a complex group of substances, and there is a growing interest in specific effects linked to fibre type. Different fractions of dietary fibre have different physiological properties, yet there is a paucity of literature covering the effects of all fibres. This paper describes a range of individual fibre types and identifies gaps in the literature which may expose new directions for a working definition of dietary fibre.

  7. Linking hard and soft traits: Physiology, morphology and anatomy interact to determine habitat affinities to soil water availability in herbaceous dicots.

    PubMed

    Belluau, Michaël; Shipley, Bill

    2018-01-01

    Species' habitat affinities along environmental gradients should be determined by a combination of physiological (hard) and morpho-anatomical (soft) traits. Using a gradient of soil water availability, we address three questions: How well can we predict habitat affinities from hard traits, from soft traits, and from a combination of the two? How well can we predict species' physiological responses to drought (hard traits) from their soft traits? Can we model a causal sequence as soft traits → hard traits → species distributions? We chose 25 species of herbaceous dicots whose affinities for soil moisture have already been linked to 5 physiological traits (stomatal conductance and net photosynthesis measured at soil field capacity, water use efficiency, stomatal conductance and soil water potential measured when leaves begin to wilt). Under controlled conditions in soils at field capacity, we measured five soft traits (leaf dry matter content, specific leaf area, leaf nitrogen content, stomatal area, specific root length). Soft traits alone were poor predictors (R2 = 0.129) while hard traits explained 48% of species habitat affinities. Moreover, hard traits were significantly related to combinations of soft traits. From a priori biological knowledge and hypothesized ecological links we built a path model showing a sequential pattern soft traits → hard traits → species distributions and accounting for 59.6% (p = 0.782) of habitat wetness. Both direct and indirect causal relationships existed between soft traits, hard traits and species' habitat preferences. The poor predictive abilities of soft traits alone were due to the existence of antagonistic and synergistic direct and indirect effects of soft traits on habitat preferences mediated by the hard traits. To obtain a more realistic model applicable to a population level, it has to be tested in an experiment including species competition for water supply.

  8. Online anatomy and physiology: piloting the use of an anatomy and physiology e-book-VLE hybrid in pre-registration and post-qualifying nursing programmes at the University of Salford.

    PubMed

    Raynor, Michael; Iggulden, Helen

    2008-06-01

    Anatomy and physiology (A&P) teaching and learning in nursing curricula poses problems for educators because of the often varying levels of students' background knowledge. This study reports on a pilot project that attempted to normalize these differentials by delivering A&P teaching using an online interactive e-book-virtual learning environment (VLE) hybrid. Evaluate the effectiveness of using an online interactive resource to deliver A&P teaching. Data were collected from pre-registration and post-qualifying students by questionnaire and observation, and from lecturers by structured interviews. Scale-up issues were identified and documented as part of support for the ongoing pilot. The pre-registration group encountered problems accessing the resource and yielded evidence to suggest that inexperienced learners require a high level of direction to use the resource effectively. The post-qualifying group benefited from the resource's interactive elements and 24/7 availability. There was clear evidence that the group were able to relate knowledge gained from the resource to practice. This hybrid has great potential to add value to A&P learning on nursing programmes at post-qualifying level. The resource could replace its printed equivalent; however, negotiations need to take place between institutions and publishers in order to resolve scale-up issues.

  9. Migratory life histories explain the extreme egg-size dimorphism of Eudyptes penguins

    PubMed Central

    Williams, Tony D.

    2016-01-01

    When successive stages in the life history of an animal directly overlap, physiological conflicts can arise resulting in carryover effects from one stage to another. The extreme egg-size dimorphism (ESD) of Eudyptes penguins, where the first-laid A-egg is approximately 18–57% smaller than the second-laid B-egg, has interested researchers for decades. Recent studies have linked variation in this trait to a carryover effect of migration that limits the physiology of yolk production and egg sizes. We assembled data on ESD and estimates of migration–reproduction overlap in penguin species and use phylogenetic methods to test the idea that migration–reproduction overlap explains variation in ESD. We show that migration overlap is generally restricted to Eudyptes relative to non-Eudyptes penguins, and that this overlap (defined as the amount of time that egg production occurs on land versus at sea during homeward migration) is significantly and positively correlated with the degree of ESD in Eudyptes. In the non-Eudyptes species, however, ESD was unrelated to migration overlap as these species mostly produce their clutches on land. Our results support the recent hypothesis that extreme ESD of Eudyptes penguins evolved, in part, as a response to selection for a pelagic overwinter migration behaviour. This resulted in a temporal overlap with, and thus a constraint on, the physiology of follicle development, leading to smaller A-egg size and greater ESD. PMID:27708146

  10. Enzymatic Activity of Free-Prostate-Specific Antigen (f-PSA) Is Not Required for Some of its Physiological Activities

    PubMed Central

    Chadha, Kailash C.; Nair, Bindukumar B.; Chakravarthi, Srikant; Zhou, Rita; Godoy, Alejandro; Mohler, James L.; Aalinkeel, Ravikumar; Schwartz, Stanley A.; Smith, Gary J.

    2015-01-01

    BACKGROUND Prostate specific antigen (PSA) is a well known biomarker for early diagnosis and management of prostate cancer. Furthermore, PSA has been documented to have anti-angiogenic and anti-tumorigenic activities in both in vitro and in vivo studies. However, little is known about the molecular mechanism(s) involved in regulation of these processes, in particular the role of the serine-protease enzymatic activity of PSA. METHODS Enzymatic activity of PSA isolated directly from seminal plasma was inhibited specifically (>95%) by incubation with zinc2+. Human umbilical vein endothelial cells (HUVEC) were utilized to compare/contrast the physiological effects of enzymatically active versus inactive PSA. RESULTS Equimolar concentrations of enzymatically active PSA and PSA enzymatically inactivated by incubation with Zn2+ had similar physiological effects on HUVEC, including inhibiting the gene expression of pro-angiogenic growth factors, like VEGF and bFGF, and up-regulation of expression of the anti-angiogenic growth factor IFN-γ; suppression of mRNA expression for markers of blood vessel development, like FAK, FLT, KDR, TWIST-1; P-38; inhibition of endothelial tube formation in the in vitro Matrigel Tube Formation Assay; and inhibition of endothelial cell invasion and migration properties. DISCUSSION Our data provides compelling evidence that the transcriptional regulatory and the anti-angiogenic activities of human PSA are independent of the innate enzymatic activity PMID:21446007

  11. Evidence that Tropical Forest Photosynthesis is Not Directly Limited by High Temperatures

    NASA Astrophysics Data System (ADS)

    Smith, M.; Taylor, T.; Van Haren, J. L. M.; Rosolem, R.; Restrepo-Coupe, N.; Wu, J.; Oliveira Junior, R. C.; Silva, R. D.; De Araujo, A. C.; Camargo, P. B. D.; Huxman, T. E.; Saleska, S. R.

    2016-12-01

    Loss of tropical forest biomass under rising temperatures could result in significant feedbacks to global climate. The vulnerability of tropical trees to climate warming depends on the specific physiological mechanisms controlling photosynthetic decline at temperatures above the thermal optimum. High temperatures may negatively impact photosynthetic metabolism (direct effects) (Doughty and Goulden 2008), or leaves may respond to the concomitant increase in vapor pressure deficit (VPD) by closing stomata (indirect effects) (Lloyd and Farquhar 2008). The difference is important because the former reveals a vulnerability of photosynthetic infrastructure to higher temperatures, while the latter is an expected physiological response of healthy leaves. We investigated these contrasting hypotheses in a climate controlled, 0.2 ha artificial tropical forest (the Biosphere 2 tropical forest biome, B2-TF). Typically coupled in nature, VPD and temperature can be varied independently in the controlled environment of the B2-TF, and their effects on photosynthesis distinguished. We found that in the B2-TF, gross ecosystem productivity (GEP) was strongly reduced by increasing VPD, but responded little to temperature. Whereas eddy flux-derived GEP of three natural tropical forest sites in the Amazon of Brazil declined at temperatures above 27°C, GEP in the B2-TF remained stable up to 33°C under both low and high VPD regimes. While either mechanism results in reduced photosynthesis, the impact of VPD is short-lived and may be mitigated by enhanced water use efficiency under elevated atmospheric CO2 concentrations, allowing tropical forests to be more resilient to climate warming.

  12. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    PubMed Central

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H.; Schwahn, Kevin; Fernie, Alisdair R.; Mateiu, Ramona V.; Blennow, Andreas

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch-bound phosphate as a result of overexpressing GWD. PMID:26891365

  13. Hydrogen Sulfide in Biochemistry and Medicine

    PubMed Central

    Predmore, Benjamin Lee; Lefer, David Joseph

    2012-01-01

    Abstract Significance: An abundance of experimental evidence suggests that hydrogen sulfide (H2S) plays a prominent role in physiology and pathophysiology. Many targets exist for H2S therapy. The molecular targets of H2S include proteins, enzymes, transcription factors, and membrane ion channels. Recent Advances: Novel H2S precursors are being synthesized and discovered that are capable of releasing H2S in a slow and sustained manner. This presents a novel and advantageous approach to H2S therapy for treatment of chronic conditions associated with a decline in endogenous H2S, such as diabetes and cardiovascular disease. Critical Issues: While H2S is cytoprotective at physiological concentrations, it is not universally cytoprotective, as it appears to have pro-apoptotic actions in cancer cells and is well known to be toxic at supraphysiological concentrations. Many of the pleiotropic effects of H2S on health are associated with the inhibition of inflammation and upregulation of prosurvival pathways. The powerful anti-inflammatory, cytoprotective, immunomodulating, and trophic effects of H2S on the vast majority of normal cells seem to be mediated mainly by its actions as an extremely versatile direct and indirect antioxidant and free radical scavenger. While the overall effects of H2S on transformed (i.e., malignant) cells can be characterized as pro-oxidant and pro-apoptotic, they contrast sharply with the cytoprotective effects on most normal cells. Future Directions: H2S has become a molecule of great interest, and several slow-releasing H2S prodrugs are currently under development. We believe that additional agents regulating H2S bioavailability will be developed during the next 10 years. Antioxid. Redox Signal. 17, 119–140. PMID:22432697

  14. The Role of Hydrogen Sulfide in Renal System.

    PubMed

    Cao, Xu; Bian, Jin-Song

    2016-01-01

    Hydrogen sulfide has gained recognition as the third gaseous signaling molecule after nitric oxide and carbon monoxide. This review surveys the emerging role of H 2 S in mammalian renal system, with emphasis on both renal physiology and diseases. H 2 S is produced redundantly by four pathways in kidney, indicating the abundance of this gaseous molecule in the organ. In physiological conditions, H 2 S was found to regulate the excretory function of the kidney possibly by the inhibitory effect on sodium transporters on renal tubular cells. Likewise, it also influences the release of renin from juxtaglomerular cells and thereby modulates blood pressure. A possible role of H 2 S as an oxygen sensor has also been discussed, especially at renal medulla. Alternation of H 2 S level has been implicated in various pathological conditions such as renal ischemia/reperfusion, obstructive nephropathy, diabetic nephropathy, and hypertensive nephropathy. Moreover, H 2 S donors exhibit broad beneficial effects in renal diseases although a few conflicts need to be resolved. Further research reveals that multiple mechanisms are underlying the protective effects of H 2 S, including anti-inflammation, anti-oxidation, and anti-apoptosis. In the review, several research directions are also proposed including the role of mitochondrial H 2 S in renal diseases, H 2 S delivery to kidney by targeting D-amino acid oxidase/3-mercaptopyruvate sulfurtransferase (DAO/3-MST) pathway, effect of drug-like H 2 S donors in kidney diseases and understanding the molecular mechanism of H 2 S. The completion of the studies in these directions will not only improves our understanding of renal H 2 S functions but may also be critical to translate H 2 S to be a new therapy for renal diseases.

  15. A Multi-Scale Sampling Strategy for Detecting Physiologically Significant Signals in AVIRIS Imagery

    NASA Technical Reports Server (NTRS)

    Gamon, John A.; Lee, Lai-Fun; Qiu, Hong-Lie; Davis, Stephen; Roberts, Dar A.; Ustin, Susan L.

    1998-01-01

    Models of photosynthetic production at ecosystem and global scales require multiple input parameters specifying physical and physiological surface features. While certain physical parameters (e.g., absorbed photosynthetically active radiation) can be derived from current satellite sensors, other physiologically relevant measures (e.g., vegetation type, water status, carboxylation capacity, or photosynthetic light-use efficiency), are not generally directly available from current satellite sensors at the appropriate geographic scale. Consequently, many model parameters must be assumed or derived from independent sources, often at an inappropriate scale. An abundance of ecophysiological studies at the leaf and canopy scales suggests strong physiological control of vegetation-atmosphere CO2 and water vapor fluxes, particularly in evergreen vegetation subjected to diurnal or seasonal stresses. For example hot, dry conditions can lead to stomatal closure, and associated "downregulation" of photosynthetic biochemical processes, a phenomenon often manifested as a "midday photosynthetic depression". A recent study with the revised simple biosphere (SiB2) model demonstrated that photosynthetic downregulation can significantly impact global climate. However, at the global scale, the exact significance of downregulation remains unclear, largely because appropriate physiological measures are generally unavailable at this scale. Clearly, there is a need to develop reliable ways of extracting physiologically relevant information from remote sensing. Narrow-band spectrometers offer many opportunities for deriving physiological parameters needed for ecosystem and global scale photosynthetic models. Experimental studies on the ground at the leaf- to stand-scale have indicated that several narrow-band features can be used to detect plant physiological status. One physiological signal is caused by xanthophyll cycle pigment activity, and is often expressed as the Photochemical Reflectance Index (PRI). Because the xanthophyll cycle pigments are photoregulatory pigments closely linked to photosynthetic function, this index can be used to derive relative photosynthetic rates. An additional signal with physiological significance is the 970 nm water absorption band, which provides a measure of liquid water content. This feature has been quantified both using a simple 2-band ratio (900/970 nm, here referred to as the "Water Band Index" or WBI;), and using the "continuum removal" method. Current atmospheric correction methods for AVIRIS imagery also obtain quantitative expressions of surface liquid water absorption based on the 970 nm water band and may be comparable to ground-based estimates of water content using this feature. However, physiological interpretations of both the PRI and the WBI are best understood at the leaf and canopy scales, where complications of atmospheric interference and complex stand and landscape features can be minimized, and where experimental manipulations can be readily applied. Currently it is not known whether these physiological indices can be used to derive meaningful physiological information from AVIRIS imagery. In addition to the problem of atmospheric interference, another challenge is that any simple physiological index can be confounded by multiple factors unrelated to physiology, and this problem can become more severe at progressively larger spatial scales. For example, previous work has suggested that both the PRI and the WBI, are strongly correlated with other optical measures of canopy structure (e.g., the Normalized Difference Vegetation Index or green vegetation fraction), indicating a confounding effect of structure on physiological signals at the larger, landscape scale. Furthermore, the normal operating mode of most imaging spectrometers does not allow simultaneous, ground truthing at a level of detail needed for physiological sampling. Additionally, manipulative experiments of physiology are difficult to apply at a geographic scale suitable for comparison with remote imagery, which often works at spatial scales that are several orders of magnitude larger than those typically used for physiological studies. These limitations require the consideration of alternative approaches to validating physiological information derived from AVIRIS data. In this report, we present a multi-scale sampling approach to detecting physiologically significant signals in narrow-band spectra. This approach explores the multi-dimensional data space provided by narrow-band spectrometry, and combines AVIRIS imagery at a large scale, with ground spectral sampling at an intermediate scale, and detailed ecophysiological measurements at a fine scale, to examine seasonally and spatially changing relationships between multiple structural and physiological variables. Examples of this approach are provided by simultaneous sampling of the Normalized Difference Vegetation Index (NDVI), an index of fractional PAR interception and green vegetation cover, the Water Band Index (WBI, an index of liquid water absorption, and the Photochemical Reflectance Index (PRI, an index of xanthophyll cycle pigment activity and photosynthetic light-use efficiency. By directly linking changing optical properties sampled on the ground with measurable physiological states, we hope to develop a basis for interpreting similar signals in AVIRIS imagery.

  16. Study of physio-psychological effects on traffic wardens due to traffic noise pollution; exposure-effect relation.

    PubMed

    Tabraiz, Shamas; Ahmad, Saeed; Shehzadi, Iffat; Asif, Muhammad Bilal

    2015-01-01

    Noise pollution has increased to alarming extent in most of the urban areas in Pakistan. It is assumed even more perilous than air and water pollution due to its direct acute and chronic physio-psychological effects. The objective of this study is to analyze and evaluate the psychological and physiological effects caused by traffic noise on traffic wardens and to find relation type between exposure time and effect. Three wardens check posts near roads were selected for survey in Taxila and Islamabad cities of Pakistan. Survey conducted included noise measurements at aforementioned check posts for one month and Performa based interviews of traffic wardens. Analysis of results showed that noise levels varied between 85-106 dB hence violating OSHA regulations. Major psychological effects found in wardens were aggravated depression 58%, stress 65%, public conflict 71%, irritation and annoyance 54%, behavioral affects 59% and speech interference 56%. Physiological effects found were hypertension 87%, muscle tension 64%, exhaustion 48%, low performance levels 55%, concentration loss 93%, hearing impairment 69%, headache 74% and cardiovascular issue 71%. Relation between exposure time and effects were evaluated by using simple regression test in excel. Percentage of psychological and physiological effects in wardens varied with the exposure time; aggravated depression (R(2) = 0.946, P = 0.133), stress suffering (R(2) = 0.014, P = 0.173), public conflict (R(2) = 0.946, P = 0.133), irritation and annoyance (R(2) = 0.371, P = 0.137), behavioral affects (R(2) = 0.596, P = 0.0616) and speech interference (R(2) = 0.355, P = 0.445), hypertension (R(2) = 0.96, P = 0.00095) and cardiovascular issue (R(2) = 0.775, P = 0.044).

  17. Physiological and Emotional Responses of Disabled Children to Therapeutic Clowns: A Pilot Study

    PubMed Central

    Kingsnorth, Shauna; Blain, Stefanie; McKeever, Patricia

    2011-01-01

    This pilot study examined the effects of Therapeutic Clowning on inpatients in a pediatric rehabilitation hospital. Ten disabled children with varied physical and verbal expressive abilities participated in all or portions of the data collection protocol. Employing a mixed-method, single-subject ABAB study design, measures of physiological arousal, emotion and behavior were obtained from eight children under two conditions—television exposure and therapeutic clown interventions. Four peripheral autonomic nervous system (ANS) signals were recorded as measures of physiological arousal; these signals were analyzed with respect to measures of emotion (verbal self reports of mood) and behavior (facial expressions and vocalizations). Semistructured interviews were completed with verbally expressive children (n = 7) and nurses of participating children (n = 13). Significant differences among children were found in response to the clown intervention relative to television exposure. Physiologically, changes in ANS signals occurred either more frequently or in different patterns. Emotionally, children's (self) and nurses' (observed) reports of mood were elevated positively. Behaviorally, children exhibited more positive and fewer negative facial expressions and vocalizations of emotion during the clown intervention. Content and themes extracted from the interviews corroborated these findings. The results suggest that this popular psychosocial intervention has a direct and positive impact on hospitalized children. This pilot study contributes to the current understanding of the importance of alternative approaches in promoting well-being within healthcare settings. PMID:21799690

  18. Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis?

    PubMed

    Drake, John E; Tjoelker, Mark G; Aspinwall, Michael J; Reich, Peter B; Barton, Craig V M; Medlyn, Belinda E; Duursma, Remko A

    2016-08-01

    Given the contrasting short-term temperature dependences of gross primary production (GPP) and autotrophic respiration, the fraction of GPP respired by trees is predicted to increase with warming, providing a positive feedback to climate change. However, physiological acclimation may dampen or eliminate this response. We measured the fluxes of aboveground respiration (Ra ), GPP and their ratio (Ra /GPP) in large, field-grown Eucalyptus tereticornis trees exposed to ambient or warmed air temperatures (+3°C). We report continuous measurements of whole-canopy CO2 exchange, direct temperature response curves of leaf and canopy respiration, leaf and branch wood respiration, and diurnal photosynthetic measurements. Warming reduced photosynthesis, whereas physiological acclimation prevented a coincident increase in Ra . Ambient and warmed trees had a common nonlinear relationship between the fraction of GPP that was respired above ground (Ra /GPP) and the mean daily temperature. Thus, warming significantly increased Ra /GPP by moving plants to higher positions on the shared Ra /GPP vs daily temperature relationship, but this effect was modest and only notable during hot conditions. Despite the physiological acclimation of autotrophic respiration to warming, increases in temperature and the frequency of heat waves may modestly increase tree Ra /GPP, contributing to a positive feedback between climate warming and atmospheric CO2 accumulation. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Human physiological models of insomnia.

    PubMed

    Richardson, Gary S

    2007-12-01

    Despite the wide prevalence and important consequences of insomnia, remarkably little is known about its pathophysiology. Available models exist primarily in the psychological domain and derive from the demonstrated efficacy of behavioral treatment approaches to insomnia management. However, these models offer little specific prediction about the anatomic or physiological foundation of chronic primary insomnia. On the other hand, a growing body of data on the physiology of sleep supports a reasonably circumscribed overview of possible pathophysiological mechanisms, as well as the development of physiological models of insomnia to guide future research. As a pragmatic step, these models focus on primary insomnia, as opposed to comorbid insomnias, because the latter is by its nature a much more heterogeneous presentation, reflecting the effects of the distinct comorbid condition. Current understanding of the regulation of sleep and wakefulness in mammalian brain supports four broad candidate areas: 1) disruption of the sleep homeostat; 2) disruption of the circadian clock; 3) disruption of intrinsic systems responsible for the expression of sleep states; or 4) disruption (hyperactivity) of extrinsic systems capable of over-riding normal sleep-wake regulation. This review examines each of the four candidate pathophysiological mechanisms and the available data in support of each. While studies that directly test the viability of each model are not yet available, descriptive data on primary insomnia favor the involvement of dysfunctional extrinsic stress-response systems in the pathology of primary chronic insomnia.

  20. Motion perception: behavior and neural substrate.

    PubMed

    Mather, George

    2011-05-01

    Visual motion perception is vital for survival. Single-unit recordings in primate primary visual cortex (V1) have revealed the existence of specialized motion sensing neurons; perceptual effects such as the motion after-effect demonstrate their importance for motion perception. Human psychophysical data on motion detection can be explained by a computational model of cortical motion sensors. Both psychophysical and physiological data reveal at least two classes of motion sensor capable of sensing motion in luminance-defined and texture-defined patterns, respectively. Psychophysical experiments also reveal that motion can be seen independently of motion sensor output, based on attentive tracking of visual features. Sensor outputs are inherently ambiguous, due to the problem of univariance in neural responses. In order to compute stimulus direction and speed, the visual system must compare the responses of many different sensors sensitive to different directions and speeds. Physiological data show that this computation occurs in the visual middle temporal (MT) area. Recent psychophysical studies indicate that information about spatial form may also play a role in motion computations. Adaptation studies show that the human visual system is selectively sensitive to large-scale optic flow patterns, and physiological studies indicate that cells in the middle superior temporal (MST) area derive this sensitivity from the combined responses of many MT cells. Extraretinal signals used to control eye movements are an important source of signals to cancel out the retinal motion responses generated by eye movements, though visual information also plays a role. A number of issues remain to be resolved at all levels of the motion-processing hierarchy. WIREs Cogni Sci 2011 2 305-314 DOI: 10.1002/wcs.110 For further resources related to this article, please visit the WIREs website Additional Supporting Information may be found in http://www.lifesci.sussex.ac.uk/home/George_Mather/Motion/index.html. Copyright © 2010 John Wiley & Sons, Ltd.

  1. No maternal or direct effects of ocean acidification on egg hatching in the Arctic copepod Calanus glacialis.

    PubMed

    Thor, Peter; Vermandele, Fanny; Carignan, Marie-Helene; Jacque, Sarah; Calosi, Piero

    2018-01-01

    Widespread ocean acidification (OA) is transforming the chemistry of the global ocean and the Arctic is recognised as the region where this transformation will occur at the fastest rate. Moreover, many Arctic species are considered less capable of tolerating OA due to their lower capacity for acid-base regulation. This inability may put severe restraints on many fundamental functions, such as growth and reproductive investments, which ultimately may result in reduced fitness. However, maternal effects may alleviate severe effects on the offspring rendering them more tolerant to OA. In a highly replicated experiment we studied maternal and direct effects of OA predicted for the Arctic shelf seas on egg hatching time and success in the keystone copepod species Calanus glacialis. We incubated females at present day conditions (pHT 8.0) and year 2100 extreme conditions (pHT 7.5) during oogenesis and subsequently reciprocally transplanted laid eggs between these two conditions. Statistical tests showed no effects of maternal or direct exposure to OA at this level. We hypothesise that C. glacialis may be physiologically adapted to egg production at low pH since oogenesis can also take place at conditions of potentially low haemolymph pH of the mother during hibernation in the deep.

  2. Reproduction in the space environment: Part I. Animal reproductive studies

    NASA Technical Reports Server (NTRS)

    Santy, P. A.; Jennings, R. T.; Craigie, D.

    1990-01-01

    Mankind's exploration and colonization of the frontier of space will ultimately depend on men's and women's ability to live, work, and reproduce in the space environment. This paper reviews animal studies, from microorganisms to mammals, done in space or under space-simulated conditions, which identify some of the key areas which might interfere with human reproductive physiology and/or embryonic development. Those space environmental factors which impacted almost all species included: microgravity, artificial gravity, radiation, and closed life support systems. These factors may act independently and in combination to produce their effects. To date, there have been no studies which have looked at the entire process of reproduction in any animal species. This type of investigation will be critical in understanding and preventing the problems which will affect human reproduction. Part II will discuss these problems directly as they relate to human physiology.

  3. Hatching behavior in turtles.

    PubMed

    Spencer, Ricky-John; Janzen, Fredric J

    2011-07-01

    Incubation temperature plays a prominent role in shaping the phenotypes and fitness of embryos, including affecting developmental rates. In many taxa, including turtles, eggs are deposited in layers such that thermal gradients alter developmental rates within a nest. Despite this thermal effect, a nascent body of experimental work on environmentally cued hatching in turtles has revealed unexpected synchronicity in hatching behavior. This review discusses environmental cues for hatching, physiological mechanisms behind synchronous hatching, proximate and ultimate causes for this behavior, and future directions for research. Four freshwater turtle species have been investigated experimentally, with hatching in each species elicited by different environmental cues and responding via various physiological mechanisms. Hatching of groups of eggs in turtles apparently involves some level of embryo-embryo communication and thus is not a purely passive activity. Although turtles are not icons of complex social behavior, life-history theory predicts that the group environment of the nest can drive the evolution of environmentally cued hatching.

  4. Cardiovascular adaptations in weightlessness: The influence of in-flight exercise programs on the cardiovascular adjustments during weightlessness and upon returning to Earth

    NASA Technical Reports Server (NTRS)

    Bennett, C. H.

    1981-01-01

    The effect of in-flight exercise programs on astronauts' cardiovascular adjustments during spaceflight weightlessness and upon return to Earth was studied. Physiological changes in muscle strength and volume, cardiovascular responses during the application of lower body negative pressure, and metabolic activities during pre-flight and flight tests were made on Skylab crewmembers. The successful completion of the Skylab missions showed that man can perform submaximal and maximal aerobic exercise in the weightless enviroment without detrimental trends in any of the physiologic data. Exercise tolerance during flight was unaffected. It was only after return to Earth that a tolerance decrement was noted. The rapid postflight recovery of orthostatic and exercise tolerance following two of the three Skylab missions appeared to be directly related to total in-flight exercise as well as to the graded, regular program of exercise performed during the postflight debriefing period.

  5. Exosomes: an emerging factor in stress-induced immunomodulation.

    PubMed

    Beninson, Lida A; Fleshner, Monika

    2014-10-01

    Cells constitutively release small (40-100 nm) vesicles known as exosomes, but their composition and function changes in response to a variety of physiological challenges, such as injury, infection, and disease. Advances in our understanding of the immunological relevance of exosomes have been made, however, few studies have explored their role in stress physiology. Exposure to a variety of acute stressors facilitates the efficacy of innate immune responses, but the mechanisms for these effects are not fully understood. Since exosomes are emerging as important inflammatory mediators, they likely exhibit a similar role when an organism is exposed to an acute stressor. Here, we review our current knowledge of the basic properties and immunological functions of exosomes and provide emerging data supporting the role of stress-modified exosomes in regulating the innate immune response, potentially enabling long-distance cellular communication and obviating the need for direct cell-to-cell contact. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Interactions Between Pinus taeda (loblolly) Fine Roots and Soil Fungi: Impacts of Elevated CO2, N Availability, and Spatial Distribution of Fungi on Fine Root Persistence and Turnover

    NASA Astrophysics Data System (ADS)

    Strand, A.; Beidler, K.; McGlinn, D.; Pritchard, S. G.

    2016-12-01

    Fine root turnover represents the most significant mode of flux from plants into soil C pools. Unfortunately fine root senescence and decomposition, processes critical in turnover, are particularly understudied. For example, little is known about either the factors that influence fine-root decomposition or the fate of compounds they contain during root death. Better understanding fine root senescence and decomposition should reduce uncertainty associated with global climate models; including re-uptake of materials in dying leaves into these models has already been shown to increase their accuracy. Over 4400 individual fine-roots and 4734 rhizomorphs were tracked from initiation until disintegration over 12 years using minirhizotrons at the Duke FACE site. Image-based approaches such as minirhizotrons cannot directly assess fine-root physiological status. To assess fine-root function directly, we are now conducting manipulative experiments in P. taeda in which fine-root senescence is induced through two treatments, steam- and direct hand-girdling. Physiological status is then assessed by examining gene-expression, root anatomy and chemical composition of manipulated roots. Changing [CO2] did not change persistence times for roots, but did impact rhizomorph persistence. Both roots and rhizomorphs showed interactions between effects of N and CO2 on persistence. Most interesting is the interaction between fine-roots and rhizomorphs: fine root persistence times are reduced in the presence of rhizomorphs, but this effect depends on the amount of N available. Finally, we found experimentally inducing senescence via steam girdling to be very effective relative to hand-girdling. These results provide evidence of the importance of priming on function of soil fungi and the role of N availability on fine-root turnover. The ability to stimulate fine-root senescence provides a powerful experimental tool to examine the fates of resources contained in fine-root pools as these roots turn over.

  7. The physiological and biomechanical effects of forwards and reverse sports wheelchair propulsion.

    PubMed

    Mason, Barry S; Lenton, John P; Goosey-Tolfrey, Victoria L

    2015-07-01

    To explore the physiological and biomechanical differences between forwards (FOR) and reverse (REV) sports wheelchair propulsion. Fourteen able-bodied males with previous wheelchair propulsion experience pushed a sports wheelchair on a single-roller ergometer in a FOR and REV direction at three sub-maximal speeds (4, 6, and 8 km/hour). Each trial lasted 3 minutes, and during the final minute physiological and biomechanical measures was collected. The physiological results revealed that oxygen uptake (1.51 ± 0.29 vs. 1.38 ± 0.26 L/minute, P = 0.005) and heart rate (121 ± 19 vs. 109 ± 14 beats/minute, P < 0.0005) were significantly greater during REV than FOR only during the 8 km/hour trials. From a biomechanical perspective, push frequencies were similar between FOR and REV across all speeds (P > 0.05). However, greater mean resultant forces were applied during FOR (P < 0.0005) at 4 km/hour (66.7 ± 19.5 vs. 49.2 ± 10.3 N), 6 km/hour (90.7 ± 21.9 vs. 65.3 ± 18.6 N), and 8 km/hour (102.5 ± 17.6 vs. 68.7 ± 13.5 N) compared to REV. Alternatively, push times and push angles were significantly lower (P ≤ 0.001) during FOR at each speed. The current study demonstrated that at higher speeds physiological demand becomes elevated during REV. This was likely to be associated with an inability to apply sufficient force to the wheels, thus requiring kinematic adaptations in order to maintain constant speeds in REV.

  8. What a difference an X or Y makes: sex chromosomes, gene dose, and epigenetics in sexual differentiation

    PubMed Central

    Arnold, Arthur P.; Chen, Xuqi; Itoh, Yuichiro

    2014-01-01

    Summary A modern general theory of sex determination and sexual differentiation identifies the factors that cause sexual bias in gene networks, leading to sex differences in physiology and disease. The primary sex-biasing factors are those encoded on the sex chromosomes that are inherently different in the male and female zygote. These factors, and downstream factors such as gonadal hormones, act directly on tissues to produce sex differences, and to antagonize each other to reduce sex differences. Recent study of mouse models such as the Four Core Genotypes has begun to distinguish between direct effects of sex chromosome complement (XX vs. XY) and hormonal effects. Several lines of evidence implicate epigenetic processes in the control of sex differences, although a great deal of more information is needed about sex differences in the epigenome. PMID:23027446

  9. Huggable communication medium decreases cortisol levels.

    PubMed

    Sumioka, Hidenobu; Nakae, Aya; Kanai, Ryota; Ishiguro, Hiroshi

    2013-10-23

    Interpersonal touch is a fundamental component of social interactions because it can mitigate physical and psychological distress. To reproduce the psychological and physiological effects associated with interpersonal touch, interest is growing in introducing tactile sensations to communication devices. However, it remains unknown whether physical contact with such devices can produce objectively measurable endocrine effects like real interpersonal touching can. We directly tested this possibility by examining changes in stress hormone cortisol before and after a conversation with a huggable communication device. Participants had 15-minute conversations with a remote partner that was carried out either with a huggable human-shaped device or with a mobile phone. Our experiment revealed significant reduction in the cortisol levels for those who had conversations with the huggable device. Our approach to evaluate communication media with biological markers suggests new design directions for interpersonal communication media to improve social support systems in modern highly networked societies.

  10. Neuroendocrine disruption without direct endocrine mode of action: Polychloro-biphenyls (PCBs) and bisphenol A (BPA) as case studies.

    PubMed

    Pinson, Anneline; Franssen, Delphine; Gérard, Arlette; Parent, Anne-Simone; Bourguignon, Jean-Pierre

    Endocrine disruption is commonly thought to be restricted to a direct endocrine mode of action i.e. the perturbation of the activation of a given type of hormonal receptor by its natural ligand. Consistent with the WHO definition of an endocrine disrupter, a key issue is the "altered function(s) of the endocrine system". Such altered functions can result from different chemical interactions, beyond agonistic or antagonistic effect at a given receptor. Based on neuroendocrine disruption by polychlorinated biphenyls and bisphenol A, this paper proposes different mechanistic paradigms that can result in adverse health effects. They are a consequence of altered endocrine function(s) secondary to chemical interaction with different steps in the physiological regulatory processes, thus accounting for a possibly indirect endocrine mode of action. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  11. An opinion-driven behavioral dynamics model for addictive behaviors

    NASA Astrophysics Data System (ADS)

    Moore, Thomas W.; Finley, Patrick D.; Apelberg, Benjamin J.; Ambrose, Bridget K.; Brodsky, Nancy S.; Brown, Theresa J.; Husten, Corinne; Glass, Robert J.

    2015-04-01

    We present a model of behavioral dynamics that combines a social network-based opinion dynamics model with behavioral mapping. The behavioral component is discrete and history-dependent to represent situations in which an individual's behavior is initially driven by opinion and later constrained by physiological or psychological conditions that serve to maintain the behavior. Individuals are modeled as nodes in a social network connected by directed edges. Parameter sweeps illustrate model behavior and the effects of individual parameters and parameter interactions on model results. Mapping a continuous opinion variable into a discrete behavioral space induces clustering on directed networks. Clusters provide targets of opportunity for influencing the network state; however, the smaller the network the greater the stochasticity and potential variability in outcomes. This has implications both for behaviors that are influenced by close relationships verses those influenced by societal norms and for the effectiveness of strategies for influencing those behaviors.

  12. Huggable communication medium decreases cortisol levels

    PubMed Central

    Sumioka, Hidenobu; Nakae, Aya; Kanai, Ryota; Ishiguro, Hiroshi

    2013-01-01

    Interpersonal touch is a fundamental component of social interactions because it can mitigate physical and psychological distress. To reproduce the psychological and physiological effects associated with interpersonal touch, interest is growing in introducing tactile sensations to communication devices. However, it remains unknown whether physical contact with such devices can produce objectively measurable endocrine effects like real interpersonal touching can. We directly tested this possibility by examining changes in stress hormone cortisol before and after a conversation with a huggable communication device. Participants had 15-minute conversations with a remote partner that was carried out either with a huggable human-shaped device or with a mobile phone. Our experiment revealed significant reduction in the cortisol levels for those who had conversations with the huggable device. Our approach to evaluate communication media with biological markers suggests new design directions for interpersonal communication media to improve social support systems in modern highly networked societies. PMID:24150186

  13. The Cumulative Neurobehavioral and Physiological Effects of Chronic Caffeine Intake: Individual Differences and Implications for the Use of Caffeinated Energy Products

    PubMed Central

    Spaeth, Andrea M; Goel, Namni; Dinges, David F

    2014-01-01

    The use of caffeine-containing energy products (CCEP) has increased worldwide in recent years and research shows that CCEP can improve cognitive and physical performance. All of the top-selling energy drinks contain caffeine, which is likely to be the primary psychoactive ingredient in CCEP. Presumably, individuals consume CCEP to counteract feelings of ‘low-energy’ in situations causing tiredness, fatigue, and/or reduced alertness. This review discusses the scientific evidence for sleep loss, circadian phase, sleep inertia and the time-on-task effect as causes of ‘low energy’ and summarizes research assessing the efficacy of caffeine to counteract decreased alertness and increased fatigue in such situations. The results of a placebo-controlled experiment on healthy adults undergoing three nights of total sleep deprivation (with or without 2 hour naps every 12 hours) are presented to illustrate the physiological and neurobehavioral effects of sustained low-dose caffeine. Individual differences, including genetic factors, in the response to caffeine and to sleep loss are discussed. We conclude with future directions for research on this important and evolving topic. PMID:25293542

  14. Rumination and Cognitive Distraction in Major Depressive Disorder: An Examination of Respiratory Sinus Arrhythmia

    PubMed Central

    LeMoult, Joelle; Yoon, K. Lira; Joormann, Jutta

    2015-01-01

    Difficulty regulating emotions following stressful events is a hallmark of Major Depressive Disorder (MDD). Although individuals’ ability to regulate their emotions is believed to have direct consequences for both emotional and physical wellbeing, few studies have examined the cardiovascular effects of different emotion regulation strategies in MDD. To the best of our knowledge, the current study is the first to examine the effects of two emotion regulation strategies, cognitive distraction and rumination, on both self-reported sadness and respiratory sinus arrhythmia (RSA) in individuals with MDD and healthy controls (CTLs). Following a forced-failure stressor, participants were randomly assigned to a rumination or cognitive distraction condition. As expected, rumination increased sadness and triggered RSA withdrawal for both MDDs and CTLs. Interestingly, although cognitive distraction reduced sadness, it also triggered RSA withdrawal. Moreover, cognitive distraction was associated with greater RSA withdrawal for MDDs than CTLs. Thus, although depressed individuals are able to use cognitive distraction to emotionally recover from stress, it may be associated with greater cognitive effort. Adding low-cost physiological measures such as RSA into assessments has the potential to offer new and important information about the effects of emotion regulation on mental and physiological health. PMID:27199505

  15. Improvements in the metabolic milieu following Roux-en-Y gastric bypass and the arrest of diabetic kidney disease.

    PubMed

    Docherty, Neil G; le Roux, Carel W

    2014-09-01

    Roux-en-Y gastric bypass (RYGB) is an efficacious intervention for morbid obesity and has a diabetes-remitting effect in patients with obesity and type 2 diabetes mellitus, which occurs prior to significant weight loss. Roux-en-Y gastric bypass is also associated with early and sustained reductions in the risk factor profile for the progression of diabetic complications. Attention is therefore now being placed on RYGB as a metabolic intervention with the capacity to yield therapeutic benefit in relation to the progression of diabetic complications, such as diabetic kidney disease. As alterations in gut anatomy following RYGB coincide with attendant shifts in downstream enteroendocrine signals with direct and indirect resolutionary effects on the kidney, the concept of an endocrine gut-kidney axis post-RYGB is growing. With the model of a gut-kidney axis in mind, this article summarizes emerging data on the effects of RYGB on risk factors for diabetic kidney disease (hyperglycaemia, dyslipidaemia and hypertension), highlighting a potential role for glucagon-like peptide 1 in risk factor reduction. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  16. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy*

    PubMed Central

    Woodall, Benjamin P.; Woodall, Meryl C.; Luongo, Timothy S.; Grisanti, Laurel A.; Tilley, Douglas G.; Elrod, John W.; Koch, Walter J.

    2016-01-01

    GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2fl/fl) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β2-adrenergic receptor (β2AR) agonist, was significantly enhanced in MLC-Cre:GRK2fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β2AR-induced hypertrophy. PMID:27566547

  17. Male victims of sexual assault: phenomenology, psychology, physiology.

    PubMed

    Bullock, Clayton M; Beckson, Mace

    2011-01-01

    Myths, stereotypes, and unfounded beliefs about male sexuality, in particular male homosexuality, are widespread in legal and medical communities, as well as among agencies providing services to sexual assault victims. These include perceptions that men in noninstitutionalized settings are rarely sexually assaulted, that male victims are responsible for their assaults, that male sexual assault victims are less traumatized by the experience than their female counterparts, and that ejaculation is an indicator of a positive erotic experience. As a result of the prevalence of such beliefs, there is an underreporting of sexual assaults by male victims; a lack of appropriate services for male victims; and, effectively, no legal redress for male sexual assault victims. By comparison, male sexual assault victims have fewer resources and greater stigma than do female sexual assault victims. Many male victims, either because of physiological effects of anal rape or direct stimulation by their assailants, have an erection, ejaculate, or both during the assault. This is incorrectly understood by assailant, victim, the justice system, and the medical community as signifying consent by the victim. Studies of male sexual physiology suggest that involuntary erections or ejaculations can occur in the context of nonconsensual, receptive anal sex. Erections and ejaculations are only partially under voluntary control and are known to occur during times of extreme duress in the absence of sexual pleasure. Particularly within the criminal justice system, this misconception, in addition to other unfounded beliefs, has made the courts unwilling to provide legal remedy to male victims of sexual assault, especially when the victim experienced an erection or an ejaculation during the assault. Attorneys and forensic psychiatrists must be better informed about the physiology of these phenomena to formulate evidence-based opinions.

  18. Pericardial application as a new route for implanting stem-cell cardiospheres to treat myocardial infarction.

    PubMed

    Zhang, Jianhua; Wu, Zheng; Fan, Zepei; Qin, Zixi; Wang, Yingwei; Chen, Jiayuan; Wu, Maoxiong; Chen, Yangxin; Wu, Changhao; Wang, Jingfeng

    2018-06-01

    Cardiospheres (CSps) are a promising new form of cardiac stem cells with advantage over other stem cells for myocardial regeneration, but direct implantation of CSps by conventional routes has been limited due to potential embolism. We have implanted CSps into the pericardial cavity and systematically demonstrated its efficacy regarding myocardial infarction. Stem cell potency and cell viability can be optimized in vitro prior to implantation by pre-conditioning CSps with pericardial fluid and hydrogel packing. Transplantation of optimized CSps into the pericardial cavity improved cardiac function and alleviated myocardial fibrosis, increased myocardial cell survival and promoted angiogenesis. Mechanistically, CSps are able to directly differentiate into cardiomyocytes in vivo and promote regeneration of myocardial cells and blood vessels through a paracrine effect with released growth factors as potential paracrine mediators. These findings establish a new strategy for therapeutic myocardial regeneration to treat myocardial infarction. Cardiospheres (CSps) are a new form of cardiac stem cells with an advantage over other stem cells for myocardial regeneration. However, direct implantation of CSps by conventional routes to treat myocardial infarction has been limited due to potential embolism. We have implanted CSps into the pericardial cavity and systematically assessed its efficacy on myocardial infarction. Preconditioning with pericardial fluid enhanced the activity of CSps and matrix hydrogel prolonged their viability. This shows that pretransplant optimization of stem cell potency and maintenance of cell viability can be achieved with CSps. Transplantation of optimized CSps into the pericardial cavity improved cardiac function and alleviated myocardial fibrosis in the non-infarcted area, and increased myocardial cell survival and promoted angiogenesis in the infarcted area. Mechanistically, CSps were able to directly differentiate into cardiomyocytes in vivo and promoted regeneration of myocardial cells and blood vessels in the infarcted area through a paracrine effect with released growth factors in pericardial cavity serving as possible paracrine mediators. This is the first demonstration of direct pericardial administration of pre-optimized CSps, and its effectiveness on myocardial infarction by functional and morphological outcomes with distinct mechanisms. These findings establish a new strategy for therapeutic myocardial regeneration to treat myocardial infarction. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  19. Systematic review of biological effects of exposure to static electric fields. Part II: Invertebrates and plants.

    PubMed

    Schmiedchen, Kristina; Petri, Anne-Kathrin; Driessen, Sarah; Bailey, William H

    2018-01-01

    The construction of high-voltage direct current (HVDC) lines for the long-distance transport of energy is becoming increasingly popular. This has raised public concern about potential environmental impacts of the static electric fields (EF) produced under and near HVDC power lines. As the second part of a comprehensive literature analysis, the aim of this systematic review was to assess the effects of static EF exposure on biological functions in invertebrates and plants and to provide the basis for an environmental impact assessment of such exposures. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was used to guide the methodological conduct and reporting. Thirty-three studies - 14 invertebrate and 19 plant studies - met the eligibility criteria and were included in this review. The reported behavioral responses of insects and planarians upon exposure strongly suggest that invertebrates are able to perceive the presence of a static EF. Many other studies reported effects on physiological functions that were expressed as, for example, altered metabolic activity or delayed reproductive and developmental stages in invertebrates. In plants, leaf damage, alterations in germination rates, growth and yield, or variations in the concentration of essential elements, for example, have been reported. However, these physiological responses and changes in plant morphology appear to be secondary to surface stimulation by the static EF or caused by concomitant parameters of the electrostatic environment. Furthermore, all of the included studies suffered from methodological flaws, which lowered credibility in the results. At field levels encountered from natural sources or HVDC lines (< 35kV/m), the available data provide reliable evidence that static EF can trigger behavioral responses in invertebrates, but they do not provide evidence for adverse effects of static EF on other biological functions in invertebrates and plants. At far higher field levels (> 35kV/m), adverse effects on physiology and morphology, presumably caused by corona-action, appear to be more likely. Higher quality studies are needed to unravel the role of air ions, ozone, nitric oxide and corona current on alterations in physiological functions and morphology. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Physiological Tolerance to Uncompensable Heat Stress: Effects of Exercise Intensity, Protective Clothing, and Climate

    DTIC Science & Technology

    1994-01-01

    Physiological tolerance to uncompensable heat stress: effects of exercise intensity, protective clothing , and climate SCOTT J. MONTAIN, MICHAEL N...effects of exercise 26), there remains little information to predict the inci- intensity, protective clothing , and climate. J. AppL PhysioL dence of...that pre- exercise intensity, protective clothing level, and climate on dict the physiological responses and work capability dur- physiological tolerance

  1. Physiological relaxation induced by horticultural activity: transplanting work using flowering plants.

    PubMed

    Lee, Min-sun; Park, Bum-jin; Lee, Juyoung; Park, Kun-tae; Ku, Ja-hyeong; Lee, Jun-woo; Oh, Kyung-ok; Miyazaki, Yoshifumi

    2013-10-10

    Despite increasing attention and a growing volume of research data, little physiological evidence is available on the benefits of horticultural activity and the different effects on individuals. Therefore, the aim of the present study was to investigate the physiological effects of horticultural activity and to examine how differences in personality alter these effects. The effects of transplanting real flowers (horticultural activity) and handling artificial flowers (control activity) on human physiological activity were compared. On the first day, eight participants engaged in horticultural activity and another eight in the control activity. On the second day, participants switched roles. Participants' physiological conditions during each activity were assessed by measuring the heart rate and heart rate variability (HRV). Psychological responses, which were measured using a semantic differential rating scale, showed that the horticultural activity promoted comfortable, soothed, and natural feelings, compared to the control activity. Analysis of physiological responses using two-way repeated measures analysis of variance (ANOVA) revealed that sympathetic nervous activity significantly decreased in the late time period (11 to 15 minutes) of horticultural activity only in the type A group. This study supports the fact that the horticultural activity can enhance psychological and physiological relaxation effects, although these physiological effects can differ among individuals with different personalities.

  2. Physiological relaxation induced by horticultural activity: transplanting work using flowering plants

    PubMed Central

    2013-01-01

    Background Despite increasing attention and a growing volume of research data, little physiological evidence is available on the benefits of horticultural activity and the different effects on individuals. Therefore, the aim of the present study was to investigate the physiological effects of horticultural activity and to examine how differences in personality alter these effects. Results The effects of transplanting real flowers (horticultural activity) and handling artificial flowers (control activity) on human physiological activity were compared. On the first day, eight participants engaged in horticultural activity and another eight in the control activity. On the second day, participants switched roles. Participants’ physiological conditions during each activity were assessed by measuring the heart rate and heart rate variability (HRV). Psychological responses, which were measured using a semantic differential rating scale, showed that the horticultural activity promoted comfortable, soothed, and natural feelings, compared to the control activity. Analysis of physiological responses using two-way repeated measures analysis of variance (ANOVA) revealed that sympathetic nervous activity significantly decreased in the late time period (11 to 15 minutes) of horticultural activity only in the type A group. Conclusions This study supports the fact that the horticultural activity can enhance psychological and physiological relaxation effects, although these physiological effects can differ among individuals with different personalities. PMID:24112302

  3. Effect of contrast on the perception of direction of a moving pattern

    NASA Technical Reports Server (NTRS)

    Stone, L. S.; Watson, A. B.; Mulligan, J. B.

    1989-01-01

    A series of experiments examining the effect of contrast on the perception of moving plaids was performed to test the hypothesis that the human visual system determines the direction of a moving plaid in a two-staged process: decomposition into component motion followed by application of the intersection-of-contraints rule. Although there is recent evidence that the first tenet of the hypothesis is correct, i.e., that plaid motion is initially decomposed into the motion of the individual grating components, the nature of the second-stage combination rule has not yet been established. It was found that when the gratings within the plaid are of different contrast the preceived direction is not predicted by the intersection-of-constraints rule. There is a strong (up to 20 deg) bias in the direction of the higher-constrast grating. A revised model, which incorporates a contrast-dependent weighting of perceived grating speed as observed for one-dimensional patterns, can quantitatively predict most of the results. The results are then discussed in the context of various models of human visual motion processing and of physiological responses of neurons in the primate visual system.

  4. Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum.

    PubMed

    Chu, Chia-Ho; Sarangadharan, Indu; Regmi, Abiral; Chen, Yen-Wen; Hsu, Chen-Pin; Chang, Wen-Hsin; Lee, Geng-Yen; Chyi, Jen-Inn; Chen, Chih-Chen; Shiesh, Shu-Chu; Lee, Gwo-Bin; Wang, Yu-Lin

    2017-07-12

    In this study, a new type of field-effect transistor (FET)-based biosensor is demonstrated to be able to overcome the problem of severe charge-screening effect caused by high ionic strength in solution and detect proteins in physiological environment. Antibody or aptamer-immobilized AlGaN/GaN high electron mobility transistors (HEMTs) are used to directly detect proteins, including HIV-1 RT, CEA, NT-proBNP and CRP, in 1X PBS (with 1%BSA) or human sera. The samples do not need any dilution or washing process to reduce the ionic strength. The sensor shows high sensitivity and the detection takes only 5 minutes. The designs of the sensor, the methodology of the measurement, and the working mechanism of the sensor are discussed and investigated. A theoretical model is proposed based on the finding of the experiments. This sensor is promising for point-of-care, home healthcare, and mobile diagnostic device.

  5. Bilateral Transcranial Direct Current Stimulation Reshapes Resting-State Brain Networks: A Magnetoencephalography Assessment

    PubMed Central

    Turco, Cristina; Di Pino, Giovanni; Arcara, Giorgio

    2018-01-01

    Transcranial direct current stimulation (tDCS) can noninvasively induce brain plasticity, and it is potentially useful to treat patients affected by neurological conditions. However, little is known about tDCS effects on resting-state brain networks, which are largely involved in brain physiological functions and in diseases. In this randomized, sham-controlled, double-blind study on healthy subjects, we have assessed the effect of bilateral tDCS applied over the sensorimotor cortices on brain and network activity using a whole-head magnetoencephalography system. Bilateral tDCS, with the cathode (−) centered over C4 and the anode (+) centered over C3, reshapes brain networks in a nonfocal fashion. Compared to sham stimulation, tDCS reduces left frontal alpha, beta, and gamma power and increases global connectivity, especially in delta, alpha, beta, and gamma frequencies. The increase of connectivity is consistent across bands and widespread. These results shed new light on the effects of tDCS and may be of help in personalizing treatments in neurological disorders. PMID:29593782

  6. Effets des radiofréquences sur le système nerveux central chez lʼhomme : EEG, sommeil, cognition, vascularisation

    NASA Astrophysics Data System (ADS)

    Ghosn, Rania; Villégier, Anne-Sophie; Selmaoui, Brahim; Thuróczy, Georges; de Sèze, René

    2013-05-01

    Most of clinical studies on radiofrequency electromagnetic fields (RF) were directed at mobile phone-related exposures, usually at the level of the head, at their effect on some physiological functions including sleep, brain electrical activity (EEG), cognitive processes, brain vascularisation, and more generally on the cardiovascular and endocrine systems. They were frequently carried out on healthy adults. Effects on the amplitude of EEG alpha waves, mainly during sleep, look reproducible. It would however be important to define more precisely whether and how the absence of electromagnetic disturbance between RF exposure and the recording systems is checked. No consensus arises about cognitive effects. Some effects on cerebral vascularisation need complementary work.

  7. The effect of olfactory exposure to non-insecticidal agrochemicals on bumblebee foraging behavior.

    PubMed

    Sprayberry, Jordanna D H; Ritter, Kaitlin A; Riffell, Jeffrey A

    2013-01-01

    Declines in bumblebee populations have led to investigations into potential causes - including agrochemical effects on bumblebee physiology. The indirect effects of agrochemicals (i.e. behavior modulation) have been postulated, but rarely directly tested. Olfactory information is critical in mediating bumblebee-floral interactions. As agrochemicals emit volatiles, they may indirectly modify foraging behavior. We tested the effects of olfactory contamination of floral odor by agrochemical scent on foraging activity of Bombus impatiens using two behavioral paradigms: localization of food within a maze and forced-choice preference. The presence of a fungicide decreased bumblebees' ability to locate food within a maze. Additionally, bumblebees preferred to forage in non-contaminated feeding chambers when offered a choice between control and either fertilizer- or fungicide-scented chambers.

  8. Prenatal stress in birds: pathways, effects, function and perspectives.

    PubMed

    Henriksen, Rie; Rettenbacher, Sophie; Groothuis, Ton G G

    2011-06-01

    Although most work on prenatal stress has been conducted on mammalian species, birds provide useful alternative models since avian embryos develop outside the mother's body in a concealed environment, the egg, which is produced during a short time window of 4-14 days. This facilitates measurement of maternal substances provided for and manipulation of the embryo without interfering with the mother's physiology. We critically review prenatal corticosterone mediated effects in birds by reviewing both studies were females had elevated levels of plasma corticosterone during egg formation and studies applying corticosterone injections directly into the egg. A selected review of the mammalian literature is used as background. The results suggest that besides prenatal exposure to corticosterone itself, maternal corticosterone affects offspring's behaviour and physiology via alteration of other egg components. However, results are inconsistent, perhaps due to the interaction with variation in the post-natal environment, sex, age, developmental mode and details of treatment. The potential role of adaptive maternal programming has not been tested adequately and suggestions for future research are discussed. Copyright © 2011. Published by Elsevier Ltd.

  9. Plant Science View on Biohybrid Development

    PubMed Central

    Skrzypczak, Tomasz; Krela, Rafał; Kwiatkowski, Wojciech; Wadurkar, Shraddha; Smoczyńska, Aleksandra; Wojtaszek, Przemysław

    2017-01-01

    Biohybrid consists of a living organism or cell and at least one engineered component. Designing robot–plant biohybrids is a great challenge: it requires interdisciplinary reconsideration of capabilities intimate specific to the biology of plants. Envisioned advances should improve agricultural/horticultural/social practice and could open new directions in utilization of plants by humans. Proper biohybrid cooperation depends upon effective communication. During evolution, plants developed many ways to communicate with each other, with animals, and with microorganisms. The most notable examples are: the use of phytohormones, rapid long-distance signaling, gravity, and light perception. These processes can now be intentionally re-shaped to establish plant–robot communication. In this article, we focus on plants physiological and molecular processes that could be used in bio-hybrids. We show phototropism and biomechanics as promising ways of effective communication, resulting in an alteration in plant architecture, and discuss the specifics of plants anatomy, physiology and development with regards to the bio-hybrids. Moreover, we discuss ways how robots could influence plants growth and development and present aims, ideas, and realized projects of plant–robot biohybrids. PMID:28856135

  10. The role of massage in sports performance and rehabilitation: current evidence and future direction.

    PubMed

    Brummitt, Jason

    2008-02-01

    Massage is a popular treatment choice of athletes, coaches, and sports physical therapists. Despite its purported benefits and frequent use, evidence demonstrating its efficacy is scarce. To identify current literature relating to sports massage and its role in effecting an athlete's psychological readiness, in enhancing sports performance, in recovery from exercise and competition, and in the treatment of sports related musculoskeletal injuries. Electronic databases were used to identify papers relevant to this review. The following keywords were searched: massage, sports injuries, athletic injuries, physical therapy, rehabilitation, delayed onset muscle soreness, sports psychology, sports performance, sports massage, sports recovery, soft tissue mobilization, deep transverse friction massage, pre-event, and post exercise. RESEARCH STUDIES PERTAINING TO THE FOLLOWING GENERAL CATEGORIES WERE IDENTIFIED AND REVIEWED: pre-event (physiological and psychological variables), sports performance, recovery, and rehabilitation. Despite the fact clinical research has been performed, a poor appreciation exists for the appropriate clinical use of sports massage. Additional studies examining the physiological and psychological effects of sports massage are necessary in order to assist the sports physical therapist in developing and implementing clinically significant evidence based programs or treatments.

  11. Acid-base physiology, neurobiology and behaviour in relation to CO2-induced ocean acidification.

    PubMed

    Tresguerres, Martin; Hamilton, Trevor J

    2017-06-15

    Experimental exposure to ocean and freshwater acidification affects the behaviour of multiple aquatic organisms in laboratory tests. One proposed cause involves an imbalance in plasma chloride and bicarbonate ion concentrations as a result of acid-base regulation, causing the reversal of ionic fluxes through GABA A receptors, which leads to altered neuronal function. This model is exclusively based on differential effects of the GABA A receptor antagonist gabazine on control animals and those exposed to elevated CO 2 However, direct measurements of actual chloride and bicarbonate concentrations in neurons and their extracellular fluids and of GABA A receptor properties in aquatic organisms are largely lacking. Similarly, very little is known about potential compensatory mechanisms, and about alternative mechanisms that might lead to ocean acidification-induced behavioural changes. This article reviews the current knowledge on acid-base physiology, neurobiology, pharmacology and behaviour in relation to marine CO 2 -induced acidification, and identifies important topics for future research that will help us to understand the potential effects of predicted levels of aquatic acidification on organisms. © 2017. Published by The Company of Biologists Ltd.

  12. Aquatic noise pollution: implications for individuals, populations, and ecosystems.

    PubMed

    Kunc, Hansjoerg P; McLaughlin, Kirsty Elizabeth; Schmidt, Rouven

    2016-08-17

    Anthropogenically driven environmental changes affect our planet at an unprecedented scale and are considered to be a key threat to biodiversity. According to the World Health Organization, anthropogenic noise is one of the most hazardous forms of anthropogenically driven environmental change and is recognized as a major global pollutant. However, crucial advances in the rapidly emerging research on noise pollution focus exclusively on single aspects of noise pollution, e.g. on behaviour, physiology, terrestrial ecosystems, or on certain taxa. Given that more than two-thirds of our planet is covered with water, there is a pressing need to get a holistic understanding of the effects of anthropogenic noise in aquatic ecosystems. We found experimental evidence for negative effects of anthropogenic noise on an individual's development, physiology, and/or behaviour in both invertebrates and vertebrates. We also found that species differ in their response to noise, and highlight the potential underlying mechanisms for these differences. Finally, we point out challenges in the study of aquatic noise pollution and provide directions for future research, which will enhance our understanding of this globally present pollutant. © 2016 The Author(s).

  13. Aquatic noise pollution: implications for individuals, populations, and ecosystems

    PubMed Central

    Kunc, Hansjoerg P.; McLaughlin, Kirsty Elizabeth; Schmidt, Rouven

    2016-01-01

    Anthropogenically driven environmental changes affect our planet at an unprecedented scale and are considered to be a key threat to biodiversity. According to the World Health Organization, anthropogenic noise is one of the most hazardous forms of anthropogenically driven environmental change and is recognized as a major global pollutant. However, crucial advances in the rapidly emerging research on noise pollution focus exclusively on single aspects of noise pollution, e.g. on behaviour, physiology, terrestrial ecosystems, or on certain taxa. Given that more than two-thirds of our planet is covered with water, there is a pressing need to get a holistic understanding of the effects of anthropogenic noise in aquatic ecosystems. We found experimental evidence for negative effects of anthropogenic noise on an individual's development, physiology, and/or behaviour in both invertebrates and vertebrates. We also found that species differ in their response to noise, and highlight the potential underlying mechanisms for these differences. Finally, we point out challenges in the study of aquatic noise pollution and provide directions for future research, which will enhance our understanding of this globally present pollutant. PMID:27534952

  14. Protective Action of Spermine and Spermidine against Photoinhibition of Photosystem I in Isolated Thylakoid Membranes

    PubMed Central

    Yaakoubi, Hnia; Hamdani, Saber; Bekalé, Laurent; Carpentier, Robert

    2014-01-01

    The photo-stability of photosystem I (PSI) is of high importance for the photosynthetic processes. For this reason, we studied the protective action of two biogenic polyamines (PAs) spermine (Spm) and spermidine (Spd) on PSI activity in isolated thylakoid membranes subjected to photoinhibition. Our results show that pre-loading thylakoid membranes with Spm and Spd reduced considerably the inhibition of O2 uptake rates, P700 photooxidation and the accumulation of superoxide anions (O2 −) induced by light stress. Spm seems to be more effective than Spd in preserving PSI photo-stability. The correlation of the extent of PSI protection, photosystem II (PSII) inhibition and O2 − generation with increasing Spm doses revealed that PSI photo-protection is assumed by two mechanisms depending on the PAs concentration. Given their antioxidant character, PAs scavenge directly the O2 − generated in thylakoid membranes at physiological concentration (1 mM). However, for non-physiological concentration, the ability of PAs to protect PSI is due to their inhibitory effect on PSII electron transfer. PMID:25420109

  15. Renal Sympathetic Denervation: Hibernation or Resurrection?

    PubMed

    Papademetriou, Vasilios; Doumas, Michael; Tsioufis, Costas

    The most current versions of renal sympathetic denervation have been invented as minimally invasive approaches for the management of drug-resistant hypertension. The anatomy, physiology and pathophysiology of renal sympathetic innervation provide a strong background supporting an important role of the renal nerves in the regulation of blood pressure (BP) and volume. In addition, historical data with surgical sympathectomy and experimental data with surgical renal denervation indicate a beneficial effect on BP levels. Early clinical studies with transcatheter radiofrequency ablation demonstrated impressive BP reduction, accompanied by beneficial effects in target organ damage and other disease conditions characterized by sympathetic overactivity. However, the failure of the SYMPLICITY 3 trial to meet its primary efficacy end point raised a lot of concerns and put the field of renal denervation into hibernation. This review aims to translate basic research into clinical practice by presenting the anatomical and physiological basis for renal sympathetic denervation, critically discussing the past and present knowledge in this field, where we stand now, and also speculating about the future of the intervention and potential directions for research. © 2016 S. Karger AG, Basel.

  16. ['Anatomia actuosa et apta'. The mechanist 'proto'-physiology of B.S. Albinus].

    PubMed

    van der Korst, J K

    1993-01-01

    Already during his tenure as professor of anatomy and surgery (1721-1746) and before he became a professor of physiology and medicine at the University of Leiden, Bernard Siegfried Albinus held private lecture courses on physiology. In these lectures he pleaded for a separation of physiology from theoretical medicine, which was still its customary place in the medical curriculum of the first half of the eighteenth century. According to Albinus, physiology was a science in its own right and should be solely based on the careful observation of forms and structures of the human body. From the 'fabrica', the function ('aptitudo') could be derived by careful reasoning. As shown by a set of lecture notes, which recently came to light, Albinus adhered, initially, to a strictly mechanistic explanatory model, which was almost completely based on the physiological concepts of Herman Boerhaave. However, in contrast to the latter, he even rejected the involvement of chemical processes in digestion. Although his lectures were highly acclaimed as demonstrations of minute anatomy, Albinus met with little or no direct response in regard to his concept of physiology.

  17. Use of behavioral and physiological indicators to evaluate Scaphirhynchus sturgeon spawning success

    USGS Publications Warehouse

    DeLonay, A.J.; Papoulias, D.M.; Wildhaber, M.L.; Annis, M.L.; Bryan, J.L.; Griffith, S.A.; Holan, S.H.; Tillitt, D.E.

    2007-01-01

    Thirty gravid, female shovelnose sturgeon (Scaphirhynchus platorynchus) were captured in the Lower Missouri River in March 2004 to evaluate the effectiveness of physiology, telemetry and remote sensor technology coupled with change point analysis in identifying when and where Scaphirhynchus sturgeon spawn. Captured sturgeons were instrumented with ultrasonic transmitters and with archival data storage tags (DST) that recorded temperature and pressure. Female sturgeon were tracked through the suspected spawning period. Thereafter, attempts were made to recapture fish to evaluate spawning success. At the time of transmitter implantation, blood and an ovarian biopsy were taken. Reproductive hormones and cortisol were measured in blood. Polarization indices and germinal vesicle breakdown were assessed on the biopsied oocytes to determine readiness to spawn. Behavioral data collected using telemetry and DST sensors were used to determine the direction and magnitude of possible spawning-related movements and to identify the timing of potential spawning events. Upon recapture observations of the ovaries and blood chemistry provided measures of spawning success and comparative indicators to explain differences in observed behavior. Behavioral and physiological indicators of spawning interpreted along with environmental measures may assist in the determination of variables that may cue sturgeon reproduction and the conditions under which sturgeon successfully spawn.

  18. Light during darkness and cancer: relationships in circadian photoreception and tumor biology.

    PubMed

    Jasser, Samar A; Blask, David E; Brainard, George C

    2006-05-01

    The relationship between circadian phototransduction and circadian-regulated processes is poorly understood. Melatonin, commonly a circadian phase marker, may play a direct role in a myriad of physiologic processes. The circadian rhythm for pineal melatonin secretion is regulated by the hypothalamic suprachiasmatic nucleus (SCN). Its neural source of light input is a unique subset of intrinsically photosensitive retinal ganglion cells expressing melanopsin, the primary circadian photopigment in rodents and primates. Action spectra of melatonin suppression by light have shown that light in the 446-477 nm range, distinct from the visual system's peak sensitivity, is optimal for stimulating the human circadian system. Breast cancer is the oncological disease entity whose relationship to circadian rhythm fluctuations has perhaps been most extensively studied. Empirical data has increasingly supported the hypothesis that higher risk of breast cancer in industrialized countries is partly due to increased exposure to light at night. Studies of tumor biology implicate melatonin as a potential mediator of this effect. Yet, causality between lifestyle factors and circadian tumor biology remains elusive and likely reflects significant variability with physiologic context. Continued rigorous empirical inquiry into the physiology and clinical implications of these habitual, integrated aspects of life is highly warranted at this time.

  19. Current Advances in the Biochemical and Physiological Aspects of the Treatment of Type 2 Diabetes Mellitus with Thiazolidinediones.

    PubMed

    Alemán-González-Duhart, D; Tamay-Cach, F; Álvarez-Almazán, S; Mendieta-Wejebe, J E

    2016-01-01

    The present review summarizes the current advances in the biochemical and physiological aspects in the treatment of type 2 diabetes mellitus (DM2) with thiazolidinediones (TZDs). DM2 is a metabolic disorder characterized by hyperglycemia, triggering the abnormal activation of physiological pathways such as glucose autooxidation, polyol's pathway, formation of advance glycation end (AGE) products, and glycolysis, leading to the overproduction of reactive oxygen species (ROS) and proinflammatory cytokines, which are responsible for the micro- and macrovascular complications of the disease. The treatment of DM2 has been directed toward the reduction of hyperglycemia using different drugs such as insulin sensitizers, as the case of TZDs, which are able to lower blood glucose levels and circulating triglycerides by binding to the nuclear peroxisome proliferator-activated receptor gamma (PPARγ) as full agonists. When TZDs interact with PPARγ, the receptor regulates the transcription of different genes involved in glucose homeostasis, insulin resistance, and adipogenesis. However, TZDs exhibit some adverse effects such as fluid retention, weight gain, hepatotoxicity, plasma-volume expansion, hemodilution, edema, bone fractures, and congestive heart failure, which limits their use in DM2 patients.

  20. Genetic and physiological bases for phenological responses to current and predicted climates

    PubMed Central

    Wilczek, A. M.; Burghardt, L. T.; Cobb, A. R.; Cooper, M. D.; Welch, S. M.; Schmitt, J.

    2010-01-01

    We are now reaching the stage at which specific genetic factors with known physiological effects can be tied directly and quantitatively to variation in phenology. With such a mechanistic understanding, scientists can better predict phenological responses to novel seasonal climates. Using the widespread model species Arabidopsis thaliana, we explore how variation in different genetic pathways can be linked to phenology and life-history variation across geographical regions and seasons. We show that the expression of phenological traits including flowering depends critically on the growth season, and we outline an integrated life-history approach to phenology in which the timing of later life-history events can be contingent on the environmental cues regulating earlier life stages. As flowering time in many plants is determined by the integration of multiple environmentally sensitive gene pathways, the novel combinations of important seasonal cues in projected future climates will alter how phenology responds to variation in the flowering time gene network with important consequences for plant life history. We discuss how phenology models in other systems—both natural and agricultural—could employ a similar framework to explore the potential contribution of genetic variation to the physiological integration of cues determining phenology. PMID:20819808

  1. Direct Electric Current Treatment under Physiologic Saline Conditions Kills Staphylococcus epidermidis Biofilms via Electrolytic Generation of Hypochlorous Acid

    PubMed Central

    Sandvik, Elizabeth L.; McLeod, Bruce R.; Parker, Albert E.; Stewart, Philip S.

    2013-01-01

    The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10th strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log10 CFU/cm2 were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm2) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm2) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications. PMID:23390518

  2. Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid.

    PubMed

    Sandvik, Elizabeth L; McLeod, Bruce R; Parker, Albert E; Stewart, Philip S

    2013-01-01

    The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10(th) strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log(10) CFU/cm(2) were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm(2)) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm(2)) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications.

  3. An integrative approach to space-flight physiology using systems analysis and mathematical simulation

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.; White, R. J.; Rummel, J. A.

    1980-01-01

    An approach was developed to aid in the integration of many of the biomedical findings of space flight, using systems analysis. The mathematical tools used in accomplishing this task include an automated data base, a biostatistical and data analysis system, and a wide variety of mathematical simulation models of physiological systems. A keystone of this effort was the evaluation of physiological hypotheses using the simulation models and the prediction of the consequences of these hypotheses on many physiological quantities, some of which were not amenable to direct measurement. This approach led to improvements in the model, refinements of the hypotheses, a tentative integrated hypothesis for adaptation to weightlessness, and specific recommendations for new flight experiments.

  4. [Claude Bernard and the Comptes Rendus de la Société de Biologie: the movie of the physiological revolution by him who made it (1849-1878)].

    PubMed

    Hainaut, Jean

    2009-01-01

    Claude Bernard presented most of his fundamental results to the Société de Biologie, including proof of the modulation of the nervous system by the internal micromilieu. However, he did not describe the principle of a stable internal milieu as a condition for free life. Physiology, which is a part of biology, was not founded on cellular biology. Rather, Claude Bernard considered chemistry, anatomy and histology as the necessary auxiliary sciences for physiology. His articles are direct pictures, and not isolated ones, despite possible limitations, from a pre-montage movie of the physiological revolution he thought he had initiated, but not finished.

  5. Physiological Responses to Racism and Discrimination: An Assessment of the Evidence

    PubMed Central

    Harrell, Jules P.; Hall, Sadiki; Taliaferro, James

    2003-01-01

    A growing body of research explores the impact of encounters with racism or discrimination on physiological activity. Investigators have collected these data in laboratories and in controlled clinical settings. Several but not all of the studies suggest that higher blood pressure levels are associated with the tendency not to recall or report occurrences identified as racist and discriminatory. Investigators have reported that physiological arousal is associated with laboratory analogues of ethnic discrimination and mistreatment. Evidence from survey and laboratory studies suggests that personality variables and cultural orientation moderate the impact of racial discrimination. The neural pathways that mediate these physiological reactions are not known. The evidence supports the notion that direct encounters with discriminatory events contribute to negative health outcomes. PMID:12554577

  6. Physiological Arousal and Juvenile Psychopathy: Is Low Resting Heart Rate Associated With Affective Dimensions?

    PubMed Central

    Kavish, Nicholas; Vaughn, Michael G.; Cho, Eunsoo; Barth, Amy; Boutwell, Brian; Vaughn, Sharon; Capin, Philip; Stillman, Stephanie; Martinez, Leticia

    2016-01-01

    A wealth of past research has examined the relationship between low physiological arousal and violence or antisocial behavior. Relatively little research; however, has examined the relationship between low physiological arousal and psychopathic traits, with even less having been conducted with juveniles. The current study attempts to fill this gap by evaluating juveniles’ physiological arousal using resting heart rate and their levels of psychopathic traits. Results suggest that there is indeed an inverse relationship between resting heart rate and the affective traits of psychopathy (Uncaring, Callousness, and Unemotionality) as well as Thrill or Sensation Seeking in males. No significant relationship was found in females. Implications of the findings as well as study limitations and future directions are discussed. PMID:27160003

  7. Improved Tumor Targeting and Longer Retention Time of NIR Fluorescent Probes Using Bioorthogonal Chemistry.

    PubMed

    Zhang, Xianghan; Wang, Bo; Zhao, Na; Tian, Zuhong; Dai, Yunpeng; Nie, Yongzhan; Tian, Jie; Wang, Zhongliang; Chen, Xiaoyuan

    2017-01-01

    The traditional labeling method for targeted NIR fluorescence probes requires directly covalent-bonded conjugation of targeting domains and fluorophores in vitro . Although this strategy works well, it is not sufficient for detecting or treating cancers in vivo , due to steric hindrance effects that relatively large fluorophore molecules exert on the configurations and physiological functions of specific targeting domains. The copper-free, "click-chemistry"-assisted assembly of small molecules in living systems may enhance tumor accumulation of fluorescence probes by improving the binding affinities of the targeting factors. Here, we employed a vascular homing peptide, GEBP11, as a targeting factor for gastric tumors, and we demonstrate its effectiveness for in vivo imaging via click-chemistry-mediated conjugation with fluorescence molecules in tumor xenograft mouse models. This strategy showed higher binding affinities than those of the traditional conjugation method, and our results showed that the tumor accumulation of click-chemistry-mediated probes are 11-fold higher than that of directly labeled probes. The tracking life was prolonged by 12-fold, and uptake of the probes into the kidney was reduced by 6.5-fold. For lesion tumors of different sizes, click-chemistry-mediated probes can achieve sufficient signal-to-background ratios (3.5-5) for in vivo detection, and with diagnostic sensitivity approximately 3.5 times that of traditional labeling probes. The click-chemistry-assisted detection strategy utilizes the advantages of "small molecule" probes while not perturbing their physiological functions; this enables tumor detection with high sensitivity and specific selectivity.

  8. Physiology education in North American dental schools: the basic science survey series.

    PubMed

    Gautam, Medha; Shaw, David H; Pate, Ted D; Lambert, H Wayne

    2014-06-01

    As part of the Basic Science Survey Series for Dentistry, members of the American Dental Education Association (ADEA) Physiology, Pharmacology, and Therapeutics Section surveyed directors of physiology courses in North American dental schools. The survey was designed to assess, among other things, faculty affiliation and experience of course directors, teaching methods, general course content and emphasis, extent of interdisciplinary (shared) instruction, and impact of recent curricular changes. Responses were received from forty-four of sixty-seven (65.7 percent) U.S. and Canadian dental schools. The findings suggest the following: substantial variation exists in instructional hours, faculty affiliation, class size, and interdisciplinary nature of physiology courses; physiology course content emphasis is similar between schools; student contact hours in physiology, which have remained relatively stable in the past fifteen years, are starting to be reduced; recent curricular changes have often been directed towards enhancing the integrative and clinically relevant aspects of physiology instruction; and a trend toward innovative content delivery, such as use of computer-assisted instruction, is evident. Data from this study may be useful to physiology course directors, curriculum committees, and other dental educators with an interest in integrative and interprofessional education.

  9. Consistent individual differences in haemolymph density reflect risk propensity in a marine invertebrate

    PubMed Central

    Fürtbauer, Ines

    2015-01-01

    While the literature on consistent individual differences in correlated suites of physiological and behavioural traits is steadily growing for vertebrates, invertebrates have received less attention. The few studies that do exist have measured temporary physiological states (or responses), rather than consistent individual physiological traits. Here, I explore the consistency of individual differences in physiology and behaviour of n=53 shore crabs (Carcinus maenas) by repeatedly measuring haemolymph density (HD) and the crabs' responses to a novel environment. In crustaceans, HD is directly proportional to protein concentrations, and thus indicative of physiological condition. HD was highly repeatable, and crabs showed consistent individual differences in their behavioural responses to a novel environment, thus indicating individual consistency in both physiology and behaviour. Furthermore, HD was significantly correlated with the crabs' risk propensity, i.e. individuals with higher HD spent more time near shelter. Overall, this provides the first evidence for consistency in an endogenous physiological trait in an invertebrate. The link between consistent physiology and behaviour, i.e. coping styles, analogous to those found in vertebrates, suggests metabolic and/or immunological correlates of personality which offer great potential for future studies. PMID:26543575

  10. Characterization of a conformationally sensitive murine monoclonal antibody directed to the metal ion-dependent adhesion site face of integrin CD11b.

    PubMed

    Li, Rui; Haruta, Ikuko; Rieu, Philippe; Sugimori, Takashi; Xiong, Jian-Ping; Arnaout, M Amin

    2002-02-01

    Integrin binding to physiologic ligands requires divalent cations and an inside-out-driven switch of the integrin to a high-affinity state. Divalent cations at the metal ion-dependent adhesion site (MIDAS) face of the alpha subunit-derived A domain provide a direct bridge between ligands and the integrin, and it has been proposed that activation dependency is caused by reorientation of the surrounding residues relative to the metal ion, forming an optimal binding interface. To gain more insight into the functional significance of the protein movements on the MIDAS face, we raised and characterized a murine mAb 107 directed against the MIDAS face of the A domain from integrin CD11b. We find that mAb 107 behaves as a ligand mimic. It binds in a divalent-cation-dependent manner to solvent-exposed residues on the MIDAS face of CD11b, blocks interaction of 11bA or the holoreceptor with ligands, and inhibits spreading and phagocytosis by human neutrophils. However, in contrast to physiologic ligands, mAb 107 preferentially binds to the inactive low-affinity form of the integrin, suggesting that its antagonistic effects are exerted in part by stabilizing the receptor in the low-affinity state. These data support a functional relevance of the protein movements on the MIDAS face and suggest that stabilizing the A domain in the low-affinity state may have therapeutic benefit.

  11. Temporal Impact of Substrate Mechanics on Differentiation of Human Embryonic Stem Cells to Cardiomyocytes

    PubMed Central

    Hazeltine, Laurie B.; Badur, Mehmet G.; Lian, Xiaojun; Das, Amritava; Han, Wenqing; Palecek, Sean P.

    2014-01-01

    A significant clinical need exists to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes, enabling tissue modeling for in vitro discovery of new drugs or cell-based therapies for heart repair in vivo. Chemical and mechanical microenvironmental factors are known to impact efficiency of stem cell differentiation, but cardiac differentiation protocols in hPSCs are typically performed on rigid tissue culture polystyrene (TCPS) surfaces which do not present a physiological mechanical setting. To investigate the temporal effects of mechanics on cardiac differentiation, we cultured human embryonic stem cells (hESCs) and their derivatives on polyacrylamide hydrogel substrates with a physiologically relevant range of stiffnesses. In directed differentiation and embryoid body culture systems, differentiation of hESCs to cardiac Troponin T-expressing (cTnT+) cardiomyocytes peaked on hydrogels of intermediate stiffness. Brachyury expression also peaked on intermediate stiffness hydrogels at day 1 of directed differentiation, suggesting that stiffness impacted the initial differentiation trajectory of hESCs to mesendoderm. To investigate the impact of substrate mechanics during cardiac specification of mesodermal progenitors, we initiated directed cardiomyocyte differentiation on TCPS and transferred cells to hydrogels at the Nkx2.5/Isl1+ cardiac progenitor cell stage. No differences in cardiomyocyte purity with stiffness were observed on day 15. These experiments indicate that differentiation of hESCs is sensitive to substrate mechanics at early stages of mesodermal induction, and proper application of substrate mechanics can increase the propensity of hESCs to differentiate to cardiomyocytes. PMID:24200714

  12. PDK1-mediated activation of MRCKα regulates directional cell migration and lamellipodia retraction

    PubMed Central

    Gagliardi, Paolo Armando; di Blasio, Laura; Puliafito, Alberto; Seano, Giorgio; Sessa, Roberto; Chianale, Federica; Leung, Thomas; Bussolino, Federico

    2014-01-01

    Directional cell migration is of paramount importance in both physiological and pathological processes, such as development, wound healing, immune response, and cancer invasion. Here, we report that 3-phosphoinositide-dependent kinase 1 (PDK1) regulates epithelial directional migration and invasion by binding and activating myotonic dystrophy kinase–related CDC42-binding kinase α (MRCKα). We show that the effect of PDK1 on cell migration does not involve its kinase activity but instead relies on its ability to bind membrane phosphatidylinositol (3,4,5)-trisphosphate. Upon epidermal growth factor (EGF) stimulation, PDK1 and MRCKα colocalize at the cell membrane in lamellipodia. We demonstrate that PDK1 positively modulates MRCKα activity and drives its localization within lamellipodia. Likewise, the retraction phase of lamellipodia is controlled by PDK1 through an MRCKα-dependent mechanism. In summary, we discovered a functional pathway involving PDK1-mediated activation of MRCKα, which links EGF signaling to myosin contraction and directional migration. PMID:25092657

  13. Cellular and Molecular Mechanisms of Action of Transcranial Direct Current Stimulation: Evidence from In Vitro and In Vivo Models

    PubMed Central

    Pelletier, Simon J.

    2015-01-01

    Transcranial direct current stimulation is a noninvasive technique that has been experimentally tested for a number of psychiatric and neurological conditions. Preliminary observations suggest that this approach can indeed influence a number of cellular and molecular pathways that may be disease relevant. However, the mechanisms of action underlying its beneficial effects are largely unknown and need to be better understood to allow this therapy to be used optimally. In this review, we summarize the physiological responses observed in vitro and in vivo, with a particular emphasis on cellular and molecular cascades associated with inflammation, angiogenesis, neurogenesis, and neuroplasticity recruited by direct current stimulation, a topic that has been largely neglected in the literature. A better understanding of the neural responses to transcranial direct current stimulation is critical if this therapy is to be used in large-scale clinical trials with a view of being routinely offered to patients suffering from various conditions affecting the central nervous system. PMID:25522391

  14. Imaging transcranial direct current stimulation (tDCS) of the prefrontal cortex-correlation or causality in stimulation-mediated effects?

    PubMed

    Wörsching, Jana; Padberg, Frank; Ertl-Wagner, Birgit; Kumpf, Ulrike; Kirsch, Beatrice; Keeser, Daniel

    2016-10-01

    Transcranial current stimulation approaches include neurophysiologically distinct non-invasive brain stimulation techniques widely applied in basic, translational and clinical research: transcranial direct current stimulation (tDCS), oscillating transcranial direct current stimulation (otDCS), transcranial alternating current stimulation (tACS) and transcranial random noise stimulation (tRNS). Prefrontal tDCS seems to be an especially promising tool for clinical practice. In order to effectively modulate relevant neural circuits, systematic research on prefrontal tDCS is needed that uses neuroimaging and neurophysiology measures to specifically target and adjust this method to physiological requirements. This review therefore analyses the various neuroimaging methods used in combination with prefrontal tDCS in healthy and psychiatric populations. First, we provide a systematic overview on applications, computational models and studies combining neuroimaging or neurophysiological measures with tDCS. Second, we categorise these studies in terms of their experimental designs and show that many studies do not vary the experimental conditions to the extent required to demonstrate specific relations between tDCS and its behavioural or neurophysiological effects. Finally, to support best-practice tDCS research we provide a methodological framework for orientation among experimental designs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls

    DOE PAGES

    Kallenbach, Cynthia M.; Frey, Serita D.; Grandy, A. Stuart

    2016-11-28

    Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes producemore » chemically diverse, stable SOM. As a result, we show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.« less

  16. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallenbach, Cynthia M.; Frey, Serita D.; Grandy, A. Stuart

    Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes producemore » chemically diverse, stable SOM. As a result, we show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.« less

  17. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls

    NASA Astrophysics Data System (ADS)

    Kallenbach, Cynthia M.; Frey, Serita D.; Grandy, A. Stuart

    2016-11-01

    Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes produce chemically diverse, stable SOM. We show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.

  18. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls.

    PubMed

    Kallenbach, Cynthia M; Frey, Serita D; Grandy, A Stuart

    2016-11-28

    Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes produce chemically diverse, stable SOM. We show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.

  19. Effects of the Cosmos 1129 Soviet paste diet on body composition in the growing rat

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Smith, A. H.; Pitts, G. C.

    1981-01-01

    Six Simonsen albino rats (45 days of age) were placed on a regimen of 40 g/day the semipurified Soviet paste diet used in the 18.5 day Cosmos 1129 spacecraft was to support the rats for various experiments on the physiological effects of weightlessness. The animals were maintained on the Soviet paste diet for 35 days, metabolic rate was measured and body composition was determined by direct analysis. The results were compared with a control group of rates of the same age, which had been kept on a standard commercial grain diet during the same period of time.

  20. Effect of +Gz Acceleration on the Oxygen Uptake-Excercise Load Relationship during Lower Extremity Ergometer Excercise

    NASA Technical Reports Server (NTRS)

    Jackson, Catherine G. R.

    1996-01-01

    Long term spaceflight and habitation of a space station and/or the moon require that astronauts be provided with sufficient environmental and physiological support so that they can not only function in microgravity but be returned to earth safely. As the duration of habitation in microgravity increase the effects of the concomitant deconditioning of body systems becomes a concern for added exercise in space and for reentry to Earth gravity. Many countermeasures have been proposed to maintain proper functioning of the body, but none have proved sufficient, especially when the cost of crew time spent in these activities is considered. The issue of appropriate countermeasures remains unresolved. Spaceflight deconditioning decreases tolerance to +Gz acceleration, head to foot, the direction which is experienced during reentry; the result is that the crew member is more prone to becoming pre-syncopal or syncopal, thus exacerbating the orthostatic intolerance. All ground-based research using microgravity analogues has produced this same lowered G tolerance. When intermittent exposure to +1 to +4 Gz acceleration training was used, some alleviation of orthosatic intolerance and negative physiological effects of deconditioning occurred. Exercise alone was not as effective; but the added G force was. The physiological responses to acceleration added to exercise training have not been clearly shown. We will test the hypothesis that there will be no difference in the exercise oxygen uptake-exercise load relationship with added +Gz acceleration. We wi also compare oxygen uptake during graded exercise-acceleration loads in the human-powered short arm centrifuge with those from normal supine exercise loads. The human-powered short arm centrifuge was built by NASA engineers at Ames Research Center.

  1. Capturing a DNA duplex under near-physiological conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Huijuan; Xu, Wei; Liu, Xiaogang; Stellacci, Francesco; Thong, John T. L.

    2010-10-01

    We report in situ trapping of a thiolated DNA duplex with eight base pairs into a polymer-protected gold nanogap device under near-physiological conditions. The double-stranded DNA was captured by electrophoresis and covalently attached to the nanogap electrodes through sulfur-gold bonding interaction. The immobilization of the DNA duplex was confirmed by direct electrical measurements under near-physiological conditions. The conductance of the DNA duplex was estimated to be 0.09 μS. We also demonstrate the control of DNA dehybridization by heating the device to temperatures above the melting point of the DNA.

  2. Bovine somatotropin and lactation: from basic science to commercial application.

    PubMed

    Bauman, D E

    1999-10-01

    Bovine somatotropin (bST) results in increased milk yield and an unprecedented improvement in efficiency. Beginning in the 1930s to present day, investigations have examined animal-related factors such as nutrition, bioenergetics, metabolism, health and well being and consumer-related factors such as milk quality, manufacturing characteristics, and product safety. Overall, bST is a homeorhetic control involved in orchestrating many physiological processes. Direct effects involve adaptations in many tissues and the metabolism of all nutrient classes--carbohydrates, lipids, protein, and minerals. Mechanisms include alterations in key enzymes, intracellular signal transduction systems, and tissue response to homeostatic signals. Indirect effects involve the mammary gland and are thought to be mediated by the insulin-like growth factor (IGF) system. Specific changes include increased cellular rates of milk synthesis and enhanced maintenance of secretory cells. Indirect effects are modulated by environment and management factors, especially nutritional status. This modulation is a central component in allowing ST to play a key role in regulating nutrient utilization across a range of physiological situations. U.S. commercial use began in 1994, and adoption has been extensive. From a consumer perspective, bST was unique, and special interest groups loudly predicted dire consequences. However, introduction of bST had no impact on milk consumption, and milk labeled as recombinant bST-free occupies a minor niche market. From a producer perspective, commercial use verified scientific studies and enhanced net farm income. Overall, ST is a key homeorhetic control regulating nutrient partitioning, and the ST/IGF system plays a key role in animal performance and well being across a range of physiological situations.

  3. Pedagogical Approaches to and Effects of Fundamental Movement Skill Interventions on Health Outcomes: A Systematic Review.

    PubMed

    Tompsett, Claire; Sanders, Ross; Taylor, Caitlin; Cobley, Stephen

    2017-09-01

    Fundamental movement skills (FMS) are assumed to be the basic prerequisite motor movements underpinning coordination of more integrated and advanced movement capabilities. FMS development and interventions have been associated with several beneficial health outcomes in individual studies. The primary aim of this review was to identify FMS intervention characteristics that could be optimised to attain beneficial outcomes in children and adolescents, while the secondary aim was to update the evidence as to the efficacy of FMS interventions on physiological, psychological and behavioural health outcomes. A systematic search [adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines] was conducted in seven databases. Studies were included if they conducted an FMS intervention and targeted at least one physiological, behavioural or psychological outcome in school-aged children (5-18 years). Twenty-nine studies examining the effect of FMS interventions relative to controls were identified. Specialist-led interventions, taught in conjunction with at-home practice and parent involvement, appeared more efficacious in enhancing FMS proficiency than school physical education alone. Intervention environments encouraging psychological autonomy were likely to enhance perceived and actual competence in FMS alongside physical activity. FMS interventions had little influence on overweight/obesity reduction, strength or flexibility. In 93% of studies, evidence indicated interventions improved FMS motor proficiency. Favourable specific physiological, psychological and behavioural outcomes were also identified across a variety of interventions. With reference to clinical and normative school-age populations, future studies should be directed toward determining validated standard FMS assessments to enable accurate effect estimates, permit intervention comparisons and improve the efficacy of FMS development.

  4. Indirect Plant Defense against Insect Herbivores: A Review

    USDA-ARS?s Scientific Manuscript database

    Plants respond to herbivore attack by launching two types of defenses: direct defense and indirect defense. Direct defense includes all plant traits that increase the resistance of host plants to attacking insect herbivores by affecting the physiology and/or behavior of the attackers. Indirect defe...

  5. Directly assessing interpersonal RSA influences in the frequency domain: An illustration with generalized partial directed coherence.

    PubMed

    Liu, Siwei; Gates, Kathleen M; Blandon, Alysia Y

    2018-06-01

    Despite recent research indicating that interpersonal linkage in physiology is a common phenomenon during social interactions, and the well-established role of respiratory sinus arrhythmia (RSA) in socially facilitative physiological regulation, little research has directly examined interpersonal influences in RSA, perhaps due to methodological challenges in analyzing multivariate RSA data. In this article, we aim to bridge this methodological gap by introducing a new method for quantifying interpersonal RSA influences. Specifically, we show that a frequency-domain statistic, generalized partial directed coherence (gPDC), can be used to capture lagged relations in RSA between social partners without first estimating RSA for each person. We illustrate its utility by examining the relation between gPDC and marital conflict in a sample of married couples. Finally, we discuss how gPDC complements existing methods in the time domain and provide guidelines for choosing among these different statistical techniques. © 2018 Society for Psychophysiological Research.

  6. The Mere Co-Presence: Synchronization of Autonomic Signals and Emotional Responses across Co-Present Individuals Not Engaged in Direct Interaction

    PubMed Central

    Golland, Yulia; Arzouan, Yossi; Levit-Binnun, Nava

    2015-01-01

    Existing evidence suggests that in social contexts individuals become coupled in their emotions and behaviors. Furthermore, recent biological studies demonstrate that the physiological signals of interacting individuals become coupled as well, exhibiting temporally synchronized response patterns. However, it is yet unknown whether people can shape each other's responses without the direct, face-to-face interaction. Here we investigated whether the convergence of physiological and emotional states can occur among “merely co-present” individuals, without direct interactional exchanges. To this end, we measured continuous autonomic signals and collected emotional responses of participants who watched emotional movies together, seated side-by-side. We found that the autonomic signals of co-present participants were idiosyncratically synchronized and that the degree of this synchronization was correlated with the convergence of their emotional responses. These findings suggest that moment-to-moment emotional transmissions, resulting in shared emotional experiences, can occur in the absence of direct communication and are mediated by autonomic synchronization. PMID:26018597

  7. Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities.

    PubMed

    Fabricius, K E; De'ath, G; Noonan, S; Uthicke, S

    2014-01-22

    The ecological effects of ocean acidification (OA) from rising atmospheric carbon dioxide (CO2) on benthic marine communities are largely unknown. We investigated in situ the consequences of long-term exposure to high CO2 on coral-reef-associated macroinvertebrate communities around three shallow volcanic CO2 seeps in Papua New Guinea. The densities of many groups and the number of taxa (classes and phyla) of macroinvertebrates were significantly reduced at elevated CO2 (425-1100 µatm) compared with control sites. However, sensitivities of some groups, including decapod crustaceans, ascidians and several echinoderms, contrasted with predictions of their physiological CO2 tolerances derived from laboratory experiments. High CO2 reduced the availability of structurally complex corals that are essential refugia for many reef-associated macroinvertebrates. This loss of habitat complexity was also associated with losses in many macroinvertebrate groups, especially predation-prone mobile taxa, including crustaceans and crinoids. The transition from living to dead coral as substratum and habitat further altered macroinvertebrate communities, with far more taxa losing than gaining in numbers. Our study shows that indirect ecological effects of OA (reduced habitat complexity) will complement its direct physiological effects and together with the loss of coral cover through climate change will severely affect macroinvertebrate communities in coral reefs.

  8. Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities

    PubMed Central

    Fabricius, K. E.; De'ath, G.; Noonan, S.; Uthicke, S.

    2014-01-01

    The ecological effects of ocean acidification (OA) from rising atmospheric carbon dioxide (CO2) on benthic marine communities are largely unknown. We investigated in situ the consequences of long-term exposure to high CO2 on coral-reef-associated macroinvertebrate communities around three shallow volcanic CO2 seeps in Papua New Guinea. The densities of many groups and the number of taxa (classes and phyla) of macroinvertebrates were significantly reduced at elevated CO2 (425–1100 µatm) compared with control sites. However, sensitivities of some groups, including decapod crustaceans, ascidians and several echinoderms, contrasted with predictions of their physiological CO2 tolerances derived from laboratory experiments. High CO2 reduced the availability of structurally complex corals that are essential refugia for many reef-associated macroinvertebrates. This loss of habitat complexity was also associated with losses in many macroinvertebrate groups, especially predation-prone mobile taxa, including crustaceans and crinoids. The transition from living to dead coral as substratum and habitat further altered macroinvertebrate communities, with far more taxa losing than gaining in numbers. Our study shows that indirect ecological effects of OA (reduced habitat complexity) will complement its direct physiological effects and together with the loss of coral cover through climate change will severely affect macroinvertebrate communities in coral reefs. PMID:24307670

  9. Inhaled Vitamin D: A Novel Strategy to Enhance Neonatal Lung Maturation.

    PubMed

    Taylor, Sneha K; Sakurai, Reiko; Sakurai, Tokusho; Rehan, Virender K

    2016-12-01

    The physiologic vitamin D (VD), 1α,25(OH) 2 D 3 (1,25D) is a local paracrine/autocrine effecter of fetal lung maturation. By stimulating alveolar type II cell and lipofibroblast proliferation and differentiation, parenterally administered 1,25D has been shown to enhance neonatal lung maturation; but due to the potential systemic side effects of the parenteral route, the translational value of these findings might be limited. To minimize the possibility of systemic toxicity, we examined the effects of VD on neonatal lung maturation, when delivered directly to lungs via nebulization. One-day-old rat pups were administered three different doses of 1,25D and its physiologic precursor 25(OH)D (25D), or the diluent, via nebulization daily for 14 days. Pups were sacrificed for lung, kidneys, and blood collection to determine markers of lung maturation, and serum 25D and calcium levels. Compared to controls, nebulized 25D and 1,25D enhanced lung maturation as evidenced by the increased expression of markers of alveolar epithelial (SP-B, leptin receptor), mesenchymal (PPARγ, C/EBPα), and endothelial (VEGF, FLK-1) differentiation, surfactant phospholipid synthesis, and lung morphology without any significant increases in serum 25D and calcium levels. Inhaled VD is a potentially safe and effective novel strategy to enhance neonatal lung maturation.

  10. A Large Drawing of a Nephron for Teaching Medical Students Renal Physiology, Histology, and Pharmacology

    ERIC Educational Resources Information Center

    Robinson, Philip G.; Newman, David; Reitz, Cara L.; Vaynberg, Lena Z.; Bahga, Dalbir K.; Levitt, Morton H.

    2018-01-01

    The purpose of this study is to see whether a large drawing of a nephron helped medical students in self-directed learning groups learn renal physiology, histology, and pharmacology before discussing clinical cases. The end points were the grades on the renal examination and a student survey. The classes in the fall of 2014 and 2015 used the…

  11. Effects of Exercise on Physiological and Psychological Variables in Cancer Survivors.

    ERIC Educational Resources Information Center

    Burnham, Timothy; Wilcox, Anthony

    2002-01-01

    Investigated the effect of aerobic exercise on physiological and psychological function in people rehabilitating from cancer treatment. Data on people participating in control, moderate-intensity exercise, and low-intensity exercise groups indicated that both exercise programs were equally effective in improving physiological function,…

  12. Temperature rise in pulpal chamber during fabrication of provisional resinous crowns.

    PubMed

    Castelnuovo, J; Tjan, A H

    1997-11-01

    The heat generated during the exothermic polymerization reaction of autopolymerizing resinous materials and the heat generated by ultraviolet lamps during irradiation of photopolymerizing resinous materials could cause pulpal damage when a direct technique is used to fabricate provisional restorations. This could occur if temperature elevations overcome the physiological heat dissipating mechanisms of the dental-periodontal system. This in vitro study compared the rise in temperatures in the pulpal chamber during fabrication of provisional complete veneer crowns by direct method with different autopolymerizing and photopolymerizing resins. The effect of curing resinous crowns in different matrices, such as a polyvinyl siloxane impression and a vaccuum-formed polypropylene sheet, was also evaluated. The results demonstrated that the amount of heat generated during resin polymerization and transmitted to the pulpal chamber could be damaging to pulpal tissues including odontoblasts. When curing of provisional resinous crowns was performed in the polyvinyl siloxane impression, significantly lower temperatures were recorded compared with curing in the vacuum-formed polypropylene sheet. To prevent pulpal damage, effective cooling procedures are strongly recommended when directly fabricating resinous provisional crowns.

  13. Low concentrations of niflumic acid enhance basal spontaneous and carbachol-induced contractions of the detrusor.

    PubMed

    Lam, Wai Ping; Tang, Hong Chai; Zhang, Xin; Leung, Ping Chung; Yew, David Tai Wai; Liang, Willmann

    2014-02-01

    The urinary bladder expresses Ca(2+)-activated Cl(-) channels (CACC), but its physiological role in governing contractility remains to be defined. The CACC modulator niflumic acid (NFA) is widely used despite the variable results arisen from different drug concentrations used. This study was designed to examine the effects of NFA at low concentrations on detrusor strip contractility. Rat detrusor strips with mucosa-intact (+MU) and mucosa-denuded (-MU) were prepared in transverse (Tr) and longitudinal (Lg) with respect to the bladder orientation. Isometric force measurements were made at baseline (for spontaneous phasic contractile activity) and during drug stimulation (by carbachol, CCh) with and without NFA. NFA (1 and 10 μmol/L) pretreatment enhanced CCh-induced contractions more in +MU than -MU strips with no selectivity on contractile direction. For spontaneous phasic contractions, NFA-treated strips in the Tr direction showed increased phasic amplitude, while phasic frequency was unchanged. The findings suggest low concentrations of NFA having a potentiating effect on detrusor contractions that was sensitive to the MU and contractile direction.

  14. Undergraduate students' misconceptions about respiratory physiology.

    PubMed

    Michael, J A; Richardson, D; Rovick, A; Modell, H; Bruce, D; Horwitz, B; Hudson, M; Silverthorn, D; Whitescarver, S; Williams, S

    1999-12-01

    Approximately 700 undergraduates studying physiology at community colleges, a liberal arts college, and universities were surveyed to determine the prevalence of our misconceptions about respiratory phenomena. A misconception about the changes in breathing frequency and tidal volume (physiological variables whose changes can be directly sensed) that result in increased minute ventilation was found to be present in this population with comparable prevalence (approximately 60%) to that seen in a previous study. Three other misconceptions involving phenomena that cannot be experienced directly and therefore were most likely learned in some educational setting were found to be of varying prevalence. Nearly 90% of the students exhibited a misconception about the relationship between arterial oxygen partial pressure and hemoglobin saturation. Sixty-six percent of the students believed that increasing alveolar oxygen partial pressure leads to a decrease in alveolar carbon dioxide partial pressure. Nearly 33% of the population misunderstood the relationship between metabolism and ventilation. The possible origins of these respiratory misconceptions are discussed and suggestions for how to prevent and/or remediate them are proposed.

  15. Lymphocyte Electrotaxis in vitro and in vivo

    PubMed Central

    Lin, Francis; Baldessari, Fabio; Gyenge, Christina Crenguta; Sato, Tohru; Chambers, Robert D.; Santiago, Juan G.; Butcher, Eugene C.

    2008-01-01

    Electric fields are generated in vivo in a variety of physiologic and pathologic settings, including penetrating injury to epithelial barriers. An applied electric field with strength within the physiologic range can induce directional cell migration (i.e. electrotaxis) of epithelial cells, endothelial cells, fibroblasts, and neutrophils suggesting a potential role in cell positioning during wound healing. In the present study, we investigated the ability of lymphocytes to respond to applied direct current (DC) electric fields. Using a modified transwell assay and a simple microfluidic device, we show that human peripheral blood lymphocytes migrate toward the cathode in physiologically relevant DC electric fields. Additionally, electrical stimulation activates intracellular kinase signaling pathways shared with chemotactic stimuli. Finally, video microscopic tracing of GFP-tagged immunocytes in the skin of mouse ears reveals that motile cutaneous T cells actively migrate toward the cathode of an applied DC electric field. Lymphocyte positioning within tissues can thus be manipulated by externally applied electric fields, and may be influenced by endogenous electrical potential gradients as well. PMID:18684937

  16. Lymphocyte electrotaxis in vitro and in vivo.

    PubMed

    Lin, Francis; Baldessari, Fabio; Gyenge, Christina Crenguta; Sato, Tohru; Chambers, Robert D; Santiago, Juan G; Butcher, Eugene C

    2008-08-15

    Electric fields are generated in vivo in a variety of physiologic and pathologic settings, including penetrating injury to epithelial barriers. An applied electric field with strength within the physiologic range can induce directional cell migration (i.e., electrotaxis) of epithelial cells, endothelial cells, fibroblasts, and neutrophils suggesting a potential role in cell positioning during wound healing. In the present study, we investigated the ability of lymphocytes to respond to applied direct current (DC) electric fields. Using a modified Transwell assay and a simple microfluidic device, we show that human PBLs migrate toward the cathode in physiologically relevant DC electric fields. Additionally, electrical stimulation activates intracellular kinase signaling pathways shared with chemotactic stimuli. Finally, video microscopic tracing of GFP-tagged immunocytes in the skin of mouse ears reveals that motile cutaneous T cells actively migrate toward the cathode of an applied DC electric field. Lymphocyte positioning within tissues can thus be manipulated by externally applied electric fields, and may be influenced by endogenous electrical potential gradients as well.

  17. Direct effects of leptin and adiponectin on peripheral reproductive tissues: a critical review

    PubMed Central

    Kawwass, Jennifer F.; Summer, Ross; Kallen, Caleb B.

    2015-01-01

    Obesity is a risk factor for infertility and adverse reproductive outcomes. Adipose tissue is an important endocrine gland that secretes a host of endocrine factors, called adipokines, which modulate diverse physiologic processes including appetite, metabolism, cardiovascular function, immunity and reproduction. Altered adipokine expression in obese individuals has been implicated in the pathogenesis of a host of health disorders including diabetes and cardiovascular disease. It remains unclear whether adipokines play a significant role in the pathogenesis of adverse reproductive outcomes in obese individuals and, if so, whether the adipokines are acting directly or indirectly on the peripheral reproductive tissues. Many groups have demonstrated that receptors for the adipokines leptin and adiponectin are expressed in peripheral reproductive tissues and that these adipokines are likely, therefore, to exert direct effects on these tissues. Many groups have tested for direct effects of leptin and adiponectin on reproductive tissues including the testis, ovary, uterus, placenta and egg/embryo. The hypothesis that decreased fertility potential or adverse reproductive outcomes may result, at least in part, from defects in adipokine signaling within reproductive tissues has also been tested. Here, we present a critical analysis of published studies with respect to two adipokines, leptin and adiponectin, for which significant data have been generated. Our evaluation reveals significant inconsistencies and methodological limitations regarding the direct effects of these adipokines on peripheral reproductive tissues. We also observe a pervasive failure to account for in vivo data that challenge observations made in vitro. Overall, while leptin and adiponectin may directly modulate peripheral reproductive tissues, existing data suggest that these effects are minor and non-essential to human or mouse reproductive function. Current evidence suggests that direct effects of leptin or adiponectin on peripheral reproductive tissues are unlikely to factor significantly in the adverse reproductive outcomes observed in obese individuals. PMID:25964237

  18. Electrofishing and its harmful effects on fish

    USGS Publications Warehouse

    Snyder, Darrel E.

    2003-01-01

    Electrofishing, a valuable sampling technique in North America for over half a century, involves a very dynamic and complex mix of physics, physiology, and behavior that remains poorly understood. New hypotheses have been advanced regarding "power transfer" to fish and the epileptic nature of their responses to electric fields, but these too need to be more fully explored and validated. Fishery researchers and managers in the Colorado River Basin, and elsewhere, are particularly concerned about the harmful effects of electrofishing on fish, especially endangered species. Although often not externally obvious or fatal, spinal injuries and associated hemorrhages sometimes have been documented in over 50% of fish examined internally. Such injuries can occur anywhere in the electrofishing field at or above the intensity threshold for twitch. These injuries are believed to result from powerful convulsions of body musculature (possibly epileptic seizures) caused mostly by sudden changes in voltage as when electricity is pulsed or switched on or off. Significantly fewer spinal injuries are reported when direct current, low-frequency pulsed direct current (<30 Hz), or specially designed pulse trains are used. Salmoniae are especially susceptible. Endangered cyprinids of the Colorado River Basin are generally much less susceptible, enough so to allow cautious use of less harmful currents for most recovery monitoring and research. However, the endangered catostomid Xyrauchen texanus appears sufficiently susceptible to warrant a continued minimal-use policy. Other harmful effects, such as bleeding at gills or vent and excessive physiological stress, are also of concern. Mortality, usually by asphyxiation, is a common result of excessive exposure to tetanizing intensities near electrodes or poor handling of captured specimens. Reported effects on reproduction are contradictory, but electrofishing over spawning grounds can harm embryos. Electrofishing is often considered the most effective and benign technique for capturing moderate- to large-size fish, but when adverse effects are problematic and cannot be sufficiently reduced, its use should be severely restricted.

  19. Cognitive Imagery and Physiological Feedback Relaxation Protocols Applied to Clinically Tense Young Adults: A Comparison of State, Trait, and Physiological Effects.

    ERIC Educational Resources Information Center

    Schandler, Steven L.; Dana, Edward R.

    1983-01-01

    Examined changes in tension behaviors and reductions in physiological tension associated with cognitive imagery and electromyographic biofeedback relaxation procedures in 45 college students. Results showed: imagery significantly reduced state anxiety. Self-rest was less effective; biofeedback greatly reduced physiological tension, but not state…

  20. Physiological effects of handling and hauling stress on smallmouth bass

    USGS Publications Warehouse

    Carmichael, G.J.; Wedemeyer, G.A.; McCraren, J.P.; Millard, J.L.

    1983-01-01

    Basic physiological information on the stress caused by current hatchery practices is helpful in developing new and improved techniques to increase survival. In view of the present fishery management requirements for stocking smallmouth bas (Micropterus dolomieu), baseline information on the physiological effects of handling and hauling hatchery-reared fish is needed to serve as the foundation for improving transport methods. Shell (1959) summarized several physiological characteristics of smallmouth bass, but little information on their physiological tolerance to stress exists. The present study was designed to determine the physiological effects of handling and short-term hauling in small mouth bass. Plasma chloride, sodium, potassium, and glucose dynamics were monitored in indicate the severity of the resulting stress and the recovery time needed.

  1. Epigenetic effects of endocrine-disrupting chemicals on female reproduction: An ovarian perspective

    PubMed Central

    Zama, Aparna Mahakali; Uzumcu, Mehmet

    2010-01-01

    The link between in utero and neonatal exposure to environmental toxicants, such as endocrine-disrupting chemicals (EDCs) and adult female reproductive disorders is well established in both epidemiological and animal studies. Recent studies examining the epigenetic mechanisms involved in mediating the effects of EDCs on female reproduction are gathering momentum. In this review, we describe the developmental processes that are susceptible to EDC exposures in female reproductive system, with a special emphasis on the ovary. We discuss studies with select EDCs that have been shown to have physiological and correlated epigenetic effects in the ovary, neuroendocrine system, and uterus. Importantly, EDCs that can directly target the ovary can alter epigenetic mechanisms in the oocyte, leading to transgenerational epigenetic effects. The potential mechanisms involved in such effects are also discussed. PMID:20609371

  2. What makes the learning of physiology in a PBL medical curriculum challenging? Student perceptions.

    PubMed

    Tufts, Mark A; Higgins-Opitz, Susan B

    2009-09-01

    Physiology is an integral component of any medical curriculum. Traditionally, the learning of physiology has relied heavily on systems-based didactic lectures. In 2001, the Nelson R. Mandela School of Medicine (NRMSM; Durban, South Africa) embarked on a problem-based curriculum in which the learning of physiology was integrated with relevant clinical scenarios. Students are expected to gain an understanding of physiology through self-directed research with only certain aspects being covered in large-group resource sessions (LGRSs). It has gradually become evident that this approach has resulted in significant gaps in students' understanding of basic physiological concepts. A survey of student perceptions of needs for physiology was undertaken to gain a better understanding of their perceived problems and also to inform them of proposed curricular changes. Students were asked to what extent they thought physiology was essential for their understanding of pathology, interpretation of patients' clinical signs and presentation of symptoms, and analysis of laboratory results. Students were also invited to detail the difficulties they experienced in understanding in LGRSs on clinical and physiological topics. The results of the survey indicate that greater interaction of students with experts is needed. In particular, students felt that they lacked the basic conceptual foundations essential for the learning and understanding of physiology, since the difficulties that the students identified are mainly terminological and conceptual in nature.

  3. In Sync: The Effect of Physiology Feedback on the Match between Heart Rate and Self-Reported Stress.

    PubMed

    van Dijk, Elisabeth T; Westerink, Joyce H D M; Beute, Femke; IJsselsteijn, Wijnand A

    2015-01-01

    Over the past years self-tracking of physiological parameters has become increasingly common: more and more people are keeping track of aspects of their physiological state (e.g., heart rate, blood sugar, and blood pressure). To shed light on the possible effects of self-tracking of physiology, a study was conducted to test whether physiology feedback has acute effects on self-reported stress and the extent to which self-reported stress corresponds to physiological stress. In this study, participants executed several short tasks, while they were either shown visual feedback about their heart rate or not. Results show that self-reported stress is more in sync with heart rate for participants who received physiology feedback. Interactions between two personality factors (neuroticism and anxiety sensitivity) and feedback on the level of self-reported stress were found, indicating that while physiology feedback may be beneficial for individuals high in neuroticism, it may be detrimental for those high in anxiety sensitivity. Additional work is needed to establish how the results of this study may extend beyond immediate effects in a controlled lab setting, but our results do provide a first indication of how self-tracking of physiology may lead to better body awareness and how personality characteristics can help us predict which individuals are most likely to benefit from self-tracking of physiology.

  4. In Sync: The Effect of Physiology Feedback on the Match between Heart Rate and Self-Reported Stress

    PubMed Central

    van Dijk, Elisabeth T.; Westerink, Joyce H. D. M.; Beute, Femke; IJsselsteijn, Wijnand A.

    2015-01-01

    Over the past years self-tracking of physiological parameters has become increasingly common: more and more people are keeping track of aspects of their physiological state (e.g., heart rate, blood sugar, and blood pressure). To shed light on the possible effects of self-tracking of physiology, a study was conducted to test whether physiology feedback has acute effects on self-reported stress and the extent to which self-reported stress corresponds to physiological stress. In this study, participants executed several short tasks, while they were either shown visual feedback about their heart rate or not. Results show that self-reported stress is more in sync with heart rate for participants who received physiology feedback. Interactions between two personality factors (neuroticism and anxiety sensitivity) and feedback on the level of self-reported stress were found, indicating that while physiology feedback may be beneficial for individuals high in neuroticism, it may be detrimental for those high in anxiety sensitivity. Additional work is needed to establish how the results of this study may extend beyond immediate effects in a controlled lab setting, but our results do provide a first indication of how self-tracking of physiology may lead to better body awareness and how personality characteristics can help us predict which individuals are most likely to benefit from self-tracking of physiology. PMID:26146611

  5. Listener perception of the effect of abdominal kinematic directives on respiratory behavior in female classical singing.

    PubMed

    Collyer, Sally; Kenny, Dianna T; Archer, Michaele

    2011-01-01

    Breath management training in classical singing is becoming increasingly physiologically focused, despite evidence that directives focusing on chest-wall kinematic (ribcage and abdominal) behavior effect minimal change in acoustical measures of singing. A direct and proportionate relationship between breathing behavior and vocal quality is important in singing training because singing teachers rely primarily on changes in sound quality to assess the efficacy of breath management modification. Pedagogical opinion is also strongly divided over whether the strategy of retarding the reduction in abdominal dimension during singing has a negative effect on vocal quality. This study investigated whether changes in abdominal kinematic strategy were perceptible and whether listeners preferred a particular strategy. Fourteen experienced singing teachers and vocal coaches assessed audio samples of five female classical singers whose respiratory kinematic patterns during singing had been recorded habitually and under two simple, dichotomous directives: Gradually drawing the abdomen inward and gradually expanding the abdomen, during each phrase. Listeners rated the singers on standard of singing and of breath management. Ratings analysis took into consideration changes in kinematic behavior under each directive determined from the respiratory recordings. Listener ratings for two singers were unaffected by directive. For three singers, ratings were lower when the directive opposed habitual kinematic behavior. The results did not support the pedagogical assumption of a direct and proportional link between respiratory behavior and standard of singing or that the abdomen-outward strategy was deleterious to vocal quality. The findings demonstrate the importance of considering habitual breathing behavior in both research and pedagogical contexts. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  6. Programming social, cognitive, and neuroendocrine development by early exposure to novelty.

    PubMed

    Tang, Akaysha C; Akers, Katherine G; Reeb, Bethany C; Romeo, Russell D; McEwen, Bruce S

    2006-10-17

    Mildly stressful early life experiences can potentially impact a broad range of social, cognitive, and physiological functions in humans, nonhuman primates, and rodents. Recent rodent studies favor a maternal-mediation hypothesis that considers maternal-care differences induced by neonatal stimulation as the cause of individual differences in offspring development. Using neonatal novelty exposure, a neonatal stimulation paradigm that dissociates maternal individual differences from a direct stimulation effect on the offspring, we investigated the effect of early exposures to novelty on a diverse range of psychological functions using several assessment paradigms. Pups that received brief neonatal novelty exposures away from the home environment showed enhancement in spatial working memory, social competition, and corticosterone response to surprise during adulthood compared with their home-staying siblings. These functional enhancements in novelty-exposed rats occurred despite evidence that maternal care was directed preferentially toward home-staying instead of novelty-exposed pups, indicating that greater maternal care is neither necessary nor sufficient for these early stimulation-induced functional enhancements. We suggest a unifying maternal-modulation hypothesis, which distinguishes itself from the maternal-mediation hypothesis in that (i) neonatal stimulation can have direct effects on pups, cumulatively leading to long-term improvement in adult offspring; and (ii) maternal behavior can attenuate or potentiate these effects, thereby decreasing or increasing this long-term functional improvement.

  7. SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis.

    PubMed

    Muhar, Matthias; Ebert, Anja; Neumann, Tobias; Umkehrer, Christian; Jude, Julian; Wieshofer, Corinna; Rescheneder, Philipp; Lipp, Jesse J; Herzog, Veronika A; Reichholf, Brian; Cisneros, David A; Hoffmann, Thomas; Schlapansky, Moritz F; Bhat, Pooja; von Haeseler, Arndt; Köcher, Thomas; Obenauf, Anna C; Popow, Johannes; Ameres, Stefan L; Zuber, Johannes

    2018-05-18

    Defining direct targets of transcription factors and regulatory pathways is key to understanding their roles in physiology and disease. We combined SLAM-seq [thiol(SH)-linked alkylation for the metabolic sequencing of RNA], a method for direct quantification of newly synthesized messenger RNAs (mRNAs), with pharmacological and chemical-genetic perturbation in order to define regulatory functions of two transcriptional hubs in cancer, BRD4 and MYC, and to interrogate direct responses to BET bromodomain inhibitors (BETis). We found that BRD4 acts as general coactivator of RNA polymerase II-dependent transcription, which is broadly repressed upon high-dose BETi treatment. At doses triggering selective effects in leukemia, BETis deregulate a small set of hypersensitive targets including MYC. In contrast to BRD4, MYC primarily acts as a selective transcriptional activator controlling metabolic processes such as ribosome biogenesis and de novo purine synthesis. Our study establishes a simple and scalable strategy to identify direct transcriptional targets of any gene or pathway. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Physiological Reactivity to Psychological Stress in Human Pregnancy: Current Knowledge and Future Directions

    PubMed Central

    Christian, Lisa M.

    2012-01-01

    Cardiovascular and neuroendocrine reactivity to acute stress are important predictors of health outcomes in non-pregnant populations. Greater magnitude and duration of physiological responses have been associated with increased risk of hypertensive disorders and diabetes, greater susceptibility to infectious illnesses, suppression of cell-mediated immunity as well as risk for depression and anxiety disorders. Stress reactivity during pregnancy has unique implications for maternal health, birth outcomes, and fetal development. However, as compared to the larger literature, our understanding of the predictors and consequences of exaggerated stress reactivity in pregnancy is limited. This paper reviews the current state of this literature with an emphasis on gaps in knowledge and future directions. PMID:22800930

  9. Characterization of a Field Spectroradiometer for Unattended Vegetation Monitoring. Key Sensor Models and Impacts on Reflectance

    PubMed Central

    Pacheco-Labrador, Javier; Martín, M. Pilar

    2015-01-01

    Field spectroradiometers integrated in automated systems at Eddy Covariance (EC) sites are a powerful tool for monitoring and upscaling vegetation physiology and carbon and water fluxes. However, exposure to varying environmental conditions can affect the functioning of these sensors, especially if these cannot be completely insulated and stabilized. This can cause inaccuracy in the spectral measurements and hinder the comparison between data acquired at different sites. This paper describes the characterization of key sensor models in a double beam spectroradiometer necessary to calculate the Hemispherical-Conical Reflectance Factor (HCRF). Dark current, temperature dependence, non-linearity, spectral calibration and cosine receptor directional responses are modeled in the laboratory as a function of temperature, instrument settings, radiation measured or illumination angle. These models are used to correct the spectral measurements acquired continuously by the same instrument integrated outdoors in an automated system (AMSPEC-MED). Results suggest that part of the instrumental issues cancel out mutually or can be controlled by the instrument configuration, so that changes induced in HCFR reached about 0.05 at maximum. However, these corrections are necessary to ensure the inter-comparison of data with other ground or remote sensors and to discriminate instrumentally induced changes in HCRF from those related with vegetation physiology and directional effects. PMID:25679315

  10. The metabolic response of marine copepods to environmental warming and ocean acidification in the absence of food

    NASA Astrophysics Data System (ADS)

    Mayor, Daniel J.; Sommer, Ulf; Cook, Kathryn B.; Viant, Mark R.

    2015-09-01

    Marine copepods are central to the productivity and biogeochemistry of marine ecosystems. Nevertheless, the direct and indirect effects of climate change on their metabolic functioning remain poorly understood. Here, we use metabolomics, the unbiased study of multiple low molecular weight organic metabolites, to examine how the physiology of Calanus spp. is affected by end-of-century global warming and ocean acidification scenarios. We report that the physiological stresses associated with incubation without food over a 5-day period greatly exceed those caused directly by seawater temperature or pH perturbations. This highlights the need to contextualise the results of climate change experiments by comparison to other, naturally occurring stressors such as food deprivation, which is being exacerbated by global warming. Protein and lipid metabolism were up-regulated in the food-deprived animals, with a novel class of taurine-containing lipids and the essential polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid and docosahexaenoic acid, changing significantly over the duration of our experiment. Copepods derive these PUFAs by ingesting diatoms and flagellated microplankton respectively. Climate-driven changes in the productivity, phenology and composition of microplankton communities, and hence the availability of these fatty acids, therefore have the potential to influence the ability of copepods to survive starvation and other environmental stressors.

  11. Environmental and biological context modulates the physiological stress response of bats to human disturbance.

    PubMed

    Phelps, Kendra L; Kingston, Tigga

    2018-06-01

    Environmental and biological context play significant roles in modulating physiological stress responses of individuals in wildlife populations yet are often overlooked when evaluating consequences of human disturbance on individual health and fitness. Furthermore, most studies gauge individual stress responses based on a single physiological biomarker, typically circulating glucocorticoid concentrations, which limits interpretation of the complex, multifaceted responses of individuals to stressors. We selected four physiological biomarkers to capture short-term and prolonged stress responses in a widespread cave-roosting bat, Hipposideros diadema, across multiple gradients of human disturbance in and around caves in the Philippines. We used conditional inference trees and random forest analysis to determine the role of environmental quality (cave complexity, available roosting area), assemblage composition (intra- and interspecific associations and species richness), and intrinsic characteristics of individuals (sex and reproductive status) in modulating responses to disturbance. Direct cave disturbance (hunting pressure and human visitation) was the primary driver of neutrophil-to-lymphocyte ratios, with lower ratios associated with increased disturbance, while context-specific factors were more important in explaining total leukocyte count, body condition, and ectoparasite load. Moreover, conditional inference trees revealed complex interactions among human disturbance and modulating factors. Cave complexity often ameliorated individual responses to human disturbance, whereas conspecific abundance often compounded responses. Our study demonstrates the importance of an integrated approach that incorporates environmental and biological context when identifying drivers of physiological responses, and that assesses responses to gradients of direct and indirect disturbance using multiple complementary biomarkers.

  12. An overview of pharmacology and clinical aspects concerning the therapy of cochleo-vestibular syndromes by intratympanic drug delivery

    PubMed Central

    CHIRTEŞ, FELICIAN; ALBU, SILVIU

    2013-01-01

    Intratympanic drug delivery refers to drug administration in the middle ear, the main advantage being direct diffusion of substances in the inner ear through the round window membrane with subsequent high intralabiryntine drug concentration and very low systemic side effects. The article is a review of literature concerning the inner ear barrier systems, the physiology of inner ear fluids, intralabirinthine pharmacokinetics and the commonest drugs applied in the middle ear for the treatment of cochleo-vestibular syndromes. PMID:26527944

  13. Stereotypic movement disorders.

    PubMed

    Singer, Harvey S

    2011-01-01

    Stereotypic movements are repetitive, rhythmic, fixed, patterned in form, amplitude, and localization, but purposeless (e.g., hand shaking, waving, body rocking, head nodding). They are commonly seen in children; both in normal children (primary stereotypy) and in individuals with additional behavioral or neurological signs and symptoms (secondary stereotypy). They should be differentiated from compulsions (OCD), tics (tic disorders), trichotillomania, skin picking disorder, or the direct physiological effect of a substance. There is increasing evidence to support a neurobiological mechanism. Response to behavioral and pharmacological therapies is variable. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. [Individual characteristics of correction of the cosmonauts' vegetative status with a method of adaptive biofeedback

    NASA Technical Reports Server (NTRS)

    Kornilova, L. N.; Cowings, P.; Arlashchenko, N. I.; Korneev, D. Iu; Sagalovich, S. V.; Sarantseva, A. V.; Toscano, W.; Kozlovskaia, I. B.

    2003-01-01

    The ability of 4 cosmonauts to voluntarily control their physiological parameters during the standing test was evaluated following a series of the adaptive feedback (AF) training sessions. Vegetative status of the cosmonauts during voluntary "relaxation" and "straining" was different when compared with its indices determined before these sessions. In addition, there was a considerable individual variability in the intensity and direction of the AF effects, and the range of parameters responding to AF. It was GCR which was the easiest one for the AF control.

  15. Physical and thermal strain of firefighters according to the firefighting tactics used to suppress wildfires.

    PubMed

    Rodríguez-Marroyo, J A; Villa, J G; López-Satue, J; Pernía, R; Carballo, B; García-López, J; Foster, C

    2011-11-01

    The aim of this study was to analyse the physiological strain of firefighters, using heart rate (HR) and core temperature, during real wildfire suppression according to the type of attack performed (direct, indirect or mixed). Three intensity zones were established according to the HR corresponding to the ventilatory threshold (VT) and respiratory compensation threshold (RCT): zone 1, RCT. The exercise workload (training impulse (TRIMP)), the physiological strain index (PSI) and the cumulative heat strain index(CHSI) were calculated using the time spent in each zone, and the HR and core temperature, respectively. Significantly higher mean HR, time spent in Z2 and Z3 and TRIMP h(-1) were found in direct and mixed versus indirect attacks. The highest PSI and CHSI were observed in the direct attack. In conclusion, exercise strain and combined thermal strain, but not core temperature during wildfire suppression, are related to the type of attack performed. STATEMENT OF RELEVANCE: Our findings demonstrated that wildfire firefighting is associated with high physiological demands, which vary significantly depending on the tactics chosen for performing the task. These results should be kept in mind when planning programmes to improve wildland firefighters' physical fitness, which will allow improvement in their performance.

  16. Effects of elevated glucocorticoids on reproduction and development: relevance to endocrine disruptor screening.

    PubMed

    Witorsch, Raphael J

    2016-01-01

    This article reviews the influence of the hypothalamo-pituitary-adrenocortical (HPA) axis on mammalian male and female reproduction and development of offspring and its potential impact on the identification of endocrine disruptive chemicals by in vivo assays. In the adult male rat and baboon, stress suppresses testosterone secretion via a direct inhibitory effect of elevated glucocorticoids on Leydig cells. In adult female sheep, stress disrupts reproductive function via multi-stage mechanisms involving glucocorticoid-mediated suppression of LH secretion, LH action on the ovary and the action of estradiol on its target cells (e.g., uterus). While physiological concentrations of endogenous glucocorticoids are supportive of fetal development, excessive glucocorticoids in utero (i.e., maternal stress) adversely affect mammalian offspring by "programing" abnormalities that are primarily manifest postpartum. The influence of stress on reproduction and development can also be mediated by 11β-hydroxysteroid dehydrogenase (HSD), a bi-directional oxidative:reductive pathway, which governs the balance between biologically active (reduced) endogenous glucocorticoid and inactive (oxidized) metabolites. This pathway is mediated primarily by two isozymes, 11β - HSD1 (reductase) and 11β-HSD2 (oxidase) which act both in an intracrine (intracellular) and endocrine (systemic) fashion. The 11β-HSD pathway appears to play a variety of physiological roles in mammalian reproduction and development and is a target for selected xenobiotics. The effects of the HPA axis on mammalian reproduction and development are potential confounders for in vivo bioassays in rodents employed to identify endocrine disruptive chemicals. Accordingly, consideration of the impact of the HPA axis should be incorporated into the design of bioassays for evaluating endocrine disruptors.

  17. State-of-the-Art Review on Physiologically Based Pharmacokinetic Modeling in Pediatric Drug Development.

    PubMed

    Yellepeddi, Venkata; Rower, Joseph; Liu, Xiaoxi; Kumar, Shaun; Rashid, Jahidur; Sherwin, Catherine M T

    2018-05-18

    Physiologically based pharmacokinetic modeling and simulation is an important tool for predicting the pharmacokinetics, pharmacodynamics, and safety of drugs in pediatrics. Physiologically based pharmacokinetic modeling is applied in pediatric drug development for first-time-in-pediatric dose selection, simulation-based trial design, correlation with target organ toxicities, risk assessment by investigating possible drug-drug interactions, real-time assessment of pharmacokinetic-safety relationships, and assessment of non-systemic biodistribution targets. This review summarizes the details of a physiologically based pharmacokinetic modeling approach in pediatric drug research, emphasizing reports on pediatric physiologically based pharmacokinetic models of individual drugs. We also compare and contrast the strategies employed by various researchers in pediatric physiologically based pharmacokinetic modeling and provide a comprehensive overview of physiologically based pharmacokinetic modeling strategies and approaches in pediatrics. We discuss the impact of physiologically based pharmacokinetic models on regulatory reviews and product labels in the field of pediatric pharmacotherapy. Additionally, we examine in detail the current limitations and future directions of physiologically based pharmacokinetic modeling in pediatrics with regard to the ability to predict plasma concentrations and pharmacokinetic parameters. Despite the skepticism and concern in the pediatric community about the reliability of physiologically based pharmacokinetic models, there is substantial evidence that pediatric physiologically based pharmacokinetic models have been used successfully to predict differences in pharmacokinetics between adults and children for several drugs. It is obvious that the use of physiologically based pharmacokinetic modeling to support various stages of pediatric drug development is highly attractive and will rapidly increase, provided the robustness and reliability of these techniques are well established.

  18. iTREE: Long-term variability of tree growth in a changing environment - identifying physiological mechanisms using stable C and O isotopes in tree rings.

    NASA Astrophysics Data System (ADS)

    Siegwolf, R. T. W.; Buchmann, N.; Frank, D.; Joos, F.; Kahmen, A.; Treydte, K.; Leuenberger, M.; Saurer, M.

    2012-04-01

    Trees play are a critical role in the carbon cycle - their photosynthetic assimilation is one of the largest terrestrial carbon fluxes and their standing biomass represents the largest carbon pool of the terrestrial biosphere. Understanding how tree physiology and growth respond to long-term environmental change is pivotal to predict the magnitude and direction of the terrestrial carbon sink. iTREE is an interdisciplinary research framework to capitalize on synergies among leading dendroclimatologists, plant physiologists, isotope specialists, and global carbon cycle modelers with the objectives of reducing uncertainties related to tree/forest growth in the context of changing natural environments. Cross-cutting themes in our project are tree rings, stable isotopes, and mechanistic modelling. We will (i) establish a European network of tree-ring based isotope time-series to retrodict interannual to long-term tree physiological changes, (ii) conduct laboratory and field experiments to adapt a mechanistic isotope model to derive plant physiological variables from tree-ring isotopes, (iii) implement this model into a dynamic global vegetation model, and perform subsequent model-data validation exercises to refine model representation of plant physiological processes and (iv) attribute long-term variation in tree growth to plant physiological and environmental drivers, and identify how our refined knowledge revises predictions of the coupled carbon-cycle climate system. We will contribute to i) advanced quantifications of long-term variation in tree growth across Central Europe, ii) novel long-term information on key physiological processes that underlie variations in tree growth, and iii) improved carbon cycle models that can be employed to revise predictions of the coupled carbon-cycle climate system. Hence iTREE will significantly contribute towards a seamless understanding of the responses of terrestrial ecosystems to long-term environmental change, and ultimately help reduce uncertainties of the magnitude and direction of the past and future terrestrial carbon sink.

  19. Successful Implantation of Bioengineered, Intrinsically Innervated, Human Internal Anal Sphincter

    PubMed Central

    Raghavan, Shreya; Gilmont, Robert R.; Miyasaka, Eiichi A.; Somara, Sita; Srinivasan, Shanthi; Teitelbaum, Daniel H; Bitar, Khalil N.

    2011-01-01

    Background & Aims To restore fecal continence, the weakened pressure of the internal anal sphincter (IAS) must be increased. We bioengineered intrinsically innervated human IAS, to emulate sphincteric physiology, in vitro. Methods We co-cultured human IAS circular smooth muscle with immortomouse fetal enteric neurons. We investigated the ability of bioengineered innervated human IAS, implanted in RAG1−/− mice, to undergo neovascularization and preserve the physiology of the constituent myogenic and neuronal components. Results The implanted IAS was neovascularized in vivo; numerous blood vessels were observed with no signs of inflammation or infection. Real-time force acquisition from implanted and pre-implant IAS showed distinct characteristics of IAS physiology. Features included the development of spontaneous myogenic basal tone; relaxation of 100% of basal tone in response to inhibitory neurotransmitter vasoactive intestinal peptide (VIP) and direct electrical field stimulation of the intrinsic innervation; inhibition of nitrergic and VIPergic EFS-induced relaxation (by antagonizing nitric oxide synthesis or receptor interaction); contraction in response to cholinergic stimulation with acetylcholine; and intact electromechanical coupling (evidenced by direct response to potassium chloride). Implanted, intrinsically innervated bioengineered human IAS tissue preserved the integrity and physiology of myogenic and neuronal components. Conclusion Intrinsically innervated human IAS bioengineered tissue can be successfully implanted in mice. This approach might be used to treat patients with fecal incontinence. PMID:21463628

  20. Migratory life histories explain the extreme egg-size dimorphism of Eudyptes penguins.

    PubMed

    Crossin, Glenn T; Williams, Tony D

    2016-10-12

    When successive stages in the life history of an animal directly overlap, physiological conflicts can arise resulting in carryover effects from one stage to another. The extreme egg-size dimorphism (ESD) of Eudyptes penguins, where the first-laid A-egg is approximately 18-57% smaller than the second-laid B-egg, has interested researchers for decades. Recent studies have linked variation in this trait to a carryover effect of migration that limits the physiology of yolk production and egg sizes. We assembled data on ESD and estimates of migration-reproduction overlap in penguin species and use phylogenetic methods to test the idea that migration-reproduction overlap explains variation in ESD. We show that migration overlap is generally restricted to Eudyptes relative to non-Eudyptes penguins, and that this overlap (defined as the amount of time that egg production occurs on land versus at sea during homeward migration) is significantly and positively correlated with the degree of ESD in Eudyptes In the non-Eudyptes species, however, ESD was unrelated to migration overlap as these species mostly produce their clutches on land. Our results support the recent hypothesis that extreme ESD of Eudyptes penguins evolved, in part, as a response to selection for a pelagic overwinter migration behaviour. This resulted in a temporal overlap with, and thus a constraint on, the physiology of follicle development, leading to smaller A-egg size and greater ESD. © 2016 The Author(s).

Top